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Abstract

The detection of virtualization presence is a critical problem in malware analysis, where

malicious software may attempt to identify if it is being tested within a virtual environ-

ment. Existing methods often require special privileges, creating a gap for non privileged

approaches. This study investigates the feasibility of detecting virtualization presence

from the non privileged user space by analyzing the behaviour of the Linux Random

Number Generator (LRNG), a component not previously used for this purpose.

A series of experiments were conducted across bare metal and virtual environments

under varying impact levels to assess differences in random number generation rates and

quality. The evaluation included both single and multiple VM setups, across desktop,

private, and public cloud infrastructures. Results revealed measurable distinctions in

LRNG behaviour between bare metal and virtual environments through distinct timing

distributions, where early peaks were observed. These early peaks refer to instances where

random number generation took significantly longer in virtual environments in the be-

ginning compared to bare metal systems. Additionally, differences in dispersion patterns

across bare metal and virtual environments were identified, which were collectively used

for the detection of virtualization environments through derived thresholds, achieving a

detection accuracy of up to 94.44%.

The study also examined the role of entropy enhancing tools designed to improve

the randomness of generated data, in obscuring virtualization presence. The results

proved approach is ineffective, suggesting the need for further research into obscure such

detection. The influence of the operating system on LRNG behaviour was identified as a

significant factor, with notable differences observed between Debian and Red Hat based

Linux systems.

These findings demonstrate the potential of LRNG characteristics for non privileged

virtualization detection with a novel direction. Unlike traditional detection methods that

rely on privileged access, this approach operates entirely from the user space, demonstrat-

ing the feasibility of using user space behaviours to address virtualization detection chal-

lenges and opening possibilities for further research in this domain. Future work should

focus on extending the scope of these findings, addressing the limitations identified, and

exploring additional methods to enhance the robustness of detection and obfuscation

techniques.
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1 Introduction

Virtualization has become an essential part of modern computing, enabling better re-

source utilization and isolation. They are widely used in various applications, such as

cloud computing, software development, and malware analysis. In the context of mal-

ware analysis, Virtual Machine (VM)s are commonly used to safely execute and study

malicious software, as any damage caused remains contained within the VM and can be

easily discarded without affecting the host system. However, if the malware is capable of

detecting that it is running within a virtualized environment, it may alter its behavior or

remain dormant, thereby evading detection. This detection ability is a significant chal-

lenge for security researchers and it creates a need for effective methods for both detecting

virtualization and obscuring VM presence. This study will be primarily focusing on the

ability of an application executed within a VM to detect whether it is running inside a

VM.

Upon reviewing the existing literature on virtualization detection, it became appar-

ent that even though it is theoretically not possible under modern hardware assisted

virtualization techniques, certain loopholes still exist for virtualization detection. How-

ever, most of the identified methods rely on elevated privileges such as the execution of

privileged instructions or root access, limiting their applicability in scenarios where such

access is restricted. In contrast, this research aims to explore a non privileged approach

that operates entirely from the user space, without the need for privileged access.

While exploring potential measures that can be utilized from the user space for

detecting virtualization, the study identified that the Linux Random Number Gener-

ator (LRNG) exhibits different behaviours in VMs compared to bare metal systems. The

LRNG is a key component essentially present in every Linux system, responsible for

generating random numbers for various system needs. According to literature, it shows

distinct variations in parameters such as the rate of random number generation and en-

tropy values when running in virtualized environments. Further, the LRNG has been

subjected to various updates over the recent years, which lack references in formal re-

search literature. However, to the best of the author’s knowledge, no research has been

conducted on the potential of using behaviours of LRNG in virtual environments as a

mean of detecting virtual environment presence.
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The primary aim of this research is to investigate how the behaviour of the LRNG

can be used to detect the presence of virtual environments without requiring privileged

access or specific system configurations. The study further explors how these detection

capabilities could be extended to environments involving multiple VMs operating on a

single host. Furthermore, the study identified that direct entropy level based measures to

identify LRNG behaviour are no longer applicable in modern kernel versions due to the

evolution of the LRNG. This finding lead to the exploration of alternative indirect mea-

sures such as time taken to generate random numbers and quality of generated random

numbers, investigating the feasibility of using user space behaviours to detect virtual-

ization. Notably, the findings show a detection accuracy of up to 94.44% in single VM

setups, demonstrating the potential of this approach.

Additionally, the study examined methods to obscure the presence of virtual machines,

based on the assumption that differences in entropy between virtualized and bare metal

environments contribute to the observed detection capability. Experiments were repeated

under the activation of commonly available entropy enhancing tools and found that these

tools are ineffective in concealing the detection of virtualization. This finding highlights

a significant avenue for future research, particularly in exploring direct entropy measure-

ment techniques, evaluating the effectiveness of entropy enhancement mechanisms, and

identifying other potential factors that may influence virtualization detection.

This research presents a novel approach to detecting virtualization from the user

space, an area previously underexplored in existing literature. The findings highlight the

importance of considering user space behaviour in strengthening security measures for

malware analysis. The study also provides a foundation for future research to improve

detection accuracy, explore new obfuscation methods, and expand the approach to more

complex virtualization configurations as well.
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1.1 Research Aims and Objectives

1.1.1 Aim

To investigate methods for detecting virtualization presence using the Linux Random

Number Generator and related parameters in virtual environments, and to explore tech-

niques to obscure such detection from user space programs.

1.1.2 Objectives

1. To analyze how a program running in the user space of a Linux VM can detect the

underlying virtualization platform using the LRNG and related parameters.

2. To evaluate whether this detection capability can be extended to environments with

multiple guest VMs on a single host.

3. To identify and propose modifications to the LRNG and related parameters to

obscure the presence of virtualization from user space programs running within the

VM.

1.2 Research Questions

1. How can a program running in the user space of a Linux VM detect the under-

lying virtualization platform using Linux Random Number Generator and related

parameters?

2. Can this detection capability be extended to an environment with multiple guest

VMs on a single host?

3. How to obscure the VM presence from user space programs running within the VM?
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1.3 Research Methodology

This study follows a deductive research approach, beginning with the synthesis of a

research gap based on insights gathered from existing literature. Specifically, two key

observations were identified from previous works,

• A significant challenge exists in malware analysis due to malicious software detecting

virtualized environments and altering its behaviour. Existing detection mechanisms

require elevated privileges hence the detection can be prevented by eliminating

required access levels. However, what if a program can detect VMs from the user

space without any special privileges?

• The LRNG, which is accessible to operate from the user space, exhibits behavioural

differences between virtualized and bare metal environments

By integrating these two findings, this research identified a novel gap, the potential to

use LRNG behaviour from user space as a technique to detect virtualization, which had

not been previously explored. Based on this gap, it was assumed that the behaviour of the

updated LRNG could be utilized to detect virtualized environments without privileged

access.

The initial phase of the study involved an exploration of potential entropy based

measures available at the user space level. During this process, it was discovered that

direct measurements of entropy related parameters were no longer showing fluctuations

in newer Linux kernel versions due to architectural updates of the LRNG. This limitation

guided a shift toward indirect approaches for assessing LRNG behaviour.

Addressing that, an experimental framework was developed to measure the rate and

quality of random number generation under different levels of system activity. A sys-

tematic evaluation of possible impact activities was carried out, focusing on depleting

the entropy pool. Preliminary experiments were conducted on an older Linux version

where entropy fluctuations could be directly observed. This allowed the identification of

activities that had the most consistent and significant effects on LRNG behaviour. The

selected activities were then incorporated into the final experimental design, which was

applied across a range of VM and bare metal instances.

A further challenge was the comparison between bare metal and VMs. Due to the

variability across hardware platforms and Virtual Machine Monitor (VMM)s, direct com-
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parisons were not feasibile. To address this, a delta based evaluation approach was in-

troduced, focusing on the relative change in LRNG behaviour under controlled activity

conditions.

Building on this approach, the collected data from both bare metal and VMs were

analyzed to identify criteria that consistently showed differences in LRNG behaviour be-

tween the two environments. Based on this analysis, specific thresholds were developed to

distinguish VMs and bare metal systems. These identified thresholds were then evaluated

to determine the most effective combinations for reliable detection. The study further

extended the evaluation to multiple VM environments, including private and public cloud

platforms, and briefly explored approaches to obscure the presence of virtualization from

user space programs. A detailed description of the experimental design, data collection

procedures, activity selection process, and evaluation strategies is presented in Chapter

3.

1.4 Research Scope

• Developing programs that runs in the non privileged user space of a Linux envi-

ronment (x86 architecture) to collect the rate of random number generation and

associated entropy values

• Collecting data related to LRNG and entropy from linux VMs of different virtual-

ization configurations

• Analyze the behaviour of the latest version of LRNG and entropy values in virtu-

alized Linux environments using collected data

• Comparing data collected from Linux VMs with data from non virtualized Linux

systems to identify where there are significant differences indicative of virtualization

• Evaluating the effectiveness of the finding in an environment with multiple guest

VMs on a single host, assessing the consistency of entropy behaviour across different

VMs

• Identifying potential changes or mechanisms that can be used to obscure the VM

detection from the user space
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1.5 Thesis Structure

The remaining sections of the thesis are organized as follows,

Chapter 2 : Literature Review, provides a detailed review of the background concepts

and existing literature on virtualization, existing approaches to virtualization de-

tection, potential parameters for detecting virtualization, role of random numbers

and the internal workings of LRNG.

Chapter 3 : Research Methodology, outlines the research design, detailing the experi-

mental setup and methodologies employed throughout the study. It discusses the

preliminary experiments, approaches used to establish baselines and impact levels,

and the selection of experimental environments, and configurations. It further cov-

ers the data collection process, from system preparation and script implementation

to the selection of buffer sizes, sample sizes, and repetitions for generalization. This

chapter also includes a discussion on methods used for data analysis such as data

visualization, basic statistics, error metrics, peak detection, and quality assessment

of random number generation.

Chapter 4 : Results Evaluation and Discussion, is structured according to the research

questions. For each research question, experiments related to the rate and quality of

random number generation are analyzed using visual graphs and statistical metrics.

The evaluation includes threshold detection for virtualization in both Research

Question 1 and Research Question 2, followed by an investigation into methods

for obscuring VM presence in Research Question 3. The results are categorized

according to observations made in different Operating System (OS)s. The chapter

concludes with a threshold evaluation section, which discusses the need for threshold

merging, proof of concept program, threshold evaluation and final detection rules

along with their accuracy, precision, and other relevant evaluation metrics.

Chapter 5 : Conclusion, summarizes the findings of the study, critically reflects on the

research outcomes, highlights the contributions made, discusses the limitations of

the study, and suggests directions for future research.
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2 Literature Review

2.1 Virtualization

Virtualization refers to the creation of a virtual version of computing resources such as

hardware platforms, storage devices, and network resources on top of another computing

system. It enables multiple OSs to run concurrently on a single physical machine by

abstracting hardware resources. According to the formal definition of virtualization,

presented by Popek and Goldberg (1974), virtualization is creating an isomorphism of

a host machine into a virtual guest system. Virtualization can be applied to an entire

machine, as well as for various subsystems of a host machine such as the processor, disk,

memory, I/O devices etc (Smith and Nair 2005).

Virtualization can be mainly categorised into two types, process virtualization and

system virtualization. The Instruction Set Architecture (ISA) and other architectural

interfaces play a major role in this classification. In process VMs, the virtualization hap-

pens at the Application Binary Interface (ABI) which invokes the OS using the system

calls interface and communicates with hardware components using the user instructions

interface. This virtualization emulates both of the system calls and user instructions in-

terfaces. Therefore, a process VM sees a combination of the OS and underlying hardware

as the ‘machine’. In system VMs, the virtualization happens at the ISA interface which

handles the communication between hardware and software, including the OS. The vir-

tualization software used in system VMs is commonly known as VMM. The proposed

study primarily focuses on system VMs, hence classifications and methods of virtualiza-

tion used in system VMs will be explored further in the following subsection (Smith and

Nair 2005).

2.1.1 System Virtual Machines

A system VM supports the virtualization of an entire computing system with all func-

tionalities of an OS. The VMM that is used to emulate the ISA translates the ISA used

in the hardware components of the host system to another ISA, creating a virtualization

layer that can run an OS that is developed for a different ISA from the host machine

(Smith and Nair 2005).

In the context of x86 architecture, which is commonly employed in modern virtual-
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ization environments, virtualization techniques rely on manipulating privilege levels or

”ring levels” to manage access to system resources. The x86 architecture provides mul-

tiple privilege levels, ranging from Ring 0, which is the highest where the OS kernel

operates, to Ring 3 which is the lowest where user applications run. (Intel 2023)

According to the classic approach of system VMs introduced by Popek and Goldberg

(1974), the VMM executes directly on hardware of the host machine with the highest

privilege level and the guest OS runs on top of that with a lesser privilege level. These

VMMs are also known as ‘Type I Hypervisors’. The guest OS, while running in a virtual

environment, is unaware that it is running on a VM. This aligns with the Popek and

Goldberg criteria, which asserts that a guest OS running on a VM should not be able to

know that it is running in a virtualized environment (Popek and Goldberg 1974). How-

ever, methods to detect VM presence, as explored in this study, challenge this criterion,

revealing potential violations of the principle.

There is another approach to system VMs, known as ‘Hosted VM’, as well as ‘Type

II Hypervisor’. In hosted VMs, the VMM is positioned upon the OS of the host machine

enabling it to get support from the host OS for the execution of privileged instructions

(Tanenbaum and Bos 2014).

When a VM operates, it directly accesses the host hardware for non privileged instruc-

tions (Ring 3). However, for privileged operations, such as Ring 0 instructions, the VM

requires intervention from the VMM. The VMM ensures that privileged instructions are

handled correctly by trapping them or using other mechanisms to ensure proper execution

without violating isolation between the guest OS and the host machine (Barham et al.

2003; Goldberg 1974; Smith and Nair 2005). This interaction is crucial for maintaining

the separation between virtual environments and the underlying physical hardware. The

VMM is responsible for intercepting any privileged operations and executing them in the

context of the host machine (Tanenbaum and Bos 2014).

The handling of privileged and non privileged instructions in virtualized environments

involves a variety of virtualization techniques. These include trap and emulate (Gold-

berg 1974), paravirtualization (Barham et al. 2003), and binary translation (Adams and

Agesen 2006) which enable the execution of VMs by using different strategies for han-

dling privileged instructions and managing interactions between VMs and the host system

(Figure 2.1).
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The trap and emulate technique is one of the earliest methods used for virtualization.

It involves the VMM intercepting privileged instructions executed by the guest OS, which

typically would require direct access to hardware. Whenever a privileged instruction is

invoked by the guest OS, a trap is triggered, and control is transferred to the VMM. The

VMM then emulates the instruction and ensures that the execution proceeds correctly

(Popek and Goldberg 1974).

However, this method faces a critical limitation with sensitive instructions in the x86

architecture. Sensitive instructions are non privileged instructions that exhibit different

behaviours when executed in different privilege levels (Ring 0 and Ring 3). Certain

instructions that would behave differently in a privileged environment might produce

incorrect results when executed in the VM because the VMM cannot trap or emulate

them accurately. (Popek and Goldberg 1974).

To address the limitations of trap and emulate, the approach of paravirtualization has

been introduced by the study of Barham et al. (2003). In this technique, the guest OS

is modified to be aware of the virtualized environment. This modifies the guest OS and

replace sensitive instructions with hypercalls. A hypercall is a special instruction that

directly calls the VMM to perform the privileged operation.

While paravirtualization can overcome the trap and emulate limitations, it requires

modification of the guest OS, which is not always feasible, especially for proprietary OSs.

Additionally, since the guest OS is aware of the virtualization, it violates the Popek and

Goldberg criterion, which states that a VM should not be aware that it is virtualized

(Popek and Goldberg 1974).

An alternative to paravirtualization is binary translation which involves the VMM

operating as a compiler. Instead of modifying the guest OS itself, the VMM dynami-

cally translates sensitive instructions into safe, executable code that can run correctly

within the virtualized environment. Although binary translation avoids the limitations

of trap and emulate and paravirtualization, it still has some weaknesses. Specifically,

the guest OS might detect virtualization through subtle indicators, such as the through

segmentation registers which contains the Ring level it operates on. (Adams and Agesen

2006).

The most recent advancement in virtualization is hardware assisted virtualization,

which uses hardware support for more efficient and transparent virtualization. With
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hardware assisted virtualization, the CPU itself provides special modes, such as the VMX

mode in Intel processors, to support VMs. In this mode, the VMM has direct access to

the hardware resources, and the guest OS operates in a special pseudo Ring 0, which

behaves like Ring 0 but is controlled by the hypervisor. This method makes sure that

the guest OS cannot detect that it is running inside a virtual environment, since the

hardware handles the isolation and access control. This method addresses all the issues

found in previous approaches, providing a fully transparent virtualization layer where the

guest OS remains unaware of the virtualization (Adams and Agesen 2006; Pék, Buttyán,

and Bencsáth 2013).

Figure 2.1: Paravirtualization, Binary Translation and H/W assisted Virtualization

2.1.2 Isolation between Host and Guest

Isolation between the host and guest systems is a fundamental requirement for virtual-

ization. It makes sure that the operations of a guest system do not affect the host or

other guests, maintaining a secure and stable environment (Popek and Goldberg 1974).

Isolation is important in environments where multiple VMs are used, such as in cloud

computing and data centers. In these settings, different VMs often include applications

and data for different clients, and isolation ensures that the actions of one VM do not

interfere with another. This is essential for maintaining data privacy and security. Also,

isolation helps in improving the reliability and stability of systems. If one VM fails, the

isolation ensures that the host and other VMs are not affected by that failure. Proper

isolation also supports resource management by preventing one VM from consuming

excessive resources and affecting the performance of others. (Jithin and Chandran 2014;

Smith and Nair 2005; Raffetseder, Kruegel, and Kirda 2007).
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Additionally, isolation allows to safely analyze potentially harmful software without

risking the security of the host machine, preventing malicious activities in VMs from im-

pacting the entire system. Modern malicious programs often include checks to determine

if it is running inside a virtual environment or actual hardware. If the malicious pro-

gram detects that it is in a VM, it may alter the behaviour or become dormant to avoid

detection. This makes it harder to analyze the true behaviour of malicious programs

and develop effective countermeasures (Jithin and Chandran 2014; Lusky and Mendelson

2021).

