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Abstract

Real-time 3D avatar animation using standard webcams offers immense
potential for immersive communication and interaction within web-based
Augmented Reality (AR). However, existing solutions often struggle with
accessibility and generalisation, either requiring specialised hardware or
relying on a single, high-fidelity pose estimation input that may be too
resource-intensive for many web environments. This creates a significant
gap, as these systems cannot easily adapt to the diverse quality and format
of data from various readily available pose estimators or gracefully handle
common real-world challenges like partial user visibility.

This research addresses these limitations by employing a Design Science
Research methodology to design, implement, and evaluate a novel, general-
ized middleware pipeline for real-time, webcam-based 3D avatar animation,
operating entirely within standard web browsers. The core contribution is a
modular JavaScript-based architecture centered around a biomechanically-
aware canonical pose representation aligned with the VRM humanoid stan-
dard. The methodology involves developing an adaptive input adapter for
heterogeneous data (from MoveNet, BlazePose, YOLO-Pose, etc.), a pose
processor for heuristic 2D-to-3D lifting and robust inference of occluded
joints using data-driven priors from H36M, and a flexible retargeting mod-
ule.

Experimental results demonstrate the pipeline’s ability to successfully
process diverse inputs and drive plausible, full-body avatar animations in
real-time. Notably, the system generates coherent motion even from sparse
2D keypoint data where simpler direct mapping would fail. Performance
analysis indicates viability on desktop/laptop browsers and feasibility on
mobile devices with lighter-weight estimators. This research presents a sig-
nificant step towards more accessible and flexible real-time avatar systems
for the web platform, providing a practical and extensible foundation for
future advancements in web-based embodied interaction.
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1 Introduction
In today’s world, the various ways we see, hear, and interact with the digital
worlds are constantly changing and evolving. The advancements and achievements
in the fields of Computer Graphics (CG), Computer Vision (CV), and Virtual
Reality (VR)/Augmented Reality (AR) play a major role in creating these digital
environments that we can feel and interact with just like our physical world (Al-
Ansi et al. (2023)). These fields which span a huge domain of knowledge have
interested people for a long time and have a significant potential for research as
well.

By combining Computer Graphics (CG) and Computer Vision (CV) technolo-
gies, VR and AR make it possible to create experiences that feel very real. VR
immerses users in entirely synthetic virtual environments, while AR overlays dig-
ital elements onto the real world, blurring the lines between the physical and
digital worlds. With the rapid development of these technologies, there is a grow-
ing demand for realistic and immersive experiences that seamlessly blend digital
content with the physical world. One key aspect of this is the ability to capture
and model real human appearance, pose and actions into life-like 3D avatars that
can be rendered and animated in VR or AR environments. Applications of these
technologies range from virtual conferencing and remote collaboration to gaming,
training simulations, and beyond (Mazuryk & Gervautz (n.d.)).

1.1 Research Background
Motion capture and human pose estimation has been active areas of research for
decades, with extensive work on both marker-based and marker-less techniques
using various camera setups (Caserman et al. (2020)). The advent of depth sensors
like the Kinect in the 2010s enabled new marker-less approaches to full-body
motion capture based on 3D data (Husein & Ciawi (2021), Huang et al. (n.d.)).

More recently, advances in CV and Machine Learning (ML) have made it
possible to estimate 3D human pose from just monocular Red, Green, Blue (RGB)
video in real-time. Google’s MediaPipe is a leading technology in this area, using
machine learning models trained on massive datasets to accurately predict 3D
skeleton positions from video input (Lin et al. (2023)).

In parallel, progress has been made in photogrammetric scanning of real people
and objects to generate extremely high quality 3D models and textures.Huang
et al. (n.d.) developed workflows to combine this with motion capture to create
animatable photo-real digital humans.

1.2 Research Motivation
Despite these advancements, many widely studied approaches to avatar-based in-
teraction rely on specialized hardware, such as depth cameras or multi-camera
setups, which limits their accessibility and scalability (Alexiadis et al. (2017),
Charles (2016)). Furthermore, many software solutions focus on a single part
of the problem—such as high-fidelity pose estimation or photorealistic character
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modeling—without providing an integrated, end-to-end pipeline that is both ac-
cessible and efficient.

This research is motivated by the potential to bridge this gap, empowering a
broader audience with an immersive way to interact within AR environments. The
core motivation is to enable these experiences on resource-constrained platforms
like standard smartphones and laptops, using only a common webcam, without
requiring any special hardware or software installations. By choosing the web
browser as the target environment, the solution becomes universally accessible.
This could unlock novel applications in remote collaboration, virtual social plat-
forms, and interactive entertainment, allowing anyone to represent themselves
with a dynamic 3D avatar in real-time.

1.3 Research Aims and Objectives
1.3.1 Aim
Developing an efficient, widely-accessible, end to end solution which can run on
smartphone browsers with no special equipment, to replicate real human expres-
sions, pose and movements in a 3D avatar that can be rendered and animated in
real-time within a resource-constrained environment.

1.3.2 Objectives
• To identify and evaluate optimal real-time human pose estimation tech-

niques that balance accuracy and performance for deployment within a web
browser.

• To develop a novel and generalized algorithmic pipeline that can process
heterogeneous pose data (e.g., sparse 2D, dense 3D) and transform it into a
standardized canonical representation, inferring missing data using biome-
chanical priors.

• To implement a retargeting system that maps the canonical pose to animate
standard 3D avatar formats (e.g., VRM) without significant latency or visual
artifacts.

• To evaluate the performance and qualitative realism of the complete pipeline
when rendering the animated avatar within a web-based AR context.

1.4 Research Questions
1. What are the trade-offs between accuracy and performance for real-time

human pose estimation algorithms when deployed in a resource-constrained
web environment?

2. How can a generalized transformation pipeline be designed to robustly map
diverse pose estimation outputs (sparse 2D to dense 3D) to a canonical rep-
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resentation for animating a standard 3D avatar, particularly when handling
occluded or missing joint data?

3. To what extent can a purely web-based, monocular system achieve plausible
real-time avatar animation, and what are the key limitations in terms of
performance and realism for browser-based AR experiences?

1.5 Summary of the Chapter
This chapter introduced the rapidly advancing field of real-time 3D avatar ani-
mation, driven by progress in computer vision, graphics, and immersive AR/VR
technologies. The core motivation for this research is to bridge the accessibility
gap, moving beyond systems that require specialized hardware or high-fidelity in-
put. I aim to develop an efficient, web-based pipeline enabling users to animate
standard 3D avatars (like VRM models) using only a common webcam, directly
within resource-constrained browser environments on devices like smartphones or
laptops. This could significantly enhance applications in remote collaboration,
virtual social platforms, and entertainment by allowing more people to achieve
embodied digital representation.

To guide this effort, the research objectives focus on evaluating suitable real-
time pose capture techniques, designing a novel and generalized transformation
pipeline that incorporates biomechanical plausibility and can handle diverse or in-
complete input data, and assessing the feasibility of rendering the animated avatar
in web-based environments and speciallt AR interactions. The key research ques-
tions explore the optimal capture methods for constrained environments (RQ1),
the design of this generalized mapping pipeline (RQ2), and the resulting trade-offs
in realism, performance, and user experience (RQ3). The subsequent chapters will
explore the relevant literature and detail the specific methodology developed to
address these questions.
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2 Research Approach
1. Method Selection and Adaptation: Determine the most suitable motion

capture technique (e.g., using MediaPipe for skeletal point extraction) and
adapt it to the specific requirements of capturing human expressions, pose,
and movements using a smartphone camera.

2. Data Extraction: Employ the chosen motion capture technique to ex-
tract human expressions, pose, and movements from real-time camera feeds,
ensuring the captured data can be transferred and animated in real-time.

3. Avatar Selection and Modeling: Identify a real-time animatable 3D
avatar that can be controlled via game engine scripts to display movements
and poses. Optionally, this step may involve creating a custom avatar model
to enhance realism.

4. Algorithm Development: Design and implement an efficient algorithm
for mapping input points (captured skeletal points) to the output (3D avatar),
accommodating various scenarios and conditions.

5. Adaptation for Mobile AR: Optimize the rendering process to ensure
the animatable model can be effectively displayed within a browser-based
mobile AR environment.

6. Evaluation: Assess the performance, realism, and user experience of the
entire solution, identifying areas for improvement and refining the system
accordingly.

2.1 Scope
2.1.1 In Scope
The following areas will be covered under the scope of this research.

Capturing human pose and motion: This involves experimenting with
state of the art methods proposed in existing literature and selecting the optimal
methods for the purpose, with a special focus on resource usage, then adapting
the methodology to efficiently capture human expressions, pose and motion using
a webcam or a smartphone camera. This data collection and processing should be
doable in an efficient manner with minimal latency and performance overhead, and
it should support operating in browser based (resource constrained) environments.

Mapping to a digital animatable 3D model, on-device within the
browser: Developing algorithms and techniques for mapping captured human
behavior to virtual representations in real-time with minimal latency and high
fidelity. As transformation and mapping algorithm will be developed to map the
input points to the output. Also this process, has to be optimized to work effi-
ciently under various conditions such as missing input points, keypoint/coordinate
system mismatches, occlusions, etc. The realism or the dynamic nature of the
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avatar is not strictly considered for the study, however, the viability of making
the avatar be dynamic will be considered.

Real-time Rendering on web browser XR environment: Ensuring the
efficient rendering of the animatable model within a resource constrained environ-
ment, such as a smartphone-based AR environment running on a web browser.

2.1.2 Out of Scope
The following will not be covered under the scope of this research.

Creating ultra realistic human models: This research will focus on ac-
curately representing the pose and actions, not on generating visually realistic
avatars. Creating synthetic human behaviours: This research will concentrate on
replicating real human actions, not on simulating artificial behaviours. Working
with multiple people: This research will focus on accurately representing a single
character and not capturing motion and replicating for multiple people, or any
interactions between people.

2.2 Thesis Structure
This thesis is organized into seven chapters, each designed to logically guide the
reader from the initial problem statement through to the final conclusions. The
structure has been chosen to clearly separate the research methodology from the
technical implementation, providing a clear and rigorous account of the work un-
dertaken.

• Chapter 1: Introduction This chapter introduces the research field,
presents the background and motivation for the study, and clearly defines
the research aims, objectives, and core research questions that guide the
entire project.

• Chapter 2: Literature Review
This chapter provides a critical review of relevant academic literature and
existing technologies. It analyzes the state of the art in human pose estima-
tion, 3D avatar modeling, and real-time web graphics to identify the specific
research gap that this thesis aims to address.

• Chapter 3: Research Methodology
This chapter outlines the high-level research approach. It introduces the
Design Science Research (DSR) paradigm adopted for this project and de-
scribes the structured phases of the research plan, from initial technology
evaluation to the final system evaluation.

• Chapter 4: System Design and Development
This chapter presents the technical core of the thesis: the design and imple-
mentation of the novel software pipeline. It details the system architecture,
the algorithms used for data processing and inference, the data-driven priors,
and the technologies used to build the functional artifact.
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• Chapter 5: Results and Analysis
This chapter presents the empirical results obtained from testing the de-
veloped system. It provides performance benchmarks, such as Frames Per
Second (FPS), and a qualitative analysis of the animation quality, directly
addressing the research questions with concrete data and observations.

• Chapter 6: Discussion
This chapter interprets the significance of the results. It discusses the key
contributions of the research, the implications of the findings, and provides
a frank acknowledgment of the system’s limitations.

• Chapter 7: Conclusion and Future Work
The final chapter summarizes the key outcomes and contributions of the
thesis. It reflects on how the research questions were answered and proposes
specific, actionable directions for future research that can build upon the
foundation laid by this work.

2.3 Summary of the Chapter
This chapter has set the stage for the research presented in this thesis. It began
by introducing the exciting and rapidly advancing field of real-time 3D avatar
animation and established the core motivation for this project: to improve the
accessibility and flexibility of these technologies by creating a solution that works
on standard hardware within a web browser. The specific aims, objectives, and
research questions that will guide this investigation have been clearly defined.
Finally, the overall structure of the thesis has been outlined, providing a roadmap
for the subsequent chapters which will detail the literature review, methodology,
system design, results, and conclusions of this work.
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3 Literature Review
To understand the current state of the art and identify potential research gaps
within the problem domain of real-time 3D avatar modeling in web environments,
a thorough literature review was conducted. This review focuses on key areas in-
cluding human pose and motion capture, 3D human modeling and representation,
and the specific challenges related to real-time performance and user experience
in web-based AR and VR environments.

Most of the existing research related to this problem domain can be categorised
into a few categories according to their main goal and scope of study as:

1. Estimating pose, capturing motion

2. Capturing and modelling

3. Capturing and animating

4. Modelling and animating

5. Capturing, modelling and animating

This research focuses on achieving this in real-time within the resource-constrained
environment of web browsers, specifically targeting mobile devices. This requires a
deep understanding of efficient human pose estimation, effective 3D human model-
ing, and performant real-time animation techniques suitable for web deployment.
Therefore, the following review examines the evolution and current state-of-the-
art across these interconnected domains, drawing heavily on recent advancements
in deep learning and computer vision, to contextualize the research questions and
identify prominent methodologies and challenges.

3.1 Estimating pose, capturing motion
Accurately capturing human pose and motion in real-time is the foundational step
for animating 3D avatars. Therefore, Human Pose and Motion Capture are topics
that have been the focus of many studies over the years. The field has evolved
significantly, driven by the need for more accessible and less intrusive methods
compared to traditional techniques.

Human pose estimation has traditionally been achieved through marker-based
systems, which require the attachment of physical markers or sensors to the sub-
ject’s body. Marker-based systems are known for their high accuracy and have
been widely used in the entertainment industry for creating realistic character
animations in movies and video games. However, marker-based systems have
several limitations. They require specialized equipment and controlled studio en-
vironments, making them expensive and impractical for many applications. To
overcome these limitations, there has been a growing interest in marker-less mo-
tion capture and 3D pose estimation methods. Traditional marker-based motion
capture, while offering high fidelity (Caserman et al. (2020)), requires specialized
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labs, equipment, and often manual processing with tools like OpenSim, making it
impractical for widespread AR applications (Huang et al. (n.d.)).

Early marker-less approaches relied on multiple calibrated cameras to recon-
struct 3D pose from silhouettes or visual hulls. Microsoft Kinect, introduced in
2010, popularized marker-less motion capture by providing real-time depth sens-
ing capabilities. Many works have used Kinect for 3D pose estimation in gaming,
robotics, and healthcare applications (Desmarais et al. (2020), Ji et al. (2020a)).

These consumer depth sensors enabled real-time 3D skeletal tracking and
demonstrated the potential for direct user movement mapping in virtual envi-
ronments as demonstrated in studies by Charles (2016). However, depth sensors
possess limitations regarding range, ambient light interference, and device ubiq-
uity.

