
Affinity Aware CPU Scheduling
for Container Hosts

A.M.S.U. Karunarathne

Affinity Aware CPU Scheduling
for Container Hosts

A.M.S.U. Karunarathne

Index No: 20000928

Supervisor: Dr. C.I. Keppitiyagama

April 2025

Submitted in partial fulfillment of the requirements of the

B.Sc. (Honours) in Computer Science Final Year

Project

Declaration

I certify that this dissertation does not incorporate, without acknowledgement,

any material previously submitted for a degree or diploma in any university and

to the best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, to be

made available for photocopying and for interlibrary loans, and for the title and

abstract to be made available to outside organizations.

Candidate Name: A.M.S.U. Karunarathne

Signature of Candidate:

Date: May 30, 2025

This is to certify that this dissertation is based on the work of Ms. A.M.S.U.

Karunarathne under my supervision. The thesis has been prepared according to

the format stipulated and is of acceptable standard.

Principal/Co-Supervisor’s Name: Dr. C.I. Keppitiyagama

Signature of Supervisor:

Date: May 30, 2025

i

Acknowledgement

I would like to extend my heartfelt gratitude to my supervisor Dr. C.I. Keppi-

tiyagama, for all of his help and advice during the course of this research. Their

knowledge, perceptive criticism, and support have been extremely helpful in form-

ing the framework and content of this research.

I am also deeply thankful to my co-supervisor, Mr. T N BWijethilake, for their

insightful comments and priceless efforts. Their knowledge and helpful critiques

have been invaluable in improving the quality of this research.

Furthermore, I want to express my gratitude to my family for their unwavering

support, tolerance, and understanding. Their encouragement has been a rock of

strength, inspiring me to keep going despite the difficulties this academic effort

has presented.

ii

Abstract

Containerization facilitates efficient application deployment by isolating workloads

within lightweight environments sharing the host operating system’s kernel. How-

ever, the Linux Completely Fair Scheduler (CFS) manages containerized processes

as standard user-space tasks, resulting in frequent CPU migrations, cache invali-

dations, and unpredictable latency in high-density, latency-sensitive deployments.

This thesis proposes an affinity-aware CPU scheduling framework for container

hosts, integrating queuing theory with eBPF-based monitoring to enhance perfor-

mance. Kernel-level TCP backlog and application-level request queues are mod-

eled as M/M/c/K systems, with eBPF probes capturing per-container scheduling

and connection metrics to analyze queue dynamics and CPU migration patterns.

Experiments on a four-core Ubuntu virtual machine, using a custom C-based

HTTP server in Docker, reveal that overprovisioning worker threads increases

CPU migrations by up to 105% (from 32.15 migrations with 5 workers to 58.65

with 17.5 workers) at a fixed request rate of 10 requests per second, leading to cache

misses and reduced throughput. A batched queuing scheme mitigates lock con-

tention, while adaptive worker thread management, responsive to real-time arrival

rates, significantly reduces migrations and enhances CPU utilization. However,

M/M/c/K queuing models and machine learning approaches, such as Random

Forest models, exhibit limitations due to dynamic scheduling patterns and TCP

congestion control interference, which introduce variability and reduce predictive

accuracy. Key contributions include a low-overhead eBPF monitoring system for

per-container queue metrics and a hybrid analytical-empirical approach combin-

ing queuing theory with kernel telemetry to optimize server performance. Results

underscore the critical role of affinity-aware scheduling and dynamic thread tuning

in achieving predictable and efficient performance in containerized environments,

while highlighting the need for hybrid models to address the shortcomings of the-

oretical and machine learning-based predictions.

Table of Contents

Declaration i

Acknowledgement ii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition / Research Questions 2

1.2.1 Problem Definition . 2

1.2.2 Research Questions . 3

1.3 Approach . 4

1.4 Thesis Structure . 6

2 Background/Preliminary Literature Review 7

2.1 Containerization . 7

2.2 CPU Scheduling in Linux . 8

2.3 Affinity Consideration in Scheduling 9

2.4 Queue-Theory-Based Scheduling . 10

3 Methodology 11

4 Experiments & preliminary results 17

4.1 Using polynomial regression modeling 23

4.2 Improved Random Forest Model . 26

4.2.1 Model Performance . 26

iv

5 Implementation and Design 32

5.1 Server Architecture Overview . 32

5.2 Handling Incoming Requests . 33

5.3 Connection Queue Design . 34

5.4 Monitoring Kernel Backlog with eBPF 34

5.4.1 eBPF Program Design . 35

5.4.2 User-Space Monitoring . 35

5.5 Containerization Considerations . 36

5.5.1 Per-Container Isolation . 37

5.5.2 Capabilities and Deployment 37

5.5.3 BTF and CO-RE . 37

5.5.4 Overhead Reduction . 37

5.5.5 Integration with Orchestration 37

5.6 Conclusion and Relation to Research Questions 38

6 Results and Discussion 40

6.1 Results . 40

6.1.1 Challenges in Queue Theory Modeling 40

6.1.2 Effect of Worker Threads on CPU Migrations 41

6.1.3 Analysis of Service Rate and CPU Migrations 43

6.2 Critical Evaluation of Results . 47

6.3 Limitations and Future Work . 48

7 References 50

v

Chapter 1

Introduction

Containerization has transformed modern computing by making it possible to

develop, run, and manage programs in confined environments. As opposed to tra-

ditional virtualization, which exploits hypervisors for emulating entire operating

systems, containers leverage the kernel of the host operating system for running

multiple isolated instances of user-space with less overhead, faster startup, and

better utilization of resources (Dua et al. 2014, Bentaleb et al. 2022). Containers

give a contained environment through mechanisms like namespaces, which provide

security functionalities like user ID and file system isolation, allowing for isolation

of containers from the host or from other containers (Eder 2016). Containerization

is not without challenges, such as resource competition, where the overconsump-

tion of resources by one container will impact others unless managed by control

groups (cgroups) (Bentaleb et al. 2022).

At the base of operating system performance lies the CPU scheduler, which

controls processor time for running processes. The Completely Fair Scheduler

(CFS), part of kernel 2.6.23, is the native scheduler in Linux and is utilized to

distribute CPU time among processes in a fair manner based on their virtual run-

time (vruntime) and priority, determined by the “nice” value (Pabla 2009, Kobus

& Szklarski 2009). Earlier schedulers like O(1) scheduler made use of intricate

heuristics that preferred to mislabel jobs, hence leading to inefficiencies (Pabla

2009). CFS employs Red-Black trees to minimize idle CPU time but proves to be

1

deficient when used in containerized systems where inter-container dependencies

are prevalent (Marinakis et al. 2017).

1.1 Motivation

In modern containerized environments, multiple processes within different contain-

ers share a common host kernel and hardware resources. From the Completely

Fair Scheduler (CFS) used by the Linux kernel perspective, such container pro-

cesses are regular user-space processes. However, the CFS attempts to optimize

CPU utilization by redistributing tasks across available CPU cores. While this

measure attempts to distribute load, it generally creates unexpected consequences

in containerized environments.

One such critical issue is the frequent migration of tasks between CPUs, de-

stroying the cache locality. For every migration, there are cache misses, increas-

ing the memory access cost and eventually leading to higher request processing

latency. Such inefficiencies are particularly undesirable for latency-rich applica-

tions as well as high-throughput container workloads. Therefore, remedying CPU

scheduling inefficiencies in container environments is crucial to improve perfor-

mance predictability, reduce latency, and improve the overall system efficiency.

1.2 Problem Definition / Research Questions

1.2.1 Problem Definition

Common server designs that are commonly used within containers—e.g., accept-

based designs—depend heavily on the operating system’s scheduler to manage the

order of task execution. But these scheduling decisions are normally made without

regard to CPU affinity limits or application priorities. This disregard can lead to

excessive CPU migrations, increased scheduling latency, and decreased overall

performance, especially under heavy load when numerous containers compete for

shared resources.

2

To better handle and address such challenges, this study proposes a queue-

theory-based, affinity-aware CPU scheduling framework for containerized contexts.

Such a model accounts for both kernel-level TCP backlog queues and application-

level waiting queues and unifies them under a uniform framework of scheduling

analysis.

More precisely, This study model:

• Application queues, analogous to requests stacked up for servicing in user-

space (e.g., pending accept calls), and

• TCP backlog queues, analogous to connections stacked up in the kernel

before acceptance by the application

using M/M/c/K queuing models, which are capable of providing analytical char-

acterization of queue lengths, waiting times, and system saturation levels.