2.2 Existing Approaches to Detect Virtualization Presence from

within the Guest

Malicious software has developed various methods to detect whether it is running inside

a virtualized environment, with the primary goal of avoiding detection during malware

testing. These detection techniques use specific hardware characteristics, timing anoma-

lies, and certain software properties that can reveal the presence of a VM or a sandbox.

These techniques are often used to make it harder for security researchers to analyze and

detect the malicious behaviour of the software.

One widely used approach is timing analysis, which involves measuring the time taken

for specific operations. In a virtualized environment, the presence of the VMM can

introduce delays due to its involvement in handling instructions. These delays, often

referred to as “hypervisor-induced latency,” can lead to irregular timing patterns that

would not typically occur on physical hardware. If the observed timing behaviour deviates

significantly from what is expected on a real machine, it can serve as an indication that

the software is running within a VM (Raffetseder, Kruegel, and Kirda 2007; Lusky and

Mendelson 2021; Chen et al. 2016; Sun et al. 2011; Bulazel and Yener 2017).

Another technique is based on examining CPU performance counters, which track

various hardware events such as cache hits, instruction counts, and branch predictions.

These counters can reveal differences between the performance characteristics of a phys-

ical machine and a virtual environment. VMs can show abnormal or inconsistent perfor-

mance patterns in these counters, due to their dependence on the VMM as the VMM

manages resources differently compared to a physical system. Malware can use these dif-

ferences to decide whether it is running inside a VM (Jithin and Chandran 2014; Lusky
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and Mendelson 2021; Chen et al. 2016; Bulazel and Yener 2017).

Network packet timing is another area of focus for virtualization detection. Virtual

environments can introduce slight delays in network packet transmission due to the over-

head of the virtualization layer, which handles network communication differently from

physical hardware. Malware can analyze the round trip times of network packets and

compare these values with expected benchmarks for physical machines. If the timing

deviates from those, it can indicate the presence of a virtualized network stack, allowing

the malware to conclude that it is running in a VM (Bulazel and Yener 2017; Jithin and

Chandran 2014; Raffetseder, Kruegel, and Kirda 2007).

In addition to above methods, malware may scan for specific indicators left by VMMs.

These artifacts can include device drivers, registry keys, or files that are unique to the

virtualization environment. The existence of such indicators can serve as a clear sign that

the system is running within a VM. Malware may also examine system level behaviours,

such as the CPUID instruction, which can return specific values that signal the presence

of a VMM. These unique VMM behaviours, along with certain I/O port interactions,

can further support the detection of a VM (Lusky and Mendelson 2021; Pék, Buttyán,

and Bencsáth 2013; Sun et al. 2011).

Furthermore, malware can assess the resource availability on the system. VMs often

have limited resources compared to physical hardware, especially when running in envi-

ronments with resource allocation constraints. If a system displays unusual patterns, such

as unexpected resource limitations or mismatches in available hardware resources, this

can signal that the environment is virtualized. The guest system may have access to fewer

resources than a physical machine would provide, which is an indicator of virtualization

(Lusky and Mendelson 2021; Zhang et al. 2021).

Lastly, there has been increasing interest in the use of machine learning techniques

for detecting virtualization. Supervised learning approaches can be used to train models

on various features such as performance metrics, CPU behaviour, and hardware char-

acteristics. By using these features, machine learning models can differentiate between

virtual and non virtual environments with greater accuracy, often outperforming tra-

ditional methods. These models can be trained to identify subtle differences between

physical and virtual systems, enhancing the ability to detect virtualization presence from

within the guest (Lusky and Mendelson 2021; Yokoyama et al. 2016).
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2.3 Research Gap and Potential Common Parameters to Detect

Virtualization

All existing methods for detecting virtualization presence require privileged access to the

system, either kernel privileges or root user access. Such techniques are typically out

of reach for non privileged user space processes, hence the detection capability can be

masked by restricting the required privileges. However, previous studies have not focused

on mechanisms to detect the underlying virtualization platform without relying on any

special privileges. This limitation has motivated the focus of this project, to explore the

potential of detecting virtualization presence from within the non privileged user space,

where access to system level information is restricted.

In the search for parameters that are commonly available in Linux systems and do not

require elevated privileges, it was observed that one of the key indicators of virtualization

presence could be in the behaviour of the random number generation process of the

system. It was identified that random number generation exhibits distinct differences

in virtualized environments compared to physical hardware (Kumari, Alimomeni, and

Safavi-Naini 2015; Cieslarová 2018; Everspaugh et al. 2014).

On VMs, specialized tools such as additonal rng-tools (RedHat 2018; QEMU 2016;

Intel 2018) and daemons like haveged (Wuertz and Hladky 2025) are often used to en-

hance the quality and availability of entropy, particularly during operations that require

high levels of randomness, such as cryptographic key generation. These tools aim to avoid

the reduced entropy states that are often experienced in virtualized environments, ensur-

ing that applications requiring strong randomness are not blocked by entropy starvation.

However, despite these efforts to improve randomness, the underlying differences in the

entropy sources between a physical machine and a virtualized system remain evident.

The behaviour of the LRNG in these environments serves as a potential technique

for detecting virtualization. While physical machines typically have a more reliable and

stable source of randomness from hardware based events, VMs rely on the virtualized

environment for entropy generation, which may lead to variations in randomness. These

variations are often a result of factors such as the limited access to hardware resources,

the influence of VMM scheduling, and the need to use software based entropy sources.

As a result, the performance of LRNG and entropy generation behaviours are often

distinguishable between physical systems and VMs.
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Hence, the LRNG provides a novel direction for detecting virtualization presence from

within the non privileged user space. The observed differences in LRNG characteristics

between physical and virtual environments may serve as indicators of virtualization, en-

abling non privileged applications to decided whether they are running in a VM. This

technique is especially valuable in scenarios where more invasive detection methods are

not feasible or desirable.

2.4 Behaviour of LRNG in Virtual Environments

Using the LRNG in VMs has been a challenging task, primarily because virtual environ-

ments often lack the diverse range of hardware events that are used to gather entropy.

On physical machines, the LRNG collects entropy from sources such as device interrupts,

hardware timings, and user interactions. However, in VMs, the virtualization layer ab-

stracts much of the underlying hardware, limiting the availability and diversity of these

entropy sources. This limitation has resulted in lower entropy availability within VMs,

making it more difficult to generate secure and high quality random numbers during crit-

ical system operations such as cryptographic key generation (Kumari, Alimomeni, and

Safavi-Naini 2015).

Furthermore, an additional security concern arises with the use of VM snapshots.

When a snapshot is taken, the complete state of the VM, including the internal state of

the Random Number Generator (RNG), can be captured. If a snapshot is restored and

reused without properly reinitializing the LRNG state, it can lead to the generation of

predictable random numbers. This compromises the security of cryptographic operations

and other processes that depend on high quality randomness, as attackers could poten-

tially predict future outputs based on the captured state (Everspaugh et al. 2014). These

issues highlight the unique challenges associated with ensuring secure random number

generation in virtualized environments.

Although several studies have explored the general behaviour and security implications

of the LRNG in VMs (Kumari, Alimomeni, and Safavi-Naini 2015; Everspaugh et al.

2014), the specific use of LRNG behaviour as a technique for detecting the presence of

virtualization has not been considered. The inherent differences in entropy collection

and randomness generation between physical systems and virtual environments present

a potential method for distinguishing between them from within the VM user space.
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Additionally, while significant changes have been introduced to the LRNG in recent years

to enhance its performance and security, particularly in newer Linux kernel versions, these

developments have not been thoroughly examined with respect to their implications for

virtualization detection. This gap presents an opportunity for further investigation into

the relationship between LRNG behaviour and virtual environment characteristics.

2.5 Randomness

Randomness plays a vital role in modern computer security, especially in generating cryp-

tographic keys, initialization vectors, session tokens, and password salts. The criticality

of high quality randomness lies in its ability to provide unpredictability. This unpre-

dictability is fundamental to resisting attacks that attempt to guess or replicate security

parameters. A key security principle emphasizes that the strength of a cryptographic

system should not depend on the secrecy of the algorithms used but solely on the se-

crecy of the key (Shannon 1949). Consequently, the security of cryptographic operations

fundamentally relies on the strength of the randomness used to generate these keys.

2.5.1 Random Number Generation

There are two primary approaches for random number generation, True Random Number

Generator (TRNG)s and Pseudo Random Number Generator (PRNG)s.

True random number generators derive their randomness from naturally unpredictable

physical phenomena such as electronic noise, radioactive decay, and atmospheric noise.

Because these sources originate from physical processes, TRNGs typically offer high en-

tropy outputs suitable for critical security applications. Real world examples of TRNGs

include Cloudflare’s “Wall of Entropy,” where lava lamps are used to generate randomness

through video capture (Dillon 2017) and Random.org’s atmospheric noise based random

number service (Random.org 2025).

In contrast, PRNGs generate sequences of numbers through deterministic algorithms

based on an initial seed value. Although computationally efficient, PRNGs inherently

suffer from predictability if the seed is known. One basic PRNG model is the Linear

Congruential Generator (LCG), defined by the recursive relation,

Xn+1 = (aXn + c) mod m
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where X represents the sequence of pseudo random values, m is the modulus (m > 0),

a is the multiplier (0 < a < m), c is the increment (0 ≤ c < m), and X0 is the seed or

starting value (0 ≤ X0 < m).

Beyond the LCG, a wide range of mathematical techniques exists to generate pseudo

random numbers. A particularly important subset is the Cryptographically Secure Pseudo

Random Number Generator (CSPRNG), designed such that even if some internal state

becomes known, predicting future or past outputs remains computationally infeasible

(Kelsey et al. 1998). Examples include algorithms like Fortuna and the output of secure

functions such as /dev/urandom when properly seeded.

To illustrate the difference between TRNGs and PRNGs visually, Figure 2.2 shows

bitmap images generated from sequences produced by a typical PHP PRNG (Figure 2.2b)

compared to those from true random sources (Figure 2.2a) (Allen 2016).

(a) Random.org TRNG (b) PHP rand() function

Figure 2.2: Comparison of bitmap images from PHP PRNG and true random sources

The difference between the pseudo random and true random bitmaps is evident in

their visual patterns. Pseudorandom bitmaps, generated by deterministic algorithms,

tend to repeat patterns due to the periodicity of the algorithm. In contrast, true random

bitmaps, derived from unpredictable physical processes, show no repetition or regularity,

resulting in a more chaotic and irregular appearance.
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2.5.2 Measures of Randomness

Randomness can be measured by assessing the entropy, which represents the level of

unpredictability within a data source. Entropy quantifies the degree of disorder or un-

certainty, providing a metric to evaluate the quality of random sequences. The Shannon

entropy H(X) of a discrete random variable X is defined as,

H(X) = −
∑
x∈A

p(x) log2 p(x)

where p(x) is the probability of each unique outcome in the sequence (Shannon 1949).

Higher entropy values indicate greater unpredictability. A random number generated

with higher entropy means that number is highly unpredictable (Shannon 1949; Kumari,

Alimomeni, and Safavi-Naini 2015; Cieslarová 2018). In security-sensitive applications,

a related measure, min-entropy is often considered.

H∞(X) = − log2(max p(xi))

The min-entropy of a discrete random variable X represents a lower bound on its overall

entropy, expressed in bits. It is commonly used as a worst-case indicator of the uncertainty

in observing X (Cover and Thomas 1991).

Despite these mathematical definitions, it remains practically difficult to quantify

randomness precisely. Various methods exist to evaluate the quality of randomness,

with the NIST test suite being one of the most widely recognized standards. This suite

offers a comprehensive set of statistical tests to analyze random bit sequences, assessing

factors like bit frequency, patterns, and sequence complexity. By applying these tests,

one can validate whether a random sequence meets the stringent requirements necessary

for cryptographic and other security sensitive applications (Bassham et al. 2010).

2.6 Linux Random Number Generator

The Linux Random Number Generator (LRNG) is responsible for generating crypto-

graphically secure random numbers in Linux systems. It gathers entropy from various

unpredictable sources such as keyboard, mouse movements, disk I/O, and network activ-

ity. The LRNG is composed of several components that handle entropy collection, entropy

extraction, and entropy expansion, which are then used to produce random numbers.
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In earlier versions of the LRNG, a distinct structure existed with two main entropy

pools, a blocking pool (/dev/random) and a non blocking pool (/dev/urandom). The

/dev/random pool would block the process requesting random data until enough entropy

was available, ensuring high quality randomness. In contrast, the /dev/urandom pool,

designed to provide randomness even with limited entropy, would not block and would

reuse entropy from the pool even in low entropy situations. At the core of the earlier

design was a large entropy pool, initially set to 4096 bytes, which was used to accumulate

entropy from various sources. The system was also designed to allow random number

generation via get random bytes().

However, over time, the LRNG has undergone a series of important updates aimed

at enhancing security and simplifying its architecture. The entropy pool size, has been

reduced from 4096 bytes to 256 bytes, reflecting a shift towards more efficient memory

usage and more predictable behaviour in entropy management. Additionally, the core

hash function has been updated, moving away from older methods such as SHA-1 and

Linear Feedback Shift Registers (LFSRs). Notably, the LRNG now uses BLAKE2s for

both its hash and pseudorandom function (PRF) modes, ensuring better security and

performance (Donenfeld 2022; Cieslarová 2018).

A major turning point in the evolution of the LRNG has been the transition from

the old blocking and non blocking pool system to a more streamlined architecture. Both

/dev/random and /dev/urandom now utilize the getrandom() system call. This unifi-

cation of interfaces means that once the LRNG is initialized, both interfaces effectively

behave the same, offering better predictability and less complexity in entropy manage-

ment (Donenfeld 2022; Torvalds 2024; drivers/char/random.c 2024).

Additionally, the entropy collection mechanism has been significantly modified. Newer

sources such as RDSEED/RDRAND hardware generators, and bootloader seeds are now

incorporated with traditional sources. These additions aim to strengthen the randomness

and overall security of the system (Donenfeld 2022).

Historically, the development of the LRNG has been overseen by Theodore Ts’o, who

was instrumental in the design and early development of the system. Over time, the

LRNG became increasingly complex, and the need for modernization became apparent.

In recent years, Jason Donenfeld has taken over the primary development efforts, focus-

ing on simplifying and securing the architecture while retaining backward compatibility.
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Under Donenfeld’s leadership, several important changes have been implemented, includ-

ing the replacement of older cryptographic methods, such as SHA-1 and Linear Feedback

Shift Registers (LFSRs), with modern, cryptographically secure primitives like BLAKE2s

and ChaCha20 (Donenfeld 2022; drivers/char/random.c 2024). These updates have not

only improved the security and performance of the LRNG but also streamlined entropy

collection and expansion strategies. The current design reflects a shift towards a more ef-

ficient and secure random number generation system for Linux based systems, addressing

both historical complexity and the demands of contemporary cryptographic standards.

2.7 Identification of Research Gaps and Questions

The review of the existing literature revealed that while the LRNG has undergone signifi-

cant updates in its architecture and internal workings, certain areas remain less explored.

Notably, the impact of virtualization on the behaviour of the LRNG has not been system-

atically studied, especially from the perspective of non privileged user space observations.

This observation led to the formulation of the first research question, which aims to de-

termine whether distinguishable patterns in LRNG behaviour can be used to detect the

presence of virtualization in a single VM setup.

Furthermore, the literature did not address how the LRNG behaves in complex en-

vironments of multiple VMs, such as desktop, private cloud infrastructures, and public

cloud platforms. This absence of comparative analysis across multiple VM environments

motivated the second research question, which seeks to evaluate whether LRNG based

virtualization detection remains feasible under different virtualization architectures.

Finally, the review highlighted that virtualization detection techniques are commonly

used by malware to avoid analysis within testing environments. Therefore, understanding

and mitigating LRNG based detection methods has practical significance for malware

analysis and defense strategies. Based on this consideration, the third research question

was formulated to explore how virtualization detection through LRNG behaviour can be

obscured, considering possible mitigation techniques.

Thus, the research objectives and questions were systematically derived by identifying

specific gaps in the current body of knowledge, ensuring that the study is positioned to

contribute meaningfully to both the understanding of LRNG behaviour and its potential

applications in virtualization detection.
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3 Research Methodology

3.1 Experimental Design

3.1.1 Preliminary Experiments

Figure 3.1: Overview of Experiments

The first focus towards the initial experiments was identifying the activities that

affect and reflect the behaviour of the LRNG by exploring existing literature. Through

this exploration, it was found that the level of entropy associated with the LRNG is a

measure that is directly linked to hardware, and this measure can reflect the behavioural

changes within the random number generation process. Based on this understanding,

attention was given to identifying the types of activities that can cause changes in these

entropy values. As a result,

• Generation of random numbers

• Generation of prime numbers and

• Generation of cryptographic keys

were identified as operations that can consume entropy. Based on existing studies, it

was hypothesised that entropy related parameters in virtualized environments would be

less rich compared to those in bare metal environments, which have closer access to

hardware sources (Kumari, Alimomeni, and Safavi-Naini 2015). These insights were used
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for the initial experimental design, where the preliminary set of experiments consisted of

attempts to create an entropy starvation using the identified mechanisms.

Before moving on to the entropy starvation attempts, another important consider-

ation was the variable strategies in depleting entropy. Entropy depletion can be car-

ried out using various approaches, such as varying the buffer size and the number of

threads involved in the operations. While defining these strategies, it was also neces-

sary to determine how to detect whether changes in entropy were actually taking place.

