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Abstract

Stone inscriptions in Sri Lanka hold immense historical and cultural value, yet they are

increasingly losing legibility due to natural weathering, erosion, and vandalism. Traditional

documentation methods like estampages, while useful, are often time-consuming, dependent

on favorable weather conditions, and susceptible to inaccuracies. This research presents a

novel approach utilizing multispectral imaging (MSI) to improve the readability of these

inscriptions and facilitate precise character extraction.

A structured methodology, rooted in Design Science Research, guided the iterative

design and testing of an MSI-based digital estampage pipeline. This pipeline incorporated

essential steps such as image correction, preprocessing (including noise reduction and

binarization), and advanced image processing techniques like edge detection. To further

optimize visual clarity and text segmentation, a U-Net-based model was developed and

trained.

The key findings demonstrate that MSI significantly surpasses traditional estampage

methods in both readability and character visibility. Integrating MSI into existing

archaeological workflows proved to be feasible, e!cient, and well-received by domain experts.

Furthermore, the developed pipeline e”ectively reduces fieldwork time while maintaining

data integrity.

Quantitative evaluations, utilizing PSNR and FID metrics, showed a clear

improvement in image quality compared to traditional methods. User studies conducted with

archaeologists revealed a remarkable enhancement in legibility and usability. Expert

feedback further corroborated these findings, with the system receiving an average rating of

4.6 out of 5 for its usability and output clarity, thereby a!rming the significant value of

MSI in heritage documentation and analysis.
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Chapter 1

Introduction

1.1 Problem Statement

Sri Lankan stone inscriptions, which hold valuable historical and cultural information [1], are

becoming increasingly di!cult to decipher due to natural weathering, erosion, vandalism,

and other environmental factors. The traditional manual method of documenting these

inscriptions known as creating estampages involves cleaning the surface, layering dimay

papers over the inscriptions, applying ronio ink, and using physical rubbing [2] [3]. This

is labor-intensive, time-consuming, and often limited by the skill and availability of trained

specialists [4] [5]. Additionally, as mentioned by archeology experts [6] the process faces

various challenges such as,

• The current method requires specific weather conditions for e”ective extraction. It

cannot be performed in rainy or excessively sunny conditions, limiting the window of

opportunity for data collection.

• Many inscriptions are located in remote or hard-to-reach areas, such as deep forests

or high cli” faces. Accessing these sites for manual extraction is challenging and risky,

making the process less feasible.

• The physical condition of the inscriptions a”ected by cracks, erosion, and biological

growth can lead to poor-quality estampages. The manual process often captures

additional shapes or noise, introducing inaccuracies that can mislead interpretations

of the inscriptions.

These challenges indicate the need for a more e!cient, accurate, and less

resource-intensive method for extracting characters from stone inscriptions. Thus, the

problem is to develop an e!cient approach using advanced imaging techniques, such as

multispectral imaging (MSI), to enhance the visibility of degraded inscriptions and facilitate

accurate data extraction regardless of climate and geographical limitations.

1



1.2 Research Questions

Addressing the fundamental issues identified in the problem, two primary research questions

were created. These questions guide the research direction and set the scope of inquiry on

the use of multispectral imaging towards improving Sri Lankan stone inscriptions readability.

RQ1 -Does multispectral imaging, combined with a digital image-processing
pipeline, significantly enhance the readability of stone inscriptions compared
to traditional estampage methods?

Hypothesis -Multispectral imaging combined with the proposed image-processing pipeline

produces a statistically significant improvement in the readability of stone inscriptions

compared with the traditional estampage images.

Multispectral imaging captures a sequence of narrow-band images in ultraviolet, visible, and

infrared wavelengths [7]. Stacking and selective band combination renders faint or eroded

pigment trails visible, greatly increasing contrast between inscriptioned and background

areas [7]. Certain aspects such as unequal illumination, outside interferences, and uneven

surfaces of stones may introduce noise, blurring, or false readings to the scanned images,

rendering them incorrect when recording and interpreting them [?]. Miranda et al.applied

terahertz MSI to nondestructively reveal marks hitherto illegible on a 16th-century lead

funerary cross, disclosing details lost due to corrosion and wear [8]. Faigenbaum-Golovin

et al. demonstrated on Iron Age ostraca that MSI yields a statistically significant increase

in legibility score using methods accounting for contrast, brightness, and edge definition

compared to both visible-light and infrared photography [9]. Jones et al. comprehensively

outlined a cultural-heritage MSI workflow (lighting arrangement, filter selection, calibration,

and processing), and provided evidence that even basic bandpass filtering can enhance

readability by up to 45% compared with standard procedures [10].

RQ2 - How can archaeologists practically incorporate a
multispectral-imaging-based digital estampage pipeline into their current
inscription documentation workflow, and what are the resulting impacts on
accuracy and time e!ciency?

Hypothesis -Archaeologists can e”ectively integrate a multispectral-imaging-based digital

estampage pipeline into their existing inscription documentation workflows, resulting in

improved accuracy and reduced documentation time compared to traditional methods.

The second question is about the e”ectiveness of creating digital estampages from stone

inscriptions. Best-practice cultural-heritage MSI research is not only concerned with image

quality but also with workflow documentation, metadata management, and community

norms to ensure broad adoption. Molton et al. recommend an ”action-research” strategy to

iterative co-design and testing of the pipeline with conservators and archaeologists, to ensure

each step (image capture, processing, reading) seamlessly integrates into field procedures
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[11]. In simultaneous remote-sensing investigations, the union of UAV-mounted MSI

with computer-aided mosaicking has realized a 35% reduction in on-site data-acquisition

time, and inscription documentation can anticipate analogous gains in productivity [12].

User questionnaires consistently rate workflow-integration satisfaction at more than 4.5/5,

indicating high MSI-based workflow acceptance by practicing archaeologists [13].

Through the refinement of both the image acquisition and analysis stages, the study

ensures that the final products are not only visually enhanced but also reliable for future

interpretation or archiving. The application of qualitative and empirical analysis during the

process increases the credibility and replicability of the results. [14]

1.3 Goals and Objectives

1.3.1 Goals

The overall goal of this study is to develop and test a multispectral imaging–based digital

estampage pipeline that improves the readability of Sri Lankan stone inscriptions and is

easily integrated into the documentational workflows of archaeologists. By designing and

trial implementation of a functional prototype in collaboration with field archaeologists, the

project will improve the visual quality and e!ciency of inscription documentation as well as

contribute to scholarly knowledge and cultural heritage.

1.3.2 Objectives

• Enhance the readability of stone inscriptions by applying multispectral imaging and

image-processing techniques, and evaluate the improvements compared to traditional

estampage methods.

• Develop a functional model of a digital estampage pipeline based on multispectral

imaging for practical use in archaeological fieldwork.

• Assess the usability and impact of the developed model through field tests and user

studies with archaeologists, focusing on integration into existing workflows, time

e!ciency, and documentation accuracy.

• Contribute to the academic community and heritage preservation e”orts by publishing

findings and sharing insights on the application of multispectral imaging in epigraphy.

1.4 Research Approach

This study follows a DSR methodology [15] with a qualitative analysis, to create and test an

e”ective and precise procedure of extracting characters from Sri Lankan stone inscriptions

using multispectral imaging. The DSR methodology is suitable according to its focus on

artifact creation and constant improvement.
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The study follows a positivist philosophy, in which objective measurement and

analysis are emphasized to access the e”ectiveness of multispectral imaging techniques [16].

Using the empirical data obtained from field experiments and image analysis, the study

aims to provide believable and reproducible results.

1.4.1 Research Design

A methodological experimental research design was used to stringently compare a variety of

image preprocessing and processing methods which are not confined to binarization, noise

reduction, edge detection, and character segmentation. This design allows a systematic

analysis of the influence that various approaches have on the accuracy and fidelity of

character extraction.

1.4.2 Data Collection Method

Data was collected through field visits to ancient sites and the National Museum using

a multispectral camera to capture high-resolution images across five spectral bands. The

camera system was selected based on its ability to capture detailed information beyond the

visible spectrum, improving the readability of degraded inscriptions.

1.4.3 Data Analysis Technique

Following techniques were mainly used during the research, when analyzing data.

• Image Correction

• Image Preprocessing

• Pigmentation Mask Creation

• Image Processing

DSR and Qualitative analysis were chosen to address the complexity and feasibility of the

problem. The iterative process of DSR allowed for ongoing refinement of the imaging system,

while qualitative methods provided objective metrics to validate the result. This approach

ensures that the proposed method o”ers both technical proof and practical application for

researchers and archaeologists.

1.5 Limitations, Scope and Assumptions

1.5.1 Limitations

• The research is limited to the analysis of stone inscriptions located in Sri Lanka and

may not consider inscriptions from other countries.
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• The project focuses solely on enhancing character visibility of the images taken from

stone inscriptions, without conducting linguistic analysis or interpretation of the

content.

• The study may not address image capturing during extreme weather conditions (heavy

rain or fog).

• The study will utilize a specific multispectral camera model available for the project,

and the results may vary with di”erent models or imaging setups.

1.5.2 Scope

In scope

• Employ a multispectral camera to capture images of stone inscriptions, covering a

range of wavelengths beyond the visible spectrum to reveal details not visible to the

naked eye.

• Implement various automated image preprocessing techniques to enhance character

visibility, including noise reduction, background removal, and edge enhancement.

• Display the processed images with enhanced character visibility, facilitating easier

analysis and interpretation for researchers.

• Reduce time and labor involved in traditional methods by adopting a technology-driven

approach, making the process quicker and less resource-intensive.

1.5.3 Assumptions

• The multispectral camera, along with its lenses and filters, captures images with both

high spatial resolution and accurate spectral registration across ultraviolet, visible, and

near-infrared bands.

• Illumination is invariant both in intensity and spectral content across each capture

session. Illumination variations can add spectral variation that defeats band-to-band

comparability and artifact removal procedures.

• The chosen bands (Red, Green, Blue, NIR, RedEdge) contain su!cient contrast

information to di”erentiate engraved letters from the surface of the stone.

• The image processing pipeline of histogram equalization, contrast stretching, and

multi-band blending facilitates legibility without introducing artifacts or obscuring

fine glyph details. Rigorous pre-processing is well known to be crucial to successful

heritage imaging applications.
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• The assessments of domain experts collected through controlled image-comparison

exercises, Likert-scale questionnaires, and free-form comments are both reliable and

coherent. Elicitation procedures involving cultural heritage specialists have already

been demonstrated to provide sound intelligence when properly set up.

• The selection of stone inscriptions drawn from museum collections and selected field

sites provides an acceptable representation of the broader universe of Sri Lankan

epigraphic materials, in language, carving depth, and preservation state.

• All components of the imaging pipeline; camera hardware, illumination packages, and

processing software operate as they should without disastrous failure, maintaining data

integrity throughout the process from acquisition through analysis.

• Physical condition of each stone inscription remains constant from capture sessions to

subsequent analyses. Any alterations brought about by handling or environment could

otherwise make it di!cult to compare traditional and digital estampages.

• Fréchet Inception Distance (FID) and Peak signal-to-noise ratio (PSNR) are adequate

surrogates for visual fidelity and realism of processed images in such a setting.

Although originally intended to be applied to general image synthesis tasks, they have

already been e”ectively applied to heritage imaging evaluations

• One-tailed Z-tests for vote proportions and one-sample t-tests for Likert-scale means

are suitable given our sample sizes (n = 63 votes; n = 9 expert ratings) and data

characteristics. Standard significance thresholds (ω = 0.05 or ω = 0.10) provide

meaningful inferences about the pipeline’s relative performance

1.6 Contribution

The key contribution of this research lies in the conception and evaluation of an e!cient

multispectral image capturing and processing pipeline to enhance legibility of stone

inscriptions in Sri Lanka. Through staged combination of successive multispectral image

acquisition, pre-processing, and enhancements, the work o”ers a digital alternative for

traditional physical estampage practices.

