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1. Abstract

Multipath TCP (MPTCP) is an extension of the traditional Transmission Con-

trol Protocol (TCP) that enables simultaneous use of multiple network paths

between two endpoints, offering improved resilience, throughput, and resource

utilization. While existing MPTCP implementations perform well in homoge-

neous environments, their behavior in heterogeneous networks, particularly when

subflows have different Path Maximum Transmission Units (MTUs) remains un-

derexplored. This research investigates the impact of varying subflow MTUs on

MPTCP throughput using a controlled emulation environment. Experimental

analysis reveals that the default Linux MPTCP implementation fails to utilize sub-

flows with smaller MTUs effectively, primarily due to limitations in the Path MTU

Discovery (PMTUD) mechanism and a unified Maximum Segment Size (MSS) ap-

proach. Kernel-level modifications were introduced to enable MTU probing on a

per-subflow basis, allowing dynamic MSS adjustment and improved subflow uti-

lization. Results demonstrate a notable improvement in throughput and path

diversity post-modification, highlighting the importance of MTU-aware schedul-

ing and adaptive probing techniques. The findings suggest potential directions for

enhancing MPTCP performance in heterogeneous environments and contribute to

the ongoing development of more robust multipath communication protocols.
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2. Introduction

In the past, end hosts were usually only connected to the Internet through one

interface. Each interface was given a unique IP address that all host interactions

went through. However, the modern Internet doesn’t work like this model used

to. Devices like computers and tablets now have more than one interface and both

wired and wireless interfaces, making Ethernet and Wi-Fi connections possible.

Similarly, smartphones now have more than one interface. Even in specialized

places like data centers, where many servers talk to each other for tasks like data

replication and distributed computing, a fast network is necessary. This is why

redundant infrastructure is used to spread traffic across multiple paths and make

the network more resilient in case a link or node fails.

The Internet Engineering Task Force (IETF) standardized the Multipath Trans-

mission Control Protocol (MPTCP). It gives the application layer a single TCP

(Transmission Control Protocol) (Eddy 2022) connection and allows two hosts to

use several Internet paths efficiently (Ford et al. 2020). The idea behind Multipath

TCP, or MPTCP, was to solve these problems. The goals that went into making

MPTCP are these:

• It should work with current programs just like regular TCP.

• It should be able to use more than one network path for a single connection.

• Normal TCP shouldn’t have to struggle to find enough network paths, so it

should be able to use them at least as well

Because of Multipath TCP, a host can support a single TCP connection through

more than one interface and address. By combining all the available resources,

Multipath TCP can improve the service that the apps receive in terms of speed

and reliability. To find losses and see if each path is working right or not, the
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Figure 2.1: Multiple Path for Communication

sender has to quickly and accurately measure the Round-Trip Time (RTT) num-

bers for each path. It takes milliseconds to measure the RTT, which is the time

it takes to send a data packet and receive a signal acknowledging that it was sent

(Paasch et al. 2014).

The efficiency of MPTCP is dependent upon the packet scheduler. A sched-

uler allocates the packets to the available pathways. Incorrect scheduling decisions

can decrease MPTCP performance in both homogeneous and heterogeneous net-

works, causing reduced throughput and longer download times. The presence of

heterogenous paths results in a higher number of packets being delivered out of

order, which subsequently leads to the problem of Head of Line (HOL) blockage,

caused by limitations in the receiver’s window. An improved packet scheduler

will utilize all available paths to minimize the occurrence of out-of-order packets,

hence enhancing throughput and performance

The Maximum Transmission Unit (MTU) is the largest packet size that can be

sent over a network path without needing fragmentation. When a host wants to

send data across an interface, it consults the MTU of the interface to determine the

maximum amount of data that can be included in each packet. Ethernet ports

typically feature a default MTU of 1500 bytes, excluding the Ethernet header

or trailer. as well as most datacenter networking hardware, can support jumbo

frames which is 9000 bytes (Julaihi 2011). In practice, when a host wants to

transmit a TCP data stream, it would usually allocate the initial 20 bytes out

3



Figure 2.2: Path MTU

of the total 1500 bytes for the IP header, the subsequent 20 bytes for the TCP

header, and utilize the remaining 1460 bytes for the data payload as required. By

encapsulating data in packets of maximum size, it minimizes the consumption of

bandwidth caused by protocol overhead.

Path MTU (Figure 2.2) discovery is the method used to determine the smallest

possible MTU of the link that a packet may traverse (Mogul & Deering 1990).

To optimize the use of a path, hosts need to determine the path MTU, which

corresponds to the MTU of the link between the sender and receiver. In a normal

TCP connection, if a packet encounters an intermediate link with a lower MTU,

the router handling that link will drop the packet and notify the sender to adjust

its segment size. For example, if two hosts communicate over a path where an

intermediate link has an MTU of 512 bytes while the host supports 1600 bytes,

both hosts must adopt the smaller MTU (512 bytes) to prevent fragmentation

(Custura et al. 2018).
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3. Motivation

Implementing Multipath TCP (MPTCP) with heterogeneous subflows presents

significant challenges. Achieving optimal performance with MPTCP necessitates

near-homogeneous network conditions across all subflows (Adarsh et al. 2019). To

maximize the potential of MPTCP, it needs to adopt a comprehensive view of

each path performance, which should include, at a minimum, considerations of

path Maximum Transmission Unit (MTU).

Unfortunately, not all links which compose the Internet have the same MTU.

Different paths may have different MTUs due to variations in the underlying

physical media type or configured encapsulation (Asiri 2021). If the packet size

exceeds the MTU of link or interface, then it must be fragmented into smaller

pieces to transmit it as two (or more) individual pieces, each within the link.

Fragmentation is a costly process since it requires the use of hardware resources

and extra bandwidth (Feng et al. 2022). This is because new headers must be

created and attached to each fragment.

In MPTCP implementation, the MTU of each subflow is not directly considered

when scheduling packets across subflows. This consideration is unnecessary in

homogeneous environments where all subflows have the same MTU, as they can

use that consistent value directly (Asiri 2021). By considering the path MTU

sizes of each subflow (Figure 3.1), when making scheduling decisions, it may be

possible to improve the efficiency of packet scheduling across subflows, thereby

increasing the overall performance and throughput of MPTCP in heterogeneous

network environments.
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Figure 3.1: Two subflows having different path MTU
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4. Aims and Objectives

4.1 Aim

The aim of this research is to investigate how Multipath TCP (MPTCP) behaves

across subflows with varying Path MTU values, analyze the resulting performance

implications, particularly in terms of throughput and explore enhancements to

overcome limitations in the current implementation. The ultimate objective is to

ensure seamless data delivery, maintain uninterrupted communication, and achieve

efficient multipath communication.

4.2 Objectives

• Emulate MPTCP Behaviour: Set up MPTCP with multiple subflows, each

having varying path MTU values, using current implementations to analyze

its behaviour under these conditions.

• Analyze Path MTU Variations: Measure throughput to examine how differ-

ent path MTU values across subflows impact overall MPTCP performance.

• Throughput Evaluation: Assess the throughput performance of MPTCP

when operating over subflows with different path MTU values, comparing it

against standard TCP to highlight differences.

• Identify Performance Bottlenecks: Analyze and identify any performance

bottlenecks or inefficiencies in MPTCP when managing subflows with dif-

fering path MTUs.

• Optimization Techniques: If bottlenecks or inefficiencies are identified, ex-

plore potential optimization techniques to enhance MPTCP performance

with varying path MTU values.
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• Evaluate Enhancements: Measure and compare the performance of MPTCP

before and after the implementation of the proposed optimization techniques.

• Assess Implementation Limitations: Evaluate the challenges and limitations

of the current MPTCP implementation in achieving the desired outcomes

and performance improvements.
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5. Literature Review

Different path MTUs in subflows mean that data should be sent in different sizes

on each path, depending on the specific subflow. Consequently, each path must

process a different Maximum Segment Size (MSS) based on its MTU, excluding

headers such as TCP and IP. This results in the scheduler needing to handle seg-

ments of different sizes. If the MSS is the same for each segment, then the network

layer must decide on fragmentation to send data through subflows with both large

and small path MTUs. The lager datagram received from the transport layer

cannot be sent via small path MTU subflow, there is an additional fragmenta-

tion process that needs to be done and resulting that fragmentation overhead and

might affect performance as well. Efficient scheduling has the ability to decrease

head-of-line blocking and latency, especially in heterogeneous environments, al-

lowing streaming applications to minimize the buffer requirement. However, it

remains unclear how different path MTU subflows should take into account for

scheduling packets across them. Furthermore, there is no analysis of throughput

in such an environment. Current techniques do not emphasize the involvement

of managing subflows with different path MTUs and the selection of appropri-

ate MSS values for sending data in each subflow. Examples of existing packet

scheduling techniques are Min-RTT, FPS and DPSAF. Min-RTT is the default

schedular in current MPTCP implementation on Linux which selects the path

with the lowest RTT. FPS predicts scheduling values without considering packet

loss or bandwidth. DPSAF adjusts scheduling based on packet loss rates and TCP

SACK feedback but ignores bandwidth. It uses a more complex analyzing model

that involves a significant level of computational complexity (Maxwell 2023). The

default path manager and scheduler focus more on balancing load and optimizing

latency rather than MTU-specific optimizations. Unlike RTT and bandwidth, the

integration of MTU considerations has not been thoroughly explored in literature.
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By addressing this gap, it may be possible to achieve more efficient, reliable, and

high-performance data transmission in heterogeneous situations of the network.

Studies could focus on,

Fragmentation Overhead: When packets are larger than the path MTU of a

subflow, they must be fragmented. This adds additional processing overhead at

both the sender and receiver.