The straightforward method of detection is monitoring the entropy value through the

/proc/sys/kernel/random/entropy avail interface. However, it was observed that re-

lying on this direct measure was insufficient in capturing behaviour of the LRNG in newer

kernel versions. As a result, indirect indicators were also explored as explained in Sec-

tion 3.1.1.4. These included memory consumption, CPU utilization, the time taken to

generate random numbers, and the quality of the generated random numbers. These in-

direct measures were selected to investigate whether they could reflect underlying LRNG

behaviour.

Programs were developed in C and bash script to attempt entropy starvation using

the identified entropy consuming mechanisms. These starvation attempts were carried

out using different strategies, which included varying the buffer sizes and the number

of threads running in parallel as described in following topics. Initially, no observable

changes in entropy behaviour were detected. The first round of experiments, conducted

on Ubuntu 22.04, used the direct entropy availability measure from the entropy avail

interface. However, despite different approaches and configurations, no significant changes

in entropy values were observed. According to existing literature this interface has used

to indicate changes of entropy levels hence it was decided to attempt these experiments

on an older kernel version. Ubuntu 14 was selected for this purpose due to its usage in

literature for entropy indicating activities. The same set of experiments was conducted

on Ubuntu 14 to observe which of the selected activities had the most noticeable impact

on entropy related parameters.

Since the core motivation of this study is to identify whether there is a difference in be-

haviour of the LRNG between bare metal systems and VMs, the experiments were carried

out separately on both environments. To ensure consistency and fairness in comparison,

the VMs and bare metal systems were hosted on the same hardware configurations which
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will be explained in Section 3.2.4. The initial set of experiments for this comparison

was conducted using Ubuntu 14, as it was observed to clearly reflect changes in entropy

behaviour. Ubuntu 14 was therefore used as a baseline to better understand which oper-

ations and activities have the most significant impact on the LRNG.

3.1.1.1 Attempts to create an entropy starvation through direct random

number generation

To attempt entropy starvation through direct random number generation, several ap-

proaches were explored. Shell scripts were developed using loops that continuously read

from /dev/random or /dev/urandom using commands such as "dd if=/dev/random" and

"head -c", with varying block sizes and byte counts ranging from 32 to 8192 (in powers

of two). Fluctuations of entropy level through entropy avail in proc directory were

observed only on Ubuntu 14, but no any changes in OSs with newer kernel versions such

as 6.8 on Ubuntu 24.04, 5.15 on Ubuntu 22.04, and 5.14 AlmaLinux 9.

Extending the starvation attempts to multiple threads, a C program was imple-

mented to perform uncontrolled recursive forking to rapidly consume entropy. Though

this method lead to the systems crashing due to resource exhaustion, it was an attempt to

check whether an entropy fluctuation can be observed in newer kernel versions by stress-

ing the entropy pool. This was later excluded from broader testing due to its potentially

destructive impact on systems. A more controlled version using fork based loops was

then attempted with progressively increasing the number of threads generating random

numbers. However, noticeable entropy fluctuations were observed only in Ubuntu 14

older kernel version.

3.1.1.2 Attempts to create an entropy starvation through prime number

generation

Following the limited success of direct random number generation in starving entropy,

prime number generation was explored as another entropy consuming method. Prime

number generation consumes a significant amount of random data, providing a potential

to induce an entropy starvation. Shell scripts were implemented to continuously generate

large prime numbers using "openssl prime -generate -bits", both in single threaded

and controlled forked executions, repeating the task until a shift in entropy levels was

observed. Despite its theoretical potential, these experiments also failed to significantly
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deplete entropy in newer Linux kernels, with entropy starvation again observed only on

older kernel versions.

3.1.1.3 Attempts to create an entropy starvation through cryptographic key

generation

Cryptographic key generation was investigated as a further method to create entropy star-

vation, building on earlier experiments involving direct random number reads and prime

number generation. This approach was selected due to the inherently high randomness

requirements of cryptographic processes. In particular, RSA and ECC key generation

rely heavily on strong entropy sources to ensure secure key creation. Shell scripts were

developed to repeatedly generate RSA and ECC keys using both single threaded and con-

trolled forked methods, using tools such as "openssl genrsa" and "openssl ecparam".

Additionally, GPG key generation was tested as it is known for its sensitivity to low

entropy conditions (GPG does not have enough entropy, serverfault.com 2010). While

RSA and ECC key generation did not cause significant entropy starvation, GPG key gen-

eration on older systems produced an immediate entropy starvation, invoking the error

message “not enough random bytes available” (Figure 3.2).

Figure 3.2: Entropy starvation during GPG key generation on Ubuntu 14
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3.1.1.4 Attempts to identify indirect parameters reflecting entropy fluctua-

tions

As previous attempts to induce entropy starvation through direct methods such as ran-

dom number dumps, prime number generation, and cryptographic key generation showed

limited impact on modern Linux systems, the focus shifted toward identifying indirect

system parameters that might reflect entropy fluctuations in the input pool. The fol-

lowing experiments were designed to capture various metrics that could indicate entropy

pool behaviour and depletion.

Initially a C program was developed to measure the time required to generate a specific

amount of random data using the getentropy function (mapped to syscall SYS getrandom

318 on Ubuntu 14). The goal was to determine if prolonged generation times indicated

entropy depletion. Occasional spikes of time taken to generate random numbers were

observed hence the monitoring process was extended to include system parameters like

context switching and interrupts, which may also respond to changes in entropy avail-

ability. A shell script was developed to record these metrics alongside entropy depletion

attempts.

The monitoring was later extended across several scenarios such as while the system

was idle and during the execution of entropy consuming operations used in above starva-

tion attempts. Each scenario was logged for 180 seconds, with data plotted and analyzed

for patterns. Among all operations tested, only GPG key generation consistently exhib-

ited notable entropy depletion, correlating with system parameter fluctuations (Figure

3.3).

Figure 3.3: Entropy Level fluctuation while generating GPG Keys

To improve accuracy, later experiments introduced concurrent monitoring of system
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parameters while executing entropy depletion techniques, capturing real-time interac-

tions. Again, only GPG key generation presented observable depletion behaviour (Figure

3.4).

Figure 3.4: Entropy Level & System Parameter fluctuation while generating GPG Keys

As previous monitoring efforts showed some observable patterns of entropy deple-

tion during GPG key generation, it was decided to further examine this process to

understand its entropy consumption mechanisms. To achieve this, the GPG key gen-

eration sequence was traced, aiming to capture the system calls involved and any in-

teractions with entropy sources. The command used for this tracing was "strace -e

trace=open,read,getrandom,ioctl gpg --batch --generate-key input.txt" This

trace captured calls related to file opening, reading, entropy acquisition (getrandom), and

device control operations (ioctl). While no direct entropy starvation mechanisms were

identified, the trace offered deeper insight into the system call sequence associated with

cryptographic key generation.

3.1.1.5 Analyzing the Quality of Random Numbers

As previous experimental approaches did not provide positive results for detecting virtu-

alization, an analysis was conducted to compare the quality of random numbers generated

in VMs versus bare metal systems. This approach used the NIST test suite for random

bit generation, which statistically evaluates binary sequences through a range of tests

designed to assess randomness. This comprehensive test set was executed to capture

any potential inconsistencies in random number quality that might reflect virtualization

effects. This is discussed in detail in the section 3.4.5.
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3.1.2 Evaluating Preliminary Experiments

Based on the preliminary experiments and the comparative analysis of these activities

on bare metal and virtual environments, the entropy starvation activities were ranked

according to the level of observed impact they had on kernel level entropy indicators

in Ubuntu 14. This ranking was derived from observations across both bare metal and

virtual environments of Ubuntu 14 and helped identify the most influential operations.

Experiment Buffer Size Observable Impact

Generating random numbers Less than 1024 Low

Generating random numbers 4096 High

Generating prime numbers 4096 Medium

Generating RSA Keys 4096 Low

Generating ECC Keys - Low

Generating GPG Keys - High

Table 3.1: Listing entropy starvation activities in the order of the fluctuation they made

on older kernels

According to the evaluation, random number generation using the "dd" command with

larger buffer sizes, as well as GPG key generation, were found to have the highest impact

on the entropy pool. Among these, GPG key generation demonstrated a particularly

significant level of quick entropy depletion, while other cryptographic operations such

as RSA and ECC key generation did not show comparable levels of impact. However,

considering that these experiments were to be extended across different kernel versions,

it was important to select an entropy depleting activity with minimal dependency on

library specific updates. Given that GPG related libraries have undergone significant

changes across kernel and distribution versions, it was decided to proceed with direct

random number generation using the "dd" command, which offered a more consistent

and version independent mechanism for entropy starvation.
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3.1.3 Experimental Approaches

After identifying that the generation of random numbers using the dd command had the

most significant impact on the entropy pool, the subsequent experiments were designed

based on this activity. In terms of detection mechanisms, as it was observed that direct

entropy value measurement through the "entropy avail" interface was not effective in

recent kernel versions, indirect measurements were considered. Among these, memory and

CPU utilization data showed limited effectiveness in capturing entropy related measures

as standard memory and CPU monitoring tools were not capable of capturing the fine

grained variations in these performance metrics. Therefore, the focus shifted towards two

potentially promising indicators, the rate of random number generation and the quality

of generated random numbers.

The rate of random number generation refers to the time taken to generate a specified

amount of random bytes. This serves as an indicator of how efficiently the LRNG architec-

ture is able to supply random numbers under varying system conditions in environments

with fluctuating entropy availability.

The quality of the random numbers are evaluated using standard test suites such as the

NIST Statistical Test Suite. The quality reflects the strength of the entropy source that

underpins the LRNG. This is important because the LRNG is designed to use available

entropy to produce random numbers that are as close as possible to true randomness.

Consequently, quality measurements can provide insight into where the output lies on the

spectrum between true and pseudo randomness (Refer Section 2.5.1 for details). Based

on these two aspects, the rate and the quality of random number generation, next stage

of experiments in this study was formulated.

All the experiments conducted in this study are designed to address three key research

questions. The first question explores whether virtualization presence can be detected

through LRNG behaviour in a single VM setup. For this, experiments on a single VM

desktop setup were performed, focusing on rate and quality of random number generation

under both high and low impact conditions.

The second research question investigates whether virtualization detection is possible

in multiple VM setups, with experiments spanning across multiple VM desktop as well as

private and public cloud platforms. Similar measurements of random number generation

were taken, allowing for comparative analysis between different environments.
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The third question examines methods to obscure virtualization detection if it ex-

ists, which involves rerunning all the experiments with additional random number gen-

eration tools and daemons activated. To investigate this, three experimental rounds

were conducted, the first with only the haveged daemon active, the second with only

jitterentropy-rngd, and the third with both tools active at the same time. These soft-

ware based entropy generators were selected for their capacity to induce high frequency

entropy in the system, thereby influencing the behaviour of the LRNG. In each round,

random number generation experiments were repeated using the same procedure ap-

plied in Research Questions (RQ) 1. This ensured that comparisons remained consistent

across configurations. The objective was to evaluate whether these entropy enhancing

tools could reduce or obscure the virtualization detection previously observed between

virtual and bare metal environments.

3.1.4 Establishing Baselines and Impact Levels

With the focus shifting toward measuring the rate and quality of random number gener-

ation, it was essential to first establish appropriate baselines. Several baseline measures

were considered to ensure consistency and reliability in the experimental outcomes.

The first baseline involved recording the initially available entropy in a given environ-

ment before any experimental activity was conducted. This value served as a reference

point for evaluating the impact of the entropy starvation attempts. Even though modern

kernel versions may not reflect any changes in entropy values it was still considered as a

foundational metric across all test environments.

In alignment with the core objective of the research, which is to compare entropy

behaviour between bare metal and virtualized environments, all measurements taken in

VM setups were analyzed relative to those obtained from corresponding bare metal sys-

tems. The bare metal environments functioned as the control, allowing for a comparative

assessment of how entropy related parameters behave in non virtualized systems.

Furthermore, entropy measurements obtained from older Linux versions, such as

Ubuntu 14, were also considered as a foundation. These environments, where entropy

fluctuations were more visibly observable, provided additional insight into how LRNG

behaviour evolves across system versions and configurations.
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3.1.4.1 Hardware Limitations and Relative Comparisons

An additional challenge encountered during the experimental design was the inability

to make direct comparisons between bare metal machines and VMs due to hardware per-

formance mismatches. Despite hosting both environments on the same physical hardware

configurations, resource allocation limitations in virtualized systems created inconsisten-

cies in performance characteristics. As a result, direct comparisons of raw metrics were

found to be invalid. For example, the absolute time taken to generate 2MB of random

numbers on bare metal cannot be directly compared to the absolute time taken to gen-

erate 2MB of random numbers on a VM because it is obvious that the VM has less

resources.

To overcome this, all comparisons were made based on differences rather than absolute

values. For example, instead of comparing the time taken to generate 2MB of random

numbers on bare metal versus on a VM, the experimental design focused on internal

delta values within each environment. A simple example would be measuring the time

difference between generating 2MB and 4MB of random numbers in the same system,

and then comparing that difference across environments. This relative approach helped

normalize variations in hardware performance and ensured more accurate interpretation

of entropy related behaviours.

3.1.4.2 Impact Levels and Experimental Conditions

To refine the experimental setup with relative comparisons as mentioned above, two

impact levels were defined based on the level of background entropy depletion expected

during measurements.

Activities with a lower impact score were designed to operate under minimal en-

tropy depletion conditions. These experiments primarily focused only on data collection

without any background entropy starvation, ensuring that the entropy pool remained

relatively stable.

In contrast, activities with a higher impact score were carried out under higher

entropy depletion conditions. In these experiments, while the main data collection was

in progress, an additional background script was executed to deplete entropy in parallel.
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3.2 Experimental Setup

3.2.1 Environments used for Experiments

To ensure consistent and comprehensive results regarding the behaviour of the LRNG in

virtualized environments, experiments were conducted across multiple deployment set-

tings.

• Desktop Environment

• Private Cloud Environment - University cloud infrastructure

• Public Cloud Environment - Amazon Web Services (AWS) and Google Cloud Plat-

form (GCP)

3.2.2 Virtual Machine Monitors (VMMs) used for Experiments

The experiments also included a range of widely used VMMs to include differences across

virtualization technologies and to strengthen the generalizability of the findings.

• Desktop Environment : Virtual Box (Version 7.0.20 r163906), VMware® Work-

station 17 Pro (Version 17.6.1 build-24319023), QEMU (Powered by libvirt Version

4.0.0)

• Private Cloud Environment : VMWare ESXi (Version 7.0.3)

• Public Cloud Environment : AWS - Nitro (Custom KVM based VMM by AWS),

Google Cloud - Compute Engine (Custom KVM based VMM by Google)

3.2.3 Operating Systems used for Experiments

To represent a broad range of Linux distributions and kernel versions, the experiments

used OSs from major Linux families, capturing a wide spectrum of the LRNG’s behaviour

across versions.

• Debian Based : Ubuntu Server 22.04 LTS (Kernel 5.15) and 24.04 LTS (Kernel 6.8)

(Ubuntu 14 OS with Kernel 4.4 is used as a reference point to the older version of

LRNG)

• RedHat Based : AlmaLinux 9.4 (Kernel 5.14)
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The reason behind selecting these distributions was primarily driven by the differences

in their kernel versions. Both Ubuntu Server 22.04 and AlmaLinux 9.4 utilize Linux Ker-

nel 5 versions. Ubuntu Server 24.04 includes the more recent Linux Kernel 6.8 however

there is no corresponding RedHat distribution to this kernel version. Therefore, to main-

tain consistency for comparison purposes, Ubuntu 22.04 and AlmaLinux 9.4 were used

as the common ground between the two distribution families, while Ubuntu 24.04 was

added to observe newer kernel behaviour within the Debian based lineage.

Although Ubuntu Server 22.04 and AlmaLinux 9.4 use slightly different kernel ver-

sions, this minor difference was negligible for the purpose of the experiment. The update

from kernel 5.14 to 5.15 did not introduce any changes related to the LRNG, and no

significant impact on the entropy pool or RNG functionality was found. As a result, both

kernel versions were considered functionally equivalent for the study.

It is important to note that AlmaLinux 9.4 was not included in the public cloud exper-

iments. This exclusion was due to availability and performance constraints. AlmaLinux

was not offered within the free-tier limits on Amazon Web Services (AWS), and although

it was technically accessible on Google Cloud Platform (GCP), the instance performance

was significantly degraded, making it impractical for executing the experiments reliably.

Therefore, only Ubuntu Server 22.04 and 24.04 were used for public cloud data collection.

3.2.4 Hardware Specifications used for Experiments

The physical machines used for both the bare metal and hosting desktop VMs were

equipped with an Intel Core i5-3570 CPU at 3.40 GHz, 8 GB of DDR3 RAM at 1600

MT/s, and a 500 GB SATA Hitachi HDS72105 SATA hard disk drive operating at 7200

RPM. Each VM on this machine was allocated 2 GB of RAM, 20 GB of HDD, and 2

virtual CPUs. These configurations applied to all three VMMs used in the desktop setup.

In the desktop environment, experiments involving multiple VMs were conducted with

3 VMs running simultaneously under the same VMM. This number was selected as it is

the maximum feasible configuration given the resource constraints of the host machine.

In private cloud, each VM was provided with 2 GB RAM, 15 GB HDD, and 2 virtual

CPUs. In the public cloud environments there were certain limitations in resource allo-

cation due to restrictions of free service offerings. Therefore, each VM instance on AWS

and Google Cloud was limited to 1 GB RAM, 20 GB HDD, and 1 virtual CPU.
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To ensure a clear and structured evaluation, each instance is assigned a unique label

based on the RQ, environment, VMM or hardware platform, and the OS (Table 3.2).