Unlike other approaches which can be very taxing in terms of expensive hardware

or highly technical expertise, this study demonstrates a process that balances technical

e!ciency with usability for epigraphic and archaeological practitioners.

Furthermore, the evaluation with domain experts provides evidence of the method’s

applicability in real-world, highlighting its potential for supporting documentation,

preservation, and analysis of stone inscription writings.

The outcomes also benefit the broader context of understanding how multispectral

imaging can be optimized and tailored for heritage contexts to address problems such as

weathered surfaces and faint inscriptions.

6



Chapter 2

Background

For centuries, stone inscriptions have served as vital records through which civilizations

across the globe have chronicled their political events, religious ideologies, economic practices,

and social systems [17]. In Sri Lanka, these inscriptions, carved into cave walls, temple

grounds, stone slabs, and pillars, form an integral part of the country’s rich archaeological

legacy [18]. Dating as far back as the 3rd century BCE, they were originally inscribed in

early Brahmi and later in Sinhala, Tamil, and other scripts. These texts provide a window

into the island’s past, revealing information about royal reigns, monastic donations, land

grants, and legal mandates [19]. As such, they are a crucial source of primary data for

historians, epigraphers, and cultural scholars.

However, time has taken its toll. Many inscriptions have deteriorated due to natural

weathering, biological factors like moss and lichen, erosion, and human activity such as

vandalism and unmanaged tourism [20]. These factors have made many inscriptions di!cult,

if not impossible, to read and interpret, resulting in the loss of valuable historical content.

Traditionally, a method known as estampage has been used to preserve and study these

inscriptions [21].

According to the information we gathered from the experts, the current process to create

an estampage as below [22].

The rock is made wet by spraying water. Then it is being gently rubbed using a cork brush

(Fig. 2.1). Then several layers (about 2-3 layers) of demy paper are patted to the surface.

The shiny side should be laid on the inscription (Fig. 2.2). After the surface becomes dry,

a special white color paper is pasted above the existing layers. This paper should be gently

pressed until the letters are engraved on the paper (Fig. 2.3, Fig. 2.4). A waterproof ink

(Roneo ink) is then applied using special hand techniques (Fig. 2.5).

Eventually, an eye copy is taken at the site once the estampage is visually clear (Fig. 2.6).

After the estampage is dry and visible, it is being removed from the rock. Depending on the

dimensions of the stone inscription and the climate changes, the time consumption for the

above process can vary.

This manual technique requires favorable environmental conditions and is both

time-consuming and prone to human error.

In recent years, advancements in technology have begun to reshape the fields of
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Figure 2.1: Rubbing the rock Figure 2.2: Wet demy paper

Figure 2.3: Pat demy papers to the rock Figure 2.4: Pasting several demy papers

Figure 2.5: Apply roneo ink Figure 2.6: Estampage

archaeology and epigraphy. One such innovation is multispectral imaging (MSI), a

non-invasive method that significantly enhances the visibility of worn or faded inscriptions

[23], [24]. MSI captures images at various wavelengths, from ultraviolet to near-infrared,

with each wavelength revealing di”erent surface details that might not be visible to the

naked eye or standard photography.

This technique allows researchers to highlight di”erences in surface texture and

pigmentation, making faded carvings or ink traces legible again. MSI has already shown

great success in global epigraphic projects and is now being explored for use with stone

inscriptions [25], [26].

Sri Lanka, with its inscriptions often found in remote and environmentally sensitive

areas, stands to benefit greatly from MSI. The method is not only more e!cient and less

intrusive but also allows for data collection in various weather and lighting conditions. The

high-resolution imagery can be analyzed later in digital form, reducing the need for constant

field visits and enabling remote collaboration among scholars [27].
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Despite the growing global interest in MSI, its application in Sri Lanka remains limited.

There is a clear need for research that adapts this technology to the local climate, terrain,

and unique inscription styles. In addition, incorporating preprocessing techniques such as

noise reduction, contrast enhancement, and image segmentation can further improve the

clarity and usability of MSI outputs for academic research.

This study aims to address that gap by developing a specialized imaging pipeline tailored

to Sri Lankan stone inscriptions. By improving legibility and reducing dependence on field

conditions, this work has the potential to transform the way historical data is preserved and

studied in Sri Lanka. It also contributes significantly to national heritage conservation and

the broader field of digital humanities.
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Chapter 3

Literature Review

The study of digital estampages for stone inscriptions through multispectral imaging draws

upon a wide range of research fields, including image processing, feature extraction, spectral

imaging, and optical character recognition (OCR) techniques. This chapter presents a critical

review of existing work that has contributed to the foundations of the current research.

The literature review is conducted around 4 main areas which is displayed in Fig 3.1.

The first section discusses feature extraction techniques, focusing on geometric methods,

scale-invariant feature transformations, and preprocessing strategies. Next an examination

on edge detection and extraction approaches that are fundamental for identifying inscription

boundaries are discussed. The next section delves into the use of spectral imaging,

highlighting its role in enhancing epigraphic information that is often invisible under standard

lighting. Next a detailed review on popular OCR algorithms and their application in the

context of ancient inscriptions is included. Finally the findings to define the research gap,

positioning the present study within the broader academic landscape are discussed.
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3.1 Feature Extraction

A set of researchers have experimented with recognizing handwritten characters using

neural networks. The method has an 84% accuracy on a dataset of 2600 characters.

Backpropagation is the method that has been used for this research. By reducing mistakes,

it optimizes the system and improves recognition. Some preparation is required before

supplying the network with characters. Black and white conversion and noise removal are

applied to the images. ANN compares the character to previously recorded patterns in

order to classify it. The researchers have created a feature extraction technique to increase

accuracy even further. It measures pixel distances and partitions the character picture into

zones [28].

Figure 3.2: Methodology for feature extraction using backpropagation

Another group of researchers has introduced a novel methodology focused on the

recognition of 12th-century characters inscribed on stone manuscripts, using the Raspberry

Pi camera module. Their technique takes images with a Raspberry Pi camera. Following

that, an ANN and Tesseract OCR are used collectively to identify the characters in these

images. Ultimately, they are translated into contemporary characters using the Unicode

code mapping method [29].

Figure 3.3: Methodology for feature extraction in ancient Tamil characters
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3.1.1 Geometric approach to read Brahmi script using OCR
technologies

First, the image containing the Brahmi text is being scanned. Then, clean up the image by

cropping unnecessary parts, adjusting brightness, and making the lines thinner. Next, the

lines of text are separated from each other and then each character is isolated. Finally, they

use a geometric method to analyze the characters. This method examines specific features

like corners, branching points, and endings to recognize the characters [30].

3.1.2 Scale-invariant feature transform to identify characters

This research proposes a new way to decipher ancient Tamil characters etched on temple

walls. The method uses a technology called SIFT to identify these characters. Additionally,

the researchers introduced a unique approach based on ”bags of keypoints representation.”

This combined approach achieved an impressive accuracy rate of 84% in recognizing the

ancient Tamil characters [31].

3.1.3 Image pre-processing techniques and dimensionality
reduction for feature extraction

There are many techniques to remove noise from images, like averaging pixels (mean filter),

taking the middle value of nearby pixels (median filter) and more sophisticated methods.

The median filter is particularly good at removing impulsive noise (salt and pepper), but

for overall image quality enhancement, a non-linear method like the bilateral filter is better.

This filter smooths the image while preserving sharp edges. However, all these methods have

drawbacks. For another noise reduction technique, called thresholding, a simple approach

exists where each pixel is classified as noise or image data based on a single threshold. For

more complex noise reduction, techniques like PCA can be used to reduce the amount of

data analyzed. This survey suggests that PCA o”ers the best overall solution among these

methods [32].

3.1.4 Natural Gradient-based Flexible Independent Component
Analysis

Sreedevi et al. [2] explored using a technique called NGFICA to improve the digitization

of historical inscription images. Their research focused on overcoming challenges such as

perspective warping and faint inscriptions that blend into the background. The proposed

method e”ectively reduces the dependence between the inscription (foreground) and the

background, leading to a significant improvement in OCR accuracy by 65.3%.

Laniga et al. [2] mentions about a system that incorporates Buddhist inscriptions into

a user-friendly platform. This system, built on a SDI using OGC standards, o”ers a wealth

of features. Users can explore descriptions, browse a detailed catalog with metadata,

and even query the inscription database directly. Additionally, the system provides
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immersive experiences with 360° panoramas, 2D and 3D maps, annotated photographs, and

functionalities typically found in GIS.

3.2 Edge Detection & Extraction

3.2.1 Block-based Processing and Multi-scale Wavelet Transform
Approach

The traditional methods for edge detection and image rotation correction weren’t best due

to two main reasons. Archaic epigraphs can have uneven lighting, noise and disrupt edge

detection. Characters of archaic epigraphs have fine details and potentially overlap, and in

some cases there might be no reference images as well. Using traditional methods assumes

the image brightness to be at a uniform level which might seem di!cult to detect the true

edges and background noises of the image. They misinterpret these details as noise as those

methods mainly focus on capturing strong edges across the image as a whole.

A group of researchers proposed 2 new methods to extract image edges for archaic

epigraphs which are Block Edge Detection and Multi-Scale Edge Detection based on wavelet

transform. On block-based edge detection the image is divided into small blocks based on

character shapes with the aim of reducing the influence of surrounding pixels and avoiding

information loss due to averaging e”ects across the entire image. Next thresholding algorithm

is applied to each block where characters and background are distinguished easily without

computational complexity and background noise.

The second method, Multi-Scale Edge Detection based on wavelet transform is where

the image undergoes wavelet decomposition. Here the image will be separated into

a low-frequency component (scaling function) and high-frequency components (wavelet

functions). Next, the low-frequency component will capture the essential information and

reduce noise sensitivity. Here Canny edge detection is applied with a lower threshold. As

high-frequency components contain detailed features; Canny edge detection is used here

with a higher threshold to extract those details. Eventually, all edge maps obtained through

di”erent decomposition levels are fused to create the final edge image [33].

3.2.2 Sobel Edge Detector for Edge Detection

Edge detection operators such as the Sobel, Roberts, and Prewitt operators estimate the

approximate gradient of image intensity at each pixel to identify brightness changes generally

interpreted as edges. Sobel edge detection is a useful and well-used technique for this purpose

and is most suited to applications requiring quick object boundary location. It is widely

applied to grayscale image processing and is an essential tool in most image processing

pipelines.

The Sobel operator uses two 3x3 convolution kernels to calculate the horizontal and

vertical gradient. These kernels are formulated to emphasize intensity changes along each of

their axes. The gradient magnitude is calculated by taking the square root of the squared sum
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of the horizontal and vertical gradients after they have been convolved with the image. Higher

gradient values indicate stronger edge response. A thresholding operation is subsequently

applied to select significant edges.

Although the Sobel operator is e”ective, Ganesan and Sajiv (2017) [34] proved that its

sensitivity to noise, especially in textured or degraded image areas restricts its usefulness

when applied in real-world scenarios, like those found when analyzing historical stone

inscriptions. Edges on eroded or partially occluded inscriptions cannot be strictly at

horizontal or vertical axes, diminishing detection accuracy. Furthermore, Sobel operates on

single-channel grayscale data, which limits its current application in multispectral scenarios

where each spectral band may have its own distinct features.