Monocular Deep Learning Approaches:
In the past few years, focus has largely shifted to Monocular Human Pose Esti-

mation (MHPE) using standard Red, Green, Blue (RGB) cameras, fueled by deep
learning breakthroughs since 2014. Comprehensive surveys by Liu, Bao, Sun &
Mei (2021), Chen et al. (2020)and Ji et al. (2020b) categorize the rapid advance-
ments. Key paradigms include: 2D vs. 3D Estimation: Many methods first
estimate 2D keypoints (using techniques like OpenPose, or heatmap regression
and then ”lift” these to 3D space, leveraging robust 2D datasets. Others attempt
direct 3D regression from image features.

Many of these approaches that estimate 3D pose from a single RGB image
rely on a parametric 3D human body model, such as Skinned Multi-Person Linear
Model (SMPL) (Loper et al. (n.d.)), to constrain the space of possible poses. Bogo
et al. (2016) proposed one of the first methods to estimate 3D pose and shape from
a single image by fitting the SMPL model to 2D joint detections. Remarkably,
fitting only 2D joints produces plausible 3D body shapes. However, monocular 3D
pose estimation still faces challenges in terms of accuracy, robustness to occlusion,
and generalisation to unseen poses and subjects.

Significant advancements in real-time monocular 3D pose estimation have been
made using Convolutional Neural Network (CNN). Mehta et al. (2017) introduced
VNect, a system predicting 2D heatmaps and 3D joint positions in real-time from a
single image. Silva et al. (2019) proposed TensorPose, a streamlined CNN architec-
ture for real-time multi-person pose estimation, predicting both 2D heatmaps and
3D positions. Other widely used methods and frameworks in this space include
OpenPose (Cao et al. (2016)), known for its robust 2D multi-person detection,
and DensePose (Güler et al. (2018),) which maps all human pixels to a 3D surface
model.

Achieving bio-mechanically accurate pose estimation from monocular video,
beyond simplified parametric models, was also explored by methods like BioPose
(Koleini et al. (2025)). This study, published in 2025, uses neural inverse kine-
matics and refinement techniques. It pushes further towards anatomical accuracy
by integrating a biomechanical skeleton model (like OpenSim) with mesh recovery
(MQ-HMR) and Neural Inverse Kinematics (NeurIK), but it has high complexity.

8



Figure 1: Milestones, idea or dataset breakthroughs, and the state-of-the-art meth-
ods for 2D (top) and 3D (bottom) pose estimation from the year 2014 to 2021.
(From: Liu, Bao, Sun & Mei (2021))

When considering the studies from recent years, Google’s MediaPipe is a no-
table achievement, specially for resource constrained environments. MediaPipe
is an open-source framework that provides a set of tools for building multimodal
applied machine learning pipelines, including pose estimation. One of the key
advantages of MediaPipe is its ability to perform real-time pose estimation on
resource-constrained devices such as smartphones and embedded systems. This
is achieved through a combination of efficient model design, optimized inference,
and hardware acceleration. (Kim et al. (2023)). However, despite its strengths,
MediaPipe’s pose estimation module still has some limitations. Lin et al. (2023)
suggested ways improve the accuracy of MediaPipe’s 3D human posture detection
and their improved system achieves over 90% accuracy in multi-pose recognition
tests.

3.2 Capturing and modelling
A few studies have focused extensively on the steps of capturing the appearance
of the human subject and then creating a realistic 3D model.

Avatar Appearance and Realism:
While this project mainly focuses on pose and motion mapping, avatar appear-

ance significantly impacts user experience (Caserman et al. (2020), Piumsomboon
et al. (2018)). This scope of study also seems highly promising, as an efficient web-
based solution, (possibly also making use of recent developments in GenAI and
Vision Models) has lots of usecases in the modern day. Creating personalized 3D
avatars that can be animated by captured motion is an active research area. Some
studies focus on reconstructing detailed 3D models from images or video and then
rigging them for animation, often by transferring weights from a generic model
like SMPL. Li et al. (2019a) proposed a pipeline to reconstruct 3D human avatars
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from a single RGB image by fitting a parametric model and warping it based on
the silhouette, using a GAN called InferGAN to infer occluded textures. These
methods demonstrate pipelines for generating personalized, animatable geometry
based on a canonical representation derived from models like SMPL.

A significant advancement in single-view human digitisation came with the
development of implicit function representations, particularly Pixel-Aligned Im-
plicit Functions (PIFu) (Saito et al. (2019)) and its high-resolution successor,
PIFuHD (Saito et al. (2020)). PIFuHD specifically addresses the challenge of re-
constructing detailed geometry (like clothing folds, facial features, and fingers)
from high-resolution (e.g., 1k) single images, which previous methods struggled
with due to memory limitations forcing downsampling. While computationally
intensive compared to skeletal tracking, PIFuHD demonstrates the potential of
implicit functions for achieving state-of-the-art single-view reconstruction fidelity,
representing a key benchmark in detailed avatar geometry generation from images.

Generative models are also being explored to create diverse and animatable
human avatars. AvatarGen proposed by Zhang et al. (2022) generates animatable
human avatars with varied appearances using only 2D images for training. It
utilizes a coarse human body model as a proxy to warp the observation space into
a standard avatar under a canonical space, learning pose-dependent deformations
with a dedicated network. This approach highlights using a canonical space as an
intermediate representation for generative modeling of animatable characters.

Generating realistic geometry and texture, especially for unseen parts from
single-view input, is challenging. Methods like those reconstructing clothed hu-
mans from video (Alldieck et al. (2018)), generating textures via GANs (Li et al.
(2019a)), using 3D scanning (Huang et al. (n.d.)), or employing generative mod-
els like AvatarGen (Zhang et al. (2022)) aim for high fidelity but often involve
significant offline processing or computational cost, potentially conflicting with
real-time requirements and web browser environment constraints.

3.3 Capturing and animating
Several other studies have focused on capturing the human motion and animating
a generic model to represent the human, without worrying about modelling to
create a realistic avatar. To animate a 3D avatar using captured pose and motion
data, a suitable 3D model representation is required. A key challenge is mapping
the captured pose and motion (often represented as joint rotations or 3D joint
positions) to a generic avatar model and animating it in real-time.

Parametric Models: The Skinned Multi-Person Linear Model (SMPL) model
(Loper et al. (n.d.)) is central to many Human Mesh Recovery (HMR) approaches
(Bogo et al. (2016)). It provides a low-dimensional, controllable representation of
human shape (β parameters) and pose (θ parameters, joint rotations). Its differen-
tiability allows end-to-end training, and its parameters serve as a form of generic,
canonical pose representation. Fitting SMPL to 2D keypoints or image features
is a common strategy (Bogo et al. (2016)). However, SMPL has limitations; it’s
based on a limited set of scans, primarily of minimally clothed individuals, and
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might not capture the nuances of diverse body shapes, clothing, or highly dynamic
poses accurately (Koleini et al. (2025), Bogo et al. (2016)).

Direct Mesh and Volumetric Representations: Alternatives include di-
rectly regressing mesh vertices (Lin et al. (2020a)), GraphCMR/Pose2Mesh refer-
enced by Liu, Xu, Habermann, Zollhofer, Bernard, Kim, Wang & Theobalt (2021))
or using volumetric representations (Li et al. (2021)). METRO (Lin et al. (2020a))
demonstrates the power of transformers for direct mesh regression, learning com-
plex vertex relationships without SMPL’s structural constraints.

Detection-based vs. Regression-based methods: Detection-based meth-
ods often predict heat maps representing joint likelihoods Liu, Bao, Sun & Mei
(2021), Chen et al. (2020), offering robustness, while regression-based methods
directly output coordinates, which can be simpler but potentially less robust to
ambiguity.

Joint-based vs. Mesh-based representations: Joint-based Representation:
If 3D joint locations/rotations are the primary output (e.g., from MediaPipe,
MMPose, or some direct methods), these need to be re-targeted to the target
avatar’s skeleton. This involves solving kinematic chains and handling differences
in skeleton topology and proportions (Li et al. (2021)). This requires a robust
re-targeting algorithm suitable for real-time execution.
Mesh-based Representation: If a full mesh is reconstructed, animating a different
target avatar requires mesh deformation techniques or re-targeting based on an
underlying skeleton extracted from the mesh.

Parametric body models, particularly SMPL, have become a de facto standard.
SMPL provides a compact representation of human body shape and pose, con-
trolled by low-dimensional parameters. It disentangles shape and pose variations
and is designed with a skeletal structure and blend weights that are compatible
with standard graphics pipelines (like linear blend skinning), making it highly
suitable for animation. The model represents the body in a canonical (T-pose or
A-pose) rest state, and pose-dependent deformations are applied based on joint
rotations.

While parametric models are prevalent, alternative representations exist. Some
methods directly regress 3D mesh vertices. METRO by Lin et al. (2020b), for in-
stance, uses a transformer-based approach to reconstruct 3D human pose and
mesh vertices end-to-end from a single image, modeling interactions between ver-
tices and joints without strictly relying on a parametric model structure. However,
parametric models offer advantages for animation due to their inherent rigging
structure.

The process of transforming captured pose and motion data into avatar an-
imation typically involves mapping the estimated joint rotations or positions to
the corresponding joints of the avatar’s skeleton. If the avatar is based on a model
like SMPL, the estimated SMPL pose parameters directly drive the animation via
blend skinning. For custom or reconstructed models, weights are often transferred
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from a fitted SMPL model to enable animation. The canonical pose serves as
the reference state, and captured motion applies transformations relative to this
pose, ensuring consistent animation across different models mapped to the same
underlying structure.

Charles (2016) demonstrated a system for real-time full-body motion capture
and mapping onto a virtual avatar using the Microsoft Kinect depth sensor and
the Unity game engine. Their approach uses the Kinect Software Development Kit
(SDK) to extract the user’s skeleton data, which is then mapped onto a generic
humanoid avatar in the Unity environment. The system allows for real-time con-
trol of the avatar’s movements based on the user’s actions, enabling interactive
experiences in VR.

Alexiadis et al. (2017) present a method to map real-time body movements to
a virtual environment using Kinect and Oculus Rift. It enables basic interactions
with virtual objects, enhancing the VR experience. A study by Husein & Ciawi
(2021) again demonstrate the use of Kinect V2 and Unity Engine for marker-less
motion capture and animation. It highlights the ease of capturing motion and
creating animations using depth sensors and game engines.

When we focus on more recent research that introduce novel pose estima-
tion techniques which challenge state-of-the-art methods, the following studies are
prominent. A research paper published in 2020, by Kocabas et al. (2019) intro-
duces VIBE: Video Inference for Human Body Pose and Shape Estima-
tion, which is a method that addresses the limitations of existing video-based 3D
human pose and shape estimation approaches. Prior video-based methods often
fail to produce accurate and natural motion sequences due to a lack of ground-
truth 3D motion data for training. VIBE tackles this by leveraging a large-scale
motion capture dataset (AMASS) along with unpaired, in-the-wild 2D keypoint
annotations. Extensive experiments show that VIBE outperforms previous state-
of-the-art methods on challenging 3D pose estimation benchmarks, demonstrating
the benefits of using video over single-frame approaches.

In 2021, Choi et al. (2020) presented TCMR: Beyond Static Features for
Temporally Consistent 3D Human Pose and Shape, which is a system
designed to produce temporally consistent and smooth 3D human motion from
video. Unlike prior video-based methods that strongly rely on the static features of
the current frame, TCMR effectively leverages temporal information from past and
future frames. It achieves state-of-the-art performance in terms of both temporal
consistency and per-frame 3D pose and shape accuracy, outperforming previous
video-based methods.

A study by Zhang et al. (2021), in 2023, introduced a novel way to align
3D models to humans in videos called PyMAF: Pyramidal Mesh Alignment
Feedback for Well-Aligned Body Model Regression. It is a regression-based
approach for recovering parametric 3D body models from monocular images. A
key challenge in regression-based methods is achieving well-aligned results, as mi-
nor errors in the predicted model parameters can lead to noticeable misalignment
between the estimated mesh and the input image.

A recent research published in 2024, by Shen et al. (2024) called WHAM:
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World-grounded Humans with Accurate Motion describes a method that
accurately and efficiently reconstructs 3D human motion in a global coordinate
system from video. WHAM addresses several key limitations of previous 3D hu-
man pose estimation approaches, for example; It learns to lift 2D keypoint se-
quences to 3D using motion capture data and fuses this with video features to
integrate motion context and visual information. Extensive experiments show
WHAM outperforming prior video-based and image-based 3D human pose esti-
mation methods.

FrankMocap: A Monocular 3D Whole-Body Pose Estimation Sys-
tem, presented by Rong et al. (2021), presents a fast and accurate whole-body
3D pose estimation system that can produce 3D face, hands, and body simultane-
ously from monocular images. Most existing 3D pose estimation methods focus on
a single body part, neglecting the fact that subtle movements of the face, hands,
and body are essential for capturing authentic human motion. FrankMocap takes
a modular approach, first running separate 3D pose regression models for the face,
hands, and body, and then composing the outputs via an integration module.

Toolkits like MMPose (Sengupta et al. (2019)), a Pytorch-based open-source
library, provide a rich collection of algorithms for various pose estimation tasks, in-
cluding 2D and 3D whole-body estimation, offering a flexible platform for research
and development in this area.

Overall, these studies demonstrate the feasibility and potential of real-time
motion capture and animation. By focusing on capturing and mapping the user’s
movements onto a generic avatar, they prioritize real-time interactivity and ease
of use over photo-realistic appearance. However, the use of generic avatars may
limit the sense of embodiment and presence experienced by the user, as the avatar
does not fully match their individual appearance and body shape.

3.4 Capturing, modelling and animating (Realistic 3D rep-
resentations)

A few studies have focused on all three steps that can be identified in the problem.
They propose an end to end solution to capture motion, create a realistic model
and animate the model.

Huang et al. (n.d.) proposed a novel approach for efficiently transforming an
actor into a photorealistic, animated character using 3D scanning, motion capture,
and free viewpoint video for integration in Unity. One of the main advantages
of this approach is its ability to generate high-fidelity, interactive 3D character
models that closely resemble the original actors, including their facial expressions
and body movements.

Alexiadis et al. (2017) described an integrated platform for live 3D human
reconstruction and motion capturing, targeting tele-immersion and future 3D ap-
plications. Their system combines multiple RGBD sensors, a novel calibration
method, a robust and fast 3D reconstruction approach based on volumetric Fourier
transform, and a generic skeleton tracking method using multiple depth streams.
One of the key contributions of this work is the development of an end-to-end
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pipeline for real-time 3D human reconstruction and motion tracking using com-
modity hardware (e.g., Kinect).

A survey by Caserman et al. (2020) provides a comprehensive overview of re-
cent advances in full-body motion reconstruction for immersive VR applications.
The authors analyze a wide range of techniques and systems for capturing, model-
ing, and animating human avatars, including marker-based and marker-less motion
capture, 3D scanning and reconstruction, and real-time avatar control. One of the
key findings of the survey is the growing trend towards marker-less and low-cost
motion capture solutions, such as those based on depth sensors (e.g., Kinect) or
monocular RGB cameras. An important trend identified in the survey is the in-
creasing focus on creating personalized and realistic avatars that match the user’s
appearance and body shape.

