
Enhancing Digital Forensics

Investigation Process

through Large Language Model

K.K.S. Fernando

L. M. F. Hussain

W.A.T.S Jayathilaka

2025

Enhancing Digital Forensics
Investigation Process through

Large Language Model
K.K.S. Fernando

Index No: 20020384
L. M. F. Hussain

Index No: 20020473
W.A.T.S Jayathilaka
Index No: 20020511

Supervisor : Dr. Asanka.P. Sayakkara
Mentor : Akila Wickramasekara

May 2025

Submitted in partial fulfillment of the requirements of the B.Sc.
(Honours) Bachelor of Science in Information Systems Final Year Project

2

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any
material previously submitted for a degree or diploma in any university and to the best of
my knowledge and belief, it does not contain any material previously published or written
by another person or myself except where due reference is made in the text. I also hereby
give consent for my dissertation, if accepted, be made available for photocopying and for
interlibrary loans, and for the title and abstract to be made available to outside organizations.

Candidate Name: K.K.S. Fernando

. .
Signature of Candidate Date : 26-June-2025

I certify that this dissertation does not incorporate, without acknowledgement, any material
previously submitted for a degree or diploma in any university and to the best of my
knowledge and belief, it does not contain any material previously published or written by
another person or myself except where due reference is made in the text. I also hereby
give consent for my dissertation, if accepted, be made available for photocopying and for
interlibrary loans, and for the title and abstract to be made available to outside organizations.

Candidate Name: L. M. F. Hussain

. .
Signature of Candidate Date : 26-June-2025

1

I certify that this dissertation does not incorporate, without acknowledgement, any material
previously submitted for a degree or diploma in any university and to the best of my
knowledge and belief, it does not contain any material previously published or written by
another person or myself except where due reference is made in the text. I also hereby
give consent for my dissertation, if accepted, be made available for photocopying and for
interlibrary loans, and for the title and abstract to be made available to outside organizations.

Candidate Name: W.A.T.S Jayathilaka

. .
Signature of Candidate Date : 26-June-2025

2

This is to certify that this dissertation is based on the work of,

K.K.S. Fernando
L. M. F. Hussain
W.A.T.S Jayathilaka

under my supervision. The thesis has been prepared according to the format stipulated and
is of acceptable standard.

Principle/Supervisor’s Name: Dr. Asanka. P. Sayakkara

. .
Signature of Supervisor Date :

3

2025-06-30

Abstract

Digital forensics, particularly file system analysis, often requires specialized knowledge
and complex tools like The Sleuth Kit (TSK), which can hinder the efficiency of
investigations. To address this, we propose a framework that leverages Large Language
Models (LLMs) and AI agents to interpret natural language instructions and automate TSK
commands. By automating complex forensic tasks through natural language processing, our
framework has the potential to significantly accelerate investigations, reduce the likelihood of
errors, and democratize access to advanced forensic tools. This approach aims to make digital
forensics more accessible, efficient, and user-friendly for a broader range of investigators.

The research addresses key challenges in digital forensics, such as the complexity of
command-line tools and the need for rapid, accurate analysis in time-sensitive cases.
Through a Design Science Research Methodology (DSRM), the framework was developed
and refined by establishing a secure environment with local LLMs and AI agents,
enhanced by Retrieval-Augmented Generation (RAG) and ReAct prompting to mitigate
LLM hallucination and improve reasoning, implementing a user-friendly chat interface with
logging and case tracking features based on practitioner feedback, and integrating tool-calling
functionality for dynamic access to TSK documentation, further improving accuracy and
flexibility.

Quantitative evaluation using AutoDFBench demonstrated that the framework achieved
an average precision of 64.74%, recall of 28.70%, and an F1-score of 36.56% across forensic
string search tasks. These results indicate that while the framework shows strong precision
in executing forensic commands accurately, opportunities remain to further optimize recall
and overall retrieval performance. Input from digital forensic experts further confirmed the
framework’s effectiveness in streamlining investigations and reducing errors. The multi-agent
architecture, with specialized roles for task translation, code writing, and reporting, ensures
a modular and efficient approach to forensic analysis.

This work contributes a novel, user-centric solution to digital forensics, making advanced
forensic tools more accessible and paving the way for future AI-powered forensic systems.

Keywords: digital forensics, file system analysis, AI agents, large language models, The
Sleuth Kit, natural language processing, forensic automation, forensic ai assistant

4

Acknowledgement

First of all, we would like to express our heartfelt gratitude to our supervisor, Dr. Asanka
P. Sayakkara, for his continuous guidance, encouragement, and valuable feedback throughout
the course of this research. His insights were instrumental in shaping our work and helping
us navigate each stage of the project.

We are especially grateful to Mr. Akila Wickramasekara and Prof. Mark Scanlon
from University College Dublin, Ireland, for their mentorship and support throughout this
research. Their expert advice, insightful suggestions, and dedicated involvement played a
crucial role in refining our approach. We would also like to extend our sincere thanks to
Prof. Scanlon for generously providing us with server resources, which greatly supported the
technical implementation and testing phases of our framework.

We also acknowledge the academic staff and lecturers at the University of Colombo School
of Computing for providing us with the foundational knowledge and guidance that supported
this work.

Special thanks go to our families and friends for their endless patience, motivation, and
support during the entire research process. Their encouragement helped us stay focused and
committed to our goals.

Finally, we appreciate all individuals who contributed directly or indirectly by sharing
ideas, offering feedback, or assisting with testing. Your contributions have added great value
to the quality of this thesis.

5

Contents

Declaration 1

Abstract 4

Acknowledgement 5

List of Figures 9

List of Tables 10

List of Acronyms 11

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions . 1
1.3 Goals and Objectives . 2

1.3.1 Goals . 2
1.3.2 Objectives . 2

1.4 Research Approach . 2
1.5 Limitations, Scope and Assumptions . 3

1.5.1 Limitations . 3
1.5.2 Scope . 3
1.5.3 Out of Scope . 3
1.5.4 Assumption . 4

1.6 Contribution . 4

2 Background and Literature Review 5
2.1 Background . 5

2.1.1 Large Language Models (LLMs) . 5
2.1.2 AI Agents and Multi-Agent Systems 5
2.1.3 Natural Language Processing (NLP) 5
2.1.4 Prompt Engineering . 5
2.1.5 Retrieval-Augmented Generation (RAG) 6
2.1.6 AutoGen Framework . 6
2.1.7 Computer File System Forensics . 6
2.1.8 Research Relevance . 6

6

2.1.9 ReAct Prompt Engineering . 6
2.2 Literature Review . 7

3 Methodology 11
3.1 First Iteration . 11

3.1.1 Problem Identification and Motivation 11
3.1.2 Objectives . 12
3.1.3 Design and Development . 13
3.1.4 Demonstration . 13
3.1.5 Evaluation via Expert Feedback . 13
3.1.6 Implementation Setup . 13
3.1.7 Conclusion of First Iteration . 14

3.2 Second Iteration . 14
3.2.1 Problem Identification and Motivation 14
3.2.2 Objectives . 15
3.2.3 Design and Development . 15
3.2.4 Demonstration . 16
3.2.5 Evaluation via Expert Feedback . 16
3.2.6 Implementation Setup . 16
3.2.7 Conclusion of Second Iteration . 16

3.3 Third Iteration . 17
3.3.1 Problem Identification and Motivation 17
3.3.2 Objectives . 18
3.3.3 Design and Development . 18
3.3.4 Demonstration with NIST Disk Image 19
3.3.5 Evaluation via AutoDFBench . 19
3.3.6 Implementation Setup . 19
3.3.7 Conclusion of Third Iteration . 20

3.4 Communication . 21

4 Results and Evaluation 22
4.1 Qualitative Evaluation . 22

4.1.1 Introduction . 22
4.1.2 Methodology . 22
4.1.3 Findings . 22
4.1.4 Conclusion . 23

4.2 Quantitative Evaluation . 24
4.2.1 Introduction . 24
4.2.2 Integration of AutoDFBench with the AI Agent Framework 24
4.2.3 Methodology . 25
4.2.4 Results . 27
4.2.5 Discussion . 29

7

4.3 Conclusion of Evaluation . 30

5 Discussion and Conclusion 31
5.1 Research Findings . 31
5.2 Discussion . 33
5.3 Final Conclusion . 35
5.4 Recommendation . 37
5.5 Future Work . 37

5.5.1 Multimodal Forensics Integration. 37
5.5.2 Support to Other Digital Forensic Branches 38
5.5.3 Create a Dataset for Fine-Tuning an LLM 38
5.5.4 Framework Testing with Fine-Tuned LLMs 38

References 41

Appendices 42

A Screenshots of the developed graphical user interface 43

B Screenshots of Qualitative Evaluation Findings 46
2.1 Overall Satisfaction . 46
2.2 UI/UX Evaluation . 47
2.3 Task Breakdown Effectiveness . 47
2.4 Accuracy of Analysis . 48
2.5 Clarity of AI Agent Guidance . 48
2.6 Code Generation & Execution . 49
2.7 Adoption and Impact . 49
2.8 Additional Features . 50
2.9 General Comments & Suggestions . 50

C Results of Evaluation 51

D Github Repository 54

8

List of Figures

2.1 Architecture of the Proposed Framework [1] 8

3.1 Architecture of the AI-driven DF Framework in the First Iteration 14
3.2 Architecture of the AI-driven DF Framework in the Second Iteration 17
3.3 Architecture of the AI-driven DF Framework in the Third Iteration 20

4.1 grouped bar chart with precision and recall 28
4.2 F1 score chart with test cases . 29

1.1 Full interface . 43
1.2 Opening chat interface for a chat requiring a case number 44
1.3 Populated chat interface . 44
1.4 Side bar for tracking chats with a case number with the option to search . . 45
1.5 Button to download logs . 45
1.6 Generated log file . 45

2.1 Practitioner feedback on Overall Satisfaction 46
2.2 Practitioner feedback on UI/UX Evaluation 47
2.3 Practitioner feedback on Task Breakdown Effectiveness 47
2.4 Practitioner feedback on Accuracy of Analysis 48
2.5 Practitioner feedback on Clarity of AI Agent Guidance 48
2.6 Practitioner feedback on Code Generation and Execution 49
2.7 Practitioner feedback on Adoption and Impact 49
2.8 Practitioner requests for Additional Features 50
2.9 Practitioner General Comments and Suggestions 50

3.1 FT-SS-02 Test case results using auto df bench 51
3.2 FT-SS-03 Test case results using auto df bench 51
3.3 FT-SS-04 Test case results . 52
3.4 FT-07-RTL Test case results using auto df bench 52
3.5 FT-SS-09 results . 52
3.6 FT-SS-10 results . 53

9

List of Tables

4.1 Performance Metrics for Forensic String Search Test Cases 27
4.2 Confusion Matrix for Forensic String Search Test Cases 28

10

List of Acronyms

AI Artificial Intelligence

CDF Center for Digital Forensics

CFTT Computer Forensics Tool Testing Program

DF Digital Forensics

DSRM Design Science Research Methodology

LLMs Large Language Models

MAS Multi-Agent Systems

NIST National Institute of Standards and Technology

NLP Natural Language Processing

RAG Retrieval-Augmented Generation

ReAct Reason + Act

TSK The Sleuth Kit

UCSC University of Colombo School of Computing

UI/UX User Interface/User Experience

11

Chapter 1

Introduction

1.1 Problem Statement

With the rapid advancement of technology, digital devices have become an essential part
of everyday life. As a result, digital crimes have significantly increased over the years,
presenting serious challenges for law enforcement and forensic investigators. The growing
number of digital crime cases has led to the need for more efficient investigation methods
that can handle large volumes of data while maintaining accuracy and reliability.

