
Privacy-Preserved Meeting
Organization

M.M.A.S.T. Akmeemana
A.I. Vidanage

K.P.G.K. Jayathilake

2025

Privacy-Preserved Meeting
Organization

M.M.A.S.T. Akmeemana
Index No: 20020015

A.I. Vidanage
Index No: 20021089
K.P.G.K. Jayathilake
Index No: 20020521

Supervisor : Dr. C.I. Keppitiyagama
Co-supervisor : Mr. Tharindu Wijethilake

May 2025
Submitted in partial fulfillment of the requirements

of the
B.Sc. (Honours) Bachelor of Science in Information

Systems Final Year Project

Declaration

We, M.M.A.S.T. Akmeemana (2020/IS/001), A.I. Vidanage (2020/IS/108), K.P.G.K.
Jayathilake (2020/IS/052) certify that this dissertation does not incorporate, without
acknowledgement, any material previously submitted for a degree or diploma in any
university and to the best of our knowledge and belief, it does not contain any material
previously published or written by another person or ourselves except where due reference
is made in the text. We also hereby give consent for our dissertation, if accepted, be made
available for photocopying and for interlibrary loans, and for the title and abstract to be
made available to outside organizations.

. .
Signature of Candidate Date : 20/06/2025

. .
Signature of Candidate Date : 20/06/2025

. .
Signature of Candidate Date : 20/06/2025

i

I, Dr. C.I.Keppitiyagama, certify that I supervised this dissertation entitled
Privacy-Preserved Meeting Organization conducted by M.M.A.S.T. Akmeemana, A.I.
Vidanage, K.P.G.K. Jayathilake in partial fulfillment of the requirements for the degree of
Bachelor of Science Honours in Information Systems.

. .
Signature of Supervisor Date : 20/06/2025

I, Mr. Tharindu Wijethilaka, certify that I supervised this dissertation entitled
Privacy-Preserved Meeting Organization conducted by M.M.A.S.T. Akmeemana, A.I.
Vidanage, K.P.G.K. Jayathilake in partial fulfillment of the requirements for the degree of
Bachelor of Science Honours in Information Systems.

. .
Signature of Co-Supervisor Date : 20/06/2025

ii

Abstract

The modern organizations increasingly depend on virtual and hybrid meetings to
coordinate remote and distributed teams. While these meeting formats offer flexibility
and accessibility, they also introduce significant meeting privacy challenges specially when
sensitive documents and diverse participant roles are involved. Ad-hoc scheduling practices
often result in unauthorized access to confidential content and the selection of inappropriate
meeting modes, thereby compromising meeting privacy. This study investigates whether
enforcing document-based access control policies (Access Control Lists or ACLs) and
considering participant locations can lead to a more privacy-preserving meeting scheduling
process. The core hypothesis assumes that meeting participant selection should be governed
by the ACLs of documents to be discussed, and that the meeting mode—onsite, online,
or hybrid—should be determined based on participants’ joining locations to mitigate
privacy risks. To address this, we formulate a scheduling problem that integrates these
constraints and analyze its computational complexity. A prototype system was developed
using widely adopted tools like Google Calendar and Google Drive to demonstrate the
feasibility of the proposed approach. Experimental analysis confirms that the problem can be
solved in polynomial time using constraint-checking and filtering algorithms, validating the
practicality of the hypothesis. The study offers both theoretical and practical contributions:
a novel, privacy-aware scheduling framework and an efficient algorithmic approach to enforce
access-based participant selection and context-aware meeting modes.

iii

Acknowledgement

First and foremost, we would like to express our deepest gratitude to our supervisors, Dr.
Chamath Keeppetiyagama and Mr. Tharindu Wijethilake. Despite their busy schedules,
they generously dedicated time to discuss ideas and provide insightful feedback that kept
us aligned with our research objectives. Their expert guidance, constructive critiques, and
tremendous support were instrumental in shaping this work.

Our thanks extend to the faculty and staff of the University of Colombo School of
Computing, whose encouragement made our research possible. We also appreciate the
discussions shared with our colleagues and peers which greatly enriched our understanding
of the research.

Finally, our deepest appreciation goes to our parents, siblings, and close friends, for
their encouragement, patience, and moral support throughout this journey. Their faith in
our abilities and constant motivation sustained us through the challenges of research and
writing. Our heartfelt thanks go to all who have contributed in ways both large and small
to the successful completion of this research.

iv

Table of Contents

Declaration i

Abstract iii

Acknowledgement iv

List of Figures ix

List of Tables x

List of Acronyms xi

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Goals and Objectives . 3

1.4.1 Goals . 3
1.4.2 Objectives . 4

1.5 Research Approach . 4
1.6 Scope and Assumptions . 4

1.6.1 Scope . 4
1.6.2 Assumptions . 5
1.6.3 Hypothesis . 5

1.7 Contribution . 5

2 Literature Review 7
2.1 Introduction . 7
2.2 Background of literature survey . 9
2.3 Literature survey and identified research gap 10

2.3.1 Introduction to literature survey . 10
2.3.2 Research Gap . 15

2.4 Key Findings . 16
2.5 Limitations, and Conflicts . 17
2.6 How the Literature Review impacts our research 17

v

3 Methodology 18
3.1 Overview on methodology . 18
3.2 Formal definition of entities . 19

3.2.1 Basic definitions . 19
3.2.2 Access Control List . 19
3.2.3 Meeting agenda . 20
3.2.4 Definition of a meeting . 22
3.2.5 Transformation of individual into role 23
3.2.6 Difference between public and private roles 23
3.2.7 Roles in meeting agenda . 24
3.2.8 Variation of role . 25
3.2.9 Participants in access control lists of non-agenda documents 25
3.2.10 Meeting participant validation . 26
3.2.11 Privacy-preserved meeting . 27
3.2.12 Meeting quorum . 27

3.3 Problem mapping and analysis . 28
3.3.1 Participant validation based on documents 28
3.3.2 Eligibility of each individual, in each time slot, for meeting 30
3.3.3 Meeting quorum satisfiability . 33
3.3.4 Selection of earliest, meeting quorum satisfying time slot 36
3.3.5 Meeting mode selection . 39
3.3.6 Simplified version of algorithm on meeting quorum satisfiability (figure

3.7) . 44
3.4 Analysis on complexity of the problem . 45

3.4.1 Analysis based on time complexity 45
3.4.2 Analysis on NP-completeness of problem 46

4 Implementation 48
4.1 Implementation of boolean circuit . 48

4.1.1 Choice of technology . 48
4.1.2 Details on technology used for circuit implementation 49
4.1.3 Overview of the Python programs . 49
4.1.4 Application of the Python program 53
4.1.5 Extension of the Python program . 53

4.2 System Design . 54
4.2.1 Computational Complexity and Scope of Implementation 54
4.2.2 Technology Selection and Integration Feasibility Study 55

4.3 System Implementation . 56
4.3.1 Scheduling Workflow . 57
4.3.2 Participant Determination Logic . 58
4.3.3 Quorum Identification . 58

vi

4.3.4 Time Slot Identification . 59
4.3.5 Privacy-Preserving Slot Selection via Average Security Score 60

5 Results of Execution 62
5.1 Results of execution of Python programs . 62
5.2 Results of execution of public platform based implementation 64

5.2.1 Execution Flow Overview . 65
5.2.2 Outcome and Usability . 66

6 Evaluation 67
6.1 Foundation of evaluation . 67
6.2 Analytical investigation on the results of algorithm 69
6.3 Relationship between input and the result 72

7 Conclusion 74

8 Limitations and Future Work 77

References 84

Appendices 85
A Maximum value of nCr . 86
B Time complexity of

(
n
n
2

)
for large n values 89

C Time complexity of
(

n
n−1

2

)
for large n values 90

vii

List of Figures

2.1 Change in meeting landscape with quarantine restrictions, [1] 7
2.2 NP-complete problem domain, with other related problem domains 13

3.1 Process to identify whether a document is private or public 21
3.2 Intersection of access control lists of 2 private documents 26
3.3 Participant validation based on documents 29
3.4 Participant validation based on access(d) of documents 30
3.5 Deciding eligibility of each individual for meeting, in each time slot 32
3.6 Eligibility of each individual for meeting, in each time slot 33
3.7 Identifying meeting quorum satisfiability of time slots 34
3.8 Meeting quorum satisfiability of time slots 36
3.9 Selection of earliest, meeting quorum satisfying time slot 37
3.10 Selection of earliest, meeting quorum satisfying time slot 39
3.11 Logic for selecting the meeting mode . 40
3.12 Meeting mode selection . 41
3.13 Circuit diagram for selecting the meeting mode 43
3.14 Identifying meeting quorum satisfiability of time slots (Simplified version of

algorithm 3 depicted by figure 3.7) . 44

4.1 Sample code snippet for defining access control lists of documents 49
4.2 Sample code snippet for availability dictionary 50
4.3 Sample code snippet for defining meeting quorum 50
4.4 Output depicting participants validated by document analysis 51
4.5 Output depicting eligibility of each participant in a time slot, based on analysis

of location with required level of privacy for documents 52
4.6 Output depicting meeting quorum satisfiability of each time slot 52
4.7 Output depicting earliest privacy preserving time slot for the meeting 52
4.8 Output depicting meeting mode for each privacy preserving time slot identified 53
4.9 Definition of aggregate participant groups 54
4.10 Definition of access(agenda) . 54
4.11 Format of access(agenda), after resolving aggregate participant groups . . . 54

5.1 Possible results of program execution . 63
5.2 System Architecture Overview . 65

viii

6.1 Flow of logically related steps in our contribution of research 69
6.2 Participant validation by document analysis in algorithm 1 70
6.3 Deciding eligibility of each individual in algorithm 2 71

1 Variation of nCr for different r values, when n is an odd integer 87
2 Variation of nCr for different r values, when n is an even integer 89

ix

List of Tables

2.1 Results of MaxSAT, CP and MIP approaches in aspect of time spent in
seconds [2] . 12

3.1 Possibilities in variation of transform(i, l, t) for individual i 25
3.2 Available time slots and locations of individuals, in union of individuals . . . 31
3.3 Maximum time complexities of algorithm segments in boolean circuit mapping 45

4.1 Technologies used to implement the proofs of concept for algorithms 49
4.2 Algorithm segments used for two versions of proofs of concept 50
4.3 Python functions corresponding to algorithm segments present in proofs

of concept (# column represents the figure number of algorithm segment,
while algorithm segment ‘6’ (figure 3.14) represents the simplified version of
algorithm segment ‘3’ (figure 3.7)) . 51

x

List of Acronyms

ACL Access Control List

API Application Programming Interface

CP Constraint Programming

DCOP Distributed Constraint Optimization Problem

DVCSP Distributed Valued Constraint Satisfaction Problem

GA Genetic algorithms

LP Lenear Programming

MaxSAT Maximum Satisfiability

MIP Mixed Integer Programming

ML Machine Learning

MULBS MUltiple Local Bounded Search

NP Non-deterministic Polynomial

SPB Soft Conflict Pseudo Boolean

TOC Theory of Constraints

xi

Chapter 1

Introduction

1.1 Background

When meetings are organized, it must be well planned ahead of what is being discussed
and what needs to be achieved at the end of the meetings. If the right participants are
not included or if inappropriate participants are included in the meeting, that can lead to
privacy concerns and even to potential breaches of confidential information.

Before the COVID-19 pandemic, meeting security and privacy concerns were relatively
minimal, as most discussions took place in controlled, onsite environments. But the
pandemic reshaped how organizations conduct meetings increasing the reliance on online
and hybrid formats. Since 2020, the adoption of virtual meeting platforms has raised to
accommodate remote work and collaboration [1]. While this shift has improved accessibility
and flexibility, it has also introduced significant privacy challenges.

One of the major problems is in allowing only authorized participants to attend the
meeting. Human cognitive biases and organizational pressures can lead to oversights in
meeting privacy, which can result in financial losses, reputational damage, and unauthorized
disclosure of sensitive information. Selecting the right participants and ensuring that
meeting-related documents remain accessible only to authorized individuals are critical
aspects of maintaining privacy and security. Existing tools lack the ability to cross-validate
document permissions with participant roles and their joining locations. This leads to
potential meeting privacy breaches. For instance, if participants are joining from insecure
public locations, sensitive discussions may unintentionally become exposed. The inability to
determine whether a meeting should be onsite, online, or hybrid based on such parameters
increase organizational inefficiencies and privacy risks.

Research on meeting scheduling and efficiency has been conducted from a long time but
no attention has been given to privacy-preserving meeting organization. Existing scheduling
tools focus on preventing participant overlap or optimizing time slots but fail to consider
how document permissions and participant roles influence meeting security.

1

Our research aims to explore the relationship between meeting privacy factors such as
document access, participant roles, and meeting mode and develop a structured framework
to ensure meeting privacy. The significance of this research is in its dual contribution. At
first, the theoretical understanding of meeting scheduling complexity is studied in-depth,
and next, a practical implementation using widely adopted tools is demonstrated. By
combining algorithmic analysis with a working prototype, this study provides insights into
the computational nature of meeting organization and offers a scalable, privacy-preserving
approach to organize meetings efficiently. This thesis contributes to both academic and
practical understanding of organizing privacy-preserved meeting organization.

1.2 Problem Statement

Effective and privacy-preserved communication has received a significant concern in the
world. As remote work, hybrid teams, and global collaboration have risen, meetings are
playing an important role in organizations. The shift to virtual and hybrid environments
has created new and unique challenges when ensuring that meetings are privacy-preserved
and inclusive. Meeting organizers face difficulties in allowing accessibility to participants
while maintaining privacy of the meeting especially when sensitive meetings take place with
sensitive documents and diverse participant roles. This brings our attention to the need for
a better framework that can enhance the meeting scheduling process without compromising
meeting privacy and efficiency.

When multiple topics are to be discussed in a meeting, it is challenging to determine
the right participants for the meeting, and meeting organizers can include the wrong
participants in the meeting. This can lead to two primary meeting privacy risks which we
will be addressing when developing our framework:

Unauthorized Access to Confidential Information: When the meeting organizer
has invited unauthorized participants to the meeting, they may gain access to restricted
documents and be exposed to sensitive discussions that they are not authorized to view or
hear. Here we can see the need for a systematic approach to invite eligible participants or
participants with access rights to the meeting.

Privacy-Violating Meeting Modes: We often see how meetings are organized by
meeting organizers based on their convenience or on the convenience of people in the upper
hierarchy. This can lead sensitive discussions to be exposed to unauthorized individuals.
The meeting mode decision-making process should be systematic based on the participants’
locations and the sensitivity of the meeting agenda.

Based on the above privacy concerns, a need for a more structured approach to meeting

2

organization can be identified as a crucial need.
In this research, we explore the privacy-preserved meeting scheduling problem by

formulating it around a central assumption: meeting participant selection must be governed
by the access control lists (ACLs) of the documents associated with the meeting agenda.
Once the agenda is created, it becomes essential to validate each proposed participant against
the role-based access permissions defined for those documents. Only individuals with the
appropriate access rights should be allowed to participate in the meeting.

In addition to verifying access eligibility, the physical or virtual location from which a
participant intends to join must also be evaluated. This ensures that the confidentiality
of the meeting is not compromised due to exposure in insecure environments, especially
when sensitive information is involved. For instance, a participant joining from a public or
shared location may not meet the privacy requirements, even if they hold the correct access
permissions.

If any participant fails to satisfy either the access control requirements or the contextual
privacy constraints related to their location, the meeting, in its originally proposed
configuration, cannot be scheduled. This framing acknowledges the multidimensional nature
of privacy in meetings and drives the need for a policy-aware scheduling mechanism that can
assess both access and other factors during scheduling.

The research problem is therefore to determine the algorithms that schedule meetings
while validating the participants and taking privacy-aware mode into consideration.

1.3 Research Questions

Reseach question: What is the algorithm to schedule the meeting under the hypothesis
”Meeting participant selection is primarily dominated by the access control lists of the
documents presented including meeting agenda, and the choice of meeting mode depends on
the participants’ locations.”?

1.4 Goals and Objectives

1.4.1 Goals

• Resolving constraints associated with privacy-preserved meeting scheduling.

• Deciding the possibility of a privacy-preserved meeting to ensure the privacy of meeting
content discussed, concerning the selected meeting participants.

• Selecting a privacy-preserving meeting mode, for conducting the particular meeting.

• Evaluating the solution in an acceptable, credible approach for ensuring its validity

3

1.4.2 Objectives

• Resolving constraints associated with privacy-preserved meeting organization.

• Deciding the possibility of a privacy-preserved meeting to ensure the privacy of meeting
content discussed, concerning the selected meeting participants.

• Selecting a privacy-preserved meeting mode, based on availability and locations of
selected meeting participants.

1.5 Research Approach

This research aims to investigate the type of the problem of this specific meeting
scheduling variant—the privacy-preserved meeting scheduling problem under constraints,
with the objective of determining its classification within the standard complexity
classes—specifically, whether it falls under NP-complete, NP-hard, or P. The study uses the
literature survey to initially begin the research and then move towards mapping the problem
against NP-complete problems like MaxSAT, Knapsack, Subset Sum, and Circuit-SAT. The
Boolean circuit approach helps to represent the logic involved in determining feasible meeting
configurations. The research reveals that the problem no longer retains NP-completeness
or NP-hardness, and can be classified under class P. The research is grounded in formal
problem analysis, algorithmic modeling, and computational complexity theory, with practical
verification through Python-based prototypes and real-world integration with Google APIs.

1.6 Scope and Assumptions

1.6.1 Scope

In scope

This research is focused on scheduling meetings under privacy preserved meeting settings.
The following are within the scope of this study:

• Complexity Analysis: Identifying whether the meeting scheduling problem falls under
known complexity classes such as NP-complete, NP-hard, or P, by comparing it with
well-established NP-complete problems.

• Problem Definition and Mapping: Formally defining the scheduling problem with
precise constraints such as participant availability, group dependencies, and quorum
requirements, and attempting to map it onto logical and mathematical constructs like
Boolean circuits.

• Boolean Circuit Modeling: Designing algorithms to model the scheduling problem as
a Boolean circuit, enabling the breakdown of the problem into verifiable sub-problems
for computational tractability.

4

• Algorithm Development: Constructing algorithms for both Boolean circuit generation
and a polynomial-time solvable version of the problem to explore alternatives to
exponential-time approaches.

• Prototype Implementation: Developing Python-based proofs of concept to demonstrate
both theoretical mappings and practical feasibility, including the handling of group
constraints and quorum conditions.

• Tool Integration: Extending the algorithmic solution into a usable tool by integrating
it with existing technologies, specifically Google APIs, to validate the real-world
applicability of the solution in organizational meeting setups.

1.6.2 Assumptions

The following assumptions are made in the context of this research:

• Availability data is known and static during scheduling: It is assumed that all
participant availability information is known at the time of scheduling and does not
change dynamically during the scheduling process.

• The locations of the participants are limited to only three known places—Remote
Public, Remote Private, and Onsite: The exact geographical location is not considered
when considering the location

• Pre-meeting requirement: We assume that documents containing the agenda, and
information to be discussed in the meeting will be created with different access control
levels.