Through characterization of such queue structures via modeling, I expect to

gain further insight into server workload runtime characteristics in container en-

vironments. Instead of being an integral part of the CPU scheduling logic, our

approach utilizes queuing theory as a tool for diagnosis and optimization so as to

enhance the performance of server-side components like connection handling and

thread allocation in a way that facilitates better CPU scheduling decisions. By

analyzing the dynamics of application queues and TCP backlog queues, we can see

trends in terms of saturation points, request latency, or inter-container commu-

nication contention. We can then propose at the server level such that we avoid

CPU contention, task migrations are minimized, and affinity-friendly execution

is made possible, thus enhancing overall system performance without having to

make changes at the kernel-level scheduler.

1.2.2 Research Questions

This paper is motivated by the performance degradation seen with containerized

deployments, particularly under heavy system load. The aim is to determine how

3

queuing and CPU affinity can be utilized to inform improved task scheduling. To

that end, the paper attempts to answer the following key questions:

• How do application-level service queues and CPU affinity influence CPU

scheduling in containerized environments? This question explores the effect

of affinity constraints and application-level queues (e.g., pending requests)

on task execution and scheduling delays.

• What is the effect of TCP backlog queues and application-level service

queues on determining scheduling delays? This investigates the influence of

network-level and user-space queue buildup on responsiveness and schedul-

ing latency under a variety of workload conditions.

• Can queuing models such as M/M/c/K be used to accurately predict and

model system behavior in containerized workloads? This test examines the

relevance of classical queuing theory to characterize the complex interplay

between arriving requests, processing threads, and CPU availability.

• How are queuing theory principles used to fine-tune server-side parame-

ters—e.g., thread pool capacity, affinity assignment, or workload distribu-

tion—to assist with better CPU scheduling outcomes? This tries to list

specific tuning choices at the user level that indirectly reduce CPU migra-

tions and improve locality.

1.3 Approach

To arrive at an affinity-aware, queue-theory–guided scheduler for container hosts,

I proceed in few steps:

• Developed custom instrumentation tools-including an eBPF-based kernel

monitor and user-space counters-to gather queue and scheduling statistics

with low overhead.

4

Figure 1.1: Priority Inversion and frequent CPU migrations

• Conducted controlled experiments with different kernel backlog size and

number of concurrent requests, following CPUmigrations and wakeup→switch

latencies using Ftrace/trace-cmd/KernelShark.

• Utilized M/M/c/K queuing models to estimate queue waiting time

Wq =
Lq

λ

using empirically measured arrival (λ) and service (µ) rates. Machine learn-

ing models trained and tested (degree-2 polynomial regression and Random

Forest) to predict CPU migration behavior from backlog size and monitoring

interval.

• Leaned on eBPF telemetry to capture per-container, real-time connection

arrival rates to deliver low-latency insights into queue dynamics.

• Documented (but did not implement) a tuning algorithm based on feedback

to adjust server parameters (e.g., number of worker threads) periodically as

a function of measured Wq metrics.

5

1.4 Thesis Structure

The rest of the thesis is presented as follows: Motivation and preliminary literature

overview are followed by a clear definition of the problem and research issues. The

approach to the research, experiments and preliminary results, is then presented.

Then comes the implementation and design of proposed scheduling model are

described in great detail. Finally, the discussion and the references conclude this

thesis.

6

Chapter 2

Background/Preliminary

Literature Review

2.1 Containerization

Containerization is a type of light-weight virtualization where applications run

inside containers, which are isolated environments. Containerization is unique

in that the containers share the host computer’s kernel, as opposed to virtual

machines where the entire operating system is duplicated every time an application

is run (Dua et al. 2014). This means that the computer uses less resource and

the applications load faster. This aspect of containerization has made it suitable

for many applications in cloud computing and microservices in the current era of

scalability and easy deployment (Bentaleb et al. 2022). For example, Docker is

an orchestration platform for containerization, while Kubernetes is a platform for

execution and management of containerized services on a distributed system.

Linux namespaces and control groups, also known as cgroups, provide the ba-

sic framework for containerization. Namespaces give container isolation, including

process IDs, network stacks, and file systems in a way that containers run inde-

pendently (Eder 2016). Cgroups are used to manage resources and prevent a

container from taking over the host by restricting CPU, memory, and I/O (Ben-

taleb et al. 2022). The CPU subsystem of cgroups uses parameter specifications

7

like cpu.shares for CPU time allocation in the cgroup and cpu.cfs period us

and cpu.cfs quota us for setting hard limits on CPU utilization per cgroup.

Despite the abstraction and isolation that containers bring, competition for

the underlying hardware resources such as CPU and memory remains a pervasive

problem. When several containers are executed on the same host operating sys-

tem, they inevitably contend for the same finite set of computational resources. If

not adequately dealt with, this contention will result in perceivable performance

degradation for applications run in such containers Bentaleb et al. (2022). This

performance variability is especially troubling in environments where responsive-

ness and throughput consistency are required. Consequently, this circumstance

emphasizes the critical necessity for smart and efficient CPU scheduling mecha-

nisms. Not only should these mechanisms ensure equitable and equal distribution

of CPU time among competing containers, but they should also attempt to main-

tain system performance at an optimal level that consider dynamic and high-load

circumstances that characterize modern containerized environments.

2.2 CPU Scheduling in Linux

The Linux kernel has evolved its CPU scheduling algorithms to address a wide

range of computing needs. Earlier schedulers, such as the O(1) scheduler, provided

constant-time decision-making while maintaining fairness and interactivity under

high system loads Pabla (2009).

The Completely Fair Scheduler (CFS), introduced in version 2.6.23, uses a red-

black tree to manage tasks based on their virtual runtime, ensuring that each task

receives an appropriate share of CPU time Kobus & Szklarski (2009). CFS assigns

a vruntime to every task, which increases as the task executes, scaled according

to its priority (expressed through the nice value). The scheduler then selects the

task with the smallest vruntime, thereby promoting fairness in execution Pabla

(2009).

Despite its advantages—such as low complexity, scalability, and predictabil-

ity—CFS is not well-suited for containerized environments. In such environments,

8

containers share the host kernel, and their processes are treated as regular user-

space tasks. As a result, the scheduler lacks awareness of higher-level depen-

dencies between containerized processes Marinakis et al. (2017). For instance,

in a producer-consumer relationship spanning two different containers, CFS may

schedule tasks in a way that causes delays in inter-container communication. These

inefficiencies have led to a growing interest in the development of container-aware

scheduling mechanisms Guo & Yao (2018).

2.3 Affinity Consideration in Scheduling

CPU affinity in modern multi-core systems refers to the attachment of a process (or

thread) to a specific CPU core or set of cores. By scheduling the same CPU core

a process over and over again, the process may take advantage of cache locality

to reduce memory access latency and system-wide performance in general. This

is particularly valuable in systems that have deep hierarchical cache hierarchies,

where cache warmth may have a significant effect on responsiveness of applications.

In the Linux kernel, the Completely Fair Scheduler (CFS) attempts to evenly

distribute the load across available CPU cores by migrating tasks as necessary.

While this global load balancing improves fairness and CPU utilization, it has

the tendency to overlook the benefits of maintaining CPU affinity. Excessive

migration can lead to cache invalidation, TLB (Translation Look aside Buffer)

misses, and increased memory access costs, all of which help degrade system per-

formance—especially for latency-critical or high-throughput applications.

Affinity-aware scheduling is even more critical in containerized environments,

in which different containers can concurrently host collaborative workloads hav-

ing intricate inter-process dependence. For example, if two containers have a

consumer-producer relationship, aggressive task migration can disrupt the timing

and sequence of their communication. In such cases, preserving CPU affinity not

only maximizes cache efficiency but also maximizes synchronization effectiveness

and reduces inter-container communication latency.

In addition, affinity is very important in systems with NUMA (Non-Uniform

9

Memory Access) behavior. Scheduling jobs between CPUs of the same memory

node reduces remote memory access cost. Ignoring affinity in such systems results

in severe memory access bottlenecks.

To mitigate these problems, modern schedulers are now starting to incorporate

affinity-aware mechanisms that attempt to balance the locality and load-balancing

trade-offs. These mechanisms attempt to make more enlightened decisions regard-

ing when and where to migrate tasks. Punishing migrations, per-core run queues

with affinity hints, and feedback policies that observe cache performance to guide

scheduling decisions are some of the methods.