Sobel filtering, nonetheless, can be employed as an initial step towards the localization

of edges on individual spectral bands of multispectral data. In such operations, edge

maps derived from high-contrast bands may be utilized to assist in the generation of

pigmentation masks or inscription boundary masks, which are subsequently cleaned up with

more aggressive techniques like the Canny detector [34].

Figure 3.4: Edge extraction - Input image

Figure 3.5: Edge extraction - After Sobel edge detector is applied

3.3 Use of Spectral Imaging

Spectral imaging is the act of capturing images in several wavelengths that ultimately creates

a spectral cube in which each pixel has comprehensive spectral information. It was initially

developed and used for remote sensing and astronomy but came into its own in the cultural
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heritage field during the 1990s. Its potential to examine artworks and manuscripts for

underdrawings, pigment, and conservation conditions was particularly noticeable, due to its

capacity for identifying minute di”erences in materials [35], [36] ,[37].

Liang et al. [38] describes elements of a spectral imaging system including illumination,

optics, detectors, and wavelength selection mechanisms. The lighting choice is important

to reduce light-induced degradation, particularly for sensitive materials. Filters suh as

interference, LCTF, AOTF are employed to separate out specific wavelength bands. These

are paired with high-performance cameras and detectors (e.g. CCD and InGaAs arrays)

based on the spectral range.

The spectral range utilized is typically 400 nm to 1700 nm (visible to short-wave infrared),

with extensions to mid-infrared being desirable for more chemically specific details.

Liang et al. [38] mentions some of the direct archaeological uses of spectral imaging.

1. Near-infrared imaging can bring to light underdrawings, inscriptions, and earlier

restorations that cannot be seen under normal lighting. For instance, a previously

illegible signature in a manuscript was rendered visible in the 880 nm band.

2. Precise spectral information allows virtual simulation of artifacts under varying

historic lighting conditions (e.g., daylight compared to candlelight), thereby enhancing

contextual understanding.

3. Spectral imaging can track the changes in artifacts over time due to exposure,

transport, or cleaning, such as monitoring water using absorption bands in the infrared.

One of the key contributions of this work is its extensive exploration of pigment

identification through the application of the Kubelka-Munk (KM) theory, a radiative

transfer model that describes the way light travels through turbid media, for example,

paint layers.

KM theory relates the reflectance of a layer to its scattering (S) and absorption

(K) coe!cients so that researchers can identify pigment mixtures by simulating their

aggregate spectral behavior. The method assumes that the reflectance of a paint

mixture is not simply the linear sum of its individual pigments but follows physical

light transport models [39].

The study also mentions that the prediction and identification of pigment mixtures can

be successfully carried out using KM theory, even in complex situations with pigments

of high absorption or di”erent particle sizes. Liang, skillfully identifies that a green

pigment mixture in a painting is comprised of Prussian blue and chrome yellow using

the model. The use of this method has important implications for non-destructive

analysis in archaeology, where sampling might not be feasible.

4. Hyperspectral data may also be analyzed by principal component analysis or unmixing

methods to determine material distribution. However, in liang it is discussed that such

16



statistical ”endmembers” may not have the same physical interpretability of pigment

spectra derived from KM theory.

5. Beyond traditional UV imaging, spectroscopic techniques can quantify fluorescence

emission from organics and varnishes, providing additional levels of materials

information.

Christens-Barry et al.[40] introduce the EurekaVision system, a conservation-safe,

non-destructive platform designed for fragile cultural heritage objects. It couples a 39

MP MegaVision E6 monochrome back (12-bit dynamic range) with twelve narrowband

LED illuminators spanning UV (365 nm) through NIR (870 nm), plus raking-light panels

for surface relief capture. All exposures (reflectance, transmission, raking) are controlled

via custom PhotoShoot software that embeds standardized EXIF/IPTC metadata and

performs flat-field, dark-noise correction, and white-balance on the fly. Whole-sheet

images are captured at 300 dpi (→ 1 min per spectral set), with up to 1200 dpi for key

regions like watermarks. Post-acquisition processing—pseudocolor renderings, embossing

via raking-light di”erencing, and digital stitching—has been demonstrated on the 1507

Waldseemüller world map and other LOC treasures, yielding a robust workflow for both

scholarly study and long-term condition monitoring without ever touching the artifact [40].

Figure 3.6: Results of two di”erent processing algorithms on the sheet with red grid lines:
(left) after image processing to enhance edges, giving perception of “embossing;” (right) after
pseudocolor processing to enhance red grid lines.

Adamopoulos and Rinaudo [41] develop a low-cost, non-invasive workflow for mapping

stone monument decay by fusing multi-band imaging, photogrammetry and GIS. They use

inexpensive sensors – a smartphone camera for RGB, a modified DSLR for near-infrared

(NIR) and a FLIR One thermal camera – to acquire visible, NIR and thermal images
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of weathered stone. Photogram-metric processing (using open-source tools) produces

orthorectified mosaics from these image sets, creating an accurate background map of

the stone surfaces. Image processing (thresholding, classification, etc.) on the corrected

multi-band images then extracts thematic layers of degradation (e.g. cracks, material loss,

biological growth). These layers are imported into QGIS, where they are vectorized and

combined with the photogrammetric base. The GIS environment enables spatial analysis.

The result is a set of digital “degradation maps” that quantitatively document weathering

patterns for conservation planning.
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Figure 3.7: Generation of thematic map layers (right) in QGIS using features extracted from
rectified near-infrared reflectance images (left) for the Temple of Apollo Epikourios

The multispectral data enhance detection of decay. The authors show that NIR imaging

can equalize contrasts between old and restored stone (since these materials reflect similarly

in NIR), avoiding misclassifications of decay in visible light. Likewise, NIR and thermal bands
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reveal moisture and biological colonization patterns that are subtle in RGB. By combining

visible, NIR and thermal images, features like salt deposits, biofilms or sub-surface defects

become more apparent than in a single band. Because all sensors are low-cost and the

software is free (FOSS GIS), the method is accessible and scalable. This non-destructive,

a”ordable approach provides heritage specialists with a practical way to map and monitor

stone inscription surfaces over time without expensive equipment.

3.3.1 X-ray Fluorescence Imaging for Provenance and Epigraphic
Analysis

Powers et al. [42] illustrated the use of synchrotron-based X-ray fluorescence (XRF) in

combination with XRF imaging for studying the origin of inscriptions in stones. The research

was primarily on a tablet in New York University that bore similarity to a Teanum Sidicinum

ancient Roman inscription. By analyzing elemental distributions at the glyph level, they

were able to recognize chemical signatures of modern replication, including anomalously low

calcium fluorescence and trace element levels that were unusually high for elements like lead,

gallium, and rubidium. Most significant, they observed no concentration di”erence in trace

elements between the letters and the host rock—unlike authentic Roman inscriptions where

carving and pigments leave recognizable traces.

Although the study did not use multispectral imaging in its conventional sense, it has

significant methodological similarities. The study shows the power of imaging-based chemical

analysis in bringing out information not visible to the naked eye and helping with provenance

determination. This combination of imaging and material characterization highlights the

potential of non-invasive, image-based techniques to reveal concealed or degraded epigraphic

data—a strategy that this project builds on through the application of spectral enhancements

in various light wavelengths.

3.3.2 Multispectral Imaging for Enhancing Text Legibility on Soft
and Hard Media

Bearman and Spiro [43] showed the promise of multispectral imaging (MSI) for improving

the readability of ancient texts, especially on soft and fragile media like parchment, papyrus,

and ostraca. They worked with NASA’s Jet Propulsion Laboratory to use MSI methods

developed for planetary observation on the Dead Sea Scrolls and other archaeological

artifacts. They captured numerous narrow-band images across visible to near-infrared

wavelengths (400–1050 nm) to produce image ”cubes.” These cubes enabled analysis of

the spectrum of every pixel. This approach revealed text that was previously di!cult to

read, particularly where the ink and paper appeared similar in visible light. Their success at

detecting faint writing, even where some layers were partially obscuring it demonstrates the

e”ectiveness of MSI at discriminating between ink and background based on subtle spectral

di”erences. The study uses tunable filters, CCD cameras, and calibration methods, which

in this thesis are helpful. This thesis also aims to make inscriptions on stone surfaces clearer
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by utilizing spectral imaging.

3.3.3 Digital Image Preprocessing for Historical Epigraphs

Suri, Gupta and Adlakha [44] propose a fully automatic, three-stage pipeline to improve

legibility of rock-inscriptions prior to any recognition step.

Figure 3.8: Test image used for the proposed architecture

First, they compare several smoothing filters (mean, disk, Laplacian, but find a 5×5

Gaussian with ω=0.7 to be the best trade-o” of noise removal vs. detail preservation, as

measured by PSNR, LMSE and NAE). Next, they binarize the enhanced grayscale image

using Otsu’s global threshold (extended to a multi-threshold variant), which cleanly separates

ink (or carved glyph) regions from background even under uneven illumination. Finally,

they apply a morphological erosion to “bridge” broken strokes and consolidate fragmented

characters, yielding a binary image whose connected components correspond much more

cleanly to individual glyphs. All stages are implemented in MATLAB, and quantitative

quality metrics show their cascade significantly outperforms single-stage methods [44].

Figure 3.9: Binarized image after erosion
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3.4 Popular OCR and Algorithms Used

3.4.1 Introduction to OCR Methodologies

In today’s digital world, OCR is a game-changer. It lets us easily convert text in images

into formats that computers can understand and edit. OCR is a field of study that combines

aspects of pattern recognition, artificial intelligence, and computer vision. It’s a way

to take physical text (printed documents or scanned images) and turn it into something

machines can work with. This digitized text is then used in many common machine-learning

tasks, including machine translation, text-to-speech, and text analysis. Early OCR systems

required training on individual character images and only worked with one font at a time.

Today’s advanced OCR comes in two main flavors: o#ine and online character recognition

[45].

Figure 3.10: Classification of Character Recognition

3.4.2 Artificial Neural Network

ANN also known as SNN, in the field of Artificial Intelligence is a machine learning program,

or model that makes decisions like the human brain, by using processes that mimic the

way biological neurons work together to identify phenomena, weigh options and arrive at

conclusions [46].

Neural networks rely on training data to learn and improve the accuracy over time. Once

these are fine-tuned for accuracy, they are powerful tools in computer science and artificial

intelligence allowing to classify and cluster data at very high velocity. Image recognition

takes minutes versus hours when compared to manual identification.

ANN is used for di”erent purposes such as for the demodulation and reconstruction of

digital input signals [47]. ANN can be used for complex tasks in character recognition such

as image classification and pattern detection due to having a vast information processing

ability.
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3.4.3 Convolutional Neural Network

Convolutional Neural Network, which is also known as ConvNets or CNNs is one of the most

popular OCR methods used globally [5]. It is a perceptible learning model that extracts and

learns suitable features [48]. CNNs are powerful tools when it comes to image processing,

natural language processing, time series forecasting, and bioinformatics. The major reason

for this popularity is that CNN was able to reduce the number of parameters in ANN which

made it easier to train. This motivated researchers globally to approach larger models to

solve more complex tasks. With all these CNN was able to have good results in pattern

recognition [49].

Even though CNN is popular as a better approach than ANN, it takes a lot of time

to complete the training process fully. But recent studies have shown that the simpler

version of CNN which got 5% error rate can be implemented inNetworkshan 4 hours if we

are familiar with it [48].

CNN is inspired by the structure of the human visual cortex. It uses several layers in

order to extract features from the input data. The below section shows the architecture of

CNN to identify characters from images.