1.6.3 Hypothesis

Meeting participant selection is primarily dominated by the access control lists of the
documents presented including meeting agenda, and the choice of meeting mode depends on
the participants’ locations.

1.7 Contribution

This research addresses a common and critical challenge in the field of information
systems: safe and effective meeting organization, especially when handling sensitive or
confidential information. By identifying the nature of the privacy-preserved meeting
scheduling problem, this study identifies efficient and secure methods for automating meeting
arrangements—an increasingly essential task in both virtual and hybrid work environments.
The research helps to reduce the cognitive load and manual work associated with scheduling,
offering a framework that aids organizers in selecting the most suitable meeting mode
based on the participants’ locations, access control level and the sensitivity of the shared
information. The outcomes contribute to society in several impactful ways:

5

• Enhanced Meeting Security: In a world of increasing data protection needs, the
privacy-preserving nature of this approach ensures that critical information is protected
during meetings and participation, strengthening trust in digital communication.

• Support for Remote and Hybrid Work: As remote work becomes a central feature of
modern professional life, this work provides a tool that enhances the efficiency and
safety of digital collaboration, supporting flexible work practices.

• Accessibility for Non-Experts: The approach is designed to assist individuals with
limited technical expertise by automating complex decisions related to participant
categorization and scheduling constraints.

• Efficiency and Productivity Gains: By classifying participants based on access levels
and information sensitivity, this solution ensures optimal use of time and resources,
minimizing unnecessary communication and maximizing focused collaboration. This
can lead to increased organizational productivity and job satisfaction.

• Feasibility in Real-World Settings: The integrated implementation using Google APIs
demonstrates the practicality of applying this approach within the existing tools and
technologies commonly used in workplaces today.

In essence, this research bridges a theoretical understanding of complexity with a practical
solution to an ever-present coordination problem. It enhances the field of information systems
by introducing a novel, privacy-aware approach to scheduling that aligns with both privacy
needs and usability needs—making it a valuable contribution to both academia and society
at large.

6

Chapter 2

Literature Review

2.1 Introduction

Meetings are vital for any organization as they enable collaboration, decision-making,
and the exchange of crucial information. However, to ensure their success, meetings must
be carefully planned and organized. This involves addressing key questions: Do we truly
need to hold a meeting? Who should be invited? And what is the best format for the
meeting — online, onsite, or hybrid ?

The Changing Landscape of Meetings: Before the COVID-19 pandemic, discussions
about meeting security and privacy were less prevalent, as most meetings were conducted
onsite with the physical presence of attendees. The pandemic has significantly altered this
landscape, expanding meeting modes to include online and hybrid formats, in addition to
traditional onsite meetings. Since 2020, the usage of online meeting platforms has surged
due to quarantine restrictions and the need for remote collaboration [1].

Figure 2.1: Change in meeting landscape with quarantine restrictions, [1]

Security and Privacy Concerns: The shift towards online and hybrid meetings has
brought security and privacy issues to the forefront. In the Information Technology sector,
many participants possess a sound understanding of information security [3]. However, even
knowledgeable individuals can make errors, especially as the complexity of the scenarios
increases [4]. Human decision-making is often influenced by emotions and biases, which can

7

lead to mistakes. This is equally applicable in the context of organizing meetings, where
improper use of online platforms can result in financial losses, reputational losses, and losses
of proprietary information, capital and corporate value.

Selecting the Right Participants: One of the most critical aspects of organizing a
meeting is inviting the right participants. Although this may seem straightforward, it is
often a rushed or overlooked step. The success and productivity of a meeting largely depend
on having the appropriate individuals present, whether in person or virtually. Selecting
the right attendees is crucial because their background and capabilities can influence the
meeting’s mode and effectiveness. Moreover, having the right participants is essential for
maintaining the confidentiality of the information shared during the meeting. When only the
necessary and relevant individuals are present, the risk of information leakage is minimized,
and sensitive discussions can be conducted securely. Cognitive and organizational bias
undermines good decision-making. To ensure a successful and secure meeting, consider the
following principles for selecting participants:

1. Need: Identify who is essential based on their relevance to the meeting’s topic
and their ability to contribute significantly to the discussions. These are the individuals
whose presence is crucial for the meeting’s success and whose involvement ensures that
confidentiality is preserved.

2. Want: Differentiate between those whose presence is desired but not critical. While
these individuals might add value, they are not essential unless they can provide meaningful
contributions to the meeting’s agenda and help to maintain the meeting’s confidentiality.

3. Value: Assess the potential value each attendee brings. The goal is to ensure
that all participants can contribute to achieving the desired outcomes, whether that involves
making decisions, offering insights, or advancing solutions. Their involvement should also
align with the need to safeguard the information discussed.

By carefully selecting participants based on need, want, and value, you align the attendees
with the meeting’s goals, ensuring that each meeting is productive and purposeful. Clear
objectives will guide you in choosing the right people, leading to more effective and efficient
meetings. Moreover, this thoughtful selection process enhances the confidentiality of the
information shared, ensuring that sensitive topics remain secure and are only accessible
to those who are truly relevant. Accordingly, during our research project, we will explore
whether it is possible to identify a relationship among privacy-related factors of a meeting
including participants, capabilities of participants, documents, and data shared in the
meeting and meeting mode. After identifying such a relationship, we expect to evaluate
conformance of the relationship with real world scenarios accurately. Then future researchers

8

will be able to use our findings with confidence, to proceed further in our research path
associated with meeting security and privacy.

2.2 Background of literature survey

Meetings are an integral part of organizational operations, serving as platforms for
collaboration, decision-making, and the exchange of essential information. Traditionally,
most meetings were conducted onsite, with participants physically present in a designated
location. However, the COVID-19 pandemic has transformed the landscape of how meetings
are held, leading to a significant rise in online and hybrid meeting formats. This shift
has brought new challenges and considerations, particularly concerning the security and
confidentiality of information shared during meetings.

Prior to the pandemic, meetings were mainly held in person, and security concerns
were largely physical — ensuring that meeting rooms were secure and that unauthorized
persons were not present. The rapid adoption of online meeting platforms since 2020 has
necessitated a re-evaluation of these security paradigms [1]. The ”new normal” of remote
work has highlighted the vulnerabilities inherent in digital communications, with security
breaches and privacy issues becoming more frequent and complex [5].

The increase in remote work and the reliance on online meeting platforms have led
to a spike in reported security incidents [1][6]. These platforms, while convenient, have
been found to have various security flaws, ranging from phishing attacks to unauthorized
access and data breaches [5]. Early in the pandemic, many popular meeting platforms
faced inspection over their inadequate security measures, which were quickly exploited
as their usage increased [7]. Although improvements have been made, the challenge of
securing online meetings remains prominent. However, irrespective of the meeting mode,
any opportunities given to the wrong attendees for the meeting can give room for the
insecurity of the meeting and the attack surface can be increased.

Research into the security issues associated with the ”Work From Home” culture has
shown a marked increase in vulnerabilities, particularly in digital communication tools.
Studies indicate that phishing and other cyber attacks have targeted the expanded digital
workspace, exploiting both technological and human weaknesses [8]. Furthermore, while
the security of online meetings has received significant attention, there is a noticeable lack
of comprehensive strategies addressing the secure organization and execution of meetings
based on the sensitivity of the information discussed and the selection of participants.

A critical aspect of meeting organization is the selection of participants. Ensuring that
the right people are invited to a meeting is not only a matter of operational efficiency but
also of maintaining the confidentiality and security of the information shared. Inappropriate

9

or unnecessary attendees can increase the risk of information leakage and compromise the
meeting’s objectives. Therefore, a systematic approach to selecting participants, based on
their relevance and the nature of the information being discussed, is essential for maintaining
security [9].

2.3 Literature survey and identified research gap

2.3.1 Introduction to literature survey

Meeting scheduling becomes increasingly complex when incorporating privacy controls
to restrict meeting access to authorized participants only. While many scheduling models
address efficiency and availability, fewer approaches ensure access is controlled to prevent
unauthorized participants from joining. This type of access-controlled privacy preservation
is critical in sensitive or confidential meeting environments, such as corporate or client
meetings, where unauthorized access could lead to security breaches. Despite notable
advances, the field lacks a comprehensive, privacy-preserved scheduling model that fully
addresses these needs. This literature review critically examines existing approaches,
compares their methodologies and limitations, and identifies the gap in privacy-preserved
meeting scheduling.

Meeting Scheduling Challenges

Meeting scheduling has so many challenges. Many researchers have conducted research to
minimize the bottlenecks that arise during scheduling meetings. There are certain meetings
which integrate access controls and that require decentralized management of permissions,
which can be achieved through distributed models like Distributed Valued Constraint
Satisfaction Problem (DVCSP) and Distributed Constraint Optimization Problem (DCOP).
Reference [10] reveals that these models have agents that independently manage access for
every participant while minimizing data sharing and reducing the risk of unauthorized access.

According to [10], both DVCSP and DCOP provide semi-optimal solutions with limited
data exchange between agents. This makes them suitable for environments where meeting
access needs to be restricted.

Although DVCSP allows flexible constraint relaxation, it may not work in instances where
strict participant authorization is necessary. But, according to [11], there are algorithms
within DCOP that provide a more secure way by focusing on minimal communication. This
reduces the risk of unauthorized access through limited information exposure. DVCSP’s
main advantage is its flexibility which allows agents to relax lower-priority constraints
to achieve a balance between ideal scheduling and participant privacy. Contrary to
that DCOP uses independent agents to manage individual schedules with minimal data
sharing, achieving semi-optimal solutions with lower computational costs. In reference

10

[11], researchers have found MULBS, a specific DCOP algorithm that emphasizes minimal
communication requirements and privacy preservation, making it highly suitable for
privacy-sensitive environments.

Another distinct approach comes from [12], which frames the scheduling problem
within computational geometry, focusing on optimizing both time and spatial constraints
through algorithms with O(n log n) complexity [12]. While DVCSP and DCOP both
excel in preserving privacy through decentralized scheduling, they differ significantly in their
computational approaches and the quality of solutions. DVCSP’s semi-optimal solutions are
sufficient for low-density environments but may be inadequate in high-density scheduling
contexts where optimization is critical. The findings of [11] that led to the discovery of the
MULBS algorithm achieve greater computational efficiency by minimizing communication,
yet it also sacrifices some scheduling accuracy due to its semi-optimal focus. Computational
geometry-based model in [12] achieves excellent efficiency for time-space scheduling, but does
not address privacy directly, making it limited in privacy-sensitive scheduling environments.

Constraint-Based Optimization Techniques

Meetings can be arranged by considering different limits. These limits are referred
to as Constraints. Many researchers have focused on arranging meetings by enforcing
different constraints and thereby Constraint-Based Optimization Techniques have evolved.
Constraint-based optimization techniques like Constraint Programming (CP), Mixed
Integer Programming (MIP), and Maximum Satisfiability (MaxSAT) have been applied
to scheduling. The mainly focused constraints in these researches are around availability,
priority, and location. Reference [2] reveals how CP allows for precise encoding of scheduling
constraints. But according to [2] research findings it lacks scalability in larger, more dynamic
settings. Peteghem and Vanhoucke in 2010 had conducted a research [13] on how MIP
could be used for effective scheduling. They found that MIP, with its ability to rapidly
identify infeasible solutions, is effective for structured scheduling tasks with rigid constraints
but is too inflexible for applications with dynamic privacy needs . Recent advances in
MaxSAT, such as the Soft Conflict Pseudo Boolean (SPB) constraints, have introduced
adaptive clause weighting strategies to improve local search efficiency in scheduling contexts.

11

Table 2.1: Results of MaxSAT, CP and MIP approaches in aspect of time spent in seconds
[2]

In 2024, reference [14] revealed that SPB-MaxSAT algorithm, specifically, provides
a high-performing solution for complex scheduling problems by adjusting clause weights
to satisfy “soft” constraints, which are more flexible and adaptable. CP and MIP works
well in traditional scheduling scenarios, but both fall short in contexts requiring real-time
adaptability and privacy prioritization. CP offers flexibility with strict constraints.
The drawback is that its lack of scalability makes that makes it unsuitable for larger,
privacy-sensitive scheduling environments. MIP provides scalable solutions for structured
schedules but lacks the adaptability needed to handle frequent privacy-related adjustments.

In comparison, MaxSAT—particularly the SPB-MaxSAT algorithm—introduces [2] soft
constraints that enable adaptability, positioning it as a more flexible alternative to CP
and MIP. However, although we see these improvements, MaxSAT lacks privacy-focused
mechanisms. It primarily supports flexibility rather than privacy preservation. So in overall,
constraint-based techniques each contribute a significant strength to the scheduling field.
CP’s precise encoding, MIP’s efficiency in identifying infeasible constraints, and MaxSAT’s
adaptive clause weighting all provide valuable solutions to specific scheduling problems.
But, the lack of real-time adaptability and privacy-preserving mechanisms across these
methods shows their limitations in handling complex, privacy-focused meeting scheduling
scenarios. MaxSAT’s introduction of soft constraints offers the most promise approach for
dynamic scheduling, but further integration with privacy-preservation techniques is essential
to address privacy-sensitive needs fully.

12

In constraint optimization research [11], that have mapped meeting scheduling problem
into a set of constraints, a common feature can be observed. These all researchers have
identified meeting scheduling problem as an NP-complete problem. An NP-complete
problem involves a decision problem and an optimization problem both. NP-complete
problem domain is depicted in the figure below, with other related problem domains. In
the figure, NP-hard problems involve optimization problems, NP problems involve decision
problems and P problems involve polynomial time solvable problems.

Figure 2.2: NP-complete problem domain, with other related problem domains

Genetic Algorithms and Adaptive Scheduling

Iterative optimization is a main approach in the solving of complex problems,
especially in the case of large search spaces, dynamic environments, or time-dependent
constraints. Instead of finding a solution in one direct way, iterative methods refine solutions
incrementally through repeated improvements. This leads to better accuracy, efficiency, and
flexibility. If meeting schedules also can evolve based on changing constraints or resource
availability, that would add value to the scheduling process in a greater scale. Genetic
algorithms (GAs) [13] introduce adaptability through iterative optimization. This allows
schedules to evolve based on changing constraints or resource availability.

According to [13] in 2010, GAs use a bi-population model that supports continuous
adjustments. This is advantageous in settings where participant availability and privacy
needs change frequently [13]. GAs are more adaptable than constraint-based methods like
CP and MIP. This is due to their iterative nature and ability to consider multiple solutions.
This adaptability makes GAs suitable for environments with dynamic constraints, where
immediate schedule adjustments are required. Although there are several advantages,
GAs’ computational intensity creates a challenge for real time applications. Specially in

13

privacy-preserved contexts where participant selection may require immediate reallocation
of timeslots based on privacy needs.

Compared to MaxSAT’s adaptive clause weighting, GAs offer greater flexibility but
are less efficient computationally. This requires careful tuning of parameters to achieve
optimal performance. The bi-population structure of GAs provides an advantage in
dynamic environments. GAs offer an adaptable alternative to more rigid constraint-based
models. But GAs are obstructed by computational demands, which can limit their real-time
responsiveness in privacy-preserved meeting scheduling. This indicates a need for hybrid
approaches that incorporate GA’s adaptability with computational efficiency to better work
with privacy-preserved meeting scheduling needs.

Theory of Constraints (TOC) and Bottleneck Management

Eliyahu M. Goldratt developed a management and problem-solving approach known as
the Theory of Constraints (TOC) in the 1980s [15]. This method focuses on maximizing
the output by managing the constraints. Research has been conducted on how this
concept can be applied in scheduling. The Theory of Constraints (TOC) focuses on
identifying and reducing bottlenecks within scheduling systems, improving throughput in
resource-constrained contexts.

According to [16], TOC is valuable in production-oriented scheduling, Here, specific
bottlenecks are often seen as restricting scheduling efficiency and resource allocation.
TOC is effective in managing resources and prioritizing critical constraints. But it does
not incorporate privacy considerations or adaptability for dynamic participant needs.
When we compare models like DVCSP and DCOP, they offer finer and better scheduling
management because there, the main focus is on privacy-preserving through decentralized
data management. TOC targets throughput and bottleneck reduction. But its limited
adaptability and lack of privacy considerations restrict its effectiveness in privacy-preserved
meeting scheduling contexts.

TOC’s bottleneck prioritization method is beneficial for contexts where resource
constraints drive scheduling but falls short in privacy-preserving meeting contexts. As TOC
mainly focus on throughput limit, its applicability to meeting scheduling is limited, which
often requires flexible participant selection based on confidentiality needs [16]. TOC’s ability
in optimizing resource allocation could be enhanced with additional privacy and adaptability
mechanisms to better address modern scheduling requirements.

Machine Learning and Hybrid Approaches in Constraint Solving

By employing supervised learning to forecast participant preferences and optimize
scheduling algorithms based on historical data, machine learning (ML) improves adaptive

14

scheduling. By combining machine learning (ML) and conventional SAT solvers, hybrid
models like Cube-and-Conquer increase scalability and efficiency in challenging scheduling
tasks [17][13]. ML is a useful supplement to adaptive scheduling because of its capacity to
forecast participant preferences, providing more flexibility than CP, MIP, and TOC. Unlike
previous models, machine learning (ML) allows for real-time adaptability to changing
situations, which is ideal for meeting scheduling that protects privacy. However, the lack
of established privacy measures and evaluation tools limits ML’s ability to properly handle
confidentiality alongside scheduling, limiting its usefulness in privacy-sensitive scenarios.
Through predictive capabilities, machine learning and hybrid models offer substantial
potential for increasing schedule flexibility.

However, machine learning’s current function in privacy-preserved scheduling is restricted
due to the absence of privacy-specific applications and consistent measurements. Creating
uniform assessment criteria and adding privacy safeguards might improve ML’s applicability
in scheduling situations where privacy is a concern.

Privacy-Centric Distributed Models for Scheduling

Distributed methods like DCOP and DVCSP, which decentralize data management
to safeguard participant confidentiality, have advanced participant privacy-preserving
scheduling. In order to preserve privacy, the MULBS algorithm introduced in [10] minimizes
communication between agents, which is an example of the DCOP technique [11]. LP-type
(Linear Programming) problems and graph models are used in [12], where computational
geometry-based method is used to solve scheduling efficiently. However, privacy-preserving
features are absent there as well. In contrast to centralized systems that are more vulnerable
to data exposure, the DCOP and DVCSP models prioritize privacy through minimum
data interchange. While time-space optimization techniques in [12] are efficient but do
not explicitly handle privacy, MULBS’s low communication requirements make it ideal for
privacy-sensitive contexts.

These discussed approaches provide a balanced solution for privacy-sensitive contexts
when compared to alternative scheduling models, however because of the trade-off with
computational performance, they only produce semi-optimal results. Effective privacy
protection is provided by distributed models, although at the expense of some optimization.
Although the decentralized approach of DCOP and DVCSP better meets privacy concerns
than centralized approaches, it is not able to provide fully optimum solutions. Models that
can strike a compromise between privacy, efficiency, and scheduling quality are necessary
because there is still a gap in attaining optimal scheduling without sacrificing privacy.

