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ABSTRACT

Named Entity Recognition (NER) is a preliminary task in Natural Language

Processing. NER has evolved from relying on rule-based mechanisms to utilizing

neural networks. NER is a pretty much resolved matter in the English language.

The Sinhala language faces the issue of data scarcity due to its complexities with

dataset extraction. Manual annotation of a Sinhala-labeled dataset is a laborious

task.

Entity recognition solely depends on a tagged dataset in a specific language,

but due to data limitations, it’s hard to do experiments on NER models in Sin-

hala. However, most of low-resource NLP researches shows remarkable improve-

ment with the knowledge transferring mechanism, which is known as transfer

learning. This research suggests a Sinhala NER model based on transfer learn-

ing, considering monolingual and multilingual approaches. An Indic language

model is fine-tuned for the target Sinhala NER model during both approaches.

The IndicBERT(Kakwani et al. 2020) model is chosen as the source model due

to its similarity with Sinhala.

The evaluations were done on monolingual and multilingual datasets. For the

monolingual dataset, a separate dataset was created using a weakly supervised

automatic method that contains six different categories. The multilingual dataset

was created with a Bengali dataset. The final transfer learning model was trained

on hyperparameter tuning followed by an augmented dataset from monolingual

data. It showed a moderate precision of 48.21%. The baseline CRF model showed

a macro precision of 90% and a macro F1-score of 61% showing that CRF is

applicable in normal contexts.

Keywords: Sinhala, Named Entity Recognition, Transfer Learning, IndicBERT,

CRF
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Chapter 1

Introduction

1.1 Background

The natural language processing helps computers communicate with humans in

their native language. For example, NLP makes it possible for computers to

read text written in their own language, recognize speech, interpret it, measure

sentiment, and determine which parts are more important for analysis. The Name

Entity Recognition (NER) is a form of NLP data processing task, and it involves

the identification of key information or entities in the given text and classify them

into predefined categories like person (PER), organization (ORG), place/location

(LOC) etc.

Named Entity Recognition has different applications in various fields, such

as health care, social media, and entertainment. The most common applications

of NER are information extraction, where we mainly focus on identifying the

most important entities from the given unstructured text and labeling them as

person, organization, and location. Through NER, search engines can boost their

searching abilities with a better understanding of the context of the query and

lead to more accurate and relevant results. In addition to that, social networks

can use NER to analyze content or posts and recommend similar articles, brands,

or products.

The term NER was first coined in the Sixth series of Message Understanding

Conference (MUC-6) in 1996. After that research work began around NER

in the English language. At the beginning, most of the research work revolved

around using rule based methods such as regular expression matching, heuristic
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rules, and String matching. But rule based methods were very time-consuming,

and they required linguistic expertise as well. Not only that, but rule-based NER

is more suitable for controlled environments with well-defined entities. However,

most NLP applications operate in adaptive environments that learn by analyzing

information from the given inputs. Therefore, machine learning-based approaches

have been introduced to cater to a wider range of inputs. This is because the

accuracy of NLP applications relies heavily on the richness of the desired dataset.

After like 2000 machine learning algorithms like Hidden Markov Models (HMM)

(Zhou and Su 2002), Conditional Random Fields (CRF) (N. Patil, A. Patil, and

Pawar 2020), and enhanced SVM approaches (T. D. Singh, Basanta, and P. K.

Singh 2020) revolutionized Named Entity Recognition through supervised learn-

ing. The arrival of deep neural networks made an impossible breakthrough in

English NER , which works perfectly on large datasets in a more accurate way.

Deep neural network (DNN) models use a method called representation learn-

ing to automatically learn patterns and features from input data. This approach

differs from traditional handcrafted feature engineering(HMM,CRF), where hu-

mans manually design and extract important features from the data before feeding

them into a model.

There are different deep learning architectures for NER, such as transformers,

BiLSTM-CRF, end-to-end neural NER, and CNNs (Lample et al. 2016). How-

ever, in Deep Learning architectures like BERT, it can be adapted for Named

Entity Recognition (NER) tasks because of its features. BERT models is nor-

mally pre-trained by using large corpora, which allows them to identify language-

dependent patterns easily. These types of pre-existing models are widely useful

with low-resource NER model training, especially when there is limited labeled

data due to language complexity. Most low-resource languages face challenges

in collecting datasets because of their complexities, which can be effectively ad-

dressed using a transfer learning approach. In addition to that, BERT models

can understand the context of a word from both directions (left and right) with
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the help of adding some Bi-LSTM layers, which ultimately helps to accurately

identify the entities based on the meaning of words in their context. As a re-

sult, BERT models are the most popular approach for NER model development

In Deep Learning architectures like BERT can be adapted for Named Entity

Recognition (NER) tasks. Here usually in practice BERT model is combined

with a decoder layer for better accuracy. While models such as RoBERTa are

primarily trained on English data, XLM-RoBERTa is pre-trained on multiple

languages, making it suitable for Fine-tuning with low-resource languages.

Low level languages face the inherent challenge of data scarcity. But we

can use multilingual models like XLM-RoBERTa to tackle this issue by using

transfer learning. Transfer learning is a machine learning method where the

knowledge learned from one task is applied to another separate or the same but

related task (Tan et al. 2018). Since transfer learning allows us to use a Pre-

trained model, we can reuse the model with a low amount of labeled data .

Anyway, NER gives much more accurate results for the most widely used

high-resource languages, likes English, Spanish, French, and German. Low level

languages face the inherent challenge of data scarcity. But we can use multilin-

gual models like XLM-R to tackle this issue by using transfer learning. Transfer

learning is a machine learning method where the knowledge learned from one task

(source model) is applied to another separate or same but related task (target

model) (ibid.). Since transfer learning allows us to use a Pre-trained model we

can reuse the model with a low amount of labeled data. It showed performance

improvement on low-resource NLP applications such as ASR, POS taggers, and

NER.

1.2 Problem Statement

The problem statement is focused on finding out the applicability of the transfer

learning approach on monolingual and multilingual NER for the Sinhala lan-

guage. Sinhala language is the native language of Sri Lanka and it belongs to
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Indo-European language family. The Current state of the art work in Sinhala

NER involves using machine learning algorithms like HMM and CRF inspired

from other Indic language resources (J. Dahanayaka and R. Weerasinghe 2014).

However machine learning algorithms face the inherent data scarcity issue, which

is more common in low-resource languages like Sinhala, that hinders the pattern

recognition from data.

But there are very few attempts to explore the effectiveness of transfer learning

in the Named Entity Recognition on the Sinhala Language. However, they failed

to perform effectively on entity recognition; due to that fact, its applicability to

Sinhala NER remains unexplored. That creates a significant gap in Sinhala NER

research, creating difficulties in entity recognition competent with the accuracy of

data-rich languages. Therefore, it is crucial to investigate and mitigate that gap

by using the knowledge extracted from a well-resourced language pretrained NER

model. Since now there are existing pre-trained multilingual Indic models such

as Indic-BERT (Kakwani et al. 2020), through that we can exploit the shared

patterns or linguistic features from the language which are similar to Sinhala

such as Bengali, which could be helpful in compensating for the data scarcity

issue

1.3 Research Aim, Questions and Objectives

1.3.1 Research Aim

The main aim of this research is to identify how transfer learning can impact entity

recognition in the Sinhala language. Through this research, we are able to address

the challenges of data scarcity for Sinhala by considering both monolingual and

multilingual approaches. As a result, this research can enhance the performance

of Sinhala NER.
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1.3.2 Research Questions

RQ1: What are the most effective parameters for enhancing Sin-

hala NER using a transfer learning approach?

To enhance the performance of Named Entity Recognition (NER) for Sinhala

using a transfer learning approach, it is necessary to focus on hyperparameter

tuning. First, we have to select the appropriate pretrained model and then fine-

tune the model with the Sinhala dataset, optimizing hyperparameters such as

learning rate, batch size, and number of epochs. Since our selected pre-trained

model is trained for Indic languages, all the parameters were identified based on

the features of that particular language, which may not be compatible with our

Sinhala dataset. Therefore, it is essential to determine the optimal combination

of hyperparameters for the selected Sinhala dataset.

A pre-trained model is tuned with selected hyperparameters to see the optimal

combination of hyperparameters and the weights of the model.

RQ2: How does the application of different data augmentation

techniques improve the overall performance of the entity recognition

in the Sinhala NER?

The application of different data augmentation techniques has an impact on the

performance of named entity recognition in Sinhala by improving the volume

and variations of training data. Since Sinhala is a morphologically rich, com-

plex language, detecting large variations in data coverage is a time-consuming

task. It is essential to use data augmentation to mitigate that problem. Existing

augmentation techniques such as synonym replacement, back-transliteration, and

random insertion will enhance the existing data variations, which ultimately leads

to better results. By analyzing the wider range of data variations of linguistic pat-

terns, the model can effectively learn entity identification in an accurate manner,

which ultimately improves the model’s accuracy. Therefore, data augmentation

is necessary for low-resource languages like Sinhala, where annotated datasets are

limited. The best model selected after the monolingual and multilingual training
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will be trained again with augmented data. Only the native sinhala language will

be subjected to augmentation .

RQ3: In what ways do monolingual and multilingual transfer

learning techniques impact the performance of NER models specifi-

cally for the Sinhala language?

Monolingual and multilingual transfer learning techniques significantly impact

the performance of low-resource NER models. Monolingual transfer learning fo-

cuses on using data and models that were trained on Sinhala, which can help

enhance the model’s accuracy and entity recognition relevant to the Sinhala lan-

guage and its morphological structure. This approach allows the NER model to

predict the named entities based on the specific linguistic features in an accurate

manner. On the contrary, multilingual transfer learning helps to mitigate the

data scarcity issue in low-resource languages. Here, it extracts language features

from multiple languages that are similar to our target language, Sinhala. By

training on language data related to Sinhala, which belongs to the Indo-Aryan

family of languages, such as Bengali, the model can gain insights and linguistic

patterns that are hard to obtain from Sinhala alone, thereby enhancing its ability

to recognize entities from the given text. However, the accuracy of NER can be

different depending on the selection of linguistic similarities and the languages

chosen. Therefore, it is necessary to find out the impact of both monolingual

and multilingual transfer learning models, as they can shape the NER model’s

performance in entity recognition for Sinhala.

The idea is to experiment with the model training with multilingual data.

Bengali is another Indo-Aryan language, just like Sinhala. Multilingual data and

Sinhala label data is used together to train the model. The data scarcity issue is

addressed from a different dimension here.
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1.3.3 Research Objectives

RO 1: Investigate the effectiveness of transfer learning on Sinhala NER by comparing

the performance against a baseline model.

RO 2: Experimenting on Data Augmentation to see whether there is an improve-

ment in Pre-trained multilingual model performance.

RO 3: Experimenting with monolingual and multilingual fine-tuning to see whether

there is an improvement in the performance of the Pre-trained multilingual

model.

RO 4: Creating a dataset with more fine-grained categories than the traditional

PER, LOC, and ORG classes, using a suitable automatic method.

RO 5: Experimenting with different selected parameter combinations to identify

the most effective set for transfer learning in Sinhala NER.
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1.4 Significance of the Project

NER is a crucial component of NLP systems that can greatly benefit Sinhala lan-

guage processing when it comes to information retrieval, searching and content

classification. Sinhala is a language with its own unique characteristics and chal-

lenges, such as extensive vocabulary, complex grammar rules, phonetic structure,

and ambiguity, and NER can help address some of these challenges by accurately

identifying and categorizing named entities in Sinhala text.

Virtual assistants and AI chatbots are increasingly used to interact with users

in their native language. NER plays a vital role in these systems by enabling

them to understand user queries more accurately. For example, by identifying

entities like names, locations, and organizations, virtual assistants can provide

more context-specific responses, leading to better user experiences. NER can

also be valuable in the newspaper industry for organizing articles based on named

entities mentioned within them. By automatically identifying and categorizing

entities, newspapers can group related articles together more efficiently. This

enhances the browsing experience for readers, allowing them to access relevant

content more easily.

The significance of NER extends beyond virtual assistants and newspapers.

Many other NLP tasks rely on accurate entity recognition, such as information ex-

traction, document summarization, sentiment analysis, and more. By improving

NER performance in Sinhala, the research has the potential to enhance various

aforementioned NLP applications.

1.5 Research Approach and Methodology

• Recreation of the Baseline Models and provision of a Dataset

– Most of the existing datasets are limited to the three main categories:

LOC, PER, and ORG. However, we have implemented a novel

dataset for the Sinhala language that was extracted from Wikipedia
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using a weakly supervised method covering six categories: Location

(LOC), Creative Work (CW), Organization (GRP), Person

(PER), Product (PROD), and Medical (MED). The detailed

explanation is provided in the Implementation chapter.

– For the purpose of multilingual training, we utilize the public dataset

(Fetahu, Z. Chen, et al. 2023) used in the work of (Fetahu, Kar, et

al. 2023). This dataset is in Bengali and includes seven fine-grained

categories that correspond to those in the aforementioned monolingual

dataset.

– We used the POS tagger introduced by (Fernando and S. Ranathunga

2018), along with the tag-set developed by (Fernando, S. Ranathunga,

et al. 2016), for the POS tagging task. Because it will improve the

model’s understanding with respect to the linguistic features and lead

to more accurate entity recognition.