Figure 3.11: Architecture of CNN

Above is the basic CNN architecture. The input layer which is the first layer of this flow

accepts segmented characters as input. The number of input layers solely depends on the

task and after this, the image will be passed to the hidden layer for other processing.

The hidden layer plays a major role here by extracting features. The number of hidden

layers is directly proportional to the depth of learning features. The accuracy depends on

the training of the network. There can be several mid-layers inside the hidden layer and

each of those mid-layers consists of 4 CNN functional layers; the Convolutional layer, the

Activation layer, the Normalization layer, and the pooling layer. The very last mid-layer has

two other layers called the FC layer and Pooling layer which is shown below [45].
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Figure 3.12: Functional Layers of CNN

The convolutional layer assures the special relationship between pixels by understanding

image features using a small square of the input image. All these individual images are

considered as a matrix of pixel values [5].

Neurons have a receptive field, and that neuron is only responsible for that specific

receptive field. All the neurons are arranged into feature maps. All neurons in a feature

map have weights that are equal. But di”erent feature maps in the same convolutional layer

have di”erent weights which make it possible to extract several features at the same time at

each location [45].

The second layer, a ReLu, is used for hidden layers by the most recent deep learning

networks. This is a very simple non-linear activation function. Simply when the input is

greater than one, it outputs the exact same value and if the input is less than zero it gives

zero as the output.

The norm layer which is also known as the channel response normalization layer, carries

out the channel-wise normalization. Here each element is replaced with a normalized

value. This aims to enhance feature competition and mimic biological processes. While

it has historical significance, it’s less commonly used now due to computational cost,

hyperparameter tuning complexity, and the e”ectiveness of alternative techniques like Batch

Normalization.

The pool layer mainly acts as a summarizer. It summarizes all the details it gets from

previous layers and keeps only the key points. The FC layer gathers all the details and makes

the decisions by putting all the clues together. The receptive fields are not used anymore

[45].

The final stages of the character recognition system involve the Softmax layer for

multi-class classification (converting scores to class probabilities) and the classification layer

for determining the number of classes based on the previous layer’s output size. Additionally,

the system utilizes Unicode for character representation and employs various performance

measures like accuracy, F1-measure, and ROC curves to assess its e”ectiveness [45].

Magrin et al. [45] reported on their research that CNN was used to understand Tamil
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inscriptions from the 12th century and was a successful attempt. Below figure shows the

input image for a CNN process and the output.

Figure 3.13: An input image for CNN

Figure 3.14: Segmented Characters

Figure 3.15: Recognized characters

3.4.4 Advanced Maximally Stable External Regions Algorithm

AMSER algorithm is widely studied and applied in the context of character recognition

on inscriptions and epigraphs. Many inscriptions in Sri Lanka are dated back to ancient

times making them worn or faded in the present, where the background and characters

have a very low contrast and clarity. Since most of the Sri Lankan inscriptions are kept

outside and are exposed to uneven lighting conditions this creates shadows and highlights

which conceal lettering. Over the years inscriptions have developed fractures, erosion, or

other surface flaws. AMSER algorithm has an adaptive nature which enables it to identify

characters despite the above-mentioned challenges. This algorithm method is e”ective in

terms of recall and precision.

Neumann and Matas et al. [50] reported research on text localization in real-world images

that e”ectively trimmed exhaustive search. Their research revealed the AMSER algorithm’s
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ability to localize and recognize text in complicated visual contexts. They emphasized the

AMSER algorithm’s resilience and speed in handling text localization tasks, o”ering vital

insights into its application in real-world settings.

After an image is pre-processed where the quality will improve image restoration

(recovering a degraded image), geometric transformation, and pixel brightness

transformation the AMSER algorithm will be applied to identify potential character regions

[51].

Figure 3.16: Input image for AMSER

Figure 3.17: Resulting image

3.4.5 Character Spotting for Stone Inscription Text Extraction

Aswatha et al. [52] suggested a semi-automatic method of text extraction from stone

inscriptions using a new character spotting algorithm. Their approach is particularly useful

for in-situ processing in sites of historical importance and helps epigraphers to convert

faded or stylistically heterogeneous inscriptions into editable Unicode text. This approach

is di”erent from traditional OCR methods because it does not use classifier training. It uses

Histogram of Oriented Gradients (HoG) to extract features and normalized cross-correlation

for template matching instead. The method supports vowel diacritics, depends on human

feedback to increase accuracy, and delivers extremely accurate output even with noisy or

low-contrast images. The authors implemented desktop and Android applications for the
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tool and showed that the tool performs satisfactorily under real-world usage. This book

is relevant to this thesis in that it discusses problems in reading inscriptions, recognizing

characters, and how to digitize them. These are the foundations of multispectral image

enhancement and understanding archaeological discoveries.
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Although Table 3.1 shows that prior research has addressed individual elements of

inscription documentation such as imaging (including multispectral image acquisition),

image preprocessing and enhancement, character recognition, and GIS-based mapping; none

of these e”orts has proposed a complete workflow specifically for creating digital estampages

of stone inscriptions. Instead, most studies have focused on either improving image capture

and enhancement (using advanced photography or spectral filters) or on developing text

segmentation and analysis techniques, without integrating these steps into a unified pipeline.

Crucially, none of the previous work explicitly addresses the task of producing a digital,

multispectral estampage that preserves the epigraphic content in a non-invasive, low-cost,

and spatially analyzable form. Identifying this gap, the presented research study specifically

focuses on creating digital estampages of stone inscriptions using multispectral imaging.
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Chapter 4

Methodology

4.1 Overview

The research adopts an experimental and iterative approach to enhance the readability

of ancient Sri Lankan stone inscriptions through multispectral imaging. The following

chapter overviews a detailed explanation on the chosen research approach along with

experimental iterations.

4.2 Research Approach

The overall approach of this study is experimental (Section 1.4), with an emphasis on

developing a reliable preprocessing pipeline capable of recovering faint or eroded textual

content from MSI data. Hundreds of di”erent image processing configurations and parameter

combinations were tested. Feedback loops based on domain expert observations allowed

iterative refinement of techniques, with the goal of identifying methods that are both e”ective

and generalizable to diverse inscription types.

4.3 Experimental Iterations

The experimental nature of this research was central to its success. Given the lack of

standardized datasets, the unpredictable condition of the inscriptions, and the variability

introduced by lighting and surface materials, a one-size-fits-all solution was not feasible.

As such, the development of the preprocessing pipeline required intensive experimentation

through iterative refinement, trial-and-error, and domain-informed adjustments.

4.3.1 Iteration Environment and Process

All experimentation was conducted using Jupyter notebooks on Google Colab, allowing,

• Immediate visualization of intermediate outputs at each pipeline stage

• Quick adjustments of parameters for real-time testing

• Use of GPU acceleration for faster computation of high-resolution MSI data
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• Easy version control and organization of experimental logs

Output images were saved in a structured directory format, and detailed notes were

maintained on the observed e”ects of each adjustment.

4.3.2 Explored Preprocessing Pipelines

Throughout the course of the research, three main preprocessing pipelines were developed

and tested. Each pipeline served a distinct experimental purpose and contributed valuable

insights toward the final optimized method. The following subsections outline the design,

components, and observed e”ectiveness of each pipeline.

Classical Image Processing Pipeline with Adaptive Thresholding and Contour
Segmentation

This pipeline was one of the earliest approaches explored in the study. It utilized standard

grayscale image processing techniques to extract potential inscription characters. The key

components were:

• Skew Correction - Custom rotation-based histogram analysis was used to correct

image skew, aligning inscriptions horizontally to improve segmentation accuracy.

• Noise Reduction -Multiple filters such as median blur, Gaussian blur, and Non-Local

Means Denoising were applied sequentially to reduce high-frequency noise while

retaining edge structures.

• Adaptive Thresholding - Gaussian adaptive thresholding was applied to the

denoised image to binarize text regions under uneven lighting conditions.

• Morphological Operations – Dilation, erosion, opening, closing, and combinations

thereof with di”erent structuring element shapes and sizes (square, rectangular,

elliptical) were evaluated.

• Edge Detection and Contour Analysis - Canny edge detection followed by contour

extraction was used to segment potential character shapes. A minimum area filter was

used to discard noise.

• Character Tokenization - Bounding boxes were used to extract individual segments,

which were manually inspected for inscription accuracy.

Outcome - This pipeline performed moderately well in cases where inscriptions had

high contrast. However, it was sensitive to lighting, erosion, and surface variability. The

rigid thresholding parameters made it less adaptive across varying samples. The characters

were not tokenized as expected because a complete dataset was not found.
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ORB-Based Feature Matching and Blending for Multispectral Fusion

The second pipeline focused on aligning and combining two separate spectral images

(typically Green and NIR bands) to enhance the visibility of inscriptions.

• Feature Detection with ORB - Keypoints and descriptors were extracted from

both images using the ORB (Oriented FAST and Rotated BRIEF) detector.

• Feature Matching - A Brute-Force matcher with Hamming distance was used to

match keypoints between the two bands.

• Homography Estimation - Using matched keypoints, a homography matrix was

computed via RANSAC to warp one image to the perspective of the other.

• Image Blending - The aligned image was fused with the base image using weighted

addition, followed by histogram normalization.

• Inpainting Strategies – Di”erent approaches to mask creation and inpainting regions

were tested to remove background clutter while preserving textual features.

• Edge Detection - The di”erence between the blended images was further processed

using Canny edge detection to emphasize potential text regions.

Outcome: This method o”ered high precision in aligning images from di”erent spectral

bands, thereby improving contrast and clarity. However, the method relied heavily on strong

feature points and did not generalize well to low-texture inscriptions or extremely degraded

samples.

Spectral Pigmentation Index with Kubelka-Munk-Based Reflectance Modeling

The third pipeline combined domain knowledge of pigment reflectance and multispectral

data to compute a physically meaningful pigmentation index. This approach modeled light

interaction based on the Kubelka-Munk theory, which simulates reflectance properties of

materials.

• Spectral Band Selection – Individual bands (e.g., Red Edge, NIR) and their

combinations were explored to identify those with the highest contrast for epigraphic

features.

• Reflectance Normalization - Green and NIR channels were normalized to simulate

surface reflectance.

• Material Modeling - Reflectance parameters were defined for pigmented regions

(high absorption, low scattering) and stone surfaces (low absorption, high scattering).

• Pigmentation Index Calculation - A spectral index was computed to highlight

areas with high green reflectance and low NIR reflectance, which typically correspond

to inscriptions.
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• Binarization and Enhancement - The index was normalized and binarized using

adaptive Gaussian thresholding, followed by optional noise reduction and contour

extraction.

Outcome - This approach provided the most consistent and reliable results across diverse

inscription conditions. By incorporating spectral behavior and material properties, it was

able to enhance degraded inscriptions more e”ectively than standard filtering methods.

4.3.3 Emergence of Generalizable Patterns

Despite the diversity of samples, certain combinations began to consistently produce better

results. These ”best-performing” configurations were identified based on their ability to:

• Enhance contrast between inscription and stone background

• Minimize loss of faint inscription strokes

• Remove irrelevant noise such as cracks or background texture

These configurations formed the core of the final preprocessing pipeline, although some

manual fine-tuning was still required on specific samples. The iterative process also helped

surface unexpected insights—for instance, certain spectral bands were far more e”ective on

granite inscriptions than on sandstone.
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Chapter 5

Implementation

5.1 Overview

This chapter includes a comprehensive overview on the implementation iterations conducted.

It comprises multispectral image acquisition, custom dataset creation and developing a

robust preprocessing pipeline. The aim was to explore and optimize various preprocessing

techniques to improve the legibility of degraded epigraphic content.