2.3.2 Research Gap

Despite significant advancements, privacy-preserving meeting scheduling remains largely

15

unaddressed. Constraint-based methods excel in managing structured constraints but lack
real-time adaptability and privacy-preserving mechanisms. Adaptive scheduling techniques,
such as GAs and TOC, offer flexibility but fall short of the privacy requirements essential for
modern scheduling contexts. Privacy-centric distributed models partially address privacy
needs but achieve only semi-optimal outcomes, highlighting a clear research gap. Future
research must focus on developing hybrid scheduling models that integrate constraint-based
optimization, machine learning, and distributed frameworks to create secure, responsive,
and privacy-focused scheduling solutions. Addressing this gap would advance the field,
providing compliant, adaptable scheduling frameworks tailored to modern privacy-sensitive
environments.

2.4 Key Findings

From the aforementioned studies we understood how computational geometry [12] was
used to optimize scheduling complexity and achieve O(n log n) efficiency and was first
shown in early meeting scheduling research. However, this effort did not prioritize privacy
considerations. In 2012, DVCSP-based scheduling was examined by Enembreck and André
Barthès [11], who emphasized its adaptability in applying constraints but also pointed out
its drawbacks in requiring tight participant consent. Reference [10] extended their work
by introducing the MULBS algorithm within DCOP, which greatly enhanced privacy by
lowering communication exposure. MIP is quite good in optimizing large-scale scheduling
issues, according to [13] analysis of its function in structured scheduling. They did point
out that it is challenging to adjust to changing privacy requirements. At about the same
time, genetic algorithms became more popular due to their versatility; [13] showed how
well GAs worked for real-time scheduling. However, their high computing costs made them
inapplicable in situations where privacy was a concern.

In their re-visitation of constraint-based optimization, researchers of [2] acknowledged
the limitations of scalability of CP while reiterating its strength in directly embedding
scheduling restrictions. References [17] and [18] introduced the Cube-and-Conquer
technique, which improved scalability while preserving constraint precision, as part of the
hybridization of machine learning with SAT solvers. More recently, [14] suggested Soft
Conflict Pseudo Boolean (SPB) constraints for MaxSAT, which leverage adaptive clause
weighting to increase the efficiency of local searches.

In [11], it emphasized the value of privacy in decentralized scheduling by pointing out
how the MULBS algorithm reduces communication exposure in privacy-centric scheduling.
But their method needed further work because it was computationally inefficient. According
to [12], computational geometry-based approach showed great efficiency but lacked clear
privacy safeguards, suggesting a trade-off between speed and confidentiality.

16

2.5 Limitations, and Conflicts

Despite extensive research, scheduling methodologies exhibit several limitations. In
decentralized scheduling, DVCSP and DCOP provide privacy advantages but struggle
with computational feasibility. DVCSP performs well in low-density environments
but becomes inefficient as participant numbers grow. DCOP, while offering enhanced
security, suffers from high communication overhead, reducing its suitability for large-scale
scheduling. Constraint-based optimization techniques like CP and MIP excel in structured
scheduling but lack flexibility in dynamic scenarios. While MaxSAT’s soft constraints
improve adaptability, they do not inherently address privacy concerns, requiring additional
security mechanisms. Genetic Algorithms, although effective for adaptive scheduling,
impose significant computational costs, limiting their practical application in real-time
privacy-sensitive scheduling.

TOC’s deterministic approach is valuable for bottleneck management but lacks the
flexibility to accommodate evolving privacy requirements. Machine Learning, despite
its predictive power, faces challenges in standardization and interpretability. ML-based
scheduling models often operate as black-box solutions, making it difficult to verify their
decision-making processes. Additionally, privacy risks associated with ML require further
exploration, particularly in data-sharing scenarios. Privacy-centric distributed models, such
as DCOP and DVCSP, enhance confidentiality but struggle with achieving optimal results
efficiently. Many privacy-preserving scheduling approaches prioritize security at the expense
of computational speed, making them less viable for real-time applications. GeoInformatica,
while efficient, does not incorporate privacy mechanisms, highlighting an ongoing trade-off
between performance and security.

2.6 How the Literature Review impacts our research

The findings illustrate a fundamental trade-off in scheduling research: optimizing for
privacy often comes at the cost of efficiency. Current models either prioritize speed (e.g.,
GeoInformatica) or focus on privacy (e.g., DCOP, DVCSP), but few successfully integrate
both aspects. Traditional constraint-based techniques offer structured scheduling but remain
rigid in privacy-sensitive applications. Hybrid approaches that combine constraint-based
optimization with adaptive scheduling methods, such as ML-enhanced SAT solvers, show
promise but require further refinement to integrate privacy considerations effectively. To
bridge these gaps, future research should explore novel frameworks that balance scheduling
efficiency with privacy protection, contributing to a more comprehensive and adaptable
meeting scheduling system.

17

Chapter 3

Methodology

3.1 Overview on methodology

The methodology used in this research is grounded in a systematic exploration of the
complexity of meeting scheduling problems. The research started with a comprehensive
literature survey, which revealed that meeting scheduling is naturally NP-complete, as
stated by multiple prior studies. These works highlighted that meeting scheduling problems
often involve combinatorial search, agent coordination, and constrained resource allocation,
all of which contribute to their classification as NP-complete.

Following this, we proceeded to formally define our specific problem we aimed to solve
in this research. This included identifying the relevant entities such as participants, time
slots, access controls, and quorum requirements, along with the constraints governing the
interaction. To better understand the nature of the problem, we analyzed a set of well-known
NP-complete problems such as MaxSAT, Knapsack, Subset Sum, and Circuit-SAT. These
problems were selected based on their structural and conceptual similarities to the meeting
scheduling domain. Through this comparative analysis, we wanted to determine whether
the meeting organizing problem could be heuristically solved by mapping onto one of these
NP-complete problems.

Among these, Circuit-SAT showed initial promise due to its formulation as a boolean
satisfiability problem. We mapped the meeting scheduling problem onto a boolean circuit
representation and developed algorithms capable of generating these boolean circuits based
on scheduling inputs and constraints. However, after deeper analysis, we identified that
the boolean circuit constructed did not follow the standard formulation of the Circuit-SAT
problem. As such, the mapping was insufficient to establish our problem as an NP-complete
problem via Circuit-SAT or any other NP-complete problem form. Since the circuit
verification process itself is deterministic and verifiable in polynomial time, the problem
does not fall under the NP-hard category either.

Within the Boolean circuit, we recognized that all sub-problems except one could be

18

solved in polynomial time. This single problematic sub-problem exhibited exponential time
complexity. Therefore we focused our efforts on analyzing whether this segment could also
be transformed into a polynomial-time computable procedure. Finally, we concluded that
it is not possible to redesign this segment into a polynomial-time circuit using boolean logic
alone. However, we discovered that this segment could be resolved using a non-circuit-based
polynomial-time algorithm.

This breakthrough led to the significant conclusion that the overall problem is not
NP-complete but solvable in polynomial time, classifying it as a P-type problem. To validate
our theoretical findings, we implemented proof-of-concept prototypes in Python. We further
extended our models to support real-world meeting scenarios as well. Finally, in order
to demonstrate the feasibility and real-world applicability of our approach, we developed
an integrated tool that utilizes Google APIs. This prototype shows how the proposed
polynomial-time algorithm can be practically deployed using existing tools and technologies
commonly available in organizational settings.

3.2 Formal definition of entities

3.2.1 Basic definitions

Following finite sets are defined:

• D: The set of all documents.

• R: The set of all roles.

• I: The set of all individuals

• L: The set of all locations.

• T : The set of all time slots.

3.2.2 Access Control List

We define following relationships, using above definitions.

d = {d ∈ D | d is a document}

i = {i ∈ I | i is an individual }

g = {g ⊆ I | g is a subset of one or more individuals in I}

Above relationships mean that d is an element of set D, and i is an element of set I.
Further, g is a group of one or more individuals (i), where i ∈ I, such that g ̸= ∅.

Consider that following finite set is also defined:

19

• G: Set of all possible not-null subsets of I

Based on above all sets, we define following relationship.

access(d) = {g ∈ G | g has access to d}

Above relationship means that g is an element of set G, and that access(d) is the set
of groups (g) having access permission to document d. Here we note that, access(d) = G
converts d to a public document.

By above last two relationships, since any element g of access(d) is also a subset of I,
such that g ⊆ I, we have the relationship access(d) ⊆ I, when access(d) is defined in form
of singleton subsets of I. It implies also that |access(d)| ≤ |I|, when access(d) is defined
in the form of singleton subsets of I. Simply, a singleton subset of I includes an individual (i).

Regarding that inequality, |access(d)| = |I| is the situation when every i in I is present
in at least one group (g), such that g ⊆ access(d). At such a situation, both relationships
access(d) = G and |access(d)| = |I| imply the same meaning that, document is a public
document.

3.2.3 Meeting agenda

Agenda of a meeting is the document that defines the set of groups (g) required to
attend the meeting, where group has same meaning as defined above. When we consider
agenda as document d, those groups (g) are elements of set access(agenda).

Theoretically it is possible to require all individuals of set I or all available not-null
subsets of set I, to attend a single meeting. But, in practical scenario, probability of
organizing such a meeting is low.

However, there are both private meetings and public meetings, in our scope. If
access(d) = G is used for meeting agenda of public meetings, it’s impossible to distinguish the
intended participant groups explicitly. Therefore, in agenda document of public meetings,
we include a group labeled as public group, in addition to the actual intended participant
groups of meeting, to state that agenda is public. So, on the other hand, absence of group
labeled as public in access(agenda) means that, meeting is private.

• If there is at least one document in meeting, such that access(d) ̸= G, public group
shouldn’t have access to meeting agenda.

• If every documents in meeting has access(d) such that access(d) = G, public group
can have access to meeting agenda.

20

• If agenda is the only document in meeting, public label can be used by meeting
organizer to define whether agenda document is private or public (i.e. whether
meeting is private or public).

Following flow chart depicts the process of identifying whether a document is private or
public.

Figure 3.1: Process to identify whether a document is private or public

Regarding other documents except agenda, for simplicity of implementation, we can
include only public label in access control list, without including any other group of G, to
mean that access(d) = G or that document is a public document. Because, we do not need
to include any other group (g) in a public non-agenda document, though we required them
in public agenda documents for identifying meeting participants.

In addition to presence or absence of public label in access(agenda), meeting agenda
should define the meeting quorum, for the meeting. This theme will be discussed later at
3.2.12 section.

21

3.2.4 Definition of a meeting

We assume that every meeting has an agenda associated with it, to define
the set of groups(g) required to attend the meeting. Agenda of a particular meeting
M is a document, belonging to set D.

When we consider the agenda document of meeting M , for every group g invited
to meeting M ; g ∈ access(agenda). Also consider that, D represents set of documents
discussed in M , including agenda, such that D ⊆ D. Hence, according to the assumption
emphasized above, for any meeting M ; |D| ≥ 1.

For conducting a meeting, at least 2 individuals are required. Consider that I

represents the set of individuals attending meeting M , such that I ⊆ I, when groups
(g) of access(agenda) are converted to corresponding elementary individuals (i). Here we
note that, for any meeting M ; |I| ≥ 2. Accordingly, when access(agenda) is defined in
terms of singleton subsets of G, and those groups (singleton subsets) in access(agenda) are
represented by G, such that G ⊆ G, it can be observed that |G| ≥ 2.

Consider set of locations of individuals in M as L (in other words, set of locations of
individuals in set I, during meeting time), such that L ⊆ L. Every individual attends
meeting from a particular location l, such that l ∈ L. We note that, if meeting is online
or hybrid, |L| > 1. If meeting is onsite, |L| = 1, since every individual is at same location.
Every meeting should be in one mode, out of online, hybrid, onsite modes. Therefore, for
any meeting M ; |L| ≥ 1.

Since a meeting is a synchronous communication, every individual in meeting M

should attend the meeting during the same time slot t (Assuming that all individuals are in
same time zone).

Based on these definitions, we define meeting M as a 4-tuple,

M =< D, I, L, t >

such that,
D ⊆ D

L ⊆ L

I ⊆ I

t ∈ T

22

3.2.5 Transformation of individual into role

Consider that same sets defined above will be used in explanations below, in same
notations:

Consider g and g′ as subsets of G such that g, g′ ⊆ G. And consider d as a private
document , l as a location and t as a time slot such that d ∈ D, l ∈ L and t ∈ T . Further
consider that g ∈ access(d) and g′ /∈ access(d), for restricting access of document d, where
|access(d)| = n , given that access(d) is defined as a set of singleton subsets of G. A
singleton subset of G means an elementary subset g, in which only one element (i.e. only
one individual i) is present.

Also note that, i and i′ are two individuals representing subsets g and g′, respectively.

Assume that at scenario 1, i attends a meeting at location l during time slot t to
discuss document d, where i′ has no access to location l during same time slot t.
Here we state that privacy of meeting discussing document d was preserved at context l × t

Now assume that at scenario 2, i attends a meeting at location l during time slot t to
discuss document d, where i′ also has access to location l during same time slot t.
Here we state that privacy of meeting discussing document d was violated at context l × t,
because n+1 individuals including i′ have got access to content of document d. But actually
|access(d)| = n, when access(d) is defined as a set of singleton subsets of G, as mentioned
above. We observe that (n + 1) > |access(d)| = n

When above 2 scenarios are compared, we observe that role of same individual i,
representing subset g such that g ∈ access(d), has experienced a variation. Context of i has
changed, depending on location and time.

Therefore we define that presence of i at context l × t transforms i to role r.

transform(i, l, t) = r : r is role of i at location l at time slot t

If g ∈ access(d), g′ /∈ access(d) and d is a private document, i representing g should
attend a meeting to discuss d at context l × t, only if i′ representing g′ has no access to
l × t. Accordingly, to identify the privacy preserving context for discussing document d,
combination of i, l, t is required.

3.2.6 Difference between public and private roles

When we consider a private document d, we cannot exactly predict the time, at which

23

i′, representing g′, such that g′ /∈ access(d), will get access to location l. Therefore, meeting
organizer has the responsibility of defining location l as a private location or a public
location, considering whether access of i′ has been strictly restricted, during all potential
meeting time slots (represented by set T).

Using this definition and above formula, we can show that, i representing g, such that
g ∈ access(d) where d is a private document, is transformed to role g itself, at a private
location. Here, location should be defined as a private location, by same entity, that defined
the set access(d) for document d.

transform(i, l, t) = r

transform(i, (private location), t) = r

transform(i, (private location), t) = g

On the other hand, any location l is defined as a public location, if access of i′ has not
been strictly restricted, during any potential meeting time slot in set of time slots T .

Using this definition and above formula, we can show that, i representing g, such that
g ∈ access(d), is transformed to public role, at a public location. Location should be
defined as a public location, by same entity, that defined the set access(d) for document d.

transform(i, l, t) = r

transform(i, (public location), t) = r

transform(i, (public location), t) = public

Based on these derivations, we have identified a constraint relevant to i, for discussing d

in a privacy preserved meeting.

Constraint: When d is a private document, every i representing g, such that g ∈ access(d),
that attends a meeting to discuss document d, must represent role g in the meeting.

When d is a public document, every i that attends a meeting to discuss document d, is
allowed to represent public role in the meeting.

3.2.7 Roles in meeting agenda

If meeting agenda document does not include the group labeled as public in
access(agenda), it means that public /∈ access(agenda). Then i′ representing g′ such that
g′ /∈ access(d), should be strictly prevented from accessing the meeting, by conducting
meeting at a private location, defined by relevant meeting organizing entity.

24

On the other hand, if meeting agenda includes group labeled as public in access(agenda),
it means that public ∈ access(agenda). Then it is not mandatory to prevent access of
i′ representing g′ such that g′ /∈ access(d), for the meeting. Therefore, meeting can be
conducted at a private location or public location, based on locations defined by relevant
meeting organizing entity.

3.2.8 Variation of role

Now consider a situation where individual i representing g, such that g ∈ access(d)
has x number of locations, out of which any one can be selected for attending a meeting
to discuss d. And assume that i has y number of time slots, out of which any one can be
selected for attending the meeting.

We can depict the possible variations of transform(i, l, t) function as below, for
individual i, depending on locations defined by the entity, assuming that i does not change
location during middle of a time slot.

(i) t1 t2 ... ty−1 ty

l1 x x x x
l2 x x x x
...

lx−1 x x x x
lx x x x x

Table 3.1: Possibilities in variation of transform(i, l, t) for individual i

Note that lx represents the xth location, while ty represents the yth time slot. Meanwhile x
represents the role of i at the corresponding l and t (based on formula transform(i, l, t) = r).
According to this representation, we observe that i has x × y number of possibilities at
maximum, to attain the role.

Here we emphasize that some x roles can be categorized as public, with respect to
public locations defined by an entity. According to the constraint identified, if d is a private
document, i should attend the meeting only when r = g, such that g ∈ access(d). When r =
public role, individual i should strictly avoid discussing private documents. By following
this constraint, access of i′ representing g′, such that g′ /∈ aceess(d), into this meeting can
be prevented.

3.2.9 Participants in access control lists of non-agenda documents

It is possible to discuss one or more documents in a meeting. Further, there can be
both public documents and private documents among these documents. We do not need to
follow any constraint to protect the privacy of public documents.

25

But when private documents are considered, it is needed to follow some constraints to
protect the privacy. For example, consider d1 and d2 as 2 private documents. An individual
i representing r, such that r = g and g ∈ access(d1), can be absent in access control list of
d2. In other words, g /∈ access(d2) relationship can exist.

In this situation, discussing both d1 and d2 in same meeting violates the privacy of d2,
when above mentioned individual i participates in that meeting. It means that, for discussing
both d1 and d2 in same meeting, roles of all meeting participants should mandatorily be
present in both access(d1) and access(d2). This relationship is graphically depicted in
diagram below.

Figure 3.2: Intersection of access control lists of 2 private documents

This concept is applicable not only for 2 private documents, but also for any number
of private documents discussed in same meeting. When there are n number of private
documents to discuss in a meeting, intersection of access control lists of all those documents
should be considered. Any individual i representing r, such that r = g, and g /∈ (access(d1)∩
access(d2) ∩ ... ∩ access(dn−1) ∩ access(dn)) should be prevented from accessing the meeting.
If same individual represents multiple roles in different documents, it is recommended to
convert all groups except the public group in those access(d) sets to singleton sets, such that
each individual participant can be uniquely identified.

3.2.10 Meeting participant validation

When there are private documents to discuss in a meeting, it is required to validate
intersection of participants identified as above, with participants included in access control
list of meeting agenda (“Meeting agenda” section at 3.2.3 discusses more details on meeting
agenda).

For protecting privacy of n number of private documents defined as d1, ..., dn, following

26

relationship must be satisfied for the meeting.

access(agenda) ⊆ {access(d1) ∩ access(d2) ∩ ... ∩ access(dn−1) ∩ access(dn)}

Simply, above relationship means that each and every individual i representing role r,
such that r = g and g ∈ access(agenda), is also an element of the intersection of access(d)
of all private documents discussed in meeting. A situation in which above relationship is
violated can be explained by using following relationship.

