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Abstract

The integration of data analytics in sports has revolutionized performance evaluation
and strategic planning, yet rugby union remains underrepresented in this domain, par-
ticularly concerning defensive strategies. This thesis addresses this gap by developing
a deep learning framework to classify and evaluate three prevalent defensive formations
in rugby union: blitz, drift, and umbrella. Utilizing manually annotated positional data
from Rugby World Cup matches, the study employs Long Short-Term Memory (LSTM),
Convolutional Neural Networks (CNN), and hybrid CNN-LSTM architectures to capture
the spatio-temporal dynamics of defensive plays. The research further incorporates suc-
cess prediction as a secondary task, assessing the e!ectiveness of each defensive strategy.
To enhance model generalization, rugby-specific data augmentation techniques, includ-
ing coordinated jittering and mirroring, are applied.Experimental results show that the
hybrid CNN-LSTM model achieved the highest performance, reaching an overall accu-
racy of 97.22%, with strong strategy recognition and success prediction capabilities across
augmented datasets.The findings demonstrate the potential of deep learning models to
automate the classification of defensive formations and predict their success, o!ering
valuable insights for coaches and analysts. This work contributes to the advancement
of rugby analytics by introducing a scalable, objective approach to defensive strategy
evaluation.
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Chapter 1

Introduction

This chapter aims to introduce the study by providing comprehensive background and

contextual information on the research domain. The research problem, objectives, and

questions will be discussed, and the significance of the research will be highlighted ac-

cordingly.

1.1 Background

Rugby is widely considered a high intensity, contact sport that requires a combination

of physical strength, tactical intelligence, and strategic decision making. Unlike many

other field sports that feature regular stoppages or set defensive plays (e.g., American

football), rugby maintains continuous play. This continuity demands that teams quickly

adapt their strategies based on real time game dynamics. Among these, defense plays a

critical role in controlling the flow of the match, disrupting the opponent’s attacks, and

creating opportunities for turnovers.

Although the crowd often focuses on o!ensive plays, the e!ectiveness of a team’s defense

is equally important in determining match outcomes. An organized defense not only

prevents line breaks but also disrupts the momentum of the o!ensive team and creates

turnover opportunities. In this sense, defense in rugby is not merely about stopping the

opposition, but about influencing the flow of the game, dictating territory, and controlling

the momentum .
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1.1.1 Key Defensive Strategies

For the purposes of this research, three broad defensive strategies are primarily consid-

ered:

• Blitz Defense

The blitz defense, sometimes called “up and in” defense, relies on rapid line speed

to cut down the o!ensive team’s space and force errors. Defenders launch forward

as soon as the ball is passed to disrupt the attacking line.

• Drift Defense

In a drift defense, defenders move laterally in response to the attacking line’s ad-

vance. This strategy aims to e!ectively corner the o!ense towards the sidelines by

using the touchline as an additional defender.

• Umbrella/Hinge Defense

The umbrella (or hinge) defense is a hybrid approach that combines elements of

both blitz and drift defenses. It involves a coordinated push by the central defensive

line, while wide defenders remain deeper, thereby funneling the attack toward the

supporting defenders.

1.1.2 Importance of Defensive Strategy Analysis in Rugby

Despite rugby’s physical intensity and strategic complexity, many teams still rely heavily

on manual video reviews to study their defense (Jones et al. 2019; O’Donoghue 2005).

Coaches typically watch footage frame by frame to spot missed tackles or poor alignment.

While these reviews can be useful, they are time-consuming and prone to subjective bias,

as di!erent coaches may notice di!erent details (Quinn 2017). In contrast, sports such

as basketball, soccer, and American football have embraced advanced analytics—using

real-time tracking and predictive models to sharpen both o!ense and defense (Nix and

Coauthor 2014; Quinn 2017). Rugby, however, has lagged behind in the use of in depth

data, particularly for defensive analysis, where few established methods exist to measure

how well di!erent defensive systems work (Jones et al. 2019; Smith 2019). Although

technologies like GPS tracking and wearable sensors are emerging, they are expensive

and require specialized sta! to manage (Shaw and Coutts 2020).
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1.2 Motivation

Rugby has evolved from being primarily a physical contest to a sport where strategy and

tactical planning can decisively influence the outcome (Ford and Williams 2008; Mem-

mert, Lemmink, and Sampaio 2017). While machine learning (ML) has been applied in

many sports to predict player performance, forecast match results, and optimize o!ensive

tactics, its application to defensive strategies is still relatively new (Jon Gudmundsson

and M. Horton 2017; Watson et al. 2020). Defense is crucial not only for controlling the

match’s tempo but also for shifting momentum through strategic turnovers (Jones et al.

2019).

By applying ML to real game data, coaches and analysts can gain a better understanding

of how specific defensive approaches—such as blitz, drift, or umbrella defenses perform

in various situations. This data-driven perspective can improve the accuracy of defensive

plans and enable teams to adapt quickly when conditions change (M. Johnson 2021).

Moreover, analyzing defense through ML could reveal insights into spatial patterns and

player movements that may not be obvious through manual observation (Shaw and Coutts

2020). Ultimately, employing ML in rugby defense has the potential not only to enhance

performance but also to pioneer analytical methods beneficial to other sports where de-

fense plays a critical role (McCarville 2022).

1.3 Problem Statement

Despite the increased complexity in Rugby, the application of advanced ML techniques to

predict defensive strategies is still relatively unexplored. Coaches have traditionally relied

on experience and basic statistics to guide their defensive tactics, but these methods often

fail to capture the full complexity of the game, especially in anticipating and countering

opponents’ moves.

Most rugby analytics to date have concentrated on isolated actions or general game

outcomes, leaving a gap in understanding the specific dynamics of defensive plays. Addi-

tionally, there is a shortage of publicly available datasets that detail defensive formations

and player interactions, making it challenging to develop models that accurately predict
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rugby defenses. Without data valuable insights are missed that could help coaches make

informed defensive decisions.

This research develops a machine learning model that classifies defensive strategies based

on early attack movements and predicts their likelihood of success, thereby enabling data

driven evaluation of tactical e!ectiveness in rugby. Although the model does not directly

recommend an optimal strategy, it provides insight into the e!ectiveness of each forma-

tion given early game context laying the foundation for future real time decision support

systems. To achieve this, we will compile a focused dataset from game footage, capturing

key instances of defensive patterns, and use ML techniques to analyze how player for-

mations and movements impact defensive e!ectiveness. By following this approach, the

study aims to provide rugby teams with practical, data-driven insights that can improve

their defensive tactics and enhance their competitive edge on the field.

1.4 Research Aim, Questions and Objectives

1.4.1 Research Aim

This research aims to develop a predictive model that can identify the defensive strategy

(Blitz, Drift, or Hinge) employed during the early phase of a rugby play and estimate its

likelihood of success. By leveraging deep learning techniques—specifically Long Short-

Term Memory (LSTM), Convolutional Neural Networks (CNN), and hybrid CNN-LSTM

architectures—the model analyzes spatio-temporal patterns in player and ball movement

to classify defensive tactics and predict their e!ectiveness. While the system does not

directly recommend an optimal strategy, it enables data-driven evaluation of defensive

formations, o!ering valuable insights that can inform tactical decisions. Ultimately, this

research contributes toward bridging the gap between manual analysis and AI-driven

rugby strategy modeling, laying the groundwork for future real-time decision-support

tools for coaches and analysts.
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1.4.2 Research Questions

Main Research Question: How can machine learning be used to classify defensive

strategies in rugby—specifically Blitz, Drift, and Umbrella defenses—and predict their

e!ectiveness using early-phase spatio-temporal player movement data?

Sub-questions:

• What spatial and temporal factors—such as player positions, formations, and con-

textual variables (e.g., field location, game phase)—most strongly influence the

classification of defensive strategies?

• How can a structured and labeled dataset of rugby defensive plays be created from

match footage, ensuring consistency in spatial-temporal annotation across multiple

instances?

• What deep learning techniques are most e!ective for modeling rugby defensive

strategies based on spatio-temporal data? Should architectures such as LSTM,

CNN, or CNN-LSTM hybrids be used to capture sequential and spatial dependen-

cies?

• How can the predictive performance of the model be rigorously evaluated? What

metrics (e.g., strategy accuracy, success prediction accuracy, joint accuracy) and

validation methods (e.g., expert review, test set analysis) provide meaningful in-

sights into its real-world applicability?
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1.5 Outline of the Dissertation

This dissertation is structured into five chapters, each designed to progressively build the

foundation, execution, and insights derived from this study on rugby defensive strategy

analysis using deep learning.

• Chapter 1: Introduction— Introduces the context and motivation for the study,

highlighting the challenges in analyzing rugby defense through traditional methods.

It outlines the research problem, objectives, research questions, and the overall

significance of adopting a data-driven approach in tactical rugby analytics.

• Chapter 2: Literature Review — Provides a comprehensive survey of existing

research in sports analytics, with a particular focus on team defense modeling in

rugby and other sports such as soccer, basketball, and American football. The

chapter also discusses the capabilities of deep learning models—such as LSTMs

and CNNs—in capturing spatial-temporal patterns and concludes by identifying

the research gaps this thesis aims to address.

• Chapter 3: Methodology—Describes the methodological approach of the study,

including the construction of a manually annotated rugby dataset, spatio-temporal

preprocessing techniques, data augmentation strategies, and the design of three

model architectures: LSTM, 2D CNN, and CNN-LSTM hybrid. It also explains

the multi-task learning framework for simultaneous strategy classification and suc-

cess prediction, as well as the rationale behind the selected hyperparameters and

architectural choices.

• Chapter 4: Experiments and Results — Details the experimental setup and

presents results obtained from each of the proposed models across multiple dataset

sizes. Evaluation metrics include strategy accuracy, success prediction accuracy,

and overall task accuracy. This chapter also includes a comparative performance

analysis and visualizations such as training curves to support findings.

