
Architecture-aware Timing Fault

Injection Attack for Predictable

Control of AVR microcontrollers

K.D.T Perera
2025

Architecture-aware Timing Fault
Injection Attack for Predictable
Control of AVR microcontrollers

K.D.T Perera
Index No: 20001292

Supervisor: Prof. Kasun De Zoysa
Co-supervisor: Dr. Asanka P. Sayakkara

June 2025

Submitted in partial fulfillment of the requirements of

the B.Sc in Computer Science Final Year Project

Declaration

I certify that this dissertation does not incorporate, without acknowledge-

ment, any material previously submitted for a degree or diploma in any

university and to the best of my knowledge and belief, it does not contain

any material previously published or written by another person or myself

except where due reference is made in the text. I also hereby give consent

for my dissertation, if accepted, be made available for photocopying and for

interlibrary loans, and for the title and abstract to be made available to

outside organizations.

Candidate Name: : K.Divaka Tharinda Perera

14-06-2025

Signature & Date

This is to certify that this dissertation is based on the work of

Mr. K.Divaka Tharinda Perera

under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Supervisor Name : Prof. Kasun De Zoysa

2025/06/25

Signature & Date

Co-supervisor Name : Dr. Asanka P. Sayakkara

Signature & Date

2025-06-26

Contents

1 Introduction 5

1.1 Research Questions . 7

1.2 Aims and Objectives . 8

1.2.1 Aims . 8

1.2.2 Objectives . 8

2 Related Work 9

2.1 Fault Injection Attacks on Microcontrollers 9

2.2 Vulnerability of ATmega328P 10

2.3 Previous Work . 11

2.4 Research Gap . 12

3 Methodology and Evaluation Plan 12

3.1 Evaluation Plan . 13

3.2 Experimental Setup . 14

4 Experiments and Results 16

4.1 Case Study - A faulty clock signal 16

4.2 UART Communication - Serial.println() 17

4.3 I2C and SPI Communication Protocols 20

4.4 Pausing function - delay() . 22

4.5 Exploiting Clock Glitching in UART Communication 24

4.5.1 Hypothesis . 24

4.5.2 Experimental Setup . 25

1

4.5.3 Observations - Boolean Values 26

4.5.4 Effect on Integer Values 34

4.5.5 Effect on ASCII Characters (Text Data) 36

4.6 Precision Instruction-Level Glitching Using Additional Glitch-

ing Circuit . 37

4.6.1 Experimental Setup . 38

4.6.2 Bit-wise XOR Operation 41

4.6.3 Bit-wise OR Operation 44

4.6.4 Bit-wise AND Operation 46

4.6.5 Bit-wise NOT Operation 49

4.6.6 Addition & Subtraction Operations 52

5 Discussion 56

5.1 Research Question 1 . 61

5.1.1 UART-Level Fault Injection (Low Precision Clock Glitch-

ing) . 62

5.1.2 Instruction-Level Fault Injection (Precise Glitching us-

ing ESP32) . 63

5.2 Research Question 2 . 65

5.2.1 UART-Level Fault Injection (Low Precision Clock Glitch-

ing) . 65

5.2.2 Precised Instruction-Level Glitching 66

6 Conclusion 68

6.1 Future Directions . 70

2

List of Figures

1 Setup to inject timing fault attacks 14

2 Faulty clock signal and target clock signal 16

3 Resulting clock signal . 17

4 Hardware experimental setup 18

5 Software experimental setup 18

6 Accurate logs are only presented within 15.692456823 MHz

and 16.409110402 MHz range 19

7 Hardware setup for both I2C and SPI protocol. The timing

fault attack is applied to the master device. 20

8 I2C sender sketch with application of delay() 23

9 I2C receiver sketch with ability to measure elapsed time 23

10 Time taken for one second delay over frequency 24

11 Experiment Setup of the hypothesis scenario 25

12 Logic Analyzer view of original bit pattern of False data

packet - 0x00 . 27

13 Logic Analyzer view of glitched bit pattern of False data

packet during the fault injection - 0x80 27

14 Hardware Setup For Precised Clock Glitch Injection 39

15 Relationship between minimum failure probability and the ac-

tual hamming weight of the result: Addition 55

16 Relationship between minimum failure probability and the ac-

tual hamming weight of the result: Subtraction 55

3

Listings

1 8bit data packet representing FALSE with LSB first 32

2 Targeted C Code . 40

3 Targeted C Code With XOR Operation 41

4 Targeted C Code With OR Operation 44

5 Targeted C Code With AND Operation 46

List of Tables

1 Result of false data bits in contrast to the glitch frequency . . 29

2 Result of true data bits in contrast to the glitch frequency . . 29

3 Probability of faulty result in each Attempt: XOR 43

4 Probability of faulty result in each Attempt: OR 45

5 Probability of faulty result in each Attempt: AND 48

6 Probability of faulty result according to the hamming weight:

ADDITION . 53

7 Probability of faulty result according to the hamming weight:

SUBTRACTION . 54

4

1 Introduction

In the present world, across various platforms, from consumer electronics

to industrial machinery, the importance of microcontroller security has in-

creased significantly. ATmega328P has became one of the most widely used

microcontroller among those embedded systems due to its power efficiency,

versatility and balance of performance (Corporation (2016)). Because of this

widespread adoption of this microcontroller also makes them attractive tar-

get for malicious attacks. Fault injection is playing a major role in such

malicious attacks.

Fault injection attacks introduce faults into a system to alter its intended

behavior, data corruption, unauthorized access or complete system failure

(Breier & Hou (2022)). These kind of attacks represent critical threat to the

reliability and security of embedded systems. Exploiting vulnerabilities in

the hardware or software of microcontrollers, attackers can manipulate the

control flow of programs running on these devices with severe consequences,

particularly in safety critical systems.

Despite the recognized danger, there is limited understanding of the spe-

cific impacts of fault injection attacks on the control flow of programs within

an 8-bit AVR microcontroller called “ATmega328P”. This research proposal

aims to investigate the effects of timing fault attacks on the program con-

trol flow of ATmega328P microcontroller. This project proposes a systematic

analysis on how timing fault attacks disrupt normal operation of the program

control flow aiming to identify potential vulnerabilities that can provide pre-

dictable control of the program control flow.

5

In an era where embedded systems play a critical role in security-sensitive

applications, ensuring the reliability and integrity of microcontroller commu-

nications is more important than ever. The ATmega328 microcontroller,

widely used in embedded devices due to its simplicity and versatility, often

relies on the UART (Universal Asynchronous Receiver/Transmitter) protocol

for serial communication. However, this protocol by-design lacks robust in-

tegrity checking mechanisms, making it susceptible to physical-layer attacks.

This thesis investigates a novel class of hardware attack based on clock glitch-

ing, whereby the microcontroller’s clock is momentarily altered to introduce

timing faults during UART communication. The hypothesis posed is that

such glitching can change critical transmitted values—specifically boolean

signals used for authentication—from false to true, thereby allowing unau-

thorized access to secure systems.

Through controlled experiments, the findings confirm that at specific

glitch frequencies, clock glitching can successfully flip boolean values trans-

mitted over UART. For instance, a false value represented by 0x00 was ob-

served to flip to values like 0x80, 0xC0, or 0xE0 when the glitching clock

was tuned between 17 MHz and 23 MHz, effectively turning a rejection into

an acceptance signal. Conversely, a true signal (0x01) could be flipped to

0x00 at frequencies near 1.87 MHz, achieving denial-of-service through in-

tentional rejection of valid credentials. This behavior was not isolated to

boolean data types. Further experiments showed that integer values trans-

mitted over UART were similarly affected severely impacting the integrity

of numerical computations or commands. In addition to numerical data,

6

ASCII character transmissions were also vulnerable which could result in

corrupted or maliciously altered messages being interpreted by the receiving

system. The cumulative evidence from boolean, integer, and character-based

experiments strongly supports the hypothesis: UART-based communication

on microcontrollers like the ATmega328 can be intentionally disrupted using

clock glitching to produce deterministic and exploitable outcomes. This the-

sis explores the implications of these findings for embedded system security.

In summary this research study will employ combination of simulation

and theoretical analysis with empirical testing in order to provide an under-

standing of the timing fault injection attacks and their implications. The

objectives of this research involving characterizing the nature of timing fault

attacks specific to ATmega328p microcontroller and its program control flow

including assessing the impact of these attacks on the control flow of pro-

grams.

1.1 Research Questions

1. To what extent does timing fault attacks disrupt program ex-

ecution sequence of ATmega328P microcontroller?

This research investigate how timing fault attacks effectively impact

on program control flow and its execution by observing and analyzing

the capabilities of timing fault attacks. This evaluates the extent of

disruption causing to the program execution due to the vulnerability

of ATmega328P microcontroller. Answering this research question is

crucial for improving the reliability of embedded systems used in AT-

7

mega328P microcontroller.

2. How to conduct timing fault attacks to generate predictable

program execution behaviors on ATmega328P microcontrollers?

This research also involving in exploring the methods for executing

timing fault attacks in program control flow on ATmega328P micro-

controller in a way which those effects produce predictable changes in

program execution. This study consisting of selecting fault injection

method with designing experimental setups and analyzing the impact

of timing fault attacks on program execution flow.

1.2 Aims and Objectives

1.2.1 Aims

1. Evaluating the impacts of timing fault attacks on the reliability and

integrity of control flows of the embedded programs in ATmega328P

microcontroller.

2. Identifying the suitable timing fault injection methods to make impacts

and change program control flow in ATmega328P microcontroller.

1.2.2 Objectives

1. Review and analyzing existing timing fault injection attacks focusing

on effects of those attacks in program control flow.

2. Perform systematic experiments in order to evaluate the impact of tim-

ing fault attacks on program control flow in ATmega328P microcon-

8

troller.

3. design and implement a controlled experimental setup to inject tim-

ing faults to make impacts on program control flows in ATmega328P

microcontroller.

4. Perform systematic experiments to evaluate the impact of timing fault

attacks on different program control flows in different conditions.