{access(d1) ∩ access(d2) ∩ ... ∩ access(dn−1) ∩ access(dn)} ⊂ access(agenda)

In simple terms, above relationship means that there exists at least one i representing
r, such that r = g and g ∈ access(agenda), where g is not an element in the intersection of
access(d) of all private documents discussed in meeting.

However, for discussing public documents in meeting, it is not required to perform any
participant validation. In other words, any individual i can discuss public documents, in any
private or public meeting.

3.2.11 Privacy-preserved meeting

Based on above descriptions and definitions, we define privacy-preserved meeting as
below;

A privacy-preserved meeting is a meeting in which, individual i representing
role r has no access to the meeting, when r = g and g /∈ access(agenda), where
access(agenda) satisfies,

access(agenda) ⊆ {access(d1) ∩ access(d2) ∩ ... ∩ access(dn−1) ∩ access(dn)}

for all private documents d1...dn, discussed in the meeting.

3.2.12 Meeting quorum

In a privacy-preserved meeting of our research context, we define meeting quorum
as the minimum number of individuals (i) representing participant groups (g), required to
attend a meeting, such that g ∈ access(agenda).

In privacy preserved meeting context, if a specific meeting quorum rule is not defined
in the agenda, other than access(agenda) set, we assume that every i such that,

• i ∈ g, and

• g ∈ access(agenda),

27

is required for the meeting. But, it is not applicable for g = public, since “public”
group means that meeting is a public meeting, but does not represent an invited group
of participants. In meeting agenda document, when a numeric meeting quorum rule is
not defined specifically, and access(agenda) is defined in form of singleton subsets of G,
|meeting quorum| = |access(agenda)| relationship exists.

In addition, it is possible that |meeting quorum| < |access(agenda)|, if a
numeric meeting quorum rule is defined in meeting agenda. Therefore in overall,
|meeting quorum| ≤ |access(agenda)|, when access(agenda) is defined in form of singleton
subsets of G.

Since at least 2 individuals (i) are required for any meeting, 2 ≤ |meeting quorum|.

Accordingly, 2 ≤ |meeting quorum| ≤ |access(agenda)|.

When access(agenda) is defined in form of singleton subsets of G, as we have already
depicted earlier, |access(agenda)| ≤ |I|. By merging this inequality with above expression,
we obtain following expression theoretically.

2 ≤ |meeting quorum| ≤ |access(agenda)| ≤ |I|

3.3 Problem mapping and analysis

Our problem focused in organizing privacy-preserved meetings has few distinct steps,
that can be clearly identified within it. Based on decision making points identified within
the problem, this problem was mapped into a boolean circuit, following a union operation.
Here, union operation can be introduced as a set related pre-processing operation, applied
on the access(d) sets of all documents of the meeting, including the agenda. Before applying
this union operation, it is needed to make sure that all groups except the public group in
those access(d) sets are converted to singleton sets, such that each individual participant
can be uniquely identified. Distinct sections of the problem are analyzed below, considering
the circuit diagrams produced for them.

Following algorithms have been designed to align with the definitions defined by us, earlier
in this research, regarding concepts such as documents, groups of individuals, access control
lists, classification of locations into three groups, time slots, meeting quorum etc. Therefore,
it is recommended to be familiar with those definitions, before analyzing the algorithms.

3.3.1 Participant validation based on documents

After calculating the union of access(d) sets of all documents to be discussed in

28

the meeting, as {access(doc 1) ∪ ... ∪ access(doc n)} ∪ access(agenda), public group is
subtracted, since our initial requirement is to identify all the individuals having access to
at least one document. In addition, we identify all documents associated with meeting as
doc 1, ..., doc n, agenda, since we need to check whether each individual in the union of
individuals identified, has access to all the documents, for discussing them in a meeting. In
example depicted in the diagram, consider that there are only 3 individuals as i 1, i 2, i 3
and only 4 documents as doc 1, doc 2, doc 3, agenda.

Algorithm for participant validation section is explained below.

Algorithm 1 Participant validation based on documents
1: Input: Access control lists (access(d)) of documents doc 1, ... , doc n, agenda
2: Output: Eligibility of each individual for meeting by document analysis
3:
4: union of access(d) = access(doc 1) ∪ · · · ∪ access(doc n) ∪ access(agenda)
5: union of individuals = union of access(d) − public
6: set of documents = doc 1, . . . , doc n, agenda
7: for each individual i n in (union of individuals) do
8: validity of i n by doc analysis = true
9: for each doc x in (set of documents) do

10: if doc x ̸= agenda then
11: validity of i n for doc x = (i n ∈ access(doc x)) OR (public ∈ access(doc x))
12: else
13: validity of i n for doc x = i n ∈ access(agenda)
14: end if
15: validity of i n by doc analysis = validity of i n by doc analysis

AND validity of i n for doc n
16: end for
17: Return validity of i n by doc analysis
18: end for

Figure 3.3: Participant validation based on documents

Above algorithm explains the process depicted by logical circuit diagram below. In the
algorithm,

|union of access(d)| = |access(doc 1)| + ... + |access(doc n)| + |access(agenda)|

relationship means that time complexity of the union of access(d) operation is,
O(|access(doc 1)| + ... + |access(doc n)| + |access(agenda)|). It is a linearly increasing time
complexity. In addition, each iteration in outer loop outputs whether an individual of the
union of individuals is valid by access(d) analysis of all documents. Inner loop checks whether
particular individual has access to all documents including agenda. Operations within the
inner loop are considered as operations of constant time complexity, O(1). Accordingly, since
there is a nested loop in above algorithm, time complexity of this section of problem can

29

be O(n2), at maximum. Because number of individuals can be any positive integer, and
number of documents including agenda also can be any positive integer.

Figure 3.4: Participant validation based on access(d) of documents

3.3.2 Eligibility of each individual, in each time slot, for meeting

After checking the validity of each participant by document analysis, it is needed to
check their locations in different time slots. Based on the location, eligibility of each
individual to discuss the set of documents changes. Because, as we have described
earlier, private documents should be discussed at private locations only, while public

documents can be discussed at any location. If there is at least one private document
in the set of documents discussed in meeting, then each individual i n validated by
document analysis should attend this meeting from a private location. Following circuit
diagram consists of the location analysis of each individual, in every time slot. Here,
these time slots mean the time slots belonging to the union of available time slots of all
individuals, present in the union of individuals, mentioned in previous algorithm (figure 3.3).

For deciding the eligibility of each individual, to discuss set of documents, in different
time slots, we need inputs included in the following table. In it, each individual of the union
of individuals, and his/her available time slots with locations should be present. Please

30

note that following table consists of some sample data only, as individuals, time slots and
locations. It is supposed to contain the real data, regarding the respective scenario. For
simplicity, we consider only 3 locations as onsite, remote private and remote public, since
every location can be categorized into one of those 3 categories, by a meeting organizing
entity.

Individual (i x) Time slot(sloty) Location
i 1 slot1 onsite
i 1 slot2 remote private
i 1 slot3 remote public
...
i n slotm location of i n in slotm

Table 3.2: Available time slots and locations of individuals, in union of individuals

Algorithm for deciding the eligibility of each individual, to discuss the set of documents
of meeting, in different time slots, is described below.

31

Algorithm 2 Deciding eligibility of each individual for meeting, in each time slot
1: Input 1: Validity of each individual i 1, ... , i n by doc analysis
2: Note: Individuals i 1, ... , i n mean union of individuals of previous algorithm, and

input 1 is obtained from output of previous algorithm
3: Input 2: Availability of each individual in each time slot (at any location)
4: Input 3: Location of each individual in each time slot (whether remote public or no)
5: Note: Input 2 and input 3 are obtained from the table containing available time slots

and locations of individuals.
6: Input 4: Presence of public group in access(d) of each document, in set of documents,

as (doc 1 − public), ..., (doc n − public), (agenda − public)
7: Output: Eligibility of each individual, to discuss the set of documents, in each time slot
8:
9: union of time slots = availability(i 1) ∪ · · · ∪ availability(i n)

10: for each slot x in (union of time slots) do
11: for each individual i y in (union of individuals) do
12: publicity of meeting = (doc 1 − public) AND ... AND (doc n −

public) AND (agenda − public)
13: slot x − i y = availability of i y in slot x at any location
14: slot x − i y remote public = whether i y is at remote public location in slot x
15: availability of slot x − i y for public meeting = (publicity of meeting) AND

(slot x − i y)
16: availability of slot x− i y for private meeting = (slot x− i y) AND NOT(slot x−

i y remote public)
17: availability of slot x − i y for meeting by time slot analysis = (availability of

slot x − i y for public meeting) OR (availability of slot x − i y for private meeting)
18: slot x − i y eligibility for meeting = (Validity of i y by doc analysis) AND

(availability of slot x − i y for meeting by time slot analysis)
19: end for
20: Return slot x − i y eligibility for meeting
21: end for

Figure 3.5: Deciding eligibility of each individual for meeting, in each time slot

In above algorithm, time complexity of union of time slots operation is,
O(|availability(i 1)| + · · · + |availability(i n)|), at maximum. It is a linear time complexity.
When considering the loops, outer loop iterates through all time slots, in the union of time
slots, calculated by considering available time slots of all individuals, in union of individuals.
Meanwhile, inner loop iterates through each individual in the union of individuals. In
addition, number of documents discussed in the meeting can be any positive integer.
Number of documents is considered when deciding the meeting publicity, within the inner
loop. Further, validity of the individual by document analysis, obtained from output of
previous algorithm, is utilized in in inner loop. Number of documents is concerned for that
as well. But, it is in parallel level, with publicity calculation of the meeting. Therefore, we
can consider that number of documents has linear time complexity as O(n), within inner
loop. Accordingly, it is observed that, time complexity of above algorithm can be O(n3), at

32

maximum, due to outer loop, inner loop, and number of documents within inner loop.

Circuit diagram corresponding to above algorithm is depicted below. The following
boolean circuit is supposed to be repeated for each individual, in each time slot, as explained
in algorithm.

Figure 3.6: Eligibility of each individual for meeting, in each time slot

3.3.3 Meeting quorum satisfiability

Eligibility of each individual to discuss the set of documents, in each time slot, is
considered for deciding the quorum satisfiability of each time slot, in the union of time
slots. Then it is checked whether there is at least one quorum satisfying time slot. Because,
if there is no at least one quorum satisfying time slot, then it is not possible to conduct the
meeting.

Algorithm for checking the quorum satisfiability of time slots is explained below.

33

Algorithm 3 Identifying meeting quorum satisfiability of time slots
1: Input 1: Eligibility of each individual for meeting, in each time slot
2: Note: Input 1 is obtained from output of previous algorithm
3: Input 2: Numerical meeting quorum value
4: Input 3: Availability of each individual in each time slot (at any location)
5: Output: Existence of quorum satisfying time slot/s, for the meeting
6:
7: union of time slots = availability(i 1) ∪ · · · ∪ availability(i n)
8: availability of a meeting quorum satisfying time slot = false
9: quorum satisfiability of slots = initiate an empty dictionary structure

10:
11: for each slot x in (union of time slots) do
12: meeting quorum satisfiability of slot x = false
13: combinations of individuals in slot x = combinations of individuals, with magnitude

of meeting quorum size
14: for each combination in (combinations of individuals in slot x) do
15: meeting quorum satisfiability of combination = AND operation (for all individuals

in the combination)
16: meeting quorum satisfiability of slot x = (meeting quorum satisfiability of slot x)

OR (meeting quorum satisfiability of combination)
17: end for
18: Store (meeting quorum satisfiability of slot x) in (quorum satisfiability of slots)

dictionary
19: (availability of a meeting quorum satisfying time slot) = (availability of a meeting

quorum satisfying time slot) OR (meeting quorum satisfiability of slot x)
20: end for
21: Return (quorum satisfiability of slots) dictionary, (availability of a meeting quorum

satisfying time slot) value

Figure 3.7: Identifying meeting quorum satisfiability of time slots

Similar to previous algorithm (figure 3.5), in above algorithm also, time complexity
of union of time slots operation is, O(|availability(i 1)| + · · · + |availability(i n)|), at
maximum. It is observed that, in loop structure, outer loop iterates through all time slots
in union of time slots. That number of time slots can be any positive integer. Inner loop
contains a combination operation, which is intended to create combinations of magnitude of
meeting quorum size, out of individuals of the union of individuals. Mathematically, number
of such possible combinations can be calculated as,

nCr =
(

n

r

)
= n!

r!(n − r)!

when n = number of individuals in union of individuals, and r = meeting quorum size.

Regarding combination operation, highest number of combinations is obtained when
r = n

2 or r ≈ n
2 (appendix A). Number of possible combinations reduces, when r is

34

considerably small (r ≈ 0), or when r is close to n (r ≈ n). Due to this nature of
combination operation, maximum possible time complexity for creating nCr number of
combinations is O(

(
n
n
2

)
) or O(

(
n

n−1
2

)
), depending on whether n is even or odd.

In the inner loop of above algorithm, since AND operation is applied for all individuals,
in each combination created, maximum time complexity associated with inner loop is O(n×(

n
n
2

)
) or O(n ×

(
n

n−1
2

)
). Because, the number of participants in each combination created can

be any positive integer greater than or equal to 2. When considering a particular scenario,
that number is equal to the meeting quorum size. In addition, since inner loop is repeated by
outer loop, where number of time slots also can be any positive integer, maximum possible
time complexity of above algorithm is,

O(n × n ×
(

n
n
2

)
) = O(n2 ×

(
n
n
2

)
) ,when union has even number of individuals

or

O(n × n ×
(

n
n−1

2

)
) = O(n2 ×

(
n

n−1
2

)
) ,when union has odd number of individuals.

Time complexity of O(n2 ×
(

n
n
2

)
) or O(n2 ×

(
n

n−1
2

)
) has polynomial component of O(n2).

Further, when considering O(
(

n
n
2

)
) or O(

(
n

n−1
2

)
) component, it is observed that, for large n

values,

O(
(

n
n
2

)
) ≈ O(2n

√
n

) (appendix B)

or

O(
(

n
n−1

2

)
) ≈ O(2n

√
n

) (appendix C)

depending on whether union has an even number of individuals, or an odd number of
individuals. Using that complexity value, time complexity for algorithm 3 can be calculated
as below.

O(n2 × 2n

√
n

) = O(n 3
2 × 2n)

O(n 3
2 × 2n) = O(

√
n3 × 2n)

Time complexity of O(
√

n3 × 2n) has O(2n) as the dominant term, for large values of
n. Time complexity O(2n) is considered as an exponential time complexity, because n is
not a constant value ([19]). Since time complexity of O(2n) increases exponentially with
increase of n, it is eligible to use a heuristic or an existing library, when implementing above
algorithm for execution with inputs. Because, there is no specific standard methodology
defined, for creating combinations, as included in above algorithm.

35

Figure below depicts the corresponding boolean circuit for above algorithm.

Figure 3.8: Meeting quorum satisfiability of time slots

3.3.4 Selection of earliest, meeting quorum satisfying time slot

Selecting the earliest, meeting quorum satisfying time slot is not required to find a
solution for our research problem. Because, after identifying the quorum satisfying time slots
by above algorithm, our next objective associated with research problem is to, analyze the
privacy-preserving meeting mode for each meeting quorum satisfying time slot. Therefore,
we introduce this step of selecting the earliest, meeting quorum satisfying time slot, as an
additional step provided by us. Since privacy-preserved meeting organization is a real world
problem, when implementing a usable system for that purpose, this additional step can
be helpful to identify the earliest, eligible time slot for conducting the privacy-preserved
meeting, rather than suggesting numerous eligible time slots.

Algorithm for selecting the earliest, meeting quorum satisfying time slot is explained
below.

36

Algorithm 4 Selection of earliest, meeting quorum satisfying time slot
1: Input: Meeting quorum satisfiability of time slots, in union of time slots
2: Note: Input is produced by processing previous algorithm
3: Output: Earliest, meeting quorum satisfying time slot
4:
5: union of time slots with quorum satisfiability = quorum satisfiability of each time slot,

in (availability(i 1) ∪ · · · ∪ availability(i n)), in the order of precedence
6: earliest eligible time slot = initialization of an empty list type structure, to store whether

each slot is earliest eligible slot or no
7: for each slot x and meeting quorum satisfiability in (union of time slots with quorum

satisfiability) do
8: if slot x is earliest slot in (union of time slots with quorum satisfiability) then
9: store slot x and its meeting quorum satisfiability, in (earliest eligible time slot)

list
10: else
11: previous condition = list to store result of, NOT operation (for each slot currently

stored in (union of time slots with quorum satisfiability) list)
12: previous condition integrated = AND operation (for all slots in (previous

condition) list)
13: whether slot x is earliest meeting quorum satisfying time slot =

((meeting quorum satisfiability of slot x) AND (previous condition integrated))
14: store slot x and (whether slot x is earliest meeting quorum satisfying time slot),

in (earliest eligible time slot) list
15: end if
16: end for
17: Return (earliest eligible time slot) list
18: Note: At Return point, (earliest eligible time slot) list contains true for earliest,

meeting quorum satisfying time slot, and false for all other time slots

Figure 3.9: Selection of earliest, meeting quorum satisfying time slot

In above algorithm, there is a reason to apply a different process on the earliest time
slot in union of time slots, apart from all other time slots in the union. If earliest time
slot in union of time slots satisfies the meeting quorum, then without considering any
pre-condition, it becomes the earliest meeting quorum satisfying time slot. It can be
analyzed by extracting it as a separate condition, like below.

If earliest slot in union of time slots satisfies the meeting quorum, Then
earliest slot is the earliest, meeting quorum satisfying time slot

Else
earliest slot is not the earliest, meeting quorum satisfying time slot

End If

Above condition block is the meaning implied by “If” block, in the condition of the
algorithm. But, if any time slot other than the earliest time slot of union, satisfies the

37

meeting quorum, then it is needed to check an additional condition as well, to identify
whether it is the earliest meeting quorum satisfying time slot or no. Accordingly, following
condition block elaborates the meaning implied by “Else” block of the condition, in above
algorithm.

If any slotx except the earliest slot in union of time slots, satisfies the meeting quorum,
Then

If any earlier slot than slotx does not satisfy the meeting quorum, Then
slotx is the earliest, meeting quorum satisfying time slot

Else
slotx is not the earliest, meeting quorum satisfying time slot

End If
Else

slotx is not the earliest, meeting quorum satisfying time slot
End If

It is observed that, there is a nested “If” condition in “If” block, in above condition
block. Requirement to check this additional condition is the reason for treating earliest time
slot in union of time slots in a different manner, than other time slots, when identifying the
earliest meeting quorum satisfying time slot.

Above algorithm utilizes the meeting quorum satisfiability of each time slot, obtained
by processing previous algorithm. Therefore, When we calculate the time complexity of
above algorithm, we consider that meeting quorum satisfiability information is stored in an
eligible data structure after processing previous algorithm. Otherwise, if we consider these
both algorithms together, time complexity of above algorithm (figure 3.9) and previous
algorithm (figure 3.7) collectively becomes, O(

√
n3 × 2n) at maximum, as explained in time

complexity description of previous algorithm.