RQ Environment Bare Metal / VMM OS Label

RQ1 Desktop

Bare Metal

Ubuntu 24.04 dsk-host-u24

Ubuntu 22.04 dsk-host-u22

AlmaLinux 9.4 dsk-host-al9

VirtualBox

Ubuntu 24.04 dsk-vbox-u24

Ubuntu 22.04 dsk-vbox-u22

AlmaLinux 9.4 dsk-vbox-al9

VMware

Ubuntu 24.04 dsk-vmw-u24

Ubuntu 22.04 dsk-vmw-u22

AlmaLinux 9.4 dsk-vmw-al9

QEMU

Ubuntu 24.04 dsk-qemu-u24

Ubuntu 22.04 dsk-qemu-u22

AlmaLinux 9.4 dsk-qemu-al9

RQ2

Desktop

VirtualBox

Ubuntu 24.04 mdsk-vbox-u24

Ubuntu 22.04 mdsk-vbox-u22

AlmaLinux 9.4 mdsk-vbox-al9

VMware

Ubuntu 24.04 mdsk-vmw-u24

Ubuntu 22.04 mdsk-vmw-u22

AlmaLinux 9.4 mdsk-vmw-al9

QEMU

Ubuntu 24.04 mdsk-qemu-u24

Ubuntu 22.04 mdsk-qemu-u22

AlmaLinux 9.4 mdsk-qemu-al9

Private Cloud VMware ESXi

Ubuntu 24.04 pvt-vmw-u24

Ubuntu 22.04 pvt-vmw-u22

AlmaLinux 9.4 pvt-vmw-al9

Public Cloud

AWS Nitro
Ubuntu 24.04 pub-aws-u24

Ubuntu 22.04 pub-aws-u22

Google Cloud
Ubuntu 24.04 pub-ggl-u24

Ubuntu 22.04 pub-ggl-u22
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RQ Environment Bare Metal / VMM OS Label

RQ3 Desktop

VirtualBox

Ubuntu 24.04 odsk-vbox-u24

Ubuntu 22.04 odsk-vbox-u22

AlmaLinux 9.4 odsk-vbox-al9

VMware

Ubuntu 24.04 odsk-vmw-u24

Ubuntu 22.04 odsk-vmw-u22

AlmaLinux 9.4 odsk-vmw-al9

QEMU

Ubuntu 24.04 odsk-qemu-u24

Ubuntu 22.04 odsk-qemu-u22

AlmaLinux 9.4 odsk-qemu-al9

Table 3.2: Summary of Experimental Configurations across Research Questions

3.3 Data Collection

3.3.1 System Preparation for Testing

Each experimental system was configured to operate under minimal usage conditions to

ensure consistency and reduce noise in the collected data. This was achieved by disabling

or removing unnecessary background services and processes, allowing only essential com-

ponents to remain active. The objective of this configuration was to create a controlled

and interference free environment, minimizing the impact of unrelated activities on the

behaviour of the LRNG.

However, in cloud based VMs, this level of control was limited due to dependencies on

background services enforced by the cloud platform’s virtualization infrastructure. Cer-

tain system services could not be disabled entirely, as doing so would result in termination

or unresponsiveness of the VMs.

3.3.2 Script Implementation and Interface Selection

Implementation of data collection scripts was guided by the current behaviour of the

LRNG interfaces, as discussed in the Section 2.6. Traditionally, the difference between

"/dev/random" and "/dev/urandom" was their blocking behaviour and the resource pool,

where "/dev/random" would use a blocking pool which blocks when entropy was insuf-
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ficient and "/dev/urandom" would use a non blocking pool. However, as noted in the

literature, this distinction is no longer maintained in modern Linux kernels, since both

interfaces use the same entropy pool and internally rely on the "getrandom()" system

call with its flags.

To maintain backward compatibility and ensure alignment with prior studies, data

was collected from both "/dev/random" and "/dev/urandom" interfaces. This approach

was used consistently across experiments to reflect traditional usage patterns while also

capturing any subtle variations that might still exist across different environments.

However, for background entropy depletion in high impact scenarios, the background

depletion program was configured to use the getrandom() system call with the "GRND RANDOM"

flag. This configuration enforces blocking behaviour to reliably induce entropy depletion

and observe corresponding system responses.

Furthermore, buffer sizes and sample sizes for data collection were carefully selected

based on the defined baselines and experimental objectives, informed by preliminary

testing as described in Section 3.1

3.3.3 Selection of Buffer Sizes

For both rate of random number generation and quality of random number generation

experiments, it was essential to identify buffer sizes that could reveal differences between

virtualized and bare metal environments. To address this, three levels of buffer sizes were

selected,

• 2 MB

• 4 MB

• 6 MB

These buffer levels were chosen to evaluate how the amount of random data generated

under different impact levels as defined earlier, could reflect the performance and entropy

characteristics of the LRNG. The variation in buffer size allowed for assessment of how

the system behaves under increasing demands on the entropy pool.
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3.3.4 Sample Size and Repetition for Generalization

Initially, data was collected by generating 100 samples for each buffer size level and

impact level. The amount 100 data samples was selected to ensure compliance with

optimal testing requirements for NIST test suit used in assessing the quality of random

numbers.

• 100 samples of 2 MB under each impact level (high and low)

• 100 samples of 4 MB under each impact level (high and low)

• 100 samples of 6 MB under each impact level (high and low)

However, upon early analysis, it was noticed that a single set of 100 samples per level

might still be susceptible to various system states or occasional outliers. As a result, to

ensure statistical robustness and generalizability, the each experiment was repeated ten

times, resulting in 1000 random number samples per buffer level per execution. Each of

these experiments was conducted under both,

• Low impact conditions - where no additional entropy depleting processes were run-

ning while data collection and

• High impact conditions - where concurrent background processes were running for

entropy depletion while data collection

This resulted in a comprehensive dataset across environments, buffer levels, and im-

pact levels, allowing for reliable comparative and statistical analysis. The Table 3.3

summarizes the buffer sizes and corresponding impact levels used in the data collection

phase for both the /dev/random and /dev/urandom interfaces.

3.3.5 Initial Execution and Observed Network Effects

The initial execution of the data collection scripts was performed under minimal system

load, but with network access enabled. In cloud environments, the initial data collection

was conducted via remote SSH connections. However, upon analyzing the collected data,

a significant anomaly was identified in one of the graphs as shown in Figure 3.5. During

the execution of the data collection script SSH login was disconnected, which correlated

with the noticeable spike in the time taken to generate random numbers.
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This observation revealed that network related interrupts also could significantly in-

fluence the performance of LRNG related operations. To address this influence of network

services, the data collection process was re-executed in all environments, including desk-

top, private cloud, and public cloud. In cloud environments, this required a more careful

approach due to their reliance on remote access.

Interface Buffer Size Impact Level

/dev/random

2MB
High

Low

4MB
High

Low

6MB
High

Low

/dev/urandom

2MB
High

Low

4MB
High

Low

6MB
High

Low

Table 3.3: Summary of Interfaces, Buffer Sizes and Impact Levels of Experiments

Figure 3.5: Time taken to generate 6MB random numbers during SSH disconnection
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The solution involved scheduling the data collection scripts using cron jobs, tem-

porarily disabling SSH and network access before script execution and re-enabling SSH

services once data collection was complete. This approach ensured that no external net-

work events could interfere with the timing or entropy consumption behaviour of the

system during data collection.

3.3.6 Data Collection with Entropy Enhancing Tools

To investigate whether entropy enhancing tools influence the behaviour of the LRNG

in virtualized environments, RQ3 experiments introduced three controlled configurations

involving entropy enhancing daemon services. This strategy was selected upon the hy-

pothesis that increasing entropy richness could possibly hide the virtualization presence

detection through the behaviour of LRNG. Data was collected under the following iso-

lated and combined scenarios,

• Only haveged service active

• Only jitterentropy-rngd service active

• Both services active concurrently

It is important to note that the virtualized environments selected for these tests were

limited to those in which clear evidence of virtualization presence had been previously

observed in baseline measurements under RQ1. This constraint was necessary to ensure

that the analysis focused on conditions where virtualization detection had already been

positively established through LRNG behaviour.

3.4 Data Analysis Methods

3.4.1 Data Visualization

The first method used for analyzing the data was visualization. This approach allowed

for a preliminary examination of the collected data and its trends. Specifically, for the

rate of random number generation experiments, the data samples were plotted on graphs

with the time taken to generate random numbers on the y-axis and the sample number

on the x-axis. This visual representation enabled a direct comparison between bare metal
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and virtual environments. Key features observed from these plots included the patterns

in distribution of data points, peaks in data and variance across different sample sets.

3.4.2 Basic Statistics

To extend the findings from the visual analysis, basic statistical methods were used. These

included measures such as the mean, variance, standard deviation and the coefficient of

variation. Each of these was selected for a specific purpose based on the experimental

findings.

1. Mean is used for the identification of average time taken to generate random num-

bers, particularly to quantify the average performance under high impact and low

impact scenarios. Differences in mean values were critical for determining whether

certain conditions resulted in longer generation times across environments, as high-

lighted in Observation 1 in the Section 4.

Mean =
Sum of all values

Total number of values

µ =

∑n
i=1 xi

n

2. Variance is used to measure how much the values in the dataset deviate from

the mean. This was relevant to Observation 3 described in Section 4, where the

degree of dispersion between high impact and low impact scenarios was found to

vary across environments and OSs.

Variance =
Sum of squared differences from the mean

Total number of values− 1

σ2 =

∑n
i=1(xi − µ)2

n− 1

3. Standard Deviation, the square root of variance is used to represents the average

amount by which the values differ from the mean.

Std Dev =
√
Variance

σ =
√
σ2
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4. Coefficient of Variation (CV) is calculated to allow a normalized comparison of

variability between datasets with differing mean values. This was useful in Obser-

vation 3 to compare the relative spread of high and low impact distributions across

environments where absolute values differed significantly.

CV =
Standard Deviation

Mean

CV =
σ

µ

3.4.3 Error Metrics

However, basic statistics were found to be insufficient for capturing certain variations and

scatter observed in the data. Specifically, some graphs showed significant fluctuations

and a spread of values across the axes. To capture this more detailed spread and scatter,

additional error metrics were introduced

1. Sum of Squared Errors (SSE) measures how much individual values differ from

their respective row-wise mean across multiple files. The errors (differences from

the mean) are squared before summing them to ensure all differences are positive.

This helped summarize the total error present in the sample, which was also useful

in Observation 3 described in Section 4.

Total SSE =
∑

(each row’s sum of squared errors)

SSE =
n∑

i=1

m∑
j=1

(xij − µi)
2

2. Mean Squared Error (MSE) is found by dividing the total sum of squared errors

by the total number of samples, provides an average measure of error per data point.

MSE =
Total SSE

1000

MSE =
SSE

1000

3.4.4 Peak Detection Metrics

One of the most important findings from the visual analysis was the presence of early

peaks in the time taken to generate random numbers, particularly in virtual environments.
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These peaks were absent in bare metal environments and provided a key insight into the

behaviour of the LRNG under virtualization. Upon careful visual inspection, it was

observed that these peaks alwayas occur within first 8-10 samples and the distribution of

time taken values get stable within first 12 samples. Therefore, it was decided to apply

several peak detection statistical methods to first 12 samples to quantify and analyse the

presence of these early peaks.

1. Peak-to-Mean Ratio (PMR) is used to assess the relative height of the early

peak compared to the average behaviour. A higher PMR suggests that the peak is

much larger than the average behaviour.

PMR =
Max of first n samples

Overall mean

PMR =
max(x1, x2, ..., xn)

µ

2. Z-Score for Early Peak measures how many standard deviations the highest

value among the first n samples is above the overall mean. A high Z-score indicates

that the peak is significantly different from the rest of the data.

Zearly peak =
Max of first n samples−Overall mean

Standard deviation

Z =
max(x1, x2, ..., xn)− µ

σ

3. Early Mean Ratio (EMR) helps in assessing whether the early samples are

generally higher than the rest of the dataset.

EMR =
Mean of first n samples

Overall mean

EMR =
1
n

∑n
i=1 xi

µ

4. Percentage Drop After Peak measures how much the data drops after the

highest early peak. A high drop percentage suggests a strong initial peak followed

by stabilization. This provided the clearest evidence for the presence of early peaks.

Drop =

(
Max of first n samples−Mean of next n samples

Max of first n samples

)
× 100%

Drop =

(
max(x1, x2, ..., xn)− 1

n

∑100
i=n+1 xi

max(x1, x2, ..., xn)

)
× 100
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3.4.5 Assessing the Quality of Random Numbers

To assess the quality of the generated random numbers, the NIST Test Suite was employed

and the following tests were used,

1. Frequency Test, evaluates the proportion of 0s and 1s in the data, checking whether

the number of 1s and 0s are approximately equal. A large deviation from equality

suggests non randomness.

2. Block Frequency Test, divides the data into blocks and checks whether the frequency

of 1s within each block is approximately equal. This helps identify any periodic

patterns or biases in the data.

3. Cumulative Sums Test, examines the cumulative sum of the sequence to detect any

long-term trends or deviations from randomness. A consistent upward or downward

trend suggests non-random behaviour.

4. Runs Test, analyzes the sequence for consecutive occurrences of the same value

(runs). It checks whether the number of runs is consistent with what would be

expected for a random sequence.

5. Longest Run Test, looks at the longest consecutive sequence of 0s or 1s and compares

it to the expected values for a random sequence. A sequence that contains unusually

long runs suggests non-randomness.

6. Rank Test, evaluates the rank of sub-sequences to determine whether the sequence

behaves as expected for a random sequence. Non-randomness is indicated if the

ranks exhibit patterns or clustering.

7. Fourier Transform Test (FFT Test), performs a Fourier transform on the sequence

to detect any periodic components. If the sequence has periodicity or patterns, they

will appear in the frequency domain.

8. Overlapping Template Matching Test, checks whether overlapping patterns (tem-

plates) within the data occur more frequently than expected in a random sequence,

which may suggest predictability.
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9. Approximate Entropy Test, evaluates the complexity of the data sequence by com-

paring the likelihood of similar patterns occurring in the data. A high level of

regularity or predictability indicates non-randomness.

10. Serial Test, examines the relationships between pairs or larger sets of consecutive

bits, ensuring that the sequence does not contain any discernible patterns across

multiple bit positions.

11. Linear Complexity Test, assesses the linear complexity of the sequence, which mea-

sures the length of the shortest linear feedback shift register (LFSR) that can repro-

duce the sequence. A low complexity value suggests that the sequence is predictable

and thus non-random.

Each of these tests outputs a p-value, which indicates the likelihood that the sequence

is random. If the p-value is greater than 0.01, the sample is considered to be random. If

the p-value is 0.01 or lower, the sample is deemed non-random.

In this study, it was assumed that if a sample fails any of these quality tests, it cannot

be considered fully random. This assumption was based on the notion that failure of

any test implies the presence of non-random characteristics in the sequence. To evaluate

the quality of random number generation across different environments, the percentage

of samples that passed all the tests was calculated. Due to the extensive time taken to

generate NIST test result (24+ hour per each set) only 100 data samples were subjected to

tests at each buffer size (2MB, 4MB, 6MB samples). The percentage of passing samples

for each environment was then compared across bare metal and virtual environments,

allowing for the identification of potential differences in the randomness quality of the

generated numbers.

It is also important to note that the notion of assessing randomness quality through

statistical tests is inherently limited. Randomness, by nature, is not easily quantifiable,

and even true random number generators are not expected to consistently achieve a 100%

pass rate across all NIST tests. This limitation is acknowledged within the research

community, and accurate evaluation of randomness remains a challenge. (Kenny and

Mosurski 2005)
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3.5 Summary of the Chapter

This chapter outlined the methodology used to investigate the behaviour of the LRNG

in virtualized environments. The experimental design focused on preliminary experi-

ments, experimental approaches, and establishing baselines and impact levels. Baselines

were determined using initial entropy measures, and impact levels were categorized to

compare random number generation in bare metal versus virtualized environments. The

experimental setup involved testing across desktop, private cloud, and public cloud en-

vironments, using various VMMs like VirtualBox, VMware, and QEMU, and different

Linux distributions such as Ubuntu and AlmaLinux.

For data collection, experiments were conducted with minimal system usage, selecting

buffer sizes of 2MB, 4MB, and 6MB. Data was collected under high and low-impact

conditions, and the data collection was repeated to ensure reliability.

Finally, data analysis used visualizations to compare random number generation rates

across environments, and statistical methods were applied to quantify the visual obser-

vations. The quality of random numbers was assessed using the NIST Test Suite, with

results compared between bare metal and virtual environments. This methodology com-

bines controlled experiments and rigorous analysis to assess how virtualization presence

can be detected from the user space using entropy and random number generation pa-

rameters.
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4 Results Evaluation and Discussion

4.1 Results of Research Question 1

How can a program running in the user space of a Linux VM detect the

underlying virtualization platform using Linux Random Number Generator

and related parameters?

The first research question, which investigates whether the presence of virtualization

can be detected from the user space of a VM setup using the LRNG and related param-

eters, is addressed through experiments conducted in the desktop environment. These

experiments involved running a single VM at a time as the guest OS on the host machine

and collecting data as specified in the Section 3.3.

4.1.1 Rate of Random Number Generation

4.1.1.1 Observation 1 - Difference of time distribution between high and low

impact scenarios

Distribution of time taken to generate a given amount of random data under high impact

and low impact scenarios were observed to have noticeable differences in bare metal and

virtual environments. In some OSs, the average time taken under high impact condition

was higher than that of low impact condition in bare metal while the time taken under

low impact condition was higher in VMs. In some OSs, these observations were reversed.

Following are the detailed findings across different OSs.

Ubuntu 24.04 with kernel version 6.8

As depicted in the Figure 4.1a, time taken to generate 2MB random numbers under the

low impact scenario (pink) is greater than that under the high impact scenario (purple) in

the bare metal environment. However in virtual environments, the time taken to generate

2MB random numbers under the low impact scenario (orange) is lower than that under

the high impact scenario (green) (Figure 4.1b, 4.1c and 4.1d)

This inversion of behaviour between environments is also reflected through descriptive

statistics. The difference between the mean of the distributions (high impact minus low

impact) were taken and the difference is found to be negative in Ubuntu 24.04 bare metal

environments while it is positive in Ubuntu 24.04 VMs. (Table 4.1)
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These patterns were consistent across both /dev/random and /dev/urandom inter-

faces under 2MB buffer size. However, this observation was not uniform nor consistent

with buffer sizes of 4MB and 6MB. The detailed statistical measures for these experi-

ments are provided in the Appendix (Table A.1 and A.2).