2 Related Work

2.1 Fault Injection Attacks on Microcontrollers

Fault injection attacks can be used to exploit vulnerabilities in microcon-

trollers by causing both transient and permanent faults through various

methods.

• Clock glitching: disrupting the synchronization clock in the micro-

controller in order to induce timing errors (Bonny & Nasir (2019)).

Misleading synchronizing clock of a circuit causes instruction execu-

tion, data storing and retrieving have wrong behaviors.

• Voltage glitching: applying changes in the voltage of the power sup-

ply in order to cause errors in microcontroller processing. Gnad et al.

(2017) has shown capability of voltage glitching on making a field pro-

grammable gate array (FPGA) circuit crash within milliseconds. Not

only that but also successful voltage injection can cause erroneous re-

9

sults from Advance Encryption Standard (AES) process on FPGA cir-

cuits.

• Electromagnetic interference: disturbing the microcontroller’s op-

eration using electro-magnetic fields (Dumont et al. (2019)). Ordas

et al. (2017) has shown the effectiveness of the electro-magnetic fault

attacks on bit set and bit reset actions on FPGA circuits. Also Delarea

& Oren (2022) has described the possibility of electro-magnetic fault

injection on skipping instructions of ARM embedded systems.

• Laser fault injection: altering the state of the microcontroller’s in-

ternal circuits using a focused laser beams (Colombier et al. (2021)).

Successful laser fault injection can cause bit flipping intentionally on

FPGA circuits (He et al. (2016)) and ARM embedded systems (Vasselle

et al. (2017)).

Due to the capability of above attacks in disrupting the processing flows of

microcontrollers, these attacks can be used to disrupt the program control

flow in such microcontrollers.

2.2 Vulnerability of ATmega328P

Unlike other advanced microcontrollers, the ATmega328P lacks built-in secu-

rity features to detect and mitigate fault injection attacks. Also its popularity

and applications increase the likelihood of targeted fault injection attacks.

Specially due to the open nature of Arduino ecosystem, it provides potential

10

attackers with resources to study and exploit its ATmega328P microcon-

troller. Banerjee et al. (2022) has stated that how accurate the power-based

side channel attack to extract AES keys on Atmega328 microcontroller, which

shows the vulnerability of Atmega328 microcontroller. Sanjaya et al. (2024)

has also shown the vulnerability of Atmega328 microcontroller when it comes

to physical layer supply voltage coupling.

2.3 Previous Work

Researches have demonstrated that the employing of fault injection attack

types including clock glitching, voltage glitching and electro-magnetic fault

injection can cause significant threat in microcontroller operation. Breier &

Hou (2022) shows the possibility of employing such attacks on architectures

including ARM, Intel, AMD and FPGA with discussing the practicality and

cost-efficiency. Furthermore, O’Flynn (2016) has demonstrated that voltage

glitching has significant impact on in-built registers which effects the program

instructions when it comes to 8-bit AVR microcontrollers. Also O’Flynn

(2016) provide evidence on the feasibility of fault injection attacks on 8-

bit AVR microcontrollers like ATmega328P. Tehranipoor et al. (2023) has

shown that applying faults using voltage fault injection on FPGA which

causes erroneous results on AES encryption process. With clock glitching,

Bonny & Nasir (2019) has demonstrated that how the generated bits stream

getting distorted after a successful clock glitching attack on FPGA.

11

2.4 Research Gap

As from the previous research works, we can conclude that there have been

enough research work done to assess and evaluate the hardware level effects

on ATmega328P microcontroller with fault injection techniques. However,

the specific effects on the program control flow within the ATmega328p mi-

crocontroller remain under-explored. This research gap includes finding out

the capability of producing erroneous results on critical program control flows

like security gateways and conditional flows. According to this research gap,

this research study will introduce timing faults on to a program control flow

operating in an ATmega328P microcontroller using clock glitching attacks

and observe the effectiveness of those attacks.

3 Methodology and Evaluation Plan

As mentioned above, the main purpose of this research is to investigate the

impact of timing fault attacks to program control flow within ATmega328P

microcontroller as well as determining methods to generate predictable faulty

program execution behaviors using such fault injection attacks. After suc-

cessfully gathering existing well established knowledge on timing fault attacks

on other similar microcontrollers and vulnerabilities of ATmega328P micro-

controller, this research study is proposing a methodology to answer above

research questions with systematic experimental setup and systematic result

evaluations.

12

3.1 Evaluation Plan

1. ”To what extent does timing fault attacks disrupt program

execution sequence of ATmega328P microcontroller?” To an-

swer the first research question, this research study will evaluate the

experiments to identify the extent of disruptions in program execution

flow with the impact of timing fault attacks. The metrics including

number of program crashes, types of program anomalies and frequency

of control flow deviation will be taken into account when conducting

this evaluation. Other than statistical analysis of recorded execution

traces, this evaluation plan will also include comparison of fault and

fault free execution paths and ability of reproducing the identified dis-

ruptions across multiple trials.

2. ”How to conduct timing fault attacks to generate predictable

program execution behaviors on ATmega328P microcontrollers?”

In order to answer second research question, the evaluation will be fo-

cusing on the predictability of behaviors of program execution flow dur-

ing and after the timing fault injection. This evaluation will consists of

metrics including consistency in program behavior under repeated iden-

tical fault injection attack and ability of inducing specific disruptions

to the program execution flow in a reliable way followed by analysis

of program execution behaviors to identify predictable patterns. This

evaluation will be concluded with the demonstration of ability to pre-

dict and reproduce specific disruptions to the program execution using

timing fault attacks.

13

3.2 Experimental Setup

Main objective of this experimental setup is to establish a controlled envi-

ronment for conducting timing fault experiments on program execution and

its control flow within ATmega328P microcontroller. During the experiment,

this research study will be using Arduino Uno development board which con-

sists an ATmega328P microcontroller.

Hardware setup will be consisting of enough Arduino Uno development

boards with their ATmega328P microcontrollers. Apart from microcon-

trollers, the following hardware devices will be used in the experiments.

1. Function generator as a synchronization clock controlling device in or-

der to introduce timing faults on the target device.

2. A monitoring device to capture program execution traces.

3. Oscilloscope to observe the faulty clock signals.

Figure 1: Setup to inject timing fault attacks

14

PB6 and PB7 are the pins which are connected to a crystal oscillator

to maintain the clock signals through out the entire microcontroller. As

displayed in Figure 1 above, the PB6 and PB7 pins will be bypassed and

connected to a function generator so that those pins will be connected to the

clock signal generator of the Arduino Uno board and the function genera-

tor at the same time. Using this setup we can generator the desired clock

signals through the function generator without modifying the original devel-

opment board. If we don’t need to generate any timing faults, we need to

keep the function generator to produce a 16 MHz clock signal so that the

external clock signal will overlap with the recommended clock signal gener-

ated by the Arduino Uno development board. This will make no faults on

the microcontroller.

Software setup will be consisting embedded systems covering range of

control flows constructs focusing on following aspects,

• Arithmetic operations

• Bit-wise operations

• UART/Serial communication

• I2C communication

• SPI communication

• Delays

15

4 Experiments and Results

4.1 Case Study - A faulty clock signal

According to the experimental setup stated above, the operational clock sig-

nal of the entire microcontroller will be the combination of the clock signal

generated by the Arduino Uno development board and the faulty clock signal

generated by the function generator.

Motivation - Observe the what will be the resulting clock signal gener-

ated by the combination of the faulty clock signal and the operational clock

signal supplied by the Arduino Uno development board.

Figure 2: Faulty clock signal and target clock signal

16

Figure 3: Resulting clock signal

This study has been conducted using the GNU Radio Companion sim-

ulator and the results have been verified by a single oscilloscope with two

connected function generator outputs representing exactly the same input

clock signals used in simulation. According to this study and the results

(Figure 2 and Figure 3) we can conclude that the resulting clock signal of

the combination of two different clock signals will be the OR operation be-

tween those clock signals.

This section focuses on identifying the potential vulnerabilities of the AT-

mega328 microcontroller in order to lay down the foundation and objectives

of this research’s direction.

4.2 UART Communication - Serial.println()

Motivation - Since ATMega328 microcontroller doesn’t support any ad-

ditional debugging options, Serial.println() method used with UART

communication is considered as a major method for observations, logs and

debugging. So it is crucial to make sure Serial.println() method is not

effected by the timing fault attack we are injecting, for accurate logs.

17

Figure 4: Hardware experimental

setup

Figure 5: Software experimental

setup

This experiment has been conducted by applying varying clock frequen-

cies from 1 MHz to 25 MHz and observing whether the embedded system

provides accurate logs according to the software experimental setup (See

Figure 5).

Results and Conclusion - During this experiment it has been observed

that the logs are not accurate if the glitch clock frequency is not within

15.692456823 MHz and 16.409110402 MHz range. So we can conclude that

we cannot expect accurate and valid logs when we are applying timing fault

attacks with frequencies which are not from the above mentioned range.

The results of this experiment are leading us to find an accurate and a valid

method for log observation when we are applying timing fault attacks. Fur-

thermore, this vulnerability exposes a further experiments to identify the

18

Figure 6: Accurate logs are only presented within 15.692456823 MHz and

16.409110402 MHz range

potential answers for the research questions in latter sections.

19

4.3 I2C and SPI Communication Protocols

Motivation - Identifying the effects of timing fault attacks when sending and

receiving data using I2C and SPI communication protocols used in embedded

systems. Also this experiment is subjected to an aim of finding a solution to

replace Serial.println() method for log monitoring.

Figure 7: Hardware setup for both I2C and SPI protocol. The timing fault

attack is applied to the master device.

Observations - For both I2C and SPI communication protocols, the data

20

that are communicating are not getting changed or effected by inaccuracies

relevant to the varying glitch clock signals (from 1 MHz to 25 MHz) gener-

ated by the function generator. Reason for this behavior is that the both I2C

and SPI protocols are operating using the same clock synchronization clock

signal for both sender and receiver.