Overall, these studies demonstrate the significant progress and potential of
end-to-end solutions for capturing, modeling, and animating 3D human avatars
in immersive applications. By combining advanced motion capture, 3D scanning,
and animation techniques, these approaches enable the creation of realistic and
interactive virtual characters that can closely match the user’s appearance and
movements.

3.5 Closely Related Work
Out of the comprehensive body of literature reviewed, several studies stand out as
particularly relevant to the specific goals and constraints of this research project.
These works offer critical insights into key aspects of the proposed system, from
pose estimation and avatar representation to user experience in interactive AR.

Firstly, the field of real-time pose estimation for interactive applications is di-
rectly addressed by studies like TensorPose: Real-time Pose Estimation for
Interactive Applications by Silva et al. (2019). TensorPose’s focus on efficient
CNN architectures for real-time multi-person pose estimation is highly relevant, as
achieving high frame rates and temporal coherence is paramount for a responsive
AR experience. Similarly, efforts to improve existing efficient frameworks, such
as Detection of 3D Human Posture Based on Improved MediaPipe by
Lin et al. (2023), are significant. This work highlights the strengths of Google’s
MediaPipe Kim et al. (2023) as a mature framework for resource-constrained envi-
ronments, while also identifying its limitations in 3D pose detection and proposing
improvements. These studies inform the selection and potential optimisation of
the initial pose capture component, emphasizing the trade-offs between accuracy
and real-time performance on devices with limited computational power, like those
targeted by web browsers.

Regarding the challenge of creating and animating 3D human representations,
the literature on parametric models and their use is highly pertinent. The SMPL:
A Skinned Multi-Person Linear Model paper by Loper et al. (n.d.) is foundational,
presenting a model widely used as a generic representation due to its compatibility
with standard animation pipelines and its ability to disentangle pose and shape.
Methods that leverage SMPL for 3D human avatar creation, such as 3D Human
Avatar Digitization from a Single Image by Li et al. (2019a) and Video
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Based Reconstruction of 3D People Models by Alldieck et al. (2018), are
closely related to the modeling aspect. These studies demonstrate pipelines for
reconstructing personalized geometry and texture from minimal input (single im-
age or video) by mapping to a canonical SMPL structure, providing insights into
potential approaches for generating or adapting avatar models. While these meth-
ods may not be real-time in their entirety, they highlight the importance of the
canonical representation for animating diverse avatars. Furthermore, generative
models like AvatarGen: a 3D Generative Model for Animatable Human
Avatars by Zhang et al. (2022), show the potential for creating diverse, animat-
able avatars from 2D data, again leveraging a canonical space, offering alternative
modeling strategies.

The core challenge of mapping captured pose and motion to a generic avatar
for real-time animation is explored in studies focusing on real-time movement
mapping. Early work like Real-Time Human Movement Mapping to a
Virtual Environment by Charles (2016) and related efforts using Kinect and
Unity demonstrated the feasibility of capturing motion and animating a generic
avatar in real-time. These works, while often relying on dedicated applications
and depth sensors rather than web browsers and monocular RGB, established the
fundamental pipeline of pose capture, skeleton mapping, and real-time animation.
They inform the design of the transformation model by illustrating how captured
joint data can drive an avatar’s rig.

Addressing the complexities of handling diverse pose data and different skele-
ton formats, which is crucial if the project aims for generalisation or uses data
from multiple sources, the paper Learning 3D Human Pose Estimation from
Dozens of Datasets using a Geometry-Aware Autoencoder to Bridge Be-
tween Skeleton Formats by Sárándi et al. (2022) is particularly insightful. This
approach to handling data inconsistencies and discovering a robust intermediate
representation is highly relevant to the concept of mapping captured pose to a
generic, canonical representation that is independent of the specific pose estima-
tor’s output format.

While not solely focused on pose estimation, the study BioPose: Biome-
chanically accurate 3D Pose Estimation from Monocular Videos by
Koleini et al. (2025), is relevant as it represents the forefront of monocular 3D
pose estimation, pushing towards biomechanical accuracy by integrating mesh
recovery, neural inverse kinematics, and anatomical constraints. Although its
complexity likely exceeds the resources available in a web environment, it high-
lights the limitations of simpler parametric models like SMPL in capturing true
anatomical motion. This provides valuable context for evaluating the achievable
level of realism when using more efficient, web-friendly pose estimation techniques
and simpler avatar models.

Finally, research directly addressing avatar representation and user experi-
ence in mobile AR is highly relevant. The paper Towards Avatars for Remote
Communication using Mobile Augmented Reality by Murugan et al. (2021)
explores the design space of avatars for mobile AR remote communication, con-
sidering dimensions like body part visibility and movement type. It explicitly
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discusses challenges related to limited pose data (often just phone tracking) and
inferring body movements, which are constraints directly applicable to a web-
based mobile AR system. Their investigation into how different avatar types
impact social presence provides insights into the user experience aspects of the
project.

Similarly, Mini-Me: An Adaptive Avatar for Mixed Reality Remote
Collaboration by Piumsomboon et al. (2018) focuses on adaptive avatar design
for MR collaboration, demonstrating how avatars can be designed to enhance so-
cial presence and convey non-verbal cues in AR, despite limitations like the limited
FoV of AR headsets. This research offers valuable perspectives on designing the
avatar and the overall AR experience to maximize realism and user interaction
within the system’s constraints.

In summary, these related works provide a strong foundation and direct par-
allels to the proposed research. They offer solutions and insights into efficient
pose estimation, canonical avatar representation and animation, and the specific
challenges of delivering a compelling user experience within the context of mobile
AR, particularly in resource-constrained settings. Examining their methodologies
and findings is crucial for guiding the design and implementation of the real-time
3D avatar modelling system in a web environment.

1. Real-Time Human Movement Mapping to a Virtual Environment (Charles
(2016))

2. An integrated platform for live 3D human reconstruction and motion cap-
turing (Alexiadis et al. (2017))

3. Video Based Reconstruction of 3D People Models (Alldieck et al. (2018))

4. A Process for the Semi-automated Generation of 3D Avatars from Images
(Huang et al. (n.d.))

5. 3D Human Avatar Digitization from a Single Image (Li et al. (2019a))

6. End-to-End Human Pose and Mesh Reconstruction with Transformers (Lin
et al. (2020b))

7. Ray3D: ray-based 3D human pose estimation for monocular absolute 3D
localization (Zhan et al. (2022))

8. AvatarGen: a 3D Generative Model for Animatable Human Avatars (Zhang
et al. (2022))

9. Real-Time Interaction for 3D Pixel Human in Virtual Environment (Deng
et al. (2023))

10. Detection of 3D Human Posture Based on Improved MediaPipe (Lin et al.
(2023))
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No. Year Real-
time

Platform Equipment Body Scope Pipeline Stage Focus Output

1 2016 Yes PC + Unity Kinect, Oculus Rift Full Body All (Capture, Model,
Animate)

3D Pose

2 2016 Yes PC Network
(CUDA GPUs)

Multiple RGBD Cam-
eras

Full Body +
Env

All (Capture, Recon-
struct, Animate)

3D Reconstruc-
tion

3 2018 No PC Monocular RGB
Video

Full Body
(Clothed)

Modeling (Reconstruc-
tion)

3D Mesh + Tex-
ture

4 2019 No PC + Unity 3D Scanner, MoCap
System

Full Body Modeling + Animation
Prep

3D Mesh + Rig

5 2019 Near Real-
time

Mobile App +
Server

Smartphone RGB
Camera

Full Body Modeling (Geometry +
Texture)

3D Mesh + Tex-
ture

6 2021 Near Real-
time (12–
24 fps)

PC (GPU) Monocular RGB Im-
age

Full Body +
Hands

Modeling (Mesh +
Joints)

3D Mesh + Joints

7 2022 No PC Monocular RGB
Camera

Full Body Pose Estimation 3D Pose (Abso-
lute)

8 2022 No (Gener-
ative)

PC (GPU) 2D Image Dataset Full Body
(Clothed)

Modeling (Generative) 3D Mesh + Tex-
ture

9 2023 Yes PC + Unity + Me-
diaPipe

Monocular Webcam Upper Body +
2D Head

All (Capture, Model,
Animate)

3D Pixel Avatar

10 2023 Yes PC Monocular Webcam Full Body Pose Estimation (Im-
proved MediaPipe)

3D Pose

11 2022 No (Train-
ing Focus)

PC Monocular RGB
Camera

Full Body Pose Estimation
(Cross-Dataset)

3D Pose

12 2024 Yes
(Claimed)

PC Monocular RGB
Video

Full Body All (Capture, Model,
Animate)

3D Biomechani-
cal Pose + Mesh

13 2018 Yes
(Claimed)

PC Monocular RGB Im-
age

Full Body All (Capture, Model,
Animate)

3D Mesh +
SMPL Params

14 2021 Yes
(Baseline
Method)

PC 2D Pose Data Full Body Pose Estimation (Lift-
ing + Normalization)

3D Pose

15 2016 Yes PC Network Custom Depth Cam-
eras

Full Body +
Env

All (Capture, Recon-
struct, Animate)

3D Reconstruc-
tion

Table 1: Comparison of Existing Research on 3D Human Modeling and Animation

11. Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats (Sárándi
et al. (2022))

12. BioPose: Biomechanically-accurate 3D Pose Estimation from Monocular
Videos (Koleini et al. (2025))

13. End-to-end Recovery of Human Shape and Pose (Kanazawa et al. (2017))

14. A Baseline for Cross-Database 3D Human Pose Estimation (Rapczyński
et al. (2021))

15. Holoportation: Virtual 3D Teleportation in Real-time (Orts-Escolano et al.
(2016))

3.6 Synthesis and Research Gap
The review of the existing literature reveals a field that is advancing at a rapid
pace. We’ve seen powerful deep learning techniques emerge that can understand
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and reconstruct human motion from a simple video feed. These include impressive
real-time methods like VIBE (Kocabas et al. (2019)), TCMR (Choi et al. (2020)),
PyMAF (Zhang et al. (2021)), and WHAM (Shen et al. (2024)), which can esti-
mate full 3D joint positions and even detailed meshes. At the same time, we have
practical, efficient frameworks like Google’s MediaPipe (Kim et al. (2023)) and
comprehensive toolkits like MMPose (Sengupta et al. (2019)) that are specifically
designed to run on the devices we use every day, including our phones.

In parallel, the way we create and use 3D models for animation has also ma-
tured. Parametric models like the SMPL model have become a common lan-
guage for researchers, providing a controllable and standardized way to represent
the human body. This makes it easier to apply the captured motion to different
characters. We’ve also seen amazing research into creating personalized avatars
from just a single photo, using techniques like Generative Adversarial Networks
(GANs) to create realistic and animatable characters (Alldieck et al. (2018), Li
et al. (2019b), Zhang et al. (2022)). All the individual components have advanced
separately: we have ways to capture motion, ways to represent the body, and
powerful graphics engines in our browsers to display the results.

However, when we look closer at how these pieces fit together, we see significant
gaps. The primary challenge and the central motivation for this thesis lie in
bridging the gap between the world of high-end academic research and the world
of practical, accessible, real-world applications, especially within the unique and
restrictive environment of a web browser.

3.6.1 The Conflict Between Performance and Quality in Real-Time
Systems

A major theme emerging from the literature is the constant battle between per-
formance and quality. This is especially true for real-time systems that need to
run on resources-constrained devices such as smartphones. On one hand, we want
our avatars to be driven by the most accurate and detailed motion capture data
possible. On the other hand, the methods that produce this high-quality data are
often very slow and require powerful computers.

This brings us to the first major hurdle: choosing a pose estimation method.
Google’s MediaPipe framework is a fantastic example of a solution designed for
performance. It offers pipelines that can run efficiently on a phone’s CPU, making
it one of the few practical choices for a web-based application (Kim et al. (2023)).
However, as studies like Lin et al. (2023) have pointed out, this efficiency can come
at the cost of accuracy. The 3D pose data from such lightweight models may not
be as precise as that from more complex methods. This trade-off is fundamental:
to achieve the speed needed for a smooth real-time experience on the web, we
often have to accept input data that is less than perfect.

Furthermore, the fundamental challenges of seeing in 3D from a 2D image
don’t disappear, even with powerful models. Problems like depth ambiguity (is
an arm bent forward or is it just short?), self-occlusion (a user’s arm hiding their
torso), and sensitivity to different types of clothing or poor lighting are persistent
issues in monocular vision (Liu, Shen, Wang, Chen, ching Cheung & Asari (2021),
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Chen et al. (2020)). Even the most advanced research systems struggle with these
problems. This means that any practical system built for real-world use cannot
assume it will receive a perfect, complete 3D skeleton at all times. It must be
designed to be resilient and to handle messy, incomplete data gracefully.

3.6.2 The Challenge of Heterogeneity: Mismatched Skeletons and Di-
verse Data

The problem is compounded by a lack of standardization. Different research
projects and datasets often use different skeleton formats. For example, some
datasets define 17 keypoints, while others use 25 or more, and the specific defi-
nition of joints like the ”hip” or ”spine” can vary. As research by Sárándi et al.
(2022) and Rapczyński et al. (2021) has shown, simply combining data from these
different sources requires careful ”harmonization” work to align the different skele-
ton structures.

This issue directly impacts our goal of building a flexible web application. One
user, on a powerful laptop, might be able to run a pose estimator that outputs
a detailed 33-point skeleton. Another user, on an older phone, might need to
use a much lighter model that only outputs 17 keypoints, and only in 2D. How
can a single application handle both of these inputs? Handling these skeleton
mismatches and ensuring a smooth animation transfer in both cases is a significant
challenge. Any robust system needs a way to work with these different ”languages”
of pose data. This problem is also highlighted in research that tries to generate a
full-body pose from very limited data, such as just the phone’s position in mobile
AR (Murugan et al. (2021)). This shows that there is a need for intelligent systems
that can infer a plausible full motion from a sparse input.

3.6.3 The Web Browser as a Challenging Environment
Finally, deploying a complete avatar pipeline in a web browser introduces its own
unique set of severe constraints. While technologies like WebGL provide the ability
to render 3D graphics, the performance is not the same as a native application. As
a detailed study by Bi et al. (2023) on WebXR performance shows, browser-based
3D applications are limited by JavaScript execution speed, browser overhead, and
the wide variety of device capabilities, especially on mobile.

Their study provides crucial benchmarks that highlight the ”resource-constrained”
nature of the web. They found that while rendering simple 3D scenes is feasible,
performance degrades very quickly as the complexity of the 3D models and the
scene increases. Critically, their findings suggest that often the primary bottle-
neck for a web AR application is not the camera feed itself, but the 3D rendering
load. This means that every part of our pipeline—from running the pose estima-
tion model (using libraries like TensorFlow.js) to processing the data and finally
rendering the avatar—must be extremely efficient. We cannot afford to waste any
computational resources.