But, when meeting quorum satisfiability information obtained from previous algorithm
is stored in an eligible data structure and provided to above algorithm, time complexity
of above algorithm is dominated by “for” loop, and its content. Number of iteration in
this loop can be any positive integer. There is no inner loop, in the “for” loop. But, in
“Else” block of each iteration, “NOT” operation is applied on each time slot, until the
slot which is currently being iterated by “for” loop. Therefore, it is observed that, time
complexity of above algorithm can be O(n2), at maximum. Even though there is an “AND”
operation applied on all time slots, in the “Else” block, it can be neglected, when calculating
time complexity. Because, it is in the parallel level to “NOT” operation, which is already
considered. All other operations within above algorithm are considered as operations having
constant time complexity.

38

Circuit diagram corresponding to above algorithm is depicted below.

Figure 3.10: Selection of earliest, meeting quorum satisfying time slot

3.3.5 Meeting mode selection

After identifying the quorum satisfying time slots, meeting mode of each time slot should
be decided, based on locations of eligible participants. In real world scenario, participants
can be present at numerous locations. However in our research, as it is already mentioned
earlier, only three location types are considered (onsite, remote private and remote public
locations). It is observed that three meeting modes are possible, based on those three

39

locations, as onsite mode, hybrid mode and online mode. Logic for deciding the meeting
mode is depicted by the flow chart below.

Figure 3.11: Logic for selecting the meeting mode

According to the logic, initially we check whether at least two eligible participants are at
onsite locations, during the quorum satisfying time slot. If only one participant is at onsite
location (i.e. onsite office location of meeting organization), or no one is at onsite location,
it means that obviously meeting will be in online mode. But, if at least two participants are
available at onsite location, it is required to check whether at least one participant is not
at the onsite location. If at least one participant is at a remote location in the considered
time slot, meeting will obviously be in hybrid mode. Unless, if at least two participants
are onsite, and at least one participant is not at a remote location (remote private or
remote public), it means that all available participants are at onsite location. It implies
that meeting is in onsite mode.

The algorithm for deciding the meeting mode of a quorum satisfying time slot is explained
below.

40

Algorithm 5 Meeting mode selection
1: Input 1: Eligibility of each participant for meeting, in each time slot
2: Note: Input 1 is produced by processing algorithm 1
3: Input 2: Meeting quorum satisfiability of each time slot, in union of time slots
4: Note: Input 2 is produced by processing algorithm 3
5: Input 3: Whether each meeting participant is at onsite location, in each time slot
6: Output: Whether meeting mode is onsite or hybrid or online
7:
8: for each slot x in (union of time slots) do
9: slot x onsite = initialize an empty list

10: slot x online = initialize an empty list
11: for each participant y with eligibility for meeting status in slot x do
12: participant y slot x onsite = whether participant y is onsite in slot x
13: append to (slot x onsite) list: (eligibility for meeting for participant y) AND

(participant y slot x onsite)
14: append to (slot x online) list: (eligibility for meeting for participant y) AND

NOT(participant y slot x onsite)
15: end for
16: slot x is onsite or hybrid = false
17: onsite combinations of slot x = create all possible combinations of size 2, with items

in (slot x onsite) list
18: for each combination z in (onsite combinations of slot x) do
19: combination z is onsite = apply AND operation between 2 items in combination z
20: slot x is onsite or hybrid = (slot x is onsite or hybrid) OR (combination z is

onsite)
21: end for
22: eligibility of slot x for online mode = (NOT(slot x is onsite or hybrid)) AND

(meeting quorum satisfiability of slot x)
23: slot x is hybrid = false
24: for each participant p in (slot x online) list do
25: slot x is hybrid = (slot x is hybrid) OR (whether participant p is online)
26: end for
27: eligibility of slot x for hybrid mode = (slot x is hybrid) AND {(meeting quorum

satisfiability of slot x) AND (slot x is onsite or hybrid)}
28: eligibility of slot x for onsite mode = (NOT(slot x is hybrid)) AND {(meeting

quorum satisfiability of slot x) AND (slot x is onsite or hybrid)}
29: Return eligibility of slot x for online mode, eligibility of slot x for hybrid mode,

eligibility of slot x for onsite mode
30: Note: At Return point, depending on whether eligible meeting mode is online or

hybrid or onsite, respective variable will be true, and other two variables will be false.
31: end for

Figure 3.12: Meeting mode selection

When considering the algorithm above, it is observed that it obtains multiple outputs
from previous algorithms. In other words, it is impossible to provide inputs required by
this algorithm, without processing previous algorithms. However, since it is not mandatory

41

to execute this algorithm in parallel with previous algorithms, it is possible to calculate the
the time complexity of this algorithm, as below.

In above algorithm, it is observed that there is a nested “for” loop structure. There are
some separate“for” loops, inside the outer loop. Among those “for” loops, the loop iterating
through all possible combinations of two individuals has nCr number of iterations, where n

= number of individuals in union of individuals, and r = 2. Therefore, maximum possible
number of iterations in that particular inner loop can be mathematically calculated as below.

nC2 =
(

n

2

)
= n!

2!(n − 2)!

n!
2!(n − 2)! = n!

2 × (n − 2)!
n!

2 × (n − 2)! = (n − 2)! × (n − 1) × n

2 × (n − 2)!
(n − 2)! × (n − 1) × n

2 × (n − 2)! = (n − 1) × n

2
(n − 1) × n

2 = n2

2 − n

2 = 1
2 × (n2 − n)

∴ nC2 = 1
2 × (n2 − n)

Maximum possible time complexity of “for” loop, which iterates through all possible
combinations of two individuals is O(nCr). Since value of r = 2, and depending on above
calculation, time complexity of this “for” loop can be depicted as below.

O(nC2) = O(
(

n

2

)
) = O(n2 − n)

O(n2 − n) = O(n(n − 1)) = O(n(n))

∴ O(nC2) = O(n2)

In addition, when considering the outer “for” loop together with the inner “for” loop,
that iterates through all possible combinations of two individuals, total time complexity can
be calculated as below. Because, outer loop can iterate through n number of iterations,
where n can be any positive integer.

O(n) × O(nC2) = O(n × (nC2))

O(n × (nC2)) = O(n × n2)

O(n × n2) = O(n3)

Except above discussed inner “for” loop that iterates through combinations, every other

42

inner “for” loop iterates through n number of iterations, where n is any positive integer.
When such a “for” loop is considered together with the outer “for” loop, which also can
iterate thorugh n number of iterations, combined time complexity becomes O(n × n). It can
be simplified as below.

O(n × n) = O(n2)

Accordingly, when those inner “for” loops are considered, since O(n3) > O(n2),
maximum possible time complexity of above algorithm is O(n3). When calculating the time
complexity, data retrieval operations which can be implemented using efficient methods like
dictionaries are considered to have constant time complexities.

The circuit diagram corresponding to the above algorithm is depicted by figure below.

Figure 3.13: Circuit diagram for selecting the meeting mode

43

3.3.6 Simplified version of algorithm on meeting quorum
satisfiability (figure 3.7)

Currently in algorithm 3 (figure 3.7), combinations of participants are created based on
the size of meeting quorum defined as an input. Since that algorithm has an exponential time
complexity, while looking for a heuristic to solve it, it was noticed that same functionality
can be achieved by following algorithm.

In following algorithm, there is an “If” condition, which is not mapped to boolean circuit.
But, when implementing this algorithm using a programming language, it is possible to use
syntax of “If” structure of the relevant programming language.

Algorithm 6 Identifying meeting quorum satisfiability of time slots (Simplified version of
algorithm 3)

1: Input 1: Eligibility of each individual for meeting, in each time slot
2: Note: Input 1 is obtained from output of previous algorithm
3: Input 2: Numerical meeting quorum value
4: Input 3: Availability of each individual in each time slot (at any location)
5: Output: Existence of quorum satisfying time slot/s, for the meeting
6:
7: union of time slots = availability(i 1) ∪ · · · ∪ availability(i n)
8: availability of a meeting quorum satisfying time slot = false
9: quorum satisfiability of slots = initiate an empty dictionary structure

10:
11: for each slot x in (union of time slots) do
12: True count = calculate the number of eligible participants in slot x using Input 1
13: if True count ≥ meeting quorum then
14: meeting quorum satisfiability of slot x = True
15: else
16: meeting quorum satisfiability of slot x = False
17: end if
18: Store (meeting quorum satisfiability of slot x) in (quorum satisfiability of slots)

dictionary
19:
20: (availability of a meeting quorum satisfying time slot) = (availability of a meeting

quorum satisfying time slot) OR (meeting quorum satisfiability of slot x)
21: end for
22: Return (quorum satisfiability of slots) dictionary, (availability of a meeting quorum

satisfying time slot) value

Figure 3.14: Identifying meeting quorum satisfiability of time slots (Simplified version of
algorithm 3 depicted by figure 3.7)

When calculating the time complexity of above algorithm, it can be observed that there is
a “for” loop, which iterates through the number of time slots. In addition, within that “for”
loop, there is a mathematical addition, which calculates the number of eligible participants

44

within each time slot. Since number of time slots can be any positive integer, and since
number of eligible participants in each time slot can be any positive integer, time complexity
is calculated as 0(n × n), which gets simplified into O(n2). Because, all other operations
within the “for” loop are operations of constant time complexity, and exist at parallel level
with mathematical addition. Therefore, those operations can be neglected in time complexity
calculation. Accordingly, maximum possible time complexity of above algorithm is O(n2).

3.4 Analysis on complexity of the problem

3.4.1 Analysis based on time complexity

When above all algorithm segments are considered, it is observed that they do not have to
be executed in parallel to each other. But, since there is an order of proceeding in operations,
five algorithms are supposed to be executed from algorithm 1 to algorithm 5, sequentially.
Therefore, when calculating the maximum possible time complexity of the overall problem,
which has been divided into sub-problems, time complexities of those sub-problems should be
compared. Following table depicts the maximum possible time complexity of each algorithm,
described above.

Algorithm Maximum time complexity

Algorithm 1 (fig. 3.3) O(n2)

Algorithm 2 (fig. 3.5) O(n3)

Algorithm 3 (fig. 3.7) O(
√

n3 × 2n)

Simplified version of algorithm 3 (fig. 3.14) O(n2)

Algorithm 4 (fig. 3.9) O(n2)

Algorithm 5 (fig. 3.12) O(n3)

Table 3.3: Maximum time complexities of algorithm segments in boolean circuit mapping

Above time complexities are calculated for generating the boolean circuit
dynamically, for a particular scenario, based on inputs provided. When above time
complexities are considered, it can be observed that algorithm 1, algorithm 2,
simplifeid version of algorithm 3, algorithm 4 and algorithm 5 have polynomial
time complexities. Because, they have constant values such as 2, 3, as the power of
base n. But in original version of algorithm 3 (figure 3.7), which is implemented using
logic gates entirely, maximum possible time complexity is approximately O(

√
n3 × 2n).

This is a non-polynomial time complexity. Because, its dominant component of 2n

increases exponentially, when value of n increases, with constant base 2. Accordingly, it
can be observed that, when this algorithm containing 5 segments is implemented using
simplified version of algorithm 3, maximum possible time complexity is O(n3), but not

45

O(
√

n3 × 2n).

In above each algorithm segment excluding simplified version of algorithm 3, after
generating the boolean circuit, it takes a polynomial time duration to simplify, for achieving
the output [20]. But, it becomes negligible in comparison to above time durations spent for
generating the boolean circuit. In addition, simplified version of algorithm 3 directly
provides its output within time complexity of O(n2). It means that, our problem is solvable
within polynomial time.

Therefore, it can be concluded that, our problem belongs to P problem
category, which takes polynomial time to solve. Our algorithm including
simplified version of algorithm 3 segment is recommended for solving the problem within
polynomial time, since algorithm 3 has an exponential time complexity.

3.4.2 Analysis on NP-completeness of problem

When related work associated with meeting scheduling problems are considered, most of
them are introduced as NP-complete problems ([2]). NP-complete problems are problems
belonging to both, NP and NP-hard categories ([21]). NP problems are problems that
cannot be solved within a polynomial time duration, like explained earlier.

On the other hand, NP-hard problems cannot be solved during a polynomial time, as
well as usually involve an optimization of variables. In addition, NP-hard problems cannot
be verified within polynomial time. Graph edge coloring problem is a famous NP-hard
problem. Graph edge coloring problem is, finding the number of colors required for coloring
all edges of a graph, such that no two adjacent edges get the same color. Bofill et al have
mapped the Business-to-Business meeting scheduling problem to edge coloring problem,
for showing that it is NP-hard [2]. In our research, attempts to map our problem to an
NP-hard problem like that failed.

Satisfiability problems such as knapsack problem, circuit satisfiability problem, MaxSAT
problem and subset sum problem are considered as famous NP-complete problems.
Therefore, it is possible to prove that any problem is NP-complete, by mapping it to one
of those already known NP-complete problems [21]. Our research problem was mapped to
a boolean circuit as explained earlier, and then was simplified by involving a conditional
block as an intermediate step. Because, pure circuit implementation spends an exponential
time to solve the problem. Even that exponential time version was not mapped to any
NP-complete problem. When pure circuit mapping itself is considered, obviously our
requirement is to find whether privacy preserved meeting is possible or no, when inputs
are known. But, our requirement is not to optimize the inputs of circuit for conducting a
privacy preserved meeting as the output. Therefore, it is concluded that our problem

46

does not belong to NP-complete category.

But, our problem has the possibility to be an NP-complete or NP-hard problem,
if optimization related sub-problems are concerned. As examples, identifying the
privacy-preserved meeting with highest number of participants for discussing a set
of documents, scheduling a series of privacy-preserved meetings, distributing a set of
documents into several meetings such that they can be discussed without violating the
privacy can be cited. Such problems cannot be solved in polynomial time. If they are
analyzed deeply in a future research, sub-problems which spend exponential time even for
verification (NP-hard problems) maybe identified.

As depicted earlier in figure 2.2, NP, NP-hard and NP-complete regions represent the
non-polynomial time solvable problem categories explained earlier. P region represents the
polynomial time solvable problems, which includes our research problem as well.

47

Chapter 4

Implementation

4.1 Implementation of boolean circuit

4.1.1 Choice of technology

As explained earlier, our research problem was mapped to a boolean circuit. And, that
circuit was elaborated as five sequential algorithms, representing consecutive sub-sections of
the entire boolean circuit. Since it is required to show that those algorithms are convertible
to a practical application in real world, a proof of concept was developed in our research [22].
In addition, simplified version of circuit including a conditional block as an intermediate
step also was implemented separately [23].

After analyzing potentially eligible programming languages and technologies, Python was
selected as the programming language for implementing the proofs of concept representing
pure circuit version [22] and simplified version [23] both, explained earlier. Because, in our
analysis, it was noticed that Python has libraries containing built-in functions, executing
the behavior of logic gates. In algorithms explained above, AND, OR and NOT logic
gates are utilized. Therefore, when Python is used to implement above algorithms, it is
not required to simulate the behavior of logic gates by us, since there are built-in Python
functions. When developing the proofs of concept, we used hard coded inputs. When
executing the program for a new scenario, those inputs can be updated easily by editing
the Python code.

In addition, it is required to create mathematical combinations in algorithm 3 (figure
3.7), as explained earlier. In Python, there are libraries containing functions that support
to create such combinations. Because, creating combinations is a problem of exponential
time complexity. After compiling the Python code with a compiler, execution can be done
in a console environment, such as Linux terminal or the console of a suitable Integrated
Development Environment (IDE).

48

4.1.2 Details on technology used for circuit implementation

Following table depicts the the version numbers and other specific details, regarding the
technologies used to implement the programs, as proofs of concept.

Technology Name and version

Programming language Python 3.7.0

Compiler GCC 7.2.0

Library for logic gates Sympy 1.2

Library for mathematical combinations Itertools bundled with Python 3.7.0

Output console Terminal of Ubuntu 22.04.4 LTS

Table 4.1: Technologies used to implement the proofs of concept for algorithms

4.1.3 Overview of the Python programs

Above algorithms are designed to accept the individuals present in groups in access
control lists of documents, including the agenda, as input. Therefore, in these both Python
programs [22] and [23], when defining the access control lists of documents, they should
be defined in terms of singleton sets (i.e. individual participants), instead of aggregate
groups containing multiple individuals. But, public group present in access control list of
any document should not be resolved, since it is required to decide the eligible location
for conducting the meeting. Following example depicts how access control lists should be
defined in the Python program, for documents including the meeting agenda.

doc1 = {"public"}
doc2 = {"i_2", "i_3", "i_4", "i_5", "i_6"}
agenda = {"public", "i_1", "i_2", "i_3", "i_4", "i_5"}

Figure 4.1: Sample code snippet for defining access control lists of documents

In addition, availability of individuals in different time slots, at different locations is
stored in program using a dictionary. Sample section from this dictionary is depicted in the
code snippet below.

49

availability_dictionary = [
{"person": "i_1", "slot": "slot1", "location": "onsite"},
{"person": "i_1", "slot": "slot2", "location": "remote_private"},
{"person": "i_2", "slot": "slot1", "location": "remote_public"}

]

Figure 4.2: Sample code snippet for availability dictionary

Further, meeting quorum also should be defined as an input variable of integer type, in
the program. Following example depicts how to define it, to mention the minimum number
of participants required for conducting the meeting.

meeting_quorum = 3

Figure 4.3: Sample code snippet for defining meeting quorum

When above mentioned inputs are defined by user, all required inputs are present in
both Python programs [22] and [23]. In each Python program, there are five functions
corresponding to five algorithm segments as depicted in table below.

Pure circuit version [22] Simplified version [23]

Algorithm 1 (fig. 3.3) Algorithm 1 (fig. 3.3)

Algorithm 2 (fig. 3.5) Algorithm 2 (fig. 3.5)

Algorithm 3 (fig. 3.7) Simplified version of algorithm 3 (fig. 3.14)

Algorithm 4 (fig. 3.9) Algorithm 4 (fig. 3.9)

Algorithm 5 (fig. 3.12) Algorithm 5 (fig. 3.12)

Table 4.2: Algorithm segments used for two versions of proofs of concept

Each function has parameterized inputs. Some of those inputs are from inputs defined
by user as explained above. In both programs, these five functions are executed in sequential
order, such that some outputs from initial functions are provided to later functions, as
parameterized inputs. Following table depicts the name of Python function in code,
corresponding to each algorithm explained earlier. In addition, output expected from
execution of each function is also mentioned in the table.