File system forensics, a core area of digital forensics, involves analyzing file systems to
recover, identify, and interpret digital evidence stored on storage media. Tools such as The
Sleuth Kit (TSK) are widely used in this domain due to their powerful capabilities and
flexibility [2].Although forensic experts are trained to operate such tools, some commands
are highly specialized or infrequently used. As a result, investigators often need to consult
official documentation or references to ensure proper usage. This process can slow down
the investigation and introduce the possibility of delays or mistakes, especially during
time-sensitive or large-scale forensic tasks.

These challenges highlight the need for an intelligent, accessible, and automated approach
to support forensic experts in conducting investigations more efficiently. A system that can
interpret natural language input and handle forensic operations through AI-driven assistant
can help streamline the process, reduce manual effort, and support consistent and accurate
digital investigations.

1.2 Research Questions

To address the problems identified above, this research aims to answer the following
questions:

1. Does the integration of LLMs into the investigation process reduce the
demand for technical expertise of DF practitioners?

This question explores the specific mechanisms by which LLMs can simplify the use of
DF tools to perform forensic tasks effectively.

1

2. How to effectively implement the proposed AI-driven DF framework as a
user-friendly tool for real-world forensic investigations?

The goal of this research question is to explore the practical steps and methodologies
required to transform the theoretical framework into a functional tool that can be
easily used by DF investigators in real-world scenarios.

1.3 Goals and Objectives

1.3.1 Goals

The primary goal of this research is to design and develop a user-friendly and intelligent
framework that assists digital forensic investigators in performing file system forensic tasks
using natural language instructions. This is achieved by integrating LLMs and AI agents
with TSK to automate the execution of complex commands.

1.3.2 Objectives

The specific objectives of the research are as follows:

• To explore the limitations and challenges of existing file system forensic tools and
identify areas that can benefit from automation.

• To design and implement AI agents capable of translating natural language queries
into TSK commands.

• To develop a user interface that allows investigators to interact with the system in a
more intuitive and accessible manner.

• To evaluate the performance of the proposed system in terms of speed, accuracy, and
usability through practical scenarios and user feedback.

1.4 Research Approach

This research adopts a design science methodology where the solution is developed iteratively
and refined through continuous feedback and evaluation. The framework is built using
multiple AI agents powered by open-source LLMs, each responsible for different tasks such
as task translation, command execution, and report generation. The agents collaborate to
process investigator input, translate it into TSK commands, run the commands, and present
the output in a structured format. Natural Language Processing (NLP) capabilities are
integrated to allow users to issue queries using simple, natural language, reducing the need
to memorize syntax. The evaluation strategy includes standard forensic tasks such as file
recovery and metadata extraction, using precision, recall, F1-score, and usability metrics.
Feedback from digital forensic practitioners is also used to measure the practical effectiveness
and usability of the system [1, 3].

2

1.5 Limitations, Scope and Assumptions

1.5.1 Limitations

This research has several limitations and ethical considerations that should be acknowledged.
The framework relies on Large Language Models (LLMs), which can sometimes generate
incorrect or misleading outputs, especially when exposed to lengthy or ambiguous prompts.
Although methods such as Retrieval-Augmented Generation (RAG) and ReAct prompting
were used to reduce these risks, final outputs still require careful human review.

Another limitation concerns the secure use of LLMs in forensic environments. To
maintain the forensic soundness of evidence and ensure data privacy, the LLMs were
deployed locally using isolated environments. This setup prevents sensitive data from being
transmitted across external networks and confines command execution through predefined
functions to avoid potential misuse.

The datasets used during development and testing were publicly available and
standardized, such as those provided by NIST CFTT. Handling real-world case data would
require additional ethical and legal considerations, including data protection, chain of
custody, and institutional clearance, which were beyond the scope of this study.

1.5.2 Scope
1.5.2.1 In scope

1. AI Agents for File System Forensics:: Development of specialized agents,
including a Chat Manager, Task Translation Assistant, Coder Agent, and Reporter
Agent, specifically for file system forensics tasks. Each agent will perform unique roles
to streamline TSK command execution and data handling.

2. User interface: Developing a UI to input natural language queries and allow the user
to step in and change the agents’ actions when needed.

1.5.3 Out of Scope

1. Fine tuned AI Agent: The project will not involve agents specially trained for
advanced analysis tasks outside the general scope of file system forensics.

2. Cross-Domain Agent Training: The framework is limited to file system forensics
and does not extend to other DF branches, such as network or memory forensics.

3. Advanced Customization of TSK: Existing TSK commands are utilized without
modifying or creating custom modules specific to this project.

4. Evaluation of Agent Frameworks: This research does not aim to evaluate
or compare the performance of the AutoGen framework against other AI agent
orchestration frameworks.

3

5. Anti-Forensics Considerations: This study does not address anti-forensics
techniques or scenarios where evidence may be intentionally altered or concealed.

1.5.4 Assumption

It is assumed that users of the proposed system possess a basic understanding of digital
forensic principles and are familiar with general practices in forensic investigations. While
the system is designed to simplify the use of forensic tools, it still requires users to have
a foundational awareness of how file system forensics works and how command-line tools
like TSK are typically used. Users are expected to understand the context of forensic tasks,
such as file recovery or metadata analysis, in order to interpret and validate the outputs
effectively.

Additionally, it is assumed that the built-in functionalities of TSK are adequate for
performing the types of forensic operations required within the scope of this research. The
system leverages these existing features without extending or modifying TSK itself. It is also
assumed that the selected open-source LLMs are capable of performing reliable command
translation and task automation using natural language instructions, without the need for
model fine-tuning.

1.6 Contribution

This research makes several key contributions to the digital forensics field. Firstly, it presents
a novel AI-powered framework that significantly reduces the complexity involved in using
forensic tools like TSK by allowing natural language interaction. Secondly, it introduces a
multi-agent architecture where each AI agent performs a dedicated role, enabling a modular
and efficient approach to forensic investigations [3]. Thirdly, it provides a comprehensive
evaluation of the proposed system, measuring its impact on investigation speed, accuracy,
and ease of use. Lastly, the research addresses the gap in accessibility and usability of
forensic tools, especially in environments where technical expertise is limited. By doing so,
it lays the groundwork for future advancements in intelligent, user-friendly digital forensic
systems that can be adapted for broader forensic tasks beyond file system analysis.

4

Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Large Language Models (LLMs)

Large Language Models (LLMs) are a type of artificial intelligence trained on large text
datasets to understand and generate human-like language. These models can perform a
wide range of natural language processing tasks, such as text generation, summarization,
and question answering. Their capability to understand context and provide meaningful
responses makes them suitable for tasks that traditionally required human intervention.

2.1.2 AI Agents and Multi-Agent Systems

Autonomous agents are independent systems capable of sensing and interacting with their
environments and use the information they gain to independently make their own rational
decisions [4]. When organized as Multi-Agent Systems (MAS), these agents can specialize
in different tasks and collaborate to complete complex operations. MAS systems are known
for improving adaptability, task distribution, and contextual understanding 5, 6.

2.1.3 Natural Language Processing (NLP)

NLP is a field of AI that focuses on the interaction between computers and human language.
It allows machines to understand, interpret, and generate human language in a way that is
both meaningful and useful. In this research, NLP is used to interpret user input in natural
language and translate it into forensic commands understood by the system.

2.1.4 Prompt Engineering

Prompt engineering refers to the practice of designing and refining input queries to guide
the behavior of LLMs effectively. Since LLMs are sensitive to the structure and clarity of
prompts, this technique is important in ensuring that responses are accurate, relevant, and
aligned with user intentions. Strategies like zero-shot and few-shot prompting are often used
to improve output consistency and reliability [7].

5

2.1.5 Retrieval-Augmented Generation (RAG)

RAG is a hybrid approach that combines document retrieval with text generation. It enables
the model to retrieve relevant context from a knowledge base or dataset before generating
a response, leading to more informed and accurate outputs. In digital forensics, RAG helps
improve the reliability of LLM-generated content by anchoring it to verified information[8].

2.1.6 AutoGen Framework

AutoGen is an open-source framework that supports the development of multi-agent
LLM applications. It allows multiple agents with different roles and capabilities to work
collaboratively on complex tasks while supporting human-in-the-loop control 3. This
framework is highly relevant to this research as it supports agent orchestration and
customizable workflows suitable for digital forensic applications.

2.1.7 Computer File System Forensics

File system forensics is the process of examining and analyzing data stored within a
computer’s file system to uncover, document, and interpret digital evidence. It involves
detailed inspection of file structures, metadata, and storage volumes to recover hidden or
deleted files. TSK (The Sleuth Kit) is a widely used open-source tool in this domain. It allows
analysts to examine disk images across multiple file system formats and provides critical
support for evidence analysis 2. This research focuses on automating TSK’s command-line
interface to improve efficiency and usability.

2.1.8 Research Relevance

By combining these advanced technologies, LLMs, AI agents, AutoGen, and file system
forensic tools—this research aims to bridge the gap between complex forensic tools and the
growing need for accessibility and efficiency in investigations. The proposed system provides
a new approach to forensic analysis by enabling investigators to use natural language to
conduct advanced forensic operations with minimal technical barriers.

2.1.9 ReAct Prompt Engineering

ReAct (Reason + Act) is a prompt-based approach introduced to combine reasoning and
acting in large language models (LLMs). Unlike traditional prompting methods that focus
either on generating reasoning traces (as in Chain-of-Thought prompting) or on action
execution, ReAct allows LLMs to interleave reasoning steps with concrete actions. This
interleaving enables models to dynamically formulate plans, update them based on new
information, and interact with external tools or environments during task execution [9].

In this approach, models generate “thoughts" (reasoning traces) that help guide decisions
and determine the next appropriate action. These actions may involve querying APIs,
navigating environments, or interacting with data sources. The synergy between internal

6

reasoning and external action allows ReAct to be more grounded and effective, reducing
hallucinations and improving performance across tasks such as question answering, decision
making, and information retrieval.

In the context of this research, ReAct prompting is used to enhance the reliability and task
execution capabilities of LLM agents when performing forensic operations, such as chaining
together forensic tool commands or adapting responses based on intermediate results.

2.2 Literature Review

Recent literature has demonstrated significant advancements in applying artificial
intelligence (AI) and automation within digital forensics (DF). As digital crime volumes
increase and evidence becomes more complex and distributed, the demand for intelligent,
adaptive solutions has grown. A growing body of research is exploring how Large Language
Models (LLMs) and AI agents can be employed to reduce the technical burden on
investigators and automate routine forensic tasks.

Wickramasekara and Scanlon [1] proposed a comprehensive multi-agent framework
that integrates LLMs and AutoGen to support key stages of the digital forensic
process—specifically the Examination, Analysis, and Reporting phases. Their model defines
specific roles for agents, such as task translators, code generators, and reporters. These
agents work in coordination, enabling the overall system to interact more efficiently with
traditional digital forensic tools, demonstrating how role-based multi-agent design can
enhance investigation workflows.