• Chapter 5: Discussion and Conclusion — Interprets the significance of the

experimental results in relation to the research objectives. The discussion addresses

the strengths and limitations of the proposed models and methods, including the

role of data augmentation and model architecture in performance. The chapter
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concludes with a summary of key contributions and suggests future directions for

real-time integration and broader application of data-driven rugby analytics.

1.6 Scope

1.6.1 In scope

• This research will focus exclusively on Rugby defense, specifically analyzing the

drift, blitz, and umbrella defensive strategies using data from the last 2 world

cups(2019 and 2023). These are among the most widely used and structured de-

fenses in rugby, making them ideal for study and predictive modeling.

Data Selection

1.7 Summary of the Chapter

This chapter introduced the research by outlining the significance of defensive strategy

analysis in rugby union and highlighting the limitations of existing methods. It empha-

sized the need for automated, data-driven systems to enhance tactical decision-making in

defense. The research problem was defined, and the motivation for applying deep learning

methods was established. The chapter also presented the research questions, objectives,

and scope, setting the foundation for the subsequent chapters.
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Chapter 2

Literature review

2.1 Introduction to Sports Analytics in Rugby

The application of data analytics in sports has undergone rapid development over the

past two decades, fundamentally transforming how teams and analysts understand perfor-

mance, strategy, and decision-making. With the rise of player tracking systems, wearable

technologies, and machine learning techniques, analytics has become an integral compo-

nent of modern sports science, particularly in team sports like soccer, basketball, and

American football (Jon Gudmundsson and M. Horton 2017; Bunker and Thabtah 2019).

In rugby union, the use of analytics has traditionally centered around descriptive statis-

tics and manual video analysis, o!ering valuable but limited insights into performance.

Much of the existing literature focuses on o!ensive structures, attacking patterns, and

ball progression metrics. For instance, Passos et al. (2011) studied attacker-defender in-

teractions using positional data to understand spatial decision-making during attacking

phases. Similarly, Croft, Lamb, and Thewlis (2016) applied network analysis to evaluate

passing e”ciency in attacking plays. More recently, Clarke et al. (2021) developed models

using GPS and event data to predict the success of o!ensive sequences in multi-phase

play.

In contrast, defensive strategy analysis remains underexplored. Most studies have focused

on isolated defensive actions such as tackling e”ciency (Read et al. 2015) or physical
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workload analysis (Hughes and Bartlett 2002), with limited attention paid to the collective

behavior of defensive units or the classification of team-level formations.

Given the complex, multi-phase nature of rugby defense, there is a growing need for

automated, data-driven systems capable of capturing both spatial and temporal aspects

of defensive strategy. The integration of deep learning into rugby analytics presents a

promising avenue for addressing this gap. Models such as Long Short-Term Memory

(LSTM) networks can capture sequential patterns over time, while Convolutional Neural

Networks (CNNs) are e!ective at learning spatial features from positional data. Hybrid

models, such as CNN-LSTM architectures, can jointly model the evolution of player

formations and the outcome of defensive phases, o!ering a more holistic understanding

of tactical behavior.

This thesis addresses the above research gap by developing a deep learning-based frame-

work that classifies rugby defensive strategies—namely blitz, drift, and umbrella forma-

tions—and predicts their success using annotated positional data extracted from Rugby

World Cup matches. By leveraging both spatial and temporal cues through LSTM,

CNN, and CNN-LSTM models, the proposed system aims to enhance the objectivity and

precision of rugby defensive analysis.

2.2 Defensive Analytics in Other Team Sports

While the application of data-driven analysis in rugby defense is still emerging, other

team sports have made significant advances in modeling defensive structures, player co-

ordination, and tactical decision-making. In particular, sports such as soccer, basketball,

and American football have leveraged tracking data, spatial-temporal modeling, and ma-

chine learning techniques to better understand and predict defensive e!ectiveness. These

developments provide a foundation for adopting similar analytical frameworks in rugby

union, especially for evaluating team-level defensive strategies.
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2.2.1 Soccer

Soccer has been at the forefront of integrating spatial and temporal analytics to examine

both o!ensive and defensive phases of play. One major area of development is in the

automatic recognition and classification of team formations. Andrzej Bialkowski et al.

(2014) introduced a framework that utilized player tracking data to identify and analyze

team shape and formation during defensive phases. Their method involved clustering

spatial configurations and using supervised learning to classify di!erent defensive setups,

o!ering an automated way to detect structural adaptations during a match.

Building on such frameworks, Joakim Gudmundsson and Wichert (2017) emphasized

metrics such as team compactness, player density, and defensive line coordination. These

indicators were derived from spatio-temporal features and enabled analysts to quantify

the e!ectiveness of pressing strategies—particularly how tightly a defensive unit maintains

its shape while attempting to disrupt an opponent’s buildup. By integrating contextual

factors such as ball location and player roles, these models not only classified formations

but also predicted defensive success based on dynamic pressure.

2.2.2 Basketball

Basketball has benefited significantly from optical tracking systems such as SportVU and

Second Spectrum, which provide continuous spatial data for all players on the court. This

has enabled the development of advanced defensive metrics, including defender proximity,

contest pressure, and defensive rotations. Goldsberry (2012) introduced spatial visual-

izations (e.g., CourtVision) to evaluate shot defense e”ciency, helping teams understand

how positioning impacts scoring probabilities.

Expanding on this, Miller, Bornn, and Goldsberry (2019) used machine learning models to

predict defensive outcomes based on player trajectories and ball movement. Their study

highlighted how e!ective defensive plays often depend on coordinated movement and

role-based responses rather than individual e!ort alone. One key analytical advance in

basketball has been the classification of man-to-man versus zone defense schemes. These

models leveraged player distance matrices, movement vectors, and defensive assignments

to recognize team tactics and inform real-time adjustments.
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2.2.3 American Football

In American football, the use of player tracking data has enabled a detailed understanding

of defensive alignments and their relationship to play outcomes. Levy, Bialik, and Lopez

(2016) applied machine learning techniques to predict defensive performance based on

player positioning, acceleration patterns, and coverage depth. Their models accounted for

both pre-snap alignment and post-snap behavior, capturing how coordinated movements

across a defensive unit impacted the likelihood of successful pass coverage or pressure

generation.

Other studies have emphasized the importance of combining spatial features with con-

textual game information—such as down and distance—to improve the prediction of

defensive outcomes. The use of integrated spatial-temporal models has allowed for the

evaluation of defensive schemes such as zone blitz, cover-2, or man-free based on the

real-time positioning of defensive backs and linemen.

Taken together, these studies demonstrate that spatial-temporal analytics and machine

learning are powerful tools for modeling and optimizing defensive strategies in team

sports. While soccer, basketball, and American football have successfully adopted these

methods, rugby union has yet to realize their full potential. This presents a unique oppor-

tunity to adapt and extend these techniques to the domain of rugby defense, particularly

given the sport’s fluid nature and multi-phase structure.

2.3 Studies on Rugby

While other team sports have made significant advances in modeling both o!ensive and

defensive strategies through spatial-temporal analytics and machine learning, research in

rugby union has been comparatively limited. Within rugby analytics, the existing body

of work leans heavily toward the analysis of o!ensive patterns and physical performance

metrics, with relatively little attention given to automated modeling of team-level defen-

sive structures. This section outlines the current landscape of rugby analytics research

by contrasting o!ensive and defensive studies and identifying the methodological gaps

that motivate this thesis.
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2.3.1 O!ensive-Focused Work

A growing number of studies have applied data-driven techniques to examine o!ensive

behavior in rugby. Passos et al. (2011) explored attacker-defender interactions using po-

sitional data to analyze interpersonal coordination during attacking phases. Their study

emphasized the role of spatial dynamics and decision-making under pressure, providing

a foundational understanding of attacking subunit behavior.

Building on this work, Croft, Lamb, and Thewlis (2016) introduced passing network

analysis as a tool to evaluate o!ensive e”ciency. By modeling players as nodes and

passes as edges, their study demonstrated how network centrality and ball movement

patterns could o!er insights into attacking performance and team cohesion.

More recently, Clarke et al. (2021) developed predictive models that combine GPS track-

ing and event data to forecast the likelihood of attacking success. Their approach inte-

grated multi-phase contextual features such as player speed, support lines, and territory

gain, showcasing how machine learning could be used to evaluate and optimize o!ensive

strategies in elite rugby union.

2.3.2 Defensive-Focused Work

In contrast to the progress made in o!ensive analytics, defensive strategy research in

rugby remains largely descriptive. Hughes and Bartlett (2002) conducted a time-motion

analysis to assess player workload across positions, providing valuable insights into the

physical demands of defense, but without modeling formation or tactical coordination.

Read et al. (2015) examined tackle outcomes in professional rugby union and their rela-

tionship to defensive line integrity. While their work highlighted key physical performance

indicators such as tackle success rate, it focused on individual events rather than the col-

lective structure or evolution of defensive systems.

Additionally, Dunning (2010) explored how contextual variables—such as field position,

score di!erential, and phase of play—a!ect tactical decision-making. Although this study

acknowledges that situational factors influence defensive choices, it does not provide a

framework for identifying or predicting the defensive strategies employed.
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Collectively, these studies illustrate that most defensive analyses in rugby are based on

isolated actions and lack an integrated, system-level view of team formations and transi-

tions during defensive phases.

2.4 Deep Learning Approaches for Tactical Analysis

The complexity and fluidity of team sports such as rugby make deep learning a compelling

tool for tactical modeling. Unlike traditional machine learning methods that rely on hand-

engineered features and static snapshots, deep learning models can automatically learn

spatial and temporal patterns from raw data. In the context of rugby defense, where

team formations evolve across time and space, architectures such as Long Short-Term

Memory (LSTM) networks, Convolutional Neural Networks (CNNs), and hybrid CNN-

LSTM models o!er strong potential for capturing tactical behavior. This section outlines

the rationale for selecting these architectures in this thesis.