Suboptimal Resource Utilization: Using a fixed path MTU may cause some

paths to be underutilized if their actual MTU is higher than the used one, leading

to inefficiencies in bandwidth usage.
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6. Research Questions

This research aims to understand the performance and behavior of Multipath

TCP (MPTCP) in heterogeneous network environments where subflows exhibit

different Path Maximum Transmission Units (MTUs). The following research

questions guide the investigation:

1. How does Multipath TCP (MPTCP) adjust to subflows with different Path

MTU (PMTU) values and improve packet scheduling to enhance network

performance compared to standard TCP?

2. What impact does fragmentation overhead have on subflow packet schedul-

ing in the context of different Path MTU values?

11



7. Significance of the Research

In today’s increasingly heterogeneous network environments where devices often

have simultaneous access to Wi-Fi, Ethernet, cellular, or other networks—MPTCP

offers the potential for improved resilience, bandwidth aggregation, and seamless

failover. However, for MPTCP to realize these benefits effectively, it must be able

to adapt to the diverse characteristics of each subflow, including differences in

Path MTU.

The significance of this research lies in its focus on a critical yet underexplored

aspect of MPTCP: how it manages subflows with different MTU values. Standard

implementations typically assume uniform path characteristics, which can lead to

inefficiencies when subflows traverse links with varying MTUs. This mismatch

may result in underutilization of available paths, increased fragmentation, packet

loss, or even complete subflow neglect—factors that degrade overall throughput

and reliability.

By analyzing and modifying the behavior of MPTCP with respect to per-

subflow MTU awareness and adaptive probing, this research contributes valuable

insights into improving path utilization. From a systems and networking per-

spective, the findings provide practical implementation guidance for improving

the Linux kernel’s MPTCP stack. By enabling MTU probing at the socket level

and dynamically adjusting the MSS, this work not only addresses existing kernel

limitations but also introduces a path for future enhancements.

In real-world applications such as mobile devices, cloud infrastructure, and

edge computing, where networks are inherently heterogeneous, the ability to fully

utilize all available paths despite their MTU differences is crucial. Enhanced

MPTCP behavior in such scenarios can lead to better user experiences (e.g., faster

file transfers, smoother video streams), improved load balancing, and greater en-

ergy efficiency in mobile and embedded systems.
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Moreover, this research opens new avenues for further study, including the

design of MTU-aware congestion control and cross-layer optimization strategies.

As next-generation networks increasingly rely on multi-interface communication

(e.g., 5G, IoT, and vehicular networks), robust and adaptive multipath transport

protocols will become even more essential.

In summary, the research addresses a practical performance gap in current

MPTCP implementations, delivers kernel-level solutions for improved subflow uti-

lization, and provides a foundation for more adaptive and efficient transport-layer

behavior in diverse networking environments.
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8. Planned Research Approach

This exploratory research investigates the performance of Multi-Path TCP when

subflows have different path MTUs. To achieve this, the research will follow these

steps:

• Setup Testing Environment: Establish a controlled testing environment to

emulate network conditions with different path MTU values across the dif-

ferent subflows.

• Run Tests: Execute the test scenarios using MPTCP to observe behavior

under different path MTU configurations.

• Analyze Results: Collect and analyze the data from the tests to identify

existing MPTCP scheduling techniques to understand their approach to

scheduling packets among subflows with different path MTUs.

• Correlate Path MTU Impact: Determine the correlation between subflows

with different path MTU values and overall throughput, assessing how vari-

ations affect MPTCP performance.

• Performance Evaluation: Compare the performance of MPTCP under sub-

flows with different path MTU conditions with that of standard TCP to

evaluate efficiency and reliability.
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9. Scope

9.1 In Scope

• Analyze the existing MPTCP scheduling algorithms: Assess the current

MPTCP implementations and their ability to handle subflows with different

path MTUs.

• Comparative Analysis: This study aims to evaluate and contrast the effi-

ciency of Multipath TCP with normal TCP in comparable circumstances. It

will specifically highlight situations in which MPTCP demonstrates notable

benefits. In addition, the study will evaluate the resilience and flexibility of

MPTCP in response to changes in different network conditions.

• Emulation and Lab Testing: Conduct emulations to model various path

MTU configurations, followed by real-world tests to validate these emulation

results and gather empirical data. Diverse testing environments, including

lab setups and live network conditions, will be utilized to ensure a com-

prehensive evaluation of MPTCP’s performance over subflows have different

path MTU.
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9.2 Out Scope

• Non-MTU Related Scheduling factors: This research will not thoroughly

explore other aspects that affect scheduling, such as the allocation of band-

width, path reliability, or cost considerations, unless they are directly related

to MTU challenges.

• Detailed Congestion Control Mechanisms: Although congestion control is

a critical aspect of MPTCP performance, this research will not focus on

developing new congestion control algorithms. Existing mechanisms will be

used as a basis for evaluating MTU-aware scheduling.

• Security and Encryption Concerns: While security is crucial for any network

protocol, this research will not address specific security or encryption issues

related to MPTCP, unless they directly impact MTU handling.

• Non-TCP Multipath Protocols: The study will be limited to MPTCP and

will not cover other multipath protocols such as Multipath QUIC or SCTP.

• Application on All Platforms: The main focus will be on how MPTCP works

on Linux. This study does not cover changes that need to be made for other

operating systems or for custom hardware solutions.
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10. Experiments and Findings

This section presents a comprehensive account of the experiments conducted to in-

vestigate how varying path MTU settings influence the performance of Multipath

TCP (MPTCP). It encompasses all aspects of the study from network topology

design and experimental setup to kernel-level observations and performance mea-

surements. Particular attention is given to the behaviour of MSS negotiation,

the functioning and limitations of Path MTU Discovery (PMTUD), and fallback

mechanisms triggered under constrained conditions. Together, these findings of-

fer critical insights into the impact of heterogeneous MTU paths on MPTCP

throughput and subflow utilization, as well as the effectiveness of current kernel

implementations in adapting to such environments.

10.1 Experimental Setup

To systematically evaluate the behaviour of MPTCP under varying path MTU

conditions, we designed and implemented a controlled test environment using the

following tools and configurations. Each component was carefully selected and

configured to ensure reproducibility, observability, and the ability to manipulate

network parameters such as MTU values, subflow paths, and throughput measure-

ments. The setup was intended to closely replicate real-world network scenarios

while providing sufficient flexibility for in-depth analysis of kernel-level behaviors

and protocol interactions.

• Linux Kernel 5.4.230 with MPTCP Support: This kernel version in-

cludes MPTCP functionality, which will be used to establish multi-path

connections between hosts. We will utilize MPTCP-specific features to con-

trol subflow behaviour and measure the impact of different MTU settings on

throughput.
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• Mininet: A network emulator that allows us to create complex network

topologies on a single Linux machine (Project 2025). This tool will simulate

a variety of network configurations with multiple subflows, enabling us to

introduce different MTU settings across various links.

• Iperf3: A widely used network performance measurement tool that will

generate TCP traffic over MPTCP connections (ESNet & Laboratory 2023).

It will be used to record key performance metrics such as throughput, jitter,

and packet loss.

• Wireshark and tcpdump: Packet capture tools that will monitor net-

work traffic in real time. These tools will capture detailed information on

packet transmission, retransmissions, ICMP messages, and fragmentation

behaviour, allowing us to analyze how MTU variations impact network per-

formance.

10.2 Topology Design

Figure 10.1: Network topology with two hosts connected with multiple paths.

The experimental topology consists of two end-hosts a client (Host) and a server

(Server) interconnected through a central Router, with multiple links forming

distinct paths between them, as illustrated in Figure 10.1. Each link corresponds

to a separate subnet, enabling the use of MPTCP subflows over independent paths

18



with configurable MTU values. A router is intentionally used instead of a switch

to prevent network loops. Since switches operate at Layer 2 of the OSI model,

having multiple active links between the same devices could cause broadcast loops

unless the Spanning Tree Protocol (STP) is used or links are manually disabled.

Such loops can lead to serious network disruptions. In contrast, routers function at

Layer 3 and inherently avoid loops by routing packets based on IP addresses, which

ensures stable operation even with multiple active links. In this setup, the Host

is configured with two network interfaces to establish separate subflows, although

the same approach can be applied to the Server side if needed. This design was

chosen for its simplicity while still allowing us to examine the behavior of MPTCP

across paths with different MTU configurations. The Mininet environment is

configured accordingly, with MPTCP enabled in the Linux kernel, appropriate

sysctl parameters adjusted as necessary, and TCP MTU probing activated to

support dynamic Path MTU Discovery (PMTUD) during transmission.

10.3 Traffic Generation and Data Collection

To evaluate the impact of varying MTU values on MPTCP performance, controlled

traffic flows were generated between the hosts, and comprehensive data collection

mechanisms were employed throughout the experiments.

The traffic generation process begins with configuring the receiver host (Server-

h2) to operate in server mode using the iperf3 tool as show in Figure 10.2.

Figure 10.2: Iperf Client and Server

This server passively waits for incoming TCP connections and continuously

measures performance metrics such as data rate, jitter, and loss during the test
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session. On the sender side (Host-h1), iperf3 is executed in client mode, initi-

ating a TCP connection to the server (h2) and transmitting traffic over multiple

subflows established by MPTCP. These subflows are distributed across different

paths that have distinct MTU settings, allowing us to observe how MPTCP sched-

ules traffic when faced with path diversity in terms of maximum transmission size.

Throughput measurements are configured to be recorded at one-second intervals.

This frequency provides high-resolution temporal data, enabling us to analyze

performance fluctuations over time and detect any momentary degradation or

adaptation in response to path-specific MTU constraints.