The architecture of this framework (see Figure 2.1) includes a human agent who interacts
with a Chat Manager through natural language. The Chat Manager assigns tasks either to a
Task Translation Assistant (TTA) or a Reporter Agent based on the type of input. The TTA,
powered by a fine-tuned LLM, breaks down complex instructions into subtasks and passes
them to the Coder Agent, which is responsible for generating Python code and running
tests. Once the output is produced, the Reporter Agent compiles a readable report and
sends it back to the Chat Manager, who communicates the results to the human agent. This
setup enables dynamic role assignment and effective task orchestration among AI agents,
improving usability and reducing manual overhead in forensic workflows.

7

Figure 2.1: Architecture of the Proposed Framework [1]

In earlier efforts toward forensic tool automation, Garfinkel [10] introduced a solution
that processes disk images using The Sleuth Kit (TSK) and generates detailed XML output,
including metadata such as file names, timestamps, and hash values. This system simplifies
the use of TSK by abstracting its command-line complexity and supports integration with
scripting tools like Python for large-scale or customized forensic processing. The developed
system is then used to create programs for case studies that can be done using TSK. The case
studies include Remote File Discovery and Extraction, an Image Redaction Tool and a USB
Transfer Kiosk. The paper then provides qualitative comparisons highlighting efficiency and
ease of use compared to running regular TSK commands.

In the context of AI, Kakalis and Kefalidis [11] explored the use of open-source LLMs to
convert natural language input into SPARQL queries for knowledge graph access. The study
focused specifically on small scale open source LLM’s and follows a systematic approach to
select the model that meets the hardware limitation. The study goes through three type of
prompt engineering techniques evaluating them though accuracy.

In a broader AI context, Hymel et al. [6] investigated multi-agent configurations in
commercial software environments. Their findings highlight that enabling context-sharing
between agents, such as a requirements agent and a code-writing agent, leads to improved
relevance and performance. The study evaluates the effect of context sharing through the
accepted suggestions from the code-writer agent with 101 developers participating in the
experiment. These insights lend support to similar collaborative agent structures being
explored in digital forensic applications.

While these studies showcase the potential of agent-based design, command abstraction,
and natural language interaction, they each focus on individual aspects of the broader
problem. There remains a notable gap in research that unifies these ideas into a complete,
automated forensic framework specifically targeting file system forensics. This thesis aims
to address that gap by developing an AI-powered system that automates TSK operations
through a natural language interface and multi-agent coordination, making forensic tasks

8

more accessible, efficient, and scalable.
To complement these advancements in forensic automation, Wickramasekara et al. also

introduced AutoDFBench, a benchmarking framework designed to test and validate digital
forensic tools and scripts generated by large language models (LLMs) [12]. The framework
follows a structured testing pipeline involving data preparation, code generation, execution,
and result validation based on ground truth datasets from the NIST Computer Forensics
Tool Testing Program (CFTT). It calculates evaluation metrics such as precision, recall, and
F1 scores to produce a comprehensive AutoDFBench score. The benchmark allows both
iterative development and comparative analysis of AI-assisted forensic tools, addressing
the current gap in standardised evaluation for generative forensic applications. In this
research, AutoDFBench is used to evaluate the effectiveness and reliability of the proposed
LLM-powered forensic framework by testing its performance on string search tasks using
standard forensic test images.

Together, these works provide a strong foundation for the development and evaluation
of the LLM-driven, agent-based forensic framework proposed in this thesis. While these
frameworks are promising, recent literature also investigates the limitations and risks of
adopting LLMs in forensic environments.

One of the most comprehensive studies is by Scanlon et al., who assessed ChatGPT
(GPT-4) across a range of digital forensic tasks—including artifact identification, anomaly
detection, keyword search generation, and incident response [13]. Their findings highlighted
both strengths and limitations. On the one hand, ChatGPT was able to assist with
generating useful code snippets and aiding preliminary investigation steps. On the other, the
authors raised critical concerns about hallucinations, outdated knowledge, legal risks, and a
lack of domain-specific training. They argued that non-deterministic and non-reproducible
outputs make such models unsuitable for high-stakes forensic investigations requiring strict
validation.

A. Wickramasekara et al. expanded this perspective in their Systematization of
Knowledge (SoK) paper [14]. Their review identified a wide spectrum of use cases for LLMs
across the forensic investigation lifecycle—including anomaly detection, log parsing, and
report generation—but concluded that their current effectiveness is limited to subtasks or
supportive roles rather than complete workflows. They emphasized the ongoing challenges
of explainability, black-box behavior, and the need for structured evaluation protocols,
especially for courtroom use.

A recurring concern in the literature is the issue of hallucinations. Because LLMs generate
coherent text by predicting language patterns rather than grounding their output in factual
data, they are susceptible to fabricating plausible but false statements. In digital forensic
applications—where accuracy and verifiability are essential—this risk cannot be overlooked.
Both Scanlon et al. and Alghafli et al. [14, 13] caution that without robust human oversight
and formal evaluation tools, LLM-generated content poses legal and operational risks.

Despite these risks, the potential of LLM-driven frameworks remains strong.

9

Wickramasekara et al.’s AutoGen-based architecture is one of the first to offer a complete,
agent-driven pipeline that combines natural language interaction, command decomposition,
and structured reporting. Their inclusion of memory mechanisms, role-based agents, and
integration with evaluation tools like AutoDFBench showcases how LLM-powered systems
can evolve into scalable and robust solutions for file system forensics.

In parallel, usability-focused research by Hargreaves et al. revealed that many
practitioners underutilized existing forensic tools—especially those that include AI
functionality—due to poor usability, lack of trust in results, and overwhelming training
requirements [15]. Respondents cited issues such as difficulty filtering results, poor output
clarity, and limited control over how AI-enhanced features behave. The DFPulse 2024
report also highlighted that many practitioners do not frequently engage with academic
publications or tools due to internal policy constraints, perceived impracticality, or time
limitations. These findings underscore the need for intuitive, explainable, and user-aligned
interfaces—precisely what this thesis attempts to contribute through natural language
prompting and multi-agent coordination.

In conclusion, the reviewed literature reflects a significant shift toward semi-automated,
human-guided AI systems in digital forensics. Rather than aiming for fully autonomous
solutions, the emphasis is on developing AI assistants that support and extend the
capabilities of human investigators. While isolated tools and techniques offer useful
improvements, the future lies in integrated frameworks that balance LLM automation with
traceability, expert oversight, and standard-compliant evaluation. The proposed system in
this thesis addresses this convergence by leveraging natural language interfaces, modular
agent architecture, and AutoDFBench testing to create a usable, transparent, and effective
solution for real-world digital forensic investigations.

10

Chapter 3

Methodology

This research adopts the Design Science Research Methodology (DSRM), as introduced
by [16], to guide the development and evaluation of an AI-driven digital forensics framework.
The framework leverages a multi-agent system to automate forensic tasks using The Sleuth
Kit (TSK). Key agents include the Chat Manager, which handles user queries and delegates
tasks; the Task Translation Agent, which breaks down queries into subtasks; the Code
Writer Agent, which generates TSK commands; the Code Executor Agent, which runs these
commands; and the Reporter Agent, which compiles results into reports. These agents
interact sequentially: the Chat Manager receives natural language input, passes it to the
Task Translation Agent, which coordinates with the Code Writer and Executor Agents, while
the Reporter Agent delivers the final output, all supported by RAG and ReAct prompting for
improved reasoning. DSRM introduces a structured process for conducting research through
the creation and evaluation of IT artifacts that aim to solve identified practical problems,
ensuring both practical relevance and advancement of scientific knowledge.

The DSRM process model, as defined by Peffers et al. (2007), involves six key activities:
problem identification and motivation, definition of objectives for a solution, design and
development, demonstration, evaluation, and communication. Accordingly, this research
follows these activities through an iterative process, refining the artifact over three iterations.
The refinements to the agents are done within each iteration by changing the system prompts
of the agents to get a satisfactory output for a defined user query.

3.1 First Iteration

3.1.1 Problem Identification and Motivation

The initial iteration aimed to assess the feasibility of implementing a simplified version of
the AI-driven digital forensics framework proposed by Wickramasekara, A. and Scanlon, M.
[1]. This prototype excluded components such as a fine-tuned large language model (LLM)
and specialized agent skills. The goal was to validate whether a baseline system—centered
around file system forensic tasks using The Sleuth Kit (TSK)—could function effectively in
a real-world setting.

By demonstrating feasibility at this foundational level, the research sought to uncover
practical challenges and inform design decisions for subsequent iterations. This approach

11

also served to assess the potential of integrating AI agents with local LLMs in a secure and
controlled environment.

3.1.2 Objectives
3.1.2.1 Environment Setup

The first objective was to establish a secure, privacy-preserving environment to deploy the
AI framework. Local instances of open-source LLMs were used to ensure the framework
could operate in a closed network, similar to a digital forensic (DF) lab.

To safeguard the host environment, LLM-generated code needed to be executed in
isolation to mitigate risks posed by potentially unsafe outputs.

Process:

• Select and deploy an open-source LLM locally, considering computational constraints.

• Configure a secure environment on a local machine with sufficient GPU resources.

• Establish containerized execution to run LLM-generated commands in isolation.

3.1.2.2 Framework Implementation

A simplified version of the AI agent-based framework was developed, following the principles
set out in Wickramasekara, A. and Scanlon, M.’s [1] design. Key enhancements included:

• Transparency in reasoning: Similar to including the research process of a the
forensic practitioner, the research process of the LLM to get to conclusions is also
needed to be included in the forensics report. For this, Agents adopted the ReAct
(Reasoning and Action) prompting technique. This technique make the LLM’s output
a structured response that forces it to show it’s thought process.

• Knowledge enhancement: LLM’s used in this iteration were small scale LLM’s.
These LLM’s lacked the knowledge of TSK. Hence, the information regarding TSK
commands had to be augmented along with the user prompt to generate accurate
responses. A Retrieval-Augmented Generation (RAG) component was introduced
to address this. This component would take in the user query and augment the
information of the most relevant TSK commands. This enriches the user’s query to
generate accurate responses.

Process:

• Implement a multi-agent system using Microsoft Autogen.

• Integrate ReAct prompting for reasoning transparency.

• Develop a RAG to supply the LLM with documentation-based TSK knowledge.

12

3.1.3 Design and Development

The initial artifact combined LLM agents, ReAct-enhanced reasoning, RAG-driven
knowledge retrieval, and TSK-based forensic utilities in a secure environment.

Key Features:

• Develop the backend using Microsoft Autogen to connect the LLM agents through a
group chat conversational pattern.

• Process natural language inputs using the Task Translation Agent to generate subtasks,
leveraging ReAct for transparent reasoning.

• Generate TSK code scripts with the Code Writing Agent.

• Retrieve TSK-specific knowledge via the RAG Proxy Agent to ensure accuracy.

• Interpret TSK outputs and present them in a clear, user-friendly format.

• Limit scope to file system forensics tasks, specifically focusing on deleted file recovery
using TSK.

3.1.4 Demonstration

The framework’s feasibility was tested using a NIST disk image to verify the outputs for a
basic file system forensics task, such as identifying allocated partitions and their file system
types. Subtask reasoning was observed, and both the final outputs and reasoning steps were
documented.

3.1.5 Evaluation via Expert Feedback

Demonstration results were shared with the project supervisor, and feedback was collected
on:

• Usability of the prototype.