This brings the user experience into sharp focus. The quality and responsive-
ness of the avatar directly influence the level of immersion and realism for the

19



user. While highly realistic avatars created from 3D scans look amazing, they
are often too complex to be rendered smoothly in a web browser in real-time
(Huang et al. (n.d.), Caserman et al. (2020)). This forces a compromise: simpler,
more ”cartoony” avatars are easier to animate, but may reduce the user’s sense of
embodiment or ”presence” (Charles (2016)). Finding the right balance between
realism and performance is a key challenge for any web-based system.

3.6.4 Identifying the Research Gap
After analyzing the literature, a clear picture emerges. The field is full of powerful,
specialized solutions, but there is a lack of integration between them, especially
for the web platform. The academic, high-fidelity methods are too slow for the
web, and the fast, web-friendly methods are not flexible or robust enough on their
own.

This leads us to the significant research gap that this project addresses:
there is a lack of a readily available, end-to-end pipeline specifically designed to
work within the web browser that can flexibly handle diverse pose estimation
inputs and intelligently generate a complete, plausible animation from
potentially imperfect or sparse data.

Specifically, the gap lies in the absence of a single, cohesive system that does
the following:

• Adapts to Different Inputs: Current solutions are usually hard-coded to
one specific input source. There is no ”universal translator” or middleware
that can take data from a variety of common pose estimators (e.g., a 17-
point 2D skeleton from MoveNet, a 33-point 3D skeleton from BlazePose)
and convert them into a single, standardized format. This forces developers
into a rigid choice and limits user accessibility.

• Intelligently ”Fills in the Blanks”: A web-based system must expect
imperfect data. It needs a way to handle this, for example, by ”lifting” 2D
keypoints into 3D space, or by estimating the position of an occluded arm.
While complex AI models can do this, they are too slow for the browser. The
gap is the need for a system that can perform this inference using lightweight,
efficient techniques based on biomechanical rules and heuristics.

• Provides a Fully Integrated and Optimized Solution: While a devel-
oper could technically try to stitch together a pose estimator, a 3D library,
and their own custom logic, this is a massive undertaking. There is no ex-
isting, open-source pipeline that combines all these pieces and is optimized
to work together efficiently under the demanding constraints of the web
browser.

Therefore, this research project aims to fill this specific gap. It is not about invent-
ing a new pose estimator. It is about designing, implementing, and evaluating the
crucial middleware—the smart ”glue”—that connects the pieces. By creating a
generalized transformation model, this work seeks to make real-time 3D avatar
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animation more robust, flexible, and most importantly, accessible to anyone with
a webcam and a web browser.
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4 Research Methodology
The primary goal of this research is to create and evaluate a novel software
artifact—a generalized pipeline for real-time 3D avatar animation. Given this
objective, the project adopts the Design Science Research (DSR) methodology.
DSR is a well-established paradigm in technology and information systems re-
search that focuses on the design, implementation, and evaluation of artifacts
intended to solve specific, identified problems. This approach is inherently itera-
tive and practical, directly aligning with the engineering challenges of this thesis.
The research was executed in a series of structured phases, allowing for an adap-
tive approach where findings from earlier stages directly informed the direction of
subsequent work.

4.1 Overall Research Approach
The research process began with an initial plan to identify a single, optimal pose
estimation technique and build a solution around it. However, early investiga-
tions, detailed in Chapter 5, revealed significant practical challenges related to
the diversity of available tools and their performance trade-offs. This led to a
crucial pivot in the research strategy. The focus shifted from optimizing for a sin-
gle input to designing a flexible, generalized system capable of handling multiple,
heterogeneous inputs.

The refined research plan was structured into three main phases:

1. Problem Analysis and Technology Evaluation: This phase involved a
deep dive into existing solutions to understand the technical landscape. It
combined a thorough literature review (Chapter 2) with hands-on technical
experiments to identify the capabilities and limitations of available tools for
pose estimation, 3D modeling, and web-based rendering. Generated code

2. Artifact Design and Development: Based on the gaps identified in the
first phase, the core of the research was the design and construction of the
software pipeline. This involved defining the system architecture, developing
the core algorithms for data processing and inference, and implementing the
complete end-to-end solution in a suitable web-based environment.

3. Evaluation: The final phase focused on assessing the developed artifact.
The goal was to measure its performance, evaluate the quality of the output,
and determine its effectiveness in solving the initial problem. Use code with
caution.

4.2 Evaluation Plan
To measure the success of the developed pipeline and answer the research ques-
tions, a multi-faceted evaluation strategy was designed. The evaluation focuses on
three key areas:
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1. Performance Benchmarking: The real-time viability of the system is
critical. The primary metric for evaluation is Frames Per Second (FPS).
The FPS of the entire pipeline will be measured on representative hardware
(a modern laptop and a smartphone) using different input pose estimators
(e.g., lightweight MoveNet vs. heavyweight Holistic) to quantify the system’s
performance under various loads. Generated code

2. Functional Correctness and generalisation: The pipeline’s core novelty
is its flexibility. Its success will be evaluated by its demonstrated ability to:

• Successfully ingest and process data from multiple, distinct pose es-
timators with different skeleton formats (e.g., 17-point 2D, 33-point
3D).

• Generate a complete, animated output even when provided with sparse
or incomplete input data.

3. Qualitative Assessment of Animation Plausibility: The final output
must be visually acceptable. The quality of the animation will be evaluated
through direct observation, focusing on aspects like smoothness, absence of
major anatomical errors (e.g., unnaturally stretched limbs), and the general
coherence of the motion, especially when inferred from sparse data. Use
code with caution.

This structured methodology, combining systematic evaluation with iterative
design, ensures that the research process is both rigorous and directly tied to
producing a practical, well-validated solution to the research problem.
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5 System Design and Development
Following the research methodology outlined in the previous chapter, a novel soft-
ware pipeline was designed and developed to address the identified research gap.
This chapter details the architecture of this artifact, the technical explorations that
informed its design, and the implementation of its core components. The system
was built from the ground up as a web-native solution, prioritizing modularity,
flexibility, and real-time performance.

5.1 Preliminary Experiments
The design of the final pipeline was heavily informed by a series of preliminary
experiments aimed at understanding the practical challenges of each part of the
system.

5.1.1 Motion Capture Technique Selection and Adaptation
As the initial plan was to select only one ideal technique and build upon it, the
first step in the process involved selecting and adapting a motion capture tech-
nique that could reliably capture human expressions, poses, and movements using
just a webcam. This required evaluating various state-of-the-art pose estimation
algorithms, each with unique capabilities and trade-offs in terms of performance,
accuracy, and computational requirements.

High-Accuracy Academic Models: Methods like VNect (2017), a pioneer-
ing real-time method for 3D pose estimation from a single camera (Mehta et al.
(2017)), OpenPose (2017), a robust multi-person 2D detection system (Cao et al.
(2016)), and HybrIK (2021), an accurate 3D pose and shape estimation solution
(Li et al. (2020)), were reviewed. While these systems represent the state-of-the-
art in accuracy, their reliance on C++/Python environments and powerful GPUs
made them unsuitable for direct client-side web deployment.

Web-Compatible Real-Time Models: The practical investigation focused
on models that could run directly in the browser. MoveNet (2021): This model of-
fers ultra-fast pose detection, making it highly suitable for mobile applications. It
supports both WebGL and CPU execution via TensorFlow.js, providing a sparse
but very fast 17-point 2D skeleton (MoveNet: Ultra fast and accurate pose de-
tection model. | TensorFlow Hub (n.d.)). MediaPipe BlazePose (2020) Holistic
(2021): These Google models are designed for on-device inference. BlazePose of-
fers a 33-point 3D skeleton, providing a good balance of detail and performance.
Holistic is the most comprehensive, offering 543 landmarks for the body, face, and
hands, but this richness comes at a higher computational cost (Kim et al. (2023)).
Their native JavaScript availability made them prime candidates.

YOLO-Pose (v8, v11): Extending the popular YOLO family, these models
provide fast, 17-point 2D keypoint detection. Integrating YOLO-Pose required a
non-trivial conversion process from its native PyTorch format to TensorFlow.js,
but it served as another important data point for a fast, sparse input source (Maji
et al. (2022)).
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The following table summarises the features of above pose estimation tech-
niques.

Year Name Method Runs On No. of
Points

Evaluation

2017 VNect C++, Unofficial
Python and Tensor-
flow based implemen-
tation

CPU 21 (3D)

2018 AlphaPose CNN based - Runs on
Linux with PyTorch
and torchvision

GPU with
PyTorch

136, 26, 17 82.1 mAP on
MPII dataset

2020 MediaPipe
BlazePose

Tensorflow-JS CPU, GPU 33 (3D)

2021 MoveNet Tensorflow-JS (We-
bGL or Wasm)

GPU with
WebGL or
CPU

17 or
33 with
BlazePose

30+ fps on
mobile devices,
100+ fps on
desktops

2021 HybrIK and
HybrIK-X

Based on a hybrid in-
verse kinematics (IK)
to convert accurate
3D keypoints to para-
metric body meshes

GPU with
PyTorch

13.2 mm
MPJPE and
21.9 mm PVE
on 3DPW
dataset

2017 OpenPose Python and C++
APIs, also unofficial
Tensorflow based
implementation.
Windows and Ubuntu

CPU, GPU 135 (2D
Keypoints)

2021 HyperPose Python, C++ CPU, GPU

2022 MediaPipe
Holistic

Python, JS CPU, GPU 543 (3D) 20 - 30 fps on
mobile devices

2023
(v11)

YOLO-Pose CNN-based single-
stage object detection
and keypoint regres-
sion

GPU (Py-
Torch/CUDA),
CPU
(Python),
Browser
(TF.js We-
bGL/Wasm
after conver-
sion)

17 (2D,
COCO)

Very High FPS
(Real-time),
Competitive
mAP on COCO
keypoints (varies
by model size)

Table 2: Comparison of Applicable Human Pose Estimation Methods

The critical outcome of this investigation was the empirical confirmation that a
trade-off between performance and detail is unavoidable. This finding invalidated the
initial plan to select one ”optimal” model and provided the core motivation for designing
a generalized pipeline that could adapt to this diversity.
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Figure 2: Topology of Blazepose (From: Research (n.d.))

5.1.2 Data Extraction and Avatar Modeling
According to the initial plan, after selecting the MediaPipe BlazePose solution as the
primary motion capture method due to its balance of accuracy and efficiency, I focused
on real-time data extraction and feeding it into the 3D model, the goal is to be able to
transform and map these keypoints to any model, in real-time.

Exploring 3D Models to feed the MediaPipe Keypoints Output After
obtaining the output of keypoints from MediaPipe’s integrated solution, I started to
explore the next step of integrating these outputs with 3D models to drive avatar an-
imations. This exploration revealed the complexity and variety in the 3D modeling
ecosystem, primarily due to differing formats, coordinate systems, bone schemas, and
rig structures utilized in these models.

During my experiments, I realized that converting MediaPipe’s landmarks directly
into blendshape weights, which are used in 3D modeling for facial expressions, is a
complex task. Blendshapes are essentially predefined deformations that morph a 3D
model’s mesh into different shapes for expressions and movements, commonly used for
animating characters’ faces.

Beyond blendshape mapping, a core challenge emerged when considering pose esti-
mators that only provide 2D keypoints (like MoveNet or YOLO-Pose). How can these be
’lifted’ to 3D for avatar animation? State-of-the-art research often employs deep learn-
ing models specifically trained for this 2D-to-3D lifting task (Rapczyński et al. (2021)).
For instance, lightweight networks can infer 3D coordinates from 2D inputs. However,
obtaining pre-trained weights suitable for web deployment (e.g., converted to Tensor-
Flow.js) and ensuring real-time performance within browser constraints posed significant
challenges. Accessing specific model weights proved difficult, and the computational
cost of even lightweight neural networks can be prohibitive on resource-constrained mo-
bile devices. This further steered the methodology towards exploring heuristic and
bio-mechanically informed geometric approaches for 3D reconstruction that could run
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efficiently in JavaScript.
Approaches for Blendshape Generation: According to a discussion thread on

the web (qhanson (2022)), there exists several ways to convert face meshes and keypoints
to blendshapes to drive 3D models.

Direct Math Conversion from Mesh Landmarks:

• Kalidokit: An open-source project designed to convert face, hand, and body land-
marks from models like MediaPipe into data that can drive 3D models. It pro-
vides utilities to map face landmarks into blendshape data for animation. The
implementation is done in TypeScript, making it directly usable in browser envi-
ronments.

• MeFaMo (MediaPipe Face Model): Another project with a similar approach to
converting MediaPipe outputs to usable 3D facial animations. The implementa-
tion is done in Python.

AI Model-Based Conversion:

• Mocap4Face: A solution that uses facial motion capture data to produce blend-
shapes for animation. It provides real-time FACS-derived blendshape coefficients,
and rigid head pose in 3D space.

• AvatarWebKit: A project focused on creating web-based avatars with facial mo-
tion capture capabilities, it does not provide rigid body frame and hand positons.

• NVIDIA’s Maxine AR SDK is a recent solution, which predicts blendshapes,
though it is tailored for use on NVIDIA GPUs with CUDA support.

While these methods provided a starting point, I faced several challenges:
Many of the open-source projects such as Kalidokit and Mocap4Face appeared to

be inactive or not well-maintained. NVIDIA’s solution, while promising, required hard-
ware constraints (NVIDIA GPUs), limiting its broader applicability. Most of the other
projects were archived and had stopped giving API access. However, the Kalidokit code
provided a solid foundation for a mathematical transformation model that can map all
keypoints for face, hands and body pose from Tensorflow-js or MediaPipe 3D or 2D
keypoints to a standard format compatible with VRM based models (explained later),
that can be used to animate those models directly.

Discoveries regarding 3D Model Formats
Through my exploration, I noticed that MediaPipe provides normalized landmark out-
puts for facial, pose and hand features, but integrating these outputs with 3D models
wasn’t straightforward due to different skeleton topologies.

Skeleton Topologies in Virtual Character Models BlazePose Skeleton Repre-
sentation: For example, BlazePose, offers a skeleton structure very similar to the stan-
dard 17 COCO keypoints but lacks a spine bone, while most virtual character skeletons
include it. This makes direct mapping challenging.

Virtual character 3D models typically come in formats like VRM, FBX, and GLTF,
each with unique bone structures, coordinate systems, and other parameters.

VRM: A New Schema for Simplifying 3D Avatar Handling
During my explorations, I came across the VRM file format, which was specifically
designed to standardize humanoid 3D avatars in VR applications. It offers several
benefits:
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Figure 3: Implementation of transformation model in Kalidokit (From: yeema-
chine on GitHub (n.d.))

Platform Independence: VRM models can be used across various VR/AR platforms
and applications. Based on glTF2.0: This format builds on the glTF2.0 standard and
adds additional constraints for humanoid characters. Standardized Configurations: The
VRM format addresses scale, coordinate systems, and bone structure, making inte-
gration across different platforms easier. Avatar Customisation: VRM allows for the
customisation of expressions, gaze settings, shaders, and more, all within a single file.
This standardisation makes it easier to map MediaPipe outputs to a common avatar
format. Licensing and Rights: VRM allows embedding license and usage rights specific
to avatars, which is crucial for content creators and VTubers.