2.4 Queue-Theory-Based Scheduling

Queuing theory models systems with queues, such as jobs waiting for CPU time,

to predict performance measures like waiting times and throughput. M/M/c/K

models with Poisson arrivals and exponential service times are relevant to con-

tainer scheduling, where containers are servers serving requests (Terekhov et al.

2014).

In scheduling, queuing theory is responsible for keeping the system stable and

bounds in queues. (Terekhov et al. 2014) integrated queuing theory and schedul-

ing to address dynamic issues with improved performance. Similarly, this thesis

utilizes application and backlog queues, represented to forecast scheduling activity

and implement a container-aware scheduler (Moniruzzaman et al. 2017).

10

Chapter 3

Methodology

Experimental setup

Installed a fresh installation of Ubuntu with Completely Fair Scheduler as the

default scheduler for CPUs onto a virtual machine with 4 cores. after initial

setup, I installed Kernelshark so that I had a much better idea of what data was

being retrieved from the Ftrace buffer. Kernelshark has some significant filtering

strategies in addition to its data plots and visualizations which are invaluable in

the research of CPU events.

Implemented an HTTP server that is specifically designed to handle the server

aspects. Other complicated servers use other mechanisms with complicated thread

management to handle different simple requests, making it almost impossible to

track CPU events and their behavior. This server has following features.

• An accept loop that accepts the request from the kernel backlog and starts

processing.

• The requests are batched to a dynamic size to prevent the thundering herd

problem first.

• When the queue is not congested, a worker thread is notified about avail-

ability using thread signal cond.

• Worker threads dequeue available requests and start executing them.

11

• The main thread is constantly attempting to accept and batch incoming

requests regardless of slots available in the application queue. It ensures the

rate of departure of the backlog queue is unrelated to the rate of completion

of the requests.

It is both tested within and outside a docker container and it witnessed the

scheduling events. For having more precise details about event scheduling as

well as about virtual runtime values, my own custom system calls have been

introduced. Automated requests have been created using curl command through

the integration of bash scripting to simulate real world workloads. This is a service

or a container depending upon the server container. Used eBPF to intercept the

corresponding kernel functions to be called for system tcp events and forward these

data into user space with little latency. Another standalone thread was added to

the server that acts as a mid-layer between kernel and application to help other

tools and container orchestration systems to offer statistics about the traffic of the

container and also act to manage server properties like worker thread.

Data Collection

Used the integrated Ftrace kernel tracing in utilized kernels to get data about the

system TCP stack’s request processing and also about the CPU events triggered

and their timing. Used the trace-cmd to get data from the Ftrace buffer as a

’.dat’ file so that it can be directly fed to the Kernelshark for improved-analyzing

features. A Bash script was used to trigger tracing automatically and filter the

Ftrace configuration as well as submitting different numbers of concurrent requests

to the hand-written C server.

Used perf tool and also some custom made system calls to collect information

about schedulers internal parameters like virtual runtime.

And also the experiment of data gathering in this study was to examine the

behavior of the main thread of a C server, and more specifically the CPU mi-

grations, with different mixes of concurrent requests, worker threads, and kernel

backlog sizes. They have been chosen as parameters because they directly influ-

12

ence the scheduling activity of the server, and it would be interesting to see how

they combine in order to cope with performance bottlenecks, priority inversion,

and patterns of CPU migration.

During each experiment, three parameters were varied: the number of worker

threads, the number of concurrent requests, and the size of the kernel backlog.

The number of concurrent requests models different levels of incoming traffic to

the server that impact the tasks queuing mechanism to process. The ability of the

server to execute these requests in parallel is regulated by the worker threads, and

the size of the kernel backlog is the amount of waiting requests when the worker

threads are busy.

At each specific value of the variables, measurements were taken over some

specified time period, with experiments consistent. To correct for variability, at

least 10 measurements were obtained for each configuration, and the average mea-

surement was established for each set. This served to remove the effect of outliers

or transient aberrations which could distort the results so that measurements taken

reflect the steady-state operation of the system.

This experiment was conducted under different conditions of the variables that

resulted in 250 averaged points. For a single variable of the three variables, one was

highlighted for one experiment while the other two were maintained constant in a

bid to determine the effect of a single factor. For example, in a certain experiment,

the number of concurrent requests were varied while maintaining constant the

number of worker threads and backlog size. In a second experiment, worker thread

numbers and concurrent request were kept constant while kernel backlog sizes

were varied. This allowed exhaustive investigation of each variable’s influence

independently on server behavior.

Values of observed points indicated the relationship between concurrency of

requests, kernel backlog size, and worker threads and their influence on CPU

migration behavior. Through a close examination of the effects of such diverse

configurations on task scheduling, the study attempted to identify patterns of

delay and inefficacy, particularly when tasks of diverse priorities were scheduled

13

onto a shared CPU. The main objective of data gathering was to gather enough

data to be able to make a general analysis of system load and configuration impact

on scheduling behavior so that it will be possible to better monitor how priority

inversion and CPU migration can be avoided in containerized systems.

Analysis

I have analyzed the data gathered on different numbers of concurrent requests with

the help of Kernelshark. First, calculate the time when the server’s main thread

transitions from ready state (SCHED WAKEUP) to scheduled state (SCHED SWITCH).

Then, I calculated the CPU schedulers activity and determined how many other

processes were scheduled within that time. And also made sure that all processes

were being executed at present and none of them completed their execution.

To investigate CPU migrations further, I had to employ a different approach.

The data gathered were analyzed using in-house Python scripts written for this

study. The scripts were used to process, analyze, and plot the measurements in

an organized and meaningful way. The primary purpose of the analysis was to

test how different settings of the system—i.e., the numbers of concurrent requests,

worker thread levels, and kernel backlog levels—affect the CPU migration patterns

of the main thread of the server at distinct levels of loading.

Analysis process had some crucial steps:

• Data Prepossessing Raw data from each experiment was preprocessed and

cleaned first. This included deleting anomalous or incomplete records, han-

dling missing values, and normalizing data where necessary. This introduced

consistency and reliability across the dataset, rendering it suitable for com-

parison analysis.

• Descriptive Statistics For each configuration, statistical summaries such as

the mean, variance, and standard deviation were computed. Statistics were

used to summarize CPU migration central tendency and variability across

each set of conditions. Averaging over at least 10 data points per configura-

tion also aided the strength of the analysis.

14

Visualization

Several visualizations were produced using Python libraries in order to more in-

tuitively understand variable-to-variable relationships. Three primary types of

charts were used:

• Heatmaps were used to capture and plot the density of CPU migrations

between pairs of variables (such as worker threads vs. concurrent requests).

These plots provided a bird’s eye view of how configurations led to greater

or lesser CPU migration.

• Line graphs were used to mark trends and movement, i.e., the variation

of CPU migrations when moving one variable gradually and holding oth-

ers steady. They were particularly good for finding thresholds or points of

turning in system behavior.

• Bar plots were used in the comparison of the mean number of migrations

for different discrete values of configurations. The plots emphasized the

difference between settings very clearly, and the best and worst performing

setups were easily identifiable at a glance.

Investigation and Interpretation

Patterns were identified from the graphs that indicated how the server’s scheduling

and CPU migration activity reacted to varying workload conditions. For example,

in some environments, increasing the number of worker threads beyond a given

point caused CPU migrations to balloon, suggesting greater contention or over-

head. Similarly, some combinations of high concurrent request rates and small

backlog sizes were linked to extreme scheduling latency.

Cross-variable Analysis

Interactions between variables were specifically addressed, and particularly through

the use of heatmaps, when investigating how two variables collectively defined mi-

15

gration behavior. Such plots were utilized to reveal complex dependencies not

readily found with uni-variate analysis.

Through the use of these visualization tools and statistical techniques, the

analysis would be capable of achieving a thorough understanding of how different

system configurations impacted schedule efficiency and CPU affinity stability. The

outcome of this analysis phase was used as the basis for identifying performance

bottlenecks and was directly used in formulating possible approaches to minimizing

CPU migrations and priority inversion in multi-threaded server systems.

16

Chapter 4

Experiments & preliminary

results

I tried to create my own tracing facility inside the kernel for further modifications

by using kernel’s native printk function but it added some serious issues to the

kernel because prink supports a blocking type of functionality and inserting a

blocking code directly into a CPU scheduler leads to a freeze of the system since

the CPU scheduler will not be able to schedule any activity until the printk gets

de-blocked.