50

Function name in code Output of the function

3.3 doc analysis validation Validity of each individual for
meeting, by document analysis

3.5 time slot and participant analysis Validity of each individual, in
each time slot, by analyzing
locations with expected privacy
level for documents

3.7 meeting quorum analysis Meeting quorum satisfiability of
each time slot, by validated
participants

3.14 meeting quorum analysis Meeting quorum satisfiability of
each time slot, by validated
participants

3.9 find earliest eligible slot Earliest privacy preserving and
quorum satisfying time slot for
the meeting

3.12 select meeting mode Meeting mode for each privacy
preserving as well as quorum
satisfying time slot identified

Table 4.3: Python functions corresponding to algorithm segments present in proofs of concept
(# column represents the figure number of algorithm segment, while algorithm segment ‘6’
(figure 3.14) represents the simplified version of algorithm segment ‘3’ (figure 3.7))

As it is described in problem analysis section, algorithm 3 contains an operation to
create mathematical combinations. Since that operation has exponential time complexity
of O(

√
n3 × 2n), it has been implemented using combinations function of itertools library

in Python. Because, there is no specific standard method to create combinations within
polynomial time. Accordingly, it can be stated that, itertools library was used by us, as an
existing heuristic approach to create mathematical combinations.

When each program out of 2 programs is compiled and executed, following outputs are
displayed in the console, as boolean outputs. Please note that values may change depending
on the input. But, format of output will be as explained below.

Participant validity by doc analysis:
{‘i_2’: True, ‘i_4’: True, ‘i_6’: False, ‘i_1’: False,
‘i_5’: True, ‘i_3’: True}

Figure 4.4: Output depicting participants validated by document analysis

In above output, true or false states whether each individual is validated by analyzing

51

access control lists of documents, including the agenda document as well. If an individual
has no access to all the documents discussed in the meeting, particular individual will be
marked as false.

Time Slot: slot1
slot1_i_2_eligibility: True
slot1_i_4_eligibility: True
slot1_i_6_eligibility: False
slot1_i_1_eligibility: False
slot1_i_5_eligibility: False
slot1_i_3_eligibility: True

Figure 4.5: Output depicting eligibility of each participant in a time slot, based on analysis
of location with required level of privacy for documents

Above section of output displays the eligibility of each individual to attend the meeting,
in each time slot. To decide the eligibility of an individual in a certain time slot, algorithm
analyzes the location of that individual, with the expected level of privacy for documents
in the meeting.

Slot: slot1 - Quorum Satisfiability: True
Slot: slot2 - Quorum Satisfiability: True
Slot: slot3 - Quorum Satisfiability: True
Slot: slot4 - Quorum Satisfiability: False

Figure 4.6: Output depicting meeting quorum satisfiability of each time slot

Above section of output states whether each time slot satisfies the meeting quorum,
by having enough number of participants at privacy preserving locations, according to the
expected level of privacy for documents in the meeting.

Slot 1 eligibility as earliest slot: True
Slot 2 eligibility as earliest slot: False
Slot 3 eligibility as earliest slot: False
Slot 4 eligibility as earliest slot: False

Figure 4.7: Output depicting earliest privacy preserving time slot for the meeting

In above section of output, that depicts the earliest quorum satisfying time slot for
meeting, only one slot is supposed to have true value. Because, once after identifying a
quorum satisfying time slot among all the time slots arranged in sequential order, algorithm

52

4 (figure 3.9) marks all other time slots after the identified time slot as, false. If no quorum
satisfying time slot is present, all time slots will be marked as false, since it is impossible
to identify an earliest eligible time slot.

Slot1:
Eligibility online: False
Eligibility hybrid: False
Eligibility onsite: True

Figure 4.8: Output depicting meeting mode for each privacy preserving time slot identified

Above section of output depicts the eligible meeting mode for conducting the meeting,
in each time slot. Algorithm 5 (figure 3.12) is designed such that more than one meeting
mode cannot be activated (cannot be true) for a particular time slot. If a time slot is not
suitable to conduct a privacy preserving meeting with equal or more number of participants
than the meeting quorum value, all three meeting modes will get false for that time slot,
to display that meeting should not be conducted in particular time slot.

In overall, above overview describes the inputs, outputs and behavior of the Python
programs, implemented as proofs of concept, associated with algorithms explained earlier.
In our research, those algorithms are converted to the Python code such that maximum
possible time complexities identified do not get exceeded.

4.1.4 Application of the Python program

Python programs developed by us as proofs of concept are available in GitHub ([22] and
[23]). There are comments in the programs, for easily understanding its content. They can
be cloned and executed by anyone in an environment supporting Python 3.7.0 version. Input
sections can be edited before each execution, to observe the variation of result. Variation of
results in different scenarios is explained with more details in the section below at 5.1.

4.1.5 Extension of the Python program

In addition to simple implementations explained above as the proofs of concept, extended
versions of both Python programs were developed by us. Regarding them, [24] is the
extended version of pure boolean circuit implementation [22], while [25] is the extended
version of simplified version [23]. Each extended version has the capability to include
aggregate participant groups, rather than only singleton sets, in access control lists of
documents. Because, these extended versions contain the functionality of resolving aggregate
participant groups, into their constituent participants. In addition, if a specific numerical
meeting quorum is not defined as input, extended versions consider that all participants (the
individuals defined as singleton sets and individuals after resolving aggregate participant

53

groups except the “public” group) invited by agenda are required for the meeting. These
extended versions are available in GitHub ([24] and [25]).

participant_groups = {
"group_a": {"i_1", "i_2", "i_3"},
"group_b": {"i_2", "i_3", "i_4"},
"group_c": {"i_1", "i_5", "i_6", "i_7", "i_8"}

}

Figure 4.9: Definition of aggregate participant groups

For example, when aggregate participant groups are defined as above, and access(agenda)
is defined as below, then extended versions resolve access(agenda) into its individual
participants.

agenda = {"public", "group_a", "i_4", "i_5"}

Figure 4.10: Definition of access(agenda)

Extended versions resolve above access control list into following format. And this
group resolving functionality is valid not only for agenda document, but also for any other
document.

agenda = {"public", "i_1", "i_2", "i_3", "i_4", "i_5"}

Figure 4.11: Format of access(agenda), after resolving aggregate participant groups

In this scenario, if any numerical meeting quorum is not defined as input, extended
versions consider that meeting quorum = 5, since there are five individuals in
access(agenda), after resolving the groups.

4.2 System Design

4.2.1 Computational Complexity and Scope of Implementation

We identified earlier that our meeting scheduling problem belongs to the class of P
problems. This means it can be solved efficiently using deterministic algorithms within
polynomial time. Our system implementation is therefore entirely based on this problem
classification and the hypotheses we have formulated, ensuring that the solution remains
within the scope of tractable, real-time computation.

54

Our implementation, as explained in the following sections, is fully grounded in this
theoretical foundation and tailored to address the practical aspects of a decision support
system for meeting scheduling.

4.2.2 Technology Selection and Integration Feasibility Study

Before implementing the system, we conducted a comprehensive feasibility study to
identify the most suitable tools and platforms for integrating our meeting scheduling
decision support system. The goal was to ensure seamless interoperability with widely used
scheduling ecosystems while maintaining robust access control, data privacy, and participant
context-awareness.

Why Google Workspace?

After evaluating multiple scheduling solutions and cloud platforms, we identified Google
Workspace as the most appropriate ecosystem for our system. The decision was influenced
by the following key requirements:

• Document Storage and Access Control: Since our system deals with
meeting-related documents and agendas, along with their associated access
permissions, a secure and flexible document storage platform was essential. Google
Drive emerged as the most viable option due to its ability to:

– Support document sharing with both individual users and Google Groups.

– Offer detailed sharing settings, including view-only or editing permissions.

– Integrate with Google Groups, allowing group-based permissioning that simplifies
access control for larger teams.

Thus, Google Drive and Google Groups were selected for managing document storage
and access resolution.

• Calendar-based Participant Context and Availability: A core requirement of
our system is to retrieve each participant’s availability and working location in hourly
time slots. Google Calendar proved to be the most effective tool for this purpose.
However, different versions of Google Calendar offer varying levels of functionality:

– Google One and personal Google Calendars support basic sharing but lack
contextual metadata such as location labels and availability types.

– Google Workspace Calendar, on the other hand, provides advanced features
including:

∗ Location tagging (e.g., Work, Home, Remote Public) using custom or
predefined labels.

55

∗ Calendar statuses such as Available, Out of Office, and Focus Time,
which are crucial for realistic and privacy-aware scheduling.

Therefore, Google Workspace Calendar was identified as the most suitable
choice for our implementation, due to its superior capabilities in capturing
and managing participant context.

However, this option introduced a significant constraint: access to these advanced
features requires an enterprise-level Google Workspace account with admin
privileges, which involves monetary costs and organizational setup that exceeded our
current project scope.

Practical Implementation Decision

Due to the financial limitations of accessing Google Workspace, we proceeded with
implementation using personal Google Calendar accounts. Although these lack some
advanced context features (e.g., location tagging and status labels), they still support
shared calendars and basic availability tracking, which allowed us to demonstrate the core
functionality of our decision support system effectively.

Conclusion of Feasibility Study

In conclusion, the integration of Google Drive, Google Groups, and Google
Calendar—adapted for our environment—forms the backbone of our system architecture.
Each platform was selected to fulfill a specific functional requirement:

• Google Drive: Document storage and permission management.

• Google Groups: Simplified group-based sharing and access resolution.

• Google Calendar (personal): Hourly availability and scheduling feasibility with
locations.

While Google Workspace remains the ideal long-term platform for deployment, our
implementation with personal Google services serves as a valid and practical proof-of-concept
for the proposed scheduling model.

4.3 System Implementation

This section describes the implementation of our Decision Support System (DSS), which
integrates Google Workspace services—namely Google Drive, Google Groups, and Google
Calendar—to support informed decision-making in the context of meeting organization and
access control. Our system assists users in evaluating key parameters such as participant
availability, document confidentiality, and access permissions before proposing feasible

56

meeting arrangements.

The system’s objective is to aid decision-makers in coordinating meetings that align with
both organizational policies and contextual constraints, such as privacy requirements and
collaborative roles. By extracting and analyzing structured data from Google Workspace,
the system provides a comprehensive overview of the resources and participants involved,
empowering users to make transparent, privacy-aware, and logistically feasible scheduling
decisions.

Integration with Google Drive

Google Drive serves as the primary repository for all meeting-related documents,
including the meeting agenda and any supporting materials discussed during the meeting.
Each document within the shared folder is associated with metadata that specifies its
confidentiality level—either public or private. In addition, the access permissions for each
file are governed by Google Drive’s native sharing settings, which define access at both
the individual and group levels. These groups are managed via Google Groups, enabling
role-based or team-based access control. The agenda file itself also includes a confidentiality
label that reflects the overall privacy classification of the meeting.

Utilization of Google Groups

Google Groups is employed to manage collective access permissions efficiently. Instead
of manually specifying access for each participant, users can assign documents to predefined
groups (e.g., engineering team, project managers, external reviewers), allowing streamlined
control over who can view or edit specific documents. This also enhances scalability and
consistency in access control policies.

Integration with Google Calendar

Google Calendar is used to track employee availability and working locations. The
calendar data is organized into one-hour time slots, where each slot contains availability
status and work location details for individual employees. This structured calendar data
enables the scheduling algorithm to make informed decisions based on when participants are
free and whether they are working remotely or onsite.

4.3.1 Scheduling Workflow

The scheduling process begins when a user provides a link to a Google Drive folder. This
folder contains the meeting agenda and associated documents. The system parses each file
to extract access permissions and confidentiality labels, enabling it to determine who should
be included in the meeting. The agenda’s confidentiality label dictates the sensitivity of
the meeting as a whole. Combined with calendar data and group membership information,

57

the system automatically identifies appropriate time slots and manages secure access to all
relevant materials.

4.3.2 Participant Determination Logic

To determine valid meeting participants, the system follows a structured four-step logic:

1. Document Access Resolution

• Each document in the provided Google Drive folder may be shared with individual
users or with Google Groups.

• For documents shared with groups, the system queries its internal database to
resolve each group into its individual members.

• This ensures that all access permissions are evaluated at the individual user level.

2. Intersection/Union Computation Based on Confidentiality

• If all documents are labeled as public, the system takes the union of all users
who have access to any document.

• If any document is labeled as private, the system computes the intersection of
users who have access to all documents.

• This step ensures appropriate access control based on document sensitivity.

3. Agenda-Based Filtering

• The resulting participant set from the previous step is further intersected with
users who have access to the agenda file.

• This ensures that all final participants are authorized to access both the meeting
documents and the agenda.

4. Minimum Participation Check

• The final participant list must contain at least two users.

• If fewer than two eligible participants are found, the meeting is considered invalid
and is not scheduled.

4.3.3 Quorum Identification

In many organizational contexts, meetings require a minimum number of participants (a
quorum) to proceed with decision-making. Our system provides flexible support for quorum
identification as follows:

1. Optional Quorum Requirement

• The user can specify whether a quorum is required for the meeting.

58

• If quorum is not required, the system proceeds with the full list of eligible
participants determined in the previous step.

2. User-Defined Quorum Value

• If quorum is required, the user inputs the minimum number of participants
needed.

• This value is used as a threshold for evaluating available time slots.

3. Validation Against Available Participants

• During availability computation, the system checks each potential time slot to
ensure that the number of available participants meets or exceeds the quorum.

• Time slots that do not satisfy the quorum requirement are excluded from final
recommendations.

4.3.4 Time Slot Identification

After identifying valid participants and setting quorum (if required), the system
determines feasible meeting time slots. This process considers participant availability,
working location, meeting type (public or private), and a user-defined date range. The
steps involved are as follows:

1. Date Range Selection

• The user begins by specifying a feasible date range for the meeting.

• This range defines the window within which the system searches for valid time
slots.

2. Calendar Data Retrieval

• The system fetches scheduled events for each selected participant within the
specified date range by querying their Google Calendars.

• Each event represents a one-hour time slot and includes the participant’s
availability for that time period, along with a location attribute.

3. Location Categorization

• The system maintains each participant’s home and work locations in its database.

• Each 1-hour time slot in the date range is analyzed and classified into one of the
following location categories:

– Onsite: Participant is at their recorded work location.
– Remote Private: Participant is at their home location.
– Remote Public: Participant is at any other location.

59

4. Meeting Type Consideration

• For public meetings, participants in any location (onsite, remote private, or remote
public) are eligible.

• For private meetings, only participants in onsite or remote private locations are
considered, to uphold confidentiality.

5. Quorum Validation (if required)

• If quorum is specified, the system checks each time slot to ensure that the number
of available participants meets or exceeds the quorum.

• Time slots that do not satisfy this condition are discarded.

6. Final Time Slot Compilation

• After applying all constraints — date range, permissions, availability, meeting
type, quorum, and location — the system compiles a list of valid time slots.

• These are presented to the user as scheduling recommendations.

4.3.5 Privacy-Preserving Slot Selection via Average Security
Score

To promote secure and privacy-conscious meeting environments, the system evaluates
each valid time slot using an Average Security Score metric. This score quantifies the privacy
level of a meeting based on the working locations of its participants.

Location Scoring Each participant’s working location is mapped to a predefined numeric
score reflecting its privacy level:

• Work (Most Secure): 1

• Home: 2

• Remote Public (Least Secure): 3

Computation Method For each time slot where the meeting quorum is satisfied:

1. Filter the list of participants involved in that time slot.

2. Map each participant’s location label to its numeric score.

3. Compute the average of these scores using the formula:

Average Security Score =
∑n

i=1 si

n

where si is the score for the ith participant and n is the number of participants in the
slot.

60

Example Consider a time slot with three participants:

Participant Location
A Work (1)
B Home (2)
C Remote Public (3)

The Average Security Score is computed as:

1 + 2 + 3
3 = 2.0

Interpretation

• A lower score indicates a more secure meeting environment.

• Among feasible time slots, the one with the lowest Average Security Score is
recommended to preserve participant privacy.

61

Chapter 5

Results of Execution

5.1 Results of execution of Python programs

When considering the results of Python programs, both programs including the pure
boolean circuit [22] and simplified version of boolean circuit [23] generate the same results,
when inputs are same. Because, they both fulfill the same functionality, following different
algorithms. Therefore, in this section of analyzing results, hereafter both versions are
generally referred as “program”.

As explained in code overview (section 4.1.3), program contains three inputs including
the access control lists of documents, availability details of individuals in time slots
(availability dictionary) and the meeting quorum. When these inputs are edited and
program is executed, it can be observed that output changes. Possible outputs of the
program can be summarized as below.

62

Figure 5.1: Possible results of program execution

In addition, though each negative output shows the end of process in above diagram
for simplicity, when considering the boolean circuit, processing does not stop abruptly in
that manner. Instead of stopping, after a reaching a certain negative output, all remaining
outputs also become negative (false), in boolean circuit. Three negative outputs identified
in the program execution are listed below.

• Algorithm 1: Only one or no valid participants

• Algorithm 2: No time slot with 2 or more valid participants

• Algorithm 3: No quorum satisfying time slot is present

Accordingly, for reaching a positive output which means that meeting can be conducted,
none of above three negative outputs should be encountered in program execution. In other
words, if program approaches at least one negative output among above three, then it is
impossible to conduct the particular meeting as a privacy preserving meeting.

In our research, we have considered variation of output with changes in input, to check
whether they validate our hypothesis. After breaking down possible outputs of algorithm
segments as depicted above, sections of output supporting to validate the hypothesis were
analyzed. Here, it is needed to note that, some sections of output are not required to

63

validate the hypothesis. Such sections were introduced by us, as additional contributions,
to enhance the quality of research outcome.

5.2 Results of execution of public platform based
implementation

This section outlines the functioning and practical results of the proposed system after
deployment. The system acts as a decision support tool for privacy-aware meeting scheduling
by integrating multiple Google Workspace services. The complete workflow of the application
is illustrated in the architecture diagram (see figure 5.2).

64

Figure 5.2: System Architecture Overview

5.2.1 Execution Flow Overview

The system’s execution begins when a user submits a Google Drive folder link containing
meeting-related documents and an agenda file. The system then performs the following key
steps:

1. Access Resolution and Participant Identification: It parses document
permissions (individual and group-based), resolves Google Groups into users, and
applies confidentiality rules (union or intersection logic based on document privacy) to
determine the eligible participant set.

2. Quorum Validation (Optional): If the user specifies a required quorum, the system
filters out slots that do not meet the minimum participant count.

65

3. Date Range Filtering: Users select a desired date range, which restricts the
scheduling search to relevant time windows.

4. Availability and Location Retrieval: The system queries Google Calendar for each
eligible participant to obtain their hourly availability and working location within the
selected range.

5. Time Slot Matching: Based on the meeting type (public or private), the system
evaluates each slot for whether all (or any) participants are simultaneously available,
satisfying quorum and location constraints.

6. Privacy-Aware Scoring: For every feasible slot, an Average Security Score is
computed based on participant location types (Work, Home, or Remote Public), aiding
in selection of the most privacy-preserving option.

7. Final Output: The system outputs a ranked list of valid time slots, highlighting the
slot with the lowest average security score as the most suitable choice. Metadata such
as participant emails, locations, and score breakdowns are included for transparency.

5.2.2 Outcome and Usability

The application efficiently streamlines the decision-making process around scheduling
secure and inclusive meetings. It offloads the cognitive burden of manually verifying access,
balancing participation, ensuring confidentiality, and aligning availability—making it highly
practical in collaborative, privacy-sensitive work environments.