5.2 Data Collection

Due to the lack of existing open-access datasets specific to Sri Lankan epigraphy, a custom

multispectral image dataset was created. Images were gathered from multiple sources:

• Colombo National Museum and archaeological department in Sri Lanka

• Digitized archival materials such as Zelanica volumes

• Field photographs and close-range images of inscriptions

Each image was captured under a range of spectral bands using a MicaSense multispectral

camera, which includes bands Red, Green, Blue, Red Edge, and Near-Infrared (NIR). The

spectral diversity was crucial in identifying faint inscription patterns that are often invisible

in standard RGB imaging.

5.2.1 Data Annotation and Organization

There were two types of datasets utilized. One was for model training and the other

one was for evaluation purposes. While no pixel-level ground truth was available, visual

assessments were aligned with previously published estampages and expert readings to

facilitate comparative validation. Images were annotated with metadata, including location,

type of stone, estimated date, inscription language, and environmental conditions during

capture.
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5.2.2 Model Training Dataset Preparation

To streamline the creation of the training dataset, a dedicated annotation interface was

developed (Fig. 5.1). This tool was designed to simplify the process of generating labeled

data from the enhanced multispectral images. Through the interface, users were able to

easily adjust parameters such as patch size, label type, and band selection, allowing for

e!cient and consistent dataset creation.

The interface provided a visual environment for selecting regions of interest and assigning

corresponding labels, reducing manual errors and saving time. It also supported direct

export of the annotated data in formats compatible with downstream model training

pipelines. This tool played a key role in accelerating the dataset preparation process,

especially given the experimental and iterative nature of the study.

Figure 5.1: Interface to create dataset

5.3 Tools and Frameworks

The implementation utilized the following key tools:

• Python as the primary development language

• OpenCV for low-level image processing tasks (filtering, transformation, dilation)
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• Doxapy for advanced binarization algorithms such as Sauvola

• SciPy and NumPy for scientific computations

• Google Colab for experimentation in a cloud environment

• MicaSense Python SDK for handling and processing multispectral image bands

All experiments were version controlled and reproducible through Jupyter notebooks

hosted on Colab.

5.4 Image Preprocessing Pipeline

A detailed, multi-stage preprocessing pipeline was developed. This pipeline was designed

to handle raw MSI input and transform it into a visually enhanced output, where the

inscriptions appear clearer and more readable. The stages are as follows:

5.4.1 Image Correction

Consists of 2 parts to align images and to correct skewness.

Due to slight di”erences in the positions of the lenses in the multispectral camera,

the captured images across the five spectral bands are not perfectly aligned. To enable

accurate comparison and further processing, it is necessary to spatially align all the band

images with each other.

Then, a custom skew correction algorithm was developed to address angular misalignments

resulting from camera perspective or uneven surfaces. The method involves,

1. Converting the input image to grayscale

2. Applying Otsu’s thresholding to create a binary map

3. Calculating horizontal projection profiles across a range of rotation angles

4. Selecting the angle with the highest projection smoothness (least variance) as the

correct alignment

5. Rotating the image using an a!ne transformation centered on the image midpoint

This ensures that the inscriptions are horizontally aligned for subsequent processing.
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5.4.2 Grayscale Conversion and Noise Reduction

After aligning the spectral images, the images were converted to grayscale to reduce

complexity and focus on intensity variations.

To remove high frequency noise, images were processed using a bilateral filter for

noise reduction. The bilateral filter was chosen as it e”ectively smooths the image while

preserving important edges, which is crucial for maintaining the fine details of stone

inscriptions during preprocessing.

5.4.3 Morphological Processing

Morphological operations were used to emphasize character strokes and reduce fragmentation

-

• Dilation with a 3x3 rectangular structuring element was applied to connect disjointed

parts of inscriptions.

• Closing operations were used later in the pipeline to seal small gaps between character

edges, especially in binarized masks.

5.4.4 Adaptive Binarization (Sauvola)

Following noise reduction, Sauvola binarization was applied to segment the text regions from

the background. Sauvola’s method, a local thresholding technique, adapts the threshold

based on the mean and standard deviation of a local window. This approach is particularly

e”ective for handling non-uniform illumination and varying stone textures often found in

epigraphic images. The parameters, including a window size of 20 and a small k value of

0.05, were tuned to optimize text region preservation.

5.4.5 Morphological Processing

To refine the binarized output, morphological closing was performed using a small (3×3)

kernel. Morphological closing, which consists of a dilation followed by erosion, helps to close

small gaps and holes within the context of the image. This step was essential to ensure that

broken or fragmented parts of inscriptions were slightly reconnected, facilitating more robust

edge detection and subsequent processing.

5.4.6 Edge Detection

After morphological refinement, edge detection was carried out using the Canny edge

detector with adjusted thresholds (50 and 150) to identify the boundaries of the inscriptions.

Edge detection highlighted the contours of the stone engravings, enabling better isolation

of meaningful features while suppressing noise introduced by the stone surface’s natural

variations.
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5.5 Pigmentation Mask

5.5.1 Selected Bands and Reasons

Out of the five available spectral bands, we specifically utilized the Green and Near-Infrared

(NIR) band images for the creation of the pigmentation mask.

The selection of Green and NIR bands for multispectral analysis in epigraphic image

processing is based on empirical research and physiological principles of material reflectance

[53]. Pigmented regions, such as carved stone inscriptions, typically absorb a greater

amount of NIR radiation while reflecting more in the visible green band.

This di”erential behavior enhances the contrast between the inscribed text and the

surrounding stone surface. According to spectral reflectance studies in material classification

and vegetation analysis; a fields where this principle is commonly applied, NIR absorption

is strongly correlated with denser or altered surface materials [54].

In the context of stone inscriptions, this property can be leveraged to di”erentiate

engraved areas from their backgrounds. The NIR-green combination proves highly e”ective

for isolating specific surface anomalies, in this case, carved text under varying surfaces.

5.5.2 Spectral Pigmentation Index and Kubelka-Munk
Reflectance Modeling

To enhance the visibility of inscriptions on stone surfaces using multispectral imagery,

a pigmentation index was implemented that leverages the di”erential spectral behavior

of pigmented and non-pigmented regions. The reflectance values for the green and

Near-Infrared (NIR) bands were first normalized to the range [0, 1] to simulate actual

reflectance behavior:

green reflectance =
green band

255.0
, nir reflectance =

nir band

255.0
(5.1)

This normalization enables accurate modeling of light interaction using the

Kubelka-Munk theory, which is widely used to describe reflectance in scattering media [39].

The Kubelka-Munk reflectance function estimates the reflectance R of a material based on

its absorption coe!cient K, scattering coe!cient S, and thickness d:

a = 1 +
K

S
, b =

↑
a2 ↓ 1 (5.2)

R→ = a↓ b (5.3)

R =
1↓R→(a↓ b coth(bSd))

a↓R→ + b coth(bSd)
(5.4)
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Two material types were modeled:

• Pigmented regions: characterized by higher absorption (K = 0.8) and lower

scattering (S = 0.2),

• Stone background: with lower absorption (K = 0.1) and higher scattering (S = 0.5).

These parameters reflect physical reality, where engraved or ink-filled areas absorb more

NIR and scatter less, while natural stone surfaces tend to reflect and scatter light more

evenly.

The spectral di”erence between the green and NIR bands was used to compute the

Pigmentation Index:

Pigmentation Index =
Rgreen ↓RNIR

Rgreen +RNIR + ε
(5.5)

where ε is a small constant to avoid division by zero. This index improves areas with high

green reflectance and low NIR reflectance, typical of pigment residues, resulting in improved

separation of text from background.

Finally, the computed pigmentation index was normalized and binarized using adaptive

Gaussian thresholding to generate a high-contrast binary mask highlighting the inscribed

regions. This method provides a physically interpretable and adaptive technique for feature

extraction from multispectral images of stone inscriptions.

5.6 Preliminary Work for Model Implementation

In order to generate pre-processed outputs that are adapted to the specific characteristics

of each stone inscription, such as the surface texture, degree of degradation, the nature of

the inscribed content, etc. we implemented a learning-based model. The pre-processing

steps, outlined previously, were used as the foundation. However, their parameters often

needed fine-tuning depending on the individual image context. To achieve robust and

flexible pre-processing tailored to di”erent inscription conditions, we explored three model

architectures: a CNN-based encoder-decoder, a U-Net-based model, and a ResNet-based

model. The following sections describe the implementation details of each approach.

5.6.1 CNN-Based Encoder-Decoder

The model is designed to perform preprocessing of stone inscription images using a

convolutional encoder-decoder architecture (Yuzhu Ji, 2021).

The objective of the model is to enhance raw multispectral inputs, specifically the

Green spectral band, by learning to generate a high-quality preprocessed version of the

image that is suitable for further analysis or interpretation.
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Encoder - A sequence of convolutional and pooling layers is used to extract deep

features from the input image. The encoder progressively reduces spatial resolution while

capturing essential features.

Decoder - This component upsamples the encoded features using transposed convolutions

to reconstruct an image with the original resolution. A final sigmoid activation is applied to

generate a single-channel output image representing the preprocessed result.

Figure 5.2: Output of the CNN based encoder-decoder model

The model is capable of identifying the general structure of the ground truth, but the

resulting output tends to lack the finer details necessary for detailed interpretation (Fig. 5.2)

5.6.2 U-Net-Based Image Preprocessing Model

This model is based on the U-Net architecture, a popular convolutional neural network

originally designed for biomedical image segmentation [55]. In this implementation, the

U-Net is adapted to perform image preprocessing on stone inscription images, using the

Green spectral band as input.

The architecture follows an encoder-decoder structure. Encoder extracts hierarchical

features through two convolutional blocks and max-pooling layers. Decoder gradually

upsamples and combines features from earlier layers via skip connections to reconstruct

a high-resolution output.

The U-Net model produced visually refined outputs that exhibited enhanced clarity of

the stone inscription details, with improved contrast and reduced noise levels (Fig. 5.3). This

level of visual enhancement makes the preprocessed images well-suited for subsequent tasks.
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Figure 5.3: Output of U-Net showing enhanced clarity and reduced noise.

5.6.3 ResNet-Based Preprocessing Model

ResNet is commercially used for object detection and image classification tasks [56]. The

ResNet preprocessor model is a custom convolutional neural network inspired by the ResNet

architecture, designed to enhance stone inscription images using the Green spectral band.

The encoder progressively reduces the spatial dimensions while increasing the feature

depth, followed by a decoder composed of transposed convolutions that reconstruct the

preprocessed image. It integrates residual blocks in the encoder to preserve low-level features

while enabling deep representation learning through identity mappings.

The model also produced enhanced images with clear edge preservation and balanced

contrast (Fig. 5.4), indicating the model is reliable for creating a preprocessed image for

further analysis.

Figure 5.4: Output of the ResNet based model

5.6.4 Model Comparison

To select the most suitable model, PSNR and FID were used as evaluation metrics to assess

both the accuracy and the visual quality of the resulting pre-processed images. PSNR

measures the similarity between the predicted and ground truth images at the pixel level,

41



making it useful for evaluating noise reduction and structural fidelity. FID, on the other

hand, captures the perceptual realism of the images by comparing their feature distributions,

helping to assess how natural and consistent the outputs appear. Together, they provide a

balanced view of both technical precision and visual quality.

Table 5.1: Performance Comparison of Models

Model Average PSNR (dB) FID
Encoder-Decoder 12.56 275.04
ResNet 13.94 129.83
U-Net 14.26 147.34

Analysis

According to the values, the Encoder-Decoder model shows the lowest PSNR and the highest

FID among the three, indicating both poor reconstruction quality and low perceptual realism.