– The model introduced by Azzeez and Ranathunga (Azeez and Surangika

Ranathunga 2020a) is re-implemented from scratch, using the same

set of features as the original, and it was trained with a previously

extracted dataset. It was used as our baseline model for evaluations.

• Search for appropriate Pre-trained models

The next step of the research is to search for pre-trained models in order to

experiment on transfer learning. Because in transfer learning it will do the

prediction on the target Sinhala language using the data-rich source model,

and depending on the source model, it will vary the model performance. So

it is necessary to choose the most suitable model, which is compatible with

different kinds of language combinations.

– Languages that are related to Sinhala but not very rich in resources.

(E.g. - Hindi and other Indo-Aryan languages)

• Implementation of Multilingual Models
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As the next step, multilingual models will be trained using the chosen pre-

trained models. And they will be compared to obtain the best pre-trained

model suitable for Sinhala in terms of accuracy and resource availability.

Firstly, the models will be trained with random parameters, and then hy-

perparameter tuning is applied to observe any significant improvement in

performance.

• Experimenting with monolingual, multi-lingual training and em-

ploying data augmentation techniques to come up with a optimal

sinhala transfer learned NER model

– Training the model with multiple languages (Bengali + Sinhala) and

from Sinhala, respectively, using the transfer learning approach from

the IndicBERT model to predict NE tags in multilingual and mono-

lingual approaches.

– Training models initially with the annotated dataset and then again

with the augmented datasets. Here the expectation is to augment the

Sinhala dataset to cover more depth coverage.

– Finally evaluate the model’s performance using the matrices as de-

scribed in the 5th chapter.

1.6 Scope and Delimitations

1.6.1 In scope

• Exploring the different approaches of named entity recognition systems for

low-resource languages.

• Exploring the various transfer learning methods used in named entity recog-

nition systems for low-resource languages, categorized into three groups.
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• Exploring the different approaches of dataset extraction using Wikipedia

articles used in named entity recognition tasks.

• Collecting a multilingual dataset.

• Collecting existing named entity datasets for Sinhala.

• Extracting a new dataset for Sinhala using Wikipedia articles, covering six

categories.

• Implementing a baseline CRF-based named entity recognition model for the

Sinhala language covering six categories.

• Identify the best-suited target model with hyperparameter-tuned values.

• Analyzing and fine-tuning the target Sinhala model using data augmenta-

tion techniques.

• Fine tuning the model with a multilingual dataset.

• Comparing the results with existing NER models for Sinhala.

• Fine-tuning pre-trained multilingual models using data augmentation.

• We chose the IOBES tagging format for annotating datasets.

1.6.2 Out scope

• All 23 categories in the reference work won’t be considered here.

• Nested entity ambiguity detection is not addressed.

• Data augmentation is only relevant for Sinhala NER.

• Multilingual models are used only for feature extraction purposes .

• For multilingual training, we only use the Bengali language.

• The final goal is to build a Sinhala NER model to detect more categories

than the existing 3-category (PER,LOC,ORG) model.
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1.7 Outline of the Dissertation

The dissertation is organized as follows. In chapter 2, a literature review has been

conducted to indicate the gap between the current state of the art Sinhala NER

and other NER systems in terms of the technologies used. Chapter 3 contains in-

depth information on the technologies and research methodology used, including

the corresponding architectures and algorithms used in this research. Chapter

4 outlines the step-by-step approach taken in this research has been outlined.

Chapter 5 displays the results from the experimentation conducted throughout

the research and an analysis of the results. Finally, Chapter 6 provides the

conclusions drawn from the research and discusses future work.
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Chapter 2

Literature Review

2.1 NER for Low resource languages

Natural languages can be classified into two broad categories, i.e., low-resource

languages (LRLs) and high-resource languages (HRLs). For high-resource lan-

guages, many data resources exist that help to enable machines to learn and

understand natural languages, e.g., English. English is a well-resourced language

as compared to other spoken languages. Many Western European languages are

well-resourced languages. Chinese, Japanese, and Russian are also high-resource

languages. In contrast, low-resource languages have very few or no resources

available. Low-resource languages may be described as less studied, resource-

scarce, less computerized, less privileged, less commonly taught, or low-density

languages (Cieri et al. 2016). Although data-rich models like English or German

can accurately identify the named entities due to their linguistic coverage, it is

challenging for us to integrate directly with low-resource languages like Sinhala

for NER tasks because of linguistic differences(Manamini et al. 2016). Under this

section, some of the existing low-resource NER research was critically analyzed,

providing a summary of their works, including results, approaches, datasets, and

observations. Different NER approaches involving other low-resource languages

are discussed in a detailed manner.

In 2018, researchers delved into some way of improving the performance of the

neural network in NER tasks using a soft gazetteer method instead of traditional

gazetteer features (Wu, Liu, and Cohn 2018). This study focuses on improving

neural network performance on NER tasks using (ibid.) a soft gazetteer method
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instead of traditional gazetteer features. They challenge the existing belief that

hand-crafted features are unnecessary for deep learning models because they will

learn knowledge automatically from their corpora. Their implemented hybrid

approach shows that integration of manual features such as part-of-speech tags,

word related features and gazetteers can improve the performance of the Neural-

CRF model, obtaining a 91.89 F1 score for the CoNLL-2003 English shared task.

Through this approach it will not simply enhance the performance of entity recog-

nition but also reduce the training requirements by 60% which is significant com-

pared to other baseline models.

A gazetteer simply refers to a list of categorized entities such as organizations,

person, locations, days of the week, etc. It helps to properly identify the enti-

ties from the given text. Apart from traditional gazetteers, soft gazetteers are

considered a more flexible entity recognition technique. Because it will consider

variations of text such as misspellings and synonyms rather than simply checking

for existing matches. So, in NER, soft gazetteers can enhance the model’s entity

recognition accuracy by considering additional information.

Wu, Lin and Cohn have been introduced an approach with hand-crafted fea-

tures for entity recognition, which impossible with low-resource languages. There-

fore, Rijhwani et al. proposes a novel approach to improve the NER model per-

formances in low-resource languages such as Kinyarwanda, Oromo, Sinhala, and

Tigrinya, where it’s hard to find lists of entities in those languages (Rijhwani et al.

2020). Their approach relies on the concept called ”soft gazetteers,” which Soft

gazetteers incorporate ubiquitously available information from English knowledge

bases, such as Wikipedia, into Neural-Named Entity Recognition models through

cross-lingual entity linking.

Given an input sentence, soft gazetteer features for each word can be denoted

as s = wi, . . . , wn, and then the features can be applied to each word in the

span. It is assumed that there is an entity linking (EL) candidate retrieval method

that returns candidate knowledge base (KB) entries considered as C = (c1, c2...)
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for the given input span, where c1 is considered as the highest-scoring candidate

among others. Low-resource languages used in the research are Kinyarwanda,

Oromo, Sinhala, and Tigrinya.

The baselines for this study are CNN-LSTM-CRF (NOFEAT: a model with-

out considering any features) and BINARYGAZ, which uses Wikipedia entity lists

to create binary gazetteer features. First, comparing BINARYGAZ to NOFEAT

shows that traditional gazetteer features help somewhat, but gains are minimal on

languages with fewer available resources. Advanced soft gazetteer methods such

as PBELSUPER (supervised learning-based method) and PBELZERO (zero-shot

transfer method) are used in the research as soft gazetteer methods.

The model’s evaluation is based on 10-fold cross-validation due to its data

scarcity, and it considers the F1 score as the primary evaluation materic. PBELZERO

method slightly improves the F1 score for Kinyarwanda, Oromo, and Tigrinya

from the BINARYGAZ, indicating that these methods can effectively enhance

NER by leveraging information from related languages. While PBELSUPER

(trained on the small number of bilingual texts) improves the F1 score of Sinhala

from 54.08 (BINARYGAZ) to 60.95 (PBELSUPER). Despite all of this, both OR-

ACLEGAZ and ORACLEEL, known as artificially strong systems, improve NER

performance of all languages significantly by hitting the NER F1 scores with over

90, exceeding all non-oracle methods, indicating that there is substantial space to

improve low-resource NER through either the development of gazetteer resources

or the creation of more sophisticated EL methods.

The impact of soft gazetteer features is further emphasized by incorporating

these features, which increases recall (the ability to identify true positives cor-

rectly) for both non-NIL with linking and the unseen category in the training

set mentions and unseen mentions by 5.5 and 7.1, respectively, by several points

compared to the baseline. However, these improvements are limited by the num-

ber of entities that the KB covers. Consequently, they augment entity mentions

in the KB. This ”augmentation” of the KB means they include additional NIL
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mentions. When they do this, the performance of the soft gazetteer methods

improves significantly for all four languages, achieving the highest improvement

of 9.97 in the F1 score for Sinhala among other languages(Rijhwani et al. 2020).

Another study focuses on using the novel LLM to solve the NER recognition

problem. Here the use case of LLM is vastly different from its original task, which

is the generation of text, as clearly stated in the text. Hence the result won’t be

that promising. But the writers suggest a method to transform the NER task

to a text generation task, which more adapted to LLM tasks. For example the

input “Colombo is a city” will be marked as “@@Colombo is a city”. The

results certainly abnormal compared to annotated corpus but since this is baseline

research work, the format of the output is acceptable(S. Chen et al. 2021) .

Recently, in 2023, in this particular study mainly idea is to leverage high-

resource language to tackle low-resource language learning problems . This lever-

aging process is also known as cross-lingual transfer learning in NLP, which uses

knowledge from multiple languages. The authors emphasize the enhancement of

transfer learning model training efficiency and its performance on entity recogni-

tion while keeping the source model’s weights and size unchanged for the target

model predictions. This adds a new dimension to transfer learning. Rather than

solely cross-lingual-transferring or fine-tuning pretrained models, the authors try

to create a significantly similar-sized model from a source to a target language,

which reduces resource consumption by 80% while maintaining the highest accu-

racy on entity recognition(Ostendorff and Rehm 2023).

Another somewhat different study(Krishnan et al. 2021) focuses on employ-

ing the public Wikipedia source to provide a scalable and practical way to solve

the NER problem. The issue of lack of annotated data is addressed by a weak-

supervised method using both Wikipedia and Google Knowledge Graph to boot-

strap NER data without any manually annotated data. The authors design an

adaptive method which suits morphologically complex languages. This method is

tested in 2 different but morphologically complex, agglutinative languages called
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Malayalam and isiZulu. Further The system’s performance was evaluated on both

in-domain (Wikipedia-derived) and out-of-domain datasets. The XLM-R model

showed significant in-domain performance for Malayalam (F1=0.87) and isiZulu

(F1=0.89) when trained on Wikipedia data. The XLM-R outperformed rule-

based and LSTM methods. However, performance was reduced in out-of-domain

scenarios, especially for isiZulu legal texts (F1=0.45) and organizational entities

across all tests (the lowest F1=0.19). The models are accurate on Wikipedia texts

while having issues with domain adaptation. This particular Wikipedia-based

weak-supervision method was used considering its robustness to complexities in-

volving morphologically complex languages and its ease of adaptability.

2.1.1 NER for Sinhala Language

Sinhala, the native language of Sri Lanka, belongs to the Indo-Aryan branch of

the Indic language family and has approximately 20 million speakers. Although

there are many successful NER systems for the English language, these systems

cannot be directly applied to Indic languagess due to their linguistic features(J.

Dahanayaka and R. Weerasinghe 2014). Considering the lack of resources and

inherent different linguistic language features, much of the research on Sinhala

NER focused on data- driven and rule-based solutions.

Dahanayaka and Weerasinghe’s (J. K. Dahanayaka and A. R. Weerasinghe

2014) work focuses on identifying named entities in an unstructured text. This

work doesn’t focus on categorizing the identified named entities. The researchers

assume the methods employed for Indic languages will probably work on Sin-

hala as well. Consequently, Conditional Random Fields (CRF) and Maximum

Entropy (ME) were chosen as methods for experiments. For both methods, ap-

propriate feature sets are refined. For ME, after several experiments, Context

word(window size = 1) and language-dependent features (preceding word/words)

are selected. Under CRF context-word, word, suffix, and bi-gram features are

selected as feature sets. The results highlight that CRF outperforms ME in Sin-
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hala NER and the applicability of statistical methods for Sinhala language NER

with a high precision rate of 91.64 and recall of 69.34.

Udeshika and Attanayaka (Senevirathne et al. 2015) build upon Dahanyaka(J.

Dahanayaka and R. Weerasinghe 2014)research by not only detecting but also

categorizing the entities. The study utilizes the CRF method, which is based

on previous work. It incorporates language-inherited features such as word-level

features: suffix and prefix information, first word, word length, and preceding

tag. The optimal window length is chosen to capture context effectively, and the

best feature set is selected for each class. A window size of 5 was identified as the

best optimal window size for both prefix and suffix features. For context, word

feature two different window sizes showed the best results for different classes.

In this approach, they are considered four named tags as person (NEP), location

(NEL), organization (NEO), and not named entity as NEN. Considering several

feature combinations, it trained separate models and observed the highest F-value

for NEP tag as 73.46, NEO as 66.78, and NEN as 71.73 in the last few feature

combinations, but NEL gives it the highest value of 60.05 in the 3rd feature

combination.