2.4.1 Long Short-Term Memory (LSTM)

LSTM networks are a type of recurrent neural network (RNN) designed to model sequen-

tial dependencies over time (Hochreiter and Schmidhuber 1997a). They are particularly

e!ective in scenarios where context and temporal transitions play a crucial role, such as

in speech recognition, natural language processing, and time-series forecasting.

In sports analytics, LSTMs have been used to model game events as sequences, enabling

the prediction of future actions based on prior patterns (Hien Le et al. 2017). For example,

Wei, Sha, and Lucey (2016) applied LSTM models to basketball data to predict player

movement and possession outcomes. The ability of LSTMs to learn from sequential inputs

makes them well-suited for modeling rugby defensive phases, where the positioning of

players changes fluidly across time and is influenced by prior movements within a phase.
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2.4.2 Convolutional Neural Networks (CNN)

CNNs are widely used in computer vision tasks due to their ability to learn spatial hier-

archies of features through convolutional filters (Krizhevsky, Sutskever, and Geo!rey E.

Hinton 2012). In sports, CNNs have been adapted to learn spatial relationships between

players and key field areas by encoding positional data into image-like input representa-

tions.

For instance, Zheng, Yue, and Lucey (2016) demonstrated how CNNs could be used to

identify patterns in soccer formations by treating player coordinates as pixel values in

a spatial heatmap. Similarly, CNN-based architectures have been used in basketball to

assess defensive coverage based on proximity and spatial alignment (Miller, Bornn, and

Goldsberry 2019). In the context of rugby defense, CNNs can be employed to capture

the formation structure at each timestep, enabling the model to learn spatial cues such

as line compactness, gaps, and staggered alignments.

2.4.3 CNN-LSTM Hybrid Models

Hybrid CNN-LSTM architectures combine the strengths of both temporal and spatial

modeling by stacking a CNN layer to extract spatial features from each timestep, followed

by an LSTM layer to capture the sequence of those features over time (Shi et al. 2015b).

This combination is particularly e!ective in tasks that involve spatio-temporal reasoning,

such as action recognition in videos or player trajectory prediction.

In sports analytics, CNN-LSTM models have been applied to sequence-based tasks such

as play classification and outcome prediction (Shao et al. 2020). Their ability to jointly

model spatial structure and temporal transitions makes them ideal for rugby defense,

where both formation layout and time-dependent evolution matter. By using CNN-

LSTM models, this thesis aims to capture not only the shape of the defense at each

moment but also how it evolves across frames in a defensive phase.

Given the dual spatial-temporal nature of rugby, and the multi-phase flow of the game,

CNN-LSTM models o!er a promising architecture for both strategy classification and

success prediction.
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2.5 Gaps in Existing Research

Despite growing interest in sports analytics and significant advances in modeling o!ensive

play, the analysis of rugby defense remains notably underdeveloped. Existing studies

have primarily relied on manual coding and subjective assessments by coaches, which

limits both scalability and reproducibility. Defensive analyses often focus on isolated

actions—such as tackles or workloads—rather than modeling the coordinated behavior

of the defensive unit over time (Read et al. 2015; Hughes and Bartlett 2002).

While there has been prior application of deep learning in rugby analytics, such as the

work by Watson et al. 2020, which employed convolutional and recurrent neural networks

to predict outcomes of sequences of play, these studies have primarily focused on o!ensive

metrics and general play outcomes. To date, there is a lack of research specifically tar-

geting the automated classification of team-level defensive strategies—namely blitz, drift,

and umbrella formations—using deep learning techniques. Furthermore, existing studies

have not integrated success prediction within the context of these defensive structures.

This thesis aims to fill this gap by developing a deep learning-based framework that

not only classifies these defensive strategies but also predicts their e!ectiveness, thereby

providing a more comprehensive tool for tactical analysis in rugby union.

Another barrier is the lack of publicly available, labeled datasets capturing player and

ball trajectories across defensive phases. In contrast to the structured datasets available

in soccer (e.g., StatsBomb, SoccerNet) and basketball (e.g., NBA SportVU), rugby lacks

annotated repositories for team-level defensive analysis, hindering model development

and reproducibility.

Moreover, prior work has not addressed the task of predicting the success of defensive

strategies within the context of team formations. No existing models explicitly link struc-

tural behavior during defensive phases to outcomes such as gainline success, especially

using spatial-temporal data.
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Table 2.1: Gap Analysis Summary in Rugby Defensive Analytics

Area Current State in Lit-

erature

Identified Gap This Thesis Contribu-

tion

Defensive Strat-

egy Modeling

Analyses rely on manual

coding and subjective

assessments by coaches

(Read et al. 2015;

Hughes and Bartlett

2002).

Lack of automated classi-

fication of team-level de-

fensive strategies.

Proposes a deep learn-

ing framework to clas-

sify blitz, drift, and um-

brella formations using

positional data.

Application of

Deep Learning

Watson et al. 2020 used

CNNs and RNNs to pre-

dict o!ensive outcomes.

No deep learning mod-

els focused on defensive

strategy classification.

Uses LSTM, CNN, and

CNN-LSTM models to

capture spatial and tem-

poral patterns in defen-

sive formations.

Dataset Avail-

ability

No public, labeled

datasets exist for rugby

defense. Existing studies

use limited or propri-

etary data.

Hinders reproducibility

and large-scale model

training.

Creates and augments

a labeled dataset from

Rugby World Cup

matches, categorized by

defensive strategy.

Success Predic-

tion Integration

Existing research focuses

on isolated events like

tackles (Read et al. 2015;

Hughes and Bartlett

2002).

No phase-level success

linked to defensive for-

mations.

Introduces success pre-

diction as a secondary

task using multi-task

learning.

Progress in

Other Sports

Soccer and basketball

use advanced spatial-

temporal modeling

(Andrzej Bialkowski et

al. 2014; Miller, Bornn,

and Goldsberry 2019).

Rugby has not yet

adopted these techniques

for defense.

Adapts similar tech-

niques to rugby’s

multi-phase, dynamic

gameplay.

To address these gaps, this thesis proposes the following contributions:

• The development of a manually annotated and augmented dataset of rugby defen-

sive phases, labeled according to three commonly used formations: blitz, drift, and

umbrella.
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• The application of deep learning architectures—LSTM, CNN, and CNN-LSTM—to

automate the classification of defensive strategies using player and ball positional

data.

• The integration of success prediction as a secondary task, enabling the model to

not only identify defensive strategy but also estimate its e!ectiveness based on

spatial-temporal cues.

• The use of rugby-specific data augmentation methods, such as coordinated jittering

and mirroring, to improve model generalization despite a limited dataset size.

These contributions aim to provide a scalable, objective, and replicable framework for an-

alyzing rugby defensive strategy, marking a step forward in the use of artificial intelligence

for tactical evaluation in team sports.
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Chapter 3

Methodology

3.1 Introduction

This chapter presents the end-to-end methodology used to develop a predictive system

for rugby defensive strategy classification and success prediction. The methodology en-

compasses the entire pipeline, from dataset creation and annotation using Rugby World

Cup footage to model design, training, and evaluation.

A multi-task learning framework is adopted to simultaneously classify defensive strategies

(Blitz, Drift, Hinge) and predict whether a defensive phase is likely to succeed. The

chapter also details the data augmentation techniques, loss formulations, and evaluation

metrics used to validate model e!ectiveness. A conceptual overview of the entire system

is illustrated in Figure 3.1, which outlines the data flow and model structure.

3.2 Data Collection

Due to the absence of publicly available datasets targeting rugby plays, it was necessary

to create a suitable dataset for this research containing positional data necessary for

detailed spatial temporal analysis. The dataset was developed by manually extracting

defensive play instances from publicly accessible match footage available.
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Rugby Match Footage

Player & Ball

Coordinate Extraction

Field Normalization

(Homography)

Manual Annotation

(Strategy, Success)

Data Augmentation

(Jittering, Mirroring)

Input Encoding

(Vectors / RGB Image)

Multi-Task Model

(LSTM / CNN / CNN-LSTM)

Strategy Prediction Success Prediction

Figure 3.1: Conceptual flow of the methodology
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3.2.1 Data Sources

For the creation of the data set Rugby World Cup match footage from the 2019 and

2023 tournaments were chosen due to its quality, availability, and the variety of defensive

strategies demonstrated by elite teams. Matches from top international teams such as

New Zealand, South Africa, England, and France were prioritized due to their consistent

demonstration of high-level defensive execution and tactical diversity in recent Rugby

World Cups. For instance, South Africa recorded a total of 974 tackles in the 2023

Rugby World Cup—the most by any team in a single edition—and made 209 tackles in

the final alone, setting a new World Cup final record (Analyst 2023). England conceded

just 102 points across seven matches, reflecting their defensive discipline (Rugby 2023).

France and New Zealand also displayed dominant performances, with France conceding

only 61 points in the pool stage and New Zealand maintaining a high tackle success rate

throughout the tournament. These statistics underscore the defensive prowess of these

nations, making them ideal candidates for a dataset aimed at modeling defensive strategy.

By focusing on these matches, the dataset captures a broad range of defensive formations

and responses, providing a rich foundation for training predictive models.

The primary challenge encountered was variability in camera angles, frequent camera

zoom ins, and occasional occlusions, limiting visibility of the entire field and thus pre-

venting to capturing of all 30 players simultaneously. However, camera angles typically

focused on the most relevant parts of play, enabling the accurate annotation of positions

for key players involved in the strategy we intend to capture in each play.

Instances of plays where the camera angle allowed capturing the necessary data were

trimmed from the match videos.An instance of play, for the purpose of this dataset, is

defined as the period beginning at either a breakdown or a set piece and continuing until

the next breakdown occurs. In rugby, a breakdown refers to the situation following a

tackle, when the ball carrier is brought to ground, and players from both teams compete

on the ground to secure or contest possession. It represents a brief pause in fluid gameplay

and a critical moment for defensive realignment. A set piece describes structured restarts

of play, such as scrums, lineouts, and kick-o!s, involving clearly defined positions and

roles for players. These events provide structured starting points, allowing consistent

and accurate segmentation of defensive sequences. By clearly defining play instances

in this manner, the dataset ensures uniformity in data collection and supports precise,
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repeatable analysis of defensive patterns.