Conclusion - We can conclude that when communicating using both I2C

and SPI protocols and upon applying timing fault attacks on sender is not

affecting the data we are communicating. Due to this behavior, the hard-

ware setup (Figure 7) can be used as a solution as a Serial.println() for

observation of logs and outputs.

21

4.4 Pausing function - delay()

Motivation - The delay() function in Arduino is crucial for timing control.

Exploring how clock glitching affects delay() on an Arduino is fascinating

because it explores the impact of timing disruptions on code execution sta-

bility. Since delay() depends on precise clock cycles to pause the program

accurately, introducing glitches can reveal vulnerabilities in timing-sensitive

tasks. By observing how glitches alter delay() intervals, we can gain insights

into how fault injection attacks could interfere with or even control program

flow—key knowledge for developing more robust, secure embedded systems.

Hardware setup - Use the same hardware experimental setup used in

the previous experiment (see figure 7).

22

Figure 8: I2C sender sketch with ap-

plication of delay()

Figure 9: I2C receiver sketch with

ability to measure elapsed time

This experiment is using the alternative hardware setup used in ”I2C and

SPI Communication Protocols” experiment. The sender is sending digit ”1”

in every second and the receiver is receiving the digit ”1” and calculate the

time it taken for the delay.

Observations - With recommended 16 MHz clock signal, the time taken

for the one second delay is exactly a second. But when the clock frequency

getting increased, the time taken for the one second delay is getting decreased

and when the clock frequency decreases the time taken for one second delay

is getting increased.

Conclusion - So the observation is negative correlation between the delay

and the glitch frequency. This is a crucial observation as the timing fault

23

Figure 10: Time taken for one second delay over frequency

attacks can interfere the amount of time control of the embedded system

specially when it requires precise pausing situations.

4.5 Exploiting Clock Glitching in UART Communica-

tion

4.5.1 Hypothesis

This section presents a hypothesis on the vulnerability of UART-based com-

munication between an ATmega328 microcontroller and a door lock system.

The microcontroller is responsible for verifying user credentials and trans-

mitting an authentication result—true (unlock) or false (deny access)—to

the door lock. However, due to the nature of UART synchronization, a clock

glitch attack can induce faults in data transmission. This hypothesis explores

24

the possibility of altering a transmitted false signal into true, thereby grant-

ing unauthorized access to the door lock. The analysis is based on observed

behaviors of clock glitching on ATmega328, where controlled glitches can

selectively modify transmitted data bits.

4.5.2 Experimental Setup

Figure 11: Experiment Setup of the hypothesis scenario

The experimental setup consists of an ATmega328 microcontroller which

is responsible of sending the relevant signal to the door lock system using

UART protocol, a door lock system as a receiver of the authentication from

25

ATmega328, a logic analyzer in order to monitor the data packets transferring

in between the two devices and a function generator used to inject glitch clock

pulses.

The ATmega328 microcontroller is used to send the ’true’ or ’false’ ac-

cording to the authorization. This will be sent to the door lock system. In

this experiment, a logic analyzer has been used to monitor the communica-

tion between the devices. Using the logic analyzer we can inspect the data

packets transferring through the channel. In this experiment, the specific

scenario has been simulated. This scenario includes an unauthorized access

and the a communication which the microcontroller is sending ’false’ to the

door lock system. During this communication, a function generator has been

used to insert a glitched clock signal with precise control of the frequency.

4.5.3 Observations - Boolean Values

Under normal operation, the microcontroller verifies user credentials and

transmits either a true (unlock) or false (deny access) signal to the door lock.

However, controlled clock glitching can disrupt this transmission, causing

unauthorized access. The findings demonstrate that:

• When the glitching clock frequency exceeds 17 MHz, a false signal is

altered and received as true, allowing unauthorized entry.

• When the glitching clock frequency is 1.87 MHz, a true signal is cor-

rupted and received as false, denying legitimate access.

26

Figure 12: Logic Analyzer view of original bit pattern of False data packet

- 0x00

Figure 13: Logic Analyzer view of glitched bit pattern of False data packet

during the fault injection - 0x80

Figure 12 demonstrates the logic analyzer observation of bit pattern rep-

resenting the false boolean hex value(0x00). This observation is taken where

there is no fault injection(no glitched situation). Since the receiving device is

referring to the boolean values, this value is considered as the false boolean

value at the receiving end.

Figure 13 is the logic analyzer observation of data transmission during the

fault injection. It demonstrates the logic analyzer observation of bit pattern

representing a true boolean hex value(0x80). Since the receiving device is

referring to the boolean values, this value is considered as the boolean value

true at the receiving end.

27

During both scenarios, The microcontroller sends the false boolean value.

But in the glitched scenario, due to the clock glitch, the UART communi-

cation has lost its synchronization. Due to this failed synchronization, the

receiving device is receiving a wrong data packet.

Since the UART communication doesn’t share a common clock signal

between the sender and receiver, the sending device and receiving device

need to operate in 16Mhz clock frequency. Due to this the sending device

assumes that receiver is receiving the data packet with 16Mhz frequency, and

the sending device sends 8bit data in 16Mhz frequency ans LSB first. Also

the receiving device assumes that the sending device is sending 8bit data

in 16Mhz frequency, so the receiving device capture the data with 16Mhz

frequency. During the idle time, the transmission channel stays at logic level

high. When the sender sending data, it make the channel low to indicate

the starting of the data transmission and sends data in 8 bits. When the

sender completes the 8bit data transmission, it will again set the channel

to logic level high. During this transmission if we insert a clock glitch to

the sender, it will alter the working clock frequency of the sending device

and the sending device and receiving device will not be working with the

same clock frequency. Hence loosing the synchronization during the data

transmission. In the experiment scenario, the clock glitch makes the sending

device to send data with more than 16Mhz frequency. But still the receiving

device working with 16Mhz. Since the sending device makes the channel high

after transmitting the 8bits, the receiving device capture that high signal as

the last data bit. Hence, the receiving device receives the 0000 0000 (0x00)

28

data as 0000 0001 (0x80 - this represents true in boolean values). This makes

the receiving device capture the data as true even-though the sending device

sends the false.

Glitch Frequency (Mhz) 16 17 - 19 20 - 22 23 24 - 25

Observations 0x00 0x80 0xC0 0xE0 Error

Table 1: Result of false data bits in contrast to the glitch frequency

Glitch

Fre-

quency

(Mhz)

16 - 13 12 - 11 10 9 - 8 7 6 5 4 - 2 1.86 -

1.89

1

Observa-

tions

0x01 0x03 0x02 0x06 0x0E 0x0C 0x1C 0xF0 0x00 Error

Table 2: Result of true data bits in contrast to the glitch frequency

Table 1 illustrates the effect of clock glitching at various frequencies on

the transmission of a false data bit in a UART communication system involv-

ing an ATmega328 microcontroller and the digital door lock. The primary

objective of this experiment is to analyze how different glitching frequencies

impact the integrity of the false signal, which is originally represented as

0x00 in hexadecimal format. By observing how the received data changes

29

under different glitch frequencies, this table provides critical insights into

data corruption patterns and their implications for security.

The first row of the table represents the applied glitch frequencies in mega-

hertz (MHz), ranging from 16 MHz up to 24–25 MHz. Note that injecting

16Mhz glitched clock is not inducing any faults on the microcontroller and it

is considered as the no-fault scenario. Each frequency range corresponds to

an experimental scenario where clock glitching was introduced to the system

while transmitting a false signal. The second row displays the observed data

received at the receiving end, which highlights how the original 0x00 (false)

value was altered due to the effects of clock glitching.

Analysis of Observations:

• At 16 MHz: The received value remains 0x00, indicating that at this

frequency, the glitching does not significantly affect data integrity. This

suggests that the transmission is still stable, and no bit flips occur at

this point.

• At 17–19 MHz: The received value changes to 0x80, which indicates

that a significant bit flip has occurred. Specifically, in an 8-bit binary

representation, 0x80 corresponds to 10000000, meaning that the most

significant bit (MSB) was flipped from 0 to 1, while the remaining

bits remained unchanged. This marks the first clear indication that

clock glitching at this frequency range can introduce errors into the

transmission.

• At 20–22 MHz: The received value is 0xC0, which in binary is 11000000.

30

Compared to 0x80, this shows that another bit (the second MSB) has

also flipped, suggesting that increasing the glitch frequency causes more

bits in the transmitted data to be altered. This indicates a progressive

corruption of the originally transmitted false signal.

• At 20–22 MHz: The received value is 0xC0, which in binary is 11000000.

Compared to 0x80, this shows that another bit (the second MSB) has

also flipped, suggesting that increasing the glitch frequency causes more

bits in the transmitted data to be altered. This indicates a progressive

corruption of the originally transmitted false signal.

• At 20–22 MHz: The received value is 0xC0, which in binary is 11000000.

Compared to 0x80, this shows that another bit (the second MSB) has

also flipped, suggesting that increasing the glitch frequency causes more

bits in the transmitted data to be altered. This indicates a progressive

corruption of the originally transmitted false signal.

• At 23 MHz: The received value is 0xE0, which in binary is 11100000.

This pattern demonstrates further bit corruption, with three of the

most significant bits being flipped. The increasing error rate suggests

that as the glitch frequency rises, more bits within the byte are affected,

reinforcing the idea that clock glitching directly influences UART trans-

mission errors.

• At 24–25 MHz: The system records an ”Error,” indicating that at

this frequency, the glitching becomes so severe that the communication

fails entirely. The receiver is unable to interpret any meaningful data,

31

likely due to excessive synchronization issues between the sender and

receiver. This suggests that beyond a certain frequency threshold, the

UART transmission mechanism is entirely disrupted, preventing the

reception of even a corrupted message.

Listing 1 demonstrates how the bit shifts occur according to the glitch

frequency during the UART communication.