Simultaneously, packet captures are performed using tcpdump on all involved

network nodes, including both end-hosts and the intermediate router. This en-

sures a complete view of all traffic traversing the network, which is essential for

identifying the behavior of each individual subflow. These packet traces are later

analyzed using Wireshark, a powerful packet inspection tool, to extract detailed

information such as retransmissions, TCP segment sizes, and ICMP messages re-

lated to fragmentation or MTU.

10.4 Establishing a TCP Connection on Mininet

Before proceeding to experiments involving Multipath TCP (MPTCP), it was

essential to first establish and validate the behavior of a standard single-path TCP

connection under varying MTU conditions. This preliminary step was crucial

to ensure that the underlying path MTU discovery mechanism was functioning

correctly within the Linux kernel and the Mininet environment. By analyzing

how regular TCP handles path MTU information and fragmentation, we can later

compare and contrast it with the more complex behavior of MPTCP.

To conduct this initial test, a basic TCP connection was established between

two hosts (Host and Server), interconnected via a single router, as illustrated in

Figure 10.3. This minimal topology allowed for a controlled environment where

packets could be observed traversing a single path with an explicitly configured

MTU. The setup enabled detailed inspection of PMTUD behavior and kernel

20



responses such as ICMP ”Fragmentation Needed” messages, or any unexpected

packet drops.

Figure 10.3: TCP Connection

This foundational experiment served as a baseline for understanding how TCP

reacts when MTU values are restricted on intermediate links. It also provided

insights into how the Linux kernel adapts the maximum segment size (MSS),

whether fragmentation is avoided as expected, and how effectively TCP reacts to

ICMP notifications.

Only after verifying the correct behavior of standard TCP under these condi-

tions was MPTCP enabled and multi-subflow scenarios introduced. This step-by-

step approach ensured the accuracy of the testbed and provided a solid reference

point for interpreting the results of subsequent MPTCP experiments.

The Mininet script was created to configure the topology with varying MTU

values for the interfaces on links between Host-Router and Router-Server shown

in Figure 10.4.

Figure 10.4: MTU Configurations on Interfaces

This enabled us to analyze how TCP and the Linux kernel respond when a
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smaller MTU is encountered along the path. Traffic was generated using iperf and

ping.

Figure 10.5: Ipferf3 Output

Ping with the Do Not Fragment (DF) bit set: This test examines how the

network handles packets that exceed the MTU, as shown in Figure 10.6.

Figure 10.6: Fragmentation Needed and DF Set

The TCP/IP stack adapts to MTU changes through these steps:

1. Initial Transmission:

When a TCP connection is established, the sender initially transmits data

using a segment size based on the Maximum Segment Size (MSS), which

is derived from the interface’s Maximum Transmission Unit (MTU). The
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MTU defines the largest packet that can be transmitted over a network link

without fragmentation, and the MSS is typically set to MTU - IP header

- TCP header. By default, the MSS is determined during the TCP hand-

shake, where both sender and receiver exchange their respective MSS values.

However, this value assumes that all network links along the path support

the same MTU, which is not always the case.

2. Fragmentation Detection:

If a packet exceeds the MTU of an intermediate router, such as r1, it cannot

be forwarded without fragmentation. Since it is enabled PMTUD to avoid

fragmentation, the router drops the oversized packet and generates an ICMP

”Fragmentation Needed” message. This ICMP message is sent back to the

sender as shown in Figure 10.7, informing it that the packet size must be

reduced. The ICMP message includes the MTU value of the link that caused

the issue, allowing the sender to adjust accordingly.

Figure 10.7: Sending ICMP Message

3. MSS Adjustment:

Upon receiving this ICMP message, the sender updates its Path MTU infor-

mation for that specific connection and reduces the MSS to ensure all future

segments fit within the discovered MTU limit. This adjustment prevents

further packet drops and enables the smooth transmission of data without

fragmentation. The TCP stack modifies the MSS dynamically in response to

these ICMP signals, ensuring that retransmissions and subsequent packets

conform to the newly discovered MTU constraints.
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To validate the MSS adjustment process during Path MTU Discovery (PM-

TUD), the Linux kernel was modified to print real-time updates on MSS

changes using dmesg. This allowed direct observation of how the TCP

stack dynamically adjusts MSS values based on received ICMP ”Fragmen-

tation Needed” messages. The Figure 10.8 below illustrates the step-by-step

MSS adjustments, starting from an initial MTU of 9000 bytes and progres-

sively reducing until it stabilizes at 1500 bytes, which corresponds to the

bottleneck MTU of an intermediate network interface along the path.

Figure 10.8: Kernel Log Messages

The logged output captured via dmesg confirms that each received ICMP

message triggers an MSS update, ensuring that all subsequent TCP segments

fit within the discovered path MTU. This behavior prevents fragmentation

and optimizes data transmission by aligning packet sizes with network con-

straints. The figure provides a clear representation of how PMTUD refines

the MSS dynamically as packets traverse the network, ultimately conforming

to the smallest MTU on the path.

4. Subsequent Transmission:

Once the MSS is adjusted, the sender retransmits the previously dropped

data segments, ensuring that they do not exceed the restricted MTU. This

process continues dynamically, adapting as necessary if the network path

changes and introduces different MTU constraints. Properly functioning
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PMTUD (Deering & Mogul 1990) optimizes TCP throughput by avoiding

unnecessary fragmentation while ensuring that packets traverse the network

successfully. However, if ICMP messages are blocked due to security policies

(such as firewalls dropping ICMP packets) (Lahey 2000), PMTUD may fail,

leading to persistent transmission issues, particularly for larger packets. In

such cases, mechanisms like TCP MSS Clamping or PLPMTUD (Packeti-

zation Layer PMTUD) (Mathis & Heffner 2007) may be required to handle

MTU discovery effectively.

Figure 10.9: Due to Bottleneck MTU on Router Eth0

However, in a TCP connection, when there is a bottleneck along the path (e.g.,

one link with an MTU of 1500 while the rest remain at 9000), as shown in the

figure 10.9, the observed packet size in the Wireshark capture, as shown in the

Figure 10.10, is approximately 1100 bytes and never exceeds the bottleneck MTU

value. This confirms that the path MTU is correctly adjusted based on the lowest

MTU along the route.
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Figure 10.10: Packet Capture of TCP Traffic

10.5 Establishing an MPTCP Connection on Mininet

Now, let’s transition to the MPTCP scenario and analyze how Path MTU Discov-

ery (PMTUD) operates in a multipath environment. This section will build upon

the previous TCP analysis and examine how MPTCP adapts to different subflow

MTUs, impacts throughput, and handles fragmentation constraints.

To evaluate how PMTUD interacts with MPTCP, an MPTCP enabled topol-

ogy was created using Mininet, with two subflows between Host and Server through

the Router. Each subflow was configured with different MTU values to analyze

how MPTCP schedules packets based on path constraints. The topology as shown

in Figure 10.11 consisted of:

• Primary Subflow : Path MTU = 9000 bytes

• Secondary Subflow : Path MTU = 1500 bytes

To generate traffic, a 200MB file was transmitted from the Host to the Server

using the iperf tool. During this process, packet capture was performed using

tcpdump, and the captured packets were subsequently analyzed using Wireshark

to assess how subflows were utilized and how MPTCP handled differing path

MTUs.
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Figure 10.11: MPTCP with 2 Subflows

Figure 10.12: Throughput Comparison MPTCP Vs TCP

The Figure 10.12 presented illustrates the evaluation of MPTCP throughput

in a scenario where subflows have different path MTUs, compared to a traditional

TCP connection. Three different throughput graphs are considered:

1. TCP Throughput (Blue Line): Represents a standard TCP connection with

a defined path MTU of 9000 bytes.

2. MPTCP Throughput with Different Subflow MTUs (Orange Line): The
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MPTCP connection consists of two subflows one with a path MTU of 9000

bytes (subflow 1) and another with a path MTU of 1500 bytes (subflow 2).

3. MPTCP Throughput with Uniform Subflow MTUs (Green Line): Repre-

sents an MPTCP connection where both subflows have the same path MTU

of 9000 bytes, identical to the TCP scenario.

From the evaluation, it is evident that the green line achieves the highest

throughput among all three scenarios. This result aligns with expectations, as

MPTCP generally performs better than standard TCP under ideal conditions

where both subflows have identical characteristics. The primary focus, however,

is the comparison between the blue (TCP) and orange (MPTCP with different

MTUs) throughput graphs.

The throughput analysis shows that TCP (blue line) achieves higher through-

put than MPTCP with subflows of different path MTUs (orange line). Initially,

both cases share similarities, as they start with a single connection having a path

MTU of 9000 bytes. At this stage, MPTCP functions like a standard TCP con-

nection since only the primary (master) subflow exists. However, once the second

MPTCP subflow with a lower path MTU (1500 bytes) is added, the overall per-

formance of the MPTCP connection is affected. If this assumption holds, then

conversely, if the initial MPTCP subflow had a lower path MTU (1500 bytes)

and a higher path MTU subflow (9000 bytes) was added later, one might expect

the connection to achieve higher throughput due to the availability of a better

performing subflow.

However, experimental results indicate that this approach does not yield the

anticipated improvement. Therefore, the initial assumption that adding a weaker,

in terms of path MTU subflow to an MPTCP connection reduces overall through-

put, while adding a stronger (higher path MTU) subflow improves it, does not

hold true.

Since MPTCP distributes packets among available subflows, the disparity in

MTU sizes may introduce inefficiencies in scheduling and transmission. This could

lead to increased overhead, fragmentation, or suboptimal packet scheduling, which
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ultimately impact the overall throughput. The data indicates that MPTCP with

mixed path MTUs (orange line) performs worse than TCP (blue line), even though

MPTCP inherently utilizes multiple paths.