The Ananya (ananya) (Manamini et al. 2016) system initially classified entities

into only three categories in Sinhala. The researchers proposed enhancing the

previous UCSC binary corpus for NER use by (J. Dahanayaka and R. Weerasinghe

2014) study by adding more context through online newspaper articles to expand

the corpus to 110,000 words. Different models are trained under ME and CRF

using different feature combinations such as context words, prefixes and suffixes,

word length, word frequency, first and last word in a sentence, gazetteer list,

POS tags, etc. They have mainly considered the works of (ibid.) and (Saha and

Ekbal 2013) when identifying the candidate set of features for the experiments.

The combination that gave the maximum F1 score can be identified as follows:

clue words, context words (window size = 1), n-gram feature (n-gram size = 10),

gazetteer features, start-end word, and word length feature with a cutoff value of
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5. Finally, they concluded that the CRF outperformed the ME method for Indic

languages like Sinhala.

The study by Azzez and Ranathunga(Azeez and Surangika Ranathunga 2020b)

presents a fine-grained NER-tagged dataset with a trained CRF model and ob-

tained an F1 score of 84.8. Considering the lack of granularity and details in

the SOTR Sinhala NER datasets, the researchers have declared a NER tag set

according to modern standards with 23 categories (1.0 12 OntoNotes (Linguistic

Data Consortium 2007) was refined for this purpose). For annotation, human

annotators and the Inception tool were used to annotate the documented 70k

token corpus. For future work, it suggests a sizeable, fine-grained dataset (300k

tokens) so that deep learning can be used.

Another study discusses a rule-based solution for Sinhala NER, especially on a

sports dataset. Initially, sport-related data was collected with the help of Sinhala

e-sport articles, and class labels were automatically identified by using a rule-

based, semi-automated mechanism. After that, those identified labels were man-

ually checked with the support of a domain expert prior to the training process.

Then annotated data are used to train for Sinhala named entity recognition in

the sport domain through multiple models, such as Linear Perceptron, Stochastic

Gradient Descent (SGD), Multinomial Naive Bayes (MNB), and Passive Aggres-

sive classifiers. The rule-based solution can be justified due to the domain-specific

nature of the question. A class label suggester is basically a semi-automated, rule-

based component that is used to annotate the e-sports article and then annotate

the data it used to train an NER model through multiple methods. Of these,

the multinomial Bayes classifier shows the highest accuracy of 97% in detecting

ground, tournament, and other categories. In addition to that, it shows more

than 80% precision for the Ground and Other categories(Wijesinghe and Tissera

2022).

Another research successfully improved Sinhala named entity data with a fo-

cus on person and location entities using a semi-supervised bootstrapping method.
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Increasing Sinhala named entity data using less effort compared to supervised

learning is the main intention of the study(Jayasinghe 2017).

2.2 Transfer Learning for low resource languages

Transfer learning is the process of transferring knowledge gained from one or more

source tasks to a particular target task(Pan and Q. Yang 2010). In the context

of this entity recognition research, transfer learning is instantiated by applying

multilingual pretrained source NER models to improve the performance on the

target Sinhala NER task. Transfer learning is mainly useful with the prediction

of low-resource problems where we are unable to extract more data due to their

linguistic complexities. In that situation, we can predict the behavior of such

a low-resource problem with the help from previously trained or learned model

knowledge. In this case we can abstract knowledge to pretrained transformer em-

beddings. Figure 2.1 shows the illustration of the learning processes of traditional

machine learning (ML) and transfer learning (TL).

Figure 2.1: Traditional Machine Learning vs Transfer Learning (Pan and Q. Yang
2010)

Hence, with the availability of pretrained weights, through transfer learning

we can reuse the existing source model weights for the prediction on low-resource

target models without worrying about less labeled data. Compared to the tradi-

tional machine learning models, here we are not going to worry about the number

of labeled data available because of the knowledge transfer technique. This re-

moves the need for developing models from scratch, as pretrained models can be
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fine-tuned on task-specific data or tasks upon requirement.

Now transfer learning can be used for task-specific purposes or feature ex-

traction purposes. For example we can use indicNER, which is an NER model

trained on Indic languages that can be directly used or fine-tuned on Sinhala

NER data as preferred. But we can also use IndicBERT to extract embeddings,

which can be later used for tasks like Sinhala NER. Lets focus on some of the

previous work on using transfer learning on NER.

In Indic language NLP research, it has been shown that multilingual fine-

tuning efficiently leverages language relatedness, leading to improvements over

monolingual approaches. The Indo-Aryan (IA) language family is chosen for

the study, which includes languages such as the exact languages being Bengali,

Gujarati, Hindi, Marathi, Oriya, Punjabi, and Urdu. Language relatedness is

approximated by the correlation between different languages because similar lan-

guages share almost similar linguistic features such as grammar, vocabulary, et-

ymology, and writing systems. The Oriya and Punjabi languages have shown a

significant improvement in NER tasks compared to monolingual models. Now

the reason for such improvement can be explained because of the low-resource

nature of this Oriya and Punjabi languages and they share similar roots when it

comes to scripts with languages like high-resource languages like Hindi, whereas

Urdu has a completely different script.

As shown in Figure 2.2, incorporating Gujarati training data for Oriya NER

yielded a dramatic 54 percentage point improvement (from 38.8% to 92.4%)

in multilingual fine-tuning. Punjabi showed a smaller but notable 6 percentage

point gain when Bengali data was added.

These experiments used MuRIL in a study (Khanuja et al. 2021) as the mul-

tilingual language model, demonstrating its effectiveness for cross-lingual trans-

fer within the Indo-Aryan language family. Crucially, this work confirms that

strategic language pairing (e.g., Gujarati→Oriya, Bengali→Punjabi) drives

improvements, while arbitrary data accumulation provides diminishing re-
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turns in Dhamecha et al. 2021.

Figure 2.2: Study of graded addition of languages for NER task on low resource
languages of(left) Oriya and(right) Punjabi using MuRIL(Dhamecha et al. 2021)

Another study establishes a baseline for NER for low-resource languages like

Upper Sorbian and Kashubian through West Slavic language family (Polish and

Czech) feature extractions. This study targets three RoBERTa models that were

built from stracth, including two mono-lingual Polish and Czech models and one

bi-lingual model for that same languages. These models were evaluated on the

entity recognition task for Czech, Polish, Upper Sorbian, and Kashubian, while

comparing the available models like RobeCzech, HerBERT, and XLMR.

Through their findings, they suggest that mono-lingual models perform well

with their languages, and both monolingual and West Slavic language family

models identified named entities better than larger multi-lingual models. This

research highlights the efficacy of leveraging shared linguistic features and larger

datasets within the same language family. Although we cannot definitively con-

clude the superiority of multilingual fine-tuning, it is observed that both family-
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specific and monolingual-trained models outperform large multilingual models

(Torge et al. 2023).

Under this study, transfer learning was used to leverage data from source

languages to Galician , West Frisian , Ukrainian, Marathi, and Tagalog. All

the target languages outperform log-linear CRF in low-resource settings. A BiL-

STM+CRF with character-level CNN is used as the neural network. After adding

a source language such as Spanish to the target language Galician , F1 increases

to 76.40 for the neural CRF and 71.4 for the log-linear CRF. The trend is similar

for other source languages, such as Catalan (75.40) and Italian (70.93) (Cotterell

and Duh 2017).

In another study , models trained with multilingual data outperform models

trained with individual datasets when tested on languages. The authors focus

on using Marathi and Hindi languages as assisted languages for each language.

The paper also emphasizes the inefficacy of arbitrary addition of datasets in NER.

The observations portray that XLM-Roberta, RoBERTa Hindi, MahaBERT , and

MahaRoBERTta perform better on the mixed dataset than on the monolingual

IIT Bombay dataset (Marathi). Again, this demonstrates that models trained

with diverse, multilingual data are able to leverage cross-linguistic features and

knowledge, leading to better performance than those trained on single-language

datasets (Sabane et al. 2023).

Another study focuses on three different transfer learning architectures, in-

cluding cross-domain transfer, cross-application transfer, and cross-lingual trans-

fer. Under cross-domain transfer, it learns target domain entity tagging from the

knowledge extracted from the source domain. When it comes to cross-application

transfer, it assumes that knowledge will be extracted from different applications

using the same alphabet to make the prediction on target languages by simply al-

tering the CRF layer. Cross-lingual transfer relates to additional multilingual lan-

guages, which is sensitive to size and the quality of language selection. Through

this study, the researchers focused on transferring knowledge between languages
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that have similar alphabets, such as English and Spanish, due to the difficulty of

transferring knowledge between two distinct languages. That’s why we need to

focus on language similarities when we are considering multilingual model-level

transfer learning.

In cross-lingual transfer learning, all layers of the pretrained models are trans-

ferred through exploiting the morphologies shared by the two similar languages.

For the transfer learning model, a hierarchical framework is proposed. This frame-

work involves extracting detailed character-level features, combining them with

word-level features and context, and then predicting the sequence of labels with

the CRF layer.

The transfer learning model used hyperparameters as character embedding

at 25, word embedding dimension 50 for English and 64 for Spanish, and an

initial learning rate of 0.01. In Figure 2.3, the results for the Spanish and Dutch

NER achieve state-of-the-art, the highest entity recognition performance among

all the benchmark datasets that they have considered. Also, they have concluded

that target language label abundance, correlation between source and target, and

parameter selection have an impact on the transfer learning model predictions in

the NER domain(Z. Yang, Salakhutdinov, and W. W. Cohen 2017).

Figure 2.3: state of the art results for Spanish and Dutch NER (Z. Yang, Salakhut-
dinov, and W. W. Cohen 2017)

Now let’s analyze a more comprehensive research work done by Murthy and

Bhattacharyya (Murthy and Bhattacharyya 2018) in 2018 on improving NER

tagging performance in low-resource languages via multilingual learning. Multi-

lingual learning in this context refers to where a deep neural network is trained
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Figure 2.4: CNN Bi-LSTM model for NER used by (Murthy and Bhattacharyya
2018).

for the same task in multiple languages by sharing some or all layers of the neural

network between related languages. Accordingly, for low-resource language setup,

Marathi, Bengali, Tamil, and Malayalam as the primary languages and Hindi as

the assisting language have been considered.

The above languages are all related in the sense that they are all members of

the Indo-Aryan language family. Indo-Aryan languages in the Indian subconti-

nent share the same set of phonemes, and the correspondence between characters

across scripts can be easily established (Subbarao 2012). In the monolingual

learning setup, the CNN Bi-LSTM model (see Figure 2.4) and CRF model with

traditional features are employed in the research. For the multilingual learning

setup, CNN Bi-LSTM Sub-word (figure 2.5) and CNN Bi-LSTM All (all layers

are shared) are used .

In the monolingual learning setup, the CNN Bi-LSTM model outperforms
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Figure 2.5: Comparison of Various Multilingual Learning Strategies and Mono-
lingual Deep Learning Systems on Tamil, Malayalam, Bengali, and Marathi NER
Using Hindi as Assisting Language

the CRF system on three out of four languages. The results from the Table

2.5 show that the CNN Bi-LSTM All model significantly outperforms both the

CNN Bi-LSTM and CRF models for NER across four Indian languages: Tamil,

Malayalam, Bengali, and Marathi. The CNN Bi-LSTM all model surpasses the

CNN Bi-LSTM sub-word model in three of these languages, with only a slight

advantage of the sub-word model in Malayalam. This may be due to the rich mor-

phology in Malayalam, which helps the sub-word model to capture the meaning

of words better. Incorporating Hindi as an assisting language further enhances

NER performance for all languages, with the CNN Bi-LSTM all model achieving

an increase in F-score of at least 0.8 absolute points over the baseline monolingual

systems.



Chapter 3

Design

The primary objective of this research is to investigate the applicability of transfer

learning for the Sinhala Named Entity Recognition (NER) task. In this context,

target domain predictions is based on the knowledge extracted from the pre-

trained source model. Here, first it is necessary to select the appropriate source

model, which is trained on a large corpus, and then fine-tune it for the Sinhala

NER task prior to knowledge transfer.

3.1 IndicBERT

The language modeling has evolved from static embeddings such as word2vec to

sequence aware models such as LSTM and RNN. Later, in 2015, the attention

technique, which targeted the highest priority part of the given input text, was

introduced, and as a result of that, transformers and BERT models were intro-

duced. Although all the existing models before the transformers did not consider

the global context. The usage of words changes according to the context, and

because of that, it reduces the accuracy in NER tasks. Through transformers

and BERT, we can handle that issue.

The BERT (Bidirectional Encoder Representations from Transformers)(Devlin

et al. 2019) model and all its the derivatives are based on the Transformer Ar-

chitecture(Vaswani et al. 2017). In a transformer there is a decoder stack and an

encoder stack , each of which must contain one attention layer at the bottom.

Each encoder can be divided into two sub parts: self-attention and feedfor-

ward. The self-attention mechanism understands how words relate to each other

and passes that along to the upper layers. The feedforward layer will output
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the self-attention layer and feed it to the feedforward neural network for fur-

ther analysis. The encoder enhances the representation of words in all its layers.

