Please use this identifier to cite or link to this item: https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4910
Title: Audio Source Separation and Automatic Music Transcription on Specific Instruments
Authors: Akarawita, S. U.
Issue Date: 16-Jun-2025
Abstract: Abstract Imagine listeningtoasymphonywhereviolins,pianos,anddrumsblendseamlessly, creating arichmusicalexperience.Butwhatifwecouldisolatejusttheviolinfromthat mix, capturingitsmelodieswithprecision?Thisistheessenceofaudiosourceseparation, whichisknownasextractingindividualinstrumentsfromacomplexmusicalpiece. Atthesametime,musictranscriptionhaslongbeenataskrequiringhumanexpertise. Turninganaudiorecordingintomusicalnotes(MIDI)hastraditionallybeenamanual process,demandingatrainedear.However,withadvancesinmachinelearning,wenow havethepotentialtoautomatethisprocess,makingmusicmoreaccessible,editable,and analyzable. This researchfocusesondevelopingmachinelearningmodelsthatcanseparatecertain instrumentalaudiofrompolyphonicrecordingsandconvertitintoMIDI.Bybridgingthe fields ofaudiosourceseparationandautomaticmusictranscription(AMT),weaimto push theboundariesofhowmachinesunderstandandprocessmusic.
URI: https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4910
Appears in Collections:2025

Files in This Item:
File Description SizeFormat 
20000073 - S. U. Akarawita - Mr. AKARAWITA S.U.. Copy pdf.pdf4.69 MBAdobe PDFView/Open


Items in UCSC Digital Library are protected by copyright, with all rights reserved, unless otherwise indicated.