10.5.1 Analyze the captured packets

Packet capture analysis via Wireshark, shown in Figure 10.13, reveals that subflow

1 transmits packets with a size of approximately 9000 bytes (data size: 8928

bytes). However, subflow 2 is not utilized beyond the initial handshake. As shown

in Figure 10.14, it only shows SYN and ACK packets but does not transfer any

data afterward. Throughout the entire connection, only subflow 1 (9000 byte path

MTU) is used, even though subflow 2 is available.

Figure 10.13: Subflow 1 (Source: 10.0.0.2) Data Size 8928 bytes
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Figure 10.14: Subflow 2 (Source: 10.0.1.2) No Data Transferring

Although subflow 2 is capable of transferring data, it is not utilized, as shown

in Figure 10.15. This behavior suggests that MPTCP lacks a mechanism to adjust

the segment size based on the path MTU of each subflow. As a result, some paths

may be underutilized if their actual path MTU is smaller than the one being used,

leading to suboptimal resource utilization, as discussed in the research gap section.

Figure 10.15: Subflow 2 Not Utilizing

The examination began with the function tcp mtup init() defined in the

tcp output.c file of the Linux kernel source.

This function is responsible for initializing the Path MTU (Maximum Trans-

mission Unit) probing mechanism for individual TCP sockets. In its original imple-

mentation, the function conditionally enables MTU probing based on the system-

wide configuration parameter sysctl tcp mtu probing.That code snippet is as

follows:

/* MTU probing init per socket */
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void tcp_mtup_init(struct sock *sk)

{

struct tcp_sock *tp = tcp_sk(sk);

struct inet_connection_sock *icsk = inet_csk(sk);

struct net *net = sock_net(sk);

icsk ->icsk_mtup.enabled = READ_ONCE(net ->ipv4.

sysctl_tcp_mtu_probing) > 1;

icsk ->icsk_mtup.search_high = tp ->rx_opt.mss_clamp + sizeof(

struct tcphdr) +

icsk ->icsk_af_ops ->

net_header_len;

icsk ->icsk_mtup.search_low = tcp_mss_to_mtu(sk , READ_ONCE(net

->ipv4.sysctl_tcp_base_mss));

icsk ->icsk_mtup.probe_size = 0;

if (icsk ->icsk_mtup.enabled)

{

icsk ->icsk_mtup.probe_timestamp = tcp_jiffies32;

}

}

As shown above, the line

icsk ->icsk_mtup.enabled = READ_ONCE(net ->ipv4.

sysctl_tcp_mtu_probing) > 1;

controls whether MTU probing is activated for the given socket. This is determined

by reading the value of the system-wide parameter net.ipv4.tcp mtu probing,

which must be greater than 1 (For example: set to 2) for probing to be enabled

unconditionally. This parameter can be configured at runtime using: sudo sysctl

-w net.ipv4.tcp mtu probing=2.

Despite configuring the system correctly to enable MTU probing globally, I

observed that when establishing MPTCP (Multipath TCP) connections, the value

of net->ipv4.sysctl tcp mtu probing was unexpectedly read as 0 within the

kernel context of MPTCP subflows. As a result, the probing mechanism was not

activated for these subflows. This behavior stood in contrast to that of regular
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TCP connections, where the probing feature functioned as expected under the

same configuration.

This discrepancy was a significant finding. It indicated that MPTCP sub-

flows did not inherit or correctly access the global MTU probing configuration,

leading to a failure in initializing the probing logic. This behavior effectively cre-

ated a counterexample: although the system was correctly configured to enable

MTU probing, the kernel treated MPTCP connections as if the feature were dis-

abled. This observation highlighted a key limitation in the kernel’s handling of

system-wide TCP parameters in the context of MPTCP, and motivated further

investigation into per-subflow initialization and configuration consistency.

In order to resolve the issue where MTU probing was not being properly

initialized for MPTCP subflows, Targeted modifications were introduced to the

tcp mtup init() function within the tcp output.c file of the Linux kernel source.

The dependency on the system-wide configuration parameter was removed by ex-

plicitly enabling MTU probing at the socket level, ensuring that the probing mech-

anism is activated for every TCP connection, including MPTCP subflows. This

was achieved by directly assigning true to the enabled field within the icsk mtup

structure: icsk->icsk mtup.enabled = true;. By doing this, MTU probing

becomes unconditionally active for each socket during its initialization phase, re-

gardless of the global sysctl settings. This ensures that even when the global

configuration appears unset or inaccessible in MPTCP contexts, the probing logic

will still execute as expected.

In addition to enabling the mechanism, the function also initializes the pa-

rameters that define the MTU probing range. These are critical for determining

the bounds within which the Path MTU Discovery (PMTUD) process operates:

search high: This value represents the upper bound of the MTU probing range.

It is calculated as the sum of three components:

• mss clamp: the Maximum Segment Size value negotiated during connection

setup.

• The size of the TCP header (sizeof(struct tcphdr)).
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• The network layer header size, accessed via icsk->icsk af ops->net header len,

which accommodates variations between IPv4 and IPv6.

search low: This value defines the lower bound of the MTU probing range.

It is derived from the base MSS value, obtained through sysctl tcp base mss,

which is then converted to an MTU value using the helper function tcp mss to mtu().

This ensures that the probing process starts from a conservative, well-supported

size and gradually works upward toward the higher bound.

probe size: This field is initialized to 0 to indicate that no MTU probe has

yet been sent. It is later updated during the probing process as different packet

sizes are tested. And if MTU probing is enabled, the function records a timestamp

(probe timestamp) to track when the last MTU probe was initiated.

/* MTU probing init per socket */

void tcp_mtup_init(struct sock *sk)

{

struct tcp_sock *tp = tcp_sk(sk);

struct inet_connection_sock *icsk = inet_csk(sk);

struct net *net = sock_net(sk);

icsk ->icsk_mtup.enabled = true;

icsk ->icsk_mtup.search_high = tp ->rx_opt.mss_clamp + sizeof(

struct tcphdr) +

icsk ->icsk_af_ops ->

net_header_len;

icsk ->icsk_mtup.search_low = tcp_mss_to_mtu(sk , READ_ONCE(net

->ipv4.sysctl_tcp_base_mss));

icsk ->icsk_mtup.probe_size = 0;

if (icsk ->icsk_mtup.enabled)

{

icsk ->icsk_mtup.probe_timestamp = tcp_jiffies32;

}

}

To support further analysis and ease of debugging, particularly in a multipath

context, I added a logging mechanism specifically for MPTCP subflows. During
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the initialization of any socket that belongs to an MPTCP connection, the function

logs critical MTU probing parameters such as search low, search high, and the

IP addresses of both endpoints (source and destination). This provides insights

into the MTU probing behavior of each subflow, making it easier to analyze packet

size adaptations in a multipath environment.

After applying the kernel modifications and enabling the logging mechanism, I

verified that the changes were functioning as intended. Specifically, the tcp mtup init()

function now correctly reads the value of net->ipv4.sysctl tcp mtu probing as

true, confirming that MTU probing is successfully enabled at the socket level—even

for MPTCP subflows. This behavior contrasts with the original implementation,

where the system-wide setting was either not recognized or not applied consis-

tently to MPTCP sockets. With the modified logic in place, each subflow is now

initialized with active MTU probing, and corresponding debug logs confirm that

proper values for search low, search high, and endpoint IPs are being generated

for every subflow.

With the feature correctly integrated, I proceeded to evaluate its impact on

data transmission performance. Using iperf, I conducted controlled throughput

experiments by sending a 100MB data stream from the client host to the server.

This allowed for observation of MTU probing in action across multiple paths and

subflows, providing practical insight into how the probing behavior.

Figure 10.16: Throughput Before Vs After Kernel Modification for MPTCP
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The throughput measurements obtained using iperf, as illustrated in Figure

10.16, show a significant improvement after modifying the kernel to explicitly

enable MTU probing. In the original implementation, MTU probing was condi-

tionally enabled based on the global system parameter sysctl tcp mtu probing.

However, this setting was not reliably applied to MPTCP subflows, represented

by the red line in the graph.

After updating the tcp mtup init() function to force MTU probing to be

enabled at the socket level including for MPTCP subflows, the system appeared

to adapt more effectively to the underlying path characteristics. This behavior

is suggested by the noticeable improvement in throughput, as represented by the

green line in the graph.

Figure 10.17: MPTCP Vs TCP Throughput Comparison

Furthermore, Figure 10.17 presents a comparison of TCP throughput, be-

fore and after the kernel level modification for the MPTCP. The blue line rep-

resents standard TCP throughput, while the red and green lines indicate MPTCP

throughput before and after the modification, respectively. The results show a

noticeable improvement in performance after initializing the MTU probing per-

connection, supporting the claim that the adjustment enhances MPTCP’s ability

to efficiently leverage paths with differing MTUs.

These findings also address the limitations discussed in Figure 10.12, where
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MPTCP, in its default configuration, was unable to fully utilize heterogeneous

path MTUs and thus underperformed compared to standard TCP. The observed

improvements highlight the effectiveness of the kernel modification in resolving

this issue and improving overall throughput.

The next phase of the evaluation focused on understanding how packet trans-

mission behavior changed following the kernel modification. To conduct this anal-

ysis, packet captures were performed on the relevant network interfaces during

a data transfer from the Host to the Server. The captured traffic was analyzed

using Wireshark, with the results illustrated in Figures 10.18 and 10.19. In con-

trast to the earlier configuration, where only one subflow was predominantly used,

the modified setup shows that both subflows are now actively engaged in data

transmission, despite having different path MTUs. This outcome suggests that

the kernel modification successfully enables more balanced and simultaneous uti-

lization of multiple subflows in a multipath environment.