3.2.2 Data Sampling

Defensive play instances were carefully selected to ensure that they were clear, complete,

and representative of relative strategic contexts. Due to the dynamic nature of rugby

matches, only segments in which camera angles clearly captured the necessary positional

and tactical information were extracted from the full match videos. Since, the camera

is almost always focused on the ball during a defense, the position of the ball could

always be captured where there were certain instances in which all the players who were

involved in the defense strategy were not captured at every snapshot of the video footage.

However, the movement of those players were captured at subsequent footage snapshots

which allowed us to capture su”cient details about the player positions through collected

data. The duration of each instance varied naturally, beginning from either a breakdown

or a set piece and continuing until the next breakdown, allowing authentic and realistic

captures of defensive scenarios without constraining their length.

Using knowledge of the rugby domain, each defensive instance was categorized into one

of three tactical approaches: blitz, drift, or umbrella. To enhance objectivity and min-

imize potential biases stemming from individual judgment, these categorizations were

independently reviewed and verified by an experienced rugby coaching expert.

Each instance was further labeled based on defensive e!ectiveness relative to the gain line,

classifying plays as either successful or unsuccessful. Successful instances were those in

which the defending team e!ectively prevented the attacking side from advancing beyond

the gain line. In contrast, unsuccessful instances were those where the attacking team

managed to cross the gain line despite defensive e!orts.

To ensure robust and balanced representation within the dataset, a stratified sampling ap-

proach was adopted, selecting 30 distinct examples for each defensive strategy and a total

of 90 instances. The instances were also evenly balanced between successful and unsuc-

cessful outcomes, facilitating a comprehensive analysis of tactical e!ectiveness. Matches

from all the stages of the tournament were considered for the selected teams which al-

lows us to capture a rich dataset containing the application of the defense strategies in
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di!erent circumstances such as for example competitive behaviors, aggressive behaviors,

comfortable behaviors, etc.

3.2.3 Data Preprocessing

After extracting defensive play instances from Rugby World Cup match footage, a struc-

tured and methodical data preprocessing approach was carried out to prepare the dataset

for analysis.

Frame Selection

Each selected video segment was broken down into individual image frames at a rate of 2

frames per second (fps), This reduction maintained essential temporal information while

managing data size and complexity. Frame extraction was done manually, ensuring each

frame clearly captured relevant defensive actions.

Field normalization using homography matrix

To standardize positional information across various camera angles and distances, a ho-

mography matrix transformation was applied. This involved mapping each video frame

onto a consistent rugby field image. At least four identifiable reference points, clearly

visible in each frame such as the centerline, 22-meter line intersections, goal-line corners,

or 15 meter intersection were selected. Corresponding points were mapped with high

precision by using a standardized rugby field image sourced from o”cial rugby field di-

mensions. After this transformation, each frame was normalized to the fied dimensions,

facilitating reliable positional comparisons across instances.

Positional Annotations

After field normalization, the next step involved manually marking the positions of the

visible players and the ball in each frame. A script was used, allowing annotation through

direct selection of player positions on the normalized field images. Player positions were
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Figure 3.2: Before field normalization Figure 3.3: After field normalization

consistently separated into two distinct groups, designated as Team A (attacking team)

and Team B (defensive team), alongside the ball position. This clear categorization

ensured uniformity and clarity in data handling. Positional coordinates for each marked

player and the ball were recorded into a structured JSON file.

Figure 3.4: Positional annotations of the players
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Due to varying camera angles and occasional zoom-ins, not all 30 players could always be

visible in each frame. Consequently, the number of annotated players per frame varied

across instances, and the total number of frames per instance also di!ered, depending on

the length and nature of the play. All positional annotations were stored exclusively as nu-

merical coordinate data without any player-identifiable information. This comprehensive

preprocessing process resulted in a unique dataset, optimized specifically for sequential

modeling of defensive strategies and outcomes.

3.3 Implementation

The task of identifying defensive strategies and predicting their e!ectiveness in rugby

requires understanding complex spatio-temporal patterns from sequences of player and

ball positions. Traditional rule-based and static machine learning methods have limita-

tions in capturing the dynamic, evolving interactions among players over time (Joakim

Gudmundsson and Wichert 2017; Bunker and Thabtah 2019).

Given the temporal structure of the data, characterized by consecutive frames that cap-

ture the evolution of a defensive phase, models that integrate spatial relationships with

temporal dynamics are essential. Based on these requirements and successful implemen-

tations in analogous domains (Hien Le et al. 2017; Miller, Bornn, and Goldsberry 2019;

Shao et al. 2020), three deep learning architectures are explored:

• LSTM-based Architecture: Long Short-Term Memory (LSTM) networks are

employed due to their ability to capture and retain contextual information across

sequential data. Their recurrent nature enables them to learn complex temporal

dependencies from player movements, making them suitable for modeling the evolv-

ing patterns in rugby defensive phases (Hochreiter and Schmidhuber 1997a; Wei,

Sha, and Lucey 2016).

• CNN-LSTM Hybrid Architecture: This model leverages both spatial and

temporal feature extraction. Convolutional layers first encode spatial relation-

ships within individual frames, capturing local structural patterns. The subsequent

LSTM layers process these spatial encodings across frames, thus integrating the
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spatial inductive bias of CNNs with the temporal modeling capabilities of LSTMs

(Shi et al. 2015b; Shao et al. 2020).

• 2D CNN Architecture: A novel approach is introduced whereby a short sequence

of frames is encoded as a single RGB image. Each color channel represents a

consecutive frame, allowing the network to leverage spatial convolution operations

to implicitly capture temporal evolution. This method provides an alternative that

focuses purely on spatial convolutions, o!ering computational advantages and a

complementary perspective on defensive strategy modeling (Zheng, Yue, and Lucey

2016; Miller, Bornn, and Goldsberry 2019).

Collectively, these models o!er complementary methodologies for analyzing the complex

spatio-temporal dynamics inherent in rugby defensive strategies.

The following sections outline the formal problem setup, the architectures used, data

augmentation strategies, and the training and evaluation pipeline adopted in this research.

3.3.1 Problem Formulation

In this research, the aim is to build a predictive system that can assist in defensive

decision-making in rugby by analyzing early player and ball movements. The goal is

twofold: to identify the defensive strategy being used and to determine its potential

success against an ongoing attack. This is modeled as a multi-task learning problem

with two tightly coupled tasks:

1. Strategy Classification: Predicting which of the three common defensive strate-

gies — Blitz, Drift, or Hinge — is being employed based on the spatial-temporal

dynamics of defensive player formations.

2. Success Prediction: Determining whether the selected strategy would be success-

ful or unsuccessful in preventing the attacking team from gaining ground, based on

how both teams and the ball move during the initial frames of the play.

These two tasks are not independent. The type of strategy employed influences its like-

lihood of success, and modeling both tasks jointly enables the network to learn shared
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representations that capture the interplay between structure and outcome. Therefore,

the two outputs are predicted simultaneously using a shared feature extraction backbone

within a multi-task learning framework.

Input Representation

Let:

• X → RT→F be the input matrix for a defensive play, where:

– T is the number of early time steps (frames) considered.

– F is the number of features per frame, comprising the (x, y) coordinates of

both attacking and defending players and the ball.

• ys → {0, 1, 2} be the strategy label (0 = Blitz, 1 = Drift, 2 = Hinge).

• ysucc → {0, 1} be the binary success label (1 = Success, 0 = Failure).

The input tensor X captures how the defensive formation evolves over time in response to

an attacking sequence. By observing the early frames, the model attempts to understand

the nature of the strategy and estimate whether it is likely to succeed.

Objective Function

The model is trained to minimize a joint loss function:

Ltotal = ω · Lstrategy + ε · Lsuccess

where:

• Lstrategy is the categorical cross-entropy loss for the strategy classification task.

• Lsuccess is the binary cross-entropy loss for the success prediction task.

• ω and ε are weighting coe”cients. In this study, both were set to 1 for equal

contribution.
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Rationale for Multi-Task Learning

Formulating the problem as a multi-task learning setup has multiple benefits:

• It mirrors the real-world scenario where coaches must not only identify the strategy

being used but also understand its e!ectiveness Caruana 1997.

• Shared layers enable the model to extract richer features by learning commonalities

and di!erences between the two tasks, enhancing representation learning Ruder

2017a.

• It improves generalization by acting as a form of inductive transfer between related

tasks, reducing the risk of overfitting Y. Zhang and Yang 2021.

By modeling these tasks together, the system can make more informed predictions that

align with tactical objectives in rugby defense—not just identifying a strategy, but rec-

ommending one that is most likely to succeed given the current context of play Mao et al.

2022; Li and Caragea 2021.

3.3.2 Model Architectures

To address the multi-task learning problem of simultaneously predicting the defensive

strategy and its success, three deep learning architectures were implemented and evalu-

ated: LSTM, CNN-LSTM, and a novel 2D CNN image-based model. These architectures

were selected for their ability to capture the spatial and temporal dynamics of rugby

defensive formations in complementary ways.

• LSTM: For capturing temporal sequences of player and ball positions over multiple

frames.

• CNN-LSTM: For learning spatial features within frames using convolutional fil-

ters, followed by temporal modeling via LSTM layers.

• 2D CNN (Image-Based): For treating each 3-frame sequence as a 3-channel

image and applying spatial pattern recognition through 2D convolutional layers.
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LSTM-Based Architecture

The Long Short-Term Memory (LSTM) model was designed specifically to capture se-

quential dependencies inherent in player and ball movements across consecutive frames.

• Input: A sequence of 3 frames, each frame consisting of the (x, y) positions of up

to 8 players from each team (total of 16 players) and the ball. This results in a

feature vector of length 8↑2↑2+2 = 34 per frame, representing spatial information

succinctly.