ResNet performs moderately well, achieving a higher PSNR than the Encoder-Decoder

and the best FID score, which reflects strong perceptual quality. However, its pixel-level

accuracy is slightly lower than that of U-Net. U-Net outperforms the others with the highest

PSNR, demonstrating its e”ectiveness in reducing noise, preserving contextual details, and

maintaining clearer edges. Although its FID is slightly higher than ResNet’s, it remains

within an acceptable range and does not significantly compromise the perceptual quality.

Considering the objective of generating high-quality pre-processed images with minimal

noise, enhanced contextual clarity, and accurate edge preservation, U-Net is the most suitable

model for this task. Its superior PSNR score indicates its strength in producing clean and

structurally faithful outputs, making it the best choice for the given requirements.

5.7 Implementation of the U-Net Model

The U-Net architecture was selected for the preprocessing of stone inscription images due to

its e”ectiveness in image-to-image translation tasks, particularly where pixel-level precision

is required. U-Net consists of an encoder-decoder structure with skip connections, allowing

the model to preserve fine spatial information, which is crucial for recovering faded or noisy

inscription features.

To ensure compatibility and reproducibility of the results, a specific Python environment

was created using Conda. The environment configuration (Figure 5.5) includes all necessary

libraries for training and evaluating the U-Net model on stone inscription images. The setup

utilizes PyTorch as the primary deep learning framework, along with supporting libraries

such as NumPy, Pillow, and Matplotlib for data processing and visualization. OpenCV was

also included via pip for various image pre-processing tasks. GPU acceleration was enabled

through the CUDA toolkit, and the configuration was exported as a YAML file to allow the

environment to be easily recreated on other machines.
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Figure 5.5: Conda environment configuration for U-Net model training

The model architecture features a classic U-Net structure comprising a contracting path

(encoder) and an expansive path (decoder). This configuration enables the network to

capture local and global features by downsampling the input image and then reconstructing

it with skip connections that retain spatial information.

The encoder section of the U-Net is responsible for capturing the contextual features from

the input image by progressively downsampling it. It consists of two convolutional blocks,

each made up of two convolutional layers with ReLU activations, followed by a max-pooling

layer. This design allows the network to learn hierarchical features at multiple scales.

Each convolutional block is implemented using a helper function CBR(), which defines a

sequential block of Conv → ReLU → Conv → ReLU. The first block processes the input green

band (1 channel), and the subsequent block refines these features after spatial reduction via

max pooling (Fig. 5.6).
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Figure 5.6: Encoder layers of the U-Net

The bottleneck is acting as a bridge between the encoder and the decoder. It processes

the compressed feature maps using the same convolutional block structure (CBR). Since this

layer comes after two downsampling operations, it has a reduced spatial size but a higher

number of channels (depth), which helps in learning abstract representations necessary for

high-quality image reconstruction.(Fig. 5.7)

Figure 5.7: Bottleneck between the encoder and the decoder

The decoder is responsible for reconstructing the output image from the encoded

representation. It performs two key operations (Figure 5.8):

• Upsampling - Using transposed convolutions to increase the spatial resolution.

• Skip connections and refinement - Concatenating the upsampled features with

corresponding encoder features (from the same resolution level) and refining them

using convolutional blocks.

Figure 5.8: Decoder layers of the U-Net performing upsampling

The final output layer of the U-Net consists of a single 1×1 convolution, which reduces

the number of channels from 64 to 1, producing a single-channel preprocessed grayscale

image. This layer aggregates the refined features from the last decoder block to generate the

final output (Figure 5.9).

Figure 5.9: Output layer

The model was trained using the Mean Squared Error (MSE) loss function to minimize the

pixel-wise di”erence between predicted and ground truth preprocessed images. Data loading
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and augmentation were handled via a custom dataset class (Fig. 5.10), which reads target

images from the dataset directory and applies resizing and normalization transformations.

The training process was carried out on a GPU-enabled environment using the Adam

optimizer.

Figure 5.10: Custom Preprocessing Dataset class for loading green channel input images and
corresponding preprocessed target images with resizing and normalization transformations

5.7.1 Training Process

Dataset and Loading

A labeled dataset folder structure was created for training, validation, and testing (Fig. 5.11).

The dataset, consisting of a total of 200 images, was divided into 80% for training, 10% for

validation, and 10% for testing. This resulted in 160 images allocated for training, 20 for

validation, and 20 for testing, ensuring a balanced split to facilitate e”ective model training

and evaluation.
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Figure 5.11: Labeled dataset folder structure

Training Details

The model train started at 50 epochs initially, using the Adam optimizer with a learning

rate of 1e-3 and a batch size of 16. The loss function used was Mean Squared Error (MSE)

(Fig. 5.12), which penalizes the pixel-wise di”erence between the predicted and ground truth

preprocessed images.
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Figure 5.12: Training loop

Later, the model was fine-tuned by systematically varying key hyperparameters. Notably,

the number of epochs (from 1 up to 100), learning rate, batch size, optimizer choice, and

loss function, as shown in Fig. 5.13.

We observed that when training to 100 epochs, the training and validation losses had

plateaued halfway through the epochs. To guard against this and prevent overfitting, we

implemented early stopping (patience = 10), which automatically halted training when the

validation loss failed to improve for ten consecutive epochs. By inspecting the PSNR and

FID curves (Fig. 5.13), we found that a stopping point at 75 epochs produced the best

trade-o”. The PSNR climbed from just 11.09 dB at epoch 1 and 14.53 dB at epoch 50 up

to 15.33 dB at epoch 75, surpassing the 15.11 dB achieved at epoch 100, while the FID fell

from 1,542.67 down to 518 at epoch 75 (versus 616.3 at epoch 100). We therefore saved the

model weights at 75 epochs and used this checkpoint for all downstream test-set evaluations.

This fine-tuning strategy ensured we maximized reconstruction fidelity (higher PSNR) and

feature-level realism (lower FID) without unnecessary epochs or overfitting.
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Figure 5.13: Tuning hyperparameters

As a result, the following configurations were drawn as the most e”ective parameters of

the model to create the optimum pre-processed image.

Hyper-parameters

Initial setup:

• Epochs: 50

• Optimizer: Adam

• Learning rate: 1↔ 10↑3
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• Batch size: 16

• Loss function: Mean Squared Error (MSE)

Training was conducted on a machine equipped with a CUDA-enabled GPU. During

training, both training loss and validation loss were monitored and plotted to observe model

convergence.

Removing pigments from the pre-processed image

After creating the pigmentation mask (which highlights the pigmentations on the stone

surface), the goal was to remove these pigmentations from the pre-processed green pipeline

image. To achieve this, a bit-wise AND operation was first used to apply the pigmentation

mask onto the pre-processed image.

Then, to e”ectively remove the pigmentations, the result was inverted, making the

pigment areas lighter or eliminated from the image. This process ensures that only the

non-pigmented, smooth stone surface remains prominent in the final output, while carved

and pigmented regions are suppressed (Figure 5.14).

Figure 5.14: The pigmentation mask and the pre-processed image after removing the mask

Finally, normalization was applied to adjust the intensity range, preparing the cleaned

image for further processing or evaluation.
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Chapter 6

Results and Evaluation

6.1 Introduction to Evaluation Strategy

The research evaluation is divided into two complementary components.

1. Model Evaluation - assesses the performance and output of the implemented model

(as detailed in Chapter 4 - Methodology)

2. User-Centric Evaluation - gathers and analyzes feedback from domain experts on those

outputs.

Together, these approaches provide both quantitative and qualitative insights into model

e”ectiveness and perspectives on its practical value.

6.2 Model Centric Evaluation

6.2.1 Experimental Dataset

Model evaluation was conducted using the test set, consisting of green band input images

and their corresponding preprocessed ground truth images. Out of the 200 total images, 20

images are used for the testing dataset.

6.2.2 Quantitative Image-Quality Metrics

Following metrics were used to measure the quantitative image quality metrics for model

evaluation.

The reconstruction quality between predicted and ground truth images were calculated

using the PSNR. The calculate psnr function (Fig. 6.1) computes the Peak Signal-to-Noise

Ratio between two images, typically the predicted and the ground truth. It first calculates

the Mean Squared Error (MSE) using PyTorch’s built-in MSE function. If the MSE is zero

(meaning the images are identical), the function returns infinity, indicating perfect similarity.

Otherwise, it will calculate the PSNR as shown in (Fig. 6.1), where MAX is 1.0 for normalized

images.
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Figure 6.1: Code to find PSNR

Feature-level similarity was measured using the Fréchet Inception Distance (FID). The

calculate fid function (Fig. 6.2) computes the FID between two sets of image feature

activations, one from ground truth images and the other from generated (predicted) images.

It calculates the mean and covariance of both activation sets, then uses these statistics

to compute the Fréchet distance. A small value is added to the matrix product to ensure

numerical stability. If any complex numbers appear due to the matrix square root operation,

the real part is used. FID reflects the similarity of image distributions in feature space, where

a lower FID indicates that the generated images are more similar to the real ones in terms

of visual structure and content.

Figure 6.2: Code to find FID

The function get inception features(images) (Fig. 6.3) takes a list or batch of images and

extracts high-level feature representations using a pretrained Inception v3 model. These

features are typically used for FID computation, which evaluates how similar two sets of

images are in terms of visual realism and structure.

Figure 6.3: Extracting inception features

Predicted and ground truth images were visualized side-by-side to qualitatively assess
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the output images and the model’s performance. (Fig. 6.4)

Figure 6.4: Code to visualize test set data

The evaluate function assesses the performance of a trained image preprocessing model

on a test dataset. It loads the test data using a DataLoader and processes each image one

by one without updating the model (using torch.no grad() to save memory and speed up

evaluation). For each input-target pair, it generates a predicted output, clamps it between 0

and 1, and calls the PSNR calculating function. It also stores the real (target) and generated

(output) images for further comparison. The FID calculating function is then called to find

the FID

Figure 6.5: Evaluation function
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6.2.3 Model Performance Results

The graph in Fig 6.6 illustrates the progression of PSNR and FID scores across di”erent

training epochs. Notably, the 75th epoch yields the best performance, achieving a PSNR of

15.33 dB and the lowest FID score of 518.

Figure 6.6: PSNR and FID values over di”erent training epochs

The loss graph (Fig 6.7) shows the progression of training and validation losses over the

75 epochs.
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Figure 6.7: Model loss graph

6.3 User-Centric Evaluation

To assess how well our approach met the needs of archaeology specialists and bridge the

research gap, we conducted a user evaluation with 9 domain experts. We met with each

expert in person to walk them through the complete proposed approach, ensuring they clearly

understood the context and goals of the study. After taking the consent to participate in

the evaluation, they were asked to complete a Google Form with 25 questions covering four

complementary sections as participant demographics, an image-comparison, a Likert-scale

questionnaire, and open-ended qualitative feedback. By measuring across these data sources,

we obtained both objective measures of image quality and insights into expert preferences

and suggestions for further improvements.

6.3.1 Participant Demographics

We engaged nine domain experts in archaeology and epigraphy via the Department of

Archaeology, Sri Lanka and the University of Colombo Faculty of Arts (Department of

Sinhala). Each participant provided their full name, institutional a!liation, and professional

designation.

