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Abstract

This research presents a novel framework that bridges EEG-based emotion recognition
and AI-driven music generation, focusing on emotions evoked by song vocals. While
earlier studies have explored music emotion recognition and EEG analysis separately,
none of the literature has connected vocal-induced emotional states to generative music
systems. This study addresses that gap by proposing a system that interprets arousal
and valence values derived from EEG signals while listening to vocal tracks and translates
them into emotionally aligned melodies.

The experiment involved 30 participants who listened to 104 carefully curated vocal
songs. EEG signals were recorded and processed using advanced feature extraction tech-
niques, including Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform
(CWT). These features were input into machine learning models such as Support Vector
Regression (SVR), Long Short-Term Memory (LSTM) networks, and a hybrid CNN +
LSTM architecture. Results showed that the LSTM model achieved strong predictive
accuracy with a Mean Absolute Error of 0.042 for arousal and 0.057 for valence, though
it lacked spatial feature representation. The CNN + LSTM model demonstrated superior
performance by capturing both spatial and temporal EEG features.

A key novelty of this work lies in its end-to-end pipeline that converts predicted emotional
states into natural language prompts, which are then used to condition MUSICGEN, a
transformer-based music generation model. This enabled the creation of emotionally
congruent music, with user-controllable parameters such as melody duration, instrumen-
tation, genre, and tempo.

Emotion alignment analysis revealed high consistency in arousal based generation, with
over 80% alignment for most tracks. Valence alignment, while promising for several tracks
(above 90%), exhibited greater variability, highlighting challenges in capturing subjective
emotional tones.

The dataset curated during this study has been made publicly available to support future
research in affective computing, emotion-aware music generation, and human-computer
interaction.
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Chapter 1

Introduction

1.1 Music and Emotions
Music has an ability that arouses emotions, tells stories, and unites people (Clarke, De-
Nora & Vuoskoski 2015). Music serves as an avenue for expression and mood regula-
tion for all mankind. When words cannot adequately express an emotion, music may.
A melody is a series of notes that flow smoothly together and are perceived by the
listener as one whole. The combination of Pitch and rhythm makes up a melody in
the most literal sense. However, the phrase can also refer to other elements like tonal
color(Wikipedia n.d.). The connection between lyrics, vocals and melody is what gives
music its strength to form a smooth sound. Song lyrics are the words used in a song to
convey a message or tell a story. They can be seen as a form of literary work, similar to
poetry, and are often used to express emotions or describe a particular situation or mood.
Song lyrics can have multiple layers of meaning, including denotation (literal meaning),
connotation (symbolic or metaphorical meaning), and social criticism(Baur, Steinmayr
& Butz 2010). However, (Krishnan 2023) mentioned in one of his articles that producing
songs that accurately convey the emotional meaning of lyrics requires skill and sometimes
requires many years, even though some understanding of it may come naturally. A song
vocal refers to the human voice in a piece of music, including singing, humming, or vo-
calizations, which can serve as a central or supporting element. Vocals convey the lyrics
and emotional nuances through tone, pitch, dynamics, and expression. They are one of
the most powerful components of music for evoking emotions, as they connect directly to
human communication and expression.

Emotions are mental and physical states resulting from neurophysiological changes that
are correlated by various means, including thoughts, sentiments, activities, and a shared
sense of humor or discomfort(Damasio 1998). Emotions, mood, character, personality, at-
titude, or creativity are linked. The James-Lange theory states that emotions derive from
how we perceive bodily changes occur due to external or internal signals(James 1884).
This concept states various emotions are associated with particular responses of the body,
referring to physical changes that occur due to emotions, such as changes in heart rate,
respiration, and skin conductance. These changes are mediated by the autonomic nervous
system and can be measured objectively using various physiological signals. Also emo-
tions are also regulated by various area of the brain. In the figure ?? section a depicts the
most important brain areas involved in emotional processing, such as emotion generation
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and control. Purple boxes indicate areas more associated with emotion generation (Pe-
riaqueductal Grey, PAG; amygdala; Nucleus Accumbens, NAcc; striatum ventral). Pink
boxes reflect brain areas that have a greater impact on emotion regulation and modulation
(ventrolateral, dorsolateral, and dorsomedial prefrontal cortex, vlPFC; dlPFC; dmPFC;
inferior parietal region, IFP; supplementary motor area, SMA). Red boxes indicate brain
locations that may be involved in both processes (orbitofrontal cortex/vmPFC; insula;
anterior cingulate cortex, ACC). Section B shows a more simplified diagram of common
brain areas involved in both eating behavior and emotional processing that perform sim-
ilar roles. The red boxes represent affect modulation, while the blue boxes represent
emotion initiation (Godet, Fortier, Bannier, Coquery & Val-Laillet 2022).