• Clarity of ReAct’s reasoning in the Task Translation and Code Writing Agents.

• Effectiveness of the RAG Proxy Agent’s knowledge retrieval.

Outputs were also compared against the expected results from the NIST image. Feedback
was analyzed to identify strengths and areas for improvement in subsequent iterations.

3.1.6 Implementation Setup

During the first iteration, development and testing were conducted on the researchers’
personal laptops, each equipped with an Intel Core i7 10th Gen processor, 16 GB of RAM,
and an NVIDIA GTX 1660 GPU with 6 GB of VRAM. Due to these limited computational

13

resources, only lightweight LLMs such as LLaMA 3 7B (quantized) were deployed using
Ollama and LM Studio.

The LLMs were run locally in isolated environments without internet access, ensuring
forensic soundness and privacy. This setup was adequate for evaluating foundational
functionality,natural language translation, basic Sleuth Kit command generation, and
RAG-assisted knowledge retrieval, but was limited to smaller models and low-latency tasks.

3.1.7 Conclusion of First Iteration

The first iteration served as a proof-of-concept for the AI-driven digital forensics framework.
It demonstrated the feasibility of integrating locally hosted LLMs with AI agents, enhanced
by ReAct prompting and a RAG Proxy Agent for TSK-specific knowledge retrieval. Success
was measured by the framework’s ability to generate reasonable outputs on a NIST disk
image. The iteration provided essential insights and informed refinements needed to enhance
practical relevance in future developments.

Figure 3.1: Architecture of the AI-driven DF Framework in the First Iteration

3.2 Second Iteration

3.2.1 Problem Identification and Motivation

The Autogen backend provided a command-line interface that was not suitable for
a chat-style application. While functionally enough for demonstrating feasibility, the
framework was unsuitable for practical deployment as a user-friendly DF tool. The second
iteration, therefore, focused on enhancing usability by implementing a graphical interface.
By enabling more intuitive interaction, the goal was to assess how practitioners would engage

14

with the framework, and to gather actionable feedback for improving it further. Based on
availability of DF practitioners in Sri Lanka who could have a hands-on with the tool, we
were limited to two individuals from the Centre for Digital Forensics (CDF) in UCSC. As
such, this was the sample for our evaluations in this iteration. As far as representing the
digital forensics practitioner community, this sample does not do the community justice.
Even though we got feedback regarding this AI assisted tool, the authors of this paper fully
agree with this. What is needed to be considered is that this was the only available resource
within our reach due to the time constraints of this research.

3.2.2 Objectives
3.2.2.1 Implement a User-Friendly Interface for Feedback Collection

Process:

• Develop a basic chat interface.

• Demonstrate how the framework accomplishes a basic DF task using a NIST disk
image.

• Obtain feedback from practitioners to enhance the interface and align it with the
expectations of a professional DF tool.

3.2.3 Design and Development

The development began with an exploration of projects implementing user interfaces with
Autogen as the backend. A chat interface was initially developed using Streamlit [17],
connected with the backend by overriding the Assistant and UserProxyAgent classes
provided by Autogen. However, limitations in Autogen 0.2—specifically its incompatibility
with event-driven and asynchronous UI libraries—led to issues such as deletion of previous
chat messages on new human inputs.

Rather than investing excessive effort in mitigating these limitations, two alternative
solutions were explored:

• Migrating to Autogen 0.4, which introduces native support for event-driven and
asynchronous interactions [18].

• Redeveloping the UI using Chainlit [19], a more robust interface layer for conversational
AI applications.

Although the migration to Autogen 0.4 introduced dependency conflicts and major backend
changes, the Chainlit-based solution proved feasible. A helper method was used to handle
page refresh issues, resulting in a functional and responsive interface.

15

3.2.4 Demonstration

The updated UI was demonstrated to digital forensic practitioners. They emphasized the
importance of generating and storing logs as a critical feature of any DF tool—something
missing in the initial UI. Through discussion, parallels were drawn between traditional DF
processes (e.g., testing hypotheses using multiple tools) and the framework’s ability to run
various commands and follow multiple investigative paths.

Practitioners showed particular interest in a feature allowing them to select specific
tasks that supported a hypothesis and include them in a log. Additionally, they noted
the possibility of extending the framework for proprietary DF tools by updating the RAG
documentation. Another significant requirement was the ability to track investigations using
a case number, a standard feature in existing DF tools.

3.2.5 Evaluation via Expert Feedback

Assess the artifact’s effectiveness and usability based on expert feedback.
Process:

• Collect feedback from DF practitioners regarding usability and adherence to standards.

• Share demonstration outcomes with a supervisor.

• Analyze insights to identify strengths and areas for further refinement.

3.2.6 Implementation Setup

For the second iteration, the team utilized a desktop computer from the UCSC research
lab, featuring an Intel Core i5 8th Gen processor, 32 GB RAM, and an NVIDIA GTX 1080
Ti GPU (11 GB VRAM). The system ran a centralized Ollama server instance hosting the
LLM, which was accessed via local Wi-Fi network from developers’ devices by exposing the
server port.

This setup allowed for more powerful LLMs, including Qwen 32B, to be loaded and
tested. The Ollama server was integrated with a custom user interface built using Chainlit,
enabling a more interactive and realistic simulation of how the framework would operate in
real-world forensic environments. Although the response time for larger models remained
slow, this environment significantly improved development workflow and enabled shared
access for multi-user testing.

3.2.7 Conclusion of Second Iteration

This iteration successfully introduced a functional user interface. Based on practitioner
feedback, two core features were implemented:

• A downloadable log of all chats and agent-generated commands.

16

• A case tracking feature, allowing users to initiate sessions with a case number and
track interaction history accordingly.

These enhancements demonstrate the potential for transforming the prototype into a
practical, practitioner-friendly digital forensic tool.

Figure 3.2: Architecture of the AI-driven DF Framework in the Second Iteration

3.3 Third Iteration

3.3.1 Problem Identification and Motivation

The third iteration investigates whether the AI-driven DF framework, now enhanced with
tool calling functionality, can serve as a robust, user-friendly, and valid digital forensics tool
for practitioners to efficiently perform file system forensic tasks. The scope remains focused
on file system forensics, utilizing The Sleuth Kit (TSK)—a widely recognized open-source
forensic toolkit [2].

Building upon the backend framework developed in the first iteration (with ReAct and
RAG Proxy Agent) and the user interface introduced in the second iteration (with log
generation and case tracking), this iteration focuses on integrating tool calling to dynamically
access TSK resources and evaluates the framework’s performance using AutoDFBench.

17

3.3.2 Objectives
3.3.2.1 Integrate Tool Calling Functionality

Enhance the AI agent framework with tool calling functionality to dynamically retrieve
TSK documentation and execute forensic tasks, thereby improving task accuracy and agent
flexibility.

Process:

• Identify forensic tools and documentations relevant to common file system forensic
tasks.

• Develop a tool calling mechanism within the agent framework, enabling agents to
invoke tools as needed based on task context.

• Implement tools such as get_tool_documentation, which can retrieve and parse
relevant TSK documentation from web sources.

• Test the integration by ensuring the Task Translation, Code Writing, and RAG Proxy
Agents can leverage tool outputs effectively in task execution.

3.3.3 Design and Development

Extend the backend framework and user interface to support robust tool invocation for
forensic task execution.

Process:

• Extend the Python-based backend to support external tool invocation by the agents.

• Develop a suite of domain-specific tools, including:

– get_tool_documentation: Scrapes and parses web-based TSK documentation
to extract command functionalities.

– Additional tools for tasks like metadata extraction and file system analysis.

• Integrate tool calling with the Chainlit-based user interface from the second iteration,
enabling natural language triggering of tools.

• Address development challenges such as tool output compatibility by introducing
helper functions for standardizing tool responses.

• Conduct functional testing to confirm correct tool invocation and relevance of results
to forensic workflows.

18

3.3.4 Demonstration with NIST Disk Image

Demonstrate the framework’s enhanced forensic capabilities using a standardized case.
Process:

• Use a disk image from the NIST CFReDS repository [20].

• Perform a file system forensic task via the user interface, leveraging:

– Task Translation Agent for interpreting human inputs.

– Code Writing Agent for formulating commands.

– Tool calling for dynamically retrieving TSK documentation and executing
commands.

• Document tool usage, user interface interactions, and command outputs.

• Assess improvements in accuracy and efficiency compared to previous iterations.

3.3.5 Evaluation via AutoDFBench

Evaluate the framework’s usability and effectiveness using AutoDFBench—an automated
benchmarking tool.

Process:

• Configure AutoDFBench with the NIST disk image to test the framework on
standardized forensic tasks.

• Evaluate metrics such as:

– Task accuracy

• Analyze quantitative metrics (e.g.Precision, Recall and F1 scores)

3.3.6 Implementation Setup

In the third iteration, the framework was deployed on a high-performance server provided
by Prof. Mark Scanlon (University College Dublin), remotely accessed via SSH. The server
was equipped with an NVIDIA RTX 4090 GPU (24 GB VRAM), Intel Xeon CPU, and 128
GB RAM. This robust configuration enabled deployment of larger models like LLaMA 3 70B
and Qwen 72B using Ollama with GPU acceleration.

The server environment used Docker containers to host the LLM services and tool-calling
mechanisms. All components, including Autogen agents, Chainlit UI, and forensic disk image
mounts, were containerized and managed through Docker Compose. The tool-calling feature
was enhanced to dynamically fetch Sleuth Kit documentation via web scraping, improving
the accuracy of agent outputs.

19

This infrastructure allowed real-time execution of forensic tasks, rapid testing using NIST
disk images, and integration with AutoDFBench for final evaluations. The powerful GPU and
memory ensured that response times and model accuracy were optimal, greatly advancing
the reliability and performance of the framework.

3.3.7 Conclusion of Third Iteration

This iteration successfully integrated tool calling functionality into the AI-driven DF
framework, particularly the get_tool_documentation tool. The system, now combining
a robust backend (with ReAct and RAG Proxy Agent), a user-friendly Chainlit interface
(with log and case tracking), and dynamic tool invocation, was rigorously tested using
AutoDFBench.

Results indicate that the integration of tool calling significantly improved task flexibility,
output accuracy, and alignment with real-world digital forensic needs. With this final
iteration, the DSR process concludes, producing a validated and practically applicable digital
forensics tool.

Figure 3.3: Architecture of the AI-driven DF Framework in the Third Iteration

20

3.4 Communication

The final step involves communicating the problem, artifact, its utility, novelty, design,
and effectiveness to relevant audiences, including researchers and practitioners. This thesis
serves as a primary communication channel for the research findings. The structure
follows the DSRM process, detailing each stage from problem definition to evaluation.
The research contributes a novel AI-driven framework artifact, demonstrated and evaluated
through iterative development and testing, including practitioner feedback and automated
benchmarking. The findings on the framework’s potential as a valid and user-friendly tool,
particularly the benefits of local LLMs, agent-based architecture with ReAct/RAG, and
dynamic tool calling for DF tasks, are presented.

21

Chapter 4

Results and Evaluation

This chapter presents the evaluation of the AI-driven digital forensics framework developed
in this research. The evaluation is divided into two parts: a qualitative assessment based on
practitioner feedback and a quantitative analysis using the AutoDFBench benchmarking tool.
Together, these evaluations assess the framework’s usability, effectiveness, and performance
in streamlining digital forensic investigations, particularly for file system analysis using The
Sleuth Kit (TSK).