• Architecture:

– A Masking layer to ignore padded zero values, essential for handling variable

player visibility and ensuring the model does not learn meaningless spatial

gaps Chollet 2017.

– Two stacked LSTM layers:

∗ The first LSTM layer with 64 units and return sequences enabled captures

low-level temporal dynamics, such as individual player movements and

immediate reaction patterns Hochreiter and Schmidhuber 1997b; Graves,

Mohamed, and G. Hinton 2013. The size of 64 units was chosen to ad-

equately represent intermediate complexity without excessive computa-

tional overhead Goodfellow, Bengio, and Courville 2016.

∗ Dropout layer with a rate of 0.5 is utilized to mitigate overfitting by ran-

domly ignoring half the activations, promoting the robustness and gener-

alization of learned temporal features Srivastava et al. 2014b.

∗ The second LSTM layer with 32 units and return sequences disabled syn-

thesizes these low-level patterns into higher-level abstractions, such as

coordinated team behaviors and strategic movements Sutskever, Vinyals,

and Q. V. Le 2014. Reducing units from 64 to 32 helps compress these fea-

tures into more abstract representations, focusing the model on significant

strategic patterns and further improving generalization.

∗ Dropout layer with a rate of 0.4 ensures that the abstractions learned by

the second layer remain generalized and not overly fitted to training data.

– Two dense output branches:
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∗ Strategy classification: A Dense layer with a Rectified Linear Unit

(ReLU) activation function followed by a Dense layer with a softmax acti-

vation function. ReLU introduces non-linearity e!ectively without vanish-

ing gradient issues, enabling more complex feature representation Nair and

Geo!rey E Hinton 2010. The softmax layer provides a normalized proba-

bilistic distribution across the three defensive strategies, making it suitable

for multi-class classification tasks Goodfellow, Bengio, and Courville 2016.

∗ Success prediction: Another Dense layer with ReLU followed by a sig-

moid activation function, ideal for binary classification, providing an out-

put between 0 and 1 that directly represents the probability of defensive

success Bishop 2006.

• Loss Functions: Categorical crossentropy is used for strategy classification due

to its e”cacy in measuring discrepancies in probabilistic outputs across multiple

categories, while binary crossentropy is applied to the binary outcome prediction

due to its optimality for binary targets Murphy 2012.

• Regularization: L2 regularization is applied to recurrent and dense layers to

prevent the model from excessively focusing on any particular weights, further pro-

moting the generalizability and stability of the training process Goodfellow, Bengio,

and Courville 2016.

Dropout rates of 0.5 and 0.4 were chosen based on standard recommendations from

deep learning literature, as these rates have been empirically shown to e!ectively pre-

vent overfitting in recurrent neural networks Srivastava et al. 2014b; Goodfellow, Ben-

gio, and Courville 2016; Zaremba, Sutskever, and Vinyals 2014. Dropout was applied

externally—after each LSTM layer rather than within the recurrent connections them-

selves—to regularize the higher-level feature representations extracted by the network

without disrupting temporal dependencies crucial for sequence modeling Gal and Ghahra-

mani 2016. Although these dropout rates have demonstrated strong generalization capa-

bilities in related applications, systematic hyperparameter tuning could potentially lead

to further performance improvements and is suggested for future investigation.
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Figure 3.5: LSTM model architecture
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2D CNN-Based Architecture (Image-Based Representation)

In this architecture, early sequences of play were transformed into RGB images to leverage

convolutional neural networks (CNNs) for spatial pattern recognition. Each of the 3 initial

frames was rendered as a grayscale image representing player and ball positions. These

were stacked across channels to form a single RGB image.

• Input Representation:

– Each input is a 120 ↑ 70 RGB image, where the dimensions correspond to

normalized rugby field measurements (length ↑ width).

– Players from Team A are drawn as mid-gray circles, Team B as light-gray, and

the ball as a white dot.

– To embed temporal dynamics, Frame 1 is placed in the Red channel, Frame 2

in Green, and Frame 3 in Blue, enabling a compact spatio-temporal encoding.

• Model Architecture:

– The model begins with a Conv2D layer (32 filters, 3 ↑ 3 kernel) followed by

MaxPooling2D to downsample spatial dimensions.

– A second Conv2D layer with 64 filters is applied to extract higher-level spatial

features, followed by a Flatten layer to convert the output into a 1D feature

vector.

– A Dropout layer (p = 0.5) is added to prevent overfitting, especially important

given the limited size of the dataset.

– The network then branches into two heads: one for defensive strategy classifi-

cation and one for success prediction.

∗ The strategy branch consists of a fully connected layer (16 units, ReLU)

and a softmax output layer with 3 units (Blitz, Drift, Hinge).

∗ The success branch follows a similar structure but ends with a sigmoid

output unit to predict success as a binary outcome.

• Design Justification:

– Convolutional Neural Networks (CNNs) are well-suited for learning spatial

patterns from positional input, and have shown success in sports analytics
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domains where formations and player configurations are critical (Huy Le et al.

2017; Alina Bialkowski et al. 2014).

– The use of max pooling improves model e”ciency and generalization by re-

ducing feature map resolution and allowing the network to focus on the most

salient spatial features.

– The dropout layer helps mitigate overfitting, which is a common challenge in

sports datasets with limited annotated instances (Srivastava et al. 2014a).

– Multi-task learning enables the model to jointly learn both the defensive strat-

egy and its e!ectiveness, improving feature sharing and overall generalization

(Ruder 2017b).

– Encoding temporal frames in RGB channels is a lightweight way to preserve

sequential structure while avoiding the complexity of recurrent or 3D convo-

lutional models, which can be computationally expensive (Shi et al. 2015a).

• Limitations: The temporal progression is encoded only in the channel order, which

may limit long-range temporal awareness compared to LSTM-based models.

CNN-LSTM-Based Architecture (1D Convolution)

This architecture integrates convolutional and recurrent neural networks to e!ectively

capture both spatial and temporal dynamics in defensive rugby plays.

• Input: A sequence of 3 frames, where each frame is represented as a 34-dimensional

feature vector, derived from the (x, y) positions of 8 players from each team (total

16) and the ball.

• Architecture:

– Each frame is reshaped to 1D and processed via TimeDistributed Conv1D

with 64 filters and kernel size 3 using ReLU activation. The filter size and

activation follow conventions proven e!ective in spatial pattern extraction Nair

and Geo!rey E Hinton 2010; Goodfellow, Bengio, and Courville 2016.

– TimeDistributed MaxPooling1D with pool size 2 is applied to reduce dimen-

sionality while retaining key features. Though MaxPooling is traditionally
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Input (RGB Image)

120↑ 70↑ 3

Conv2D (32) + ReLU

MaxPooling2D

Conv2D (64) + ReLU

Flatten + Dropout

Dense + ReLU

(Strategy Head)

Softmax

(3 classes)

Dense + ReLU

(Success Head)

Sigmoid

(1 class)

Figure 3.6: CNN model architecture
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used in visual tasks, here it functions as a simple spatial downsampling mech-

anism due to the low resolution of our feature space.

– TimeDistributed Dropout (0.3) is used after the convolutional layers to

mitigate overfitting by randomly deactivating neurons, a technique validated

to improve generalization performance in deep models Srivastava et al. 2014b.

The value of 0.3 is intentionally lower than the conventional 0.5, considering

the relatively low-dimensional and structured nature of the input. Prior studies

suggest that excessively high dropout on compact representations can hinder

learning Gal and Ghahramani 2016.

– TimeDistributed Flatten reshapes the output for LSTM layers.

– The sequence of flattened vectors is fed into two stacked LSTM layers:

∗ First LSTM with 64 units and return sequences enabled, followed by

Dropout (0.4). This value is empirically motivated by prior work demon-

strating its e!ectiveness in improving generalization in sequence models

Zaremba, Sutskever, and Vinyals 2014.

∗ Second LSTMwith 32 units, return sequences disabled, followed by Dropout

(0.3). This slightly reduced dropout preserves the summarizing capacity

of the final abstraction without inducing excessive noise.

The stacked configuration draws on hierarchical temporal modeling princi-

ples: the first layer captures localized movements, while the second distills

broader team behavior patterns Hochreiter and Schmidhuber 1997b; Graves,

Mohamed, and G. Hinton 2013.

– Two output branches are then constructed:

∗ Strategy Classification Head: Dense with ReLU Nair and Geo!rey E

Hinton 2010 ↓ Dense with Softmax activation for 3-class classification.

∗ Success Prediction Head: Dense with ReLU ↓ Dense with Sigmoid

activation for binary classification.

Why 1D Convolution? The decision to use Conv1D instead of Conv2D stems

from the structure of the input data. Each frame is a 1D vector representing con-

catenated (x, y) positions of players and the ball rather than a grid-based image.

Applying 1D convolution allows the model to learn localized dependencies and tran-

sitions across adjacent spatial coordinates (e.g., relative distances between players)
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in this flattened format. Unlike 2D convolutions that assume spatial continuity

in two dimensions (as in image data), Conv1D is more suited for structured se-

quential inputs such as time-series, embeddings, or flattened position vectors Bai,

Kolter, and Koltun 2018. Moreover, this design choice simplifies the architecture

while maintaining the capacity to learn meaningful features in a spatially-aware yet

memory-e”cient manner.

• Loss Functions:

– Categorical Crossentropy for strategy classification.

– Binary Crossentropy for success prediction.

• Optimization and Regularization:

– Optimized using Adam optimizer.

– Dropout was applied externally (i.e., manually added to key layers) rather

than via built-in LSTM dropout arguments. This allows precise control over

where regularization is applied and aligns with recommendations in prior work

Zaremba, Sutskever, and Vinyals 2014; Gal and Ghahramani 2016.

– Early stopping was used during training to prevent overfitting.

• Considerations: While CNN filters of size 64 are typical for feature extraction,

further tuning could help prevent noise amplification due to the limited spatial

granularity of our data. The trade-o! between feature expressiveness and overfitting

remains a topic for future experiments.