The successful execution demonstrates how contextual integration of Drive, Calendar,
and Groups can power robust decision support for modern scheduling scenarios.

66

Chapter 6

Evaluation

6.1 Foundation of evaluation

In our research, as our contribution, initially entities in privacy-preserving meeting
context were defined formally, using standard notations. After that, using those formal
definitions as the foundation, research problem was mapped to a boolean circuit for
analyzing it easily. Specially for analyzing the complexity of the problem, boolean circuit
was depicted in algorithmic representation. Time complexity of the problem was calculated
by considering the quantity of input variables and loops present in that algorithmic
representation.

Since it was not possible to solve the problem within polynomial time using pure
boolean circuit, a simplified version of the algorithm was developed. In this version, only
one algorithm segment is different, out of five algorithm segments present in pure boolean
circuit.

After that, we implemented algorithmic representation of pure boolean circuit and
its simplified version both, using Python. And then outputs of the Python programs
were manually checked, by setting the inputs. Those results were cross-validated with
the outputs of algorithms, to ensure that implemented Python programs align with the
algorithms. Then possible results of the execution of Python programs regarding selection
of eligible participants, eligible time slot and eligible meeting mode, were discussed. And,
we highlighted when a negative output showing that a privacy-preserved meeting is not
possible will be delivered. These results were discussed, considering the segments of the
algorithms, for aligning with the algorithmic level analysis of the problem.

Later, an analytical investigation (section 6.2) was conducted on results obtained by
execution of Python programs. This investigation is for showing how segments of algorithm
contribute to validate the hypothesis built in the beginning of research. Further a sample
data set (section 6.3) was introduced to observe the variation of results in Python program
execution. Since we have published our Python program implementation and this sample

67

dataset in GitHub, anyone can test to check the validity.

Using existing public platforms such as Google-API, a simple system was implemented
to prove that privacy-preserved meeting organization is practically viable. Therefore, it
can be confirmed that, this is not limited to a theoretical concept. But, this is a practical
approach, which can be improved further in future, to organize privacy-preserved meetings
in practical context.

Accordingly, it is observed that there is a flow of logically related steps in this research,
which started from basic set of definitions, and was developed up to a practical application
that can be tested by anyone. Therefore, it can be determined that, there is no mismatch
in intermediate steps, followed in this research.

68

Figure 6.1: Flow of logically related steps in our contribution of research

6.2 Analytical investigation on the results of algorithm

When algorithm 1 (figure 3.3) is considered, its output shows whether each individual is
allowed to discuss all documents included in the meeting. In this case, we consider having
at least two valid participants as the positive output, since at least two participants are
required for conducting a meeting. This decision is made by analyzing the access control
lists of documents associated with the meeting, including the meeting agenda. Following
flow chart depicts the process within algorithm 1 (figure 3.3), to generate the expected
output.

69

Figure 6.2: Participant validation by document analysis in algorithm 1

Output of algorithm 2 (figure 3.5) shows whether each individual is allowed to discuss
all documents of the meeting, in each time slot. As discussed in problem analysis section,
to make this decision, program checks whether at least one private document is present
in meeting. If at least one private document is present, an individual present at a public
location in a certain time slot is not allowed to attend this meeting, in that time slot.
However, whether a document is private or public (by presence of “public” group), is stated
in the access control list of the document. Following flow chart depicts the process within
algorithm 2 (figure 3.5), to generate the expected output.

70

Figure 6.3: Deciding eligibility of each individual in algorithm 2

By observing these two segments of flow chart connected by a connector, it can be
understood that access control lists of documents play a vital role as an essential input, to
decide the eligible meeting participants. It means that, “Meeting participant selection
is primarily dominated by the access control lists of the documents presented
including meeting agenda” expression is validated by analyzing the process within
algorithm 1 and algorithm 2 collectively, as in above flow chart segments.

After identifying the eligibility of each individual to attend the meeting in each time
slot, next result expected from the program is whether each time slot satisfies the meeting
quorum. Though meeting quorum is not relevant to privacy of meeting data, it is an

71

important feature in meeting domain, to determine whether minimum required number
of participants is present in meeting. In our research, algorithm 3 (figure 3.7) and
simplified version of algorithm 3 (figure 3.14) enhance the quality of research outcome,
by checking whether each time slot satisfies the meeting quorum, with enough eligible
meeting participants, for a privacy-preserved meeting. In other words, our requirement is
to satisfy the meeting quorum, without violating the privacy of meeting data. Accordingly,
identification of quorum satisfying time slots as well, depends on access control lists of
documents of the meeting. Meeting quorum value should be be defined by user as an input,
in program.

After identifying quorum satisfying time slots, it is required to identify the earliest
one among them. If there are more than one quorum satisfying time slots, algorithm 4
(figure 3.9) selects the earliest one among them. If only one time slot satisfies the meeting
quorum, it becomes the earliest one. However, since algorithm 4 (figure 3.9) depends on
algorithm 3 depicted by figure 3.7 (or simplified version of algorithm 3 depicted by
figure 3.14), it can be stated that, outcome of algorithm 4 (figure 3.9) indirectly depends
on access control lists of documents. Result of algorithm 3 depicted by figure 3.7 (or
simplified version of algorithm 3 depicted by figure 3.14) and alogorithm 4 (figure 3.9)
do not support to validate the hypothesis, since these two algorithms do not focus on
privacy of meeting data.

After quorum satisfying time slots are identified by algorithm 3, algorithm 5 decides
the privacy-preserving meeting mode for each of such time slots, by analyzing the locations
of eligible participants. Every quorum satisfying time slot belongs to one meeting mode out
of three modes—onsite, online and hybrid. Essential input required to generate the meeting
mode of a time slot as output, is the available location of every eligible participant, in the
particular time slot. The logic for selecting the meeting mode is discussed in “meeting mode
selection” (3.3.5) section of problem analysis.

Accordingly, when logic used for meeting mode selection is analyzed, it can be observed
that locations of participants decide the meeting mode of a particular time slot. Therefore,
“the choice of meeting mode depends on the participants’ locations.” phrase of
hypothesis is validated by algorithm 5 (figure 3.12). In ensemble, it can be concluded that,
hypothesis is validated by our algorithm.

6.3 Relationship between input and the result

To observe the way how relationship between input and output supports the hypothesis
as explained above, a sample data set has been designed. That sample data set is available
in GitHub [26]. The data set has been designed such that availability dictionary is same for
all scenarios. Only access control lists of documents and meeting quorum are changed, for

72

observing the variation of output. There are comments in the data set, for applying data
in either of two programs (pure boolean circuit [22] or simplified version [23]) conveniently,
by a user. However, since our data set is not an exhaustively large data set, anyone can
extend this data set to include more scenarios, and execute the program to observe how
result changes from scenario to scenario. To validate the analytical investigation of result
presented by us above, it is required to observe whether results align with the hypothesis,
in each execution.

73

Chapter 7

Conclusion

In modern organizations, scheduling meetings is not just about finding a common time
slot. It is about ensuring that the right people are in the right place, with the right access,
and under the right constraints. Traditional scheduling systems fall short when privacy
of meetings comes into play. This research began with the central problem: How can
we create a privacy-preserved meeting scheduling model that respects document access
permissions, adapts to participant locations, and selects the appropriate mode (virtual,
physical, or hybrid), all while preserving the privacy of the meeting? We proposed a novel
framework that integrates access control logic (via document ACLs) and participant location
constraints to determine both participant eligibility and suitable meeting modes (physical,
virtual, or hybrid). Our work aimed to provide a practical, efficient, and privacy-aware
solution that moves beyond traditional time-slot matching.

Our literature review uncovered a fragmented research landscape. While several
constraint-based models—such as MIP, CP, and SAT-based methods as used in [2] have
been successfully used for structured scheduling tasks, these approaches often lack real-time
adaptability and do not inherently preserve privacy.

Adaptive models like Genetic Algorithms (GAs) and Theory of Constraints (TOC) as
used in [13] offer flexibility but suffer from high computational costs and lack mechanisms
to safeguard sensitive participant data. On the other hand, privacy-centric distributed
models such as DCOP and DVCSP as used in [11] enhance confidentiality and user
privacy but struggle with scalability and optimality, particularly in high-density participant
environments. Our literature review highlighted how early research using computational
geometry achieved notable efficiency but did not account for privacy. Techniques like
Cube-and-Conquer as used in [17] and Soft Conflict Pseudo Boolean (SPB) constraints
from SAT and MaxSAT as used in [2] research have pushed the boundaries in constraint
satisfaction and adaptability. However, these still do not fully resolve the inherent conflict
between speed and meeting privacy. We can clearly see that a consistent limitation emerges
here. No existing framework adequately balances scheduling efficiency, flexibility, and
privacy.

74

Recognizing this research gap, our solution introduced a hybrid model that integrates
access control-based participant filtering, location-aware scheduling, and agenda
sensitivity-based meeting mode resolution. Technically, we began by modeling the
core logic of the problem using Boolean circuits to assess complexity and isolate exponential
components. We then transitioned it to a polynomial-time algorithm, which replaced the
non-scalable parts while preserving logical integrity. Our final complexity analysis placed
the overall problem in class P, enabling practical, real-world use.

To validate the feasibility of our approach, we developed a working prototype in Python,
integrated with Google Calendar APIs to simulate real-world deployment. This prototype
successfully demonstrated our model’s ability to automate participant selection, enforce
access-based eligibility, and determine appropriate meeting modes while ensuring privacy
boundaries of the meeting.

While our contributions mark a step forward, a critical analysis reveals areas for growth:

• We assumed document ACLs are well-structured and that user location data is
available and reliable. However, in real-world organizational systems, these inputs are
often inconsistent, outdated, or incomplete. This assumption limits the generalizability
of our current solution.

• Our prototype was evaluated in a controlled environment with a limited
number of participants and documents. Its performance in large-scale enterprise
environments—where constraints are highly dynamic—remains untested. Further
benchmarking is needed to assess its robustness and responsiveness under load.

• While our focus was on constraint satisfaction and feasibility, we did not address
multi-objective optimization such as minimizing schedule conflicts or maximizing
participation diversity. Future iterations could include optimization metrics and
support for soft constraints.

• The user-facing component of our prototype remains basic. A practical scheduling tool
must be not only functionally correct but also user-friendly, offering intuitive interfaces,
visual explanations of scheduling logic, and flexible override mechanisms.

Our work directly addresses the gap highlighted in the literature: the absence of
integrated, privacy-preserving, and computationally feasible scheduling models. Unlike
prior approaches that optimize either efficiency or privacy, but not both, we provide a path
for balanced integration.

75

In conclusion, our research provides the groundwork for a new class of smart,
privacy-conscious scheduling systems. We have shown that it is possible to reconcile
access control, location-awareness, and agenda sensitivity within a scalable framework.
Yet, realizing the full vision requires extending our model to be dynamic, adaptive, and
human-centered. At the end of this research, we believe we have taken an important first
step toward building practical, intelligent, and privacy-aware scheduling systems. We are
convinced that the future of scheduling lies not in isolated improvements to optimization
techniques or user interfaces, but in integrated, context-aware solutions that reflect how
people actually collaborate securely in a flexible way, and often across physical and virtual
boundaries. We also recognize that our contribution is part of a much broader evolution in
scheduling research. The field is shifting from static rule-based systems toward adaptive,
personalized, and policy-driven automation. Our work contributes to this trajectory by
showing that such a shift is not only possible, but computationally achievable. Going
forward, we are excited about extending this work in several directions such as scaling it
across organizations, integrating predictive models, and improving user interaction to realize
the full vision of smart, privacy-conscious scheduling as a service.

76

Chapter 8

Limitations and Future Work

As privacy-preserved meeting organization is a relatively less-explored research area,
this work required a thorough investigation into existing meeting organization techniques
and related literature. Prior to formulating our approach, we conducted an in-depth study
to ensure that no existing solutions effectively addressed the privacy aspects in meeting
scheduling. This foundational understanding not only helped shape the direction of our
research but also highlighted the novelty and relevance of our contribution. There are
certain limitations in our current work, and several promising directions remain open for
future exploration.

One notable limitation of our research lies in the practical implementation aspect,
specifically in the integration of Google Workspace services. Although we intended to
incorporate Google Workspace in a more advanced and comprehensive manner to enhance
the usability and scalability of the application, we were constrained by the associated costs
of accessing and utilizing the full range of Google APIs and enterprise-level services. As
a result, the current implementation is limited to a simpler version that demonstrates the
core functionalities without leveraging the complete potential of the Google Workspace
ecosystem. Future work may address this limitation by exploring funding opportunities or
alternative platforms with similar capabilities.

Another limitation in our research lies in the simplification of participant location
categorization. For the sake of implementation feasibility and conceptual clarity, all
participant locations were broadly classified into three main categories: onsite, remote
private, and remote public. While this categorization was sufficient for our proposed model,
it does not fully capture the complexity of real-world scenarios, where accurately identifying
and verifying participant locations can be a challenging task due to factors such as mobility,
dynamic availability, and privacy concerns. Mostly a real-time location verification method
may be required for practical deployment in diverse and dynamic environments.

An additional limitation of this research is the absence of a real-world survey involving
meeting participants from various organizations to better understand their perceptions of

77

privacy in the context of meeting data. While such a survey could have provided valuable
insights into practical privacy concerns and user expectations, conducting it proved to
be challenging. The primary reason was the general reluctance of individuals to disclose
sensitive details about their meetings, which raised concerns about participant engagement
and the reliability of any results obtained. Consequently, the our research relies more on
theoretical and technical assumptions regarding privacy, rather than empirical evidence
drawn from organizational settings.

As a study situated within the information systems domain, this research was designed
with a strong emphasis on demonstrating the practical applicability of its results. To
this end, we were motivated to develop a working application using publicly available
platforms, which serves as a proof of concept for the proposed privacy-preserved meeting
organization framework. However, the development and integration effort required for this
implementation placed significant demands on the research timeline. As a result, we were
unable to allocate sufficient time for a formal verification of the problem mapping process.
Formal verification is essential to ensure the correctness and consistency of the theoretical
model and its mapping to computational constructs. Therefore, a comprehensive formal
verification remains an open task and is recommended as future work to validate and
potentially refine the current problem formulation.

In this research, we have shown that the proposed problem is solvable in polynomial
time, using a Boolean circuit-based approach to model the constraints and decision logic.
While effective, this method may not be the most optimized in terms of computational
efficiency. There is potential for exploring alternative polynomial-time approaches such
as graph-based models and integer programming that may yield more efficient or scalable
solutions. Therefore, identifying and evaluating such alternative methods remains a
promising direction for future work.

In this research, we focused on organizing a meeting based on a given set of documents,
assuming that all documents need to be discussed within a single session. However, in
real-world scenarios, it may not always be feasible to cover all materials in one meeting due
to privacy contraint emphasized by us. In addition, there can be many other meeting related
constraints such as time constraints, participant availability, and document complexity.
In such cases, it becomes necessary to intelligently divide the documents across multiple
meetings, while still preserving privacy of meeting data included in documents. This
introduces an additional layer of complexity, transforming the problem into an optimization
challenge. Solving this would require a detailed analysis of document access permissions
and participant roles. A heuristic or metaheuristic-based approach could be effective for
addressing this challenge, especially in large-scale or dynamic settings. Therefore, this
extension represents a meaningful and practical future research direction.

78

Another promising direction for future work is to extend the privacy-preserved meeting
organization problem by incorporating additional real-world constraints that were not
addressed in the current study. For instance, meeting precedence—where certain meetings
must occur before others due to dependency in topics or decision-making processes—is a
common scheduling requirement in organizational settings. Additionally, the number of
available onsite physical locations can significantly impact scheduling feasibility, especially
when accommodating hybrid or in-person meetings with space limitations. These types
of constraints introduce new layers of complexity, requiring more advanced constraint
satisfaction or optimization techniques. Relevant work in the literature, such as that by
Bofill et al. [2], has explored constraint optimization problems involving similar real-world
conditions, but without a focus on privacy preservation. Integrating such constraints into
the privacy-preserved framework could enhance the practicality and applicability of the
solution, making it more adaptable to diverse organizational needs.

In our research, the concept of meeting quorum is introduced as an additional constraint
to ensure that a minimum required number of participants are available to attend the
meeting within a given time slot. This basic quorum check serves as a foundational
requirement for ensuring that the meeting has sufficient representation to be meaningful
and productive. However, this constraint can be further refined by considering not only
the overall minimum number of participants but also the inclusion of essential participants
whose presence is critical for the success or purpose of the meeting. In some cases,
certain participants may hold key roles, such as decision-makers or subject matter experts,
whose absence could render the meeting ineffective, regardless of the overall quorum. By
incorporating such “must-have” participants into the quorum check, we can ensure that
meetings are not only numerically sufficient but also functionally viable. This improvement
would lead to a more robust and realistic model for meeting scheduling and participant
allocation, making it another promising avenue for future research.

As part of our research, we developed a simple application using Google APIs to
demonstrate the practical applicability of our privacy-preserved meeting organization
solution. This prototype serves as a proof of concept, validating the feasibility of the
approach while ensuring privacy protection. However, this initial version is basic and
focused on core functionalities. Future work could involve developing a more advanced
application with enhanced features, such as refined privacy controls, integration with
additional platforms, improved user interfaces, and better scalability to support larger
organizations and more complex meeting scenarios.

Therefore, it can be said that our research represents a pioneering initiative in the
relatively under-explored domain of privacy-preserved meeting organization. By addressing

79

the intersection of meeting organization and privacy concerns, our work introduces new
perspectives and methodologies in a field that has received limited attention in the literature.
This research not only lays the groundwork for future advancements in secure and efficient
meeting management but also opens up new avenues for integrating privacy preservation
with organizational processes, which could have significant implications for industries where
confidentiality and data security are paramount.

80

References

[1] J. Jo, Y. Chae, H. Jang, and J. Kong, “Federated-access management system and
videoconferencing applications: Results from a pilot service during covid-19 pandemic,”
Electronics, vol. 10, p. 2239, 09 2021.

[2] M. Bofill, C. Coll, M. Garcia, J. Giraldez-Cru, G. Pesant, J. Suy, and M. Villaret,
“Constraint solving approaches to the business-to-business meeting scheduling
problem,” Journal of Artificial Intelligence Research, vol. 74, pp. 263–301, 2022.
Accessed 29-01-2025, https://dl.acm.org/doi/pdf/10.1613/jair.1.12670.

[3] G. Golkarnarenji and U. Ali, “A study of it personnel awareness on video conferencing
security,” tech. rep., Department of Computer Science, Electrical and Space
Engineering, Lule̊a University of Technology, 2012. Accessed: 2025-03-06, https:
//www.academia.edu/3056220/Unified_Communications_Security_A_study_of_
IT_personnel_awareness_on_video_conferencing_security_recommendations.

[4] A. Culafi, “Microsoft ai researchers mistakenly expose 38 tb
of data,” TechTarget, September 2023. Accessed: 2025-03-02,
https://www.techtarget.com/searchsecurity/news/366552399/
Microsoft-AI-researchers-mistakenly-expose-38-TB-of-data.