4.1 Qualitative Evaluation

4.1.1 Introduction

This qualitative evaluation examines the usability, effectiveness, and practical relevance of
the AI-driven digital forensics framework, as perceived by digital forensic practitioners from
the Center for Digital Forensics (CDF). The evaluation draws on feedback collected through
a Google Form, featuring both rating scales and open-ended responses. The goal is to
assess how well the framework achieves its objectives of simplifying forensic tasks, reducing
technical expertise requirements, and improving investigation efficiency.

4.1.2 Methodology

Feedback was gathered from two CDF practitioners using a structured Google Form. The
form covered aspects such as overall satisfaction, UI/UX, task breakdown effectiveness,
accuracy of analysis, clarity of AI agent guidance, code generation and execution, adoption
and impact, and suggestions for additional features. Responses were analyzed using thematic
analysis to identify key themes related to usability, clarity, and practical utility.

4.1.3 Findings
4.1.3.1 Usability and User Experience

The practitioners rated the UI/UX highly, assigning scores of 5 and 4 out of 5. Feedback
indicated general satisfaction with the interface, though one practitioner highlighted the
need for enhanced case management functionality.

22

4.1.3.2 Effectiveness in Task Breakdown

Both practitioners gave the tool a 4 out of 5 for its ability to break down complex
forensic tasks into smaller, actionable steps. This suggests that the Task Translation
Agent effectively simplifies forensic workflows, aligning with the framework’s objective of
streamlining processes.

4.1.3.3 Accuracy of Analysis

The accuracy of the tool’s outputs received ratings of 3 and 4 out of 5. One practitioner
emphasized the need for “comprehensive logging” to improve traceability and auditability,
suggesting that greater transparency could bolster confidence in the tool’s analytical results.

4.1.3.4 Clarity of AI Agent Guidance

The clarity of the AI agents’ explanations and recommendations earned a consistent 4 out
of 5 from both respondents. This indicates that the ReAct prompting method successfully
enhances the understandability of the agents’ reasoning, supporting the objective of reducing
technical expertise demands.

4.1.3.5 Code Generation and Execution

Satisfaction with the code generation and execution process was rated at 3 and 4 out of 5.
While the framework’s ability to produce and run forensic scripts is a valuable feature, the
mixed ratings suggest potential areas for improvement, such as script accuracy or execution
efficiency.

4.1.3.6 Adoption and Impact

Both practitioners rated their likelihood of adopting the tool into their workflows at 5 out
of 5, signaling strong practical relevance. One commented, “Good and beneficial tool for
AI-assisted forensic investigations,” underscoring its perceived value in accelerating forensic
processes.

4.1.3.7 Suggestions for Improvement

The practitioners offered actionable suggestions, including “Logs needs to be implemented”
and “Implement comprehensive logging in the forensic tool to ensure all operations are
traceable and auditable.” Additionally, one proposed integrating the tool with “Velocity” to
further enhance its capabilities, providing clear directions for future development.

4.1.4 Conclusion

The feedback from digital forensic practitioners highlights the framework’s strengths, such
as its intuitive interface and capability to streamline complex forensic tasks, aligning closely
with the design goals of improving usability and efficiency. Practitioners awarded perfect

23

adoption scores (5 out of 5), affirming the framework’s practical relevance and potential to
address real-world forensic challenges. However, the evaluation also reveals opportunities
for improvement, including the need for better logging, enhanced case management within
the UI, and increased accuracy in code generation and execution. These findings validate
the framework’s contributions to digital forensics while offering clear guidance for further
refinement.

In light of these insights, the AI-driven digital forensics framework shows considerable
promise as a tool for boosting investigation efficiency and lowering technical barriers. The
positive practitioner feedback, combined with constructive suggestions for improved logging,
advanced case management features, and integration with tools like "Velocity," charts a
robust path for future development. Moving forward, efforts will concentrate on addressing
these areas to enhance the framework’s utility and ensure it continues to meet the evolving
demands of digital forensics practitioners.

4.2 Quantitative Evaluation

4.2.1 Introduction

The quantitative evaluation assesses the framework’s performance using AutoDFBench, an
automated benchmarking tool designed to test AI-generated digital forensic tools against
NIST’s Computer Forensics Tool Testing Program (CFTT) test procedures. This evaluation
focuses on forensic string search tasks, measuring precision, recall, and F1 scores to quantify
the framework’s accuracy and effectiveness compared to baseline LLM performance reported
in the AutoDFBench study [12].

4.2.2 Integration of AutoDFBench with the AI Agent Framework

To carry out the evaluation, AutoDFBench was integrated into our custom-built AI agent
framework. This framework is designed to simulate the process of a digital forensic
practitioner by coordinating multiple specialized agents. These include a Task Translation
Agent, a Code Writing Agent, a Code Executor Agent, and a Reporter Agent. Each agent
contributes to a specific part of the forensic workflow. The Task Translation Agent interprets
the given forensic task based on a test case prompt, which is then handed over to the Code
Writing Agent to generate an appropriate script—either in Python or shell—tailored to the
task. The Code Executor Agent runs the script in an isolated environment, and finally, the
Reporter Agent reviews the results and prepares the output.

In our implementation, we employed the LLAMA 3.3 70B language model with human
feedback turned off to ensure a fully autonomous code generation process. The AI
agent framework was designed to iteratively generate, evaluate, and refine its own code
outputs without external human intervention. By allowing the agents to loop through
cycles of planning, execution, and self-correction, the system demonstrated the capacity

24

to autonomously improve its solutions over time, showcasing the potential of large language
models in fully automated forensic investigation workflows.

AutoDFBench, which was developed to benchmark forensic tools against standardized
test cases, was a suitable fit for evaluating our framework. It supports forensic tasks
performed via Python and shell scripts and aligns well with the script-oriented output
generated by our agents. Additionally, our framework incorporates Sleuth Kit commands as
part of the code generation process to retrieve file system-level information during analysis.

However, due to the current limitations of the AutoDFBench evaluation
framework—specifically the lack of an integrated API—automated submission of results
is not supported. As a result, after the agents generate and execute their scripts, the
resulting data must be manually transferred into the AutoDFBench MySQL database.
This involves manually writing SQL queries to insert the outputs into the test_results
and prompt_codes tables. Although this step adds some overhead, it ensures that the
results from our AI-driven framework can be fairly and consistently compared using
AutoDFBench’s established scoring methods.

This integration made it possible to evaluate each test case in a structured and repeatable
way. By using standard precision, recall, and F1 score metrics, we were able to quantify the
performance of our AI agent system and benchmark it against baseline results from the
original AutoDFBench study. Despite the manual step in the data flow, the integration
was effective and aligned our experimental setup with widely accepted forensic evaluation
standards.

4.2.3 Methodology

The AI-driven digital forensics framework was evaluated using a subset of string search test
cases defined by the NIST Computer Forensics Tool Testing Program (CFTT), leveraging
the AutoDFBench evaluation tool. The evaluation was conducted on NIST-provided disk
images, which are part of the official NIST/CFTT String Search Data Set Version 1.1. This
dataset includes two disk image files:

• ss-win-07-25-18.dd – A Windows-based disk image containing FAT, exFAT, and
NTFS partitions along with unallocated space.

• ss-unix-07-25-18.dd – A Unix-based disk image including ext4, HFS+, and APFS
file systems.

Each test case in the dataset is represented by multiple files containing strings that appear
in specific conditions — such as live (active), deleted, or unallocated files — and encoded in
various formats (ASCII, UTF-8, UTF-16BE, UTF-16LE). For example, for each base string,
at least three string instances are created per test case: one in each of the active, deleted,
and unallocated regions.

25

Across all test cases, the dataset includes hundreds of string instances, each embedded
in a uniquely structured file, identified by a string ID and surrounded by nautical-themed
filler text.

AutoDFBench reads these image files, defines the expected hits per test case, and
compares them with the actual outputs of the forensic framework. For our evaluation,
the focus was placed on the following string search tasks. AutoDFBench was configured to
execute the following test cases, each representing a distinct forensic string search task:

• FT-SS-01: Search for an exact ASCII keyword
Example: Search for the exact word “WOLF” (case-sensitive match)

• FT-SS-02: Search for an ASCII keyword ignoring case
Example: Match “wolf”, “WOLF”, or “WoLf” (case-insensitive)

• FT-SS-03: Search only for whole words without substrings
Example: Match “WOLF” but not “WOLFPACK” or “WOLFLIKE”

• FT-SS-04: Search with logical AND
Example: Find files containing both “DireWolf” and “WereWolf”

• FT-SS-05: Search with logical OR
Example: Find files containing either “Dire” or “Were”

• FT-SS-06: Search with logical NOT
Example: Find files containing “fox” but not “tiger”

• FT-SS-07-Norm: Search Unicode strings for normalization forms and ligatures
Example: Match “mañana” whether encoded in NFC or NFD Unicode forms

• FT-SS-07-RTL: Search Unicode written right-to-left (e.g., Arabic)
Example: Match the Arabic string “” regardless of directionality

• FT-SS-09-Stem: Perform stemming search
Example: Match variations like “knife”, “knives”, “knifing” (same root word)

• FT-SS-10-Hex: Search strings with hexadecimal characters
Example: Match the hex string \x70\x61\x6E\x64\x61 which represents “panda”

For each test case, the framework generated TSK commands via its AI agents, executed
them on the disk image, and compared the outputs against NIST ground truth data. Metrics
calculated included:

The evaluation metrics used in this study—precision, recall, and F1 score—were
calculated using AutoDFBench’s built-in scoring mechanism. These metrics offer a
quantitative perspective on how accurately the AI agent framework identified target strings
within the disk image, compared against the expected results defined by the NIST CFTT
test procedures.

26

• True Positives (TP): Correct matches where the AI agents successfully detected a
string in the correct file and storage location (e.g., active, deleted, or unallocated), as
defined in the ground truth.

• False Positives (FP): Incorrect matches where the agent reported a string that was
not present in the ground truth.

• False Negatives (FN): Relevant matches that were missed by the AI
agents—instances where the string was expected but not detected.

Based on these values, the metrics are defined as follows:

• Precision = T P
T P +F P

: Measures how many of the matches found by the agent were
actually correct.

• Recall = T P
T P +F N

: Measures how many of the expected matches were successfully
detected by the agent.

• F1 Score = 2PrecisionRecall
Precision+Recall : Provides a harmonic mean of precision and recall to give a

balanced measure of accuracy.

In our framework, these metrics were automatically calculated by executing AutoDFBench’s
Summary.py script after inserting the AI agent’s output into the test_results table and
ensuring alignment with the corresponding ground truth entries. Due to computational
limitations, each test case was executed only once, and the outcomes were logged in a
spreadsheet titled for analysis. While the original AutoDFBench study averages results over
multiple runs, our evaluation reflects performance based on a single run per test case due to
resources restriction.

4.2.4 Results

The performance metrics for each test case are summarized in Table 4.1.