As I did not utilize my own tracing tool, I followed Ftrace together with some

complementary tools like trace-cmd and Kernelshark for additional data capture

and examination. First, I tried investigating the CPU scheduler activity for a fixed

number of simultaneous requests. The server is also made to create a long-run

execution to make sure that none of the requests gets execution prior to the rest

of the processes start getting executed. As can be noticed from the results, there

is a boost in the latency when the 3rd request gets its turn in the CPU. Thus, I

made the decision to incorporate a different number of concurrent requests and

analyze each one of them separately figures 4.1 4.2 4.3 demonstrates the results.

Here, the Wakeup column represents the time when the main thread became

ready after the request was processed by the system’s TCP stack, and Switch

represents the time when it was scheduled on the CPU. Delta column represents

17

Figure 4.1: Number of Requests 1 to 3

the difference between the two (scheduling latency) and the last column represents

the number of processes that were scheduled in the meantime.

As you can see some records have a value called mg in the last column. I used

this to indicate a thread migration in the CPU i.e., the server’s main thread was

migrated to a different CPU. Since the CPU scheduler is unaware of the cross-

container dependencies and priorities of the processes, this experiment setup is

analogous to the containerized setup that I have described in the earlier sections.

From the above data, we can observe clearly that there is a possibility of cross-

container priority inversion. particularly in the request 8 of 10 concurrent request

experiment, it shows 21 SCHED SWITCH events which means this process was

ignored 21 times by the CPU scheduler during making the scheduling decision. it

has happened several times. As we can see, The CFS scheduler due to its load

balancing mechanism has shifted the main thread to another cores and it shows

that this clearly increases the scheduling latency of the server’s main thread which

can result in poor performance and even connection rejection due to the inability

to serve the new incoming request(Main thread is still in the processing stage of

the previous request and have not passed it to a new thread yet). This leads us to

further investigation of the latency and performance of the scheduler with CPU

18

Figure 4.2: Number of Requests from 4 -7

19

Figure 4.3: Number of Requests from 8 -10

20

Figure 4.4: For 10 concurrent requests

pinning policies.

The following graph shows the number of in-between process scheduling for

10 concurrent requests. We can see that after going through a smaller number

of context switches it shows a spike and then drops to low values again. This is

the expected behavior of the CFS algorithm. As the main thread receives more

time in the CPU its virtual runtime is incremented and the scheduler ignores it

for some time until the other tasks catch up with it. And then once more the

main thread scheduling latency goes down to a lesser amount. As a result of this,

it increases the probability of priority inversion in a cross-container scenario. The

same result can be observed for different numbers of concurrent requests in the

above data.

Now I have turned my focus to the CPU migrations. Figure 4.5 is a line graph

illustrating kernel backlog size vs average number of CPU migrations endured by

the C server’s main thread. From the figure herein, one observes an overall trend

of increase for CPU migrations with increasing backlog value, indicating positive

correlation between variables. This indicates that bigger backlog sizes, which

allow the server to queue more of the incoming connections, can occur to impose

21

additional scheduling overhead, perhaps due to increased contention between the

threads competing to accept and serve connections.

While the chart does appear to have a trend, the chart also indicates that there

is a lot of fluctuation or ”noise” in the data. These variations are likely caused

by external factors like other running processes on the system, CPU cache states,

background kernel tasks, or other standalone thread scheduling policies within the

measurement window. These random system states introduce randomness to the

decisions made by the kernel, affecting the stability of measured CPU migration

counts.

However, the line graph still clearly displays an underlying pattern: once the

backlog value goes over a point, CPU migrations will rise more sharply. Such be-

havior is in accordance with predictions from theory because an increasing back-

log implies more events on sockets being active and perhaps more accept calls by

worker threads, increasing the chances of CPU migration when thread affinity or

load balancing is activated by the kernel.

This result underscores the importance of configuring kernel-level parameters,

such as the backlog size, in high scheduling determinism and low-latency process-

ing environments—primarily in containerized or real-time servers. More experi-

ments with more controlled settings can potentially remove noise and separate the

effect of each variable more effectively.

In addition to further investigating the interactive effect of greater than a

single parameter upon CPU migration behavior, I extended the research further

by creating heat plots as figure 4.6 that reflect interaction between worker thread

number, kernel backlog size, and associated average CPU migration rate. Heat

plots were employed as a visualization method for this reason since they can encode

variations of a third variable as color intensities in a 2D parameter space.

The resultant heat maps, on the other hand, were not that informative about

a readily apparent pattern like in the earlier line chart. This suspicion is mostly

a result of system-level noise and runtime externalities such as background kernel

activity and thread interference in scheduling that continued to impact consistency

22

Figure 4.5: Kernel backlog vs CPU migrations

of measurements experiment to experiment. Despite all this activity, there was

still a general trend: CPU migrations were growing towards bigger backlog size as

well as increasing numbers of concurrent requests.

This trend, though present, was less extreme and obvious than that which was

found in the line plot of average CPU migrations vs. backlog size. It suggests that

although these parameters themselves are sources of scheduling complexity, their

interaction is an additional source of variability that could hide obvious correla-

tions. These findings indicate the challenge of describing low-level performance

properties in typical environments for computation, where system interference

due to non-controllable process can be present, hiding the localized behavior of

interest.

4.1 Using polynomial regression modeling

For further investigation of the relationship between kernel backlog size and av-

erage CPU migrations over a specified time window, a simple machine learning

approach was considered. A degree-2 polynomial regression model was utilized

23

Figure 4.6: Heatmap of average CPU migrations vs Backlog size vs Number of

concurrent requests

24

using the scikit-learn Python library. The model took in backlog size (B) and

observation time window (T) as input variables, and output the average number

of CPU migrations (M). The second-degree polynomial features were used in the

regression:

B2, T 2, B · T,

i.e., six model parameters total including the bias term.

The model was trained on 206 data points sampled from controlled experiments

in real-world settings. These were sufficient for the nature of the low-complexity

regression model being employed. The resulting model had the following param-

eters learned:

Intercept: 2.3330

Coefficients: 0.0000, −0.0558, 3.6651, 0.0001, 0.0007, 0.1422

These are associated with the respectively constant term, B, T , B2, B · T , and

T 2.

The training set Mean Squared Error (MSE) was 86.9830, a moderate error of

prediction. The reason for the high MSE here is attributable to external system-

level noise, i.e., OS background processes or asynchronous I/O activity, beyond the

control of the experimental environment and naturally affecting CPU scheduling

decisions. Despite the noise, the model did pick up on an overall trend that linked

larger monitoring time and backlog to larger migration quantities. The prediction

error variability also suggested, however, that the dynamic scheduling activity

could not be described by a low-order polynomial model for variable system loads.

This modeling activity illustrates the possibility for data-driven methods to

model CPU migration behavior, and the challenge of prediction in the presence of

operating system noise and runtime variation.

25

4.2 Improved Random Forest Model

For the improvement of the model’s performance, a Random Forest regression

model with a larger set of features was employed. The feature set included:

• Base features: Backlog (B), Time (T)

• Interaction features: B × T

• Polynomial features: B2, T 2

• Logarithmic features: log(B), log(T)

The Random Forest model provides several advantages for this research:

• Ability to model non-linear relationships without explicit definitions

• Insensitivity to outliers and noise in the dataset

• Quantification of feature importance

• Reduced risk of overfitting through ensemble averaging

It was trained using 200 decision trees with a maximum depth of 8 and mini-

mum of 5 samples per split for an internal node—parameters tuned for the rela-

tively small dataset.

4.2.1 Model Performance

Comparison of Performance Metrics

The Random Forest model was found to exhibit considerable improvement against

the polynomial regression technique, as reflected in Table 4.1.

The low training R2 of 0.968 accounts for the fact that the model explains only

approximately 97

26

Table 4.1: Comparison of Model Performance Metrics

Metric Polynomial Regression Random Forest

Train R2 Low value 0.968

Test R2 Low value 0.799

Train MSE High value 11.516

Test MSE High value 38.705

Model Evaluation

The difference in performance metric between training and test—a difference of

0.169 in R2 and 27.189 in MSE—represents mild overfitting. But not drastic con-

sidering the complexity of the model and small dataset size. Such differences are

expected in situations of low data availability and high-order feature interactions.

The actual vs. predicted CPU migration scatter plot (Figure

reffig:scatter) is a visual confirmation of the prediction ability of the model. Points

clustering near the diagonal line indicate good predictions, and straying away from

it indicates errors. The graph depicts the following:

• High accuracy of predictions for low migration numbers (0–20)

• Good accuracy for moderate migration numbers (20–40)

• Increasing variance for high migration numbers (>40)

This trend suggests that the model performs best in the lower migration range,

which aligns well with typical production workloads.