[5] M. Ozer, Y. Kose, G. Kucukkaya, and E. Varlioglu, “The shifting landscape of
cybersecurity: The impact of remote work and covid-19 on data breach trends,” IEEE
Computer Science and Computer Engineering (CSCE), 2024. Accessed: 2025-03-06,
https://arxiv.org/html/2402.06650v2.

[6] M. Bispham, S. Creese, W. Dutton, P. Esteve-Gonzalez, and M. Goldsmith,
“Cybersecurity in working from home: An exploratory study,” SSRN Electronic
Journal, 2021. Accessed: 2025-03-06, https://www.researchgate.net/publication/
353661008_Cybersecurity_in_Working_from_Home_An_Exploratory_Study.

[7] R. Jennings, “Zoom fails grow: 530,000 passwords leaked, details for sale
by hacker,” 2021. Accessed: 2025-03-06, https://techbeacon.com/security/
zoom-fails-grow-530000-passwords-leaked-details-sale-hacker.

[8] S. Salloum, T. Gaber, S. Vadera, and K. Shaalan, “Phishing email detection
using natural language processing techniques: A literature survey,” Procedia

81

https://dl.acm.org/doi/pdf/10.1613/jair.1.12670
https://www.academia.edu/3056220/Unified_Communications_Security_A_study_of_IT_personnel_awareness_on_video_conferencing_security_recommendations
https://www.academia.edu/3056220/Unified_Communications_Security_A_study_of_IT_personnel_awareness_on_video_conferencing_security_recommendations
https://www.academia.edu/3056220/Unified_Communications_Security_A_study_of_IT_personnel_awareness_on_video_conferencing_security_recommendations
https://www.techtarget.com/searchsecurity/news/366552399/Microsoft-AI-researchers-mistakenly-expose-38-TB-of-data
https://www.techtarget.com/searchsecurity/news/366552399/Microsoft-AI-researchers-mistakenly-expose-38-TB-of-data
https://arxiv.org/html/2402.06650v2
https://www.researchgate.net/publication/353661008_Cybersecurity_in_Working_from_Home_An_Exploratory_Study
https://www.researchgate.net/publication/353661008_Cybersecurity_in_Working_from_Home_An_Exploratory_Study
https://techbeacon.com/security/zoom-fails-grow-530000-passwords-leaked-details-sale-hacker
https://techbeacon.com/security/zoom-fails-grow-530000-passwords-leaked-details-sale-hacker

Computer Science, vol. 189, pp. 19–28, 2021. Accessed: 2025-03-06, https://www.
sciencedirect.com/science/article/pii/S1877050921011741.

[9] Condeco, “How to decide who should attend your meeting?,”
2024. Accessed: 2025-03-06, https://www.cnbc.com/2021/08/01/
zoom-reaches-85-million-settlement-over-user-privacy-and-hacker-zoombombing.
html.

[10] T. Tsuruta and T. Shintani, “Scheduling meetings using distributed valued constraint
satisfaction algorithm.” No publication year available.

[11] F. Enembreck and J.-P. A. Barthès, “Distributed constraint optimization with mulbs:
A case study on collaborative meeting scheduling,” Journal of Network and Computer
Applications, vol. 35, no. 1, pp. 164–175, 2012. Accessed: 2025-03-06, https://www.
sciencedirect.com/science/article/pii/S1084804511000543.

[12] F. Berger, R. Klein, D. Nussbaum, J.-R. Sack, and J. Yi, “A meeting scheduling problem
respecting time and space,” Geoinformatica, vol. 13, no. 4, pp. 453–481, 2009. Accessed:
2025-03-06, https://doi.org/10.1007/s10707-008-0053-4.

[13] V. V. Peteghem and M. Vanhoucke, “A genetic algorithm for the preemptive
and non-preemptive multi-mode resource-constrained project scheduling problem,”
European Journal of Operational Research, vol. 201, no. 2, pp. 409–418, 2010.
Accessed: 2025-03-06, https://www.sciencedirect.com/science/article/pii/
S037722170900191X.

[14] J. Zheng, Z. Chen, C.-M. Li, and K. He, “Rethinking the soft conflict pseudo boolean
constraint on maxsat local search solvers,” arXiv preprint, 2024. Accessed: 2025-03-06,
https://arxiv.org/abs/2401.10589.

[15] E. M. Goldratt, “What is this thing called theory of constraints and how should it be
implemented?,” 1984. Accessed: 2025-03-06, https://www.academia.edu/7095271/
Theory_of_Constraints_Eliyahu_M_Goldratt.

[16] D. Golmohammadi, “A study of scheduling under the theory of constraints,”
International Journal of Production Economics, vol. 165, pp. 38–50, 2015.
Accessed: 2025-03-06, https://www.sciencedirect.com/science/article/pii/
S0925527315000833.

[17] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer: Guiding
cdcl sat solvers by lookaheads,” in Hardware and Software: Verification and Testing
(K. Eder, J. Lourenço, and O. Shehory, eds.), vol. 7261 of Lecture Notes in Computer
Science, pp. 50–65, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

82

https://www.sciencedirect.com/science/article/pii/S1877050921011741
https://www.sciencedirect.com/science/article/pii/S1877050921011741
https://www.cnbc.com/2021/08/01/zoom-reaches-85-million-settlement-over-user-privacy-and-hacker-zoombombing.html
https://www.cnbc.com/2021/08/01/zoom-reaches-85-million-settlement-over-user-privacy-and-hacker-zoombombing.html
https://www.cnbc.com/2021/08/01/zoom-reaches-85-million-settlement-over-user-privacy-and-hacker-zoombombing.html
https://www.sciencedirect.com/science/article/pii/S1084804511000543
https://www.sciencedirect.com/science/article/pii/S1084804511000543
https://doi.org/10.1007/s10707-008-0053-4
https://www.sciencedirect.com/science/article/pii/S037722170900191X
https://www.sciencedirect.com/science/article/pii/S037722170900191X
https://arxiv.org/abs/2401.10589
https://www.academia.edu/7095271/Theory_of_Constraints_Eliyahu_M_Goldratt
https://www.academia.edu/7095271/Theory_of_Constraints_Eliyahu_M_Goldratt
https://www.sciencedirect.com/science/article/pii/S0925527315000833
https://www.sciencedirect.com/science/article/pii/S0925527315000833

[18] A. Popescu, S. P. Erdeniz, A. Felfernig, M. Uta, M. Atas, V. M. Le, K. Pilsl,
M. Enzelsberger, and T. Tran, “An overview of machine learning techniques in
constraint solving,” Journal of Intelligent Information Systems, vol. 58, no. 1,
pp. 91–118, 2022.

[19] C. P. Pfleeger, “Chapter 3: Security encryption systems,” in Security in Computing,
Second Edition (C. P. Pfleeger, ed.), ch. 3, pp. 69–76, Upper Saddle River, NJ: Prentice
Hall, 2 ed., 1996.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Fourth Edition. MIT Press, 2022. Accessed: 2025-04-04,
https://books.google.lk/books/about/Introduction_to_Algorithms_fourth_
editio.html?id=HOJyzgEACAAJ&redir_esc=y.

[21] W. L. Hosch, “P versus NP problem — Complexity Theory & Algorithmic Solutions
— Britannica — britannica.com,” 2024. Accessed 29-01-2025, , https://www.
britannica.com/science/P-versus-NP-problem.

[22] T. Akmeemana, “sympy solver.py,” 2025. Accessed: 2025-02-07, https:
//github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_
SOLVERS/sympy_solver/final_version/sympy_solver.py.

[23] T. Akmeemana, “sympy solver simplified.py,” 2025. Accessed: 2025-02-07,
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/
BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified.py.

[24] T. Akmeemana, “sympy solver with group resolver.py,” 2025. Accessed: 2025-03-08,
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/
BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_with_group_
resolver.py.

[25] T. Akmeemana, “sympy solver simplified with group resolver.py,” 2025. Accessed:
2025-03-08, https://github.com/Thejana-A/IS-4101-git/blob/master/python_
code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified_
with_group_resolver.py.

[26] T. Akmeemana, “Circuit result analysis data set,” 2025. Accessed:
2025-02-07, https://github.com/Thejana-A/IS-4101-git/blob/master/latex/
CircuitResultAnalysis_DataSet.

[27] U. of Wollongong, “Permutations & combinations hsc revision,” 2025. Accessed:
2025-02-26, https://documents.uow.edu.au/content/groups/public/@web/@eis/
@maas/documents/mm/uow168693.pdf.

83

https://books.google.lk/books/about/Introduction_to_Algorithms_fourth_editio.html?id=HOJyzgEACAAJ&redir_esc=y
https://books.google.lk/books/about/Introduction_to_Algorithms_fourth_editio.html?id=HOJyzgEACAAJ&redir_esc=y
https://www.britannica.com/science/P-versus-NP-problem
https://www.britannica.com/science/P-versus-NP-problem
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_with_group_resolver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_with_group_resolver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_with_group_resolver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified_with_group_resolver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified_with_group_resolver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/python_code/BOOLEAN_SOLVERS/sympy_solver/final_version/sympy_solver_simplified_with_group_resolver.py
https://github.com/Thejana-A/IS-4101-git/blob/master/latex/CircuitResultAnalysis_DataSet
https://github.com/Thejana-A/IS-4101-git/blob/master/latex/CircuitResultAnalysis_DataSet
https://documents.uow.edu.au/content/groups/public/@web/@eis/@maas/documents/mm/uow168693.pdf
https://documents.uow.edu.au/content/groups/public/@web/@eis/@maas/documents/mm/uow168693.pdf

[28] U. of Newcastle, “Permutations and combinations,” 2021. Accessed: 2025-02-26,
https://www.newcastle.edu.au/__data/assets/pdf_file/0004/819139/
Permutations-and-Combinations.pdf.

[29] W. L. Hosch, “Stirling’s formula,” 2025. Encyclopedia Britannica, Accessed: 2025-03-05,
https://www.britannica.com/science/Stirlings-formula.

84

https://www.newcastle.edu.au/__data/assets/pdf_file/0004/819139/Permutations-and-Combinations.pdf
https://www.newcastle.edu.au/__data/assets/pdf_file/0004/819139/Permutations-and-Combinations.pdf
https://www.britannica.com/science/Stirlings-formula

Appendices

85

A Maximum value of nCr

The following proof shows that nCr is maximum when r = n
2 or r ≈ n

2 .
(

n

r

)
= n!

(n − r)!r!(
n

r + 1

)
= n!

(r + 1)!(n − r − 1)!(
n
r

)
(

n
r+1

) =
n!

(n−r)!r!
n!

(r+1)!(n−r−1)!(
n
r

)
(

n
r+1

) =
n!

(n−r−1)!(n−r)r!
n!

r!(r+1)(n−r−1)!(
n
r

)
(

n
r+1

) =
n!

(n−r−1)!(n−r)r!
n!

r!(r+1)(n−r−1)!
= r + 1

n − r

Therefore, when (n
r)

(n
r+1)

< 1,
r + 1
n − r

< 1

r + 1 < n − r

r <
n − 1

2

When (n
r)

(n
r+1)

= 1,
r + 1
n − r

= 1

r + 1 = n − r

r = n − 1
2

When (n
r)

(n
r+1)

> 1,
r + 1
n − r

> 1

r + 1 > n − r

r >
n − 1

2
According to definition of nCr in mathematics, n is a positive integer (n ∈ Z+), r is a

non-negative integer (r ∈ (Z+ ∪ {0})), and n ≥ r ([27], [28]).
∴ For r = n−1

2 to be satisfied, n must be an odd integer.

When n is an odd integer, the variation of the magnitude of nCr can be graphically
depicted as below, based on the above calculations.

86

Figure 1: Variation of nCr for different r values, when n is an odd integer

By analyzing that graph, it can be proven that nCr is maximum when r ≈ n
2 . Because,

n
2 is not an integer, when n is odd. (n

2 ≈ n−1
2 and n

2 ≈
(

n−1
2

)
+ 1)

When considering values from 0 to n for r, in nCr, the following symmetric pattern
is observed.

nC0 =
(

n

0

)
= n!

(n − 0)!0!(
n

n − 0

)
= n!

(n − 0)!(n − (n − 0))! = n!
(n − 0)!0!

∴

(
n

0

)
=
(

n

n − 0

)

nC1 =
(

n

1

)
= n!

(n − 1)!1!(
n

n − 1

)
= n!

(n − 1)!(n − (n − 1))! = n!
(n − 1)!1!

∴

(
n

1

)
=
(

n

n − 1

)

nC2 =
(

n

2

)
= n!

(n − 2)!2!

87

(
n

n − 2

)
= n!

(n − 2)!(n − (n − 2))! = n!
(n − 2)!2!

∴

(
n

2

)
=
(

n

n − 2

)

It means that,
(

n
r

)
=
(

n
n−r

)
. But, in that pattern, when n is an even number, and r = n

2

is reached, following observation is noticed.

r = n

2
n − r = n − n

2 = n

2

∴

(
n
n
2

)
=
(

n

n − n
2

)

It means that, value of
(

n
r

)
when r = n

2 is available only for r = n
2 . Because, r = n − r.

Based on previous inequalities, following relationships are present for even n values.
When (n

r)
(n

r+1)
< 1,

r <
n − 1

2
Since n−1

2 < n
2 ,

r <
n − 1

2 <
n

2

When (n
r)

(n
r+1)

> 1,

r >
n − 1

2
When n is an even integer, the variation of the magnitude of nCr can be graphically
depicted as below, based on the above factors.

88

Figure 2: Variation of nCr for different r values, when n is an even integer

In ensemble, it is concluded that,
(

n
r

)
is maximum when r = n

2 or r ≈ n
2 .

B Time complexity of
(n

n
2

)
for large n values

n! ≈
√

2πn
(

n

e

)n

(By Stirling’s approximation, [29]) ⇒ 1

∴
(

n

2

)
! ≈

√
2πn

2

(
n

2e

)n/2
⇒ 2(

n
n
2

)
= n!

(n
2)!(n − n

2)! = n!
(n

2)!(n
2)! (By nCr combination)

n!
(n

2)!(n
2)! ≈

√
2πn

(
n
e

)n

√
2πn

2

(
n
2e

)n
2 ·
√

2πn
2

(
n
2e

)n
2

(By 1 and 2)

n!
(n

2)!(n
2)! ≈

√
2πn

(
n
e

)n

πn
(

n
2e

)n

n!
(n

2)!(n
2)! ≈

√
2πn · nn

en
· 2nen

πnnn

∴
n!

(n/2)!(n/2)! ≈
√

2
πn

· 2n

It means that,
(

n
n
2

)
≈
√

2
πn

· 2n

∴ O(
(

n
n
2

)
) ≈ O(2n

√
n

)

89

C Time complexity of
(n

n−1
2

)
for large n values

In
(

n
n−1

2

)
, when 2m + 1 is substituted for n, and m is substituted for n−1

2 ,
(

n
n−1

2

)
=
(

2m + 1
m

)
(

2m + 1
m

)
= (2m + 1)!

(m + 1)!m! (By nCr combination) ⇒ 1

(
2m + 1
m + 1

)
= (2m + 1)!

(m + 1)!m! (By nCr combination) ⇒ 2

(2m + 1)!
(m + 1)!m! = (2m + 1)! × (2m + 2)

(m + 1)!m! × (2m + 2)
(2m + 1)! × (2m + 2)

(m + 1)!m! × (2m + 2) = (2m + 2)!
(m + 1)!m! × 2(m + 1)

(2m + 2)!
(m + 1)!m! × 2(m + 1) = (2m + 2)!

2 × (m + 1)!(m + 1)!
(2m + 2)!

2 × (m + 1)!(m + 1)! = 1
2 × (2m + 2)!

(m + 1)!(m + 1)!
1
2 × (2m + 2)!

(m + 1)!(m + 1)! = 1
2 ×

(
2m + 2
m + 1

)
= 1

2 ×
(

2(m + 1)
m + 1

)
⇒ 3

By considering 2 and 3, (
2m + 1
m + 1

)
= 1

2 ×
(

2(m + 1)
m + 1

)

∴ O(
(

2m + 1
m + 1

)
) = O(

(
2(m + 1)

m + 1

)
) ⇒ 4

By 1 and 2, (
2m + 1
m + 1

)
= (2m + 1)!

(m + 1)!m! =
(

2m + 1
m

)

∴ O(
(

2m + 1
m + 1

)
) = O(

(
2m + 1

m

)
) ⇒ 5

Accordingly by 4 and 5,

O(
(

2m + 1
m

)
) = O(

(
2(m + 1)

m + 1

)
)

90

By above proof B,

O(
(

2(m + 1)
m + 1

)
) ≈ O(22(m+1)√

2(m + 1)
)

When 2(m+1) is considered as an integer n,

O(22(m+1)√
2(m + 1)

) ≈ O(2n

√
n

)

∴ O(
(

n
n−1

2

)
) ≈ O(2n

√
n

)

91

	Declaration
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Problem Statement
	Research Questions
	Goals and Objectives
	Goals
	Objectives

	Research Approach
	Scope and Assumptions
	Scope
	Assumptions
	Hypothesis

	Contribution

	Literature Review
	Introduction
	Background of literature survey
	Literature survey and identified research gap
	Introduction to literature survey
	Research Gap

	Key Findings
	Limitations, and Conflicts
	How the Literature Review impacts our research

	Methodology
	Overview on methodology
	Formal definition of entities
	Basic definitions
	Access Control List
	Meeting agenda
	Definition of a meeting
	Transformation of individual into role
	Difference between public and private roles
	Roles in meeting agenda
	Variation of role
	Participants in access control lists of non-agenda documents
	Meeting participant validation
	Privacy-preserved meeting
	Meeting quorum

	Problem mapping and analysis
	Participant validation based on documents
	Eligibility of each individual, in each time slot, for meeting
	Meeting quorum satisfiability
	Selection of earliest, meeting quorum satisfying time slot
	Meeting mode selection
	Simplified version of algorithm on meeting quorum satisfiability (figure 3.7)

	Analysis on complexity of the problem
	Analysis based on time complexity
	Analysis on NP-completeness of problem

	Implementation
	Implementation of boolean circuit
	Choice of technology
	Details on technology used for circuit implementation
	Overview of the Python programs
	Application of the Python program
	Extension of the Python program

	System Design
	Computational Complexity and Scope of Implementation
	Technology Selection and Integration Feasibility Study

	System Implementation
	Scheduling Workflow
	Participant Determination Logic
	Quorum Identification
	Time Slot Identification
	Privacy-Preserving Slot Selection via Average Security Score

	Results of Execution
	Results of execution of Python programs
	Results of execution of public platform based implementation
	Execution Flow Overview
	Outcome and Usability

	Evaluation
	Foundation of evaluation
	Analytical investigation on the results of algorithm
	Relationship between input and the result

	Conclusion
	Limitations and Future Work
	References
	Appendices
	Maximum value of n C r
	Time complexity of ()nn2 for large n values
	Time complexity of ()nn-12 for large n values