Ubuntu 22.04 with kernel version 5.15

In Ubuntu 22.04, the observed pattern is inverted compared to Ubuntu 24.04. The

(a) Ubuntu 24.04 on Bare Metal

(b) Ubuntu 24.04 VM on QEMU
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(c) Ubuntu 24.04 VM on Virtual Box

(d) Ubuntu 24.04 VM on VMWare

Figure 4.1: Distribution of time taken to generate random numbers under high and low

impact scenarios on Ubuntu 24.04 bare metal and VM environments
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(a) Ubuntu 22.04 on Bare Metal

(b) Ubuntu 22.04 VM on QEMU
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(c) Ubuntu 22.04 VM on Virtual Box

(d) Ubuntu 22.04 VM on VMWare

Figure 4.2: Distribution of time taken to generate random numbers under high and low

impact scenarios on Ubuntu 22.04 bare metal and VM environments
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Interface Size Location Impact Mean Mean Difference

(High - Low)

/dev/random 2MB

dsk-host-u24
high 0.00592832

-0.00089834
low 0.00682667

dsk-qemu-u24
high 0.00673412

0.00064556
low 0.00608856

dsk-vbox-u24
high 0.00631766

0.00029177
low 0.00602588

dsk-vmw-u24
high 0.01272027

0.00031262
low 0.01240765

Table 4.1: Mean value differences of time taken on Ubuntu 24.04 environments

time taken to generate 2MB of random numbers under the high impact scenario (purple)

is higher than that under the low impact scenario (pink) in the bare metal environment

(Figure 4.2a). While the opposite behaviour was observed in virtual environments, the

time taken to generate 2MB random numbers under the high impact scenario (green) is

lower than that under the low impact scenario (orange) (Figure 4.2b, 4.2d and 4.2c)

This contrast is further confirmed through statistical analysis. The difference in mean

values (high-impact minus low-impact) was positive in bare metal environments and

negative in VMs (Table 4.2), directly opposing the findings from Ubuntu 24.04 (Table

4.1).

Similar behaviour was observed for 4MB and 6MB buffer sizes across both interfaces.

Detailed statistical comparisons are included in the Appendix (Table A.3 and A.4).

AlmaLinux 9.4 with kernel version 5.14

In the case of AlmaLinux 9.4, no consistent or distinguishable pattern was found in

the time distributions under high and low impact scenarios when comparing virtualized

and bare metal environments (Figure 4.3). The difference in mean values between the two

distributions did not show a notable difference across environments (Table 4.3), indicating

the absence of a detectable relationship similar to those seen in the Debian based systems.
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Interface Size Location Impact Mean Mean Difference

/dev/random 2MB

dsk-host-u22
high 0.00610495

0.00023012
low 0.00587483

dsk-qemu-u22
high 0.00654526

-0.00043266
low 0.00697791

dsk-vbox-u22
high 0.00639046

-0.00155774
low 0.00794820

dsk-vmw-u22
high 0.01080001

-0.00063328
low 0.01143329

Table 4.2: Mean value differences of time taken on Ubuntu 22.04 environments

Interface Size Location Impact Mean Mean Difference

/dev/random 2MB

dsk-host-al9
high 0.00532411

0.00009273
low 0.00523138

dsk-qemu-al9
high 0.00543994

0.00005401
low 0.00538594

dsk-vbox-al9
high 0.00571684

-0.00004430
low 0.00576114

dsk-vmw-al9
high 0.00538035

0.00005976
low 0.00532059

Table 4.3: Mean value differences of time taken on AlmaLinux 9.4 environments
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(a) AlmaLinux 9.4 on Bare Metal

(b) AlmaLinux 9.4 VM on QEMU
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(c) AlmaLinux 9.4 VM on Virtual Box

(d) AlmaLinux 9.4 VM on VMWare

Figure 4.3: Distribution of time taken to generate random numbers under high and low

impact scenarios on AlmaLinux 9.4 bare metal and VM environments
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4.1.1.2 Observation 2 - Presence of an early peak in virtual environments

A key distinguishing behaviour observed throughout the study was the presence of an

early peak in the distributions of time taken to generate random data in virtual environ-

ments (higher amount of time) as shown in the Figures 4.4d, 4.4e and 4.4f, which was

not present in bare metal environments as shown in Figures 4.4a, 4.4b and 4.4c. This

behaviour was consistent across all OSs used, all VMMs used, both high and low impact

scenarios and all buffer sizes (2MB, 4MB and 6MB).

(a) Time distribution with no early peaks, Ubuntu 24.04 on Bare Metal

(b) Time distribution with no early peaks, Ubuntu 22.04 on Bare Metal
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(c) Time distribution with no early peaks, AlmaLinux 9.4 on Bare Metal

(d) Time distribution with a distinct early peak, Ubuntu 24.04 VM on Vir-

tualBox

On closer visual examination, it was found that the early peak is within the first 8 to

10 samples in every VM and the distribution of time taken values becomes stable within

first 12 samples, indicating a potential detection of virtualization. Furthermore, a pattern

emerged when comparing high and low impact scenarios within a VM as well. In high

impact scenarios, the peak was significantly steep, and the distribution stabilized rapidly

within the first 2 to 3 samples. In contrast, low impact scenarios displayed a more gradual
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(e) Time distribution with a distinct early peak, Ubuntu 22.04 VM on

VMware

(f) Time distribution with a distinct early peak, AlmaLinux 9.4 VM on

QEMU

Figure 4.4: Presence of early peaks in the distributions of virtual environments

decline from the peak, with the distribution stabilizing within the first 8 to 10 samples.

However, this distinction was not explored further, as the primary focus remained on

the presence or absence of an early peak rather than its slope or stabilization behaviour.

Notably, such peaks were entirely absent in bare metal environments, highlighting the
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relevance of early peak detection as a potential indicator of virtualization presence.

To capture this four statistical methods were tested, Peak-to-Mean Ratio, Z-Score for

Early Peak, Early Mean Ratio and Percentage Drop After Peak (Refer Section 3.4 for

details). The Percentage Drop After Peak is most effective in capturing this anomaly, as

it consistently reflected the observation across all virtualized configurations (Table 4.4).

Detailed results of peak detection metrics are provided in the Appendix (Section A).

Interface Size Location Impact Drop After Peak

/dev/random 2MB

dsk-host-u24
high 2.1088 %

low 2.0196 %

dsk-vbox-u24
high 39.6653 %

low 54.3855 %

dsk-vmw-u24
high 43.2342 %

low 48.3606 %

/dev/random 4MB

dsk-host-u22
high 0.2707 %

low 5.0286 %

dsk-qemu-u22
high 61.7050 %

low 41.1557 %

dsk-vbox-u22
high 64.1066 %

low 45.3790 %

/dev/random 6MB

dsk-host-al9
high 0.4856 %

low 0.3203 %

dsk-qemu-al9
high 57.1515 %

low 52.6063 %

dsk-vmw-al9
high 60.5417 %

low 56.3494 %

Table 4.4: Drop after the peak percentages across multiple OSs, VMMs, and buffer sizes

Graphical Representation Note: For both observation 1 and 2 each y-axis value was

averaged over ten repeated measurements due to the volume of data and to minimize

visual clutter. The resulting graphs thus represent averaged values across 10 repeated

runs.
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4.1.1.3 Observation 3 - Differences in the dispersion across impact levels

The focus was placed on the dispersion of time measurements when 1000 samples were

collected and plotted. Unlike the previous observations, all individual data points were

plotted without averaging to reveal detailed patterns of variability.

Ubuntu 24.04 with kernel version 6.8

In the Ubuntu 24.04 experiments, a clear distinction was observed in bare metal en-

vironments between high and low impact conditions. Specifically, low impact scenarios

showed wider dispersion in the time taken to generate random numbers (Figure 4.5b),

while high impact scenarios displayed less dispersed compact distributions (Figure 4.5a).

In contrast, Ubuntu 24.04 virtual environments demonstrated fairly dispersed distribu-

tions across both high and low impact conditions (Figures 4.5c and 4.5d), indicating no

meaningful distinction in dispersion with the impact level.

To capture and quantify this observation, statistical measures were computed includ-

ing the variance, standard deviation and coefficient of variation. The ratio of each metric

under low impact to high impact scenarios was calculated to capture the variations. For

example, the variance under low impact was divided by the variance under high impact

to determine how many times more variability was present in the low impact case. These

ratios are indicators of relative dispersion, a higher ratio indicates greater variability

under low impact conditions.

Interface Size Location Variance Ratio

(Low/High)

SSE Ratio

(Low/High)

/dev/random 2MB

dsk-host-u24 385.3518 423.8643

dsk-qemu-u24 0.9139 0.3065

dsk-vbox-u24 1.5502 0.3195

dsk-vmw-u24 1.4062 0.6751

Table 4.5: Variance ratio and SSE ratio of time taken to generate 2MB random numbers

on Ubuntu 24.04

In Ubuntu 24.04 bare metal environments, the variance ratio was found to be relatively

higher, while in virtual environments the ratio was lower reflecting uniform dispersion

across both low impact and high impact scenarios (Table 4.5).
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Further analysis included the computation of sum of squared error and mean squared

errors metrics to identify more insights on the dispersion. The ratio of SSE between low

and high impact scenarios was similarly computed. In bare-metal environments, this ratio

was notably higher while in virtual environments, these values remained low and uniform.

This difference emerges as another clue to detect virtualization presence in Ubuntu 24.04

systems (Table 4.5).

(a) Ubuntu 24.04 on Bare metal (High Impact)

(b) Ubuntu 24.04 on Bare metal (Low Impact)
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(c) Ubuntu 24.04 on VMWare (High Impact)

(d) Ubuntu 24.04 on VMWare (Low Impact)

Figure 4.5: Dispersion of time taken to generate random numbers under high and low

impact scenarios of Ubuntu 24.04 bare metal and VM environments

Ubuntu 22.04 with kernel version 5.15

In Ubuntu 22.04, the pattern of dispersion observed in Ubuntu 24.04 was not present.

Instead, a slightly different behaviour was noted. In bare metal environments, both high

impact and low impact distributions were relatively compact and less dispersed as shown

in Figures 4.6a and 4.6b. And in virtual environments, both high impact and low impact
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distributions were more dispersed than bare metal environments (Figure 4.6). However,

the amount of dispersion did not differ distinctly between the high impact and low impact

conditions.

Given the limitations in performing a comparison between bare metal and VMs with-

out a difference across impact and low impact, the analysis focused on within VM com-

parisons.

Upon visual inspection, a hint of difference was identified in the shapes of distribution

of high impact and low impact scenarios of virtual systems. In low impact, the time

values were distributed in a more irregular and dynamic pattern as shown in Figure 4.6d,

while the high impact distribution followed a relatively linear fluctuation patterns as

shown in Figure 4.6c. However, attempts to statistically capture this pattern through

measures used in Ubuntu 24.04 (variance ratios, standard deviation, SSE) did not reveal

any positive results.

It was observed that the dispersion of low impact scenarios of virtual environments is

caused by variations of skewness in the distribution of multiple rounds of the experiment

(Figure 4.6d). Therefore, the skewness of each 100 sample set was calculated. Then, the

mean skewness across the 10 rounds was derived for each impact condition. The ratio of

low impact to high impact mean skewness for bare metal and virtual systems revealed

a distinct difference. In Ubuntu 22.04 bare metal, the skewness ratio was consistently

greater than 1.75 under every buffer size and interface, while the skewness ratio of virtual

environments was always less than 1 (Table 4.6). This indicates a potential virtualization

measure using the distribution of data in Ubuntu 22.04 systems.

AlmaLinux 9.4 with kernel version 5.14

In the AlmaLinux 9.4 environment, none of the patterns observed in Ubuntu 24.04

or Ubuntu 22.04 were detected. Both bare metal and virtualized setups showed uniform

dispersion patterns across impact levels. Statistical metrics and visual graphs did not

indicate any significant or consistent differences that could be used to distinguish between

environments.
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(a) Ubuntu 22.04 on Bare metal (High Impact)

(b) Ubuntu 22.04 on Bare metal (Low Impact)
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(c) Ubuntu 22.04 on Virtual Box (High Impact)

(d) Ubuntu 22.04 on Virtual Box (Low Impact)

Figure 4.6: Dispersion of time taken to generate random numbers under high and low

impact scenarios of Ubuntu 22.04 bare metal and VM environments
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Interface Size Location Impact Mean

Skewness

Mean Skew

Ratio

/dev/random 2MB

dsk-host-u22
high 0.6593

3.5241
low 2.3235

dsk-qemu-u22
high 4.3103

0.5941
low 2.5607

dsk-vbox-u22
high 7.3972

0.2185
low 1.6166

dsk-vmw-u22
high 6.4568

0.5898
low 3.8085

/dev/random 4MB

dsk-host-u22
high 1.1321

3.2841
low 3.7179

dsk-qemu-u22
high 4.5032

0.4587
low 2.0656

dsk-vbox-u22
high 7.3436

0.2753
low 2.0217

dsk-vmw-u22
high 4.8114

0.7987
low 3.8429

/dev/random 6MB

dsk-host-u22
high 1.1470

2.3844
low 2.7348

dsk-qemu-u22
high 3.2112

0.6176
low 1.9833

dsk-vbox-u22
high 6.9596

0.2218
low 1.5437

dsk-vmw-u22
high 3.8257

0.7152
low 2.7363

Table 4.6: Mean skewness ratio of time taken on Ubuntu 22.04 from /dev/random inter-

face
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4.1.2 Quality of Random Number Generation

The quality of generated random numbers was examined to investigate whether differences

in entropy conditions between bare metal and virtual environments could be detected

through output randomness quality. The evaluation was carried out using the NIST

Statistical Test Suite, as outlined in the Section 3.4.5.

For each test instance, the percentage of samples that passed all the selected NIST

tests was calculated and compared across bare metal and virtual environments under

varying OSs and impact levels. Table 4.7 shows the percentage of samples that passed

all NIST tests on Ubuntu 22.04 /dev/random interface across multiple VMMs and buffer

sizes. However, this analysis did not reveal any consistent or notable patterns differ-

entiating the VM and bare metal environments. Pass percentages for all experimental

instances are given in the Appendix (Table B.1 and B.2).

Interface OS Size Impact Host VBox VMW QEMU

/dev/random Ubuntu 22.04

2MB
high 86 84 83 86

low 84 88 86 88

4MB
high 84 85 83 84

low 85 81 85 86

6MB
high 82 78 80 81

low 85 82 87 88

Table 4.7: Percentage of samples passing all NIST tests on Ubuntu 22.04 /dev/random

interface

The underlying hypothesis motivating this experiment was based on the assumption

that VMs, typically having reduced access to entropy sources, might exhibit lower quality

randomness compared to bare metal systems. However, the results did not support this

hypothesis. Both environments demonstrated similar pass rates across the NIST tests,

indicating no difference in quality attributable to virtualization.

To further investigate the presence of any coorelations with the rate of random number

generation, the early peak observed in Observation 2 of the rate based experiments was

considered (Section 4.1.1.2). An additional analysis was conducted to examine whether

the quality of randomness differed during the peak period.
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As identified earlier, the early peak in time distribution consistently occurred within

the first 12 samples in all virtual environments. To test for a possible correlation, the

NIST quality assessment was repeated by separating the first 12 samples (early peak

window) from the remainder of the data. The percentage of samples passing all core

NIST tests was computed separately for the first 12 samples (during the early peak) and

for the remaining samples after the peak. The Table 4.8 shows the percentage of samples

that passed all NIST tests on Ubuntu 24.04 /dev/urandom interface split by the peak

presence in rate of generation. Results for all experimental instances are given in the

Appendix (Table B.3 and B.4).

Size Impact
Host VMWare

First12 (%) Last88 (%) First12 (%) Last88 (%)

2MB
high 75.00 87.50 83.33 82.95

low 66.67 87.50 75.00 87.50

4MB
high 91.67 79.55 91.67 78.41

low 91.67 86.36 100.00 81.82

6MB
high 83.33 90.91 66.67 88.64

low 83.33 85.23 75.00 81.82

Table 4.8: Percentage of samples passing all NIST tests on Ubuntu 24.04 /dev/urandom

interface split by peak presence in rate of generation

The objective of this analysis was to determine whether the initially slower random

number generation observed in VMs correlated with any observable variation in ran-

domness quality. However, this did not reveal any significant difference of quality of

randomness between the early peak window and the rest of the data, leading to the con-

clusion that the early peak phenomenon does not reflect any degradation or improvement

in random number quality.
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4.1.3 Evaluation of RQ1 Results

How can a program running in the user space of a Linux VM detect the underlying vir-

tualization platform using Linux Random Number Generator and related parameters?

The findings under RQ1 suggest that virtualization creates a measurable impact on

the behaviour of the LRNG, observable from user space. Detection of a virtualized

environment was based on three primary observations,

1. Differences in the time distribution between high and low impact scenarios across

bare metal and virtual systems

2. The presence of an early peak in time measurements in virtual environments

3. Differences in the dispersion of time measures across impact levels

Each observation contributes a distinct layer of evidence toward identifying virtual en-

vironments. A positive result under any single observation indicates potential virtual-

ization, while the presence of multiple positive indicators offers stronger confirmation.

However, it must be noted that detection parameters could not be generalized across

different OS distributions and kernel versions, likely due to continual updates in the un-

derlying random number generation algorithms and the Linux distributions workarounds

on top of it.