Each model was trained using the Adam optimizer for 20 epochs with a batch size of 8.

Performance was evaluated on test accuracy for strategy classification, success prediction,

overall agreement (both correct), and success-only subset accuracy. These architectures

enabled rich temporal and spatial feature learning tailored to the nature of defensive

movement in rugby.

3.4 Data Augmentation Techniques

To overcome the limitations of a small dataset and improve the generalization capability

of the model, two domain-aware data augmentation techniques were employed: jittering
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TimeDist. MaxPool1D

TimeDist. Dropout

TimeDist. Flatten

LSTM

Dropout

LSTM

Dropout

Dense + ReLU

(Strategy Head)

Softmax (3 classes)

Dense + ReLU

(Success Head)

Sigmoid (1 output)

Figure 3.7: CNN-LSTM model architecture
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and mirroring. These methods simulate realistic variations in player positions while

preserving the underlying structure and semantics of defensive formations.

3.4.1 Jittering

Jittering involves adding small random noise to the (x, y) coordinates of players to

emulate natural variability in player movement. This technique is particularly e!ective in

sports tracking datasets, where minor di!erences in positioning do not a!ect the tactical

structure of a play.

• Implementation: Gaussian noise with a mean of 0 and a small standard deviation

(typically 0.5–1.0 meters) was added to each player’s position. To preserve the

integrity of the play:

– The ball and the player closest to it (presumed to be the ball carrier) were

jittered using the same o!set.

– All jittered coordinates were clipped to remain within the field boundaries

(120m ↑ 70m).

• Justification: Positional jittering has been shown to improve model robustness

in sports data contexts. For instance, it was employed in pose estimation tasks to

simulate variation and prevent overfitting Zolfaghari, B. Abidi, and M. A. Abidi

2017. Similarly, jittering has been applied in player trajectory modeling to enhance

generalization in learned representations Yue et al. 2014.

• Purpose: To increase sample diversity without compromising the underlying tac-

tical semantics of the play.
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Figure 3.8: Data Augmentation - Jittering

3.4.2 Mirroring

Mirroring is a data augmentation technique that involves reflecting all (x, y) coordinates

of players and the ball across one or both axes of the rugby field. This process generates

spatially equivalent versions of each play, enhancing the dataset by simulating realistic

directional variability in gameplay.

• Implementation: Mirroring was applied by transforming player and ball coordi-

nates across the vertical, horizontal, or both field axes:

– Vertical Axis (Left-Right Flip):

y↑ = W ↔ y

where W is the width of the field (70 meters), and y is the original lateral

position.

– Horizontal Axis (Top-Bottom Flip):

x↑ = L↔ x

where L is the length of the field (120 meters), and x is the original longitudinal

position.

– Full Flip: Some sequences were mirrored across both axes simultaneously to

create a completely rotated play while preserving tactical structure.

These transformations were uniformly applied to all players and the ball across

all frames within each sequence to ensure spatial consistency and semantic

coherence.
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• Justification: Rugby, like many field sports, exhibits tactical symmetry due to

its bidirectional nature. Mirroring exploits this property by generating functionally

equivalent but spatially inverted scenarios. It e!ectively doubles the dataset without

altering the underlying strategy or outcome. Previous works in football trajectory

modeling bialkowski2014spatio and soccer analytics Van Haaren et al. 2021 have

similarly employed mirroring to improve generalization in spatio-temporal models.

• Purpose: The goal of mirroring is to enhance model robustness by reducing di-

rectional bias and allowing the model to learn invariant patterns, regardless of field

orientation. This is especially useful in rugby defense modeling, where formations

are expected to generalize across both halves of the pitch.

Figure 3.9: Data Augmentation - Mirroring across y axis

Figure 3.10: Data Augmentation - Mirroring across x axis

3.4.3 Impact on Dataset Size and Model Performance

Using a combination of jittering and mirroring, the dataset was expanded from 90 in-

stances to 180, 270, and finally 360 instances. The augmentation process preserved

strategy labels and success labels, thereby ensuring consistency with the original data.

Key Takeaway: Both jittering and mirroring introduced variation in player position-

ing while retaining the semantic integrity of the plays. These techniques significantly
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improved model robustness and generalization during testing, as evidenced by improved

classification accuracy across all models and dataset sizes.

3.5 Training & Evaluation Pipeline

To rigorously assess the models’ ability to classify defensive strategies and predict the suc-

cess of plays, a structured and consistent training and evaluation pipeline was developed.

This pipeline follows a multi-task learning setup, allowing the shared backbone of each

architecture to extract common spatio-temporal features for both tasks simultaneously.

3.5.1 Data Splitting Strategy

The dataset was divided into training and testing sets using an 80/20 ratio:

• Training Set: 80% of the dataset was used for training the model.

• Testing Set: 20% of the data was held out for evaluation.

• Stratification: To ensure balanced representation, stratified sampling was applied

based on the strategy label (Blitz, Drift, Hinge) to preserve class distribution across

both sets.

3.5.2 Loss Functions

The total training loss is defined as a weighted sum of the losses from both tasks:

Ltotal = ω · Lstrategy + ε · Lsuccess (3.1)

where ω and ε are weighting coe”cients, both set to 1.0 in this study to give equal

importance to both tasks. The individual loss functions are defined as:
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• Strategy Classification Loss (Categorical Crossentropy):

Lstrategy = ↔
C∑

i=1

yi log(ŷi) (3.2)

where C = 3 is the number of strategy classes, yi is the ground truth label, and ŷi

is the predicted probability.

• Success Prediction Loss (Binary Crossentropy):

Lsuccess = ↔ [y log(ŷ) + (1↔ y) log(1↔ ŷ)] (3.3)

where y is the true binary label (1 = success, 0 = failure), and ŷ is the predicted

probability.

3.5.3 Evaluation Metrics and Analysis Plan

To comprehensively assess the performance of the models across both predictive tasks,

a multi-faceted evaluation strategy was adopted. The following metrics and analytical

techniques were employed:

1. Strategy Classification Evaluation. The e!ectiveness of the model in predicting

the correct defensive strategy was primarily measured using classification accuracy. In

addition, precision, recall, and F1-score were computed for each strategy class (Blitz,

Drift, and Hinge) to provide a balanced assessment, especially in cases of class imbalance.

A confusion matrix was also generated to visualize common misclassifications and to

analyze which strategies were frequently confused by the model.

2. Success Prediction Evaluation. For the binary task of predicting play success,

accuracy served as the primary metric. To evaluate the model’s discriminative power,

the Receiver Operating Characteristic (ROC) curve was plotted, and the Area Under the

Curve (AUC) was calculated. This allowed for a threshold-independent assessment of

model performance.

3. Joint Prediction Evaluation. To evaluate the overall decision-making capability

of the model, an overall accuracy metric was used. This measured the proportion of

instances for which both the strategy and success predictions were simultaneously correct.
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Additionally, a conditional accuracy metric was calculated specifically on plays labeled

as successful, to assess model performance in tactically favorable outcomes.

4. Conditional Evaluation on Successful Plays. A critical objective of this research

is to identify which strategies are most e!ective in real gameplay scenarios. To support

this, we conducted a targeted evaluation exclusively on test instances labeled as successful.

Within this subset, we measured strategy classification accuracy to assess the model’s

precision in recommending the correct defensive approach when a play has demonstrably

succeeded. This metric is particularly relevant for practical deployment, where coaches

and analysts aim to replicate successful strategies rather than all observed behavior.

4. Training Behavior Analysis. Learning curves were plotted to track training and

validation loss and accuracy across epochs. This enabled the identification of overfit-

ting, underfitting, or instability during training, and o!ered insights into each model’s

convergence behavior.

5. Dataset Sensitivity Analysis. To evaluate how model performance scales with

additional data, experiments were repeated on datasets of increasing size (90, 180, 270,

and 360 instances), generated via data augmentation techniques. This allowed for a

quantitative assessment of the benefits of augmentation in terms of generalization and

robustness.

Together, these evaluation techniques provided a thorough understanding of the model’s

behavior, both in terms of predictive accuracy and in its alignment with tactical expec-

tations in rugby defense. The results of this evaluation are presented and discussed in

Chapter 5.

3.5.4 Optimization and Regularization Settings

Training was carried out under the following unified configuration across all model archi-

tectures:

• Optimizer: Adam optimizer with a default learning rate of 0.001.

• Batch Size: 8
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• Epochs: 20

• Regularization: L2 weight decay applied to recurrent and dense layers to prevent

overfitting.

• Masking: Applied to input sequences to handle variable-length padding and avoid

learning from zero-padding artifacts.

3.5.5 Implementation Notes

All experiments were implemented in Python using TensorFlow and Keras. Reproducibil-

ity was ensured by setting consistent random seeds across NumPy, Python, and Tensor-

Flow environments.
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Chapter 4

Experiments

This chapter outlines the experimental setup, methodology, and results obtained from

training a deep learning model for predicting defensive strategies and evaluating the

success of defensive formations in rugby. The experiments were carried out using various

configurations of the input data, such as changing the number of players considered,

di!erent input vector formats, and data augmentation techniques. Each configuration

was evaluated using three core metrics: strategy prediction accuracy, success prediction

accuracy, and overall accuracy (where both predictions must be correct). Additionally, a

fourth metric was considered in later experiments: accuracy on only successful test cases.

4.1 Preliminary Experiments

4.1.1 Dataset Validation

Since the dataset used in this study was manually created, it was essential to assess

its reliability before proceeding with the main objective. To validate its usability, two

preliminary experiments were conducted:

1. Defensive Strategy Classification – Predicting whether the defensive team was

using a Blitz, Drift, or Hinge strategy based on raw coordinates of the defensive

players.
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2. Defensive Success Prediction – Predicting whether a given defensive strategy

was successful or not, using the positional movements of the players and the ball.

Both experiments aimed to determine whether the dataset contained meaningful and

learnable patterns that could be e!ectively modeled using machine learning techniques.