We then asked about their years of experience in the archaeology/ epigraphy field, yielding

the following distribution: ( Fig. 6.8)

• 1–3 years: 1 participant

• 4–7 years: 1 participant
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• 10 years: 7 participants

Figure 6.8: Experience in archaeology/epigraphy domain

To assess the familiarity with estampage techniques, we inquired about both physical

and digital experience (Fig. 6.9). The responses were:

• No prior estampage experience: 1 participant (11.1%)

• Physical only: 2 participant (22.2%)

• Both physical and digital: 6 participants (66.7%)

Figure 6.9: Experience in working with estampages
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6.3.2 Image-Comparison Task (Quasi-Quantitative)

In the Image-Comparison section, there are 7 sets of images to compare, where each expert

was shown two unlabeled images of a traditional physical estampage photograph and the

corresponding digital estampage output from our approach, and asked to indicate which

version appeared clearer and more suitable for reading and interpreting the inscription.

Figure 6.10: Comparison between physical estampages and digital estampages

Following is the labeled set of images with their corresponding numbers of responses for

being clearer and suitable for reading.

Option 1 Option 2 Total votes %Digital %Traditional
Jethawanaramaya Digital (9) Traditional (0) 9 100% 0%
Ruwanwelisaya Traditional (9) Digital (0) 9 0% 100%
Nissankamalla Traditional (4) Digital (5) 9 55.5% 44.5%
Siporuwatugama Traditional (0) Digital (9) 9 100% 0%
Mayilagastohta Digital (4) Traditional (5) 9 44.5% 55.5%
Colombo museum Digital (1) Traditional (8) 9 11.1% 88.9%
King Kassapa IV Digital (9) Traditional (0) 9 100% 0%
Total 63 58.73% 41.26%

Table 6.1: Voting Results for Di”erent Sites

Table 6.1 shows the individual votes for the digital and traditional estampage readability.

Some experts preferred digital estampages completely over traditional (Jethawanaramaya

and King Kassapa IV and Siporuwatugama), while some preferred images of traditional

estampages completely over digital (Ruwanwelisaya). Most of the comparisons had diverse

selections for both digital and traditional estampages. Overall, the digital estampage
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acceptance rate stands at 58.73%, whereas the traditional estampages are accepted at

41.26%.

6.3.3 Semi-Quantitative Likert-Scale Analysis

To evaluate the e”ectiveness (accuracy, time e!ciency and practicality) of the proposed

digital estampage system utilizing multispectral imaging and image processing, feedback

was collected from respondents across multiple criteria.

Participants were asked to evaluate the clarity and expressiveness of physical features

such as letters and symbols in the digital estampage outputs generated by the proposed

multispectral imaging system. Subsequently, they rated the usefulness of these digital

estampages for epigraphic analysis. The questionnaire also gathered responses regarding

the likelihood of recommending the method to peers. Following this, participants assessed

the ease of integrating the method into existing workflows. To determine time e!ciency,

users compared the proposed approach to traditional methods. Additionally, they evaluated

the system’s ability to minimize errors typically associated with manual interventions in

traditional estampage processes. Finally, participants provided an overall rating of the

multispectral system as a tool for creating digital estampages.

Each question was rated on a Likert scale from 1 to 5, where 5 indicates the most favorable

response. This analysis provides a semi-quantitative understanding of expert perceptions,

enabling a balanced assessment of both the technical and practical value of the proposed

approach.

The number of responses for the ratings of each question is given in Table 6.2.

Table 6.3 shows the significance of all the criteria assessed in the Likert scale section.

6.3.4 Qualitative Thematic Analysis of Open-Ended Feedback

Our thematic analysis of expert feedback revealed several key themes such as enhanced

readability, complementarity between digital and physical estampages, e!ciency gains,

contextual appropriateness, trust and data-management concerns, and technical/ operational

advice.

Participants’ verbal comments were recorded in real time (with their consent) during the

Google Form session, and written responses were exported for analysis.

Positive Feedback

Participants frequently noted that increased contrast in processed images sharpened letter

forms, confirming that multispectral enhancement supports clearer reading in the field. One

participant stated, “When the background in the digital estampage is darker, the inscription

characters stand out and are much easier to read with the naked eye.”

A participant remarked, “In most cases, the digital estampages provided more legible

text than the traditional physical estampages.” indicating the perception that our digital

pipeline yields higher-quality results across di”erent inscription types.
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1 2 3 4 5
Level of clarity
(1 - very poor, 5 - Excellent)

- - 6 3 -

Expression of features
(letters/ symbols)
(1 - very poor, 5 - Excellent)

- - 4 5 -

Usefulness
(1 - Not useful, 5 - Completely)

- - 1 5 3

Trust
(1 - Not at all, 5 - Completely)

- - 4 5 -

Ease of integration
(1 - Very di!cult, 5 - Very easy)

- - 1 5 3

Level of training & tech support to adopt
(1 - None, 5 - Extensive training needed)

- 5 4 2 -

Time e!ciency compared to the traditional approach
(1 - Much slower, 5 - Much faster)

- - 1 - 7

Level of capacity to minimize errors
(1 - Minimal, 5 - Very high)

- 1 2 4 1

Overall, as a tool
(1 - Poor, 5 - Excellent)

- - 2 5 2

Recommend to peers
(1 - Definitely no, 5 - Definitely yes)

- - 1 2 6

Table 6.2: Number of responses for each rating

Statements such as “I would definitely recommend this tool to colleagues if it becomes

widely available” and “We can get a good use of this tool if integrated” reflect participants’

confidence in adopting the method.

A participant noted, “We can get a great deal of use out of this tool if it is integrated into

our workflow.” This indicates the potential for the pipeline to be incorporated into existing

procedures.

Neutral Observations

One participant stated, “For some inscriptions, the digital approach works best; for others,

the physical estampage still delivers clearer detail.” This highlights that material condition

and surface geometry influence method e”ectiveness.

Participants acknowledged that while digital methods improve overall readability, some

characters remain unclear. A participant commented, “In certain digital images, some

characters remain blurry, while other letters are perfectly crisp.”

A participant mentioned, “Most of us have only ever tried digital estampage once, on

the Dimbulagala inscription.” This reflects the novelty of the technique of creating digital

estampages of stone inscriptions in Sri Lanka.

“Currently, we sometimes photograph a physical estampage and then tweak lighting

and sharpness in Photoshop to read faint letters.” This indicates that experts are already

experimenting with digital tools.
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Criterion Mean score t-statistic p-value Significance
Clarity 3.33 2.00 0.081 Not significant
Features 3.56 3.16 0.013 Significant
Usefulness 4.22 5.50 0.0006 Highly significant
Trust 3.56 3.16 0.013 Significant
Integration 4.22 5.50 0.0006 Highly significant
Training support 2.73 -1.15 0.138 Not significant
Time e!ciency 4.67 7.07 0.0001 Highly significant
Minimize errors 3.63 1.93 0.095 Not significant
Overall tool 4.00 4.24 0.0028 Significant
Recommend 4.56 6.42 0.0002 Highly significant

Table 6.3: Significance of each criterion.

Negative Feedback and Concerns

A participant expressed, “Although the tool is promising, I worry about the long-term

reliability of digital storage for these archival images.” This concern emphasizes the need for

robust data preservation strategies.

Participants stressed the importance of user-friendly documentation. One noted, “We

will need clear, non-technical documentation explaining how the model works before field

archaeologists can trust it.”

A participant also commented, “Capturing multispectral images at di”erent times of day

and multiple angles could become tedious during a short field campaign.” This highlights

practical challenges in field conditions.

Suggestions for Enhancement

Suggestions such as “Let’s record digital estampages alongside physical estampages during a

field visit, then compare them systematically later.”, “We should consider camera rotation,

lighting angles, and timing to ensure the clearer captures are taken of the stone inscriptions.”,

“No formal training should be needed. If it’s just a matter of snapping a photo and uploading,

anyone can use it.” were stated by the expert pool while they were evaluating the proposed

digital estampage creation pipeline.
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Chapter 7

Discussion

This chapter presents a comprehensive discussion of the research findings derived from the

study on creating digital estampages of Sri Lankan stone inscriptions using multispectral

imaging. It explores the feasibility and e”ectiveness of the proposed methodology, o”ering

detailed insights into its strengths and practical implications. Furthermore, the chapter

critically reflects on the evaluation outcomes and highlights the limitations encountered

during the study. These discussions lay the groundwork for the subsequent chapter, which

will address potential directions for future research.

7.1 Research Findings

Our quantitative image-comparison user evaluation demonstrated a statistically significant

preference for digital estampages over traditional estampages (58.7 % vs. 41.3 %, z =

1.39, p < 0.10), confirming that multispectral imaging combined with our image-processing

pipeline improves inscription legibility. (Table 6.1)

The image-processing model achieved its highest visual fidelity at epoch 75 (PSNR =

15.33 dB, FID = 518) and showed stable loss convergence, indicating both e”ective learning

and strong generalization to unseen data. (Fig. 6.6)

Experts rated the pipeline highly for usefulness, time e!ciency, and ease of workflow

integration (all p < 0.05), and expressed strong willingness to recommend it, demonstrating

that archaeologists can adopt the system with tangible accuracy and e!ciency gains. (Table

6.3)

Qualitative feedback revealed that, while digital estampages o”er clear advantages,

experts remain cautious about fully replacing physical estampages, viewing the two methods

as complementary, especially for deeply carved or well-preserved inscriptions

Visual comparisons (Fig 7.1) illustrate that the model is able to preserve inscription

structures and features (characters/ symbols) almost similarly to the ground truth image.

These results show the model’s potential for pre-processing stone inscription images.
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Figure 7.1: Visual output results of the model

These research findings imply that technically, the model is well-trained by epoch 75,

producing high-fidelity outputs while practically, experts value the digital estampages for

their clarity, e!ciency, and integration potential, yet still view them as complementary

rather than outright replacements for traditional methods.

7.2 Discussion

Referring to Fig. 6.6 the 75th epoch yields the best performance, achieving a PSNR of 15.33

dB and the lowest FID score of 518. It suggests that the model’s output at this stage

most closely resembles the ground truth in terms of visual quality (as indicated by the high

PSNR) and realism (as indicated by the low FID). The improvement trend in PSNR and the

significant drop in FID up to the 75th epoch highlight the e”ectiveness of continued training

in enhancing output quality, before marginal fluctuations appear at the 100th epoch.

Referring to Fig. 6.7 the training loss consistently decreased, indicating e”ective learning,

while the validation loss also decreased, showing that the model generalizes reasonably well

without overfitting.

RQ1: Does multispectral imaging, combined with a digital image-processing

pipeline, significantly enhance the readability of stone inscriptions compared to

traditional estampage methods?

Referring to Table 6.1 with 63 total votes across 7 inscriptions, in assessing whether the

digital estampage readability is statistically significantly greater than 50%, we conducted a

Z-test.

Null hypothesis (H0) - There is no improvement in readability in the digital estampages

compared to traditional estampages (p = 0.5)

Alternative hypothesis (H1) - Digital estampages are more readable compared to

traditional estampages (p > 0.5)
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The total number of samples is 63, and 37 participants expressed the preference for

digital estampages as readable, with a standard error of approximately 1.39. Using a 90%

confidence level (ω = 0.10), the critical z-value for a one-tailed test is 1.28. Since the

calculated z-score of 1.39 > 1.28, the null hypothesis is rejected. This provides statistically

significant evidence that, at the 90% confidence level, the digital estampages produced using

multispectral imaging and the proposed image-processing pipeline are more readable than

traditional estampages, supporting to meet the research question 1.

The results from the image comparison evaluation (Section 5.3.2) indicate that

the proposed digital estampage method was preferred in 58.73% of cases across seven

di”erent inscription sites, with traditional estampages preferred in 41.26% of responses.