16Mhz : 0000 0000 −> LSB to MSB −> 0000 0000 (0 x00)

17Mhz : 0000 0001 −> LSB to MSB −> 1000 0000 (0 x80)

20Mhz : 0000 0011 −> LSB to MSB −> 1100 0000 (0xC0)

23Mhz : 0000 0111 −> LSB to MSB −> 1110 0000 (0xE0)

Listing 1: 8bit data packet representing FALSE with LSB first

The table 2 illustrates the impact of various glitch frequencies on the

integrity of the data bits representing TRUE during UART communication

between an ATmega328 microcontroller and the digital door lock. This table

specifically investigates how different clock glitching frequencies affect the re-

ception of a true signal, which is originally represented as 0x01 in hexadecimal

format. By analyzing the received data under different glitching conditions,

this experiment provides insight into the extent of data corruption and its

implications for system security.

The first row of the table categorizes the applied glitch frequencies, rang-

ing from 16–13 MHz down to 1 MHz, with a critical intermediate range of

32

1.86–1.89 MHz, which has been experimentally observed to cause significant

disruptions in UART communication. The second row lists the observed data

received at the receiving end when the original transmitted value was 0x01.

These hexadecimal values indicate how the transmission was altered due to

clock glitching effects.

Examining the results, it is evident that higher glitch frequencies intro-

duce minor corruption. At 16–13 MHz, the received data remains 0x01,

indicating no disruption. However, as the glitch frequency decreases, more

significant alterations emerge. For instance, at 12–11 MHz, the received

value changes to 0x03, while at 10 MHz, it shifts to 0x02, demonstrating

that specific bits of the original data are being affected. Further reductions

in frequency introduce more pronounced distortions, such as 0x06, 0x0E, and

0x0C at intermediate frequencies, showing progressive bit flips and increasing

data corruption.

A crucial observation occurs at the 4–2 MHz range, where the received

data is 0xF0. This suggests substantial corruption of the original 0x01 value,

potentially flipping multiple bits within the transmitted byte. The most sig-

nificant finding, however, is at the 1.86–1.89 MHz range, where the received

value is 0x00. This indicates a complete inversion of the original 0x01 (true)

into 0x00 (false), confirming that a glitching clock at approximately 1.87

MHz can fully alter the authentication signal and potentially deny legiti-

mate access.

At 1 MHz, the system records an ”Error,” meaning that at this low

frequency, the glitching disrupts communication so severely that the receiver

33

fails to interpret any valid data. This likely results from a breakdown in the

UART synchronization mechanism, leading to complete transmission failure.

Overall, this table provides concrete experimental evidence that clock

glitching can systematically alter transmitted data during UART communi-

cation. The ability to flip a 0x01 (true) to 0x00 (false) at a specific frequency

confirms the hypothesis that carefully timed glitches can exploit vulnerabil-

ities in asynchronous communication protocols like UART.

The findings from Tables 1 and 2 demonstrate that clock glitching can

systematically alter the integrity of transmitted UART data packets, flipping

true (0x01) to false (0x00) and vice versa. However, this phenomenon is not

exclusive to boolean values; it extends to any 8-bit data packet, including

integer values and ASCII characters. Since UART transmits data in byte-

sized (8-bit) packets, any numerical or textual information represented in

8-bit format is vulnerable to similar corruption patterns when exposed to

clock glitches at specific frequencies. Due to these findings, the experiments

have been extended into another step by considering the integers and ASCII

characters to illustrate how clock glitching can affect data types other than

Boolean values.

4.5.4 Effect on Integer Values

This experiment has been conducted by considering a scenario where an AT-

mega328 microcontroller is transmitting integer values over UART. Normally,

an integer is represented in an 8-bit binary format before being transmitted.

However, due to clock glitching, bit flips occur, altering the transmitted value

34

into an unintended number. The following scenarios illustrate this effect:

1. Scenario 1: Integer 25 (0x19 in Hexadecimal, 00011001 in Binary)

• If no glitching occurs, the receiving end correctly interprets the

transmitted data as 25.

• However, at 17–19 MHz, based on the pattern observed in Table 1,

a bit flip occurs in the most significant bit (MSB), altering the bi-

nary representation to 10011001 (0x99 in hex), which corresponds

to 153 instead of 25.

• At 20–22 MHz frequency, the second MSB flips as well, resulting

in 11011001 (0xD9), changing the value to 217 instead of 25.

• When the glitch occurs at 1.86–1.89 MHz, the entire packet has

been corrupted to 0x00, resulting in the integer being received as

0.

2. Scenario 2: Integer 200 (0xC8 in Hexadecimal, 11001000 in Binary)

• Normally, 200 is transmitted as 0xC8. At 16 MHz, no changes

occur, and 200 is correctly received.

• At 23 MHz frequency, the third MSB has been flipped, resulting

11101000 (0xE8). This has been received as 232.

• In the worst-case scenario, at 1.86–1.89 MHz, the entire packet

has been flipped to 0x00, resulting in 0 being received.

These experimental scenarios show that a malicious glitch insertion or

accidental glitch can dramatically change numerical values in a way that

35

disrupts calculations, control commands, or authentication mechanisms that

rely on numerical data.

4.5.5 Effect on ASCII Characters (Text Data)

ASCII characters are also transmitted as 8-bit data packets, making them

equally vulnerable to corruption. If a clock glitching applied to a UART-

based communication channel transmitting text, individual characters can

be altered, leading to unintended modified messages.

1. Scenario 1: Character ’A’ (0x41 in Hexadecimal, 01000001 in Binary)

• Normally, sending 0x41 results in ’A’ being received.

• At 17–19 MHz, a bit flip alters the binary representation to 11000001

(0xC1), which corresponds to ’Á’ instead of ’A’.

• At 23 MHz, another bit flip changes 0x41 to 0xE1 (11100001),

resulting in ’á’ instead of ’A’.

• At 1.86–1.89 MHz, a full corruption flips all bits to 0x00, making

the character unreadable and registering as a null byte.

2. Scenario 2: Word ”HELLO” (ASCII: 0x48 0x45 0x4C 0x4C 0x4F)

• If an attacker applies a 20–22 MHz glitch, individual bits might be

flipped, changing ”HELLO” (0x48 0x45 0x4C 0x4C 0x4F) to 0xC8

0xE5 0xCC 0x4C 0x0F, which displayed as ”ÈèIL”— completely

distorting the original message.

36

• A 1.87 MHz glitch flips characters into null bytes (0x00), making

the entire message unreadable.

This type of glitching attack has significant security implications, partic-

ularly in communication systems, authentication protocols, and control sig-

nals. If a system is relying on specific text-based commands (”OPEN DOOR”

or ”SET TEMP 25”), clock glitching could alter or erase critical words, lead-

ing to security vulnerabilities or operational failures.

4.6 Precision Instruction-Level Glitching Using Addi-

tional Glitching Circuit

While the previous UART glitching experiments revealed significant vulner-

abilities in asynchronous serial communication, they were based on a low-

precision clock glitch injection method. This technique, although effective in

corrupting UART-transmitted data, lacked fine-grained control over where

the glitch was applied in the program’s execution. The primary limitation of

this approach is its indiscriminate nature as it affects the entire ATmega328

microcontroller’s execution environment, not a specific instruction. Con-

sequently, while successful at altering UART packets, this method cannot

reliably target particular parts of the program control flow without poten-

tially causing widespread instability or unintended faults elsewhere in the

application.

To overcome this limitation and extend the scope of clock glitching to

instruction-level precision, a new approach was developed using an ESP32-

based glitching circuit. This advanced method introduces a significant im-

37

provement in control and reliability. In this design, the ATmega328 micro-

controller is programmed to emit a digital signal at the moment a specific

instruction or critical operation is about to be executed. This digital output

line is connected to an interrupt pin on the ESP32.

When the designated signal is triggered, it causes an interrupt on the

ESP32, which immediately activates its glitching routine. The ESP32 then

generates a noisy glitched clock signal and injects it into the ATmega328’s

clock line. This allows the glitch to be introduced synchronously with the

execution of a specific instruction, dramatically increasing the accuracy and

repeatability of the attack.

This high-precision setup brings numerous advantages over the previous

UART-based method. First, it ensures targeted instruction fault injection,

allowing experiments to explore the security of specific code paths such as

arithmetic and bit-wise operations. Second, it minimizes the collateral im-

pact on the rest of the program, reducing the risk of crashing the system and

increasing the chances of successful, stealthy exploitation.

By narrowing the attack surface from system-wide UART faults to specific

instructions, this method bridges the gap between theoretical side-channel

vulnerabilities and practical exploitation techniques. It opens the door to a

more granular analysis of embedded control flow security.

4.6.1 Experimental Setup

The experimental setup consists of following components,

1. Glitching Device: Responsible for producing the clock glitch signal

38

Figure 14: Hardware Setup For Precised Clock Glitch Injection

upon an output interrupt. This glitch signal will be eventually injected

into the clock-in interface of the target ATmega328 MCU. ESP32 de-

velopment board has been used to develop this device. GPIO pin 4 will

be used to capture the digital trigger signal. Changes in this pin will

trigger an interrupt. When the input is HIGH, the interrupt function

is producing a glitch signal using I2S protocol using GPIO pin 22. This

pin is directly connected to the clock-in interface of the target MCU.

When the input is LOW the interrupt function stops producing the

glitch signal.

2. ATmega328 Microcontroller: This is the target device that ex-

ecutes the specific program control flow. This MCU responsible for

producing a digital signal just before the targeted instruction. It sends

39

a digital HIGH signal using pin 13 just before starting critical section

in the code. Once after the critical section, it sends digital LOW signal

using the pin 13. This signal is triggering an interrupt in the glitching

device. Refer to the Listing 2.

void setup (){

pinMode (13 , OUTPUT) ;

}

void loop (){

t r iggerFunc (t rue) ; // Tr igger the s i g n a l

de layMicroseconds (1 0) ;

// Af f e c t ed Code

tr iggerFunc (f a l s e) ; // Turning t r i g g e r s i g n a l o f f

}

void t r iggerFunc (bool t r i g g e r){

i f (t r i g g e r){

d i g i t a lWr i t e (13 , HIGH) ;

} else {

d i g i t a lWr i t e (13 , LOW) ;

}

}

Listing 2: Targeted C Code

3. Programs including arithmetic operations and bit-wise operations. Mainly

focusing on bit-wise XOR, OR, AND, NOT and arithmetic operations

addition and subtraction.