Challenges with Other 3D Formats and Skeletons
Mixamo and FBX Models: Many 3D models from platforms like Mixamo use a

65-point bone schema, differing significantly from BlazePose’s skeleton structure and also
the standard VRM structure. This variation in bone schemas complicates the mapping
process.
GLTF and FBX Formats: Generic 3D models in these formats often have unique
skeleton setups, making direct animation from MediaPipe outputs complex without
intermediate transformations.
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Figure 4: Output from MediaPipe holistic model

Figure 5: Skeletal points structure from VRM Standard (From HTC-Corporation
(n.d.))

The exploration of converting MediaPipe outputs to 3D model blendshapes unveiled
a complex landscape with various challenges, primarily due to differing standards in
skeleton topology and format specifications. The use of standardized formats like VRM
and development of a lightweight end to end framework offer potential paths forward.

5.1.3 Experimenting with Different Types of Rendering in Web Browsers
To render and display the models in web browsers, I also explored different tools and
frameworks that are tailored for web-based 3D rendering and AR/VR applications.

WebXR WebXR (Web Extended Reality) is a web API that supports the rendering
of virtual and augmented reality experiences in web browsers. It allows users to expe-
rience immersive 3D environments directly through their browsers using VR headsets,
AR-capable devices, or standard screens for non-immersive experiences. My focus on
WebXR was driven by the need to make my avatar animations accessible and interactive
within AR experiences utilizing web browsers.

A-Frame A-Frame is a declarative web framework built on top of three.js that
makes it easier to create WebXR applications. A-Frame provides an easy-to-use markup-
like syntax to define 3D scenes. While A-Frame’s ease of use allowed me to quickly
prototype 3D models, I discovered that it might lack some advanced customisation and
performance optimisation features required for highly detailed and complex avatars.
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Figure 6: Structure of sample free 3D
model from Mixamo (Mixamo (n.d.)) Figure 7: Structure of sample free

generic 3D Model

Three.js Three.js is a popular library for rendering 3D content on the web. When
used for rendering 3D models on the browser, Three.js provided extensive flexibility and
robust rendering capabilities, making it ideal for achieving the level of detail needed here.
I found it straightforward to implement WebXR with Three.js for immersive VR/AR
experiences. The rich library of utilities and plugins further enhanced my ability to
work with complex 3D models, animations, and textures.

5.1.4 Exploring 3D Human Models
In addition to experimenting with pre-rendered humanoid models from various sources
such as Mixamo, Sketchfab, Turbosquid etc., I explored the SMPL model which was a
3D human model designed to achieve realistic human body representations.

SMPL provides a highly realistic representation of human body shapes and move-
ments, making it an ideal choice for avatars intended to mimic natural human behavior
and appearance. The model can be posed with natural, pose-dependent deformations
and even exhibits soft-tissue dynamics, making it efficient for animation while maintain-
ing a high degree of realism. SMPL’s simplicity in terms of its low polygon count, clean
quad structure, and standard rig makes it accessible to both animators and computer
vision researchers (Loper et al. (n.d.)).

SMPL model can be used for personalisation of output based on input data (live
video of human), such as adapting body shapes and poses according to a specific human
subject. Generating personalized 3D models with dynamic shapes and textures etc. is
also a very interesting research topic.

Summary of the Problem and Solutions The key challenge lies in unifying
different motion capture standards, each with distinct kinematic topologies. Different
virtual characters require different sets of operations to perform the same actions. Ad-
ditionally, avatar animation applications demand real-time interaction, efficient motion
estimation, and immersive environments, making the task computationally expensive.
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Figure 8: Rig keypoints structure from VRM Humonoid Spec

The proposed solution is an efficient end to end framework for Real-Time Avatar Ani-
mation with any type of 3D humanoid model, that can be run on web browsers, even in
smartphones:

• Track human motion using keypoint estimation models for the human body and
optionally face and hands.

• Create a flexible middleware like adaptor to convert input keypoints into a topol-
ogy that can drive virtual character models with any skeleton and rig points
structure.

• Convert keypoints and rotation matrices into formats compatible with target
avatars.

• Animate the humanoid models with the outputs of the mapping and transforma-
tion algorithm (similar to Kalidokit (yeemachine on GitHub (n.d.))) and render
them.
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5.2 Experimental Setup and Development Environment
After preliminary experiments and the revised synthesis of the research gap, the objec-
tive of the project was to conceptualize, develop, and evaluate a generalized real-time
pipeline capable of animating 3D humanoid avatars using standard webcam input and
a variety of different pose estimation techniques, specifically within the demanding re-
source constraints of modern web browsers operating on various hardware, including
mobile devices.

The inherent challenges associated with monocular computer vision, real-time per-
formance budgets, and the heterogeneity of pose estimation techniques required an iter-
ative and adaptive research methodology. This section details the structured approach
I undertook, evolving from initial explorations to the design and implementation of a
novel middleware architecture. It covers the experimental setup, the rationale behind
key technical decisions, the extensive offline data analysis performed, the specific al-
gorithms developed for each pipeline stage, and acknowledgment of the encountered
challenges and limitations.

My investigation began with preliminary experiments aimed at identifying suitable
technologies for each facet of the problem: capturing user motion, representing that
motion digitally, and animating a 3D avatar. From the outset, the goal was a web-
native solution, prioritizing platform independence, real-time responsiveness essential
for AR interaction, visual plausibility, and ease of integration.

To facilitate efficient development and iterative testing crucial for this research, I
established a modern web-based development environment. A prototype web application
served as the core testing platform, built using fundamental web technologies: HTML
for structure, CSS for styling, and plain JavaScript (ES6+) for all core logic and pipeline
implementation. This choice deliberately avoided reliance on large frontend frameworks
to maintain transparency and control over performance characteristics.

The project structure was managed using the Node Package Manager (npm), and
Vite was selected as the build tool and development server. Vite’s native ES module
support and extremely fast Hot Module Replacement (HMR) significantly accelerated
the development cycle compared to traditional bundlers, proving invaluable for rapid
prototyping and testing of complex pipeline components. For 3D graphics rendering and
manipulation within the browser, THREE.js was chosen due to its maturity, extensive
features, large community support, and performance capabilities leveraging WebGL. To
specifically handle the loading and interaction with humanoid avatars, I integrated the
three.js and three-vrm libraries, which provides robust support for the increasingly pop-
ular VRM 1.0 standard – a format specifically designed for interoperable 3D humanoid
avatars. All machine learning model inference (for pose estimation) was handled using
TensorFlow.js, leveraging its WebGL backend for GPU acceleration where possible.

5.3 Phase 1: Foundational Research Pose Estimation In-
tegration

This initial phase aligned with the original proposal’s steps of method selection and data
extraction, but evolved significantly based on preliminary findings.
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Figure 9: Developed prototype web-app (on a com-
puter)

Figure 10: Developed
prototype web-app (on
a smartphone)

5.3.1 Exploring Pose Estimation Techniques for Web Environments
I began by surveying and experimentally evaluating a range of real-time human pose
estimation algorithms accessible from a web context. The literature presents a spec-
trum of approaches, from complex, high-accuracy methods often requiring significant
computational power, to lightweight models optimized for edge devices.

My investigation included:
MediaPipe Suite (BlazePose, Holistic): These solutions by Google (Lugaresi

et al. (2019), Kim et al. (2023) ) were prime candidates due to their design for on-device
inference and direct JavaScript/WebAssembly (Wasm) availability. BlazePose offers ef-
ficient 33-keypoint 2D/3D body tracking. Holistic provides a comprehensive solution
combining pose, face (468 landmarks), and hands (2x21 landmarks), totalling 543 land-
marks. Integrating Holistic provided rich data but confirmed the potential performance
bottleneck on lower-spec devices due to its computational load. I successfully integrated
both, noting the difference between Holistic’s normalized image landmarks (poseLand-
marks) and its root-relative pseudo-meter world landmarks (poseWorldLandmarks).

TensorFlow.js Models (MoveNet): I integrated MoveNet (specifically, the faster
’Lightning’ variant) MoveNet: Ultra fast and accurate pose detection model. | Tensor-
Flow Hub (n.d.)) via TensorFlow.js. Its speed and simplicity in providing 17 standard
COCO-format 2D keypoints made it an excellent baseline for testing the pipeline’s abil-
ity to handle sparse, 2D-only input.

YOLO-Pose: To further test generalisation and incorporate another popular ef-
ficient architecture, I worked on the complex task of integrating a YOLO-Pose model
within the browser. As pre-trained TensorFlow.js versions were not readily available,
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this involved obtaining the model weights (e.g., PyTorch), exporting to ONNX format,
converting the ONNX model first to a TensorFlow SavedModel, and finally using the
tensorflowjs converter tool to generate a web-compatible GraphModel (model.json and
shard files). This multi-step conversion process was complex and required careful de-
pendency management but ultimately provided another 17-keypoint 2D input source for
the browser.

Other Methods Considered: I also researched methods like VNect (Mehta et al.
(2017)), OpenPose (Cao et al. (2016)), HybrIK (?), and frameworks like AlphaPose
(Fang et al. (2022)). While highly capable, their primary implementations in Python/C++
and reliance on specific GPU libraries (like TensorRT for HyperPose) made them unsuit-
able for direct, real-time deployment within the target browser environment, without
significant, complex porting efforts beyond the scope of this project. However, studying
their architectures (e.g., heatmap regression, Path Affinity Fields (PAF), analytical IK
integration in HybrIK, Non-Maximum Suppression (NMS) techniques in AlphaPose)
provided valuable conceptual understanding.

Figure 11: Exploring code level implementation of various pose estimation tech-
niques

5.3.2 The Shift Towards generalisation
Initial experiments confirmed the feasibility of driving a VRM avatar using MediaPipe
Holistic and existing mapping logic (similar conceptually to libraries like Kalidokit).
While functional, simply replicating this pathway offered limited novelty. Kalidokit, for
instance, is tightly coupled to MediaPipe’s specific 543-landmark output and primarily
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targets VRM avatars for output. The key realisation was the significant heterogeneity
among readily available web-compatible pose estimators. They varied drastically in:

• Keypoint count (17 vs 33 vs 543).

• Skeleton topology (COCO vs BlazePose/Holistic definitions differ, especially around
hips/spine).

• Coordinate systems (2D pixels, 2D normalized [0,1], 3D pseudo-meters root-
relative, 3D normalized image space).

• Confidence metrics (score vs visibility).

Further complicating the selection process is the diversity in skeleton formats output
by different models. Common standards include COCO (17 keypoints, used by MoveNet,
YOLO-Pose, PoseNet), MPII (16 keypoints), H36M (17 or 32 keypoints, often used in re-
search datasets), and the more detailed BlazePose (33 keypoints) and MediaPipe Holistic
(543 landmarks). While some overlap exists (e.g., basic limb joints), differences in joint
definitions (especially around the hips and spine) and the sheer number of points pose
significant integration challenges (see Fig. 12). Early quantitative comparisons, such as
those by Jo & Kim (2022), highlighted trade-offs: evaluating OpenPose, PoseNet, and
MoveNet variants on mobile-centric tasks, they found MoveNet ’Lightning’ offered the
highest speed, while PoseNet achieved higher accuracy (97.6%) on their dataset com-
pared to MoveNet Thunder (80.6%), MoveNet Lightning (75.1%), and OpenPose (86.2%,
though it uniquely supported multi-person). OpenPose, with its detailed Body25 model
(including neck, mid-hip, and foot keypoints), offers high granularity but often demands
more computational resources. Attempts to directly port complex C++ based models
like OpenPose to the web proved challenging due to dependencies and performance
hurdles (Tejo (2024)). Related research explores advanced techniques like VIBE (Ko-
cabas et al. (2019)) for temporal smoothness or geometry-aware autoencoders to bridge
skeleton formats, but these often require significant computational power unsuitable
for our target web environment. Projects like MMPose (Sengupta et al. (2019)) and
MMHuman3D MMHuman3D: OpenMMLab 3D Human Parametric Model Toolbox and
Benchmark (2021) offer comprehensive toolkits but are primarily Python-based.

Furthermore, resource constraints are paramount. Users on lower-end devices might
need to select a faster, sparser estimator like MoveNet, sacrificing detail for performance.
A system locked to Holistic would exclude these users.

This led to a fundamental shift in the research focus: from finding one optimal
estimator to designing a flexible, generalized middleware pipeline capable of ingesting
input from various pose estimation methods (that can be trained on various datasets).
This required developing novel components for input abstraction, 3D lifting, missing
data inference, and standardized rigging, forming the core contribution of this work.

This heterogeneity, coupled with the practical challenges of deploying complex mod-
els like OpenPose or deep learning-based 2D-to-3D lifters (discussed below) in the
browser, solidified the decision to move away from selecting a single ’optimal’ estima-
tor. Instead, the research pivoted towards designing a flexible middleware capable of
handling this input diversity and compensating for sparser inputs through intelligent
processing.
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Figure 12: Different 3D human pose datasets (e.g., CMUPanoptic [COCO] and
Human3.6M) provide annotations for different sets of body landmarks (From:
Sárándi et al. (2022))

5.4 Phase 2: The Generalized Pipeline Architecture
To achieve input flexibility and robust processing, I designed a modular pipeline archi-
tecture implemented entirely in JavaScript. Each stage addresses a specific challenge in
the path from raw key points to final avatar animation.

Figure 13: High-level diagram of the overall architecture and detailed pipeline

The key design principles were:
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• Modularity: Each major processing step (adaptation, processing, solving, smooth-
ing, rigging) is encapsulated in its own class/module, allowing for independent
development, testing, and future replacement or enhancement (e.g., adding an IK
module later).

• Standardized Intermediate Representation: The CanonicalPose structure
serves as the common data format passed between modules, decoupling them.

• Root-Relative Processing: All internal processing (lifting, inference, rotation
solving) operates in a consistent normalized, root-relative coordinate space (with
the ’hips’ bone at the origin), simplifying calculations and making them indepen-
dent of the user’s absolute position or scale in the input image. The architecture
was designed from the ground up with dual generalisation in mind: flexibility
in accepting various pose estimation inputs at the front-end, and adaptability in
retargeting the processed motion to different standard humanoid avatar formats
(primarily VRM, with extensibility demonstrated for others) at the back-end.

• Efficiency: Algorithms were chosen and implemented with browser performance
constraints in mind, favouring efficient vector math and heuristics over computa-
tionally heavy operations where possible.

5.5 Phase 3: Input Adaptation and Standardisation
This module addresses the challenge of input heterogeneity. Its primary role is to
translate the diverse outputs from the selected pose estimators into the standardized
CanonicalPose format, specifically populating the raw landmarks map and providing
initial estimates for the bones map.

• Handling Source Diversity: The adapt method uses a switch statement based
on the sourceType (’MoveNet’, ’YOLO’, ’BlazePose’, ’Holistic’).