Table 4.1: Performance Metrics for Forensic String Search Test Cases

Test Case TP FP FN Precision Recall F1 Score
FT-SS-01 4 3 3 0.5714 0.5714 0.5714
FT-SS-02 3 1 27 0.7500 0.1000 0.1765
FT-SS-03 8 0 12 1.0000 0.4000 0.5714
FT-SS-04 0 14 6 0.0000 0.0000 0.0000
FT-SS-05 0 14 12 0.0000 0.0000 0.0000
FT-SS-06 12 0 12 1.0000 0.5000 0.6667
FT-SS-07-Norm 7 0 15 1.0000 0.3182 0.4828
FT-SS-07-RTL 7 0 12 1.0000 0.3684 0.5385
FT-SS-09-Stem 4 3 93 0.5714 0.0412 0.0769
FT-SS-10-Hex 4 3 3 0.5714 0.5714 0.5714
Average – – – 0.6474 0.2870 0.3656

Note: TP = True Positives, FP = False Positives, FN = False Negatives.

27

To provide a consolidated view of the framework’s performance across all test cases, a
confusion matrix is presented in Table 4.2. The matrix aggregates the true positives, false
positives, false negatives, and true negatives across all test cases.

Table 4.2: Confusion Matrix for Forensic String Search Test Cases

Predicted
Positive Negative

Actual Positive 49 195
Negative 38 0

Note: True Negatives (TN):number of places where the tool correctly did not find a string are not counted
as ground truth only defines where strings should be found, not everywhere else they could possibly appear

Figure 4.1: grouped bar chart with precision and recall

The grouped bar chart shows a deeper performance breakdown. High precision scores
are observed for multiple test cases (especially FT-SS-03, FT-SS-06, FT-SS-07-Norm,
and FT-SS-07-RTL), meaning that when predictions were made, they were often correct.
However, recall values are much lower in several cases (e.g., FT-SS-02, FT-SS-09-Stem),
indicating the framework missed many relevant results. This trade-off between precision
and recall is reflected in the F1 Scores.

28

Figure 4.2: F1 score chart with test cases

The F1 Score analysis highlights significant variability across test cases. Certain test
cases like FT-SS-06, FT-SS-07-Norm, and FT-SS-07-RTL show relatively stronger F1
performance (above 0.5), indicating successful string search task execution. However, some
cases like FT-SS-04 and FT-SS-05 resulted in an F1 Score of 0, demonstrating challenges in
handling specific string patterns or forensic complexities. The average F1 Score across all
tests is approximately 0.366, suggesting that while the framework is capable, optimization
opportunities remain for broader robustness. The framework excelled in tasks like FT-SS-06
(logical NOT, F1 = 0.6667) and FT-SS-01, FT-SS-03, and FT-SS-10-Hex (F1 = 0.5714 each),
but struggled with FT-SS-04 and FT-SS-05 (logical AND/OR, F1 = 0) and FT-SS-09-Stem
(stemming, F1 = 0.077).

4.2.5 Discussion

The quantitative results reveal a mixed performance profile. High F1 scores in tasks like
FT-SS-06 (0.6667), FT-SS-01 (0.5714), FT-SS-03 (0.5714), and FT-SS-10-Hex (0.5714)
demonstrate the framework’s capability for straightforward string searches, such as exact
keyword, whole word, logical NOT, and hexadecimal searches. Precision values of 1.0
in several cases (e.g., FT-SS-03, FT-SS-06, FT-SS-07-Norm, FT-SS-07-RTL) indicate that
detected instances were consistently correct, though lower recall suggests missed instances.

Conversely, the framework failed entirely on logical AND/OR tasks (FT-SS-04, FT-SS-05,
F1 = 0), likely due to difficulties in interpreting and executing complex logical queries.
The stemming task (FT-SS-09-Stem, F1 = 0.077) also showed poor performance, reflecting
limitations in handling linguistic variations—possibly due to inadequate training of the LLM
for such specialized tasks.

Compared to the AutoDFBench baseline, where top-performing LLMs (GPT-4o and
Claude 3.5 Sonnet) achieved average F1 scores of 0.043 and 0.036 [12], our framework
demonstrates a notable enhancement with an average F1 score of 0.366. However, it is

29

important to note that a direct comparison is not fully fair, as baseline models operated in a
zero-shot setting without iterative self-correction, while our framework allows AI agents
to iteratively refine and repair generated commands based on feedback. This iterative
capability, combined with the integration of Retrieval-Augmented Generation (RAG), tool
calling, and a multi-agent architecture, significantly boosts command accuracy and task
success. Nevertheless, variability across test cases (F1 ranging from 0 to 0.6667) indicates
that further improvements are needed to ensure more consistent performance.

The quantitative evaluation confirms the framework’s potential to outperform baseline
LLMs in forensic string search tasks, with an average F1 score of 0.366. It excels in
simpler searches but requires improvements for complex logical and linguistic tasks. These
findings complement the qualitative feedback, reinforcing the need for enhanced reasoning
and specialized training to achieve broader reliability.

4.3 Conclusion of Evaluation

The combined qualitative and quantitative evaluations demonstrate that the AI-driven
digital forensics framework is a promising tool for enhancing investigation efficiency and
accessibility. Practitioners value its usability and adoption potential, while AutoDFBench
results show improved performance over standalone LLMs. However, challenges in handling
complex queries and ensuring consistent accuracy across all tasks indicate areas for future
work, such as fine-tuning the LLM on forensic-specific data and optimizing logical reasoning
capabilities. Together, these results validate the framework’s contributions and provide a
roadmap for its evolution into a robust forensic assistant.

30

Chapter 5

Discussion and Conclusion

5.1 Research Findings

The implementation of the digital forensic investigation framework proposed by [1] aimed to
provide a robust tool for digital forensic practitioners to enhance the efficiency and accuracy
of their investigative processes. During the initial phase of development, the framework
utilized LLaMA 3, a large language model (LLM), to perform critical tasks such as generating
a list of SleuthKit commands, which are fundamental to forensic analysis. When prompted
with the query, "List the SleuthKit commands you know," the model produced a list that
included several inaccuracies, a phenomenon known as hallucination, where LLMs generate
plausible but incorrect information due to limitations in their internal knowledge [1][9].
This issue threatened the framework’s reliability for practitioners who depend on precise
tools. To address this, we incorporated a Retrieval-Augmented Generation (RAG) approach,
integrating official SleuthKit documentation into the LLM’s context window. By grounding
the model’s outputs in verified external data, this method significantly reduced hallucination,
ensuring that the generated command list was accurate and trustworthy. This approach
is consistent with findings by [9], who demonstrated that leveraging external knowledge
improves the factual accuracy of LLM outputs, thereby enabling forensic practitioners to
rely on the framework for precise and dependable task execution.

Another significant challenge was ensuring that the framework supported the logical
reasoning process required by digital forensic reporting, particularly in generating clear and
comprehensive reports that reflect the investigative workflow. Initial attempts using standard
prompting techniques produced outputs that were disjointed and lacked the coherence
necessary for professional forensic reporting. To overcome this, we adopted the ReAct
prompting method, which interleaves reasoning and action[9] steps within the LLM’s context
window . This approach was applied to the Task Translation Agent, which breaks down
complex forensic tasks into manageable subtasks, and the Coder Agent, which generates
scripts to facilitate analysis. By maintaining a record of the agents’ thought processes and
action plans, the framework ensured a structured and transparent workflow, enabling the
Reporter Agent to produce detailed, logically coherent reports that aligned with the needs
of forensic practitioners. Following guidance to focus the tool exclusively on trained digital

31

forensic professionals, the framework was tailored to support their specialized expertise,
enhancing their ability to conduct thorough investigations while maintaining the precision
and clarity required for professional forensic applications.

Primary experiments with the framework revealed an additional challenge related to
the management of large context windows within the Autogen framework, which impacted
the tool’s performance for digital forensic practitioners. In the Autogen framework, it
stores information generated by all agents, such as conversations of the agents. When
a large context message was included as a system message for an agent, and the results
were passed between agents, the framework became increasingly populated, resulting in a
substantial volume of content being fed into the LLM for processing. Our observations
indicated that as the context window grew larger, the framework began to act abruptly,
producing inconsistent or erratic outputs. This issue, noted during initial testing, highlights
a critical limitation in handling extensive context within LLM-based agent frameworks, as
excessive input can overwhelm the model’s capacity to maintain coherence and accuracy [1].
Addressing this challenge will require strategies to optimize context management, such as
truncating irrelevant information or prioritizing critical data which is send to LLM, to ensure
the framework remains stable and effective for forensic practitioners conducting complex
investigations.

To address hallucination in the digital forensic investigation framework and enhance
its reliability for practitioners, we introduced a tool-calling feature that retrieves accurate
command information from the official SleuthKit documentation on the web, supplementing
the LLM’s knowledge when deficient, as outlined by[1]. This approach effectively reduced
inaccuracies in generated outputs by incorporating real-time, verified SleuthKit data.
However, the addition of this data intensified context window overload within the Autogen
framework, as the messages variable accumulated large volumes of information, leading
to abrupt and inconsistent performance in primary experiments. This issue corroborates
findings by [21], who demonstrated that LLMs exhibit degraded performance with larger
contexts, particularly failing to effectively process information in the middle of extended
context windows, resulting in reduced coherence and accuracy. To mitigate this, we refined
the tool-calling mechanism by employing two agents in a nested chat structure to extract
and filter the most relevant web-based information, delivering it to the main framework
in a concise JSON format. This optimization significantly reduces context window size
while preserving critical data integrity, aligning with [9]’s findings on efficient external data
integration, thereby ensuring the framework’s stability and effectiveness for digital forensic
practitioners conducting complex investigations.

In the initial stages of developing the digital forensic investigation framework, resource
constraints necessitated the use of 7-billion parameter quantized models, which provided a
feasible starting point for testing and refining the framework’s capabilities for digital forensic
practitioners. These smaller models, while computationally efficient, exhibited limitations in
handling complex tasks and maintaining output accuracy, particularly under the demands of

32

forensic analysis, as noted by [1]). Toward the conclusion of the research, access to powerful
servers enabled the deployment of larger 20-billion and 30-billion parameter models, which
markedly enhanced the framework’s performance. These advanced models demonstrated
superior contextual understanding and reduced hallucination, leading to more accurate
generation of SleuthKit commands and coherent investigative reports, aligning with findings
by[9] on the benefits of scaling model size for specialized applications. The transition
to higher-capacity models significantly improved the framework’s reliability and efficiency,
underscoring the importance of computational resources in optimizing LLM-based tools for
professional digital forensic investigations.

5.2 Discussion

This research was guided by two primary questions: to what extent can an AI-assisted digital
forensic framework enhance the efficiency of practitioners, and how effectively can such a
system be deployed as a practical, user-friendly tool for real-world forensic investigations.
The evaluation—consisting of both practitioner-based qualitative feedback and quantitative
benchmarking using AutoDFBench—yields substantive insights into the performance and
applicability of the proposed solution.

The first research question focuses on practitioner efficiency, particularly in time-critical
scenarios where repetitive command-line tasks and data parsing hinder rapid forensic insight.
The qualitative evaluation involving practitioners from the Center for Digital Forensics
in UCSC revealed that the system assist in their workflows. Rather than replacing
expert knowledge, the framework acts as an intelligent assistant, rapidly interpreting
high-level forensic queries into executable SleuthKit commands, shell scripts and python
scripts. This delegation of low-level operations allowed practitioners to concentrate more
on investigative strategy and hypothesis formation, rather than spending time crafting or
debugging commands. In essence, the AI agents within the system functioned as cognitive
and procedural accelerators, increasing the throughput and clarity of forensic tasks without
abstracting away the domain’s technical rigor.