40

However, using this method, we cannot have a precise control over the

glitched clock signal produced by the glitching device as it always generate a

random noise. This limitation causes a failure in interpreting a relationship

between the properties of the glitched signal and the observations in the

program execution flow.

4.6.2 Bit-wise XOR Operation

u i n t 8 t key = 0x5A ;

u i n t 8 t data = 0xC3 ;

void loop (){

t r iggerFunc (t rue) ; // Trigger the s i g n a l

delayMicroseconds (1 0) ;

// C r i t i c a l s e c t i on beg in

u i n t 8 t encrypted = data ˆ key ; // XOR opera t ion

// C r i t i c a l s e c t i on end

t r iggerFunc (f a l s e) ; // Turning t r i g g e r s i g n a l o f f

}

Listing 3: Targeted C Code With XOR Operation

To further explore the capabilities of precise instruction-level clock glitch-

ing, a focused experiment was conducted on arithmetic logic unit (ALU)

operations—in particular, the bitwise XOR operation—executed within the

ATmega328 microcontroller. XOR is a fundamental operation commonly

used in many embedded systems for cryptographic transformations, check-

sums, conditional logic, and bit manipulation tasks. As such, its reliability

is crucial in maintaining the functional correctness and security posture of a

41

system.

The experiment aimed to determine whether the newly developed glitch

injection device could influence the integrity of XOR operation results by

applying glitches at the moment of execution. The setup was configured

such that the ATmega328 would trigger a digital signal prior to executing

an XOR instruction, allowing the glitching device to synchronize the clock

glitch with this specific instruction.

During this test, two 8-bit values were XORed repeatedly, and the result

was observed under glitch conditions. The key finding from this experiment

was a consistent yet asymmetrical fault behavior: the glitch was able to flip

the least significant bit (LSB) of the XOR result from 1 to 0, but not the

other way around (it could not flip 0 to 1). This asymmetry suggests that

the glitch induces a fault at a very low hardware level, likely during the

write-back or propagation of logic values in the processor’s register file. One

plausible explanation is that the glitch introduces a timing violation that

causes the logic high state (1) to decay or be misread as a logic low (0).

To quantify the fault occurrence, the experiment was repeated across 10

independent runs, with each run consisting of 100 iterations of the XOR

operation. The number of successful LSB faults was recorded in each run,

and the corresponding probabilities were calculated. The observed fault rates

are provided in Table 3.

These results demonstrate a relatively consistent fault rate, fluctuating

only slightly between 34% and 39% across trials. When aggregated, the over-

all average fault probability for the LSB flip from 1 to 0 was calculated to be

42

Attempt(100 turns) Probability

1 36

2 34

3 36

4 36

5 37

6 39

7 38

8 39

9 36

10 36

Table 3: Probability of faulty result in each Attempt: XOR

36.7%. This percentage provides a statistical indication of the reliability and

reproducibility of this fault injection method. While not deterministic, the

glitching method is highly repeatable and probabilistically effective, mak-

ing it a viable tool for targeted fault attacks, especially when paired with

timing-based retry or brute-force strategies.

The fact that the glitch only flips from 1 to 0 suggests that any security-

critical logic relying on XOR operations—such as authentication routines,

checksum validation, or even simple flag checks—could be vulnerable under

certain fault conditions. For instance, a condition like: if ((key^mask) ==

expected value) could evaluate incorrectly if the result’s LSB is altered,

possibly allowing unauthorized access or bypassing critical checks.

43

4.6.3 Bit-wise OR Operation

u i n t 8 t data1 = 0x5A ;

u i n t 8 t data2 = 0xC3 ;

void loop (){

t r iggerFunc (t rue) ; // Trigger the s i g n a l

delayMicroseconds (1 0) ;

// C r i t i c a l s e c t i on beg in

u i n t 8 t r e s u l t = data1 | data2 ; // OR opera t ion

// C r i t i c a l s e c t i on end

t r iggerFunc (f a l s e) ; // Turning t r i g g e r s i g n a l o f f

}

Listing 4: Targeted C Code With OR Operation

Building on the earlier success of fault injection in XOR operations, a

follow-up experiment was conducted to analyze the effects of instruction-level

clock glitching on another common bitwise operation: the logical OR. This

instruction, like XOR, is frequently used in embedded systems for control

logic, masking, and configuration settings. Evaluating the susceptibility of

OR instructions to glitching is essential to understanding the broader impact

of clock manipulation on general-purpose computing in microcontrollers.

In this test, the OR operation was performed between two 8-bit values

in such a way that the least significant bit (LSB) of the result would be de-

terministically 1 in normal operation. The objective was to observe whether

glitching the clock at the precise moment of OR execution would lead to a

corruption in the LSB. Consistent with findings in the XOR experiment, the

results revealed an asymmetrical fault pattern: the glitch could flip the LSB

44

from 1 to 0, but not from 0 to 1. This strongly suggests that the fault is

induced during signal propagation or register write-back stages, where tim-

ing violations caused by clock distortion result in the logic high (1) value not

being properly latched, while zero values remain stable.

To statistically evaluate the reliability and repeatability of this glitching

technique on OR operations, 100 iterations were performed across 10 sepa-

rate attempts. The glitch frequency and timing window remained consistent

throughout, optimized based on earlier experimentation. The following are

the measured probabilities of the LSB being flipped from 1 to 0 in each batch

of 100 OR operations. The observed fault rates are provided in Table 4.

Attempt(100 turns) Probability

1 36

2 37

3 37

4 36

5 36

6 36

7 36

8 39

9 39

10 36

Table 4: Probability of faulty result in each Attempt: OR

The resulting average probability of fault occurrence was calculated to be

36.8%, indicating a highly consistent yet non-deterministic behavior. This

45

frequency of success places the OR instruction within the same vulnerabil-

ity range as the previously tested XOR instruction, further validating the

effectiveness of the glitch injection method.

From a security and correctness perspective, the implications of this find-

ing are profound. OR operations are frequently used to set flags, enable bits,

or combine control values. A fault that consistently flips 1 to 0 can under-

mine these operations and lead to unintended consequences such as disabled

interrupts, broken configurations, or bypassed logical conditions. For exam-

ple:

status |= 0x01; // Ensure the lowest bit is set

Under normal execution, this line ensures that the LSB of status is always

1. However, if glitching occurs and causes the result to be stored as with

LSB = 0, the condition meant to be guaranteed fails silently, potentially

compromising the control flow or system behavior.

4.6.4 Bit-wise AND Operation

u i n t 8 t data1 = 0x5A ;

u i n t 8 t data2 = 0xC3 ;

void loop (){

t r iggerFunc (t rue) ; // Trigger the s i g n a l

delayMicroseconds (1 0) ;

// C r i t i c a l s e c t i on beg in

u i n t 8 t r e s u l t = data1 & data2 ; // OR opera t ion

// C r i t i c a l s e c t i on end

t r iggerFunc (f a l s e) ; // Turning t r i g g e r s i g n a l o f f

46

}

Listing 5: Targeted C Code With AND Operation

Following the systematic exploration of fault injection effects on bit-wise

XOR and OR operations, a third phase of experiments was conducted to in-

vestigate the susceptibility of the bit-wise AND operation to instruction-level

clock glitching. Bit-wise AND is one of the most fundamental operations in

embedded programming, widely used for masking operations, enforcing flags,

range-checking, and low-level hardware manipulation. Due to its prevalence

in control logic and critical decision-making routines, any vulnerability in this

operation under fault conditions could have serious implications for program

reliability and security.

In this experiment, the ESP32-based glitch injection circuit—designed

for high-precision fault insertion—was again utilized. The ATmega328 mi-

crocontroller was configured to output a digital signal prior to executing a

specific AND instruction. This trigger was received by the ESP32, which then

injected a clock glitch precisely during the instruction execution window. The

goal was to analyze whether the glitch could affect the least significant bit

(LSB) of the result computed by the AND operation.

To ensure consistent testing conditions, operands were selected such that

the AND operation would always produce an LSB of 1 under normal circum-

stances (e.g., 0x5A 0xC3 = 0x42). The results showed a consistent fault

pattern similar to previous experiments: the glitch could change the LSB

of the result from 1 to 0, but never from 0 to 1. This asymmetry strongly

suggests that the glitch does not interfere with the computation logic of the

47

operation itself, but rather with the post-processing stages—most likely dur-

ing the write-back or propagation of the result into the register file. These

timing faults are sufficient to cause incorrect values to be captured or stored,

particularly affecting logic highs (1), which are more vulnerable to degrada-

tion in short or unstable clock pulses.

To quantify the reliability and frequency of this induced fault, the exper-

iment was run ten times, with each batch consisting of 100 executions of the

targeted AND operation under glitching conditions. The probabilities of the

LSB being flipped from 1 to 0 in each attempt are stated in the Table 5.

Attempt(100 turns) Probability

1 35

2 36

3 36

4 38

5 38

6 39

7 38

8 38

9 39

10 39

Table 5: Probability of faulty result in each Attempt: AND

These results indicate an increasing consistency in the glitching mecha-

nism’s ability to induce faults. The average probability of the LSB being

flipped from 1 to 0 across all trials was calculated to be 37.6%, slightly

48

higher than the probabilities observed in XOR (36.7%) and OR (36.8%) ex-

periments. This steady increase might be attributed to the fact that AND

operations often result in tighter logic paths with less signal margin, making

them more susceptible to high-frequency clock distortions.

From a practical perspective, this vulnerability has serious implications.

Consider the following example in embedded C:

status = 0x01; // Clear all bits except the LSB

This operation is typically used to preserve or isolate a single control bit,

such as a user input or a hardware flag. If a glitch flips the result’s LSB

from 1 to 0, the logic relying on this condition may falsely interpret that the

bit was unset. This could disable critical subsystems, trigger error handling

unnecessarily, or prevent expected actions from being taken—especially in

systems without fault detection or redundancy.