Since my initial efforts at modeling the dependency of backlog size, time, and

CPU migrations as a polynomial regression did not work, I attempted a set of

other machine learning methods. None of them, however, provided me with the

accuracy or insight that I was looking for. I therefore diverged from purely machine

learning methods and adopted a more traditional method that offered a clearer

understanding of the most significant factors for CPU migrations.

27

Figure 4.7: Actual vs Predicted CPU Migrations

All of the above described data gathering and processing—like mean CPU mi-

gration rates, heat maps, and model fitting—was done on a queue-based server

implementation, where an arriving connection is intercepted by a centralized queue

and allocated to worker threads. To further explore the impact of the handling

of connections mechanism on CPU scheduling behavior, I also conducted an ex-

periment in parallel using a no-queue implementation. In this case, every worker

thread invokes accept() independently in order to handle accepted connections

directly without going through the shared queue and hence balancing the load

among the threads.

This implementation is frequently associated with the ”thundering herd” prob-

lem, wherein various threads wake up concurrently to process one connection, per-

haps increasing CPU contention and causing additional CPU migrations owing to

wake-ups and accept lock contention. The results were quite surprising. The

heat map of the no-queue implementation (Figure 4.8) illustrated a steep dipping

of CPU migrations for heterogeneous backlog sizes and concurrent request rates

compared to the centralized queue-based implementation.

This is the opposite of the traditional hypothesis that centralized queues yield

28

greater coordination and fewer migrations. My experiments, however, show that

queue-based gives rise to a built-in inefficiency in CPU affinity retention, perhaps

due to the manner wake-up and scheduling happen as threads wait on a common

queue for items. The no-queue design, despite its possible risks of contention,

seems to generate greater CPU-locality and load dispersion across cores.

From this inconsistency, I concluded that the queue-based server model inher-

ently experiences more CPU migrations, which would potentially affect perfor-

mance under high concurrency. The reason is in the locking mechanism of the

shared application queue. In this design, one master thread accepts connections

and places them in a shared application queue. Worker threads take a lock on the

queue to get work. When many threads are competing for this lock, especially in

heavy load, the primary thread will block, waiting to get the queue lock. Each

time the primary thread blocks or is being awakened, the Linux CPU scheduler can

schedule it to another CPU, especially when the system contains many runnable

tasks and many CPUs. This recurring task blocking and wake-up cycle has the

excessive CPU migration overhead, which can be seen in the above-mentioned

heat maps.

To mitigate this, I explored an alternative optimized design that is based on

batched queuing. Using this approach, instead of enqueueing each request directly

into the shared app queue, I batch a sequence of requests and then add them in

batches with the least amount of accesses to the queue. This method slows down

the rate at which the main thread needs to fight over the lock, which means

less block-wake context switches and, as a result, significant reduction in CPU

migrations.

After this enhancement, I proceeded by dividing the backlog queue and ap-

plication queue into two different M/M/C/K queuing systems. This abstraction

allowed me to utilize queueing theory to compute optimal configurations analyti-

cally. Specifically, through the examination of the queue parameters such as arrival

rate, service time, and workers’ capacity, I was able to establish the number of

workers required to handle the load arriving without excessive idleness or build-up

29

Figure 4.8: Heat map of CPU migrations vs time period monitored vs backlog size

with accept based implementation

30

in the queue. Lowering the number of workers in this fashion also lowers CPU con-

tention, again resulting in more predictable scheduling performance, lower CPU

migrations, and overall system effectiveness.

This multi-level optimization tactic—batching requests, lock contention reduc-

tion, and mathematical simulation of queue operation—represents a robust and

empirically efficient way to minimize the performance loss of CPU migration in

typical queue-based server structures.

While the batch processing mechanism has been examined in other server ar-

chitectures to improve performance during load, typical implementations of batch

size are fixed. This approach can be wasteful in the situation of highly lightweight

or bursty traffic, where the fixed threshold can result in the delay of processing too

long (waiting to finish the batch) or waste of system resources. To counter this, I

time based batchng where the batch size is determined based on observed request

arrival rates and queue utilization at present. It allows the system to cope with

varying traffic loads gracefully while preserving the benefits of reduced contention

and improved CPU affinity.

Most notably, while these issues are addressed within a monolithic server con-

text, the underlying notions are highly relevant to containerized environments.

These CPU scheduling inefficiencies can be confidently addressed by introducing

a custom daemon process at host or orchestrator levels. This daemon could mon-

itor per-container CPU migration behavior, queue lock activity, and contention

rates and relay this information back to the Kubernetes scheduler (or similar

orchestration frameworks). With the Kubernetes scheduling algorithm becom-

ing incorporated to account for such CPU affinity-aware optimizations, it would

then be feasible to make smarter placement decisions, reduce unnecessary mi-

grations, and ultimately enhance the performance and efficiency of containerized

workloads—particularly in high-density or latency-sensitive situations.

31

Chapter 5

Implementation and Design

This chapter details the implementation of a custom C-based HTTP server and

an eBPF-based monitoring system designed to evaluate CPU scheduling behavior

in containerized environments. The architecture simulates production-like, CPU-

bound workloads to assess the Linux Completely Fair Scheduler (CFS) under

high concurrency, focusing on CPU migrations, queuing delays, and performance

predictability Pabla (2009), ?. The design prioritizes modularity, low-overhead

telemetry, and compatibility with container orchestration, enabling precise mea-

surement of scheduling and network metrics to address research questions con-

cerning queue dynamics, CPU affinity, and scheduling optimization.

5.1 Server Architecture Overview

The HTTP server employs a queue-based, multi-threaded architecture, imple-

mented in C with the POSIX threads (pthreads) library, to simulate high-concurrency

workloads Marinakis et al. (2017). Integrated with an eBPF-based monitoring

system, it captures kernel-level metrics, such as scheduling events and task migra-

tions, to analyze CFS behavior. The server comprises four key components:

• Non-blocking Accept Loop: The main thread continuously accepts TCP

connections on port 8080 using a non-blocking accept() system call, ensur-

ing efficient connection handling Mathis et al. (1997).

32

• Connection Queue: A shared, fixed-size circular buffer stores accepted

connection file descriptors, facilitating efficient handoff to worker threads

Torvalds (2007).

• Worker Thread Pool: A configurable pool of worker threads dequeues

connections, performs CPU-bound computations, and generates HTTP re-

sponses, enabling controlled evaluation of thread contention and migrations

Moniruzzaman et al. (2017).

• eBPF Instrumentation: eBPF programs attach to kernel scheduling and

network tracepoints, providing low-overhead metrics to user space via shared

memory for real-time performance analysis Bentaleb et al. (2022).

This modular design separates connection acceptance from request process-

ing, enabling independent analysis of queuing delays, backlog behavior, and CPU

scheduling characteristics, directly supporting the investigation of application-level

queue impacts and CPU affinity.

5.2 Handling Incoming Requests

The server initializes by binding to TCP port 8080 with a kernel backlog queue of

512 connections to accommodate bursts without rejecting requests Mathis et al.

(1997). The socket is configured as non-blocking, allowing the main thread to poll

for client connections without interruption. Connections are processed in batches

to optimize throughput and reduce scheduling overhead.

The main thread operates in time-bound cycles (duration ms), collecting con-

nections into a temporary buffer (batch fds[]) using accept() calls. When the

time window expires or the batch size limit is reached, the batch is transferred to

a global shared queue. This batching approach minimizes context switches and

supports measurement of kernel backlog and application queue dynamics, with

eBPF probes tagging each accepted connection as an arriving request to assess

scheduling delays Terekhov et al. (2014).

33

5.3 Connection Queue Design

The connection queue is a fixed-size (QUEUE SIZE) circular buffer, protected by a

pthread mutex t to ensure thread-safe access between the producer (main thread)

and consumers (worker threads) Torvalds (2007). Two condition variables manage

queue state:

• queue not empty: Signals worker threads when connections are available,

preventing idle spinning.

• queue not full: Signals the main thread when space is available, avoiding

queue overflow.

The queue operates as follows:

• Accepted connections are enqueued if space is available; otherwise, connec-

tions are discarded to prevent blocking.

• Worker threads continuously dequeue and process connections until server

shutdown.

• Upon shutdown, worker threads complete in-flight requests and terminate

gracefully.