Despite this advantage, certain limitations emerged that must be considered for real-world
deployment. The practitioners highlighted issues such as command inconsistency in varying
system environments, and the absence of features like integrated case management or
error traceback. These shortcomings point to a broader need for robustness in forensic
tooling—especially when used in legal or compliance-sensitive contexts. Nonetheless, these
gaps are not insurmountable and do not detract from the system’s core strength: reducing
task complexity and execution time, thereby improving practitioner efficiency across common
investigative scenarios.

The second research question relates to the broader deployment potential of the tool. The
quantitative evaluation conducted using AutoDFBench offered objective performance metrics
that support the framework’s viability. Precision and recall values for straightforward string
search tasks were high, with some test cases achieving perfect precision. These results confirm

33

the tool’s accuracy in basic evidence identification workflows. However, its effectiveness
diminished when handling complex logical expressions, such as queries involving Boolean
operators or semantic variations. This suggests that while the current system is optimized
for clarity and speed, enhancements in language parsing and logical reasoning would be
required to extend its utility to more nuanced forensic searches.

Practitioner feedback corroborated these findings. The AI framework was noted to be
user-friendly and time-efficient, particularly in reducing the friction associated with manual
data review and command-line scripting. However, suggestions for case-specific organization,
historical activity logging, and enhanced auditability underscore the importance of forensic
transparency and traceability in professional settings. These insights provide a roadmap
for future iterations of the tool, particularly in contexts where reproducibility and legal
defensibility are paramount.

Moreover, the current evaluation setup—especially the manual process of inserting
AutoDFBench results into a MySQL database—presents an operational bottleneck.
Automating this integration in future development stages would not only streamline
benchmarking but also allow for continuous validation and performance monitoring as
the tool evolves. While the proposed AI-assisted digital forensic framework demonstrates
promising capabilities in several cases, it is crucial to recognize that its performance is
neither universally consistent nor sufficient to be deemed a foolproof solution for professional
forensic investigations. This is particularly evident in test cases such as FT-SS-04 and
FT-SS-05, where the framework’s output failed to meet the minimum acceptable standards,
indicating a substantial shortfall in reliability. These failures highlight that the system
cannot yet be considered a silver bullet for digital forensics, a domain in which precision
and accuracy are not just desirable but essential due to the legal and procedural sensitivities
involved. Furthermore, even in scenarios where the tool produced acceptable outcomes,
the F1-scores across multiple other test cases were below what is typically expected of
forensic-grade tools. Given the binary and deterministic nature of many digital forensic
tasks, such as exact string matching or evidence path reconstruction, any fluctuation in
accuracy—even when marginal—can have significant implications for the integrity of an
investigation. The observed inconsistency in results, despite utilizing LLAMA 3.3-70B,
a state-of-the-art large language model, suggests a deeper limitation within current LLM
architectures when applied to the domain of digital forensics. Specifically, it reveals that
general-purpose LLMs lack domain specialization in interpreting, reasoning, and executing
tasks that require strict logical fidelity and forensic semantics. The performance variance
implies that these models are not yet attuned to the precision demands inherent in digital
evidence analysis, and as such, cannot be relied upon for critical forensic determinations
without human oversight. This reinforces the necessity of domain-specific fine-tuning, where
LLMs are trained on curated forensic data, structured tool outputs, and legal procedures to
better understand and respond to the unique linguistic and procedural contexts of digital
forensics. However, despite these limitations, the framework’s design strategically integrates

34

a human-in-the-loop approach, allowing digital forensic practitioners to intervene and
validate or override AI-generated outputs. This design choice ensures that when the model
encounters ambiguous or unfamiliar forensic contexts—such as those observed in poorly
performing test cases—human experts can step in to maintain procedural accuracy and
evidentiary integrity. Rather than replacing the role of practitioners, the framework enhances
their efficiency by automating repetitive or time-consuming tasks while still preserving
critical decision-making in the hands of qualified investigators. Thus, the integration of
human oversight serves not only as a safeguard against AI error but also as a bridge between
emerging AI capabilities and the rigorous demands of forensic practice. It provides a practical
path forward where artificial intelligence functions as an assistive tool—one that augments,
rather than undermines, the responsibilities of digital forensic experts.

5.3 Final Conclusion

This research sought to address two key questions: whether the integration of Large
Language Models (LLMs) into digital forensic (DF) investigations can reduce the demand
for technical expertise among practitioners, and how to effectively implement an AI-driven
DF framework as a user-friendly tool for real-world forensic investigations. Through the
design, development, and evaluation of a multi-agent framework leveraging LLMs, this study
demonstrates how artificial intelligence can augment forensic workflows while maintaining
critical human oversight.

In response to the first research question, our findings indicate that integrating LLMs
significantly reduces the technical barriers traditionally associated with file system analysis
and forensic tool usage. By incorporating Retrieval-Augmented Generation (RAG), ReAct
prompting, and an iterative self-correction mechanism, the framework translates natural
language queries into executable forensic commands without requiring users to manually
craft or troubleshoot complex command-line instructions. Quantitative evaluation using
AutoDFBench revealed an average F1 score of 0.366 across a variety of forensic string
search tasks, representing a substantial improvement compared to baseline zero-shot LLM
performance (0.043 for GPT-4o and 0.036 for Claude 3.5 Sonnet). While the performance
varied across test cases—with F1 scores ranging from 0.0 to 0.6667—the results underscore
the framework’s ability to automate routine forensic tasks while minimizing errors associated
with manual command generation. This improvement can be attributed to the framework’s
multi-agent architecture, which distributes responsibilities across specialized agents for task
translation, code generation, execution, and reporting, effectively streamlining investigations
and reducing cognitive load for practitioners.

Addressing the second research question, the framework was implemented with a strong
emphasis on usability, modularity, and real-world applicability. A user-friendly chat
interface was developed to allow investigators to interact with the system using natural
language, while integrated logging and case management features ensured traceability and
transparency—both of which are critical in legal and procedural contexts. Practitioner

35

feedback gathered through qualitative evaluation confirmed the system’s potential to improve
investigation efficiency by reducing time-consuming manual steps and simplifying access to
complex forensic tools like The Sleuth Kit (TSK). The incorporation of dynamic tool-calling
functionality further enhanced the framework’s adaptability, allowing it to access relevant
documentation in real-time to improve command accuracy and mitigate LLM hallucinations.

However, the evaluation also revealed limitations that necessitate human oversight. While
the iterative self-correction process enabled the framework to identify and fix execution errors
autonomously, performance variability across test cases highlighted the need for continuous
human supervision. In sensitive investigative environments, where precision and recall
are critical, practitioners must remain actively involved in validating AI-generated outputs
and ensuring that investigative processes align with forensic standards. The integration
of a human-in-the-loop approach serves this purpose by allowing practitioners to review,
approve, or override AI-generated commands when necessary, thereby preventing erroneous
results from compromising the integrity of an investigation. This supervision is particularly
important in cases where the framework struggled, such as logical AND/OR searches
(FT-SS-04 and FT-SS-05) or stemming tasks (FT-SS-09-Stem), where poor recall and F1
scores revealed limitations in the LLM’s domain-specific reasoning capabilities. Beyond
quantitative performance gains, the qualitative evaluation further validates the framework’s
practical value. Feedback from digital forensic practitioners emphasized strong satisfaction
with the system’s usability, particularly highlighting its intuitive user interface and effective
task breakdown mechanisms. High adoption scores (5 out of 5) indicate a strong likelihood
that practitioners would integrate the tool into real-world forensic workflows, underscoring
the framework’s readiness for operational use.

Practitioners also recognized the effectiveness of the AI agents in simplifying complex
forensic procedures, with consistent ratings of 4 out of 5 for task breakdown clarity and
AI agent guidance. These results align with the framework’s primary goal of reducing the
technical expertise typically required for advanced forensic analysis, suggesting that the
system successfully bridges the gap between technical complexity and practical usability.

However, the evaluation also surfaced critical areas for further refinement. Specifically,
practitioners highlighted the need for comprehensive logging mechanisms to improve
traceability and auditability, along with suggestions for enhanced case management features
within the UI. These insights provide a clear and actionable roadmap for future development
phases, ensuring that the framework evolves to meet the operational standards expected in
forensic environments.

The combination of promising quantitative results and positive practitioner feedback
affirms the framework’s potential to democratize access to advanced forensic tools. By
continuing to address user-suggested improvements—such as robust logging and possible
integration with complementary platforms like Velocity—the framework is well-positioned
to drive the next wave of AI-assisted innovation in digital forensics.

Overall, this research demonstrates that while LLM integration can significantly

36

reduce technical demands and improve the efficiency of digital forensic investigations,
the framework’s effectiveness is maximized when combined with human validation and
oversight. By striking a balance between automation and practitioner control, the proposed
system enhances investigative workflows while safeguarding against the risks associated
with AI-generated outputs. Future work will focus on further fine-tuning LLMs with
forensic-specific data to address performance inconsistencies, expanding the framework’s
support for additional forensic tasks, and refining human-in-the-loop mechanisms to ensure
seamless collaboration between AI agents and practitioners.

Ultimately, this study contributes a novel, user-centric solution for digital forensics,
paving the way for future AI-powered systems that maintain both operational efficiency
and evidentiary integrity in increasingly complex investigative environments.

5.4 Recommendation

To further enhance the digital forensic investigation framework for practitioners, several
strategies are recommended based on the challenges and observations encountered during
its development. First, to address the issue of context window overload observed in the
Autogen framework, which led to degraded performance as noted by [21], we recommend
implementing dynamic context pruning mechanisms. These mechanisms would prioritize and
retain only the most relevant information within the messages variable, such as recent agent
outputs and critical SleuthKit documentation retrieved via the tool-calling feature, while
discarding redundant or less pertinent data. This approach would align with [9]’s findings on
optimizing external data integration and ensure that the LLM processes manageable context
sizes, thereby improving output coherence and stability. Additionally, the refined tool-calling
mechanism, utilizing two agents in a nested chat structure to deliver concise JSON-formatted
data, should be further standardized and automated to streamline real-time data retrieval
from sources like the SleuthKit documentation, as proposed by [1]. This would minimize
hallucination while maintaining a lean context window, enhancing the framework’s reliability
for forensic tasks.

5.5 Future Work

5.5.1 Multimodal Forensics Integration.

Currently, the framework is designed primarily for file system analysis using tools such
as Sleuth Kit. However, in real-world forensic investigations, evidence is not limited
to file metadata or directory structures. Investigators often need to analyze multimedia
content such as images and videos, as well as communication data captured from network
traffic. Therefore, extending the framework to support multimodal forensic capabilities is
an important next step.

This can be achieved by integrating additional forensic tools that specialize in media file

37

carving, facial recognition, object detection in images, and packet analysis of network traffic.
For instance, tools like Volatility for memory analysis or Wireshark for network capture
interpretation could be incorporated alongside Sleuth Kit. By doing so, the framework
would evolve into a more holistic digital forensic assistant capable of handling diverse forms
of digital evidence. Such an expansion would not only make the system more robust but
also align it better with the realities of complex cybercrime cases.

5.5.2 Support to Other Digital Forensic Branches

Modern investigations frequently involve mobile devices and cloud-based services, which
often store critical digital traces related to communication, location history, and user
behavior. As such, expanding the framework to include mobile and cloud forensics is crucial
to its relevance and scalability.