Furthermore, AND operations are often used to restrict access or filter

permissions. For example:

if ((user flags & ACCESS MASK) == REQUIRED FLAG)

A glitch that alters the LSB of such a condition could mislead the system

into thinking access is not granted—even when it should be—resulting in

denied service, logic errors, or unintentional bypasses of valid states.

4.6.5 Bit-wise NOT Operation

To complete the analysis of basic bit-wise operations under fault injection,

the bitwise NOT operation was also subjected to precise clock glitching ex-

periments using the ESP32-controlled glitching circuit. Bit-wise NOT, often

49

represented as the complement operation (in C/C++), is a unary operator

that inverts all bits of an 8-bit operand. It plays a vital role in creating bit

masks, toggling states, and implementing low-level logic in embedded sys-

tems. Due to its widespread use, it was critical to examine whether this

operation exhibits any vulnerability when subjected to glitch-induced timing

faults.

The experiment followed the same methodological framework used for

XOR, OR, and AND operations.

Test cases were selected such that the expected output of the NOT op-

eration would have a well-defined and testable LSB. For instance, inverting

0xFE should yield 0x01, ensuring the LSB of the output is 1. Similarly, in-

verting 0xFF should yield 0x00, allowing assessment of whether the glitch

could flip the result in either direction.

Surprisingly, no faults were observed in any of the test cases, regard-

less of the operand or the targeted glitch parameters. The NOT operation

consistently produced the correct result, even under repeated and aggressive

glitching attempts. Over the course of ten separate trials, each consisting

of 100 NOT operations, not a single instance of LSB corruption or output

deviation was recorded. This suggests that the bit-wise NOT instruction in

the ATmega328 is either inherently more robust to clock faults or is executed

within an internal micro-architectural stage that is less sensitive to timing

anomalies.

Several technical factors may contribute to this resilience:

1. Unary Simplicity: Unlike binary operations (AND, OR, XOR), which

50

involve multiple operands and potential carry/propagation paths, the

NOT operation deals with a single operand and may have a shorter

or more direct execution path in the microcontroller’s arithmetic logic

unit (ALU).

2. Execution Speed: The NOT instruction might be executed in fewer

cycles or with less dependency on pipeline stages, reducing the window

of opportunity for a glitch to cause a timing violation.

3. Instruction Timing Alignment: It is possible that the NOT instruc-

tion’s execution timing did not align well with the injected glitch pulse,

making it less likely for the clock distortion to coincide with a critical

logic transition.

These observations underscore the non-uniform impact of clock glitching

across different instruction types. While XOR, OR, and AND operations

showed measurable and repeatable vulnerabilities in their least significant

bit outcomes, the NOT instruction remained entirely unaffected under iden-

tical glitching conditions. This indicates that instruction-level susceptibility

to fault injection varies based on operation complexity, timing, and micro-

architectural implementation.

From a security and reliability perspective, this result is encouraging. It

demonstrates that not all operations are equally vulnerable to glitching at-

tacks and that some instructions—particularly unary operations like NOT,

may inherently possess greater resistance to such forms of fault injection.

However, this also highlights a potential vector for attackers to selectively

51

target more vulnerable operations, focusing their efforts on specific instruc-

tions that exhibit asymmetric or frequent fault behavior.

4.6.6 Addition & Subtraction Operations

To extend the scope of instruction-level fault injection analysis beyond log-

ical bit-wise operations, further experiments were carried out on arithmetic

operations, specifically addition and subtraction. Arithmetic instructions are

deeply integrated into the control flow and logic of virtually every embedded

system application, from sensor readings to timing calculations, encryption

routines, and more. Any vulnerability in the correctness of arithmetic re-

sults caused by clock glitching can pose severe risks to system reliability,

data integrity, and security mechanisms.

As in previous instruction-targeted glitching experiments, a glitching cir-

cuit built with an ESP32 was used to inject noisy clock faults into a target

ATmega328 microcontroller. The glitch injection was triggered precisely at

the point where addition or subtraction instructions were executed, using a

digital output signal from the MCU. Each experiment consisted of 100 ex-

ecutions of either an addition or subtraction operation under glitching con-

ditions. The operands were systematically selected to generate results with

varying Hamming weights—that is, the number of binary 1s in the 8-bit re-

sult. Hamming weight was chosen as a parameter to examine whether the

number of logic high bits in the result had any correlation with susceptibility

to glitch-induced faults. Note that the operands have been selected in an

order that it does not overflow the result over the 8 bits.

52

The Table 6 demonstrates the results those were obtained from repeated

tests across a full spectrum of Hamming weights in the result of the addition

operations.

Original Hamming Weight of The Result Probability of Failure (%)

0 16 - 17

1 19 - 23

2 26 - 29

3 34 - 37

4 38

5 38

6 41 - 42

7 46 - 49

8 52 - 57

Table 6: Probability of faulty result according to the hamming weight: AD-

DITION

The results clearly exhibit a positive correlation between Hamming weight

and the probability of fault. Results with a lower number of 1s were less likely

to be corrupted by glitching, while higher Hamming weights—especially 6

to 8—demonstrated significantly higher fault probabilities. For instance,

when the result had a Hamming weight of 8 (i.e., all bits set to 1, such as

0xFF), the failure probability peaked between 52% and 57%. This suggests

that glitching is more effective when the target instruction is expected to

produce multiple high logic levels, likely due to increased switching activity

and power consumption within the microcontroller’s arithmetic logic unit

53

(ALU), making it more susceptible to timing faults.

A parallel set of experiments was conducted on the subtraction operation

under identical glitching conditions. The results, organized by Hamming

weight of the result, stated in Table 7

Original Hamming Weight of The Result Probability of Failure (%)

0 16 - 17

1 19 - 22

2 26 - 29

3 33 - 37

4 38

5 38

6 40 - 43

7 46 - 49

8 53 - 57

Table 7: Probability of faulty result according to the hamming weight: SUB-

TRACTION

As observed in the addition experiment, the subtraction results also follow

a similar trend of increasing failure probability with increasing Hamming

weight. While the lower weight results (e.g., Hamming weights 0–2) saw

failure rates of less than 30%, results with high bit density (weights 6–8)

reached failure probabilities up to 57%. The most vulnerable results were

again those with Hamming weight 8, showing a remarkably high error rate

ranging between 53% and 57%.

These results provide strong evidence that the bit-level structure of an

54

0 2 4 6 8

20

30

40

50

Hamming Weight

F
ai
lu
re

P
ro
b
ab

il
it
y
(%

)

Figure 15: Relationship between minimum failure probability and the actual

hamming weight of the result: Addition

0 2 4 6 8

20

30

40

50

Hamming Weight

F
ai
lu
re

P
ro
b
ab

il
it
y
(%

)

Figure 16: Relationship between minimum failure probability and the actual

hamming weight of the result: Subtraction

arithmetic result directly influences the susceptibility of the operation to

clock glitching. The correlation between higher Hamming weights and greater

failure probability indicates that the cumulative effect of multiple 1s in the

result increases the chance of propagation delays or logic instability during

55

the write-back phase of the instruction cycle. Since clock glitching shortens

or misaligns the clock pulse during execution, it is likely to interfere with

critical timing windows, particularly in cases of heavy signal switching as in

high-Hamming-weight outputs.

The data also revealed variations in the probability range for certain Ham-

ming weights (e.g., weights 1, 2, 3, 6, 7, and 8). To better understand this

variability, additional tests were conducted to identify minimum and maxi-

mum bounds of fault probability for each case. These supplementary experi-

ments confirmed that even within a given Hamming weight, slight differences

in operand values, glitch pulse alignment, and system state could influence

the probability of fault, underscoring the probabilistic and non-deterministic

nature of fault injection at this level.

5 Discussion

The experimental results provide strong evidence that controlled clock glitch-

ing can systematically alter UART data transmission, leading to severe secu-

rity vulnerabilities. The findings demonstrate two critical exploit scenarios:

1. Flipping a false Signal to a true Signal (Unauthorized Access):

• Under normal conditions, when the ATmega328 microcontroller

sends a false signal to the door lock, it is transmitted as 0x00 over

UART.

• However, at specific glitching frequencies (17–19 MHz, 20–22 MHz,

and 23 MHz), the received value changes from 0x00 to progres-

56

sively corrupted values like 0x80, 0xC0, and 0xE0, indicating that

bits within the byte are being flipped.

• This means that a carefully timed glitch could potentially modify

a false signal into a value that is incorrectly interpreted as true,

allowing unauthorized access to a secured system.

• Another critical finding is that at very high glitching frequencies

(24–25 MHz), the transmission fails entirely, suggesting that ex-

cessive interference can break synchronization altogether, making

the system unstable and unreliable.

2. Flipping a true Signal to a false Signal (Denial of Access):

• According to Table 2, when a true signal (originally represented

as 0x01) is transmitted, clock glitching at specific frequencies dis-

rupts the transmission.

• A key observation is that when the glitching clock is 1.86–1.89

MHz, the received value becomes 0x00, meaning that the original

true signal has been fully inverted to false.

• This means an attacker could strategically apply a glitch at this

frequency to prevent legitimate users from gaining access to a

secured system by flipping authentication approvals into denials.

• Moreover, other glitch frequencies result in various corrupted val-

ues (0x03, 0x02, 0x06, etc.), suggesting that while full inversion

occurs at 1.87 MHz, partial corruption could also cause unpre-

dictable behavior in the system.