The observed packet sizes for both MPTCP subflows consistently hover around

1024 bytes. This behavior stands in contrast to previous observations, where even

though only a single subflow was actively used, the observed packet sizes aligned

with what was expected based on the path MTU of that subflow. By subtracting

the typical header sizes, the resulting payload size matched the limitations imposed

by the MTU of the path, confirming that the transmission behavior was consistent

with the characteristics of the active subflow.
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Figure 10.18: Subflow 1 (Source: 10.0.0.2) Data Size 1024 bytes

Figure 10.19: Subflow 2 (Source: 10.0.1.2) Data Size 1024 bytes

However, despite MPTCP successfully utilizing multiple paths, it does not fully

leverage the maximum transmission potential of each path. For instance, although

subflow 1 supports packet sizes up to 9000 bytes, it does not receive packets

larger than approximately 1110 bytes, as illustrated in Figure 10.20. This raises a

critical question regarding the underlying reason for such behavior, especially after
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the kernel level modifications were implemented to enable MTU probing across

subflows.

Figure 10.20: Same Packet Size on Both Subflows

At this point, the primary objective was enhancing MPTCP performance in

heterogeneous path MTU scenarios compared to standard TCP, has been partially

achieved. The system now uses multiple subflows simultaneously, which was not

observed before the modification. However, an unexpected limitation remains:

regardless of the MTU configuration applied to the subflows, the transmitted

data segments consistently appear to be around 1024 bytes in size, as confirmed

by Wireshark analysis. This behavior persists even when different MTU values

(other than 9000 and 1500 bytes) are set for the subflows.

This observation suggests that the MTU configuration alone does not directly

influence the size of transmitted segments in the current setup. In other words,

the uniform 1024-byte segment size is likely governed by internal logic within the

MPTCP stack, rather than by the specific MTU settings of individual subflows.

To investigate this further, the Linux kernel source code related to MPTCP was

examined in greater depth. Given that varying path MTUs at the network layer

correspond to different Maximum Segment Sizes (MSS) at the transport layer,

a detailed analysis of how MSS is computed and handled within the MPTCP

implementation was deemed essential. Understanding the MSS negotiation and

assignment process for each subflow could provide valuable insight into why all

segments, regardless of the MTU configuration, are limited to the same payload

size during transmission.

Since MPTCP operates over multiple paths that may each have distinct path

MTUs, the resulting Maximum Segment Sizes (MSS) for the associated subflows
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are inherently different. Therefore, there must be a mechanism within the MPTCP

implementation to appropriately handle and coordinate these varying MSS values

in a way that supports efficient multipath data transmission.

Upon further investigation, one critical function responsible for this behaviour

is mptcp current mss() located in the mptcp output.c file. This function plays

a central role in determining the most suitable MSS to be used for data transmis-

sion on an MPTCP connection.

__mptcp_current_mss(meta_socket):

Initialize selected_mss = 0

Initialize best_rate = 0

For each subflow in meta_socket:

If subflow is not eligible to send:

Continue to next subflow

current_mss = get_current_mss(subflow)

If current_mss == selected_mss:

Skip (already evaluated this MSS)

estimated_rate = calculate_theoretical_rate(meta_socket ,

current_mss)

If estimated_rate >= best_rate:

selected_mss = current_mss

best_rate = estimated_rate

Return selected_mss

As illustrated in the above pseudocode, the logic of the function can be out-

lined as follows: it initializes two key variables selected mss to hold the best MSS

candidate identified so far, and best rate to store the highest estimated through-

put corresponding to that MSS. The function then iterates through all subflows

linked to the MPTCP meta socket. For each subflow, it first checks whether the

subflow is currently eligible to send data. Subflows that are not in a usable state
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are skipped.

For each valid subflow, the function retrieves its current MSS value. If the

MSS has already been evaluated (to avoid redundant calculations), the subflow is

skipped. Otherwise, it estimates the potential data rate that could be achieved

using that MSS, based on a predefined rate estimation mechanism.

ratesub =
mss×mss× (USEC PER SEC × 8)×max(cwnd, packets out)

srtt×
(⌈

mss
this mss

⌉
× this mss

)
The mptcp calc rate function is responsible for estimating the potential data

transmission rate (throughput) of an MPTCP connection when using a specified

MSS across all its active subflows. A key aspect of the function is its adjust-

ment for inefficiencies that arise when the provided MSS is not a multiple of the

subflow’s actual MSS. In such cases, segments may be fragmented, resulting in ad-

ditional overhead. To account for this, the function incorporates a penalty factor

derived from the ratio between the desired MSS and the total payload consumed

when the segment is split across multiple TCP packets. The resulting per-subflow

rates, adjusted for this fragmentation penalty, are summed to produce an overall

rate estimate. This value reflects the aggregate effective throughput the MPTCP

connection can achieve with the given MSS, and is useful for informed scheduling

or path selection decisions.

Consider an example where both subflows exhibit a round-trip time (RTT) of

50,000 µs (50 ms) and a congestion window (cwnd) of 20 segments. For simplicity,

we assume the value of USEC PER SEC to be 1,000,000 µs. In this scenario, we will

evaluate two different Maximum Segment Size (MSS) candidates, corresponding to

the path Maximum Transmission Units (MTUs) of 9000 bytes for the first subflow

and 1500 bytes for the second. Specifically, we examine the performance of MSS

values of 8960 bytes (for the larger path MTU) and 1460 bytes (for the smaller

path MTU). The objective is to assess the impact of each MSS on the overall

throughput of the MPTCP connection.

Case 1: Unified as 8960 bytes MSS

rateA =
8960× 8960× (1,000,000 ≪ 3)× 20

50,000× 8960

40



rateB =
8960× 8960× 8,000,000× 20

50,000× 10,220

Totalrate = rateA + rateB ≈ 28.67 + 28.05 ≈ 56.72Mbps

Case 2: Unified as 1460 bytes MSS

rateA =
1460× 1460× 8,000,000× 20

50,000× 8960

rateB =
1460× 1460× 8,000,000× 20

50,000× 1460

Totalrate = rateA + rateB ≈ 0.76 + 4.67 ≈ 5.43Mbps

Obviously, it will select 8960 as the MSS in this example, as it results in the

highest throughput. When the MSS is set to 8960 bytes, the mptcp calc rate

function estimates a throughput of approximately 56.72 Mbps. In contrast, with

an MSS of 1460 bytes, the throughput drops to 5.43 Mbps due to the inefficiencies

caused by smaller segments.

If the newly estimated rate is greater than or equal to the best rate observed

so far, the function updates both selected mss and best rate with the current

subflow’s values. After all subflows have been evaluated, the function returns the

MSS value associated with the highest expected throughput.

In this case, the mptcp current mss() function selects an MSS (Maximum

Segment Size) of 8960 bytes, which corresponds to the subflow with the highest

path MTU and the most favorable estimated throughput. This selection is made

based on the assumption that using a larger MSS can reduce overhead and improve

overall transmission efficiency. Consequently, this value is returned as the unified

MSS for the MPTCP connection as illustrated in Figure 10.21, meaning that all

subflows will attempt to transmit data segments sized according to this selected

MSS.
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Figure 10.21: Selecting Single MSS

However, this design introduces a significant constraint when the MPTCP

connection spans multiple paths with heterogeneous path MTU values. While

the chosen MSS may be optimal for the high-MTU subflow (e.g., with a path

MTU of 9000 bytes), it is not compatible with subflows that have lower MTUs

(e.g., 1500 bytes). In such cases, if the lower-MTU subflows attempt to transmit

packets matching the larger MSS, they would exceed the path MTU and cause

packet drops unless IP-layer fragmentation is allowed. Since modern network con-

figurations often avoid or discourage fragmentation due to performance penalties

and reliability concerns, these lower-MTU subflows become incapable of transmit-

ting the larger segments and are effectively sidelined from the data transmission

process.

This behavior leads to an unintended consequence: although the system is

technically configured to utilize multiple subflows, the unified MSS selection can

cause certain subflows to be excluded from actual data transmission. This contra-

dicts the fundamental objective of MPTCP, which is to leverage multiple available

paths for enhanced throughput, robustness, and resource utilization. In practice,

only the subflow(s) capable of handling the selected MSS without requiring frag-

mentation will actively transmit data, while others remain idle.

Therefore, this finding highlights a critical limitation in the current MPTCP

implementation. By applying a single, global MSS across all subflows, the protocol

may fail to utilize paths with smaller MTUs even when those paths are available

and otherwise functional.
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To further understand this issue, it became essential to investigate the origin

of the 1024 byte MSS value that consistently appeared during our experiments.

Despite configuring the subflows with path MTUs of 9000 bytes and 1500 bytes

respectively, the lowest MSS observed in the kernel logs remained fixed at 1024

bytes. This unexpected value prompted a deeper exploration into how MSS values

are determined within the MPTCP stack.

To gain more visibility, the mptcp current mss() function in the mptcp output.c

file was modified. The new logic iterates through all active MPTCP subflows,

evaluates the MSS of each subflow, and prints both the highest and lowest MSS

values to the kernel log. This modification was crucial for debugging and verifying

whether each subflow correctly reflects its path-specific MTU.

mptcp_for_each_sub(tcp_sk(meta_sk)->mpcb , mptcp)

{

struct sock *sk = mptcp_to_sock(mptcp);

int this_mss;

if (! mptcp_sk_can_send(sk))

continue;

this_mss = tcp_current_mss(sk);

if (this_mss > highest_mss)

highest_mss = this_mss;

if (this_mss < lowest_mss)

lowest_mss = this_mss;
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}

pr_info ([ MPTCP] Highest MSS: %u, Lowest MSS: %u\n, highest_mss ,

lowest_mss);

Given the configured MTUs, the expected MSS values for the subflows should

be approximately 8928 bytes for the subflow with a 9000-byte path MTU, and

around 1428 bytes for the subflow with a 1500 byte path MTU, accounting for the

standard IP and TCP header sizes. However, the kernel log output was as follows:

The resulting kernel log message:

[MPTCP] Highest MSS: 8928, Lowest MSS: 1024

This result clearly indicates that the subflow associated with the 1500-byte

path MTU did not report the expected MSS value. Instead, it returned a much

smaller value of 1024 bytes. This discrepancy is particularly significant because

this subflow is the one expected to perform path MTU discovery, as it is subject to

a bottleneck MTU constraint somewhere along the path as shown in Figure 10.5.1.