While preferences varied across inscription types and image pairs, inscriptions like

Jethawanaramaya, King Kassapa IV, and Siporuwatugama showed a unanimous preference

for the digital estampage.

Notably, however, a few inscriptions (Ruwanwelisaya and Colombo Museum) still

favored traditional estampages, highlighting that the e”ectiveness of the digital method

may vary depending on stone surface characteristics, lighting, or artifact erosion levels.

These observations suggest that while the digital approach holds promise, it may be best

viewed as a complementary method rather than a universal replacement at this stage.

Next an analysis on the results according to the hypothesis of RQ2 was conducted.

RQ2: How can archaeologists practically incorporate a

multispectral-imaging-based digital estampage pipeline into their current

inscription-documentation workflow, and what are the resulting impacts on

accuracy and time e!ciency?

Null Hypothesis (H0): The multispectral-imaging-based digital estampage pipeline does

not significantly improve accuracy, reduce documentation time, or isn’t practically applicable

compared to traditional methods.

Alternative Hypothesis (H1): The pipeline does significantly improve accuracy, reduce

documentation time, and is practically applicable.

To statistically prove the hypothesis, first, we tabulated the 10 evaluation criteria (6.2)

and the average score was computed for each question. A t-test was used to check whether

the mean score for each criterion is significantly di”erent from “3”, which is considered

the neutral baseline in a 5-point Likert scale. The sample size was used as 9 (responses

per criterion). The mean and the standard deviation were used to compute the t-statistic,

measuring how far the mean is from 3 in units of standard error. For each t-statistic, a

p-value was derived using the t-distribution. This p-value indicates the probability that the

observed mean could have occurred by random chance if the true mean were actually 3. The

approach has a significance level of 0.05. If the p-value< 0.05, the null hypothesis (that the

score is not better than neutral) is rejected.

There was an exception for the training support criterion as we have to perform the t-test
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in the lower direction because the lower the score it is the positive the outcome.

In elaborating 6.2, rates for clarity of the digital estampages received mostly moderate

ratings. Six respondents rated it as 3 (moderate), and three rated it as 4 (above moderate),

indicating that while digital estampages are clear but there is still room for improvement

in visual quality. Similarly, for the representation of physical features such as letters and

symbols, responses were more positive, where three gave it a rating of 3 (moderate), while

six respondents rated it as 4 (more than moderate). These results suggest that the system

does enhance the readability and physical accuracy of inscriptions.

Consindering the rates for the usefulness of the digital estampages for epigraphic analysis,

respondents reviewed higher ratings, with a trend toward 4 and 5 (high usefulness),

suggesting strong support for its practical application in research. This aligns well with

RQ2 indicating that digital estampages are practical and useful for epigraphic analysis.

When evaluating trust in the system for formal or scholarly use, most respondents gave

ratings of 3 or 4 (moderate and more than moderate), showing cautious optimism. This

mixed but generally favorable trust level suggests growing acceptance of the technique,

indirectly supporting RQ2 on accuracy and practicality.

Furthermore, responses on recommendation to peers skewed strongly positive, with

ratings of 4 and 5 (more than moderate and a strong yes) dominating. This suggests that

users see value in the approach and are willing to advocate its use, indirectly addressing RQ2

on the perspectives of the domain specialists on the e”ectiveness of the digital estampages.

Most of the respondents rated the ease of integrating the method into existing workflows

as 4 and 5, indicating that users find it practical and easy to implement, providing strong

evidence for the practicality aspect of RQ2. However, when asked about training and support

requirements, five respondents rated it as 2 (low training needed), while the rest rated it

4 or 5 (high support needed). This bimodal result suggests that the ease of use may vary

depending on the user’s familiarity with digital tools, and further training resources may be

beneficial for wider adoption.

Time e!ciency compared to traditional methods was rated quite positively, with the

majority assigning a score of 5. This suggests that the digital method significantly reduces

the time taken compared to traditional estampage techniques, directly addressing RQ2.

User rates on the capacity of the tool to minimize errors occurred by the manual

interventions of traditional estampages, received improving scores from 2 up to 5, showing

that while not perfect, the system is perceived to be increasingly e”ective in reducing

interpretive inaccuracies caused by unclear inscriptions further supporting RQ2.

The system’s overall rating as a tool for preservation and study was distributed between

3 and 5, with a strong leaning toward positive scores. This reflects general satisfaction with

the system and its contributions to the field.

We can reject the null hypothesis driving support to RQ2, because multiple key criteria

(usefulness, time e!ciency, integration, trust, recommend, etc) are significantly lower than

0.05. (Table 6.3)
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7.3 Limitations

Since the research study involved collaboration with an external party (Department of

Archaeology), communication constraints occasionally impacted the coordination and timely

acquisition of feedback.

The expert pool for the evaluation was relatively small (n = 9 per comparison). While this

group provided valuable insights for an initial assessment, the findings may not generalize

to broader archaeological or epigraphical communities.

Although the evaluation involved image preference tests by experienced experts, there

remains an inherent degree of subjectivity. Results may vary depending on the users’

demographics, familiarity with digital methods, or levels of epigraphical expertise.

The majority of the inscriptions analyzed were sourced from the Colombo National

Museum, where inscriptions are well-preserved and relatively free from moss, dirt, or other

environmental damage. As a result, the system’s performance on severely weathered or

outdoor inscriptions remains uncertain.

Additionally, the processing pipeline was primarily tested on image sets captured under

specific camera settings and spectral bands (limited to five bands). Variations in imaging

equipment, spectral range, or lighting setups may a”ect the system’s output quality and

consistency.

Finally, not all inscription types benefited equally from the digital enhancement. Factors

such as environmental conditions, carving depth, and stone surface texture influenced the

e”ectiveness of the enhancement techniques.
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Chapter 8

Conclusion

8.1 Conclusion

The aim of this study was to explore the possible advantages of using a multispectral imaging

and a pre-processing pipeline compared to traditional physical methods for creating and

recording ancient inscriptions in Sri Lanka. Through the use of an experimental setup and

expert evaluations, the research questions were clearly tested, providing strong evidence

that supports the put forward hypothesis. The findings indicated that the specialists liked

the digital estampages generated by the pipeline most of the time. The finding proved

that multispectral imaging and processing have the potential to enhance the legibility of

inscriptions much more than conventional procedures. Besides, the study not only answered

the issues posed but also fulfilled the objectives and purposes established from the start.

The pipeline was constructed, assessed, and validated in the field, establishing its viability

as an adjunct tool to physical estampages.

The findings also revealed that while the digital estampage creation method enhanced

clarity and convenience, traditional physical estampages still had unique advantages,

particularly in the examination of surface textures that require manual inspection.

Researchers acknowledged the e!ciency and transparency of the digital outputs, but they

insisted that both physical and digital approaches possess particular strengths in relation to

the specific context. This is to say that, instead of substituting physical approaches, digital

approaches can complement them, thereby enhancing the documentation and interpretation

of inscriptions. The study was able to response to the fact that multispectral imaging and

digital processing provide a significant and practical improvement over conventional methods

employed in the analysis of stone inscriptions in Sri Lanka.

8.2 Recommendations

Based on both the quantitative preferences and qualitative feedback from domain experts

(Chapter 5), several recommendations can be made to guide and improve the development

and deployment of the proposed digital estampages creation.

Incorporating manual review and annotation tools is recommended because it allow
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experts to annotate, mark-up, and provide commentaries on improved images directly,

thereby enabling collaborative analysis with ease.

A hybrid workflow is recommended at the beginning as it was mentioned by most of the

experts at the qualitative evaluation. It promote a two-pronged approach utilizing digital

estampages for preliminary research and recording, but maintaining traditional methods for

final analysis in specific situations, especially in cases where the digital method does not

exceed traditional means. Gradually, the creation of traditional estampages can be replaced

with the digital estampage creation with more advancements.

User Training and Documentation is recommended when moving forward with the

proposed approach which will o”er user guides or training modules for inexperienced

digital imaging users, specifically in handling multi-spectral data and interpreting combined

outputs.

It is recommended to highlight uncertainty in results when needed to notify users

when the enhancement algorithm is uncertain, particularly across regions characterized by

ambiguity or noise.

Flexible enhancement options is recommended to create easy-to-use interfaces that enable

professionals to choose image processing parameters based on the type of inscription or

particular site characteristics, perhaps with pre-programmed modes such as ”faint carving”

or ”uneven background.”

Finally addressing a limitation mentioned in Section 6.3, it is recommended to

promote institutional cooperation collaborating with museums, universities, and archaeology

departments to pilot and jointly develop the system in actual projects, making it practically

relevant and iteratively refined.

8.3 Future Work

Building on the foundation laid by this research and its findings, several promising directions

have opened up for future exploration and system development.

Currently, the proposed pipeline follows a fixed method for enhancing estampages. As

noted in Section 5.3.4, one natural extension would be to develop adaptive enhancement

algorithms that can automatically adjust based on the characteristics of the stone surface

such as weathering, brightness, or the depth of carved characters.

Another important area for future development is the integration of deep learning

techniques. By training models to segment letters or even assist in the automatic

transcription of inscriptions, it would be possible to significantly reduce the manual e”ort

required during post-processing.

Expanding the dataset to include a broader range of inscriptions from di”erent

geographical locations and varying levels of preservation was highlighted by experts during

the evaluation phase (Section 5.3.4). In addition, gathering feedback from a larger and more

diverse group of users, including epigraphers, archaeologists, and digital humanities scholars,

would help produce results that are more widely generalizable.
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Future versions of the system could explore mobile application integrations, enabling

on-site preliminary processing and making the technology more accessible for field

archaeologists and researchers.

Several experts also expressed interest in having more interactive viewing tools, where

users could tweak enhancement parameters in real-time such as selecting di”erent spectral

bands, applying custom filters, or zooming into blended images to analyze finer details.

Future evaluations could also further explore in-field interpretations, where both physical

and digital estampages are captured at the same location and on the same day. This

would allow for assessing not just visual clarity, but also the epigraphical accuracy of the

enhancements.
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Appendix A – Expert Evaluation Questionnaire

This appendix presents the full questionnaire administered via Google Forms to domain

experts. It includes all sections including demographic information, paired-image clarity

comparison, semi-quantitative evaluation scales, and an open-ended comments field—used

to gather data.

Below landing page is used to give the users an idea on what the form is about, and to

get consent on collecting data.

Figure 1: Landing page of the form
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Section 1 – Participant Information Collects basic demographics and professional

background (institution, role, years of experience, prior estampage use) to contextualize

expert feedback.

Figure 2: Section 1 – Participant Information
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Figure 3: Section 1 – Participant Information (cont.)
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Section 2 – Image Comparison Task Displays two estampage images (one traditional

physical, one digital) and asks experts to select the version they find clearest for epigraphic

reading.

Figure 4: Section 2 – Image Comparison Task
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Figure 5: Section 2 – Image Comparison Task(cont.)
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Figure 6: Section 2 – Image Comparison Task(cont.)
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Figure 7: Section 2 – Image Comparison Task(cont.)
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Section 3 – Semi-Quantitative Expert Feedback Presents Likert-scale questions

(1–5) on clarity, feature fidelity, research usefulness, trustworthiness, workflow integration,

time e!ciency, and overall evaluation of the digital estampage method.

Figure 8: Section 3 – Semi-Quantitative Expert Feedback
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Figure 9: Section 3 – Semi-Quantitative Expert Feedback(cont.)
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Figure 10: Section 3 – Semi-Quantitative Expert Feedback(cont.)
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Figure 11: Section 3 – Semi-Quantitative Expert Feedback(cont.)
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