The results provided essential insights that justified further exploration.

Defensive Strategy Classification

The first experiment aimed to determine whether machine learning models could distin-

guish defensive strategies using only the raw (x, y) coordinates of defensive players. This

was critical because, if a model could successfully classify the defensive strategy based

solely on positional data, it would confirm that the dataset encoded distinct movement

patterns that could be leveraged for decision-making.

Methodology

• Input Features: The (x, y) positions of all defensive players at each time step.

• Model Architecture: A Long Short-Term Memory (LSTM) network, designed

to capture the temporal nature of defensive movements.

• Dataset Size: The model was trained on 60 instances of defensive plays.

• Training Process: The dataset was split into training (80%) and testing (20%)

sets, and the model was trained for 20 epochs.

Results & Analysis

• The model achieved a classification accuracy of 66.67%, indicating that each de-

fensive strategy had unique spatial patterns that could be learned from positional

data.
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• Confusion matrix analysis showed that some strategies were more easily distinguish-

able than others, with Drift achieving the highest precision while Hinge had slightly

more misclassifications due to overlapping movement patterns with Blitz.

• Key Takeaway: The dataset successfully encoded recognizable defensive forma-

tions, validating its structure for further predictive modeling.

4.1.2 Defensive Success Prediction

The second experiment aimed to predict whether a defensive strategy was successful or

not, using the positional movement of the players and the ball trajectory over time.

Defining Success & Failure

• A defense was labeled as ”Successful” (1) if the ball did not cross the gain

line (determined as the x-coordinate of the ball at the start of the play).

• A defense was labeled as ”Failure” (0) if the ball moved beyond the gain line,

indicating that the attack had successfully broken through.

Methodology

• Input Features: The (x, y) coordinates of players and the ball across multiple

time steps.

• Model Architecture: An LSTM model with regularization, trained to learn the

patterns of successful vs. failed defensive plays.

• Dataset Size: The model was trained on 60 instances.

• Training Process: The dataset was split into training (80%) and testing (20%)

sets, and the model was trained for 20 epochs.
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Results & Analysis

• The model achieved an accuracy of 75.00% in predicting whether the defense would

hold or break down.

• The confusion matrix showed that misclassifications mostly occurred in borderline

cases, where the ball advanced near the gain line but did not fully cross it.

• Key Takeaway: The results demonstrated that defensive movement and initial

positioning significantly influence the outcome of a defensive play, reinforcing the

value of predictive modeling for defensive decision-making.

4.1.3 Data Augmentation for Improved Generalization

While the dataset provided meaningful patterns, its size was relatively small for deep

learning models. To address this limitation, data augmentation techniques were applied

to artificially increase the number of instances while preserving the integrity of defensive

strategies.

Augmentation Techniques Used

• Positional Shift Augmentation – Players’ positions were slightly shifted in a

consistent direction (left, right, forward, or backward) to simulate natural variations

in real matches.

• Reflection-Based Augmentation – The field coordinates were mirrored hori-

zontally, creating variations that simulated defending from di!erent sides of the

field.

E!ectiveness of Augmentation

• The augmented dataset increased from 60 instances to 120 & 180 instances.
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• After augmentation, the classification model’s accuracy improved from 66.67% to

88.89% and 80.56% respectively for 120 & 180 instances, demonstrating that data

diversity led to better generalization.

• The defensive success model also saw improvements, with accuracy increasing from

75.00% to 91.67% and 97.92% respectively for 120 & 180 instances after augmen-

tation.

Key Takeaway: The augmented dataset strengthened the robustness of the models by

introducing natural variations without altering the core tactical structures of defensive

strategies.

4.1.4 Conclusion from Preliminary Experiments

The results from these initial experiments strongly justified proceeding with a more ad-

vanced predictive model. The key findings were:

• Defensive strategies were distinguishable based purely on spatial positioning.

• Defensive success could be predicted with meaningful accuracy, confirming

that positioning and movement patterns influenced match outcomes.

• Data augmentation helped improve model generalization, increasing both

classification accuracy and defensive success prediction.

Based on these findings, the research proceeded to develop a predictive system capable

of:

1. Predicting the optimal defensive strategy (Blitz, Drift, or Hinge) based on early

attack movements.

2. Providing success probabilities for each strategy, helping coaches evaluate defensive

e!ectiveness before a play fully develops.
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4.1.5 Player Selection Experiments: Choosing the Closest 8 De-

fenders

Before generating the final augmented dataset, it was necessary to reduce the input di-

mensionality to avoid overfitting and improve learning e”ciency. The goal was to identify

how many defensive players should be included per frame to retain tactical information

while minimizing irrelevant data. This was particularly important given the limited orig-

inal dataset size.

Motivation

The initial experiments used all visible defensive players; however, not all defenders con-

tributed equally to a given defensive phase. In most cases, defenders closest to the ball

were the most involved in the immediate defensive pattern. Therefore, a series of exper-

iments were conducted to evaluate the performance of di!erent subsets of players, with

and without the ball position included.

Experimental Setup

Multiple input configurations were tested by varying:

• The number of defensive players per frame (e.g., 5, 7, 8, 10, 15).

• Whether the ball position was included or excluded.

• The input vector format (flattened vs non-flattened).

Each configuration was evaluated using a consistent LSTM architecture, and model per-

formance was compared using strategy accuracy, success prediction accuracy, and overall

accuracy.
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Results Summary

Table 4.1: Performance across di!erent player configurations

Players Ball Overall Acc. Strategy Acc. Success Acc.

15 Yes 44.44% 72.22% 61.11%

10 Yes 44.44% 55.56% 61.11%

8 Yes 44.44% 66.67% 66.67%

7 Yes 44.44% 61.11% 61.11%

5 Yes 33.33% 55.56% 61.11%

5 No 22.22% 55.56% 38.89%

Key Insights

• Using the closest 8 defensive players with the ball produced the best balance

of performance and input size.

• Reducing the player count below 8 led to a noticeable drop in accuracy.

• Including the ball position significantly impacted success prediction performance.

Figure 4.1: Selecting closest 8 players

Conclusion

The closest 8 defenders to the ball were found to be the most informative subset for

modeling both strategy and success. This configuration was selected as the standard
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input format for final model training and data augmentation, described in the following

section.

4.2 Model Comparisons

This section presents a comparative analysis of three deep learning architectures—LSTM,

GRU, and CNN-LSTM—across multiple dataset sizes: 90, 180, 270, and 360 instances.

These models were selected for their ability to model temporal dependencies and spatial

patterns in sequential data. Each was trained and evaluated using the same input format

(closest 8 defenders + ball) and identical hyperparameters to ensure consistency.

4.2.1 Impact of Training Set Size

To evaluate how model performance scales with increased data availability, each archi-

tecture was trained on progressively larger datasets: 90, 180, 270, and 360 instances.

Data augmentation played a central role in this process, using two domain-aware tech-

niques—jittering (introducing minor, randomized perturbations to player positions) and

mirroring (reflecting formations across field axes)—to synthetically expand the dataset.

These methods preserved the tactical structure of plays while introducing spatial and

directional variability, thus enhancing generalization without compromising semantics.

LSTM Performance Across Dataset Sizes

Table 4.2: Performance of LSTM Across Di!erent Dataset Sizes

Instances Overall Acc. Strategy Acc. Success Acc. Success-only Acc.

90 44.44% 66.67% 66.67% 40.00%

180 75.00% 83.33% 80.56% 84.21%

270 85.19% 90.74% 87.04% 75.86%

360 83.33% 91.67% 84.72% 96.97%

51



CNN-LSTM Performance Across Dataset Sizes

Table 4.3: Performance of CNN-LSTM Across Di!erent Dataset Sizes

Instances Overall Acc. Strategy Acc. Success Acc. Success-only Acc.

90 72.22% 94.44% 72.22% 50.00%

180 86.11% 91.67% 88.89% 89.47%

270 96.30% 96.30% 98.15% 96.77%

360 97.22% 100.00% 97.22% 93.94%

CNN-Only Model Performance Across Dataset Sizes

Table 4.4: Performance of CNN-Only Model Across Di!erent Dataset Sizes

Instances Overall Acc. Strategy Acc. Success Acc. Success-only Acc.

90 50.00% 72.22% 55.56% 60.00%

180 47.22% 61.11% 61.11% 52.63%

270 75.93% 90.74% 79.63% 74.19%

360 80.56% 94.44% 83.33% 90.24%

To summarize the comparative performance of each model at the largest dataset size

(360 instances), the following table consolidates all four evaluation metrics for direct

comparison.

Table 4.5: Model Comparison on 360-Instance Dataset

Model Overall Acc. Strategy Acc. Success Acc. Success-only Acc.

LSTM 83.33% 91.67% 84.72% 96.97%

CNN-LSTM 97.22% 100.00% 97.22% 93.94%

CNN 80.56% 94.44% 83.33% 90.24%
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4.2.2 Training and Validation Curves

To complement the quantitative evaluation, we present training and validation accuracy

curves for each architecture trained on the 360-instance dataset. These learning curves

provide insight into convergence behavior, generalization performance, and model sta-

bility across epochs, which are crucial components in evaluating deep learning models

Goodfellow, Bengio, and Courville 2016.

• LSTM Model: As shown in Figure 4.2a(a), the LSTM model exhibits moderate

learning progression with occasional fluctuations, particularly in the validation ac-

curacy. Notably, validation accuracy occasionally exceeds training accuracy, which

can occur due to regularization e!ects such as dropout that are only active during

training Srivastava et al. 2014b. Although the model converges to a reasonable

accuracy, the observed instability suggests it is more sensitive to data noise and

potentially benefits from additional regularization or larger datasets.