Additionally, fragmentation is not permitted, making accurate MSS determination

even more critical to ensure successful and efficient packet transmission.
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Figure 10.22: Primary Subflow: After the three-way handshake

As illustrated in Figure 10.22, the Host initially initiates the connection by

sending a SYN packet from interface eth0 to the Server. This SYN packet includes

an MSS value of 8928 bytes. This value is expected and justified, as both the Host

and Server are configured to support large MTUs—specifically, a 9000-byte path

MTU without requiring fragmentation, either at the endpoints or along the path.

Consequently, when the mptcp current mss() function was modified to it-

erate through all subflows and log the MSS values, the highest MSS value was

accurately reported as 8928 bytes. This confirmed that the initial subflow estab-

lished over the high-MTU interface was correctly recognized and handled by the

kernel, and its MSS value was propagated as expected.

Figure 10.23: Second Subflow: After the three-way handshake
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Upon further investigation, it becomes evident that the core issue lies with the

second subflow. During the initial connection setup, the Host initiates the second

subflow by sending a SYN packet from its second interface (eth1), which sup-

ports a 9000 byte MTU as shown in Figure 10.23. This SYN packet advertises an

MSS value of 8928 bytes, derived by subtracting the typical IP and TCP header

sizes from the interface MTU. Since both the Host and the Server are configured

to support this MTU, they agree on the 8928-byte MSS without requiring frag-

mentation. Consequently, this MSS becomes the reference point during the early

stages of subflow negotiation.

However, in the case of the second subflow, the actual transmission path tra-

verses a bottleneck link that imposes a smaller MTU specifically, 1500 bytes. In

such scenarios, the expected behavior is for the system to invoke Path MTU Dis-

covery (PMTUD) to dynamically identify the smallest MTU along the path and

adjust the Maximum Segment Size (MSS) accordingly. This observation, however,

reveals a critical insight: although MTU probing was explicitly enabled through

kernel modifications, and the earlier throughput experiments showed positive re-

sults, the PMTUD mechanism appears to fall short in adapting the MSS for

subflows constrained by lower MTUs. In particular, the second subflow continues

to operate as if it supports a high MSS, ignoring the limitations imposed by the

bottleneck link.

10.6 Investigating PMTUDiscovery Issues in MPTCP Sub-

flows

As described earlier, the PMTUD typically achieves this by probing the path

with progressively larger packets and reacting to ICMP ”Fragmentation Needed”

messages if a packet exceeds the path’s MTU. Ideally, this process allows the

sender to avoid fragmentation and ensure efficient packet delivery tailored to the

capabilities of each path.

Given the inconsistencies observed in Path MTU Discovery (PMTUD) behav-

ior during testing, it became essential to investigate why PMTUD fails in scenarios
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involving MPTCP subflows with constrained MTUs. Since PMTUD in TCP/IP

relies on receiving ICMP “Fragmentation Needed” messages to identify MTU lim-

itations along a path, the investigation focused on how the Linux kernel processes

such ICMP messages in the context of MPTCP.

In the Linux kernel, the function responsible for handling ICMP related errors

in TCP over IPv4 is tcp v4 err(), defined in the tcp ipv4.c source file. This

function serves as a centralized error handler and is triggered when ICMP error

messages such as ”Fragmentation Needed” are received. These ICMP messages

play a critical role in Path MTU Discovery (PMTUD), as they notify the sender

that the packet size exceeds the MTU of a router along the path and must be

reduced.

When an ICMP message with the type “Destination Unreachable” and the

code ICMP FRAG NEEDED is received, the kernel interprets this as a signal that

fragmentation is required but not permitted. This triggers the path MTU update

process to prevent further oversized packet transmission. The relevant handling

logic within tcp v4 err() can be represented as follows in pseudocode:
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if (icmp_code == ICMP_FRAG_NEEDED) {

if (socket_state == TCP_LISTEN)

return; // Ignore for listening sockets

// Update path MTU information for the TCP socket

tp ->mtu_info = new_mtu_value_from_icmp;

if (socket_not_in_use_by_user(meta_sk)) {

// Socket not busy -> update MTU immediately

tcp_v4_mtu_reduced(sk);

} else {

// Socket busy -> defer update

if (! already_deferred_update_flag_set(sk)) {

set_deferred_update_flag(sk);

hold_socket_reference(sk);

}

if (is_mptcp_socket(tp)) {

// Handle MPTCP -specific logic

mptcp_tsq_flags(sk);

}

}

}

The logic begins by verifying that the affected socket is not in the TCP LISTEN

state, as Path MTU Discovery (PMTUD) is not applicable to sockets that are

merely listening for incoming connections. This check ensures that unnecessary

processing is avoided for passive endpoints. If the socket is in an established or

other active state, the function proceeds to update the internal mtu info field

associated with the TCP control block. This field stores the latest known Path

MTU value, which is extracted from the received ICMP “Fragmentation Needed”

message. Updating this field is essential for adjusting the MSS to prevent further

transmission of oversized packets that could be dropped due to MTU restrictions

along the path.
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One key decision point in this logic is whether the socket is currently being

used by user space. This is determined by the sock owned by user() check. If

the socket is not held by user space, meaning that no application-level function

such as send() is currently executing over that socket, then the kernel has full

control of the connection. In this case, the kernel can immediately invoke the

tcp v4 mtu reduced() function.

Conceptually, what this means is that during active data transfer, if a packet

gets dropped due to exceeding the MTU on a path and the ICMP ”Frag Needed”

message is received as shown in Figure 10.7, the kernel will temporarily gain

exclusive control over the socket to handle the necessary adjustments. While

this is happening, user-level processes cannot continue sending data via the usual

send(), because the kernel is actively updating the transmission parameters to

accommodate the lower MTU constraint.

This behaviour is particularly robust in regular TCP connections. In such

scenarios, PMTUD (Path MTU Discovery) operates seamlessly. Once the kernel

detects the MTU limitation, it immediately adjusts the MSS and continues the

transmission without requiring any intervention from the user-space application.

In our earlier testbed experiments involving regular TCP connections, this func-

tionality worked exactly as expected, as shown in Figure 10.8. The TCP stack

correctly responded to the ICMP fragmentation feedback, adjusted the segment

size accordingly, and resumed efficient transmission over the path. This confirms

that the PMTUD mechanism is implemented correctly and reliably for standard

TCP connections in the Linux kernel.

In scenarios where the socket is currently busy that is, when it is actively being

used by a user-space application to send data, the Linux kernel defers the MSS

update instead of applying it immediately. In such cases, rather than directly

invoking the tcp v4 mtu reduced() function to handle the new MTU constraint,

the kernel sets a flag TCP MTU REDUCED DEFERRED indicating that the MSS adjust-

ment must be processed later. This ensures that the critical path of the applica-

tion’s data transmission is not interrupted, and the required PMTUD (Path MTU
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Figure 10.24: Subflow 1 Continues Data Sending

Discovery) response will eventually take place once the socket is no longer held

by user space. Additionally, when the socket belongs to an MPTCP (Multipath

TCP) connection, there is a dedicated step in the deferred MSS update process

where MPTCP-specific flags are managed. This is handled through the invocation

of the mptcp tsq flags() function.

However, this behavior becomes particularly significant and problematic when

applied to MPTCP connections. As illustrated in the pseudocode discussed earlier,

the logic for handling ICMP ”Fragmentation Needed” messages includes a check

for whether the socket is held by user space. In the case of MPTCP, this condition

almost always evaluates to true, meaning that MPTCP sockets typically fall under

the ”socket is busy” condition. This results in the MSS update being deferred by

default. This is a key architectural difference between regular TCP and MPTCP.

To illustrate this with an example: consider an MPTCP connection where

the application is currently sending data through its first subflow, which has a

high MTU and no fragmentation issues. Now assume that a second subflow is

established, but this subflow encounters a bottleneck in the path such as an in-

termediate link with a significantly lower MTU. Ideally, the ICMP feedback for

this subflow should trigger an immediate PMTUD response so that the MSS can

be adjusted accordingly. However, since the application is still actively sending

data through the first subflow as shown in Figure 10.24, the meta socket remains

under the control of the user-space application. In other words, from the kernel’s

perspective, the socket is still busy.
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Unlike regular TCP, where an MTU related issue halts further data transmis-

sion until the kernel handles the ICMP message and recalculates MSS, MPTCP

allows data to continue flowing through unaffected subflows. This means that

the socket never reaches a fully idle state where the kernel would regain control

and apply the necessary MSS adjustments. As a result, the MSS update for the

affected subflow is deferred indefinitely, with the expectation that the update will

be applied later though in practice, this may not occur in a timely manner or at

all.

This behaviour creates a critical limitation: although MPTCP is designed to be

robust against path failures and adapt to heterogeneous network conditions, it fails

to react promptly to PMTUD feedback for individual subflows. The root cause is

the assumption that the overall connection is idle when one subflow encounters a

problem, which does not hold true in an MPTCP context. Consequently, subflows

that require MSS reduction due to path MTU limitations may be rendered un-

usable, despite the underlying network infrastructure being capable of supporting

them if PMTUD were properly executed.

Despite all these mechanisms, the system ultimately fails to determine the cor-

rect MSS value that should be used for the second subflow. During the subflow

establishment phase, an MSS value is negotiated based on the interface config-

urations of the host and server, which in this case is 8928 bytes. However, this

value becomes invalid in practice due to the presence of a path MTU bottleneck in

the middle of the network. Unless IP fragmentation is explicitly allowed, which it

typically is not, this negotiated MSS cannot be used reliably for data transmission

on that subflow.