The decoder has a self-attention layer followed with an encoder-decoder attention

layer and a feedforward layer. This kind of full encoder-decoder setting is used for

sequence-sequence tasks like machine translation. This setup allows us to model

syntactic/semantic relations between words and reduce feature engineering. In

the BERT base model 12 encoder layers are employed. We can add more layers

on top of BERT for specific tasks.

The proposed architecture for the system consists of 3 layers. As per it shown

in Figure 3.1. In the first layer, we fine-tuned indicBERT for the Sinhala Named

Entity Recognition task. And the intermediate layer is a linear encoder layer,

which is used as a lightweight alternative to the LSTM layers. This linear encoder

reshape the contextual embedding output received from the pretrained model to

the final CRF layer.

The choice of IndicBERT (Doddapaneni et al. 2023) depends on the main

reasons for its invention. IndicBERT is a multilingual model that is trained on

12 Indic languages. This model was designed to cover Indic languages as much

as possible with a high model capacity covering related languages. Previous work

shows that multilingual models trained using pretraining data from a smaller set

of related languages lead to better performance on downstream tasks than large-

scale models that support many languages (Conneau et al. 2020; Khanuja et al.

2021). In this research, IndicBERT is fine-tuned with Sinhala and Bengali data.

3.2 CRF

Transformer models like BERT and RoBERTa model the probability distri-

bution of potential tags for each token in a sequence independently. But this

method ignores the interdependent relationship between tags. For example, you

can’t have B-LOC (beginning of a location) followed by I-PER (inside of a

person).
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Figure 3.1: A layout of the BERT-CRF model.

So to model tagging of tokens jointly, we use the CRF (Conditional Random

Fields) method (Lafferty, McCallum, and Pereira 2001). It is an alternative

to Hidden Markov Models (HMM) and is still going to be used to incorporate

the sequential structure. When considering entity recognition, HMM does not

work properly due to its limitations in contextual understanding, neglecting rich

linguistic features such as POS taggers, and failing to accommodate the ambiguity

problem.

In CRF, the transition matrix and emission matrix are considered as key com-

ponents for building relationships among states and observations. The transition

matrix will define the probabilities of transitioning from one state to another,

which helps the NER model to understand the sequence of labels or words that

appear within the sentence. On the other hand, the emission matrix shows the

probabilities of observing or capturing a particular feature, such as word fea-

tures, contextual features, POS tags, and character-level features, in a given

state. Combining these two matrices together helps CRF to effectively iden-

tify the dependencies in an accurate manner, which ultimately helps with entity
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recognition. Neural networks generate the emission scores automatically without

depending on manually defined features.

In CRF, it is necessary to evaluate how well a given label sequence aligns

with the observed data, considering the features that we have defined in the

model. We are trying to maximize the score value for the correct sequence label

while minimizing it for the incorrect labels. Hence, for a prediction sequence

y = (y1, y2, . . . , yn) given its input, X = (x1, x2, . . . , xn) we define a score as

follows.

s(X,y) =
n∑

i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi (3.1)

In the above equation 3.1, A represents the transition matrix, where each

element Ayi,yi+1
is the score for transitioning from tag yi to tag yi+1. P is the

emission matrix, where Pi,yi represents the score of observing the word i being

assigned the tag yi. This matrix P relates to the output of the linear encoder or

an LSTM layer.

Now to take the probability to for the whole sequence Y , we softmax over all

possible tag sequences.

p(y | X) =
exp
(
s(X, y)

)∑
y′∈YX

exp
(
s(X, y′)

) (3.2)

The denominator of the above function 3.2 is sometimes named as the parti-

tion function Z(x) (Al-Qurishi and Souissi 2021).

Z(X) =
∑

y′1,y
′
2,...,y

′
k

exp

(
k∑

i=1

E(xi, y
′
i) +

k−1∑
i=1

V (y′i, y
′
i+1)

)
(2)

The above partition function is computationally intractable; hence, the forward-

backward algorithm is used to avoid checking every possible sequence of tags

through brute force. During the training phase, for every classification problem,

there should be a loss function to enable model learning. In this context, CRF,
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we try to model the probability of a label sequence given an input sentence. So

in training we try to maximize this probability to give the correct sequence. But

this process involves a lot of calculation, and it doesn’t suit a loss function. In

consideration of the need for a loss function, negative log likelihood is defined as

a parameter that can minimize an objective function .

L = − log (P (y | X)) (3.3)

− log (P (y | X)) = − log

exp
(∑k

i=1 E(xi, yi) +
∑k−1

i=1 V (yi, yi+1)
)

Z(X)

 (3.4)

= log (Z(X))− log

(
exp

(
k∑

i=1

E(xi, yi) +
k−1∑
i=1

V (yi, yi+1)

))
(3.5)

= log (Z(X))−

(
k∑

i=1

E(xi, yi) +
k−1∑
i=1

V (yi, yi+1)

)
(3.6)



Chapter 4

Implementation

In this chapter, the methodology and implementation that have been followed

during the research are described, and each main section represents how we de-

veloped in a descriptive manner. Initially, the appropriate Sinhala dataset is

extracted from Wikipedia from scratch, as described in Section 4.1. In Section

4.2, the implementation of the baseline Named Entity Recognition model on CRF

for Sinhala is explained to identify the entities in the Sinhala language. Later,

in Section 4.3, the fine-tuning process of the existing Sinhala CRF model for

entity recognition using a transfer learning approach, especially in the Sinhala

language, is explained, including hyperparameter tuning and augmentation ap-

proaches. In Section 4.4, the multilingual transfer learning approach from the

baseline IndicBERT model, including hyperparameter tuning and augmentation,

is mentioned.

4.1 Dataset Preparation

To train our own NER model, it is necessary to have a proper entity tag set in

the desired Sinhala language. Data collection or data preparation is considered a

crucial step in any machine learning model, and overall model accuracy strictly

depends on the quality of the selected dataset. Therefore, it is necessary to

have a proper dataset that covers most common Sinhala entity tags; however,

the available dataset only covers three categories, such as person, location, and

organization entities. As a result of that, we have to extract dataset additionally,

considering three categories such as medical, products, and creative work.

There is a study that was conducted by Aravind Krishnan to extract entity
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datasets for person, organization, location, and other categories using a weakly

supervised approach that collects the training set from Wikipedia (Krishnan et

al. 2021). In our research, we have used the same approach as for Sinhala entity

recognition from Wikipedia articles, considering person (PER), location (LOC),

organization (GRP), products (PROD), medical (MED), and creative work (CW)

categories.

Although Sinhala is known as a low-resource, morphologically rich language,

the presence of Sinhala Wikipedia articles on the internet has been growing in

recent years. Due to language complexities most of NER studies have been carried

out by using three major categories as mentioned in the work of (Manamini et al.

2016). That dataset is annotated by IOB format, and they have used the UCSC

tag corpus (J. Dahanayaka and R. Weerasinghe 2014), which was extended with

the contextual data from newspaper articles. But during our research, we are

trying to find the applicability of entity recognition by considering more groupings

such as person, location, medical domain, creative works, etc.

Since it is hard to obtain entity data belonging to many categories in the

Sinhala language, we have to build the dataset for this research from scratch.

For bootstrapping training data, we have used the Sinhala Wikipedia articles,

and Google Knowledge Graph has been applied to recognize the aforementioned

entity types. There are a few reasons for choosing Wikipedia articles over other

internet resources, as we can easily find many articles in Sinhala that were created

by different communities. This helps to extract different domain features that

help with bootstrapping, and we can also easily find different entities due to its

vast domain coverage. Our dataset creation contains 4 sub-stages to get the

named entities from Sinhala data, as shown in Figure 4.1. In the first stage, it

will extract the list of titles from the Wikipedia in the Sinhala language and use

the Wikipedia language links to find their English equivalents. After that, it will

extract the candidates for named entity tags using Google Knowledge Graphs.

Finally, we have used the title lists to annotate Sinhala Wikipedia articles.
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Figure 4.1: Data flow diagram of the data set generation process(Krishnan et al.
2021)
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In the first stage of our dataset creation, we extracted the list of article ti-

tles from the Sinhala Wikipedia dump and applied preprocessing to remove all

the entries that were entirely in different language numbers and characters apart

from Sinhala. Also, all the duplicate titles were removed to handle the redun-

dancy problem. Those extracted titles share the primary token and its descriptors

within brackets to distinguish entities from each other. The title extraction and

preprocessing setup was mentioned below.

1 import os

2 import json

3 import argparse

4 import re

5 def contains_sinhala(text):

6 """ Check if the text contains at least one Sinhala character."""

7 sinhala_regex = re.compile(r’[\u0D80 -\ u0DFF]’)

8 return sinhala_regex.search(text) is not None

9 def decode_and_filter_titles(input_file , output_file):

10 """ Decode titles from JSON file , filter , and save unique Sinhala titles to

the output file."""

11 seen_titles = set() # Track unique titles

12 with open(input_file , ’r’, encoding=’utf -8’) as infile , open(output_file ,

’w’, encoding=’utf -8’) as outfile:

13 for line in infile:

14 try:

15 data = json.loads(line) # Parse JSON line

16 title = data.get(’title ’, ’’)

17 # Check if the title is valid , contains Sinhala characters ,

and is not a duplicate

18 if title not in seen_titles and contains_sinhala(title):

19 outfile.write(title + ’\n’) # Write the title to the

output file

20 seen_titles.add(title) # Mark title as seen

21 except json.JSONDecodeError:

22 continue # Skip invalid JSON lines

After that, we queried each title in the previously extracted and preprocessed

title list to allocate their respective named entity tags using Google Knowledge

Graphs, which are similar to the tags used in NER. During our study, the tags

were restricted to PER, GRP, LOC, MED, PROD, and CW. Entities that do
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not belong to the above-mentioned tags or groups are considered as OTHER. In

Google Knowledge Graphs, queries are only accepted in English; therefore, it is

necessary to translate the extracted queries from Sinhala into English. They use

different sources when generating tags, and they generate a list of tags depending

on their rankings.

Later, we selected the top one. After that, if one of those tags appeared in

the extracted title list, it is assigned, and if not, it will be annotated as the tag

OTHER. Finally, we automatically annotate the text of each Wikipedia article

in Sinhala by considering our selected six tags, and how it does so is illustrated

in the below Appendix A.1.

Previously, we defined all the categories that we are interested in in Sinhala,

and then we had to build the connection to access the Wikipedia articles and

fetch contents from them. If our fetch request was successful, then the content

was extracted and broken into sentences using NLTK’s sentence tokenizer. Then

each sentence is further tokenized into separate words, and each of them passes to

the multi-word entity labeling function, which is described below in the Appendix

A.2.

Multi-word entity recognition in Sinhala is a crucial part of Named Entity

Recognition (NER), and it helps to identify and classify various words that rep-

resent specific entities such as person, locations, organizations, creative works,

etc. Compared to other languages, Sinhala’s multi-word classification is a bit

challenging because of its unique syntax and morphology structure. However, by

recognizing these multi-word entities, it will give more contextual understand-

ing of the text, which ultimately helps with accurate entity identification. The

following code segment explains how we manage to handle the tokenization and

labeling process of the multi-word entities.

Firstly, we applied the tokenization by splitting the given input Sinhala string

into individual words, considering space. Next, using the bigrams (two-word

phrases) and trigrams (three-word phrases) within the text, it will find a match
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from the dictionary, which records all the known entities with their corresponding

types, and label them accordingly. During the labeling process, it will record a

”B-” tag for the first word, which indicates the beginning of an entity, and an

”I-” tag for the subsequent word, which indicates the remaining part of the same

entity. The same labeling approach is done as it is except for the ”Other” category.

Overall, the following code explains how we managed to identify and categorize

multi-word entities in Sinhala.
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1 # Function to tokenize and correctly label multi -word entities

2 def tokenize_with_multiword_entities(text , result):

3 words = text.split () # Simple space -based split

4 i = 0

5 while i < len(words):

6 match_found = False

7 # Check for bigrams (2-word entities) and trigrams (3-word entities)

8 for n in [3, 2]:

9 if i + n <= len(words):

10 phrase = "␣".join(words[i:i+n]) # Create an n-word phrase

11 if phrase in result:

12 entity_type = result[phrase]

13 tokens = phrase.split()

14 if entity_type == "Other":

15 yield from ((tok , "Other") for tok in phrase.split())

16 else:

17 yield (tokens [0], f"B-{ entity_type}") # First token ->

B-tag

18 for tok in tokens [1:]:

19 yield (tok , f"I-{ entity_type}") # Remaining tokens ->

I-tag

20 i += n # Move ahead by n words

21 match_found = True

22 break

23 if not match_found:

24 word = words[i]

25 if word in result:

26 entity_type = result[word]

27 if entity_type == "Other":

28 yield (word , "Other") # Not an entity

29 else:

30 yield (word , f"B-{ entity_type}") # Single -word entity

31 else:

32 yield (word , "Other") # Not an entity

33 i += 1 # Move to next word

When it comes to entity recognition, it is necessary to identify the ambiguous

titles in a much more accurate manner, and for that, we have used hyperlinks.

Then all existing hyperlinks were annotated with their tags.