57

The initial hypothesis suggested that by inducing clock glitches during

UART communication between an ATmega328 microcontroller and a door

lock system, it might be possible to manipulate transmitted authentication

signals—specifically flipping a false signal to true—thereby granting unau-

thorized access. Through systematic experimentation, this hypothesis has

been confirmed as true. By applying a clock glitch at a frequency above 17

MHz, the false signal, originally intended to deny access, is corrupted and

received as true at the door lock, effectively unlocking it without valid creden-

tials. Conversely, when the glitching clock is set to 1.87 MHz, the corruption

occurs in the opposite manner, flipping a true signal into false, potentially

locking out legitimate users. These findings provide concrete evidence that

clock glitching can successfully interfere with UART data integrity, breaking

the fundamental trust in the microcontroller’s decision-making process. The

observed behavior aligns with known vulnerabilities of asynchronous com-

munication protocols like UART, where disruptions in timing can miss-align

data frames, leading to unintended bit flips. As a result, the hypothesis is

no longer theoretical but an established fact—unauthorized access through

clock glitching is indeed achievable. This confirmation emphasizes the need

for security enhancements, such as stronger data integrity verification meth-

ods, glitch-resistant hardware designs, or alternative communication proto-

cols that mitigate such attacks. This confirms that synchronization failures

in UART communication, induced via clock glitching, can lead to security

breaches.

Furthermore, the latter experiments prove that well-controlled clock glitch

58

can induce faults and alter the 8bit data. That represents the vulnerability

of data types not only Boolean but also Integer and ASCII characters under

clock glitch injection. The above experiments also illustrate the practical

aspect of applying clock glitch in order to alter the data bits in a predictable

and reproducible manner. As an example if we want to change the ’0000

0010’ data to ’1100 0010’ when they are transmitting through UART com-

munication, we can simply apply a glitchy clock signal between 20-22 MHz

into the sending device.

Following the preliminary fault injection experiments that revealed the

vulnerabilities of the ATmega328P microcontroller to low-precision clock

glitching, this research took a major step forward by designing and imple-

menting a highly targeted fault injection mechanism. This new approach

leverages an ESP32-based external glitching device to inject carefully timed

glitches in synchronization with specific instruction executions of the target

microcontroller. The transition from general system-level disruption (as ob-

served in UART faults) to precise instruction-level attacks enabled a much

deeper analysis of program control flow behavior and fault impact.

Unlike the earlier method—where clock glitches were injected continu-

ously or blindly throughout UART communication—this setup is trigger-

based and deterministic. The ATmega328P was programmed to emit a digi-

tal signal through one of its GPIO pins just before executing the instruction

under test. This digital signal served as an external interrupt for the ESP32,

which was pre-programmed to immediately generate a short-duration clock

glitch and feed it to the ATmega328P. This method ensures the glitch is

59

aligned precisely with the instruction of interest, minimizing collateral ef-

fects and isolating the fault to a single operation.

This method was rigorously tested across a variety of bitwise and arith-

metic operations:

• Bitwise XOR, OR, and AND: In each of these logic operations, it was

observed that glitching caused a consistent fault pattern where the

Least Significant Bit (LSB) of the result was flipped from 1 to 0, but not

from 0 to 1. This asymmetry suggests that glitches tend to cause logic

gate malfunctions in a single direction, possibly due to timing violations

in the propagation of high-state logic. The fault was probabilistic, with

failure rates hovering between 36%–38% across trials, depending on the

operation.

• Bitwise NOT: Interestingly, this operation was completely immune to

glitching in all 100 tests. This might indicate that the NOT instruc-

tion in AVR assembly is either executed too quickly or lacks enough

transitional states to be affected by brief glitch pulses.

• Addition and Subtraction: These arithmetic operations exhibited a

clear correlation between hamming weight and fault probability. As the

number of 1s in the result increased, so did the failure rate, peaking at

over 57% for addition and 55% for subtraction. This suggests that more

logic transitions (i.e., more switching bits) increase the susceptibility to

timing faults, likely because higher logic density places greater strain

on internal propagation delays and setup/hold times during execution.

60

One of the most significant outcomes of this experiment is the demonstrated

control over fault injection timing, which is a key milestone in transitioning

from observational fault research to strategic exploitation. By aligning glitch

pulses with specific instruction boundaries, the attacker can intentionally in-

fluence the result of targeted operations. This is a considerable advancement

over the low-precision UART attack, where the glitch could only probabilis-

tically flip a bit during communication but had no awareness of internal

instruction execution states.

This newfound control implies that timing fault attacks are not just a

side effect of electrical instability but a repeatable and engineerable threat.

The experiment validates the potential for developing an automated glitching

system that can learn and adapt based on target behavior, paving the way for

programmable fault-injection engines used in advanced reverse engineering

or security research.

In detailed discussion with critical evaluation within the context of re-

search questions are presented in the following subsections.

5.1 Research Question 1

To what extent do timing fault attacks disrupt the program exe-

cution sequence of the ATmega328P microcontroller?

The first research question focuses on evaluating the vulnerability of the

ATmega328P microcontroller to timing fault attacks and the extent of dis-

ruption they cause to the program control flow and execution correctness.

The extensive set of experiments, ranging from system-level UART commu-

61

nication to low-level arithmetic and logic operations, collectively paints a

comprehensive picture of how significantly program behavior can be altered

under fault conditions.

5.1.1 UART-Level Fault Injection (Low Precision Clock Glitch-

ing)

The initial experiments using clock glitching during UART communication

revealed that fault injection can manipulate the boolean data transmitted

between two devices. Specifically:

• When the transmitted value was FALSE (0x00), and the glitching clock

was increased above 17 MHz, the receiving end erroneously interpreted

it as TRUE (0x01).

• When TRUE (0x01) was transmitted and the glitching clock was slowed

down to 1.87 MHz, the receiver read it as FALSE (0x00).

This effectively demonstrated that timing faults at the communication

level could bypass authentication mechanisms or binary decisions (e.g., un-

locking a door). This indicates a disruption in program behavior at the sys-

tem level, since the microcontroller’s logic assumes a correct communication

medium while it’s unknowingly altered by timing faults.

Additionally, this effect was proven not limited to boolean values. The

glitching resulted in predictable bit-level changes in integer values and ASCII

characters, most often affecting the Least Significant Bit (LSB). For instance:

• Integer values like 0x04 were received as 0x05 or vice versa.

62

• ASCII characters like ’A’ (0x41) were received incorrectly due to altered

LSBs.

These results indicate fundamental disruptions in data integrity, showcas-

ing that not only program control flow but also data correctness is compro-

mised, which can lead to cascading failures or logic branches being incorrectly

triggered.

5.1.2 Instruction-Level Fault Injection (Precise Glitching using

ESP32)

To overcome the non-specific and system-wide nature of the UART glitch-

ing method, the study developed a more precise method using an ESP32,

capable of injecting faults at specific instruction boundaries by reacting to

triggers generated from the target ATmega328. This significantly improved

the control and reproducibility of timing fault attacks.

In this controlled environment, various bitwise and arithmetic operations

were studied. The results from these operations directly correlate with how

execution correctness at the instruction level can be altered:

• XOR, OR, AND Operations: All three operations exhibited the same

bit flip behavior, where the LSB could be flipped from 1 → 0, but not

from 0 → 1. These flips did not occur every time, but with a measurable

probability:

– XOR: ˜36.7%

– OR: ˜36.8%

63

– AND: ˜37.6%

This behavior implies partial but deterministic corruption in logical

results, which can affect conditional branches, flags, or logical masking

within the program flow.

• NOT Operation: Contrary to the above, the NOT operation was com-

pletely resilient to clock glitching under the same conditions. This

suggests that not all instructions are equally vulnerable, likely due

to differences in micro-architectural implementation (unary vs binary

logic).

• Arithmetic (ADD and SUB): These operations demonstrated data-

dependent fault behavior, with higher failure probabilities associated

with higher Hamming weights in the result:

– Addition: Up to 57% failure at Hamming weight 8

– Subtraction: Up to 55% failure at Hamming weight 8

This confirms a clear relationship between switching complexity and

glitch susceptibility, indicating that the more bits set to 1, the greater

the chance the operation result is corrupted. Since arithmetic outcomes

often determine control flow (e.g., counters, pointer calculations, loop

limits), this directly contributes to unintended jumps, logic errors, or

buffer overruns.

64

5.2 Research Question 2

How to conduct timing fault attacks to generate predictable pro-

gram execution behaviors on ATmega328P microcontrollers?

The second research question investigates how fault attacks can be carried

out in a way that produces repeatable and controllable effects making it a

crucial criterion for real-world exploits.

5.2.1 UART-Level Fault Injection (Low Precision Clock Glitch-

ing)

Controlled Bit Manipulation in UART Communication:

One of the most revealing findings of this work is the realization that UART

data packets can be deliberately corrupted in a predictable manner using

clock glitching, even without targeting specific instructions. UART commu-

nication, by nature, relies heavily on synchronization between the transmitter

and receiver based on a fixed baud rate. Introducing controlled glitches at

this level affects the sampling of individual bits, which in turn can flip the

value of the received byte.

In our experiments, the ATmega328P transmitted boolean and integer

values over UART, which were intercepted and faulted by clock glitches in-

troduced during transmission. The findings showed that:

• At frequencies above 17 MHz, transmitted values such as FALSE (0x00)

were consistently received as TRUE (0x01)

• At frequencies around 1.87 MHz, transmitted values like TRUE (0x01)

65

were received as FALSE (0x00)‘

This pattern was not random. The injection of glitch pulses during UART

bit transmission had a bit-specific effect, particularly on the Least Signifi-

cant Bit (LSB). A glitch could change the LSB from 0 to 1 or from 1 to 0,

depending on the frequency and timing of the fault. This opened the door

to controlled bit flipping in UART communication, extending the attack’s

utility beyond booleans to 8-bit integers and ASCII characters.

For example:

• Sending 0x02 (binary 0000 0010) with a well-timed glitch could be

received as 0x03 (0000 0011)

• Sending ’A’ (ASCII 0x41, 0100 0001) could be faulted and received as

’@’ (0x40, 0100 0000)

If we change the perspective from implemented data types to hardware

level 8-bit data packet, the above described results demonstrate the capability

of flipping the bits in the LSB end. This behavior provides a level of bit-level

predictability and controllability, enabling the capability to craft data-level

payload manipulation over serial interfaces using only timing faults without

modifying the program code or physical memory directly providing solid

evidence to answer the 2nd research question.