Synchronization ensures consistent queue operations, enabling accurate mea-

surement of queue occupancy and request throughput, which informs the opti-

mization of server-side parameters Terekhov et al. (2014).

5.4 Monitoring Kernel Backlog with eBPF

An eBPF-based monitoring system tracks the kernel’s TCP listen backlog queue,

capturing connection arrival rates before accept() calls in a multi-namespace

environment Bentaleb et al. (2022). This low-overhead approach provides per-

container insights into kernel-level scheduling and network behavior, supporting

analysis of queue dynamics.

34

5.4.1 eBPF Program Design

Map Definition

A BPF HASH map, allowed ns, tracks connection counts per network namespace:

struct uint(type,BPFMAPTY PEHASH);uint(maxentries,10);
type(key,u64);//netnsinode

type(value,u32);//countofestablishedconnectionsallowednsSEC(”.maps”);

This map associates each network namespace inode (u64) with a 32-bit counter,

limited to 10 entries for efficiency.

Kprobe on tcp set state

A kernel probe on tcp set state monitors TCP socket state transitions, filtering

for TCP ESTABLISHED to record completed three-way handshakes:

• Retrieves the namespace inode using BPF CORE READ.

• Increments the counter in allowed ns if the inode exists; otherwise, initial-

izes it to 1.

SEC(”kprobe/tcpsetstate”)inthandleconn(structptregs∗ctx)intnewstate = (int)PTREGSPARM2(ctx); if(newstate! = TCPESTABLISHED)return0;

struct sock *sk = (struct sock *)PTREGSPARM1(ctx);u64nsinum = BPFCOREREAD(sk,skcommon.skcnet.net,ns.inum);

u32 *count = bpfmaplookupelem(allowedns, nsinum); if(count)syncf etchandadd(count,1);elseu32init=1;bpfmapupdateelem(allowedns,nsinum,init,BPFANY);return0;

This probe minimizes overhead by triggering only on significant state changes

Bentaleb et al. (2022).

5.4.2 User-Space Monitoring

A detached user-space thread, implemented in ebpf monitor.c, processes eBPF

telemetry to compute performance metrics Terekhov et al. (2014).

Load and Attach

The thread uses the libbpf skeleton (monitor.skel.h) to load and attach the

eBPF program, initializing the allowed ns map entry for the current namespace

via stat("/proc/self/ns/net") Bentaleb et al. (2022).

35

Periodic Polling

Every 10 seconds, the thread:

• Retrieves the connection count using bpf map lookup elem.

• Resets the map entry with bpf map update elem for the next interval.

• Collects application-level counters (leaving backlog count, incoming request count,

leaving request count) under mutex protection.

Queue Metrics Calculation

Using kernel backlog arrival rates (count/10) and application dequeue rates (leaved/10),

the thread computes M/M/c/K waiting times for the kernel backlog and appli-

cation queues via the calculate Wq function, enabling analytical performance

evaluation Terekhov et al. (2014).

Output

The thread outputs per-interval metrics:

Backlog connections: <count>/s

Backlog leaving rate: <leaved>/s

Application arrival rate: <received>/s

Application service rate: <served>/s

Backlog Wq: <seconds>

Application Wq: <seconds>

Ratio (Wb/Wq): <value>

These metrics provide insights into queue dynamics and scheduling efficiency

Terekhov et al. (2014).

5.5 Containerization Considerations

The system is designed for seamless integration with containerized environments,

addressing operational and performance requirements.

36

5.5.1 Per-Container Isolation

By using network namespace inodes as keys in the allowed ns map, the eBPF

system isolates metrics per container, preventing cross-container interference Ben-

taleb et al. (2022).

5.5.2 Capabilities and Deployment

The monitor requires CAP BPF and CAP SYS ADMIN (or CAP NET ADMIN) for eBPF

program loading and attachment. In Kubernetes, it can be deployed as a privileged

DaemonSet with hostNetwork: true and appropriate pod security context Guo

& Yao (2018).

5.5.3 BTF and CO-RE

Using BTF (via vmlinux.h) and Compile-Once-Run-Everywhere (CO-RE) en-

sures compatibility across diverse kernel versions, reducing maintenance overhead

in heterogeneous container hosts Bentaleb et al. (2022).

5.5.4 Overhead Reduction

To minimize performance impact:

• The kprobe triggers only on TCP ESTABLISHED state transitions, avoiding

packet-level overhead.

• Counters are read at 10-second intervals, limiting map lookups and context

switches Bentaleb et al. (2022).

5.5.5 Integration with Orchestration

The monitor’s statistics enhance container orchestration systems like Kubernetes.

By providing backlog waiting times and arrival-service rate ratios, the system

enables a scheduler extender to optimize pod placement and thread management

37

for improved latency in high-density deployments Guo & Yao (2018), Alharbi &

Almutairi (2021).

5.6 Conclusion and Relation to Research Ques-

tions

The implementation addresses the four research questions outlined in Section 1.2.2

by providing a practical framework to evaluate CFS performance in containerized

environments. First, the queue-based architecture and worker thread pool demon-

strate how application-level service queues and CPU affinity influence scheduling

(research question 1). Experiments reveal that overprovisioning worker threads

increases CPU migrations by up to 105% (from 32.15 migrations with 5 work-

ers to 58.65 with 17.5 workers) at a fixed request rate of 10 requests per second,

leading to cache misses and reduced throughput, while optimal tuning (5 to 7.5

workers) minimizes migrations and maintains high service rates (Section 6.1.3)

Moniruzzaman et al. (2017). Second, the eBPF monitoring system captures TCP

backlog and application queue dynamics, showing their impact on scheduling de-

lays, with excessive threads exacerbating contention (research question 2) Mathis

et al. (1997). Third, the M/M/c/K queuing model, applied via the calculate Wq

function, faces limitations due to dynamic scheduling patterns and TCP conges-

tion control interference, which violate Poisson assumptions and reduce predictive

accuracy (research question 3) (Section 6.1.1) Terekhov et al. (2014). Fourth, the

batched queuing scheme and adaptive worker thread management optimize server-

side parameters, reducing lock contention and improving CPU utilization without

kernel modifications (research question 4) (Section 6.2) Torvalds (2007).

These findings highlight the effectiveness of affinity-aware scheduling and dy-

namic thread tuning in enhancing performance predictability, while underscoring

the challenges of relying solely on theoretical queuing models in dynamic environ-

ments. The eBPF-based telemetry provides a low-overhead, per-container view of

scheduling and network behavior, laying the foundation for intelligent orchestra-

38

tion strategies Guo & Yao (2018), Alharbi & Almutairi (2021).

39

Chapter 6

Results and Discussion

6.1 Results

This part discusses the results of experiments conducted to see CPU scheduling

inefficiencies in containers, namely issues in using the theory of queues to monitor

application and backlog queues and the effect of worker thread counts on CPU

migrations. The experiments used an in-house C-based HTTP server within a

Docker container on a Ubuntu VM with four CPUs, where the system scheduler

used Completely Fair Scheduler (CFS). The experiments traced information re-

garding scheduling, CPU migration, and queue statistics using utilities such as

Ftrace, trace-cmd, Kernelshark, and eBPF. The findings reveal grave problems

with queue theory modeling and life-or-death relationships between numbers of

worker threads and system performance and implications for optimization of con-

tainered workloads.

6.1.1 Challenges in Queue Theory Modeling

The research made an attempt to model backlog and application queues as M/M/c/K

systems for predicting scheduling activity and optimizing allocation of resources.

In an M/M/c/K model, incoming requests arrive as a Poisson process, get ser-

viced by c worker (thread) with exponential service time, and the queue capacity

is finite (K). Key parameters like waiting time (Wq) and length of the queue are

40

calculated via formulas like:

Wq =
Lq

λ
,

where Lq is the average number of requests in the queue, and λ is the arrival

rate. However, these models proved to be hard to apply due to dynamic scheduling

patterns and outside interferences.

As the number of worker threads is increased in CPU-bound tasks, the main

thread, which handles accepting and batching the requests, receives less CPU

time due to CFS’s fair allocation mechanism (Pabla 2009). This warps the service

rate assumptions of the M/M/c/K model since the main thread’s faster execution

time results in request delay and increased queue sizes beyond expectation. In

addition, TCP congestion control algorithms such as window adjustment introduce

randomness in the request arrival rate, which violates the Poisson assumption even

further Mathis et al. (1997).