• Keypoint Mapping: Internal maps (COCO MAP, BLAZEPOSE MAP) trans-
late the source keypoint indices to descriptive names (e.g., ’leftShoulder’). These
names are used as keys in the landmarks map.

• Coordinate Unification and Normalisation: This was a critical implemen-
tation step requiring careful handling:

• Pixel Inputs (MoveNet, YOLO, potentially BlazePose 2D/3D): Calcu-
lates a root position (midpoint of high-confidence hips, fallback considered) in
pixels. Calculates a reference scale factor (e.g., using videoHeight or pixel shoul-
der width). Centres all key points relative to the pixel root and divides by the
scale factor, inverting the Y-axis (normY = − centeredY

scale ), to map into the inter-
nal normalized space where the hip is effectively (0,0,0). The Z coordinate is
initialized to 0.

• Holistic Normalized Input (poseLandmarks): Coordinates are already [0,1].
Finds the hip midpoint in this space. Centers other landmarks relative to this hip
midpoint. Applies Y-axis inversion. Scales the result based on a reference size
(e.g., normalized shoulder width) to match the scale of the internal normalized
space derived from pixel inputs. The Z coordinate is often unreliable and might
be scaled or initially ignored.
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• Holistic World Input (poseWorldLandmarks): This data is already root-
relative and in pseudo-meters. The primary step is axis mapping (e.g., potentially
swapping/negating Y and Z) to align with the internal Y-Up, Z-Forward conven-
tion. Depending on the chosen internal unit system (purely relative vs. meters-
relative), it might require scaling (e.g., dividing all coordinates by the measured
shoulder width in meters to get a consistent relative scale).

• Populating CanonicalPose: For each detected landmark, it stores the raw
position (Vector2/Vector3 in source space) and confidence in canonicalpose ->
landmarks. It then attempts to find the corresponding canonical bone name (e.g.,
’leftWrist’ landmark maps to ’leftsHand’ bone) using ’TO CANONICAL’ maps
and populates the canonicalpose -> bones entry with the calculated normalized,
root-relative position, confidence, and flags (is3D, isEstimated=false).

• Root Handling: Explicitly sets the ’hips’ bone position to (0,0,0) in the nor-
malized space and stores its confidence.

This adapter ensures that the PoseProcessor receives a consistently formatted input,
regardless of the upstream detector’s keypoint count, coordinate system, or dimension-
ality (2D/3D). This inherent flexibility allows the user or application to select the most
suitable pose estimator based on available resources, a core design goal differentiating
this work from single-source pipelines.

Figure 14: Implementation of input-adapter to work with selected pose estimation
techniques
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5.6 Phase 4: Pose Processing - Reconstruction and Biome-
chanical Refinement

This module forms the core intelligence of the pipeline, taking the potentially sparse
or 2D normalized pose from the adapter and generating a complete, validated, and
plausible 3D pose in the same normalized, root-relative space. A key strategy employed
here, particularly for handling sparse (e.g., 17-point COCO) or 2D inputs, is the use
of pose priors. These priors represent learned statistical patterns and correlations
derived from large datasets of human motion (in our case, H36M, detailed in Phase
5), effectively creating a ”statistical skeleton” or ”pose prior”. They encapsulate
knowledge about typical bone lengths, proportions, joint relationships, and common
postures, providing essential constraints and guidance for reconstructing a plausible 3D
pose from incomplete information.

5.6.1 Heuristic 2D-to-3D Lifting
When the input lacks depth (!isPose3D(pose)), this algorithm estimates the normal-
ized Z coordinate.

• Method: Uses a Breadth-First Search (BFS) traversal starting from the hips
(guaranteed to be 3D with z = 0). For each child bone with only 2D data, it
calculates the target normalized bone length (from loaded priors). It solves for:

∆Z2
norm = ‖bnorm‖2 − ‖b2D‖2

where ‖bnorm‖ is the prior normalized 3D bone length, and ‖b2D‖ is the current
2D distance between the parent and child joints.

• Disambiguation and Robustness: If ∆Z2
norm < 0 (i.e., 2D distance exceeds

prior length), then the Z difference is clamped to 0, treating the bone as parallel to
the viewing plane. Otherwise, the ambiguity in sign from ±

√
∆Z2norm is resolved

primarily using temporal consistency: the solution closer to the previous pose’s Z
coordinate is chosen. This approach proved significantly more stable than using
static heuristics alone. The chosen ∆Znorm is added to the parent’s Z to estimate
the child joint’s Z.

Limitation: This remains an approximation, its accuracy depends on the qual-
ity of the prior data and temporal stability. Unusual poses or rapid depth changes
can lead to errors.

5.6.2 Missing 3D Joint Inference
This addresses missing data points after the initial 3D structure (lifted or direct) is
established.

When the input pose lacks certain joints (due to detector limitations or occlusion),
this crucial step estimates their 3D positions within the normalized, root-relative space.
It uses an iterative BFS approach (traversing the skeleton graph multiple times up
to maxInferenceIterations) to allow inferred positions to inform subsequent inferences.
For a missing bone position, it attempts the following strategies in a prioritized order,
leveraging the pre-calculated priors (see Section 5.7).
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• Kinematic Chain Estimation using Priors: If the parent joint is known, this
combines kinematic constraints with priors. It uses the known ParentPosition, the
prior AverageBoneLength for the current segment, and potentially angular priors
(like average bend angles or relative vectors from Phase 5) to estimate the missing
joint’s position. For instance, estimating a missing LWrist given LElbow involves
using LowerArmLength prior and potentially an average elbow bend angle prior
or the Average Relative Vector (V_avg_Elbow_Wrist) rotated according to the
upper arm’s current orientation.

• Average Relative Vector Prior: Retrieves the pre-calculated average normal-
ized 3D vector from the parent to the current bone (using getActionAverageRel-
ativeVector or getGlobalAverageRelativeVector). This vector, potentially rotated
by the parent’s estimated orientation, is added to the parent’s position. This pro-
vides a strong, data-driven initial guess, especially useful for joints like the neck
relative to the spine.

• Temporal Information (Previous Frame): If the joint was visible in the pre-
vious frame (previousPose), its last known position is used as a fallback. A simple
velocity estimate (Pcurrent = Plast + Velocity ×∆t) could also be incorporated to
predict the position, potentially projecting it onto the valid sphere/circle defined
by the parent and bone length prior. However I could not complete this fully
according to the plan with the constraints.

• Symmetry: If the contralateral joint (e.g., RWrist if LWrist is missing) is avail-
able and confident, and the pose appears relatively symmetrical (a simple check
based on hip/shoulder alignment), its position is mirrored across the sagittal plane
(X=0 in our root-relative space) to estimate the missing joint’s position. This re-
lies on the powerful prior of bilateral symmetry.

Inferred positions are assigned a moderate confidence score (inferredConfidence),
influencing how they might blend with existing low-confidence detections or be used
in subsequent inferences. This multi-stage, prior-informed inference allows the pipeline
to reconstruct a reasonably complete skeleton even from sparse inputs like COCO-17,
enabling its generalisation capabilities.

5.6.3 Biomechanical Validation
• Bone Length Enforcement: After inference, it iterates through connections

again via BFS. It calculates the current distance between connected joints in the
normalized space and compares it to the average normalized bone length prior us-
ing validateNormalizedBoneLength. If the deviation exceeds tolerance (e.g., 20%),
it corrects the child’s position by moving it along the parent-child vector to match
the target normalized length. This prevents unnatural stretching/compression ar-
tifacts. However this process has to be optimized to reduce the extra traversal
after inference.

• Joint Limits: While Euler limits based on NASA-STD (Human Spaceflight and
Aviation Standards - NASA (2023))/Winter’s (Thomas et al. (2023)) data were
defined in biomechanics.js, robust enforcement requires operating on local rota-
tions. Therefore, direct clamping was deferred to the RotationSolver or VRMRig-
ger stage as a conceptual step, acknowledging the complexities involved.
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5.7 Phase 5: Offline Prior Generation and Analysis
The effectiveness of the real-time inference and validation steps relies heavily on data-
driven biomechanical priors. In addition to studying about already defined static values,
I tried to do a exploration on my own by analyzing a dataset of actual motion-capture
data. Extensive offline analysis was performed on the Human3.6M (H3.6M) dataset
(Ionescu et al. (2014)) using Python (NumPy, SciPy, Matplotlib) within Jupyter Note-
books. H36M was chosen over datasets like COCO (”in the wild”) because it provides
accurate 3D ground truth motion capture data from controlled scenarios, making it
suitable for extracting reliable biomechanical statistics.

Data Used: Pre-processed H36M .npz files containing root-relative 3D keypoints
(keypoints3d) and metadata including subject IDs and action labels (e.g., ’Walking’,
’Sitting’, ’Phoning’). The standard 17-joint H36M skeleton mapping was primarily
used, which shares similarities with COCO but includes distinct hip and spine points.

Coordinate System Verification: Confirmed the 3D coordinate system (e.g., Y-
Up or Z-Up depending on the specific data processing) and ensured consistent mapping
to our internal canonical bone names. All calculations were performed in a root-relative
frame, treating the hip midpoint as the origin (0,0,0). Preliminary analysis included
estimating approximate subject heights based on standing/walking poses to understand
scale variations, although the primary priors used internally were scale-normalized.

• Normalized Bone Lengths: Poses were scale-normalized (e.g., scaling such
that average torso length = 1.0 across the dataset). The mean and standard devi-
ation of the Euclidean distance between connected joints were calculated for each
bone segment (e.g., ’leftUpperArm’, ’rightLowerLeg’). These are fundamental for
heuristic 3D lifting and kinematic chain inference.

• Body Proportions: Ratios between key average bone lengths (e.g., arm-to-leg,
torso-to-height) were computed as a sanity check and potential scaling reference.

• Average Relative Joint Vectors: The mean 3D vector from each parent joint
to its child joint was calculated in the normalized, root-relative space. This cap-
tures both average length and typical resting orientation. Priors were computed
globally (averaged over all actions) and also per-action (e.g., the average ’Hip’ to
’Neck’ vector specifically for ’Sitting’ poses). These action-specific priors capture
characteristic postural differences.
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Figure 15: Stats of data in H36M train data

Figure 16: Visualisation of 2D pose data
in a sample image (Pre-processed)

Figure 17: Visualisation of 3D
pose data in a sample image (Pre-
processed)
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5.7.1 Positional Priors Calculated:
• Rotational Priors and Coordination Patterns (Exploratory Analysis

and Heuristic Usage): While direct application of complex rotational con-
straints and making use of all this information (specially action-specific) proved
challenging for real-time JS, understanding typical coordination patterns was cru-
cial for guiding heuristic development and identifying future work. Analysis in-
cluded:

– Yaw, Pitch, Roll Definition: Joint orientation components were ana-
lyzed relative to parent segments or the world frame. Yaw (turn) was typ-
ically calculated via yaw = arctan 2(x, z) around the Y-axis, Pitch (nod)
via pitch = arctan 2(−y,

√
x2 + z2) relative to the XZ plane, and Roll (tilt)

derived from full orientation matrices or quaternions where available.
– Spine-Torso Coordination: Analyzed the correlation between torso twist

(e.g., hip-shoulder yaw difference) and spine joint rotations, aiming to pre-
vent rigid ”block” torsos. This informed the need for potential spine inter-
polation logic.

– Neck-Head Coordination: Examined typical head yaw/pitch relative to
the neck orientation, important for gaze direction.

– Shoulder Girdle / Clavicle Behavior: Investigated subtle shoulder joint
adjustments correlated with arm elevation and forward/backward movement
(protraction/retraction).

– Elbow/Wrist Natural Angles: Observed typical forearm roll accompa-
nying elbow flexion and relaxed wrist flexion/deviation.

– Action-Specific Rotational Patterns: Noted distinct joint angle dis-
tributions for actions like Sitting (e.g., typical knee flexion around 90°),
Walking (arm swing correlated with leg stride), and Phoning (characteris-
tic arm posture). While not implemented as dynamically switching priors
in the final version (see Section ??), this analysis highlighted the potential
benefits.

• Output: All calculated priors (mean/std dev of normalized lengths, global and
action-specific average relative vectors, key joint angle statistics) were saved into
structured JSON files:
(e.g.: h36m_positional_priors.json, h36m_action_avg_vectors.json). These files
are loaded by the biomechanics.js module in the JavaScript pipeline for efficient
access during real-time processing.
This extensive offline analysis forms the data-driven foundation enabling the Pose
Processor (Phase 4) to realistically infer missing joints and validate pose geometry
even when provided with sparse or 2D input.
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Figure 18: JSON files with calculated prior information

• Body Proportions: Ratios between key average bone lengths were computed.

• Rotational Priors (Exploratory): Analyzed correlations like Spine Yaw vs. Torso
Twist using linear regression.

This offline analysis forms the data-driven foundation for the real-time inference and
validation components.

5.8 Phase 6: Rotation Solving, Smoothing, and VRM Re-
targeting

5.8.1 Rotation Calculation
This module converts the final processed normalized 3D positions into the necessary
joint rotations for animation.

• Input: Validated, normalized CanonicalPose with 3D positions relative to the hip
origin.

• Output: Populates the rotation property (a THREE.Quaternion) for each Canon-
icalBone with its local rotation relative to its parent.

• Method: Employs a two-stage BFS approach. First, it estimates the world ori-
entation of each bone based on the vector to its child using lookAt (with careful
handling of the ’up’ vector and axis correction). Second, it converts these world
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quaternions into local quaternions using the parent’s inverse world rotation. This
ensures correct hierarchical transformations. Leaf nodes inherit orientation ap-
propriately.

5.8.2 Temporal Smoothing (Smoother)
Applies an Exponential Moving Average (EMA) filter to introduce temporal coherence
and reduce visual jitter.

• Input: CanonicalPose with calculated local rotations and positions.

• Output: Smoothed CanonicalPose.

• Method: Uses Quaternion.slerp for rotations and Vector3.lerp for the hip position
between the current calculated pose and the previous smoothed pose, controlled
by adjustable alpha factors. However this step required more optimisation to run
reliably.

5.8.3 VRM Retargeting Rendering (ModelRigger)
This final stage maps the processed canonical pose onto the loaded THREE.js VRM
avatar and handles world placement.

• Input: Smoothed, normalized CanonicalPose (local rotations, root at 0,0,0), plus
the separately estimated cameraDistance, however the camera distance implemen-
tation could not be completed successfully during initial prototype implementa-
tion.

• Distance-Based Positioning: Calculates the target absolute world position for the
VRM ’hips’ bone based on the estimatedCameraDistance (placing it along the Z-
axis) and an estimated floor height (derived from the loaded vrm.modelHeight).

• Scaling (Deferred): Calculates a potential absoluteScale factor based on compar-
ing apparent pixel size to priors/calibration (as detailed previously), but currently
applies a fixed scale (1.0) to the VRM root node (vrm.scene.scale), letting camera
perspective handle apparent size changes. Dynamic scaling was not attempted
currently due to complexity and potential visual artifacts.