5.2.2 Precised Instruction-Level Glitching

The employed method with additional glitching circuit introduces an accu-

rate method to inject high precised glitches for specific instructions with

66

demonstrated effects on the program execution within ATmega328 micro-

controller. This method provided the following advantages.

• Capability to triggering fault injection on specific instructions.

• Enabled studying instruction-level vulnerabilities.

• Allowed analysis of repeated patterns and fault probabilities.

• Produced controlled and statistically predictable errors.

By integrating the ESP32-triggered glitch injection with signal timing

from the ATmega328P, this method introduces programmable precision, which

dramatically increases the reliability and repeatability of fault attacks. This

setup transforms what is usually seen as random behavior into an experimen-

tally verifiable and manipulable phenomenon. This evolution in methodology

fulfills the requirement for controlled fault injection, enabling researchers and

adversaries alike to reproduce specific errors with known probability distri-

butions.

For example: Knowing that XOR fails 36.7% of the time, or that an addi-

tion result with Hamming weight 8 fails 57% of the time, allows probabilistic

modeling of outcomes and potential for intentional glitch exploitation.

Additionally, the directionality of faults (e.g., 1 → 0 but not 0 → 1)

further adds to the predictability and reduction in search space for successful

attack vectors.

The integration of controlled glitch frequency in UART-level system faults

and noisy disruptions in instruction-level injection demonstrates that timing

67

fault attacks can be effectively controlled and replicated to produce targeted,

bit-specific, and instruction-specific behavior changes in the ATmega328P

microcontroller. This level of control satisfies the criteria outlined in the sec-

ond research question, proving that predictable program execution deviations

are not only possible but also engineerable through precise glitch injection

methods.

6 Conclusion

Through a series of meticulously designed experiments and fault injection

methodologies, this research has demonstrated that timing fault attacks can

significantly disrupt the program execution behavior of the ATmega328P

microcontroller, both at the system-level communication protocols and at

the instruction-level computation logic. The experiments revealed that by

carefully introducing glitches either during data transmission (UART-based)

or during specific instruction execution (logic and arithmetic operations), the

normal behavior of the program can be altered in repeatable and measurable

ways.

In the case of UART communication, low-precision clock glitching was

able to modify transmitted boolean values, integers, and ASCII characters

by altering individual bits in the data packets. It was proven that certain

glitch frequencies can systematically flip the Least Significant Bit (LSB) of a

byte, converting 0x00 to 0x01 and vice versa. This directly disrupted the logic

upon which program decisions are made. or example, allowing unauthorized

access to a door lock system based on faulty logic generated by timing-based

68

interference.

Further, transitioning to a higher-precision, instruction-targeted fault in-

jection setup using an ESP32-based circuit enabled this study to explore the

depth of vulnerability within the ATmega328P’s instruction pipeline. The

results from XOR, OR, AND, ADD, and SUB operations consistently showed

that clock glitches could flip the LSB of computation results from 1 to 0, al-

though not vice versa. Importantly, these disruptions did not occur randomly

but followed a statistically observable pattern, with overall fault probabilities

averaging around 36%–38% for logic operations and climbing up to 57% for

arithmetic operations involving higher hamming weights.

Notably, certain instructions such as the bitwise NOT operation remained

resilient against glitching, indicating that while the ATmega328P is vulner-

able to timing faults, not all parts of the instruction set or execution paths

are equally susceptible. This finding further highlights the importance of

instruction-level understanding in analyzing microcontroller vulnerabilities.

Taken together, the extent of disruption caused by timing fault attacks

on ATmega328P is substantial. They can interfere with both data integrity

and control flow logic, leading to unintended execution paths, incorrect com-

putations, and security breaches. These attacks are achievable using afford-

able hardware setups and can exploit common communication protocols and

computational operations. As a result, this research underscores the need

for more robust fault-tolerant design practices and hardware-level protec-

tion mechanisms in embedded systems based on the ATmega328P microcon-

troller.

69

What distinguishes this work is the ability to reproduce these faults in a

controlled and targeted fashion. By correlating glitch frequency and timing

with predictable outcomes, this research not only confirms the extent of dis-

ruption (Research Question 01) but also lays the groundwork for developing

fault injection strategies that yield consistent, predictable behavior modi-

fications (Research Question 02). This capacity for precision fault control

elevates timing fault attacks from being seen as random anomalies to becom-

ing engineerable, repeatable threats, with broad implications in embedded

system security.

In conclusion, the ATmega328P microcontroller is demonstrably vulner-

able to timing fault attacks that can compromise both data and control

flow integrity. Moreover, with the appropriate fault injection techniques,

such attacks can be made predictable and systematic, thus fulfilling both

the exploratory and methodological objectives outlined in this thesis. These

insights make a significant contribution to understanding fault models in

embedded systems, highlighting both risks and potential countermeasures.

Your thesis not only proves vulnerabilities, but also sets a foundation for

developing robust software-hardware co-design strategies in fault-sensitive

applications.

6.1 Future Directions

The findings of this research not only confirm the susceptibility of the AT-

mega328P microcontroller to timing fault attacks but also open a variety of

avenues for deeper exploration in the domain of embedded systems security.

70

While this study has successfully demonstrated the capability to induce and

control timing faults at both the communication and instruction levels, there

remain several compelling future directions to further this line of research:

• Improved clock glitch injection device:

The precise clock glitch injection device implemented using ESP32

introduced faults and affected instruction execution. However, this

method can only generate random noise. We don’t have precise control

over the properties of the clock glitch signal. This leads to a major

limitation when understanding and analyzing the relationship between

the results and the generated glitching clock properties. Due to this

factor, future researches can focus on improving this method by adding

the controllability of the glitching signal and analyze the relationship

between the glitching properties and the observations or even can open

a window for precised method with better reproducibility and better

controllability.

• Cross-Architecture Analysis Although the experiments focused on the

ATmega328P, expanding this methodology to other microcontroller

families such as:

– ARM Cortex-M based microcontrollers (STM32, NRF52)

– PIC and MSP430 series

– RISC-V based architectures

Would validate whether the observed vulnerabilities are architecture-

71

specific or generalizable across platforms. This also supports the de-

velopment of cross-platform fault models and countermeasures

• Security Countermeasures and Mitigation Techniques As fault attacks

become more precise and repeatable, future work should also investi-

gate software and hardware-level protections including:

– Instruction duplication and checksumming

– Redundant computation with majority voting

– Clock and power glitch detectors

– Secure bootloaders with integrity checks

Implementing and evaluating these countermeasures on the same ex-

perimental setup could provide valuable insight into their effectiveness

and potential overhead.

72

References

Banerjee, U., Ho, L. & Koppula, S. (2022), ‘Power-based side-channel attack

for aes key extraction on the atmega328 microcontroller’, arXiv preprint

arXiv:2203.08220 .

Bonny, T. & Nasir, Q. (2019), ‘Clock glitch fault injection attack on an fpga-

based non-autonomous chaotic oscillator’, Nonlinear Dynamics 96, 2087–

2101.

Breier, J. & Hou, X. (2022), ‘How practical are fault injection attacks, re-

ally?’, IEEE Access 10, 113122–113130.

Colombier, B., Grandamme, P., Vernay, J., Chanavat, É., Bossuet, L.,

de Laulanié, L. & Chassagne, B. (2021), Multi-spot laser fault injection

setup: New possibilities for fault injection attacks, in ‘International Con-

ference on Smart Card Research and Advanced Applications’, Springer,

pp. 151–166.

Corporation, A. (2016), ‘Atmega328/p: 8-bit avr microcontroller with 32k

bytes in-system programmable flash’. Data Sheet.

URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-

42735-8-bit-AVR-Microcontroller-ATmega328-328PDatasheet.pdf

Delarea, S. & Oren, Y. (2022), ‘Practical, low-cost fault injection attacks on

personal smart devices’, Applied Sciences 12(1), 417.

Dumont, M., Lisart, M. & Maurine, P. (2019), Electromagnetic fault injec-

73

tion: How faults occur, in ‘2019 Workshop on Fault Diagnosis and Toler-

ance in Cryptography (FDTC)’, IEEE, pp. 9–16.

Gnad, D. R., Oboril, F. & Tahoori, M. B. (2017), Voltage drop-based fault

attacks on fpgas using valid bitstreams, in ‘2017 27th International Confer-

ence on Field Programmable Logic and Applications (FPL)’, IEEE, pp. 1–

7.

He, W., Breier, J., Bhasin, S., Jap, D., Ong, H. G. & Gan, C. L. (2016), Com-

prehensive laser sensitivity profiling and data register bit-flips for crypto-

graphic fault attacks in 65 nm fpga, in ‘Security, Privacy, and Applied

Cryptography Engineering: 6th International Conference, SPACE 2016,

Hyderabad, India, December 14-18, 2016, Proceedings 6’, Springer, pp. 47–

65.

O’Flynn, C. (2016), ‘Fault injection using crowbars on embedded systems’,

Cryptology ePrint Archive .

Ordas, S., Guillaume-Sage, L. & Maurine, P. (2017), ‘Electromagnetic fault

injection: the curse of flip-flops’, Journal of Cryptographic Engineering

7, 183–197.

Sanjaya, S., Jayasena, A. & Mishra, P. (2024), ‘Information leakage through

physical layer supply voltage coupling vulnerability’, arXiv preprint

arXiv:2403.08132 .

Tehranipoor, M., Nalla Anandakumar, N. & Farahmandi, F. (2023), Volt-

74

age glitch attack on an fpga aes implementation, in ‘Hardware Security

Training, Hands-on!’, Springer, pp. 219–234.

Vasselle, A., Thiebeauld, H., Maouhoub, Q., Morisset, A. & Ermeneux, S.

(2017), Laser-induced fault injection on smartphone bypassing the secure

boot, in ‘2017 Workshop on Fault Diagnosis and Tolerance in Cryptogra-

phy (FDTC)’, IEEE, pp. 41–48.

75