CRF models will rely on part-of-speech tagging (POS) features to make their

prediction on a given NLP task. But when we consider other neural network mod-
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els, they will automatically learn their linguistic features from the given dataset,

whereas CRF needs explicit feature analysis to capture linguistic patterns. We

used the POS tagger introduced by (Fernando and S. Ranathunga 2018), along

with the tag set developed by (Fernando, S. Ranathunga, et al. 2016), for the

POS tagging task. This Sinhala POS tagger is a fine-tuned version of the orig-

inal TnT POS tagger introduced by (Brants 2000). The parameters relevant to

Sinhala were already generated by (Fernando and S. Ranathunga 2018).

The provided POS tagger was installed, and then the environmental variables

were set as follows.

nvim ~/. bashrc

export PATH=\ $PATH :/home/kavisha/Research/tnt/

export TNT_MODELS =/home/kavisha/Research/tnt/models

source ~/. bashrc

Then the input file was in the format tt and it was tagged using the provided

parameters for Sinhala (see Figure 4.2). The model parameters were in 2 separate

files called sinhalafinal.lex and sinhalafinal.123 as shown in Figure 4.3. Then we

can use the generated POS tag files in Figure 4.5 for feature engineering purposes

in CRF model training by combining them with usual NER tagged data files.

tnt sinhala_final train.tt > train.tts

Figure 4.2: Input file format for the POS tagger.
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Figure 4.3: Model files for the Sinhala POS tagging

Figure 4.4: POS tagged tokens in .tts format
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4.2 Implementation of the Baseline NER model

In transfer learning, we interact with two models known as the source and target

models for a given task. The source model is trained with a large dataset, and

based on the knowledge it obtained during the entity recognition task, it will

do the prediction on the same task in the target model, which we interact with

in low-resource languages that are similar to the source model. This research is

focused on reviewing the applicability of transfer learning for the Sinhala language

by considering both monolingual and multilingual approaches.

The Sinhala baseline NER model was implemented using the work carried

out by a group of researchers at the University of Moratuwa in 2020 (Azeez

and Surangika Ranathunga 2020b). The NER task is considered a sequential

classification problem, and most statistical models, such as Hidden Markov Mod-

els (HMM), Maximum Entropy Models (ME), and Conditional Random Fields

(CRF), have been used for this purpose. Among these, CRF has performed well

in most languages. Because of that, we also used the CRF model as our baseline

model in the monolingual approach. However, there is no readily available NER

model for the Sinhala language; therefore, based on the explanation in the work

of Azzes, we had to implement the model from scratch.

4.2.1 Splitting the NER dataset

In every machine learning model, the dataset has to be split into three parts: a

training set, a testing set, and a validation set. For the training of the monolingual

baseline NER model, we have used the Ananya dataset, which contains 10,000

annotated sentences under four entity tags, such as person, organization, location,

and other (Manamini et al. 2016). They have used the automated and manual

annotations for their dataset creation. In the training, testing, and validation, we

have used 2668094, 1222781, and 1222781 tag entities in the Sinhala language,

respectively, and their distribution is mentioned in the table 4.1 below. Here, each

train, dev, and test dataset covered 11 categories, such as ’B-CW’, ’B-GRP’, ’B-
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LOC’, ’B-PER’, ’B-PROD’, ’I-CW’, ’I-GRP’, ’I-LOC’, ’I-PER’, ’I-PROD’, and

’Other’.

Category
Frequency

Train Dev and Test
Other 2634792 1201619
B-PER 37115 3651
I-PER 2466 1882
B-CW 3113 8971
B-LOC 15612 1703
I-LOC 2681 2084
I-CW 650 1500
B-GRP 3716 567
I-GRP 1262 737
B-PROD 85 48
I-PROD 2 19

Table 4.1: Distribution of train, dev and test dataset

4.2.2 Implementation of the monolingual CRF model

Bi-LSTM (Bi-Directional Long Short-Term Memory) together with the CRF layer

is considered the most effective approach in deep learning. However, they work

well with the large dataset. In our research for monolingual baseline experiments,

we only have 10,000 sentences of annotated data; therefore, we had to use the

CRF model instead of BiLSTM-CRF.

We used the PyCRFSuite1 to implement the PyCRF model. The PyCRF

model can effectively identify the relationship among adjacent labels or tags,

which is crucial for identifying the accurate entity tags in Sinhala. In addition

to that, due to its flexibility, it allows us to incorporate various features, which

helps with the NER task. Feature extraction is necessary for entity recognition in

any language with a CRF model because it provides an ability to make accurate

predictions on entities by referring to the context of a given sentence. In this

research, manually designed features, such as word length, word position, prefix

and suffix, POS tags, endings or beginnings, etc., were extracted as tokens, and

it is mentioned in the below Appendix A.3.

1https://github.com/scrapinghub/python-crfsuite

https://github.com/scrapinghub/python-crfsuite
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Figure 4.5: Gazetteer list used in the Research

These features focus on word-level features like length, prefixes, and position.

Clue words, which help to differentiate entities with person, location, or organi-

zation. Moreover, gazetteer is used to enhance the performance in the NER task,

but there are some features that are not very helpful in Sinhala entity recognition.

Since Sinhala is a case-insensitive language, features like ”word.isupper” won’t

be that helpful in recognizing patterns.

1 # gazetteer.py

2 # Define the entity categories as lists

3 def get_gazetteer ():

4 """

5 Returns the entity lists as sets for fast lookup.

6 """

7 return {

8 ’locations ’: set(location_entities),

9 ’persons ’: set(person_entities),

10 ’organizations ’: set(organization_entities),

11 ’dates’: set(date_entities),

12 ’events ’: set(event_entities),

13 }

Then the train, dev, and test datasets were loaded. After that, it will process

the previously split training, testing, and validation datasets by cleaning the
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text, tokenizing them, and converting them into numerical format for the CRF

model to understand. Because machine learning models will only recognize the

numerical data, it is necessary to convert it prior to training. Later, save all the

processed sentences into three separate files for future reference.

1

2 train_data = pd.read_csv("/content/drive/MyDrive/neural_crf/data/base_mode_cmp

/train.tsv",sep="\t")

3 train_splitter = SentenceSplitter(train_data)

4 val_data = pd.read_csv("/content/drive/MyDrive/neural_crf/data/base_mode_cmp/

validation.tsv", sep="\t")

5 val_splitter = SentenceSplitter(val_data)

6 test_data = pd.read_csv("/content/drive/MyDrive/neural_crf/data/base_mode_cmp/

test.tsv",sep="\t")

7 test_splitter = SentenceSplitter(test_data)

8

9 # Prepare all three datasets

10 train_sents = prepare_sentences(train_splitter.split_sentences ())

11 val_sents = prepare_sentences(val_splitter.split_sentences ())

12 test_sents = prepare_sentences(test_splitter.split_sentences ())

13

14 save_sentences_to_file(train_sents , ’train_sentences.txt’)

15 save_sentences_to_file(val_sents , ’val_sentences.txt’)

16 save_sentences_to_file(test_sents , ’test_sentences.txt’)

Afterwards the features, such as word length, gazetteer features, suffix, pre-

fix, etc., were extracted from each sentence with the corresponding labels. The

following snippet of code related to feature extraction mentioned that for every

sentence in train sentence.txt, we have to extract features that we mentioned

above, and it will use them as input to our baseline CRF model. It will do the

same for the testing and validation set as well. Unlike neural networks, instead

of the raw input, a feature set is fed to the model.
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1

2 # Feature extraction for all sets

3 X_train = [sent2features(s) for s in train_sents]

4 y_train = [sent2labels(s) for s in train_sents]

5

6 X_val = [sent2features(s) for s in val_sents]

7 y_val = [sent2labels(s) for s in val_sents]

8

9 X_test = [sent2features(s) for s in test_sents]

10 y_test = [sent2labels(s) for s in test_sents]

Some small number of hyperparameters were tuned following the feature ex-

traction, as it is shown below in the Appendix A.4

A final model is trained using a previously created preprocessed training

dataset and selected hyper-parameters for our dataset as it shows below.

1 #Train final model with best parameters

2 final_trainer = pycrfsuite.Trainer(verbose=True)

3 for xseq , yseq in zip(X_train , y_train):

4 final_trainer.append(xseq , yseq)

5 final_trainer.set_params(best_params)

6 final_trainer.train(’best_crf_model.crfsuite ’)

Finally, it is evaluated with the testing dataset for the best parameters con-

sidering measurements like precision, accuracy, and F1 score, as shown in the

below code snippet.

1

2 # Evaluate on test set

3 final_tagger = pycrfsuite.Tagger ()

4 final_tagger.open(’best_crf_model.crfsuite ’)

5 y_test_pred = [final_tagger.tag(xseq) for xseq in X_test]

6 print("\nFinal␣Test␣Performance:")

7 print(classification_report(

8 [label for sent in y_test for label in sent],

9 [label for sent in y_test_pred for label in sent]

10 ))
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4.3 Implementation of the Monolingual Transfer Learning

Model

Transfer learning works well on NLP tasks, especially in low-resource entity recog-

nition tasks. At the beginning, researchers were focused on using pretrained

models such as Word2Vec and GloVe for the purpose of creating embeddings

on a given task, which were fine-tuned for NER. In 2018, with the introduction

of transformer-based models like BERT (Bidirectional Encoder Representations

from Transformers), many researchers focused on finding the applicability of NER

tasks for resource-limited languages like Sinhala. When it comes to resource-

limited settings, transfer learning helps to adapt these powerful models known

as source models, which are trained with large data coverage, to predict out-

comes in new languages with minimal data coverage. During our research, we

exploit the pretrained multilingual model, which is trained for languages using

transformer technique, as our source model. Here, our main purpose is to predict

Sinhala entity recognition using the knowledge extracted from the multilingual

NER model.

As explained under the research design earlier, we use Indic-BERT as the

pre-trained model to transfer knowledge to target language predictions, and it

is known as the source model. And furthermore, we add a CRF layer on top

of the IndicBERT layers to suit our downstream task. Because it will be used

to enhance the model’s accuracy for named entity recognition, or NER, tasks.

The CRF layer is beneficial for identifying the dependencies between the output

labels, which is helpful with accurate prediction of NE tags based on the context

of the whole sequence rather than individual tokens.

The architecture was implemented from the flexible BERT-BiLSTM-CRF

framework of Allan Jie (Jie 2020). This framework, implemented from PyTorch,

contains configurations for an embedding layer, a Bi-LSTM layer, and an infer-

ence layer. Early neural architectures of NER employed LSTM layers (Lample

et al. 2016) to get rich contextual embeddings, but now large models like BERT
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can capture long dependencies more effectively with the self-attention mechanism.

Because it will help the model to consider the various words in a sentence rela-

tive to each other. Hence the choice was to add a single linear encoder between

embedding and inference layers. Through that, we can enhance the model’s long

dependency capturing abilities in the given input data. Through that, we can

easily handle the complex language-like Sinhala named entity recognition task.

The following code illustrates how we apply it with the Indic-BERT model. It

initializes the transformer embedder and sets up the encoder based on the hidden

dimension mentioned above. If that value is positive, then it uses the BiLSTM

encoder; else, it goes with the default linear encoder. Additionally, it is necessary

to have a fixed length for the sequence, and if any sentence is shorter than the

predefined length, padding is added to make it to the required length.
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1 import torch

2 import torch.nn as nn

3 from src.model.module.bilstm_encoder import BiLSTMEncoder

4 from src.model.module.linear_crf_inferencer import LinearCRF

5 from src.model.module.linear_encoder import LinearEncoder

6 from src.model.embedder import TransformersEmbedder

7 from typing import Tuple , Union

8 from src.data.data_utils import START_TAG , STOP_TAG , PAD

9 class TransformersCRF(nn.Module):

10 def __init__(self , config):

11 super(TransformersCRF , self).__init__ ()

12 self.transformer = TransformersEmbedder(transformer_model_name=config.

embedder_type)

13 if config.hidden_dim > 0:

14 self.encoder = BiLSTMEncoder(label_size=config.label_size ,

input_dim=self.transformer.get_output_dim (),

15 hidden_dim=config.hidden_dim ,

drop_lstm=config.dropout)

16 else:

17 self.encoder = LinearEncoder(label_size=config.label_size ,

input_dim=self.transformer.get_output_dim ())

18 self.inferencer = LinearCRF(label_size=config.label_size , label2idx=

config.label2idx , add_iobes_constraint=config.add_iobes_constraint

,

19 idx2labels=config.idx2labels)

20 self.pad_idx = config.label2idx[PAD]

The embedding layer is useful for the model to understand the unique lin-

guistic features in the Sinhala language. Applying contextual embedding within

the model enables better named entity identifications, such as person, medical,

creative work, organization, and location.
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In our research, the pre-trained model indicBERT provides the contextual

embeddings followed by a few steps. Initially it is necessary to load all the con-

figuration files and pretrained transformer model. Then we need to adjust the

position embeddings of a transformer model based on the maximum length of

input tokens, which is denoted as max length. Here, it will check whether the

maximum length is more than the model’s mentioned value, then it will give the

warning and make necessary adjustments. The model is loaded at runtime using

Huggingface AutoModel, and it will output the contextual embeddings in the

Sinhala language by referring to input sub-word tokens. A CRF layer is imple-

mented as the inference layer in our transfer-learned model. This framework can

be easily fine-tuned as necessary with our own dataset, and we have used the

Sinhala dataset, which was extracted from Wikipedia. By default the hyperpa-

rameter tuning is not available, although the hyperparameters are configurable.