These findings suggest that while queue theory provides a theoretical founda-

tion for scheduling optimization, its practical application in the case of container-

ized environments means taking into account kernel-level scheduling and network

protocol effects. Hybrid models with real-time scheduling data as inputs to im-

prove prediction accuracy could be the way forward.

6.1.2 Effect of Worker Threads on CPU Migrations

One strong conclusion that stands out from this observation is that increasing

worker threads but at constant request arrival rate increases overall CPU mi-

grations with the system and consequently hurts its performance. Providing some

context for the following is the scenario for an arrival of 10 reqs/s with each worker

processing in 400 ms (equivalent to processing 2.5 reqs/s). With 5 worker threads,

the system can handle 12.5 requests per second in total, sufficient to handle the

10 requests per second without queue buildup. However, when the number of

worker threads is doubled to 10, more CPU migrations are seen, as evident from

experimental results.

41

To illustrate this effect, consider the following analogy: a restaurant where

chefs (worker threads) are preparing meals (requests) for diners. The restaurant

receives 10 orders per minute, and each chef will prepare a meal in 24 seconds

so that 5 chefs can prepare 12.5 meals per minute—more than sufficient for the

level of demand. With 5 chefs, each chef is continuously busy, preparing one meal

after another, and the restaurant is operating smoothly with minimal coordination

overhead.

Now, imagine scaling up to 10 chefs for the same 10 orders per minute. Each

chef can still produce 2.5 meals per minute, so the 10 chefs would in theory be able

to handle 25 meals per minute—well above demand. When a request arrives, all

10 chefs might rush to prepare it, congesting the kitchen (CPU runqueue). This

overloading forces the restaurant manager (CPU scheduler) to decide which cooks

are active and which wait, causing repeated assignments (context switching). Ad-

ditionally, when there’s avialability in different kitchens, the restaurant manager

can migrate cooks to different kitchens (CPUs) so as to level out the burden, caus-

ing waits while cooks adjust to new devices (cache misses or memory access delay).

Upon swift preparation of meals, the 10 chefs also get done ahead of time and sit

idle anticipating the next series of orders only to scurry back together all at once

as new orders roll in, opening up the circle of over-population and reassignments.

Alternatively, with 5 chefs, the kitchen works at full throttle but without jam-

ming. A chef works sequentially on orders per chef, decreasing the amount of

reassignments and kitchen switches. The constant flow of work decreases the

number of opportunities for the scheduler to intervene, resulting in fewer con-

text switches and CPU migrations. Experimental results support this: with 10

concurrent requests, the 5-worker experiment recorded 15–20

The most common reason is the load balancing policy of the CFS, which remaps

tasks onto CPUs to prevent idle cores (Kobus & Szklarski 2009). With more

worker threads, the runqueue fills with threads during periods of heavy usage,

and this leads to greater contention and triggers load balancing. This triggers

migrations, as threads are moved to less busy CPUs, resulting in overhead from

42

cache invalidation and memory access latency (Marinakis et al. 2017). In addition,

concurrent thread wakeups in the 10-worker case exacerbate the “thundering herd”

problem, where multiple threads fight for CPU time, and add to context switches

(Torvalds 2007).

6.1.3 Analysis of Service Rate and CPU Migrations

Further insights into the relationship between worker thread counts, service rate,

and CPU migrations are provided by Figure 6.1, which plots the average service

rate (requests per second) and average CPU migrations against the number of

worker threads, ranging from 2.5 to 17.5, under a fixed request arrival rate of

10 requests per second. The left subplot of Figure 8 shows that the service rate

increases from 6.00 requests per second with 2.5 workers to 9.40 requests per

second with 5 workers, eventually stabilizing around 9.80 to 10.00 requests per

second beyond 7.5 workers. This indicates that 5 workers are sufficient to handle

the incoming request rate without queue buildup, aligning with the theoretical

capacity of 12.5 requests per second for 5 workers (as calculated in Section 6.1.2).

Beyond this point, adding more workers does not significantly improve the service

rate, as the system reaches its throughput limit due to bottlenecks elsewhere, such

as the main thread’s reduced CPU time under CFS’s fair allocation (Pabla 2009)

or network-induced variability from TCP congestion control (Mathis et al. 1997).

In contrast, the right subplot of Figure 6.1 reveals a steady increase in CPU

migrations as the number of worker threads grows. With 2.5 workers, the average

CPU migrations are 22.43, rising to 32.15 with 5 workers, and further increasing to

58.05 with 17.5 workers—a 158% increase from the 5-worker scenario. This trend

mirrors the findings in Section 6.1.2, where the 10-worker scenario showed 30%

more migrations than the 5-worker scenario. The restaurant analogy provides

intuition for this behavior: with 17.5 workers, the kitchen (runqueue) becomes

severely overcrowded, leading to frequent reassignments (context switches) and

kitchen switches (CPU migrations) as the CFS attempts to balance the workload

43

Figure 6.1: Average service rate by worker count (Left) and Average CPU migra-

tions by worker count (Right)

across CPUs. The “thundering herd” effect is particularly pronounced at higher

thread counts, as more threads wake up simultaneously to process incoming re-

quests, intensifying contention and triggering CFS’s load balancing mechanism.

The invariance of the service rate beyond 5 workers reveals a fundamental in-

efficiency in over-provisioning threads. While intuition might be to utilize more

workers to scale throughput, the data is that an excess of threads leads to dimin-

ishing returns in service rate with a significant increase in scheduling overhead.

This inefficiency is due to the reduced CPU time of the main thread, that lim-

its the system’s efficiency at accepting and batching requests. Additionally, the

CFS’s scheduling based on vruntime offers fairness but penalizes the main thread

under many worker threads, once more reducing throughput gains.

The increasing CPU migrations have tangible implications on system perfor-

mance. Each migration incurs overhead from cache invalidation and memory

access latency, which can exacerbate response times and energy consumption—a

critical consideration in containerized workloads in cloud ecosystems (Marinakis

et al. 2017). The results in Figure 6.1 suggest an optimal range of operation for

worker threads: from 5 to 7.5 workers, where the service rate is near its maxi-

mum (around 10 requests per second) and CPU migrations are relatively modest

(32.15 to 37.58). Beyond this range, the overhead of migrations outweighs any

44

incremental throughput gain, showing the importance of right-sizing the worker

pool.

Load Testing using the hey Tool

For further exploration of how the number of worker threads affects system perfor-

mance, load testing was performed with the use of the hey tool from the command

hey -q 10 -z 1m -c 10 http://localhost:8080/. This is set up to make 10

concurrent connections (-c 10) and 10 requests per second per connection (-q 10)

for 1 minute (-z 1m). However, the hey tool does not make exactly 10 requests per

second but at least 10 requests per second, with the actual rate being more than

that due to implementation of the tool and network conditions. This accounts

for variations when comparing against the controlled experiment in Section 6.1.3,

which had an exact 10 requests per second arrival rate.

The results of load testing for varying number of workers (2, 4, 6, 8, 10, and

12) are given in Table 6.1. For 2 workers, the system could maintain an average

of 3.42 requests per second with an average response time of 2.89 seconds. For 4

workers, the throughput was 7.00 requests per second with an average response

time of 1.41 seconds. For 6 workers, throughput was 9.77 requests per second and

response time decreased to 1.01 seconds. For 8 workers, 11.64 requests per second

were processed with an average response time of 0.85 seconds. For 10 workers,

throughput was 12.94 requests per second and response time decreased to 0.77

seconds. But with 12 workers, throughput was maximum at 28.45 requests per

second but with high error ratio, i.e., 970 connection rejections out of the total

1738 requests made, which indicates system overload.

Other figures from the hey runs provide information on queuing behavior. In

a test with 4 workers, the mean arrival rate was 20 requests/sec and the mean

service rate 19 requests/sec, resulting in a backlog of 19 connections/sec and a

wait in backlog of 13.45 sec. The application waiting time was extremely high at

1.27e+10 seconds due to perhaps the inability of the reduced model to account

for the dynamic scheduling effect. During a test using 6 workers, the arrival rate

45

Table 6.1: Load Testing Results with hey Tool

Worker Count Requests/sec Response Time (s) Concurrent Time (s)

2 3.42 2.89 —

4 7.00 1.41 0.141

6 9.77 1.01 0.101

8 11.64 0.85 0.085

10 12.94 0.77 0.077

12 28.45 0.68 0.068

was increased to 26 requests per second, which is equal to the service rate, with a

decreased backlog waiting time of 26 connections per second and 9.83 seconds. The

application wait time reduced to 2.04e+10 seconds, again showing the limitations

of the model.