• CNN-Only Model: As illustrated in Figure 4.2c, the CNN-only model exhibits

steady learning behavior across 20 epochs. The training accuracy shows a consistent

upward trend. Meanwhile, the validation accuracy improves gradually, plateauing

just above 80%. This steady validation performance suggests good generalization,

with minimal signs of overfitting. The slightly lower validation curve compared to

training may result from regularization e!ects introduced by dropout layers and

max pooling (Srivastava et al. 2014a; C. Zhang et al. 2016). Although the final

performance is marginally behind the CNN-LSTM model, the CNN architecture

proves to be a strong and e”cient baseline, particularly in scenarios where temporal

dependencies are less pronounced.

• CNN-Only Model: As seen in Figure 4.2c(c), the CNN-only model also demon-

strates stable and consistent learning. The validation curve slightly exceeds the

training curve across multiple epochs, likely due to dropout regularization and

batch-wise stochastic e!ects C. Zhang et al. 2016. Although slightly behind the

CNN-LSTM in final accuracy, the CNN model performs well and o!ers a simpler

alternative in settings where temporal modeling is less critical.
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(a) LSTM Model Training and Validation Accuracy

(b) CNN-LSTM Model Training and Validation Accuracy

(c) CNN Model Training and Validation Accuracy

Figure 4.2: Training and Validation Accuracy Curves for LSTM, CNN-LSTM, and CNN Models on

the 360-instance Dataset
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These observations reinforce the superiority of the CNN-LSTM architecture in terms of

convergence speed and generalization, validating the performance metrics presented in

Table 4.5. The learning curves also highlight the importance of architecture selection

based on task complexity and data availability LeCun, Bengio, and G. Hinton 2015.

4.2.3 Comparative Insights and Discussion

The results across all dataset sizes reveal several important trends in model behavior and

performance, supported by both quantitative metrics and qualitative training dynamics.

• CNN-LSTM consistently outperformed all other models, particularly at

larger dataset sizes. At 360 instances, it achieved perfect strategy classification ac-

curacy and the highest overall and success prediction accuracies. This supports the

hypothesis that CNN-LSTM architectures e!ectively combine spatial abstraction

(via convolutional layers) and temporal reasoning (via LSTM units), making them

particularly well-suited for tasks involving sequential spatial data Donahue et al.

2015.

• LSTM performed best in success-only accuracy, scoring the highest in this

metric (96.97%). This suggests that while the LSTM may not capture spatial pat-

terns as e!ectively as the CNN-based models, it excels at modeling temporal depen-

dencies related to successful defensive outcomes—perhaps by focusing on evolving

spatial arrangements over time Karpathy, J. Johnson, and Fei-Fei 2015.

• CNN-only model performed competitively in strategy classification, achiev-

ing 94.44% accuracy at the largest dataset size. This underscores the CNN’s

strength in learning discriminative spatial patterns from early defensive forma-

tions. However, the model struggled in success prediction and joint multi-task

classification, highlighting the limitations of feed-forward spatial models in captur-

ing temporal dependencies.

• Impact of dataset scaling: All models demonstrated clear improvements in per-

formance with increased training data, a”rming the importance of dataset size for

generalization. Notably, CNN-LSTM showed the steepest performance improve-

ment, with its overall accuracy rising from 72.22% at 90 instances to 97.22% at 360
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instances.

• Training curve stability and generalization: As illustrated in Figure 4.2, the

CNN-LSTM model achieved the most stable and consistent training trajectory.

Both its training and validation accuracy curves converged quickly and remained

nearly identical throughout training, indicating strong generalization and minimal

overfitting. In contrast, the LSTM model exhibited greater variance in validation

accuracy across epochs, suggesting sensitivity to batch-level noise or a need for

additional regularization. The CNNmodel also showed smooth convergence, though

with slightly lower performance ceilings.

Key Takeaway: Augmenting the dataset through domain-aware jittering and mirroring

significantly improved performance across all models, especially when combined with

task-specific architectures. The LSTM demonstrated superior success modeling ability

under temporal constraints, and the CNN was e!ective at spatial classification. However,

the CNN-LSTM hybrid emerged as the most robust and accurate solution for multi-

task modeling of rugby defense strategies. Its ability to simultaneously capture both

spatial configurations and temporal transitions makes it a compelling candidate for real-

world applications such as automated game analysis, coaching tools, and decision-support

systems.

These findings are further reinforced by the training and validation accuracy curves in

Figure 4.2, which show CNN-LSTM’s superior learning stability and generalization be-

havior. The next chapter builds on these findings by exploring broader implications,

current limitations, and avenues for future work.
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Chapter 5

Conclusion and Future Work

5.1 Summary of the Research

This research introduced a novel deep learning framework for analyzing and predict-

ing defensive strategies in rugby union—an area that remains underexplored in current

sports analytics. Focusing on three commonly employed defensive formations—Blitz,

Drift, and Hinge—the study modeled both strategy type and e!ectiveness (i.e., gain-

line success) using player and ball trajectories extracted from Rugby World Cup footage

(2019, 2023). A custom spatio-temporal dataset was manually constructed and enhanced

through domain-aware data augmentation methods such as jittering and mirroring.

Three deep learning models were evaluated: LSTM, CNN-only, and a hybrid CNN-

LSTM architecture. A multi-task learning framework enabled simultaneous classification

of strategy and prediction of success. Each model was trained on incrementally larger

datasets (90 to 360 instances), and evaluated using metrics like overall accuracy, strategy

accuracy, success accuracy, and success-only accuracy.

5.2 Key Findings and Contributions

The principal contributions and findings of this work are outlined below:
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• Dataset Construction: A unique spatio-temporal rugby defense dataset was cre-

ated, including annotations for defensive formation type and success labels. Player

coordinates were normalized via homography to ensure cross-match comparability.

• E!ective Multi-Task Modeling: All three models were capable of learning tac-

tical patterns. The CNN-LSTM model trained on 360 instances yielded exceptional

results, achieving 100.00% strategy accuracy and 97.22% success accuracy,

confirming its ability to simultaneously capture spatial and temporal dependencies.

• CNN-Only Feasibility: Despite its lack of sequence modeling, the CNN-only

model reached 94.44% strategy accuracy and 90.24% success-only accuracy,

indicating that spatial encoding alone may su”ce for strategy classification in early-

phase defenses.

• Data Augmentation E!ectiveness: Domain-informed techniques such as jitter-

ing and mirroring significantly improved performance across all model architectures,

particularly for smaller datasets. This confirms that spatial diversity helps avoid

overfitting and enriches tactical representation.

• Generalization Through Regularization: The CNN-LSTM model leveraged

dropout and early stopping to mitigate overfitting, maintaining generalization with-

out requiring excessively large training data.

• Multi-Task Synergy: Predicting both strategy and success concurrently yielded

superior representations compared to single-task models, enhancing feature reuse

and training e”ciency Caruana 1997.

5.3 Limitations of the Study

While this research achieved promising results, several limitations were identified:

• Dataset Size: Despite augmentation, the final dataset contained only 360 unique

plays. Larger datasets would enable deeper and more complex architectures to be

trained e!ectively.
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• Partial Visibility in Footage: Due to camera constraints in broadcast footage,

only the nearest 8 defenders were used for each frame. This may omit o!-screen

players whose positions influence defensive outcomes.

• Annotation Bias: All labels were manually assigned and expert-reviewed, in-

troducing the possibility of subjective interpretation or inconsistency in strategy

recognition.

• O”ine Evaluation Setup: All experiments were conducted o#ine. The system

has not yet been validated in real-time scenarios or deployed during live match

conditions.

• Lack of Player Context: No player-specific metadata (e.g., roles, fitness levels,

or historical performance) were included. This abstraction may limit insights into

individual contributions to defense strategies.

• Risk of Overestimation: Some models, particularly CNN-LSTM, achieved ex-

tremely high accuracy scores (e.g., 100% strategy prediction). Although stratified

splits and augmentation were used, the presence of mirrored plays may have intro-

duced spatial symmetries that inadvertently simplified classification. Further exper-

iments involving augmentation-aware cross-validation or hold-out sets are necessary

to validate generalization robustness.

5.4 Implications for Rugby Analytics

This study contributes a structured, data-driven foundation for understanding rugby

defense through machine learning. Its potential applications include:

• Post-Match Analysis: Automatically analyzing match footage to extract dom-

inant defensive strategies and evaluate success outcomes, thus reducing manual

tagging overhead.

• Opponent Profiling: Learning the strategic tendencies of opposing teams across

phases and formations to optimize attacking decisions and exploit defensive weak-

nesses.
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• Real-Time Support: Providing coaches with real-time predictive insights based

on early-phase positioning data collected from sensors or live feeds, improving tac-

tical responsiveness.

These insights, when integrated with traditional coaching knowledge, can significantly

enhance performance analysis workflows and decision support in professional rugby envi-

ronments.

5.5 Future Work

This research opens several promising avenues for further development:

• Dataset Expansion: Curate a larger, more diverse dataset that includes full-

match coverage, multiple game phases, and additional defensive formations beyond

Blitz, Drift, and Hinge.

• Player-Aware Modeling: Introduce features such as player roles, identities, and

physiological metrics (e.g., sprint speed, fatigue), enabling more nuanced evalua-

tions of individual impact on team strategy.

• Advanced Architectures: Explore Graph Neural Networks (GNNs) to model

relational structures between players Battaglia et al. 2018, or use Transformers to

better capture long-range dependencies across time Vaswani et al. 2017.

• Real-Time Deployment: Convert models into lightweight inference pipelines

suitable for live match integration via edge devices or broadcast overlays.

• Collaborative Validation: Engage with professional teams and federations for

collaborative field testing, gathering feedback from analysts and coaches to refine

model usability and explainability.
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5.6 Final Remarks

This thesis represents a step toward bridging traditional sports strategy with modern

artificial intelligence. By building a high-quality spatio-temporal dataset and develop-

ing deep learning models that jointly classify defensive strategies and outcomes, this

work contributes a robust, interpretable, and scalable solution to rugby analytics. While

the focus is on rugby, the methodological insights are transferable to other multi-agent,

spatially constrained domains such as soccer, American football, and esports. Future

developments along the proposed directions hold the potential to significantly enhance

the intersection of sports science and artificial intelligence.
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