This configuration allows us to use pre-trained static and contextual embedding as

necessary. For example, self.embedder type can be replaced with a pre-trained

embedder, as shown below A.5.

For the training purposes, we have used datasets created from the explained

processes in Section 4.1. These datasets are then loaded and tokenized to feed

into the model. The tokenizing mechanism used for BERT models is known as

Wordpiece tokenization. This algorithm decomposes words into sub-words. So

unknown words can be represented from subword token IDs. The dataset consists

of 3 separate text files, such as train.txt, dev.txt, and test.txt as shown in the

below Appendix A.6. The annotated data is converted to IOBES format for

better model learning (Ratinov and Roth 2009).

The main issue in using pre-training models is the truncation. Since neural

networks need fixed-size input, truncation is inevitable. Hence there will be a

potential loss in context. However, the context loss can be mitigated by using

approaches like sliding windows, although we have not applied them here.

We can also customize the early stopping criteria as preferred so that models
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are not trained unnecessarily. This will save computational resources during the

training but also ensures that the NER model for Sinhala generalizes better for

unseen Sinhala data. In our research we use precision as the early stopping

criteria. So if the precision does not improve for max no incre consecutive

epochs, then training is stopped to avoid overfitting and high resource usage.

Early stopping increments can be changed via command-line arguments. During

our research, we have applied early stopping criteria as below. An instance with

random hyperparameters shown below.

!CUDA_LAUNCH_BLOCKING =1 python /content/drive/MyDrive/

neural_crf/transformers_trainer.py \

--device=cuda:0 \

--dataset=MyData \

--model_folder=saved_models \

--embedder_type=ai4bharat/indic -bert \

--batch_size =4 \

--num_epochs =5 \

--learning_rate =3e-5 \

--fp16 1 \

--dropout 0.1 \

--max_no_incre 5 \

Before compiling a machine learning model, it is necessary to convert them

into a numerical format from each instance, which contains words and their corre-

sponding labels. Using the tokenizer as it is mentioned in the below code segment

Appendix A.7, it will transform words into input IDs(subword tokens) and at-

tention masks while mapping their original words with their corresponding IDs.

In addition to that, it will do some processing to handle length mismatches while

applying the padding mechanism. Finally, it will generate a list of dictionaries

that contains input IDs, attention masks, and labels, which are useful for the

model compilation.
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4.3.1 Data Augmentation

In Sinhala NLP research, we face the issue of data scarcity. Data scarcity can

potentially lead to class imbalance. Class imbalance is the unequal distribution of

examples among predefined classes. Especially if large datasets are used in train-

ing, class imbalance can be a major issue, because then the model may become

biased to predict the more frequent classes. This will give poor performance on

low-frequency classes and result in low accuracy on NER tasks. NER datasets

tend to contain a large amount of ’O’ category tokens. Not only that, such

unequal distribution can cause overfitting of the model.

Therefore, addressing class imbalance is necessary for the NER model accu-

racy to ensure that the model can effectively identify the relevant entity or tags

in the text. It involves some techniques like data augmentation, changing the

existing data to give more weight to the low-class distributions. Some of the aug-

mentation techniques in NLP include synonym replacement, back translation,

word order shuffling, and random insertion or deletion, which can be applied for

NER tasks.

Among existing data augmentation techniques, back translation and synonym

replacement are common in NLP tasks. However, synonym replacement does not

work for the Sinhala language. Because, in Sinhala, synonyms do not always

share the same meaning, where cultural context plays a significant role. So, if we

replace the sentence with a synonym, it can lead to misclassification or confusion,

which leads the model to struggle with named entity recognition. For instance,

lets consider the proper noun in Sinhala called ’kol.amba’ (Colombo), which is

considered the capital of Sri Lanka. If we try to replace synonyms and replace

them with ’nagaraya’ (city), it will change the context within the document.

Therefore, we have selected the back-translation technique to augment data

in our research to mitigate the class imbalance issue. Back translation preserves

semantics and label integrity of tokens, unlike random insertion and synonym

replacement. A slight change in the meaning of the original token may generalize
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the model.

For every back translation we need a pivot language. Bengali was selected

as the pivot language. We chose Bengali as the middle (pivot) language for

Sinhala back translation because both come from the Indo-Aryan language family,

which means they share certain linguistic Features. This shared features helps

to capture linguistic patterns in machine translation in an effective manner. For

the dataset we chose the Bengali version of the MultiCoNER/multiconer v2

dataset (Fetahu, Z. Chen, et al. 2023), which has the exact set of labels as the

Sinhala dataset, ensuring consistency between the datasets. The dataset was

originally tagged with fine-grained entities, so the tags were again re-tagged with

coarse grained categories.

We first filter out sentences with only the ”Other” category to extract se-

mantically rich examples for augmentation purposes. Then we further extract

sentences from the selected token-label pairs to feed into the translation model.

We have used facebook/m2m100 418M model (Fan et al. 2021) for the trans-

lation purposes. Translation involves the forward translation (Sinhala → Ben-

gali) and back translation (Bengali → Sinhala) steps. Then the new tokens

are combined with the corresponding label. Following code sample explains in

the Appendix A.8 how we managed to apply back translation from Bengali to

Sinhala.

However, back translation failed to translate all the words due to the com-

plexity of the language. It is a common fact that back transliteration can in-

troduce inconsistencies or errors due to linguistic complexities of language, such

as spelling errors and pronunciations. Therefore, it is crucial to apply post-

processing techniques to mitigate those inconsistencies in the augmented dataset.

Through this, we can refine and enhance the model’s performance in the named

entity recognition task. Once back translation was completed, we conducted

the post-processing to refine the augmented dataset prior to the model training.

Through that, we managed to translate all the words that were skipped by the
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automatic translation process.

4.3.2 Hyperparameter Tuning

Hyperparameter tuning is an important part of any machine learning project. It

involves finding the optimal set of parameters to achieve the best performance.

Usually this tuning is carried out on a validation dataset. Then the selected

parameters are used in the final model training. There are different techniques

used for hyperparameter tuning, such as grid search and random search.

In this research, hyperparameter tuning is achieved through Optuna (Akiba

et al. 2019) optimization. It uses Bayesian optimization to explore and determine

the optimal hyperparameters for batch size, learning rate, and dropout rate.

Here, it will discard poor trials early, allowing for faster convergence of the model

configuration and it is beneficial for the NER task. Because of that, we have

chosen Optuna among other techniques.

Unlike grid search, where the model runs through all hyper-parameters, Op-

tuna uses previous model results to predict the best combination of hyper-parameters

using Bayesian optimization. Hence Optuna is efficient compared to grid search.

This method has shown significant results in NER compared to traditional tech-

niques, and it will explain in the next chapter. We chose learning rate, batch

size, and dropout as our hyperparameters for optimization. The optimization

objective was defined as the average of validation and test F1 scores to balance

overfitting and generalization. After 25 trials, the best hyper-parameter values

are selected based on the objective mentioned above and how we managed to

achieve that, as shown below. The objective remains the same for multilingual

fine tuning and data augmentation experiments to maintain consistency of the

research.
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1 # Set hyperparameters in the config

2 args.learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-3, log=True

)

3 args.batch_size = trial.suggest_categorical("batch_size", [8, 16, 32])

4 args.dropout = trial.suggest_float("dropout", 0.0, 0.5)

5 study = optuna.create_study(direction="maximize") # We want to maximize the

combined score

6 study.optimize(objective , n_trials =25) # Run the optimization for 25 trials

7 # Save the results after the optimization

8 save_results_to_file(study , "trial_results.csv")

9 # Get the best trial and print the results

10 best_trial = study.best_trial

4.4 Implementation of the Multilingual Transfer Learning

Model

The difference between multilingual and monolingual data is simply the datasets.

In the multilingual setting, the same monolingual pre-trained model is trained

with an extended dataset. The extension comes from the addition of Bengali

data. We keep the testing data set untouched for comparison with monolingual

training.

The Bengali dataset used for the multilingual training was taken from the

MultiCoNER/multiconer v2 (Fetahu, Z. Chen, et al. 2023). The dataset is

categorized into six different labels (Location (LOC) ,Creative Work (CW) ,Group

(GRP) ,Person (PER) ,Product (PROD) ,Medical (MED) ). These six categories

are mapped to fine-grained categories for better NE recognition. This categories

are consistent with existing monolingual data categories because during dataset

extraction from Wikipedia, we have been using the same categories.

After loading each token (or word) from the dataset, it is analyzed to detect

its named entity tag and categorized into relevant groups such as person, creative

work, location, organization, etc., as shown below. The main category for the

token or word is identified by referring to the mapping that we defined at the

beginning. After assigning the detected new NER tags to the tokens (or words),
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the updated multilingual dataset is combined with the original dataset to improve

the performance in Sinhala NE tag identification.

1 # Function to map NER tags

2 def map_ner_tags(ner_tags):

3 mapped_tags = []

4 for tag in ner_tags:

5 if tag == "O":

6 mapped_tags.append(tag)

7 else:

8 prefix , entity = tag.split("-", 1) # Split "B-OtherPROD" -> "B",

"OtherPROD"

9 mapped_tags.append(f"{prefix}-{mapping.get(entity ,␣entity)}") #

Map to coarse label

10 return mapped_tags

In the named entity recognition task, identifying the mapping from fine-

grained to coarse-grained is crucial for the smooth entity classifications in the

Sinhala language. Because fine-grained labels give details about subcategories

specific to entities, and coarse-grained labels categorize them into larger groups.

For example, if we consider visual work, musical work, artwork, and written work

as fine-grained options in the coarse-grained creative work category, as it is shown

below. Through this, we can easily adapt to the different contexts or applications

when it comes to entity recognition. Not only that, it will help to improve the

model’s accuracy while considering a broader level than an abstract level.
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1 from datasets import load_dataset

2 import json

3 import pandas as pd

4 ds = load_dataset("MultiCoNER/multiconer_v2", "Bangla␣(BN)")

5 # Define mapping from fine -grained to coarse -grained labels

6 mapping = {

7 "Facility": "LOC", "OtherLOC": "LOC", "HumanSettlement": "LOC", "Station":

"LOC",

8 "VisualWork": "CW", "MusicalWork": "CW", "WrittenWork": "CW", "ArtWork": "

CW", "Software": "CW",

9 "MusicalGRP": "GRP", "PublicCORP": "GRP", "PrivateCORP": "GRP", "

AerospaceManufacturer": "GRP",

10 "SportsGRP": "GRP", "CarManufacturer": "GRP", "ORG": "GRP",

11 "Scientist": "PER", "Artist": "PER", "Athlete": "PER", "Politician": "PER"

, "Cleric": "PER",

12 "SportsManager": "PER", "OtherPER": "PER",

13 "Clothing": "PROD", "Vehicle": "PROD", "Food": "PROD", "Drink": "PROD", "

OtherPROD": "PROD",

14 "Medication/Vaccine": "MED", "MedicalProcedure": "MED", "

AnatomicalStructure": "MED",

15 "Symptom": "MED", "Disease": "MED"

16 }

Finally, we have applied hyperparameter tuning and data augmentation and

evaluated the performances of each experiment using the matrices such as preci-

sion, accuracy, and F1 score. Those results were critically analyzed in the next

chapter.
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Results and Analysis

In this chapter, the results that have been obtained during our research through

several experiments on transfer learning for the NER task in Sinhala are de-

scribed. The evaluation matrices we have selected to evaluate the performance

in named entity recognition in Sinhala are explained under Section 5.1. Section

5.2 represents the results obtained from the monolingual transfer learning NER

model for Sinhala, and Section 5.3 explains the multilingual transfer learning

results in a descriptive manner.

5.1 Evaluation Metrics

Evaluation metrics are essential in checking the model performance quantitatively.

Named entity recognition, by nature, is a classification task. Hence, we need

classification-based evaluation metrics to indicate how well the model performs

on classifying data into several classes, such as person, location, organization,

etc. Now there are novel evaluation methods to evaluate the specific task of

NER, but we avoid them because of their complexity of implementation. During

our research, we have used 3 evaluation metrics, such as F1 score, precision, and

recall.

In NER, evaluation can be considered as two ways: token-level predictions

and entity-level predictions. During token-level predictions, it will focuses on in-

dividual words or tokens within the text and check whether each token is correctly

classified or not as it shown in the Figure 5.1 and Figure 5.2. But, in the entity-

level predictions, evaluate the model’s performance based on entire entities, and

it is more complex than token-level prediction.
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Figure 5.1: An example of token-level tagging scheme

Figure 5.2: An example of entity-level tagging schemes

5.1.1 Precision

The metric precision basically calculates the ratio of correctly predicted positive

entities to the total predicted positive entities. Here, positivity refers to detecting

an entity. A higher precision means the model’s entity identification is accurate.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

False Positives (FP) - An incorrect prediction

True Positives (TP) - A correctly predicted entity

True Positives (TP) + False Positives (FP) - Total No of predicted entities

5.1.2 Recall

Recall is about how many of the actual entities in the data were correctly found

by the model. A higher recall means the model is effective for identifying most

of the entities in the Sinhala text, while a lower recall means that the model will

miss some entity identifications.