The findings with the hey tool are the opposite of what was demonstrated in

Section 6.1.3, where the service rate converged to about 10 requests/second for

more than 5 workers. The reason for the discrepancy is that the hey tool injected

an above-anticipated rate of over 10 requests/second, since its -q 10 option sets

a minimum as opposed to an exact rate. For instance, with 8 workers, the system

handled 11.64 requests per second and with 10 workers, it was 12.94 requests per

second—both higher than the 10 requests per second that was emulated in the

controlled test. The earlier controlled test that issued precisely 10 requests per

second is a closer representation of the behavior of the system under a steady load

since it confirms the invariance of the service rate beyond 5 workers. The higher

request rate of the hey tool indeed raised the load of the system, allowing more

workers to contribute to throughput before reaching the same bottleneck (e.g.,

CPU provisioning to the main thread).

However, the high errors in 12 workers—like connection refusals and EOF

errors—are an indication that the system became overloaded, likely due to exces-

sive contention in the run queue and the ”thundering herd” effect, as explained

in Section 6.1.2. This overload resulted in artificially high throughput of 28.45

46

requests per second, but only 744 out of 1738 requests were successful, so the

result was not credible. The distribution of errors, consisting of 970 connection

refusals, suggests that the server could not handle this extra load, again suggesting

right-sizing the worker pool so that this instability will not be present.

6.2 Critical Evaluation of Results

The increase in CPU migrations with more worker threads implies that over-

provisioning threads can actually degrade performance, contrary to the assump-

tion that more workers increase throughput. An analogy can be made in that

optimization of worker threads to match the arrival rate ensures maximum CPU

usage with minimum overheads in scheduling.

The restaurant analogy reaffirms the requirement for right-sizing the pool of

workers. Whereas too many chefs spoil the kitchen’s performance, too many

worker threads saturate the CPU, causing migrations and latency. One plausible

implication is to dynamically decrease the number of worker threads based on

experienced arrival rate. Time based parameter tuning can be further extended to

include a feedback loop that monitors CPU migrations and adjusts thread counts

dynamically in real-time, similar to adaptive scheduling in Nanda & Hacker (2018).

The failure of queue theory models at high thread counts reflects the need

for hybrid approaches that combine theoretical predictions with empirical obser-

vations. For instance, integrating eBPF-derived metrics (e.g., arrival rates of

backlog queues) with machine learning models, like the Random Forest model

(Table 1, R2 = 0.799 on test data), can potentially improve predictive perfor-

mance. The Random Forest model was better than polynomial regression, picking

up non-linear relationships between backlog size, time, and migrations, but its mi-

nor overfitting indicates a requirement for more controlled environments or larger

datasets.

TCP congestion control interference also makes queue modeling more complex.

Future tests may decouple network effects by simulating controlled traffic patterns,

as suggested by Mathis et al. (1997). Container orchestration frameworks like Ku-

47

bernetes could also use these findings by introducing migration-aware scheduling

policies, as suggested in the implementation section of the thesis. A daemon

observer of per-container migration patterns could be utilized to guide pod place-

ment, reducing unnecessary migrations (Bentaleb et al. 2022).

Using the methods explored in the research we can can extend this demon

thread to publish the server related data that we gathered using eBPF and in other

ways to a centralized scheduler like Kubernetes. This way the central scheduler

can take into account the factors like the priority of the container and also the

congestion of network and take more intelligent scheduling decision that has a

strong impact towards more optimized container orchestration that is tailored to

the requirement of each containerized server.

6.3 Limitations and Future Work

The use of a single virtual machine with four cores in the study restricts its ap-

plicability to larger, multi-node clusters. System noise from background processes

also added variability, as mentioned in the heatmap analysis (Figure 7). Repli-

cation of experiments on physical hardware with diverse core counts and under

tighter isolation will be needed in future work to minimize noise. Additionally,

the queuing theory models can be calibrated to account for scheduling dynam-

ics, potentially through the incorporation of CFS’s vruntime calculations into the

service rate.

The findings on worker thread counts suggest exploring adaptive thread alloca-

tion algorithms for optimal throughput and migration overhead. Combining these

algorithms with Kubernetes schedulers could enhance container orchestration,

heeding Alharbi & Almutairi (2021)’s appeal for intelligent scheduling approaches.

Finally, enhancing the eBPF monitoring framework to monitor inter-container

dependencies in real-time could facilitate dynamic affinity-aware scheduling, ad-

dressing the core problem of this thesis.

In short, the results indicate that proper adjustment of worker thread counts

is imperative to avoid limiting CPU migrations and achieve optimal performance

48

in containerized workloads. Limitations in queue theory modeling show the com-

plexity of real-world scheduling, reflecting the need for adaptive, data-driven ap-

proaches for effective, affinity-conscious CPU scheduling.

49

Chapter 7

References

Alharbi, F. & Almutairi, M. (2021), ‘Container scheduling techniques: A survey

and assessment’, Journal of King Saud University - Computer and Information

Sciences 33(7), 806–822.

Bentaleb, O., Belloum, A. S., Sebaa, A. & El-Maouhab, A. (2022), ‘Container-

ization technologies: Taxonomies, applications and challenges’, The Journal of

Supercomputing 78(1), 1144–1181.

Dua, R., Raja, A. R. & Kakadia, D. (2014), Virtualization vs containerization to

support paas, in ‘2014 IEEE International Conference on Cloud Engineering’,

IEEE, pp. 610–614.

Eder, M. (2016), ‘Hypervisor-vs, container-based virtualization’, Future Internet

(FI) and Innovative Internet Technologies and Mobile Communications (IITM)

1.

Guo, Y. & Yao, W. (2018), A container scheduling strategy based on neighborhood

division in micro service, in ‘NOMS 2018 - 2018 IEEE/IFIP Network Operations

and Management Symposium’, IEEE, pp. 1–6.

Kobus, J. & Szklarski, R. (2009), ‘Completely fair scheduler and its tuning’, draft

on Internet.

50

Marinakis, T., Haritatos, A.-H., Nikas, K., Goumas, G. & Anagnostopoulos, I.

(2017), An efficient and fair scheduling policy for multiprocessor platforms, in

‘2017 IEEE International Symposium on Circuits and Systems (ISCAS)’, IEEE,

pp. 1–4.

Mathis, M., Semke, J., Mahdavi, J. & Ott, T. (1997), The macroscopic behav-

ior of the tcp congestion avoidance algorithm, in ‘ACM SIGCOMM Computer

Communication Review’, Vol. 27, pp. 67–82.

Moniruzzaman, A. B. M., Hossain, S. A. & Rashid, M. A. (2017), ‘Affinity aware

scheduling model of cluster nodes in private clouds’, Journal of Network and

Computer Applications 95, 1–12.

Nanda, S. & Hacker, T. (2018), ‘Deep reinforcement learning for container schedul-

ing’, IEEE International Conference on Cloud Computing .

Pabla, C. S. (2009), ‘Completely fair scheduler’, Linux Journal 2009(184), 4.

Terekhov, D., Tran, T., Down, D. G. & Beck, J. C. (2014), ‘Integrating queueing

theory and scheduling for dynamic scheduling problems’, Journal of Artificial

Intelligence Research 50, 535–572.

Torvalds, L. (2007), ‘Linux kernel mailing list discussion on thundering herd’,

Linux Kernel Mailing List .

51

	Declaration
	Acknowledgement
	Introduction
	Motivation
	Problem Definition / Research Questions
	Problem Definition
	Research Questions

	Approach
	Thesis Structure

	Background/Preliminary Literature Review
	Containerization
	CPU Scheduling in Linux
	Affinity Consideration in Scheduling
	Queue-Theory-Based Scheduling

	Methodology
	Experiments & preliminary results
	Using polynomial regression modeling
	Improved Random Forest Model
	Model Performance

	Implementation and Design
	Server Architecture Overview
	Handling Incoming Requests
	Connection Queue Design
	Monitoring Kernel Backlog with eBPF
	eBPF Program Design
	User-Space Monitoring

	Containerization Considerations
	Per-Container Isolation
	Capabilities and Deployment
	BTF and CO-RE
	Overhead Reduction
	Integration with Orchestration

	Conclusion and Relation to Research Questions

	Results and Discussion
	Results
	Challenges in Queue Theory Modeling
	Effect of Worker Threads on CPU Migrations
	Analysis of Service Rate and CPU Migrations

	Critical Evaluation of Results
	Limitations and Future Work

	References