Ubuntu 24.04 with kernel version 6.8

• Observation 1 - The time taken for high impact random number generation took

longer than low impact in VMs while the time taken for high impact is lower than

low impact in bare metal systems, depicting a clear inversion of results compared

to VMs. This observation was quantified through the difference of mean values

(mean of high impact minus mean of low impact), a positive mean gap indicates

a virtual environment, while a negative value indicates a bare metal system. This

pattern held consistently only with the 2MB buffer size. In 4MB and 6MB buffer

sizes irregular behaviour was noticed, making 2MB the most reliable configuration

for detection.
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• Observation 2 - Virtual environments exhibited a consistent early peak in the first

10 - 12 samples, followed by stabilization. This behaviour was not observed in bare

metal systems. The behaviour was captured using the percentage drop after peak

metric. To determine a detection threshold, the minimum drop after peak among

all Ubuntu 24.04 VMs was selected, from which a percentage buffer of 5% was

subtracted. This percentage buffer of 5% is applied to account for minor variations

and measurement noise, ensuring the classification threshold remains robust across

similar instances. Accordingly, if the drop after peak of both high impact and low

impact distributions exceeds the computed threshold 24.85%, the system can be

classified as a VM.

• Observation 3 - Dispersion of time taken patterns revealed a distinction where

in VMs, both high and low impact scenarios showed wide dispersion, while bare

metal systems exhibited a clear separation. In bare metal, high impact values were

tightly grouped, and low impact values showed more dispersion. This difference

was quantified using the SSE ratio and the variance ratio. The detection threshold

was computed by adding the percentage buffer to the maximum ratio observed in a

VM environment. Accordingly, the systems with SSE ratio values below 7.3 and/or

variance ratio below 2.95 are classified as virtual.

Ubuntu 22.04 with kernel version 5.15

• Observation 1 - A similar inversion of time taken pattern as Ubuntu 24.04 was

noted but in reverse. In VMs, low impact data collection took longer than high

impact, whereas in bare metal systems, the high impact scenario took time greater

than low impact. This inversion was also measured using the difference of mean

values. A negative mean gap suggests a VM and a positive gap indicates a bare

metal system.

• Observation 2 - Early peaks were also present in Ubuntu 22.04 VMs. As with

Ubuntu 24.04, the drop after peak value was used to capture this, and a similar

method was applied to compute the detection threshold. A system showing a

drop after peak of both high impact and low impact distributions greater than the

calculated threshold, 37.54% is classified as a VM.
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• Observation 3 - Ubuntu 22.04 VMs displayed dynamic dispersion patterns in low im-

pact scenarios, with inconsistent skewness across experimental rounds. In contrast,

high impact values were more linear. Bare metal systems showed compact distribu-

tions across both impact levels. This pattern was captured using the mean skewness

of each group and the skewness ratio (low impact to high impact). A threshold was

determined using the maximum VM skewness ratio plus the percentage buffer. Ac-

cordingly, the ratios below the threshold, 0.91 indicating virtualization.

AlmaLinux 9.4 with kernel version 5.14

• Observation 1 - No inversion pattern was observed. The numerical values for bare

metal and VM environments were nearly indistinguishable, making this observation

ineffective for virtualization detection on this OS.

• Observation 2 - Early peaks were evident in VM systems. The drop after peak

threshold was computed similarly to the previous OSs. AlmaLinux 9.4 systems

with both high impact and low impact distributions exceeding this threshold of

38.92% can be classified as virtualized.

• Observation 3 - No observable dispersion patterns were found. Both bare metal and

virtual environments displayed uniform behaviour across impact levels, making this

observation unsuitable for virtualization detection in AlmaLinux 9.4. As such, only

Observation 2 can be relied upon for identifying virtual systems under this OS.

It is important to note that among the three observations, the only behaviour consis-

tently present across all OSs was the early peak phenomenon captured in Observation 2.

However, despite its presence, the corresponding metric values varied significantly across

OS distributions, preventing the derivation of a generalized threshold applicable across

platforms.

With regard to the quality of random numbers, as evaluated through the NIST statis-

tical test suite, no consistent or distinguishable patterns were identified that could reliably

differentiate virtual from bare metal environments. As detailed in the Section 4.1.2, both

environments exhibited irregular and overlapping outcomes in test pass percentages and

correlation patterns. While these findings suggest that quality based analysis may not

support virtualization detection under the current methodology, further targeted inves-

tigations are required to explore its potential.
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4.1.3.1 Summary of VM Detection Thresholds (Single VM Setup)

• Ubuntu 24

– Mean of high impact - Mean of low impact > 0

– Drop after peak percentage of both high and low impact levels > 24.85%

– SSE of low impact / SSE of high impact < 7.3

– Variance of low impact / Variance of high impact < 2.95

• Ubuntu 22

– Mean of high impact - Mean of low impact < 0

– Drop after peak percentage of both high and low impact levels > 37.54%

– Mean skewness of low impact / Mean skewness of high impact < 0.91

• AlmaLinux 9

– Drop after peak percentage of both high and low impact levels > 38.92%
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4.2 Results of Research Question 2

Can this detection capability be extended to an environment with multiple

guest VMs on a single host?

The second research question expands the investigation to detect virtualization under

multiple VMs running concurrently. This includes multi VM setups on desktop environ-

ments, the private cloud infrastructure of UCSC, and public cloud platforms (Amazon

Web Services and Google Cloud Platform). The results are structured in alignment with

the observations framework established in the analysis of Research Question 1.

Before presenting the results, it is necessary to acknowledge certain limitations en-

countered in configuring and executing experiments on cloud platforms. As described in

the data collection (Section3.3.1), each experimental instance was configured to operate

under minimal usage conditions to minimize the impact of unrelated activities on the

behaviour of the LRNG. This was done by disabling unnecessary background services

and processes. However, on private and public cloud environments, it was not feasible

to remove certain background services provided by the underlying VMM, as that risked

breaking the VM functionality. As a result, some services had to remain active, unlike in

the desktop based experiments.

Additionally, due to these limitations and the hardware differences, direct comparisons

between cloud based VMs and bare metal systems were not accurate. Instead, consistent

with the approach in Research Question 1, comparative analysis was performed using the

difference between high impact and low impact scenarios within each environment. This

difference-based methodology allowed relative patterns to be observed while mitigating

the influence of environmental inconsistencies.

It is also important to note that in the case of Google Cloud Platform (GCP), a recur-

ring anomaly was observed during data collection. Specifically, time measurements for

random number generation would occasionally increase drastically and remain at elevated

for the remainder of the data collection duration. System logs were examined to identify

any anomalies or interferences at the OS level, but no evidence was found. It is suspected

that certain Google Compute Engine background activities or VMM level controls, which

are inaccessible from the VM, may have influenced these outcomes. Therefore, while GCP

data is included in the results, its values should be interpreted with caution considering

these anomalies.
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4.2.1 Rate of Random Number Generation

4.2.1.1 Observation 1 - Difference of time distribution between high and low

impact scenarios

Similar to Section 4.1.1.1, this section analyzes the distribution of time taken to generate

random data under low and high impact scenarios.

Ubuntu 24.04 with kernel version 6.8

In desktop based multi VM environments, Ubuntu 24.04 displayed a clear pattern

where the mean of time taken for random number generation under high impact scenarios

was consistently higher than that of low impact scenarios within all VMs (Figure 4.7a

and 4.7b). This pattern was reversed in bare metal, where time taken for low impact

scenarios is higher than that of high impact scenarios (Figure 4.1a). This remained

consistent across both /dev/random and /dev/urandom interfaces and all buffer sizes.

Similar findings were observed in the Ubuntu 24.04 configurations within private and

public cloud environments as well. Table 4.9 shows the mean values and the difference

between mean values of high impact and low impact scenarios across a selected set of

multiple environments and conditions. Statistics relevant to all test instances are pro-

vided in the Appendix (Desktop : Table C.1 and C.2, Cloud : Table C.3 and C.4).

Interface Size Location Impact Mean Mean Difference

/dev/random 2MB

dsk-host-u24
high 0.00592833

-0.00089835
low 0.00682668

mdsk-qemu-u24
high 0.00718998

0.00090029
low 0.00628969

mdsk-vbox-u24
high 0.00943000

0.00317012
low 0.00625987

mdsk-vmw-u24
high 0.02559374

0.01313418
low 0.01245956

Table 4.9: Mean value differences of time taken on Ubuntu 24.04 bare metal and multi-

VM environments
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(a) Ubuntu 24.04 on Virtual Box (Multi-VM)

(b) Ubuntu 24.04 VM on VMWare (Multi-VM)

Figure 4.7: Distribution of time taken to generate random numbers on Ubuntu 24.04

multi-VMs

Ubuntu 22.04 with kernel version 5.15 and AlmaLinux 9.4 with kernel version

5.14

In both Ubuntu 22.04 and AlmaLinux 9.4, the inverted pattern observed in Ubuntu

24.04 was not consistently replicated. However, despite the absence of a clear trend, the

gap between the mean timings for high and low impact scenarios remained higher in ma-
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jority of virtual environments compared to bare metal systems in the private and public

cloud setups. (Table 4.10 and 4.11). The absence of public cloud data for AlmaLinux 9.4

configuration limits broader comparison.

Interface Size Location Impact Mean Mean Difference

/dev/random 2MB

dsk-host-u22
high 0.00610495

0.00023012
low 0.00587483

mdsk-qemu-u22
high 0.00648120

-0.00040160
low 0.00688280

mdsk-vbox-u22
high 0.00728570

0.00075000
low 0.00653570

mdsk-vmw-u22
high 0.01471226

0.00380516
low 0.01090710

Table 4.10: Mean value differences of time taken on Ubuntu 22.04 bare metal and multi-

VM environments

Figure 4.8: Distribution of time taken to generate random numbers on Ubuntu 24.04

cloud environments
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Interface Size Location Impact Mean Mean Difference

/dev/random 2MB

dsk-host-al9
high 0.00532411

0.00009273
low 0.00523138

mdsk-qemu-al9
high 0.00584062

0.00041021
low 0.00543041

mdsk-vbox-al9
high 0.00654017

0.00075510
low 0.00578507

mdsk-vmw-al9
high 0.00715523

0.00176680
low 0.00538843

Table 4.11: Mean value differences of time taken on AlmaLinux 9.4 bare metal and multi-

VM environments

4.2.1.2 Observation 2 - Presence of an early peak in virtual environments

This examines the presence of early peaks in the time distribution across samples.

Ubuntu 24.04 with kernel version 6.8 and Ubuntu 22.04 with kernel version

5.15

In desktop multiple VM environments, early peaks were clearly observable in both

Ubuntu 24.04 and Ubuntu 22.04 under all impact levels, interfaces and buffer sizes. The

majority of the peaks occurred within the first 1-2 samples creating a steep peak and

stabilizing the distribution quickly (Figure 4.2.1.2). Notably, in earlier experiments under

Research Question 1, peak behaviour was extended across the first 8-10 samples in low

impact scenarios (Figure 4.4e). However, in multiple VM context, the early peaks have

become significantly steeper in both impact levels. To enable meaningful comparison, the

same statistical techniques used earlier in RQ1 were applied here, with a focus narrowed

to the first three samples, capturing the newly observed steep drop after the peak in

time taken distribution patterns (Table 4.12 and 4.13). This early peak behaviour was

not observed in the corresponding bare metal systems offering a possible distinguishing

characteristic.

In contrast, VMs on private and public cloud platforms running both Ubuntu 24.04

and Ubuntu 22.04 did not display any early peaks as depicted in Figure 4.2.1.2.
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(a) Time distribution with a distinct early peak, Ubuntu 24.04 VM on Vir-

tualBox (Multi-VM)

(b) Time distribution with a distinct early peak, Ubuntu 24.04 VM on

VMware (Multi-VM)

AlmaLinux 9.4 with kernel version 5.14

Across both multiple VM environments, desktop and private cloud, consistent early

peaks were not identified in AlmaLinux 9.4 systems as shown in Figure 4.2.1.2 which was

also confirmed through the statistical measures as shown on Table 4.14.
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(c) Time distribution with a distinct early peak, Ubuntu 22.04 VM on Virtual

Box (Multi-VM)

(d) Time distribution with a distinct early peak, Ubuntu 22.04 VM on

VMware (Multi-VM)

Figure 4.9: Presence of early peaks in the distributions of desktop virtual environments
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Interface Size Location Impact Drop After Peak

/dev/random 2MB

dsk-host-u24
high 2.3671 %

low -1.1329 %

mdsk-qemu-u24
high 53.1039 %

low 44.1523 %

mdsk-vbox-u24
high 60.8460 %

low 55.6334 %

Table 4.12: Drop after the peak percentages on Ubuntu 24.04 Desktop multi-VMs

Interface Size Location Impact Drop After Peak

/dev/urandom 4MB

dsk-host-u22
high 0.1150 %

low 6.4615 %

mdsk-qemu-u22
high 62.4254 %

low 40.8978 %

mdsk-vmw-u22
high 25.9452 %

low 29.8391 %

Table 4.13: Drop after the peak percentages on Ubuntu 22.04 Desktop multi-VMs

Interface Size Location Impact Drop After Peak

/dev/random 2MB

dsk-host-al9
high 1.3276 %

low 0.1876 %

mdsk-vbox-al9
high 0.8258 %

low -0.1151 %

mdsk-vmw-al9
high 44.9819 %

low 44.6974 %

Table 4.14: Drop after the peak percentages on AlmaLinux 9.4 Desktop multi-VM
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(a) Time distribution with no early peaks, Ubuntu 24.04 VM on Private

Cloud

(b) Time distribution with no early peaks, Ubuntu 22.04 VM on Public

Cloud (AWS)

Figure 4.10: Absence of early peaks on Ubuntu 24.04 and 22 in the distributions of private

and public cloud environments

78



(a) Time distribution with no early peaks, AlmaLinux 9.4 VM on Private

Cloud

(b) Time distribution with no early peaks, AlmaLinux 9.4 VM on Virtual

Box (Multi-VM)

Figure 4.11: Absence of early peaks on AlmaLinux 9.4 in the distributions of desktop

and private cloud environments
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4.2.1.3 Observation 3 - Differences in the dispersion across impact levels

Ubuntu 24.04 with kernel version 6.8

In the desktop environment, Ubuntu 24.04 bare metal systems exhibited high disper-

sion under low impact scenarios (Figure 4.5b) and compact less dispersion under high

impact scenarios (Figure 4.5a). In contrast, desktop VMs displayed a reversal of this

pattern, with high impact scenarios being more dispersed than low impact ones (Figure

4.2.1.3). Private and public cloud virtual environments showed a substantially higher

dispersion in high impact scenarios compared to low impact scenarios (Figure 4.2.1.3 and

4.2.1.3). These patterns were effectively statistically captured by using both SSE and

variance ratios as well (Table 4.15).

Interface Size Location Variance

Ratio

SSE Ratio

/dev/random 2MB

dsk-host-u24 385.3518 423.8643

mdsk-qemu-u24 0.3085 0.1199

mdsk-vbox-u24 0.0516 0.0296

mdsk-vmw-u24 0.3862 0.3524

pvt-vmw-u24 0.0657 0.0662

pub-aws-u24 0.0387 0.0399

pub-ggl-u24 0.0001 0.0001

Table 4.15: Variance ratio and SSE ratio of time taken to 2MB generate random numbers

on Ubuntu 24.04 in multi-VM setups

Ubuntu 22.04 with kernel version 5.15

In the desktop environment, Ubuntu 22.04 VMs were observed to be slightly more

dispersed in high impact scenarios than low impact scenarios as shown in Figures 4.15a

and 4.15b, while bare metal systems showed compact dispersion in both high and low

impact conditions (Figure 4.6a and 4.6b). However, the SSE ratio fails to reflect this

behaviour while it is captured more effectively by the variance ratio.

Furthermore, skewness analysis reveals a detectable pattern as shown in Table 4.17,

though the ratios of VMs have increased compared to the single VM setup (Table 4.6).
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(a) Ubuntu 24.04 on VMWare (High Impact)

(b) Ubuntu 24.04 on VMWare (Low Impact)

Figure 4.12: Dispersion of time taken to generate random numbers on Ubuntu 24.04

multi-VM environments
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(a) Ubuntu 24.04 VM on Private Cloud (High Impact)

(b) Ubuntu 24.04 VM on Private Cloud (Low Impact)

Figure 4.13: Dispersion of time taken to generate random numbers on Ubuntu 24.04

private cloud environment
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(a) Ubuntu 24.04 VM on Public Cloud (High Impact)

(b) Ubuntu 24.04 VM on Public Cloud (Low Impact)

Figure 4.14: Dispersion of time taken to generate random numbers under high and low

impact scenarios of Ubuntu 24.04 on public cloud environment
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In the private and public cloud environments, the variance ratio continued to be a

valid detection parameter, capturing dispersion differences between VMs and bare metal

systems in majority of the cases (Figure 4.16 and 4.17). However, this distinction was

not observed for the /dev/random 6MB buffer size. Skewness, on the other hand, does

not show a consistent separation across systems, limiting its utility in cloud contexts.

(a) Ubuntu 22.04 on VMWare (High Impact)

(b) Ubuntu 22.04 on VMWare (Low Impact)

Figure 4.15: Dispersion of time taken to generate random numbers on Ubuntu 22.04 on

multi-VM environments
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(a) Ubuntu 22.04 VM on Private Cloud (High Impact)

(b) Ubuntu 22.04 VM on Private Cloud (Low Impact)

Figure 4.16: Dispersion of time taken to generate random numbers on Ubuntu 22.04

private cloud environment
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(a) Ubuntu 22.04 VM on Public Cloud (High Impact)

(b) Ubuntu 22.04 VM on Public Cloud (Low Impact)

Figure 4.17: Dispersion of time taken to generate random numbers on Ubuntu 22.04

public cloud environment
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Interface Size Location Variance

Ratio

SSE Ratio

/dev/random 2MB

dsk-host-u22 1.3492 1.1981

mdsk-qemu-u22 0.9714 1.2010

mdsk-vbox-u22 0.4713 0.2216

mdsk-vmw-u22 0.4712 0.4456

pvt-vmw-u22 0.4592 0.4163

pub-aws-u22 0.3486 0.3574

pub-ggl-u22 0.6312 0.6733

Table 4.16: Variance ratio and SSE ratio of time taken to 2MB generate random numbers

on Ubuntu 22.04 in multi-VM setups

Interface Size Location Impact Mean

Skewness

Mean Skew

Ratio

/dev/random 2MB

dsk-host-u22
high 0.6593

3.5241
low 2.3235

mdsk-qemu-u22
high 5.9145

0.5887
low 3.4818

mdsk-vbox-u22
high 5.7844

1.4042
low 8.1226

mdsk-vmw-u22
high 2.3646

1.3981
low 3.3058

Table 4.17: Mean skewness ratio of time taken on Ubuntu 22.04 multi-VM
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AlmaLinux 9.4 with kernel version 5.14

Across both desktop, and private cloud environments, AlmaLinux 9.4 did not display

any notable patterns or trends of dispersion in high impact and low impact scenarios in

VMs and bare metal systems.