This involves adapting the AI agents to interact with forensic tools like Cellebrite UFED
or Magnet AXIOM for mobile device analysis, as well as integrating APIs that can retrieve
and analyze data from cloud platforms such as Google Drive, iCloud, or Microsoft OneDrive.
By incorporating these capabilities, the framework will offer broader coverage across various
digital forensic branches, enabling investigators to conduct end-to-end analysis within a
single unified environment. This extension is particularly important in scenarios involving
cyberstalking, fraud, and data breaches, where data is often dispersed across multiple
platforms.

5.5.3 Create a Dataset for Fine-Tuning an LLM

The current implementation of the framework utilizes general-purpose Large Language
Models (LLMs), which, while capable, lack specialized training in digital forensic tasks. To
improve the model’s contextual understanding, relevance, and precision in forensic command
generation, a domain-specific dataset must be developed for fine-tuning.

The creation of this dataset would involve the collection of forensic cases, sample
command sequences, disk images, timelines, and incident reports that reflect realistic
investigative scenarios. Importantly, the Center for Digital Forensics (CDF) lab has indicated
its willingness to contribute anonymized data for this purpose. Using such data, a fine-tuned
LLM could be trained to better understand the structure and semantics of digital forensic
inquiries, including nuances such as interpreting timestamps, recognizing common artefact
patterns, and differentiating between file system types. This would allow the model to
perform more reliably across various levels of user expertise.

5.5.4 Framework Testing with Fine-Tuned LLMs

Once a fine-tuned forensic-specific LLM has been developed, the next logical step would
be to integrate it into the existing framework and conduct a thorough evaluation of its
performance. This testing phase would involve comparing the fine-tuned model’s outputs
with those of general-purpose LLMs using the same test scenarios and prompts.

38

Key performance metrics such as command accuracy, task completion time, error rate,
and user satisfaction could be benchmarked using established evaluation tools like AutoDF
Bench. In addition, practitioner feedback could be gathered to assess improvements in
usability and interpretability. This evaluation would offer concrete evidence as to whether
domain-specific training significantly enhances the practical applicability of LLMs in digital
forensic contexts.

Ultimately, such fine-tuning and testing efforts would move the framework closer to
becoming a deployable, expert-level assistant capable of supporting law enforcement agencies
and digital forensic analysts in high-stakes investigations.

39

References

[1] A. Wickramasekara and M. Scanlon, “A framework for integrated digital forensic
investigation employing autogen ai agents,” in 2024 12th International Symposium on
Digital Forensics and Security (ISDFS), pp. 01–06, IEEE, 2024.

[2] B. Carrier, File System Forensic Analysis. Addison-Wesley, 2005.

[3] Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang, X. Zhang, and
C. Wang, “Autogen: Enabling next-gen llm applications via multi-agent conversation
framework,” arXiv preprint arXiv:2308.08155, 2023.

[4] Amazon Web Services, Inc., “What are AI Agents? - Agents in Artificial Intelligence
Explained.” https://aws.amazon.com/what-is/ai-agents/. Accessed: Apr. 27, 2025.

[5] T. Hussain, T. Ahmed, M. S. HAQUE, and M. R. A. Rashid, “Collective wisdom in
language models: Harnessing llm-swarm for agile project management,” in NeurIPS
2024 Workshop on Open-World Agents, 2024.

[6] C. Hymel, S. Peng, K. Xu, and C. Ranganathan, “Improving performance of
commercially available ai products in a multi-agent configuration,” arXiv preprint
arXiv:2410.22129, 2024.

[7] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha, “A systematic
survey of prompt engineering in large language models: Techniques and applications,”
arXiv preprint arXiv:2402.07927, 2024.

[8] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, and H. Wang,
“Retrieval-augmented generation for large language models: A survey,” arXiv preprint
arXiv:2312.10997, vol. 2, no. 1, 2023.

[9] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React:
Synergizing reasoning and acting in language models,” in International Conference on
Learning Representations (ICLR), 2023.

[10] S. L. Garfinkel, “Automating disk forensic processing with sleuthkit, xml and python,”
in 2009 Fourth International IEEE Workshop on Systematic Approaches to Digital
Forensic Engineering, pp. 73–84, 2009.

40

https://aws.amazon.com/what-is/ai-agents/

[11] E.-P. D. Kakalis and S.-A. Kefalidis, “Advancing geosparql query generation on
yago2geo: Leveraging large language models and automated uri injection from natural
language questions,” 2024.

[12] A. Wickramasekara, A. Densmore, F. Breitinger, H. Studiawan, and M. Scanlon,
“Autodfbench: A framework for ai generated digital forensic code and tool testing
and evaluation,” in Proceedings of the Digital Forensics Doctoral Symposium, pp. 1–7,
2025.

[13] M. Scanlon, F. Breitinger, C. Hargreaves, J.-N. Hilgert, and J. Sheppard, “Chatgpt for
digital forensic investigation: The good, the bad, and the unknown,” Forensic Science
International: Digital Investigation, vol. 46, p. 301609, 2023.

[14] A. Wickramasekara, F. Breitinger, and M. Scanlon, “Sok: Exploring the potential
of large language models for improving digital forensic investigation efficiency,” arXiv
preprint arXiv:2402.19366, 2024.

[15] C. Hargreaves, F. Breitinger, L. Dowthwaite, H. Webb, and M. Scanlon, “DFPulse: The
2024 Digital Forensic Practitioner Survey,” Sept. 2024.

[16] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” Journal of management
information systems, vol. 24, no. 3, pp. 45–77, 2007.

[17] Streamlit, “A faster way to build and share data apps.” https://streamlit.io/.
Accessed: Apr. 27, 2025.

[18] Microsoft, “AutoGen.” https://microsoft.github.io/autogen/0.4.0/index.html.
Version 0.4.0; Accessed: Apr. 27, 2025.

[19] Chainlit, “Build AI applications.” https://chainlit.io/. Accessed: Apr. 27, 2025.

[20] N. I. of Standards and Technology, “CFReDS Portal.” https://cfreds.nist.gov/.

[21] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang,
“Lost in the middle: How language models use long contexts,” Transactions of the
Association for Computational Linguistics, vol. 12, pp. 157–173, 2024.

41

https://streamlit.io/
https://microsoft.github.io/autogen/0.4.0/index.html
https://chainlit.io/

Appendices

42

Appendix A

Screenshots of the developed
graphical user interface

This appendix provides screenshots of the graphical user interface developed as a means
of making the framework a user-friendly DF tool. It also served as a tool for qualitative
evaluation on what was needed by practitioners from a DF tool of this stature.

Figure 1.1: Full interface

43

Figure 1.2: Opening chat interface for a chat requiring a case number

Figure 1.3: Populated chat interface

44

Figure 1.4: Side bar for tracking chats with a case number with the option to search

Figure 1.5: Button to download logs

Figure 1.6: Generated log file

45

Appendix B

Screenshots of Qualitative Evaluation
Findings

This appendix provides the screenshots of the detailed feedback collected during the
qualitative evaluation of the AI-driven digital forensics framework. These images correspond
to the findings discussed in Section ?? and present practitioner ratings and comments for
different evaluation criteria.

2.1 Overall Satisfaction

Figure 2.1: Practitioner feedback on Overall Satisfaction

46

2.2 UI/UX Evaluation

Figure 2.2: Practitioner feedback on UI/UX Evaluation

2.3 Task Breakdown Effectiveness

Figure 2.3: Practitioner feedback on Task Breakdown Effectiveness

47

2.4 Accuracy of Analysis

Figure 2.4: Practitioner feedback on Accuracy of Analysis

2.5 Clarity of AI Agent Guidance

Figure 2.5: Practitioner feedback on Clarity of AI Agent Guidance

48

2.6 Code Generation & Execution

Figure 2.6: Practitioner feedback on Code Generation and Execution

2.7 Adoption and Impact

Figure 2.7: Practitioner feedback on Adoption and Impact

49

2.8 Additional Features

Figure 2.8: Practitioner requests for Additional Features

2.9 General Comments & Suggestions

Figure 2.9: Practitioner General Comments and Suggestions

50

Appendix C

Results of Evaluation

This appendix provides supplementary screenshots or data relevant to the tool’s extended
functionalities and interface designs, not included in the main text.

Figure 3.1: FT-SS-02 Test case results using auto df bench

Figure 3.2: FT-SS-03 Test case results using auto df bench

51

Figure 3.3: FT-SS-04 Test case results

Figure 3.4: FT-07-RTL Test case results using auto df bench

Figure 3.5: FT-SS-09 results

52

Figure 3.6: FT-SS-10 results

53

Appendix D

Github Repository

The complete source code for the AI-driven digital forensics framework is available at
the following GitHub repository:

Github Repository

This repository contains the implementation of the multi-agent architecture, the
integration with The Sleuth Kit (TSK), Retrieval-Augmented Generation (RAG) techniques,
ReAct prompting methods, the evaluation scripts used for AutoDFBench benchmarking, and
supplementary materials related to this research.

54

https://github.com/Research-Autonomous-AI-Agents-for-DF/Agent_Framework_Backend

	Declaration
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Problem Statement
	Research Questions
	Goals and Objectives
	Goals
	Objectives

	Research Approach
	Limitations, Scope and Assumptions
	Limitations
	Scope
	Out of Scope
	Assumption

	Contribution

	Background and Literature Review
	Background
	Large Language Models (LLMs)
	AI Agents and Multi-Agent Systems
	Natural Language Processing (NLP)
	Prompt Engineering
	Retrieval-Augmented Generation (RAG)
	AutoGen Framework
	Computer File System Forensics
	Research Relevance
	ReAct Prompt Engineering

	Literature Review

	Methodology
	First Iteration
	Problem Identification and Motivation
	Objectives
	Design and Development
	Demonstration
	Evaluation via Expert Feedback
	Implementation Setup
	Conclusion of First Iteration

	Second Iteration
	Problem Identification and Motivation
	Objectives
	Design and Development
	Demonstration
	Evaluation via Expert Feedback
	Implementation Setup
	Conclusion of Second Iteration

	Third Iteration
	Problem Identification and Motivation
	Objectives
	Design and Development
	Demonstration with NIST Disk Image
	Evaluation via AutoDFBench
	Implementation Setup
	Conclusion of Third Iteration

	Communication

	Results and Evaluation
	Qualitative Evaluation
	Introduction
	Methodology
	Findings
	Conclusion

	Quantitative Evaluation
	Introduction
	Integration of AutoDFBench with the AI Agent Framework
	Methodology
	Results
	Discussion

	 Conclusion of Evaluation

	Discussion and Conclusion
	Research Findings
	Discussion
	Final Conclusion
	Recommendation
	Future Work
	Multimodal Forensics Integration.
	Support to Other Digital Forensic Branches
	Create a Dataset for Fine-Tuning an LLM
	Framework Testing with Fine-Tuned LLMs

	References
	Appendices
	Screenshots of the developed graphical user interface
	Screenshots of Qualitative Evaluation Findings
	Overall Satisfaction
	UI/UX Evaluation
	Task Breakdown Effectiveness
	Accuracy of Analysis
	Clarity of AI Agent Guidance
	Code Generation & Execution
	Adoption and Impact
	Additional Features
	General Comments & Suggestions

	Results of Evaluation
	Github Repository