• Rotation Application: Maps canonical bone names to the cached THREE.js Bone
nodes from the VRM humanoid structure. Applies the final smoothed local rota-
tions using Quaternion.slerp (allowing for optional additional smoothing here or
even skip previous smoothing step entirely).

• Joint Limit Enforcement: Further robust joint limit clamping (e.g., swing-twist or
carefully applied Euler clamping via clampRotation) can be applied to the local
quaternions before they are set on the VRM bones, however this should be done
carefully by checking with the output.

• Rendering: The main loop calls THREE.WebGLRenderer.render() and impor-
tantly vrm.update(deltaTime) to update VRM-specific features like spring bones
after the rigger has updated the core skeleton transforms.
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• Format generalisation: The pipeline’s output (normalized pose with standard
VRM bone names and local rotations and some extra joints as well) is inher-
ently adaptable. While VRM is the primary target, adding support for other
formats like Mixamo-rigged FBX or standard glTF humanoids would primarily
involve creating a new output mapping configuration within the VRMRigger to
match different bone names and potentially adjust for different rest poses or axis
orientations, demonstrating the flexibility of the canonical skeleton approach.

• Format generalisation and Novelty: While primarily targeting the well-
defined VRM 1.0 standard due to its humanoid focus and growing adoption,
a key goal was output format flexibility. The pipeline’s output – a normal-
izedCanonicalPose (with several extra keypoints as well) with standard humanoid
bone names and local rotations – is inherently adaptable. To demonstrate this, I
successfully developed and tested a proof-of-concept mapping configuration for hu-
manoid rigs originating from Adobe’s Mixamo service. Mixamo rigs often present
challenges due to their different bone naming conventions (e.g: mixamorig:Hips,
mixamorig:Spine1) and sometimes slightly different hierarchy or rest pose com-
pared to VRM.

Mixamo Mixamo (n.d.) is a widely used online platform offering a vast library (thou-
sands) of pre-captured, professional full-body character animations and a significant col-
lection of downloadable 3D character models, often provided in FBX or glTF formats.
Crucially, Mixamo also provides an automatic rigging service (’Auto-Rigger’)
where users can upload their own custom 3D character models (e.g., in ‘.obj‘, ‘.fbx‘ for-
mat) and have Mixamo automatically generate a standardized humanoid skeleton rig
fitted to their mesh. This auto-generated rig, while consistent across Mixamo, uses
its own specific bone naming convention (e.g., ‘mixamorig:Hips‘, ‘mixamorig:Spine1‘,
‘mixamorig:LeftArm‘) and typically includes around 65 bones.

My Mixamo mapping proof-of-concept involved:

• Manually analyzing the typical Mixamo skeleton structure and identifying the
correspondence between the canonical VRM bone names used internally by my
pipeline (like ‘hips‘, ‘spine‘, ‘leftUpperArm‘) and the common Mixamo bone
names (like ‘mixamorig:Hips‘, ‘mixamorig:Spine‘, ‘mixamorig:LeftArm‘).

• Creating a specific mapping function within the ‘VRMRigger‘ to retrieve the
correct THREE.js ‘Bone‘ object from the loaded Mixamo model based on its
name.

• Applying the calculated local rotations from the ‘CanonicalPose‘ to these mapped
Mixamo bones. For this proof-of-concept, I focused on mapping the core body and
limb rotations. Mapping to the more detailed spine segments or individual finger
bones present in the Mixamo rig was identified as a straightforward extension but
not fully implemented due to time constraints.

• Addressing potential minor discrepancies in rest poses (T-pose vs. A-pose) or
coordinate axis orientations between the VRM-centric canonical pose and the
Mixamo rig through potential small, corrective rotation offsets during application
(though often the core rotations transfer reasonably well).

This successful demonstration of mapping the same processed canonical pose to both
standard VRM models and common Mixamo-rigged models shows the novelty and
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utility of the developed middleware pipeline. It validates the canonical skeleton
as an effective intermediate representation for achieving output format generalisation.

Limitation: Fully automating the mapping to arbitrary, non-standard glTF/FBX
rigs remains a complex challenge requiring sophisticated analysis of bone names, hierar-
chy, and potentially user intervention, which was beyond the scope of this implementa-
tion. The focus remained on demonstrating adaptability across common standards like
VRM and Mixamo.

Figure 19: Mapping data between Mixamo model
joints to CanonicalPose joints

Figure 20: Mixamo
model demo in proto-
type application

5.9 Summary of the Chapter
This chapter detailed the comprehensive methodology employed in this research, trac-
ing its evolution from preliminary explorations to the design and specification of the
final generalized architecture for real-time avatar animation. I began by outlining the
initial experimental phase, which involved surveying and testing various pose estima-
tion techniques and exploring 3D model formats and web rendering engines. This phase
identified the significant challenges posed by input heterogeneity and the limitations of
existing direct-mapping solutions, motivating a pivot towards a more flexible, general-
ized approach.

The core of the methodology focused on the design and specification of a modu-
lar JavaScript pipeline. This included establishing the development environment and
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detailing each crucial stage (Input Adaptation, Pose Processing, Prior Generation and
Usage, Rotation Solving and Smoothing, VRM Retargeting).

The chapter elaborated on the specific algorithms, data structures (like the Canoni-
calPose), handling of key challenges (like 2D->3D ambiguity and missing data), and the
rationale behind implementation choices (like prioritizing heuristic methods over com-
plex ML or IK solutions due to real-time web constraints). This detailed methodology
provides the blueprint for the system whose implementation and results are presented
in the following chapter.

48



6 Results and Analysis
This section presents the results obtained from the implementation and testing of the
generalized real-time avatar animation pipeline developed in this research. The analy-
sis focuses on addressing the core research questions concerning suitable real-time pose
estimation techniques (RQ1), the research and development of the canonical pose trans-
formation model and generalized pipeline (RQ2), and the resulting performance, realism,
and user experience (RQ3) within the target web browser environment.

Due to significant time constraints and unforeseen technical challenges encountered
during the development phase (particularly concerning cross-platform WebXR compat-
ibility and model conversion intricacies), I could not fully execute a comprehensive
quantitative and qualitative evaluation, especially within immersive AR scenarios, as
planned. However, extensive testing of the core pipeline components within the proto-
type web application yielded valuable performance metrics and qualitative observations,
which are presented and analyzed below.

6.1 RQ1 Analysis: Real-Time Pose Estimation in Con-
strained Environments

The goal of RQ1 was to identify optimal algorithms for real-time human pose capture
in resource-constrained environments. The preliminary experiments (detailed above)
involved integrating and evaluating four distinct techniques within the JavaScript pro-
totype: MoveNet (TF.js, 17 2D pts), BlazePose (MediaPipe/TF.js, 33 2D/3D pts),
Holistic (MediaPipe, 543 2D/3D landmarks), and YOLOv8-Pose (TF.js via conversion,
17 2D pts).

Performance evaluation focused on Frames Per Second (FPS) achieved on representa-
tive hardware. While more extensive benchmarking across various devices was planned,
testing was conducted on available hardware: a MacBook running a Chromium based
browser and an iPhone running Safari. Average FPS results provide insight into the
real-time feasibility of these models within a typical browser tab running the webcam
feed, pose estimation and inference pipeline, and the basic THREE.js rendering setup.

Table 3: Approximate Average FPS for Pose Estimation Models in Browser (Single
Subject)

Pose Estimation Model
MacBook Pro M1 Pro

(Arc - Chromium)
iPhone 14 Pro

(Safari iOS)

MoveNet (Lightning) 40–60 FPS 20–30 FPS

BlazePose (Full) 20–30 FPS 10–25 FPS

MediaPipe Holistic 10–15 FPS 5–20 FPS

YOLOv8n-Pose (Converted TF.js) 15–20 FPS 5–20 FPS

Analysis:

• As expected, lightweight models like MoveNet (Lightning) generally offered the
highest FPS, particularly demonstrating reasonable performance even on mobile
(Table 3). Its limitation lies in providing only 17 sparse 2D keypoints.

49



• BlazePose provided a good balance, offering more keypoints (33) including some
depth information, while maintaining FPS comparable to or slightly lower than
MoveNet.

• YOLOv8n-Pose, despite being efficient in its native environment, showed mod-
erate performance after conversion to TF.js, comparable to BlazePose but pro-
viding only 17 2D keypoints. Its primary strength in multi-person detection was
not leveraged here. The model conversion process itself was a significant hur-
dle, indicating the challenges of using non-web-native models. Model sizes also
vary significantly, impacting initial load times (e.g., YOLOv8n-Pose: 180KB vs.
Holistic full: 6.4MB).

• MediaPipe Holistic, while providing the richest data (543 landmarks), exhib-
ited the lowest average FPS, especially on mobile where thermal throttling notice-
ably impacted sustained performance. This highlights the direct trade-off between
input detail and computational cost.

• It is important to note that these performance figures reflect the current prototype
implementation. Significant opportunities exist for optimisation, includ-
ing refining JavaScript code for better performance, implementing more rigorous
memory management to reduce garbage collection pauses, potentially offloading
specific computations to Web Workers, or exploring WebAssembly (Wasm) for
critical code paths. Such optimisations could potentially improve FPS and re-
duce fluctuations across all models, particularly on mobile.

Conclusion for RQ1: There is no single ”optimal” algorithm for all scenarios. The
choice depends heavily on the target device’s capabilities and the required level of detail.
Lighter models like MoveNet or BlazePose are better suited for broad compatibility and
lower-end devices, while Holistic offers maximum detail at the cost of performance. This
finding strongly validated the research pivot towards a generalized pipeline capable of
handling this spectrum of inputs, rather than relying on a single estimator. The pipeline
developed allows users (or applications) to select the most appropriate estimator based
on their specific resource constraints and fidelity needs. Future integration of even more
efficient pose estimators will be easily supported by the modular ‘InputAdapter‘.

6.2 RQ2 Analysis: The Generalized Transformation Model
(Pipeline)

The second research question (RQ2) aimed to determine how a generalized transforma-
tion pipeline could be designed to robustly map diverse pose estimation outputs to a
canonical representation, particularly when handling incomplete data. To evaluate this,
the developed pipeline was tested against its core design goals: its ability to adapt to
heterogeneous inputs, its effectiveness in reconstructing a complete 3D pose from sparse
data, and its capacity to produce a standardized output suitable for animation.

Demonstration of Input generalisation The pipeline’s primary functional re-
quirement was its ability to adapt to multiple input sources. Testing confirmed that
the InputAdapter module successfully processed data streams originating from all four
integrated estimators: the sparse 17-point 2D skeletons from MoveNet and YOLO-Pose,
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the 33-point 3D skeleton from BlazePose, and the dense 543-landmark data from Me-
diaPipe Holistic. The system demonstrated its ability to unify these varied keypoint
counts, coordinate systems, and topologies into the consistent, internal CanonicalPose
structure, thereby validating its input generalisation capability.

Effectiveness of Pose Reconstruction and Inference A key measure of the
pipeline’s success is its ability to create a complete and plausible 3D pose even from
incomplete data. This was evaluated through qualitative observation.

2D-to-3D Heuristic Lifting: When provided with 2D-only input from MoveNet or
YOLO-Pose, the heuristic lifting algorithm in the PoseProcessor successfully generated
poses with apparent depth. Visual inspection confirmed that by using bone-length priors
and temporal consistency, the system avoided the ”flat” appearance typical of naive
2D mappings and produced a reasonable 3D reconstruction. The primary limitation
observed was in poses with significant limb foreshortening, where the estimated depth
could be inaccurate, as illustrated in Figure ??.

Missing Joint Inference: The system’s ability to ”fill in the blanks” was most
evident with sparse 17-point inputs. As shown in Figure ??, even when the input
skeleton from YOLO-Pose lacked a spine, neck, or chest, the inference logic successfully
estimated their positions using a combination of kinematic extrapolation from known
joints (like the shoulders and hips) and the pre-calculated average vector priors. This
allowed the system to drive a complete VRM skeleton, preventing the ”broken model”
or ”stiff torso” effects that would otherwise occur. The main observed limitation is that
this rule-based inference struggles with highly unusual poses or large-scale occlusions
(e.g., a user sitting down completely out of frame from the waist down), where more
contextual understanding is required. Biomechanical Validation: During testing with
noisy input, the bone length validation step proved crucial. It successfully prevented
anatomical artifacts, such as limbs unnaturally stretching or compressing, by correcting
joint positions to adhere to the biomechanical priors (as shown in Figure ??).

Demonstration of Output Adaptability Finally, the pipeline’s output was
evaluated for its utility and flexibility. The RotationSolver and VRMRigger modules
consistently converted the final CanonicalPose into local joint rotations and applied them
to a standard VRM avatar. To further test the generalisation of the canonical output,
a proof-of-concept mapping was created for a non-VRM model rigged using Adobe’s
Mixamo service. As demonstrated in Figure 20, the pipeline was able to successfully
drive the Mixamo model, validating that the standardized canonical pose serves as an
effective intermediate representation for retargeting to different humanoid rigs.

Conclusion for RQ2: The experiments confirm that the developed pipeline suc-
cessfully functions as a generalized transformation model. Its key design features—the
input adapter, the prior-driven inference, and the canonical output representation—
effectively solve the challenge of mapping diverse and imperfect pose inputs to a standard
animatable avatar.

6.3 RQ3 Analysis: Realism, Performance, and User Expe-
rience

The third research question (RQ3) assessed the overall quality of the end-to-end system,
focusing on the achievable realism, real-time performance, and user experience within the
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target web browser environment. The evaluation was conducted through performance
benchmarks and qualitative analysis of the final animated output.

Quantitative Performance Analysis The real-time performance of the full sys-
tem (pose estimation + pipeline execution + rendering) was benchmarked. The primary
bottleneck identified was the pose estimation model itself, as detailed in the RQ1 anal-
ysis (Table 3). To measure the overhead of the custom pipeline, additional profiling was
conducted. The results showed that on the desktop test machine, the JavaScript pipeline
(Adapter, Processor, Solver, and Rigger) added a manageable overhead, typically pro-
cessing a frame in under 20ms. This indicates that on capable hardware, the pipeline
itself does not prevent real-time operation. However, the combined computational load
is significant, especially for mobile devices. While the system remains interactive on
mobile when using a lightweight estimator like MoveNet, performance drops noticeably
when using a heavyweight model like Holistic, confirming the critical importance of
allowing users to choose an appropriate performance-quality trade-off.