4.2.2 Quality of Random Number Generation

The quality of generated random numbers was examined to determine whether virtual-

ization influences randomness in multiple VM setups across desktop, private, and public

cloud environments. The analysis followed the same procedure described in Section 3.4.5,

using the NIST Statistical Test Suite to evaluate the quality from both virtual and bare

metal systems.

For each instance, the percentage of samples that passed all selected NIST tests was

calculated and compared across virtual and bare metal environments. However, consistent

with the findings under RQ1, this evaluation did not reveal any consistent or meaningful

patterns. Pass rates appeared irregular across environments and configurations, with no

statistically significant advantage observed (Table 4.18).

Size Impact Host VBox VMW QEMU UCSC AWS GGLC

2MB
high 86 84 86 84 88 85 85

low 84 88 87 83 82 83 85

4MB
high 84 81 85 73 83 85 82

low 85 79 87 84 86 88 80

6MB
high 82 86 88 83 85 83 84

low 85 79 77 85 79 81 80

Table 4.18: Percentage of samples that passed all NIST tests on Ubuntu 22.04

/dev/random interface in multi-VM desktop and cloud environments

To explore the possibility of a relationship between randomness quality and the rate

based observations, particularly the early peak in timing noted in Observation 2, an

additional analysis was conducted. This analysis was limited to the desktop environment,

as neither the private nor public cloud environments demonstrated early peaks. The

percentage of samples passing all tests was computed separately for the samples during the

early peak and for the remaining samples after the peak. The results of this comparison
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revealed no significant quality differences between the early peak window and the post

peak data.

4.2.3 Evaluation of RQ2 Results

Can this detection capability be extended to an environment with multiple guest VMs on

a single host?

This evaluation follows the same three observation framework established in Research

Question 1, now extended to three distinct multiple VM environments, desktop, pri-

vate cloud, and public cloud. As discussed prior to the results, the cloud environments

presented several limitations, including restricted resource control, inconsistent kernel

versions, and anomalies observed in the Google Cloud infrastructure. Furthermore, Al-

maLinux was not consistently available across all platforms, further constraining uniform

comparison.

Ubuntu 24.04 with kernel version 6.8

• Observation 1 -The inversion pattern observed in RQ1 was consistently replicated

across all three multiple VM environments. The mean time taken for high impact

scenarios was greater than that of low impact ones in virtual environments, while

the reverse was evident in bare metal systems. This behaviour was statistically

captured using the difference of mean values (high impact mean minus low impact

mean), and a positive mean gap was indicative of a virtualized Ubuntu 24.04 system.

• Observation 2 - Early peaks were observed in the desktop multiple VM setup.

These peaks were steeper than in RQ1, occuring within the first 1-2 samples. To

statistically capture this, drop after peak metric was recalibrated to focus on the

first 3 samples. Similar to RQ1, the thresholds were computed by subtracting the

percentage buffer from the minimum drop percentage observed. Accordingly, a drop

after peak values of both high impact and low impact distributions exceeding the

threshold 13.70% suggests a VM. No such peaks were observed in the cloud based

environments.

• Observation 3 - In virtual environments, high impact scenarios displayed higher

dispersion than low impact, while bare metal showed compact distributions under

89



high impact and wider dispersion under low impact. This reversal behaviour was

captured using SSE and variance ratios. Thresholds were calculated by adding the

standard deviation to the maximum ratio observed among VMs. A system was

classified as a VM if the SSE ratio is lower than 1.5 and/or variance ratio is lower

than 1.25.

Ubuntu 22.04 with kernel version 5.15

• Observation 1 - No consistent inversion pattern was observed across the multiple

VM environments. However, the gap between high and low impact timing measure-

ments remained larger in the majority of virtual systems compared to bare metal

environments, though not statistically conclusive for detection.

• Observation 2 - Early peaks were observed in the desktop multiple VM environment,

consistent with Ubuntu 24.04, and were similarly captured via the drop after peak

metric with a threshold of 19.39&. These peaks were not present in either private

or public cloud setups.

• Observation 3 - In the desktop multiple VM environment, high impact scenarios

displayed more dispersion than low impact ones, while bare metal systems showed

compact distributions across both scenarios. This was statistically captured using

variance ratio and skewness. Thresholds were defined accordingly ,variance ratio

below 1.1 and/or skewness ratio below the 1.73 indicate a VM.

AlmaLinux 9.4 with kernel version 5.14

• Observation 1 - No consistent or statistically distinguishable patterns were detected

across any of the multiple VM environments. Although the average difference be-

tween high and low impact timings was higher in VM, this was not sufficient for

classification.

• Observation 2 - Early peaks were not consistently present. Only one VM instance in

the desktop environment showed early peaks, and no such behaviour was observed

in cloud based instances.

• Observation 3 - No distinct patterns in dispersion were found.
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Across the experiments, Ubuntu 24.04 and Ubuntu 22.04 demonstrated multiple ob-

servable patterns in multiple VM environments that enable VM detection using a com-

bination of timing based strategies. AlmaLinux, however, remained mostly undetectable

through the mechanisms applied. These results suggest the necessity for further research

into Red Hat-based distributions to determine whether this limitation is due to funda-

mental differences in how the OS handles randomness and entropy.

As for the analysis of random number quality, results were consistent with those pre-

sented under RQ1. No clear patterns were found that could differentiate virtual and bare

metal environments based on the quality of the random numbers generated. Although

current evidence does not support quality based detection in these scenarios, further

experimentation is required to determine its full potential.

4.2.3.1 Summary of Detection Thresholds for Multiple VM Setup

• Ubuntu 24

– Mean of high impact - Mean of low impact > 0

– Drop after peak percentage of both high and low impact levels > 13.70%

– SSE of low impact / SSE of high impact < 1.5

– Variance of low impact / Variance of high impact < 1.25

• Ubuntu 22

– Drop after peak percentage of both high and low impact levels > 19.39%

– Mean skewness of low impact / Mean skewness of high impact < 1.73

– Variance of low impact / Variance of high impact < 1.1

• AlmaLinux 9

– Not detectable
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4.3 Results of Research Question 3

How to obscure the VM presence from user space programs running within

the VM?

The third research question explores the potential for preventing virtualization de-

tection based on LRNG related metrics. This was investigated only within the desktop

VM environment, where consistent virtualization detection patterns had previously been

observed. Furthermore, this phase was limited to experiments involving rate of random

number generation due to the ineffectiveness of resutls from the quality of random num-

ber related experiments. The aim was to assess whether additional entropy sources or

adjustments to system behaviour could obscure the distinguishable features that indicate

virtualization presence.

In the rate based experiments, only the buffer size and random number interface

demonstrating the most prominent detection capability were selected. The reason behind

this choice was that any successful attempt to obscure virtualization indicators under the

strongest detection conditions would implicitly extend to less sensitive configurations.

Based on the results presented under Research Question 1, the configurations involving

a 2MB buffer size and the /dev/random interface was identified as the most effective

for virtualization detection. Accordingly, all experiments under this phase used this

configuration.

To evaluate whether the distinguishable patterns could be effectively obscured, en-

tropy enhancement daemons haveged (Wuertz and Hladky 2025) and jitterentropy-rngd

(Müller 2022) were used, as described in the methodology Section 3.3.6.

Each observation in this phase is evaluated by comparing the statistical metrics from

the entropy enhanced environment against the established threshold criteria derived from

RQ1. These thresholds were identified as key indicators of virtualization presence for

each OS. Accordingly, the effectiveness of entropy enhancement is determined based on

whether the corresponding instances fall within or outside these threshold bounds.

4.3.1 Ubuntu 24.04 with kernel version 6.8

The experimental results for Ubuntu 24.04 reveal that the introduction of entropy enhanc-

ing daemons, haveged, jitterentropy-rngd, and their combination did not successfully

obscure the virtualized nature of the instances. Despite the expected enhancement of
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entropy availability due to these tools, key identified indicators of virtual presence such

as the drop after peak, SSE ratio and variance ratio consistently fell within the thresh-

olds previously identified for RQ 1 (Section 4.1.3.1). Tables 4.19, 4.20 and 4.21 contain

the statistical measures obtained for each experiment under only haveged actived, only

jitterentropy-rngd activated and both activated respectively. Specifically, the drop

after peak values are greater than 24.85%, mean gaps are positive, while both the SSE

ratio and variance ratio remained below their respective thresholds of 7.3 and 2.95, which

were previously established as indicating virtualization presence in Ubuntu 24.04.

Furthermore, the time distributions depicted in Figures 4.18a, 4.18b, 4.19a and 4.19b

indicate that random number generation with entropy enhancers have taken a higher

time duration in both high impact and low impact scenarios when compared to both the

typical VM behaviour observed in RQ1 and the corresponding bare metal measures.

These results challenge the hypothesis that entropy enhancement could obscure vir-

tual environments by enriching the LRNG’s input and thereby make it closer to bare

metal systems. Instead, the results support the conclusion that identified virtualization

detection characteristics in random number generation rates are not sufficiently obscured

by simply enhancing the entropy.

Location Impact Drop After

Peak

Mean Gap SSE Ratio Variance

Ratio

odsk-qemu-u24
high 55.68

0.00022148 0.3460 1.7829
low 53.56

odsk-vbox-u24
high 63.97

0.00394860 0.0350 0.0599
low 58.45

odsk-vmw-u24
high 26.95

0.01288866 0.1469 0.3120
low 43.69

Table 4.19: Entropy Enhancement on Ubuntu 24.04 VMs only using Haveged
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(a) Ubuntu 24.04 on Virtual Box - High Impact

(b) Ubuntu 24.04 on Virtual Box - Low Impact

Figure 4.18: A comparison of random number generation rate curves of Ubuntu 24.04 on

Virtual Box across bare metal, with and without entropy enhancing tools
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(a) Ubuntu 24.04 on VMware - High Impact

(b) Ubuntu 24.04 on VMware - Low Impact

Figure 4.19: A comparison of random number generation rate curves of Ubuntu 24.04 on

VMWare across bare metal, with and without entropy enhancing tools
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Location Impact Drop After

Peak

Mean Gap SSE Ratio Variance

Ratio

odsk-qemu-u24
high 53.50

0.00019526 0.8330 1.9708
low 52.40

odsk-vbox-u24
high 57.51

0.00381568 0.0237 0.0544
low 59.09

odsk-vmw-u24
high 27.54

0.01297535 0.2113 0.3634
low 45.64

Table 4.20: Entropy Enhancement on Ubuntu 24.04 VMs only using Jitterentropy

Location Impact Drop After

Peak

Mean Gap SSE Ratio Variance

Ratio

odsk-qemu-u24
high 56.59

0.00045410 0.1449 1.4677
low 57.23

odsk-vbox-u24
high 65.12

0.00420792 0.0411 0.0685
low 60.11

odsk-vmw-u24
high 26.54

0.01304665 0.2226 0.3643
low 43.80

Table 4.21: Combined Entropy Enhancement on Ubuntu 24.04 VMs using Haveged and

Jitterentropy

4.3.2 Ubuntu 22.04 with kernel version 5.15

The results observed for Ubuntu 22.04 similarly indicate that entropy enhancement tech-

niques that were used were not effective in obscuring the virtualization detection of the

systems. Across all three virtualization platforms the key classification indicator, drop

after peak exceeded the threshold of 37.54% established for virtual environments (Tables

4.22, 4.23, and 4.24). This metric remained the most prominent and consistent distinc-

tion between virtualized and bare metal systems, and none of the enhanced configurations

were able to bring this value below the virtual threshold.

However, some instances showed partial obfuscation with respect to other indicators

such as mean gap values occasionally being positive or skewness ratios exceeding the
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VM threshold. However, these measures cannot be considered independently without

the most prominent detection method, drop after peak. The time distribution plots in

Figures 4.20a through 4.21b further support these findings. The application of entropy

enhancing tools appeared to amplify the patterns in timing behaviour associated with

VMs, rather than aligning them with the bare metal patterns observed in RQ1.

Location Impact Drop After

Peak

Mean Gap Skewness Ratio

odsk-qemu-u22
high 65.14

-0.00040983 0.5872
low 53.30

odsk-vbox-u22
high 65.04

0.00068079 1.0715
low 58.13

odsk-vmw-u22
high 52.08

0.00366671 1.2075
low 53.66

Table 4.22: Entropy Enhancement on Ubuntu 22.04 VMs only using Haveged

Location Impact Drop After

Peak

Mean Gap Skewness Ratio

odsk-qemu-u22
high 67.07

-0.00181154 0.3358
low 39.69

odsk-vbox-u22
high 63.28

0.00064448 1.0593
low 60.94

odsk-vmw-u22
high 54.04

0.00355165 1.1555
low 53.56

Table 4.23: Entropy Enhancement on Ubuntu 22.04 VMs only using Jitterentropy
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Location Impact Drop After

Peak

Mean Gap Skewness Ratio

odsk-qemu-u22
high 63.98

-0.00036218 0.6375
low 54.28

odsk-vbox-u22
high 62.93

0.00057375 1.0518
low 62.57

odsk-vmw-u22
high 53.48

0.00375932 1.2167
low 54.89

Table 4.24: Combined Entropy Enhancement on Ubuntu 22.04 VMs using Haveged and

Jitterentropy

4.3.3 AlmaLinux 9.4 with kernel version 5.14

The evaluation of entropy enhancement tools on AlmaLinux 9.4 reveals that the only

detection indicator on AlmaLinux 9.4 “drop after peak” remained consistently above the

VM threshold of 38.92% across all virtualized setups. As shown in Tables 4.25, 4.26, and

4.27, this metric did not fall below the threshold in any of the configurations, irrespective

of the entropy tool used or the impact level applied. This consistent pattern indicates

that none of the entropy enhancement methods were successful in hiding the virtualization

presence.

The distribution curves presented in Figures 4.22a and 4.22b displays this conclusion.

The virtualized systems under all three platforms, QEMU, VirtualBox, and VMware

continued to exhibit steep declines in generation rate after the initial peak, even after

entropy enhancements were introduced. These curves closely align with observations in

RQ1 further confirming the ineffectiveness of entropy enhancing tools for virtualization

obfuscation.
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(a) Ubuntu 22.04 on QEMU - High Impact

(b) Ubuntu 22.04 on QEMU - Low Impact

Figure 4.20: A comparison of random number generation rate curves of Ubuntu 22.04 on

QEMU across bare metal, with and without entropy enhancing tools
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(a) Ubuntu 22.04 on VMware - High Impact

(b) Ubuntu 22.04 on VMware - Low Impact

Figure 4.21: A comparison of random number generation rate curves of Ubuntu 22.04 on

VMWare across bare metal, with and without entropy enhancing tools
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Location Impact Drop After Peak

odsk-qemu-al9
high 62.19

low 57.85

odsk-vbox-al9
high 57.87

low 56.58

odsk-vmw-al9
high 60.69

low 59.90

Table 4.25: Entropy Enhancement on AlmaLinux 9.4 VMs only using Haveged

Location Impact Drop After Peak

odsk-qemu-al9
high 60.73

low 56.23

odsk-vbox-al9
high 56.05

low 52.63

odsk-vmw-al9
high 60.77

low 59.82

Table 4.26: Entropy Enhancement on AlmaLinux 9.4 VMs only using Jitterentropy

Location Impact Drop After Peak

odsk-qemu-al9
high 65.71

low 56.32

odsk-vbox-al9
high 58.01

low 56.43

odsk-vmw-al9
high 60.69

low 59.47

Table 4.27: Combined Entropy Enhancement on AlmaLinux 9.4 using Haveged and Jit-

terentropy
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(a) AlmaLinux 9.4 on Virtual Box - High Impact

(b) AlmaLinux 9.4 on Virtual Box - Low Impact

Figure 4.22: A comparison of random number generation rate curves of AlmaLinux 9.4

on Virtual Box across bare metal, with and without entropy enhancing tools
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4.4 Threshold Evaluation

4.4.1 Need for Threshold Merging

Threshold merging is necessary due to the existence of two sets of thresholds derived

from the RQ1 (Section 4.1.3.1) and RQ2 (Section 4.2.3.1) experiments, corresponding to

single VM and multiple VM setups respectively. During the evaluation of RQ3 (Section

4.3), thresholds from the single VM setup were utilized, given that the RQ3 experiments

were explicitly conducted in a single VM environment.

However, in real world malware testing, a program cannot inherently determine

whether it is operating within a single VM or a multiple VM environment. Therefore,

a unified set of thresholds must be defined to ensure coverage of both scenarios. The

following approach was used for combining the thresholds,

• For parameters where a greater-than condition flags a VM, the smaller threshold

value from the two setups is selected to ensure that both single VM and multiple

VM instances are detected. For example, regarding the “drop after peak” measure

in Ubuntu 24.04,

In single VM setups, a value greater than 24.85% indicates a VM

In multiple VM setups, a value greater than 13.70% indicates a VM

Therefore, 13.70% is selected as the combined threshold to ensure detection in both

cases.

• For parameters where a less-than condition flags a VM, the larger threshold value

is selected, again to ensure coverage of both scenarios. For example for the SSE

ratio in Ubuntu 24.04,

In single VM setups, a value below 7.3 indicates a VM

In multiple VM setups, a value below 1.5 indicates a VM

Therefore, 7.3 is selected as the threshold to cover both setups.