Ideally, the system should detect this mismatch through Path MTU Discov-

ery and dynamically adjust the MSS accordingly. However, as discussed earlier,

PMTUD does not function as expected for MPTCP subflows, especially when the

socket remains in use by the application and deferred updates are not effectively

processed. As a result, the system encounters a deadlock: it cannot continue

using the originally negotiated MSS due to MTU constraints, and it also cannot
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successfully update the MSS using PMTUD.

In such scenarios, the kernel is left without any usable MSS information derived

from runtime conditions. Consequently, it is forced to make a fallback decision.

The typical outcomes are either (1) the subflow is excluded entirely from use, as

it cannot carry segments matching the global MSS, or (2) the system silently falls

back to a default MSS value that is predefined in the kernel.

This observation confirms that Path MTU Discovery (PMTUD) is not success-

fully updating the MSS for the second subflow. As a result, instead of adjusting to

the expected MSS of approximately 1460 bytes, which corresponds to a 1500-byte

path MTU, the system falls back to the predefined default value, TCP BASE MSS,

which is 1024 bytes. This fallback occurs because the negotiated MSS during sub-

flow setup cannot be honoured due to intermediate MTU constraints, and PMTUD

fails to dynamically correct it.

This behaviour directly explains the kernel log output observed during our

experiments:

[MPTCP] Highest MSS: 8928, Lowest MSS: 1024

The 1024-byte MSS recorded as the lowest value reflects the fallback to TCP BASE MSS.
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10.7 Evaluating MPTCP Performance Under TCP BASE MSS

Conditions

The next phase of the investigation focused on analyzing the impact of the TCP BASE MSS

value on overall throughput, particularly under scenarios where the system defaults

to this value due to PMTUD-related failures. As described earlier, when a subflow

encounters a bottleneck MTU and the Path MTU Discovery mechanism fails to

update the MSS appropriately, the system falls back to a predefined TCP BASE MSS

(such as 1024 or 576 bytes) to avoid errors.

This part of the study specifically aimed to answer a critical question: Can

modifying the TCP BASE MSS value help sustain better throughput even in the

presence of PMTUD failure? In other words, if the fallback mechanism is triggered

and the system is unable to determine a more accurate MSS through dynamic

discovery, would a higher base MSS value allow for improved performance despite
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the error?

To investigate this, experiments were conducted using different TCP BASE MSS

values (e.g., 576 bytes vs. 1024 bytes) under identical network conditions where a

PMTUD failure occurs. The results, as illustrated in Figure 10.25, provide insight

into how throughput varies based on the TCP BASE MSS configuration. Therefore,

the experiment aimed to determine whether tuning the TCP BASE MSS could mit-

igate performance degradation and sustain higher throughput levels despite such

rollbacks.

Figure 10.25: Using Different TCP BASE MSS Values

The experimental results, as illustrated in the Figure 10.25, demonstrate the

impact of varying the TCP BASE MSS on throughput performance. Two different

TCP BASE MSS values were evaluated: 576 bytes (represented by the red line) and

1024 bytes (represented by the green line). The data reveals that the average

throughput for the 1024-byte TCP BASE MSS was 18.36 Mbps, which is slightly

higher than the 17.16 Mbps observed with the 576-byte TCP BASE MSS. These

results suggest that increasing the TCP BASE MSS can yield modest improvements

in throughput, even in scenarios where the system reverts to this value due to path

MTU-related errors. However, the difference in performance of approximately 1.2

Mbps, is relatively small, indicating that while a larger TCP BASE MSS provides

some benefit, it does not result in substantial throughput gains on its own.

Overall, these findings imply that tuning the TCP BASE MSS may help mitigate
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performance degradation to a limited extent, but it should be considered as part

of a broader set of strategies rather than a standalone solution for optimizing

throughput. This suggests the need for a more flexible, subflow-aware MSS han-

dling strategy that dynamically considers individual path constraints rather than

relying on a one-size-fits-all approach.

However, it could be the reason that MPTCP designers follow this approach

to ensure that all transmitted packets adhere to the most restrictive MTU across

the available subflows. This approach helps prevent fragmentation and maintains

reliable data transmission across multiple subflows (Paasch et al. 2014) and helps

preserve end-to-end performance and avoids complications that may arise from

heterogeneous path characteristics.

10.8 Findings

The results of the experiments conducted to evaluate MPTCP’s behavior under

heterogeneous path MTU conditions are summarized below, with quantified in-

sights linked to the stated research questions.

RQ1: MPTCP Adjustment to Different Path MTU Values and Schedul-

ing Improvement

• The modified Linux kernel with socket-level MTU probing enabled showed

a throughput improvement of approximately 12.5 Mbps, increas-

ing from 44.3 Mbps (before) to 56.8 Mbps (after modification) for

MPTCP connections with mixed path MTUs.

• The default MPTCP implementation failed to utilize subflows with smaller

MTUs due to a single global MSS selection. Only subflows with large MTUs

(e.g., 9000 bytes) were used for data transfer.

• After kernel-level MTU probing activation, both subflows—regardless of

their MTU (9000 and 1500 bytes)—participated in data transfer, enabling

better path diversity.
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• Nonetheless, the MPTCP scheduler defaulted to a segment size of 1024

bytes, limiting the effective use of larger MTU paths.

RQ2: Impact of Fragmentation Overhead on Subflow Packet Scheduling

• Without proper MSS adjustment, subflows with lower MTUs either dropped

packets or reverted to a fallback MSS of 1024 bytes, increasing protocol

overhead.

• In a controlled experiment where the TCP BASE MSS was manually varied:

– At 576 bytes, the average throughput was 17.16 Mbps.

– At 1024 bytes, the average throughput improved to 18.36 Mbps, an

increase of 1.2 Mbps.

• These results suggest that fragmentation overhead and fallback MSS policies

can modestly influence performance, but are insufficient for significant gains

without deeper scheduler and MSS logic enhancements.

Overall, the experiments highlight the importance of subflow-aware MTU prob-

ing and MSS adaptation for achieving high throughput and balanced path utiliza-

tion in heterogeneous environments.
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11. Challenges and Limitations of

Existing Linux Architecture

While the Linux kernel provides a robust foundation for network protocols, certain

challenges and limitations persist, particularly when it comes to advanced features

like Multipath TCP (MPTCP). As network environments continue to evolve with

more diverse and dynamic conditions, the existing Linux architecture must adapt

to effectively manage multiple concurrent paths and optimize throughput across

heterogeneous networks.

However, the integration of MPTCP with the standard TCP stack in Linux in-

troduces several complexities. These include issues such as path MTU mismatches

among subflows and inefficient subflow scheduling in scenarios where path char-

acteristics vary significantly. These challenges can hinder MPTCP’s performance

and its ability to fully exploit the potential of modern network environments. This

section explores the primary challenges and limitations within the current Linux

architecture and discusses how these constraints impact MPTCP’s ability to fully

exploit the potential of modern network environments.

11.1 Path MTU Discovery For MPTCP

As discussed in the previous section, Path MTU Discovery (PMTUD) is currently

deferred in the existing MPTCP implementation. However, if PMTUD were to

be integrated into MPTCP, several important considerations and steps would be

necessary to ensure accurate MTU detection across multiple subflows. The process

should begin by temporarily halting data transmission or suspending the user-level

socket to avoid interference during MTU probing. This ensures that control pack-

ets used for discovery are not mixed with application data, which could complicate

the detection process.
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PMTUD must then be carried out on a per-subflow basis. For each individ-

ual subflow, the mechanism would involve sending a packet sized according to a

candidate MTU (or the corresponding Maximum Segment Size at the transport

layer). Based on whether this packet successfully traverses the path or encounters

issues (e.g., fragmentation required but DF set), the system can infer whether the

path supports the chosen MTU.

This probing is repeated for each subflow, while keeping track of which paths

support the current MTU size and which do not. If any subflows reject the packet,

the MTU value is reduced and the probing process is repeated. This iterative

approach continues until each subflow has determined its own supported path

MTU.

Once all subflows have successfully identified their respective MTUs, the MPTCP

stack can then adjust the MSS values accordingly. This allows for more efficient

packet transmission by reducing the likelihood of fragmentation and aligning seg-

ment sizes with the actual capabilities of each network path. While this approach is

not currently implemented, it is reasonable to assume that such a mechanism could

potentially improve the adaptability and performance of MPTCP, particularly in

heterogeneous network environments where path characteristics vary significantly.
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11.2 Limitation of MTU Probing

In standard TCP, Path MTU (Maximum Transmission Unit) probing is used

to dynamically discover the largest packet size that can be transmitted without

fragmentation. This is done by intentionally sending larger packets and observ-

ing whether they are successfully acknowledged. However, in Multipath TCP

(MPTCP), this mechanism is not working properly. The primary reason is the

complexity introduced by MPTCP’s data sequencing and mapping mechanisms,

which are not present in regular TCP.

MPTCP maintains a separate data sequence number space at the connec-

tion level (called the Data Sequence Space), while each subflow retains its own

TCP-level sequence space. To coordinate these, MPTCP uses Data Sequence

Signal (DSS) mappings that explicitly describe how subflow-level segments corre-

spond to the connection-level data. For example, a subflow packet with a local

sequence number range 5000–5499 might carry MPTCP-level data for the range

10000–10499.

To safely implement MTU probing in MPTCP, any probe packet (which is

larger than the current segment size) must be fully contained within a single DSS

mapping. This means that the entire large segment must map to a continuous,

well-defined range in the MPTCP data sequence space. If this is ensured, the

receiver can interpret and reassemble the segment correctly, even if it is unusually

large, because it has a clear and complete mapping of where the data belongs.