Qualitative Analysis of Realism and Plausibility The visual quality of the
animation was assessed under different conditions: Animation from Dense Input: When
using detailed input from BlazePose or Holistic, the resulting avatar animation for com-
mon upper-body motions (waving, gesturing) was observed to be smooth and visually
plausible. The quality was comparable to direct-mapping solutions, with the added
benefit of the pipeline’s validation steps preventing occasional anatomical errors. An-
imation from Sparse Input: The true value of the pipeline was most apparent when
driven by sparse 2D input from MoveNet or YOLO. In these cases, the system produced
a coherent, full-body animation. While lacking the fine detail of the dense input, the
core posture and limb movements were correctly represented, successfully preventing
the ”frozen lower body” or ”gliding torso” effect common with naive mappings. This
represents a significant improvement in perceived realism for sparse-input scenarios.
Observed Artifacts: The primary visual artifacts noted were related to the inherent
limitations of monocular vision. As seen in Figure ??, the heuristic depth estimation
can sometimes result in incorrect limb placement in 3D space (e.g., a hand appearing in
front of the head when it should be touching it). Additionally, the temporal smoothing,
while effective at reducing jitter, could introduce a minor ”lag” during very sudden, fast
movements.

WebXR Integration and Identified Challenges I initiated experiments to
integrate the avatar animation into a WebXR AR session using THREE.js. The goal
was to overlay the animated avatar onto the real-world camera feed, potentially anchored
to the floor.

Challenges Encountered: Significant difficulties arose with WebXR API inconsis-
tencies and limitations across platforms. Specifically, obtaining reliable plane detection
or using the ‘local-floor‘ reference space (essential for placing the avatar correctly on
the real floor) failed consistently on desktop browsers (using WebXR API Emulator)
and iOS Safari during testing, throwing ‘NotSupportedError‘ exceptions (local-floor ref-
erence space is not supported). While basic AR session startup was achieved, reliable
anchoring and interaction proved highly problematic within the available time. Debug-
ging hit-testing and reticle placement also consumed considerable effort without reaching
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a stable solution.

Conclusion: While the core avatar animation pipeline functions independently, ro-
bustly integrating it into a cross-platform WebXR AR experience requires overcoming
significant, rapidly evolving browser API limitations and warrants further dedicated de-
velopment effort. The pipeline itself is compatible, but the WebXR integration layer
needs more work.

Conclusion for RQ3: The developed system demonstrates that plausible real-time
avatar animation is achievable in a web browser using a single webcam. The pipeline’s
performance is viable on modern hardware, and its inference capabilities provide a sig-
nificant realism boost for sparse-input scenarios. The main limitations identified are tied
to the fundamental challenges of monocular 3D reconstruction and the current maturity
of WebXR browser APIs.

6.4 Summary of the Chapter
The results demonstrate the successful development of a generalized JavaScript pipeline
for real-time avatar animation. RQ1 was addressed by evaluating multiple pose esti-
mators and confirming the need for flexibility, with MoveNet/BlazePose offering per-
formance advantages and Holistic providing maximum detail. RQ2 was addressed by
the design and implementation of the modular pipeline featuring input adaptation,
heuristic 3D lifting, prior-based inference, and rotation solving, proving its capability to
process diverse inputs into a standard canonical representation. RQ3 was partially ad-
dressed, showing plausible real-time animation is achievable, especially showcasing the
system’s ability to generate full-body motion from sparse input. Performance bench-
marks indicate viability, particularly on desktop, though mobile optimisation is needed.
Limitations in the heuristic lifting accuracy, inference robustness for complex occlusion,
lack of dynamic action context, and challenges in WebXR integration were identified
through analysis and testing. Overall, the pipeline represents a novel, functional proto-
type demonstrating a viable approach to generalized, biomechanically-informed avatar
animation in constrained web environments.
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7 Discussion
This chapter moves beyond the presentation of results to an interpretation of their
significance. The findings from the previous chapter are analysed here in the context of
the initial research questions and the broader field of web-based immersive technologies.
We will discuss the core contributions of this work, examine its implications, and frankly
acknowledge its limitations, which in turn illuminate promising directions for future
research.

7.1 Interpretation of Key Findings
The successful implementation and testing of the generalized pipeline provide answers to
the core research questions posed at the outset of this thesis. The central hypothesis—
that a generalized middleware could successfully drive real-time avatar animation from
diverse inputs in a browser—was validated. In relation to RQ1, the performance bench-
marks (Table 3) clearly demonstrated that there is no single ”optimal” pose estimation
algorithm for the web. Instead, a distinct trade-off exists between the detail of the
input data and the computational performance. This finding confirms that a flexible
system, capable of adapting to different input estimators, is not just a desirable feature
but a necessary one for creating accessible applications that can run on a wide range
of devices. In response to RQ2, this research presented a novel and effective design
for a generalized transformation model. The modular pipeline, centered around the
CanonicalPose representation, proved capable of handling the heterogeneity of modern
pose estimators. The most significant finding was the success of the heuristic-based
PoseProcessor. Its ability to perform 2D-to-3D lifting and infer missing joints using
data-driven priors from the H36M dataset allowed the system to generate a complete,
plausible 3D representation even from sparse 2D data. This demonstrates a viable,
lightweight alternative to computationally expensive machine learning models for data
completion, which is a key contribution of this work. The successful retargeting of the
output to both standard VRM and proof-of-concept Mixamo models further validates
the flexibility of this canonical approach. Finally, regarding RQ3, the results indicate
that plausible, real-time avatar animation in a browser environment is indeed achiev-
able. The visual quality of the animation was directly correlated with the quality of
the input data, but the pipeline’s inference mechanisms provided a significant and ob-
servable improvement in realism for sparse-input scenarios. While performance remains
a challenge, particularly on mobile devices, the system’s ability to support lightweight
estimators like MoveNet makes real-time animation possible on hardware where more
demanding, direct-mapping solutions would fail.

7.2 Key Contributions
This research makes several distinct contributions to the field of real-time, web-based
graphics and human-computer interaction:

1. A Novel Architecture for Input generalisation: This work presents the
design and implementation of what is, to my knowledge, the first purely browser-
based middleware explicitly designed to handle multiple, heterogeneous real-time
pose estimation inputs for avatar animation. This provides a blueprint for more
flexible and accessible systems.
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2. A Lightweight Heuristic Inference System: The development of a pose
processing system that uses biomechanical priors and geometric heuristics for 2D-
to-3D lifting and missing joint inference is a key contribution. It demonstrates a
practical approach to achieving data robustness that is optimized for the resource-
constrained execution environment of a web browser.

3. A Practical End-to-End Web Pipeline: This thesis delivers a complete,
functional prototype that integrates all necessary components—from pose estima-
tion to final rendering—using standard web technologies. It serves as a practical
demonstration and a foundation upon which others can build.

7.3 Implications and Applications
The successful development of this generalized pipeline has several implications:

• Accessibility: By supporting lightweight pose estimators (MoveNet, YOLO)
and running entirely in the browser, it lowers the barrier to entry for real-time 3D
avatar experiences. Users do not require specialized hardware or high-end devices.

• Flexibility: Application developers can offer users a choice of pose estimation
models, allowing them to balance performance and animation fidelity based on
their device.

• Web Platform Empowerment: Demonstrates the increasing capability of the
web platform (WebGL, WebAssembly, JavaScript engines) to handle computa-
tionally intensive tasks like real-time motion capture and 3D animation.

• Foundation for Web Metaverse/Social VR: Provides a core component nec-
essary for enabling expressive, embodied interactions in web-based virtual worlds
or telepresence applications without requiring app installations.

• AR/VR Prototyping: Offers a readily accessible tool for researchers and de-
velopers prototyping AR/VR interactions involving avatar representation.

Potential applications include virtual conferencing, online gaming, virtual try-on
experiences, remote collaboration tools, educational simulations, and accessible VTubing
setups.

7.4 Limitations of the Current Approach
A critical part of design science research is acknowledging the boundaries and limitations
of the developed artifact. The choices made to prioritize real-time performance and
flexibility in a web environment necessarily introduce specific trade-offs.

• Accuracy of Heuristic Inference: The core design of the PoseProcessor relies
on heuristics and statistical priors rather than a deep learning model for pose
completion. While this choice was essential for achieving real-time performance in
JavaScript, it has limitations. The 2D-to-3D lifting is an approximation and can
produce inaccurate depth estimates for complex or heavily foreshortened poses
(as seen in Figure ??). Similarly, the inference of missing joints is based on
average human proportions and may not produce natural-looking results for highly
unusual body types or unconventional poses.
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• Lack of Dynamic Action Context: A key simplification in the current design
is the use of global biomechanical priors. The system does not perform real-time
action classification (e.g., detecting if a user is ”sitting” vs. ”standing”). As a
result, its ability to infer the lower body is limited when the user is seated, as it
lacks the context to assume the legs should be bent. This was a conscious design
trade-off to keep the pipeline lightweight, but it limits the plausibility of inference
in certain common scenarios.

• Reliance on Forward Kinematics: The pipeline currently uses Forward Kine-
matics (FK) to animate the avatar by setting each bone’s rotation. While efficient,
this means there is no mechanism to enforce certain constraints, such as ensuring
a hand touches a specific point in space. An Inverse Kinematics (IK) solver was
considered during the design phase but was deferred due to the significant per-
formance and complexity challenges of implementing it efficiently in the browser.
This limits the system’s potential for more precise physical interactions.

• Performance on Low-End Devices: While the system is designed for resource-
constrained environments, the combined load of running a pose estimator and the
full JavaScript pipeline can still be too demanding for older or lower-end mobile
devices, leading to low frame rates. The prototype has not undergone exhaustive
performance optimization (e.g., using Web Workers or Wasm), which remains a
crucial step for production-level deployment.

• Scope of Evaluation: Due to significant time constraints, the planned compre-
hensive evaluation could not be fully executed. The current results are based on
performance benchmarks and qualitative developer observation. A formal user
study to quantitatively measure perceived realism and user satisfaction is neces-
sary to fully validate the user experience aspects of the system.

7.5 Summary of the Chapter
The discussion contextualized the research results, confirming the successful develop-
ment of a generalized pipeline addressing the core research questions, albeit with certain
limitations identified during implementation and testing. The key contributions lie in
the system’s input flexibility, its novel integration of biomechanical priors and heuris-
tics for robust 3D pose reconstruction and inference from potentially sparse/2D data
in real-time JavaScript, and its modular architecture centered around a canonical pose
representation compatible with the VRM standard. While acknowledging limitations
related to monocular depth ambiguity, distance/scale estimation, real-time action con-
text, performance optimisation, and comprehensive evaluation, the research provides
significant implications for making real-time avatar animation more accessible on the
web platform. The identified limitations directly inform promising avenues for future
research outlined in the concluding chapter.
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8 Conclusion and Future Work
This thesis presented the research, design, implementation, and preliminary evaluation
of a novel, generalized pipeline for real-time 3D humanoid avatar animation using stan-
dard webcams within resource-constrained browser environments. Motivated by the
limitations of existing solutions often tied to specific high-fidelity inputs or specialized
hardware, this work focused on creating an adaptive middleware capable of handling
diverse pose estimation inputs, including sparse 2D keypoints, and generating plausible
full-body motion.

8.1 Summary of Research
This thesis set out to address a critical gap in the accessibility of real-time 3D avatar ani-
mation. It identified the challenge that high-quality academic solutions are too resource-
intensive for the web, while accessible web-based tools lack flexibility and robustness.

To solve this, this research successfully designed, developed, and evaluated a novel,
generalized middleware pipeline that runs entirely in a web browser. The system’s
modular architecture is capable of ingesting and normalizing pose data from a variety
of sources, from sparse 2D skeletons to dense 3D landmarks. Its core innovation lies in a
lightweight processing module that uses data-driven biomechanical priors and heuristics
to reconstruct a complete and plausible 3D pose, even from incomplete data.

The results demonstrate that this approach is viable, achieving plausible real-time
animation on standard hardware. The pipeline effectively serves as a ”universal adapter,”
making a wide range of pose estimation technologies more useful and robust for the pur-
pose of avatar animation. In doing so, this work provides both a practical foundation
and a conceptual blueprint for the future of accessible, web-based embodied interaction.

The core research questions were addressed through a multi-stage methodology.
RQ1, concerning optimal real-time pose estimation techniques, was answered by demon-
strating that no single method is universally optimal; the best choice involves a trade-off
between detail and performance, validating the need for a generalized input pipeline.
Several web-compatible estimators (MoveNet, BlazePose, Holistic, YOLO-Pose) were
successfully integrated.

RQ2, focusing on the transformation model, was addressed by the design and im-
plementation of the modular pipeline architecture centered around a ‘CanonicalPose‘
based on the VRM standard. Key components developed include:

• An ‘InputAdapter‘ for normalizing heterogeneous inputs into a consistent root-
relative space.

• A ‘PoseProcessor‘ employing data-driven priors (derived from extensive offline
H36M analysis) and biomechanical rules for heuristic 2D-to-3D lifting, missing
joint inference (using average vectors, heuristics, kinematics), and bone length
validation.

• A ‘RotationSolver‘ calculating standard local quaternion rotations.

• A ‘VRMRigger‘ applying the final processed pose to VRM avatars, incorporating
relative distance estimation for world placement.

This pipeline successfully demonstrated its ability to transform diverse inputs into a
standardized representation suitable for animation.
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RQ3, concerning realism, performance, and user experience, was evaluated through
prototype testing and performance measurements. The pipeline achieves plausible real-
time animation, notably enabling full-body motion even from sparse 2D inputs, albeit
with less detail than richer sources. Performance is viable on desktop/laptop hardware
and usable on mobile with lighter estimators, although further optimisation is required.
While formal user studies were limited by time, initial qualitative assessments were pos-
itive. The research successfully highlighted the trade-offs involved and the challenges
remaining, particularly regarding depth accuracy, action context awareness, and seam-
less WebXR integration.

8.2 Future Work
The limitations identified in the discussion provide a clear and actionable roadmap for
future research and development. The modular nature of the designed pipeline makes
it well-suited for the following enhancements:

• Integrate an Inverse Kinematics (IK) Solver: To address the limitations of
a purely FK-based system, an efficient, lightweight IK solver could be integrated.
This would allow for more robust enforcement of bone length constraints and
enable more complex interactions, such as ensuring the avatar’s feet stay planted
on the ground.

• Implement Dynamic Action Classification: To improve inference accuracy,
a lightweight action classification model could be added to the pipeline. By de-
tecting if a user is ’sitting’ or ’walking’, the system could dynamically switch to
action-specific biomechanical priors, leading to much more plausible lower-body
animations.

• Explore Hybrid Inference Models: The accuracy of the heuristic methods
could be enhanced by exploring a hybrid approach. The current system could
provide a fast initial guess, which is then refined by a very lightweight neural
network specifically trained for tasks like depth estimation, if it can be run within
the performance budget.

• Full Performance Optimisation: A dedicated phase of performance profiling
could be undertaken to identify bottlenecks. Key components of the pipeline
could then be rewritten in WebAssembly (Wasm) to achieve near-native execution
speed, significantly improving performance on low-end mobile devices.

• Conduct Formal User Experience (UX) Studies: To rigorously validate the
system, a formal user study should be conducted. This would involve gathering
quantitative and qualitative feedback on the perceived realism, responsiveness,
and overall satisfaction of the animation produced by the pipeline, especially
when compared to a baseline direct-mapping approach.

This research provides a solid foundation, and these future directions offer exciting
possibilities for further enhancing the accessibility, realism, and robustness of web-based
real-time 3D avatar systems.
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