It is acknowledged that the derived thresholds are highly subjective to the data col-

lected through the experiments of this study. As mentioned on the Section 3.3.4, the

data collection was repeatedly done to improve generalizability and minimize momentary
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system effects. Each experiment was repeated over 10 rounds with sufficient intervals

between each round to allow system replenishment, which took a considerable amount of

time. The thresholds were then calculated based on the averaged data of these rounds.

However in a practical malware detection scenarios, the decision whether it is a VM or

not must be made within a matter of few seconds. Therefore, it was decided to streamline

the data collection to a single round using the most effective condition identified by the

experimental results. Accordingly random data collection from /dev/random interface

with a 2MB buffer size was selected.

4.4.2 Proof of Concept Program and Threshold Evaluation

Following the identification of most effective data collection configuration, a C++ Proof

of Concept (PoC) program was developed to generate 2MB of random data from the

/dev/random interface, compute the relevant statistical measures, and determine the

virtualization status based on the established thresholds.

The PoC was tested across the VM and bare metal instances used in the previous

experiments. The 9 VM instances consisted of three VMMs (VirtualBox, VMware and

QEMU) across three OSs (Ubuntu 24.04, Ubuntu 22.04 and AlmaLinux 9.4), while 9 bare

metal rounds were also included for evaluation.

The PoC was tested across the identified threshold parameters and a detailed analysis

of misdetections revealed several important insights. The thresholds associated with the

mean gap, SSE ratio, variance ratio, and skewness ratio measures were less reliable across

different systems and often fell outside the threshold ranges, causing false positive and

false negative detections. However, throughout all evaluation instances, the “drop after

peak percentage” threshold proved to be the most reliable, failing the threshold range

only twice out of 54 detections.

Given the robustness of the “drop after peak percentage” measure and the less relia-

bility of other measures, it was decided to adopt the drop after peak percentage threshold

as the primary VM detection rule, with the remaining parameters retained only as auxil-

iary indicators. This achieved the best balance between recall, precision, and specificity,

reaching an overall accuracy of 94.44%. The final evaluation metrics results are presented

in the Table 4.28.
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Metric Result

Accuracy 94.44%

Precision 100.00%

Recall 88.89%

Specificity 100.00%

F1 Score 94.12%

Table 4.28: Evaluation results for virtualization detection

4.4.3 Final Detection Rules

The final set of thresholds for VM detection derived from the experiments, analysis and

evaluation are as follows.

• Ubuntu 24.04

Drop after peak percentage of both high and low impact levels > 13.70%

• Ubuntu 22.04

Drop after peak percentage of both high and low impact levels > 19.39%

• AlmaLinux 9.4

Drop after peak percentage of both high and low impact levels > 38.92%

4.5 Summary of the Chapter

This chapter presented the results, evaluation, and discussion of the three research ques-

tions addressed in the study. Each research question was analyzed and evaluated system-

atically based on the experimental data collected.

First, the results for Research Question 1 were presented, focusing on the behaviour

of the LRNG under single VM setups. Observations were made regarding patterns in

random number generation rates and based on these findings, a set of thresholds for VM

detection in single VM environments was derived.

Next, Research Question 2 extended the investigation to multiple VM environments,

including desktop, private cloud, and public cloud scenarios. The same analysis struc-
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ture was followed, and thresholds for VM detection under multiple VM conditions were

similarly derived.

Research Question 3 explored whether entropy enhancing tools could obscure virtual-

ization detection by influencing LRNG behaviour. Analysis of data collected with those

tools showed that these methods were largely ineffective in concealing virtualization pres-

ence.

Research Question 3 involved evaluating the effectiveness of the thresholds obtained

from Research Question 1 and Research Question 2 through the development of a PoC

program. The PoC performed real-time detection based on the most prominent experi-

mental findings, focusing on fast execution suitable for practical malware detection.

Following the discussion of the three research questions, a detailed threshold evalua-

tion was conducted. This section addressed the challenge of defining unified thresholds

that would be applicable without prior knowledge of the system’s virtualization setup

(single or multiple VM). Different threshold combination strategies such as conjunctive

(AND), disjunctive (OR), and hybrid were evaluated through a PoC program and con-

fusion matrix analysis. The drop after peak percentage threshold was found to provide

the most balanced and accurate detection outcomes.

Overall, this chapter established the experimental foundation of the study by pre-

senting key findings, deriving practical thresholds, and evaluating detection strategies,

thereby strengthening the support for the research objectives.
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5 Conclusion

5.1 Conclusion of the Study

This study was initiated to investigate a crucial problem in the context of malware anal-

ysis. The challenge was to explore whether malware could detect that it was running

inside a VM, a common setup for safe analysis. If malware identifies the virtualized en-

vironment, it may conceal its true behaviour, complicating detection efforts. A review of

existing virtualization detection methods revealed that most approaches depended on ker-

nel space data or privileged access, making them unsuitable for user space detection, such

as by a malware under analysis. This limitation motivated the search for non privileged

techniques capable of identifying virtualization from within user space alone.

While searching for parameters commonly available in Linux systems without requir-

ing privileged access, it was observed that random number generation behaviour differs

between physical and virtualized environments. In particular, VMs often employ tools

such as rng-tools and haveged to enhance entropy during operations requiring high qual-

ity randomness. These differences highlighted the LRNG as a potential indicator of

virtualization presence. This observation led to the formulation of the research aim, “to

investigate methods for detecting virtualization presence using the LRNG and related

parameters from user space, and to explore techniques for obscuring such detection.”

Based on this aim, the research objectives and questions were defined.

The research was structured around three key questions, the feasibility of detecting

virtualization from a single VM, the extension of detection techniques to multiple VM

environments, and the exploration of methods to obscure it if there is a detection from

user space. Literature suggested that LRNG entropy fluctuations would be directly mea-

surable, however due to changes in newer kernel versions, these fluctuations were no

longer observable. Alternative indirect measures were attempted including using CPU

and memory utilization patterns which were ineffective due to the mismatch between the

granularity of system monitoring tools and the rapid nature of random number genera-

tion. As a result, the study focused on the rate and quality of random number generation

as primary indicators. To determine operations with significant LRNG impact, prelim-

inary experiments were conducted on Ubuntu 14, an older system where such effects

remained visible. Direct comparisons between bare metal and virtual environments were
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avoided due to inherent virtualization overheads. Instead, a delta-based approach was

adopted, comparing high and low impact operations within each environment. Experi-

mental setups were then systematically designed to address the research questions, with

data collected under controlled conditions across various environments to assess detection

feasibility and explore potential countermeasures.

The experimental results revealed that measurable differences in random number gen-

eration behaviour exist between bare metal and virtual environments. Even though

qulaity of random numbers did not provide any distinguishable patterns across VMs and

bare metal systems, time taken to generate random number samples revealed insightful

patterns enabling the successful detection of virtualization presence from user space. A

key observation was the presence of an early peak in random number generation distribu-

tions, where higher initial times gradually stabilized. However, the detection in multiple

VM cloud environments proved more challenging, primarily due to limitations in private

and public cloud setups that restricted direct control. Attempts to obscure detection

using entropy enhancing tools were unsuccessful, highlighting the need for further ex-

ploration into possible mitigation techniques. The thresholds for detecting virtualization

were found to be specific to each OS and not universally generalizable, given the limita-

tions of the study. These thresholds were evaluated through various combinations and the

best combination was found to provide a detection accuracy of 94.44%. These findings

contribute valuable insights into user space based virtualization detection, yet further

research is necessary to refine these approaches and explore potential countermeasures.

5.2 Critical Reflection on Research Outcomes

The primary research aim of this study was to investigate methods for detecting virtual-

ization presence using the LRNG and related parameters in virtual environments, as well

as to explore techniques to obscure such detection from user space programs. This aim

was pursued through three key objectives and research questions.

The first objective was to analyze how a program running in the user space of a

Linux VM can detect the underlying virtualization platform using the LRNG and related

parameters. The corresponding research question was, “How can a program running in

the user space of a Linux VM detect the underlying virtualization using the LRNG and

related parameters?” This objective was successfully achieved. Methods for detecting
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virtualization presence were identified, and the detection parameters derived from this

research showed an accuracy of 94.4%. A significant finding was the presence of an early

peak in random number generation distributions on virtual environments, where higher

initial generation times gradually stabilized over time. This observation, alongside the

accuracy of the thresholds, confirms the success of the first objective.

The second objective focused on evaluating whether this detection capability could

be extended to environments with multiple guest VMs on a single host. The related

research question was, “Can this detection capability be extended to an environment with

multiple guest VMs on a single host?” This objective was partially fulfilled. Detection

capability was achieved in multiple VM setups within desktop environments but not

consistently in cloud environments (both private and public). The challenges faced in

cloud environments impacted the full extension of the detection capability to multiple VM

setups, limiting the overall detection in these contexts. However, detection capability in

desktop environments proves the potential of the approach in multiple VM environments,

achieving this objective partially.

The third objective aimed to identify and propose modifications to the LRNG and

related parameters to obscure the presence of virtualization from user space programs

running within the VM. The associated research question was, “How can the presence of

a VM be obscured from user space programs running within the VM?” This objective,

however, was not fully achieved. The approach of using existing entropy enhancing tools

to increase entropy richness did not succeed in obscuring the virtualization presence,

though it opened a pathway for further exploration. Despite not achieving the intended

outcome, this attempt led to a significant finding, that is even with entropy enhancing

daemons directly contributing to the entropy pool, the detection method remained robust.

This observation highlights the resilience of the detection technique, indicating that it can

be detected even in environments where specific efforts are made to enhance entropy. This

suggests that the detection capability is strong enough to withstand efforts to obscure

it, regardless of the level of system footprint or background service activity. This insight

represents the most important takeaway from the third research question, as it emphasises

the strength of the detection method, even though the primary objective of obscuring the

virtualization presence was not achieved.

Based on the assessment of the three research objectives, where the first objective
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was fully achieved, the second partially achieved with certain limitations, and the third

providing valuable insights despite not being fully realized, it can be concluded that the

research largely accomplished its aim. The study successfully confirmed the capability

of detecting virtualization presence through the LRNG in virtual environments, with the

detection thresholds demonstrating a 94.44% accuracy. While the exploration of tech-

niques to obscure this detection did not result in conclusive results, it opened important

avenues for further investigation and refinement. These findings not only enhance the

understanding of virtualization detection but also highlight key areas that require deeper

exploration.

5.3 Contributions

This research makes several important contributions to the field of virtualization detec-

tion, particularly through the novel use of the LRNG in detecting the presence of VMs.

While VM detection has been explored in prior literature, this study uniquely applies

the LRNG behaviour for detection, marking a significant change from traditional meth-

ods. To the best of the author’s knowledge, the specific approach of utilizing the LRNG

behaviour as a VM detection technique has not been explored before.

A key contribution of this work is demonstrating the potential of user space programs

in interpreting hardware associated information. While most previous attempts to explore

entropy behaviour required kernel level access, this study achieves detection purely from

user space, without even the need for root user privileges or additional tool installations.

By using C, C++ compiled binaries and Bash scripts, the experiments remained entirely

within user space, emphasizing the feasibility and practicality of conducting this kind of

analysis without requiring any higher privileges or system modifications.

Furthermore, the study contributes to the understanding of the LRNG in its updated

form. The LRNG has undergone frequent updates since 2015, including changes to hash

functions, entropy extraction methods, and the nature of its interfaces. While prior

studies have analyzed earlier versions, there has been little comprehensive research on the

updated LRNG, making this study an important step in examining the current state of

the generator. Although not primarily focused on LRNG updates, this research provides

valuable insights on the latest version of the LRNG and its implications for VM detection.

In addition, this research also explores the timing side channel vulnerabilities present
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in the LRNG. Given that entropy fluctuations could not be directly observed with the

updated LRNG, the study employed timing analysis as an indirect measure, effectively

utilizing side channel analysis techniques to examine entropy behaviour. This contributes

to the broader field of side channel analysis, specifically within the context of random

number generation.

An important observation in this study is that the OS wrapper around the kernel

plays a significant role in the behaviour of the LRNG and the VM detection process.

Differences were observed between Debian based and Red Hat based systems, as well

as between Ubuntu 24.04 and Ubuntu 22.04 within the Debian family. These findings

suggest that the OS’s role in interacting with kernel level measures like entropy could

influence VM detection, providing a new avenue for further exploration.

The practical applications of this research extend beyond malware detection. The

findings also have implications for other domains where VM detection is critical, such as

exam proctoring systems. In these systems, students might attempt to install the exam

proctoring software within a VM, enabling them to avoid detection by running other

applications on the host system. This study’s detection capabilities could prove useful

in identifying such scenarios, showing the broader usefulness of this approach in domains

where detecting VM presence is essential.

5.4 Limitations

This study faced several limitations that influenced its scope and findings. One of the

primary limitations was the scope of virtualization coverage. While the research aimed

to cover the most commonly used VMMs and major Linux distributions, the results are

specific to these systems. Thus, the findings may not be generalizable to all VM platforms

or other Linux-based systems not included in the study.

Additionally, the hardware resources available for experimentation were limited. The

inability to incorporate a diverse set of physical machines with varying hardware con-

figurations restricted the generalizability of the results. The study was limited to the

available resources, which may not fully represent the wide range of possible hardware

setups that could affect the detection process.

Cloud platforms also had constraints, free tier cloud services provided limited re-

sources, and due to the inability to upload custom ISOs had to rely on the cloud plat-
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forms default images. These images sometimes had kernel mismatches, requiring kernel

downgrades to align with the desktop VM setup. Moreover, cloud environments had

certain background services that could not be disabled, impacting the consistency of the

experimental procedure. However, as suggested by the results in RQ3, these services may

not have significantly impacted the detection outcomes.

Kernel version mismatches between Debian and Red Hat based systems created ad-

ditional challenges. While the latest Debian kernel version was 6.8, the latest Red Hat

kernel was 5.14. To accommodate these differences, Ubuntu 22.04 was used to match the

Red Hat kernel version. However Debian with kernel 6.8 also had to be included to make

sure the study addresses the latest available kernel version as well.

Performance monitoring tools also presented limitations. As the focus was on user

space experiments, avoiding additional tool installations, only built-in system tools were

used. But these were unable to capture the finer details of the random number generation

process given its fast nature. The smallest monitoring intervals available did not provide

the necessary resolution to accurately track performance matrics with random number

generation.

Moreover, while significant efforts were made to understand the workings of the

LRNG, gaps remain in its complete understanding. The official documentation for the

LRNG has not been consistently maintained, which made it challenging to fully explore

the updated version. This study offers valuable insights into the latest LRNG but cannot

claim a comprehensive understanding of its internal mechanisms.

The evaluation of the study was also constrained by the experimental setup. The

lack of additional resources for expanding the evaluation meant that the findings could

not be tested across different setups or configurations, affecting their robustness. Also,

the thresholds derived in this study for detecting VMs were specific to the tested OSs

and could not be generalized across diverse systems. Further work is required to create

universal thresholds that can be applied more broadly.

Finally, the NIST Test Suite, used to assess the quality of random number generation,

has its own limitations. Although it is considered as one of the most reliable tools

available, it has been criticized for not capturing all potential weaknesses in random

number generation (Kenny and Mosurski 2005).
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5.5 Future Works

Building upon the findings and limitations of this study, several directions for future

research emerge, each contributing to a deeper understanding of VM detection using the

LRNG. The immediate focus should be on directly extending the scope of this study and

addressing its limitations.

A major limitation of this study was the restricted hardware resources, which limited

the range of VMMs and OSs that could be evaluated. Future research should aim to use a

broader range of VMMs, hardware configurations, and OSs to enhance the generalizability

of the results.

A significant insight identified in this work is the inability of existing entropy enhanc-

ing tools to obscure VM detection, as demonstrated in Research Question 3 (Section 4.3).

This raises an important question for future research, whether enhancing entropy alone

can effectively hide the presence of virtualization. The development of custom entropy

enhancing techniques is one possible direction to explore, but it is important to recognize

that other approaches may also be necessary. This area requires extensive study, not lim-

ited to entropy enhancement but also exploring alternative methods that might obscure

VM presence.

To effectively pursue the above, further research into the underlying mechanisms of

the LRNG is essential. This study has provided insights into the observable behaviours of

the LRNG, but the kernel level processes and entropy collection methods that drive these

behaviours remain partially unexplored. A deeper understanding of these mechanisms

will be crucial in developing effective strategies to obscure VM detection.

Furthermore, given the limitations of built-in performance monitoring tools acces-

sible from user space, and the importance of granular system performance metrics in

understanding the underlying functionality of the kernel, future studies can be extended

to explore the feasibility of incorporating advanced tools without privileged access or

developing more precise performance monitoring mechanisms.

This study found notable differences between Debian based and Red Hat based sys-

tems, as well as when comparing Ubuntu 22.04 and Ubuntu 24.04. Specifically, Alma-

Linux was notably harder to detect as a VM, presenting only one detection criterion.

This characteristic requires further exploration within the context of Red Hat based sys-

tems. Moreover, expanding the study to include other Linux families could reveal deeper
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insights into how the OS wrapper impacts kernel level entropy collection.

Beyond Linux, examining non Linux OSs and alternative architectures such as ARM

or RISC-V, would provide a more holistic understanding of behaviour of the RNG across

diverse environments.

Additionally, beyond malware testing, there are other domains where virtualization

detection may play a crucial role. For example, exam proctoring systems represent an area

where identifying whether a system is running in a VM could help ensure the integrity

of the testing process. Exploring such use cases could further expand the applications

of virtualization detection, highlighting scenarios where the ability to identify or obscure

virtualization is essential.

Furthermore, expanding the scope of virtualization detection research to include other

isolation techniques, such as sandboxes and emulation, could provide valuable insights.

Understanding how the LRNG behaves under these techniques could help in identifying

or obscuring isolation in various contexts, including malware analysis and other security

domains.
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