Recall =
True Positives(TP)

True Positives(TP) + False Negatives(FN)
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5.1.3 F1- Score

The F1-Score is a metric which evaluates the balance between recall and preci-

sion, the harmonic mean value of the recall and precision. The harmonic value

penalizes extreme values of recall and precision. This ensures that model doesn’t

trade off precision over recall or vice-versa. In simple terms. The F1 score indi-

cates the performance of the model authentically.

F1 = 2× Precision× Recall

Precision + Recall

5.2 Experiments and Results on the Monolingual Model

Prior to the evaluation, it is necessary to train the model by using the extracted

Sinhala named entity dataset, which was extracted from Wikipedia and covers six

different categories, as explained in Chapter 4. As explained, we built the baseline

Sinhala NER model following the proposed architecture, which was introduced by

(Azeez and Surangika Ranathunga 2020b), which considers the CRF approach.

Then, using the IndicBERT multilingual Indian language model as the source

model, we applied transfer learning to predict the NE tags in Sinhala using our

previously extracted Wiki dataset. After that, we performed hyperparameter

tuning and data augmentation and evaluated each model’s accuracy using the

aforementioned evaluation metrics. For training, validation, and testing purposes,

we used the 2668094, 1222781, and 1222781 numbers of tokens, respectively,

covering 11 categories such as ’B-CW’, ’B-GRP’, ’B-LOC’, ’B-PER’, ’B-PROD’,

’I-CW’, ’I-GRP’, ’I-LOC’, ’I-PER’, ’I-PROD’, and ’Other’.

5.2.1 Results from the baseline model

The baseline model was trained on a Google Colab environment with an NVIDIA

Tesla T4 high-RAM GPU. And the epoch numbers were changed, fixing the L1

regularization at 0.1, the L2 regularization at 1e-4 and enabling feature.possible

transitions. After the first run the model was only learning to predict Other and
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the macro-F1 was only 0.1.

At the early stage of training (epoch 15), the model gave low values for pre-

cision, recall, and F1-score, which were all at 0.10. It means the model is strug-

gling to identify the entities with low epoch training. However, training reached

to epoch 55, it showed a significant improvement on results, while precision in-

creased up to 0.88, recall to 0.48, and the F1-score to 0.58. When it reached the

155th epoch, the model further enhanced its performance, achieving precision of

0.90, recall of 0.51, and an F1 score of 0.61. After the epoch was set to 155,

the F1 score reached 0.61. So we can safely conclude that increasing the epoch

number improves the baseline model’s performance, as shown in Table 5.1.

Metric Epoch 15 Epoch 55 Epoch 155
Precision (Macro Avg) 0.10 0.88 0.90
Recall (Macro Avg) 0.10 0.48 0.51
F1-score (Macro Avg) 0.10 0.58 0.61

Table 5.1: Comparison of Macro-Averaged Precision, Recall, and F1-Score across
three evaluation instances

The evaluations were based on tokens, as shown in Figure 5.3. The macro

average values consider each class equally by calculating the metrics for each

class and then averaging those values. This figure shows the test performances

on the baseline CRF model for different categories, such as person, location, or-

ganization, creative work, etc. Among them, the ”Other” category shows the

remarkable values for precision, recall, and F1-score, 0.99, 1.00, and 1.00, re-

spectively, with the support of a large sample of 93,161. The ”I-CW” category

shows the lowest recall value at 0.10. Depending on the results, it is clear that

the model can accurately detect some categories, but for others we still need

optimizations. We used these results as our baseline model to compare the per-

formance of the transfer-learned model in experiments in both monolingual and

multilingual approaches.
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Figure 5.3: Baseline CRF model performance

5.2.2 Results of the monolingual transfer learning model

From 2018 onwards, there has been a significant impact on the model’s perfor-

mance when the transfer learning technique is used in named entity recognition.

Sinhala is considered a low-resource, morphologically rich language, and due to

that reason, most deep learning models have failed due to data scarcity. Transfer

learning allows us to transfer knowledge from the pre-trained models on larger

datasets to predict NE tags in low-resource languages like Sinhala. Addition-

ally, it helps in capturing linguistic nuances and contextual information, which

are crucial for detecting named entities in Sinhala. Therefore, it is necessary to

find the most suitable pre-trained model, and we have chosen IndicBERT as our

source model.

We have used the Wikipedia-extracted dataset of named entities in Sinhala

covering six categories, as explained in the previous chapter, for the target model’s

training dataset. First we compiled the IndicBERT model and then trained it

with the aforementioned dataset using the learning rate of 3 × 10−5, batch size

of 4, and dropout rate of 0.1. Finally, observe the performances using precision

, recall, and F1 score.The evaluation metrics were recorded on the Dev sets and

Test sets respectively.

Here, we have observed that it has very low results because there were in-

stances where early dropouts occurred due to poor learning. To overcome that,

we have used hyperparameter tuning for our transfer-learned model as our 2nd

experiment. Because our pre-trained model parameters were designed to predict
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Indian language NE, they may not be effective for Sinhala. Therefore, we have

decided to go with hyperparameter tuning with our model.

During our research, we have experimented with three different hyperparam-

eter tuning approaches, such as Optuna hyperparameter tuning, grid search, and

random search. Among them, we have observed that the random search gives

optimal hyperparameters for our monolingual transfer learning. Here, the learn-

ing rate, batch size, and dropout rate were chosen as hyperparameters. While

running around 10 iterations for 15 hours, the model gave those hyperparameter

values as a learning rate of 1e-5, a batch size of 16, and a dropout rate of 0.1.

After applying hyperparameter tuning, the best performances on the test sets

were obtained as shown in Table 5.2.

Precision Recall F1
47.49 0.24 0.47

Table 5.2: Best test set performance based on precision in a monolingual transfer
learning .

With the model’s obtained precision value of 47.49, it indicates that nearly

50% of the entities in Sinhala identified by the model are correct, which is a fairly

good achievement for our transfer learning approach. During our research, we are

trying to figure out the applicability of transfer learning on Sinhala, and we can

mention that applying hyperparameter tuning is a good start for that approach.

We received 0.47 for the F1 score, which indicates that the model is effective to

some extent, yet it struggles to understand some of the entities in the text.

The main reason for this weak performance can be the class imbalance. An

overwhelming majority of the dataset tokens are tagged with the Other token,

as shown in Table 4.1. As a remedy, we applied data augmentation to selected

examples from training data, and it was considered our 3rd experiment. The

remedy slightly increased the precision, as it shown in Table 5.3.

These results indicate that when we applied the augmentation, the precision

improved slightly to 48.51, with a slight increase of 1.02, but the recall and

F1 score decreased compared to the values of the monolingual transfer learning
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model without any augmentation. It means while applying augmentation, it

helped to identify some entities more accurately than other experiments. When

we execute 8 number of epochs, it indicates that the best F1 score for the model

with augmentation is recorded as 1.42, and without augmentation it is recorded

as 1.21. So we can conclude that after the augmentation, the model can make

accurate predictions and detect entities slightly better.

Instance Precision Recall F1
Sinhala + Augmented Data 48.51 0.14 0.28

Table 5.3: Best test set performance based on precision for transfer learning in a
monolingual model with augmentation.

5.3 Experiments and Results on the Multilingual Model

In this section, we mention the experiments which we conducted during the re-

search to evaluate the performance of our multilingual model, which built upon

IndicBERT. Here we used the dataset that covered both Sinhala and Bengali lan-

guage named entity tags, and it contains 5,113,656 tokens and 393,509 tokens, re-

spectively. By critically analyzing the measurements in both the hyperparameter-

tuned and augmented models, we aim to demonstrate the multilingual model’s

effectiveness in Sinhala NE predictions.

The multilingual setting differs from the monolingual setting only in the

dataset. Here the original Sinhala dataset, which we extracted throughWikipedia,

is combined with the Bengali dataset (Fetahu, Z. Chen, et al. 2023).

The best precision was recorded with a learning rate of 4.663× 10−5, a batch

size of 32, and a dropout rate of 0.148 after experimenting with various hyper-

parameters (see Table 5.4). The precision of 41.58 is still lower than the previous

tables 5.2 and 5.3 precision values. It suggests that focusing on Sinhala data

allowed the model to better understand the Sinhala nuances of the language,

which helps to predict named entities accurately, and it will improve further with

proper augmentation. But the difference can be due to the different language
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examples in the training data. The provided multilingual dataset consisted of

7 labels in large density. Ideally the model would learn quickly with the added

examples, but this effect may trade off with the difficulties related to language

diversity. When we executed 10 numbers of epochs, it recorded the best F1 score

as 1.39 when we applied hyperparameter tuning for the multilingual transfer

learning model.

Precision Recall F1
41.58 0.11 0.237

Table 5.4: Best test set performance based on precision for transfer learning in a
multilingual model.

The precision alone isn’t enough to evaluate a model. Recorded F1 scores

were exceedingly low , which signifies the low recall values. So the model is very

poor at detecting entities. Earlier in the development phase, input sequences

were truncated to feed into the model. This may have incur a significant context

loss. Context is importance for the NER task. So this context loss can be a

contributing factor to the low F1 score.
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Conclusion

6.1 Summary

The objective of this research is to investigate the applicability of transfer learn-

ing for Sinhala NER. Current Sinhala NER work involves a CRF approach to

recognize named entities. However, CRF performance relies on involves using la-

beled data. Manual annotation of labeled data is time-consuming for Sinhala due

to its complex syntax and morphological structure. There are few freely available

named entity datasets for Sinhala, but all of them cover three categories. Dur-

ing our research, we want to find out performances on much larger named entity

categories.

Therefore, we have to extract the Sinhala named entity list from scratch be-

cause we cannot use existing ones, as they focused on three groups, which can lead

to misclassifications of entities. We have used an automated weakly supervised

approach to extract Sinhala named entity data from Wikipedia articles, including

six categories such as person, location, organization, creative work, group, and

medical. We have used that the extracted dataset for training purposes on trans-

fer learning approaches. During our research, we have checked the applicability

of transfer learning on monolingual and multilingual approaches. Consequently,

multilingual model training was conducted with the Bengali dataset.

In transfer learning, performance depends on the source model selection, and

for our research, we have used IndicBERT as our source model due to its simi-

larities with the Sinhala language. It was trained with a large Indian language

dataset for the named entity recognition task. Through source model knowledge,
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it will predict target Sinhala entities, and it helps us to tackle the low-resource

problem. Then we trained both the monolingual and multilingual approaches

with hyperparameter tuning and data augmentation under several experiments.

Finally, they were evaluated with the test dataset, and precision, recall, and F1

score were recorded to compare it with the baseline NER model to evaluate the

effectiveness of the transfer learning approach.

The monolingual transfer learning model, which was evaluated on an aug-

mented dataset, showed 48.51% precision. The multilingual model showed 41.58%

precision, which is slightly less than the monolingual approach. In machine learn-

ing models, we have a fixed length, and if a given sentence is much larger than

that, then we have to apply truncating to handle that. And the above-mentioned

precision was recorded after applying truncation of the input sentence. The preci-

sion and low F1 score could have improved if the context loss was avoided through

a mechanism like sliding windows, which we used in truncation.

The multilingual model could have shown a better performance if trained

for a high number of epochs with a much higher GPU environment. Perhaps

then the model would learn patterns involving the Bengali language. In fact, in

hyperparameter tuning, the number of epochs used in all experiments was fixed

at 15 due to time constraints. Hence, using a much larger number of epochs can

improve the low F1 scores and precision.

We provide an answer for an important RQ raised in Chapter 1.

• The most effective hyper-parameters for our extracted Sinhala named entity

dataset are explained in the Implementation chapter with justification for

each selection.

• How does the application of different data augmentation techniques improve

the overall performance of the entity recognition in the Sinhala NER?

In the monolingual setting, we observed that data augmentation improved

the precision by 2.15% and F1-Score by 17.36%. And with better hyper-

parameter tuning (like increasing the number of epochs from the fixed 15)
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there is a lot of room for improvement.

6.2 Limitations

The dataset extracted for this research used Wikipedia as the source. Wikipedia

content has noise and few context compared to natural context like newspaper

articles. Due to that, we were unable to capture more named entities for most of

the newly introduced categories. We tried to use manual annotation in this re-

search to add context to our dataset. But manual annotation is a time-consuming

process. Apart from annotation, manual annotation involves human supervision

(using measures like Kappa(J. Cohen 1960)) as well hence, we didn’t proceed

with the manual annotation.

6.3 Future directions

In this research we have employed a BERT encoder and a CRF layer to build the

model. But there is flexibility in the model to employ a BiLSTM layer instead

of a linear encoder. This is an interesting experiment. The dataset used in this

research was created by using the method in (Krishnan et al. 2021). The method

involves using Wikipedia as a source to extract data. The (ibid.) work suggests

using some language-specific rules as enhancements in the dataset. We did not

apply those rules in this research. Hence the dataset can be improved, and results

can be improved with the assistance from the linguistic specialist.