Suppose the MPTCP-level data offsets 2000 to 2599 are available for transmis-

sion on a subflow. A 600-byte probe segment can be sent with a DSS mapping

indicating that this TCP segment carries MPTCP data from 5000 to 5599 as shown

in Figure 11.1 . Since the entire probe is contained within one DSS mapping, it

is unambiguous and safe. The receiver will know exactly how to place it in the

overall data stream.
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Figure 11.1: Probe packet stays inside a single DSS mapping

Now consider a case where a 1000-byte probe is constructed, but only the first

600 bytes have a corresponding DSS mapping (e.g., MPTCP data 2000 to 2599),

while the remaining 400 bytes fall outside the current mapping or overlap with

another as shown in Figure 11.2. In such a case, the receiver would be unable to

determine the correct MPTCP data location for the extra bytes.

Figure 11.2: Probe packet goes through multiple DSS mappings

If the receiver doesn’t know where the last 400 bytes belong in the MPTCP

stream, several issues can arise. It might drop the entire segment, misplace the

data within the stream, or fail integrity checks. Any of these outcomes would
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break the data reassembly process and likely trigger retransmissions. This not

only defeats the purpose of the probe but also harms overall performance by

introducing unnecessary overhead and delays. By ensuring that probe segments

are self contained within a single DSS mapping, MPTCP can safely attempt to

increase the segment size.

11.3 Byte-Based Send Buffer Complexity at the Connec-

tion Level in MPTCP

In traditional TCP, when data is written to a socket, the kernel segments it into

packets based on a single MSS (Maximum Segment Size) value for the connection.

These segments are then queued for transmission and processed efficiently using

the Linux networking stack’s packet-based optimizations. However, in MPTCP,

multiple subflows can be used, each with its own MSS value. This difference arises

from varying Path MTU (Maximum Transmission Unit) values across the different

paths. If a single MSS value were applied across all subflows, fragmentation would

occur, as segments would need to be broken down to fit the smallest MTU. To

avoid fragmentation, the kernel must dynamically adjust the segment sizes for

each subflow based on its respective MTU. This adds complexity to the process

of managing the transmission buffer, as the kernel now needs to:

Track how many bytes have been sent on each subflow separately.

Since each subflow can have a different MSS value, the kernel must track

the bytes sent and acknowledged for each subflow separately, rather than simply

enqueueing packets. To do this, it requires additional offset pointers for each

subflow to identify the portion of the data stream assigned to it.

MSS-Aware Data Fragmentation Tables

For instance, one subflow might have an MSS of 8960 bytes, while another

has an MSS of 1460 bytes. To ensure efficient data transmission, the kernel must

fragment and schedule data according to the MSS constraints of each subflow.

To achieve this, the kernel maintains MSS mapping tables that store the MSS

values for each subflow. These tables track the segmentation state, monitoring how
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data is fragmented and transmitted across different paths. Instead of maintaining

a single table for the entire MPTCP connection, separate tables are required for

each subflow. While this approach increases memory usage since each path requires

its own set of records.

Additional Metadata in sk buff Structures

In Linux, each sk buff (socket buffer) typically represents a complete TCP

segment. However, when the kernel must manage different MSS values across

multiple subflows, additional complexity arises in how packet data is stored and

processed. A standard sk buff contains:

• A pointer to packet data – referencing the actual payload.

• TCP/IP headers – storing protocol-related information.

• Length fields – corresponding to the MSS for efficient segmentation.

Since each subflow may have a different MSS, the kernel requires additional

metadata to efficiently handle fragmentation and scheduling. To track and manage

varying MSS values, the kernel needs to introduce:

• Per-subflow byte offset tracking – to determine how much of the data belongs

to each subflow.

• Subflow-specific MSS mapping – ensuring that each segment is correctly

sized for its respective subflow.

• Fragmentation markers for retransmission – allowing efficient reassembly and

recovery in case of packet loss.

The addition of these metadata fields increases memory consumption due to

the need for granular tracking and raises computational complexity as the kernel

dynamically adjusts segmentation per subflow.
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11.4 Complexity in Retransmissions

When a packet sent over a subflow with a large path MTU is lost (Figure 11.3),

Figure 11.3: Packet Dropping

the kernel must decide whether to retransmit it on the same subflow or use

a subflow with a smaller path MTU (Özcan, Guillemin & Houzé 2017). If the

retransmission occurs on a smaller path MTU subflow, the kernel must first re-

fragment the original packet to fit within the new MSS constraints as shown in

Figure 11.4.

Figure 11.4: Retrasmition - Fragmentation Required

This introduces an additional performance overhead, as the retransmission

itself already causes a delay, and the extra fragmentation further increases pro-
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cessing complexity. Consequently, the overall latency and computational cost of

handling retransmissions in MPTCP may degrade performance.

Additionally, keeping a consistent MSS across subflows simplifies retransmis-

sions. Since MPTCP allows packets to be sent over multiple paths, having a single

MSS avoids complications in retransmitting lost segments over different subflows

with varying MTUs. This prevents excessive packet reordering and potential per-

formance degradation due to out of order delivery.

However, this conservative approach can result in suboptimal utilization of

higher-MTU subflows. Even if a particular subflow supports a larger MTU, it

remains constrained by the smallest PMTU, leading to inefficient bandwidth usage.

Consequently, throughput may be lower than expected, as larger segments that

could be efficiently transmitted over higher-MTU subflows are not utilized.
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12. Conclusion

This thesis presented an in-depth investigation into the limitations of Multipath

TCP (MPTCP) when operating over subflows with heterogeneous path Maximum

Transmission Units (MTUs). The goal was to evaluate how differences in subflow

MTUs affect throughput and resource utilization, and to identify potential areas

for optimization within the existing Linux MPTCP implementation.

Through systematic experimentation in a controlled environment—leveraging

tools such as Mininet, Wireshark, iperf, and a Linux kernel, it was observed that

the default behavior of MPTCP is suboptimal in heterogeneous path scenarios.

Specifically, the default MPTCP stack tends to underutilize subflows with smaller

MTUs due to its unified Maximum Segment Size (MSS) selection strategy. This

selection mechanism, which is based on predicted throughput across all active

subflows, favors a single MSS that theoretically maximizes overall performance.

However, in practice, this often leads to the exclusion of subflows that cannot

accommodate the selected MSS, resulting in poor subflow utilization and limiting

the core benefits of multipath transmission such as improved throughput and

reliability.

To address this limitation, kernel level modifications were introduced to ex-

plicitly initialize path MTU probing on individual MPTCP subflows. Although

full integration of Path MTU Discovery (PMTUD) remains challenging, this ad-

justment allowed the stack to fall back more effectively to lower MSS values when

necessary, thereby improving overall performance in the presence of MTU con-

straints. Packet captures and throughput measurements confirmed better engage-

ment of multiple subflows and more efficient data distribution. Further testing

also explored the role of the TCP base MSS setting. By experimenting with dif-

ferent base MSS values, it was found that performance can be modestly improved

in fallback scenarios. Although this tuning alone does not fully resolve the limita-
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tions posed by heterogeneous MTUs, it offers a partial mitigation strategy when

subflows are forced to revert to baseline segment sizes due to path MTU-related

issues.

This thesis highlights that while MPTCP’s core mechanisms, such as data

sequence numbering and out-of-order reassembly, are robust, its scheduler and

buffer management logic are not yet fully optimized for environments where path

MTUs vary significantly. The need for per-subflow MSS awareness, smarter data

fragmentation, and adaptive retransmission logic is clear. These improvements

would allow MPTCP to more effectively leverage the full range of available paths,

enhancing throughput, reducing latency, and improving fairness across network

conditions.

In conclusion, the work presented in this thesis provides valuable insights into

the behavior and limitations of MPTCP in real-world heterogeneous networks.

It lays the groundwork for future research in MSS-aware scheduling, per-subflow

segmentation strategies, and enhanced retransmission handling. Continued efforts

in this direction could significantly improve MPTCP’s performance, particularly

in emerging applications where multi-interface devices and diverse network paths

are increasingly common.
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13. Future Work

This study has demonstrated that Multipath TCP (MPTCP) performance is sig-

nificantly affected by subflows with heterogeneous path MTUs and that current

Linux implementations face key challenges such as incomplete Path MTU Discov-

ery (PMTUD) and non-optimal Maximum Segment Size (MSS) handling. Based

on the findings and limitations encountered, several future directions are pro-

posed to enhance MPTCP’s adaptability and efficiency in heterogeneous network

environments. One promising area is the development of a new MSS handling

mechanism that supports per-subflow MSS negotiation, allowing the scheduler to

dynamically assign data segments based on each path’s MTU and real-time per-

formance metrics. Additionally, improvements to the PMTUD mechanism in the

MPTCP context are essential. This includes refining how ICMP ”Fragmentation

Needed” messages are processed so that MSS updates are not indefinitely deferred,

potentially through non-blocking update mechanisms or temporary suspension of

subflow transmissions. Another direction is the implementation of an adaptive

MTU probing mechanism for MPTCP, which can dynamically discover MTUs per

subflow even during active connections. Enhancing the MPTCP scheduler to be

MTU-aware—alongside existing RTT and congestion considerations—could sig-

nificantly reduce packet overhead and optimize subflow utilization. Furthermore,

conducting a cross-platform analysis of MTU handling in MPTCP implementa-

tions on other operating systems like FreeBSD, Windows, or mobile platforms

could uncover broader insights and contribute to future standardization. Finally,

expanding the current testbed to include real-world deployment scenarios such as

wireless, mobile edge, and data center networks would allow for comprehensive

validation of these enhancements under more dynamic and diverse conditions.
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ΩÖzcan et al.
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