Another area for improvement is theWikipedia-extracted dataset. The dataset

used in this research has a class imbalance due to poor entity distribution in most

of the Sinhala Wikipedia articles. There are an overwhelming number of tokens

tagged with the Other tag. An effort can be made to mitigate class imbalance

by using a dataset with a wider context, like (Common Crawl n.d.).

We are only using Bengali as a supporting language for multilingual fine-

tuning. Hence another exciting experiment will be to try out different language

combinations in multilingual fine-tuning to select the best-performing combina-
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tion of languages in transfer learning for Sinhala NER.
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APPENDICES

A Appendix A Implementation

Listing A.1: Map GKG Type to Entity Function

# Function: Map GKG Type to Entity

def map_gkg_type_to_entity(gkg_types):

GKG_TO_ENTITY_MAP = {

"Place": "LOC",

"AdministrativeArea": "LOC",

"City": "LOC",

"Country": "LOC",

"Organization": "GRP",

"Corporation": "GRP",

"EducationalOrganization": "GRP",

"Person": "PER",

"CreativeWork": "CW",

"Book": "CW",

"Movie": "CW",

"TVSeries": "CW",

"Product": "PROD",

"MedicalEntity": "MED",

}

for gkg_type in gkg_types:

if gkg_type in GKG_TO_ENTITY_MAP:

return GKG_TO_ENTITY_MAP[gkg_type]
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return "Other"

def get_entity_type_from_kg(english_title , api_key):

url = "https :// kgsearch.googleapis.com/v1/entities:

search"

params = {

"query": english_title ,

"key": api_key ,

"limit": 1,

"languages": "en"

}

response = requests.get(url , params=params)

data = response.json()

entity_types = []

if "itemListElement" in data:

for result in data["itemListElement"]:

entity_type = result.get("result", {}).get("

@type", [])

entity_types.extend(entity_type)

return map_gkg_type_to_entity(entity_types)

Listing A.2: Fetching wikipedia content

# Function to fetch and annotate Wikipedia content

def fetch_wikipedia_content_sinhala(title , result):

url = f"https ://si.wikipedia.org/wiki/{ title}"

try:

response = requests.get(url , headers ={’User -Agent ’:

’YourAppName /1.0␣(your_email@example.com)’})

if response.status_code == 200:
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soup = BeautifulSoup(response.text , ’html.

parser ’)

content = soup.find(’div’, {’class’: ’mw -parser

-output ’})

paragraphs = content.find_all(’p’)

annotated_content = []

for p in paragraphs:

text = p.get_text () # Extract text content

sentences = nltk.sent_tokenize(text) #

Sentence tokenization

for sentence in sentences:

# Tokenize words in the sentence

tokens = list(

tokenize_with_multiword_entities(

sentence , result)) # Tokenize

properly

# Add word tokens and their labels

for word , label in tokens:

annotated_content.append(f"{word}\t

{label}")

# Check if the sentence ends with

punctuation and insert a blank line

if sentence [-1] in [’.’, ’?’, ’!’]:

annotated_content.append("") #

Insert a blank line

return "\n".join(annotated_content)

else:

return f"Failed␣to␣retrieve␣the␣article!␣Status

␣code:␣{response.status_code}"

except Exception as e:

return f"An␣error␣occurred:␣{str(e)}"
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Listing A.3: Feature extraction from words

def word2features(sent , i):

word = sent[i][0]

postag = sent[i][1]

features = [

’bias’,

’word.lower=’ + word.lower(),

# ’word[-3:]=’ + word[-3:],

’word [-2:]=’ + word[-2:],

’word.isupper =%s’ % word.isupper (),

’word.istitle =%s’ % word.istitle (),

’word.isdigit =%s’ % word.isdigit (),

’word.position =%d’% i,

’postag=’ + postag ,

’word.in_gazetteer =%s’ % (word in gazetteer)

]

for category , entities in gazetteer.items():

if word.lower() in entities:

features.append(f’word.in_{category }={ True}’)

else:

features.append(f’word.in_{category }={ False}’)

if i > 0:

word1 = sent[i -1][0]

postag1 = sent[i -1][1]

features.extend ([

’ -1:word.lower=’ + word1.lower(),

’ -1:word.istitle =%s’ % word1.istitle (),

’ -1:word.isupper =%s’ % word1.isupper (),

’ -1:postag=’ + postag1 ,

])

else:
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features.append(’BOS’)

if i < len(sent) -1:

word1 = sent[i+1][0]

postag1 = sent[i+1][1]

features.extend ([

’+1: word.lower=’ + word1.lower(),

’+1: word.istitle =%s’ % word1.istitle (),

’+1: word.isupper =%s’ % word1.isupper (),

’+1: postag=’ + postag1 ,

])

else:

features.append(’EOS’)

# Add clue word features

prev_word = sent[i -1][0] if i > 0 else ’’

next_word = sent[i+1][0] if i < len(sent) - 1 else ’’

features.extend(clue_word_feature(prev_word , next_word)

)

return features

.

Listing A.4: Hyperparameter Tuning for the baseline CRF

param_grid = {

’c1’: [0.1, 0.5, 1.0, 1.5], # L1 regularization

strengths

’c2’: [1e-4, 1e-3, 1e-2], # L2 regularization

strengths

’max_iterations ’: [100, 200, 300],

’feature.possible_transitions ’: [True , False]

}

best_score = 0

best_params = None
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# Generate all parameter combinations

param_combinations = itertools.product(

param_grid[’c1’],

param_grid[’c2’],

param_grid[’max_iterations ’],

param_grid[’feature.possible_transitions ’]

)

for c1 , c2 , max_iter , transitions in param_combinations:

print(f"\nTesting␣params:␣c1={c1},␣c2={c2},␣max_iter ={

max_iter},␣transitions ={ transitions}")

# Initialize and train model

trainer = pycrfsuite.Trainer(verbose=False)

for xseq , yseq in zip(X_train , y_train):

trainer.append(xseq , yseq)

trainer.set_params ({

’c1’: c1 ,

’c2’: c2 ,

’max_iterations ’: max_iter ,

’feature.possible_transitions ’: transitions

})

# Train (use temporary file)

temp_model = "temp.crfsuite"

trainer.train(temp_model)

# Validate

tagger = pycrfsuite.Tagger ()

tagger.open(temp_model)

y_val_pred = [tagger.tag(xseq) for xseq in X_val]

# Calculate F1 score (micro -averaged)

current_score = f1_score(

[label for sent in y_val for label in sent],

[label for sent in y_val_pred for label in sent],
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average=’micro’

)

Listing A.5: Trasnformer Architecture

class TransformersEmbedder(nn.Module):

def __init__(self , transformer_model_name: str ,

max_length: int = 512):

super().__init__ ()

logger.info(f"[Model␣Info]␣Loading␣pretrained␣

language␣model␣{transformer_model_name}")

# 1. Load config

config = AutoConfig.from_pretrained(

transformer_model_name)

config.output_hidden_states = False

config.return_dict = True

# 2. Load model

self.model = AutoModel.from_pretrained(

transformer_model_name , config=config)

# 3. Resize position embeddings if needed

model_max_length = getattr(config , "

max_position_embeddings", 512)

if max_length > model_max_length:

logger.warning(f"Model␣only␣supports␣{

model_max_length}␣tokens ,␣but␣requested␣{

max_length}")

logger.info(f"Extending␣position␣embeddings␣from␣

{model_max_length}␣to␣{max_length}")

self.model.resize_position_embeddings(max_length)

self.device = torch.device(’cuda’ if torch.cuda.

is_available () else ’cpu’)

self.to(self.device)
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def get_output_dim(self):

return self.model.config.hidden_size

def forward(self , subword_input_ids: torch.Tensor ,

orig_to_token_index: torch.LongTensor , ##

batch_size * max_seq_leng

attention_mask: torch.LongTensor) -> torch.

Tensor:

"""

:param subword_input_ids: (batch_size x

max_wordpiece_len) input token IDs

:param orig_to_token_index: (batch_size x

max_sent_len) indices mapping each original word

to a subword token

:param attention_mask: (batch_size x

max_wordpiece_len)

:return: word -level representations (batch_size x

max_sent_len x hidden_size)

"""

subword_rep = self.model (**{"input_ids":

subword_input_ids , "attention_mask":

attention_mask }).last_hidden_state

batch_size , _, rep_size = subword_rep.size()

_, max_sent_len = orig_to_token_index.size()

# select the word index.

word_rep = torch.gather(subword_rep [:, :, :], 1,

orig_to_token_index.unsqueeze (-1).expand(

batch_size , max_sent_len , rep_size))

return word_rep

Listing A.6: Configurations of the Neural Network

class Config:
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def __init__(self , args) -> None:

"""

Construct the arguments and some hyperparameters

:param args:

"""

# Model hyper parameters

self.embedder_type = args.embedder_type if "

embedder_type" in args.__dict__ else None

self.add_iobes_constraint = args.

add_iobes_constraint

# Data specification

self.dataset = args.dataset

self.train_file = "/content/drive/MyDrive/

neural_crf/data/" + self.dataset + "/train.txt"

self.dev_file = "/content/drive/MyDrive/neural_crf/

data/" + self.dataset + "/dev.txt"

self.test_file = "/content/drive/MyDrive/neural_crf

/data/" + self.dataset + "/test.txt"

self.train_num = args.train_num

self.dev_num = args.dev_num

self.test_num = args.test_num

# Training hyperparameter

self.model_folder = args.model_folder

self.optimizer = args.optimizer.lower()

self.learning_rate = args.learning_rate

self.momentum = args.momentum if "momentum" in args

.__dict__ else None

self.l2 = args.l2

self.num_epochs = args.num_epochs

self.use_dev = True

self.batch_size = args.batch_size
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self.clip = 5

self.lr_decay = args.lr_decay

self.device = torch.device(args.device) if "device"

in args.__dict__ else None

self.max_no_incre = args.max_no_incre

self.max_grad_norm = args.max_grad_norm if "

max_grad_norm" in args.__dict__ else None

self.fp16 = args.fp16 if "fp16" in args.__dict__

else None

Listing A.7: Conversion of instances to features

def convert_instances_to_features(instances: List[

Instance],

tokenizer:

PreTrainedTokenizerFast

,

label2idx: Dict[

str , int]) ->

List[Dict]:

features = []

skipped = 0

for inst in instances:

words = inst.ori_words

labels = inst.labels

if len(words) != len(labels):

raise ValueError(f"Word/label␣length␣mismatch:␣

{len(words)}␣words␣vs␣{len(labels)}␣labels")

# Map labels to IDs

label_ids = [label2idx.get(label , -100) for label

in labels]

encoding = tokenizer(
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words ,

is_split_into_words=True ,

truncation=True ,

padding=True , # padding handled later in

collate_fn

return_offsets_mapping=True ,

max_length =512

)

input_ids = encoding["input_ids"]

attention_mask = encoding["attention_mask"]

offset_mapping = encoding["offset_mapping"]

# Map word indices to subword token indices

word_ids = encoding.word_ids ()

orig_to_tok_index = []

orig_to_label = [] # This will store the labels

for the original words

last_word_idx = None

for i, word_idx in enumerate(word_ids):

if word_idx is not None and word_idx !=

last_word_idx:

orig_to_tok_index.append(i)

orig_to_label.append(label_ids[word_idx ])

last_word_idx = word_idx

# Truncation might cut off some words

if len(orig_to_tok_index) != len(words):

skipped += 1

continue

features.append ({

"input_ids": input_ids ,

"attention_mask": attention_mask ,

"orig_to_tok_index": orig_to_tok_index ,
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"label_ids": orig_to_label ,

"word_seq_len": len(orig_to_tok_index),

})

return features

Listing A.8: Back Translation in Data Augmentation

def back_translate_dataset(sentences , translator ,

max_workers =4):

"""Back -translate sentences using thread pool for speed

."""

def process(sentence):

return translator.back_translate(sentence)[0]

with ThreadPoolExecutor(max_workers=max_workers) as

executor:

return list(executor.map(process , sentences))

class M2MBackTranslator:

def __init__(self , src=’si’, pivot=’bn’, device=None):

self.src = src

self.pivot = pivot

self.device = device or (’cuda’ if torch.cuda.

is_available () else ’cpu’)

self.model_name = "facebook/m2m100_418M"

self.tokenizer = M2M100Tokenizer.from_pretrained(

self.model_name)

self.model = M2M100ForConditionalGeneration.

from_pretrained(self.model_name).to(self.device)

def translate(self , texts , src_lang , tgt_lang):

if isinstance(texts , str):

texts = [texts]

self.tokenizer.src_lang = src_lang
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encoded = self.tokenizer(texts , return_tensors="pt"

, padding=True , truncation=True).to(self.device)

with torch.no_grad ():

generated_tokens = self.model.generate(

**encoded ,

forced_bos_token_id=self.tokenizer.

get_lang_id(tgt_lang),

max_length =512,

num_beams =5,

early_stopping=True

)

return self.tokenizer.batch_decode(generated_tokens

, skip_special_tokens=True)

def back_translate(self , texts):

# Step 1: src pivot (e.g., Sinhala Bengali)

pivot_texts = self.translate(texts , src_lang=self.

src , tgt_lang=self.pivot)

# Step 2: pivot src (e.g., Bengali Sinhala)

return self.translate(pivot_texts , src_lang=self.

pivot , tgt_lang=self.src)
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