Figure 1.1: Major brain areas involved in emotional processing, including emotion generation and
emotion regulation.

1.2 Emotion Recognition
In recent years, Emotion Recognition (ER) has become an important research topic due to
its potential applications in various fields such as healthcare, psychology, and marketing.
Current methodologies of ER can be broadly classified into two categories(Shown in
figures: 1.2 and 1.3):

1. Methods based on Behavioral Responses.
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2. Methods based on Physiological Responses.

Figure 1.2: Behavioral Responses

Figure 1.3: Physiological Responses

Behavioral-Based techniques analyze speech, gestures, body language, and facial expres-
sions to identify emotions. Among the techniques in this area that is most frequently
employed is facial expression analysis. The focus of this field’s current research has been
on deep learning-based models that have a high accuracy rate in facial ER(Kollias, Nico-
laou, Kotsia, Zhao & Zafeiriou 2017).

However, researchers employ many techniques in physiologically based ways to measure
physical signals.

• EEG (Electroencephalography) for brain activity

• ECG (Electrocardiography) for heart activity

• EOG (Electrooculography) for eye movement

• EMG (Electromyography) for muscle activity
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• MRI (Magnetic Resonance Imaging) for blood flow in the brain

are some examples of these signals. Since physiological-based procedures are unaffected
by environmental circumstances, cultural background, or subjective willfulness, they are
seen as more objective. Furthermore, because they can yield more precise measurements
of emotions, physiologically based procedures are significant. For example, physiologi-
cal approaches can offer a better understanding of patients’ emotional responses than
behavioral approaches when it comes to specific neurological illnesses, including autism
spectrum disorder (Fan, Yan, Xiaomin, Yan, Li, Xie & Yin 2020).

1.3 EEG-Based Emotion Recognition
EEG-based ER has drawn the most attention among these techniques because of its high
temporal resolution and non-invasive nature. EEG can reveal information about a per-
son’s emotional state by measuring the electrical activity of the brain. Many domains,
such as marketing, healthcare, and human-computer interaction (HCI), have made use
of EEG-based techniques. Customers’ emotional reactions, for instance, have been mea-
sured using this method to assess the efficacy of marketing efforts (Vecchiato, Maglione,
Cherubino, Wasikowska, Wawrzyniak, Latuszynska, Latuszynska, Nermend, Graziani,
Leucci, Trettel & Babiloni 2014). Within the medical field, EEG-based ER (ER) has
been utilized to track the emotional states of patients with mental illnesses and evaluate
the effectiveness of therapy (Nuri, Niazi & Guger 2019).

Research on emotion detection relies heavily on stimuli since they offer a means of evoking
quantifiable and analyzed emotional reactions. Studies that seek to understand the brain
mechanisms behind emotional processing should make special use of stimuli because they
enable the controlled manipulation of emotional states (Kreibig 2010).

1.4 Music Generation
Music Generation (MG) can be know as generating sounds or music from a model or
algorithm. The goal is to produce a sequence of notes or sound events that are similar
to existing music in some way, such as having the same style, genre, or mood. MG pos-
sibilities have been opened up by the recent advancements in artificial intelligence and
machine learning. One of the eye-catching definition was for Generative Music was "The
art and science of developing computer programs that create music with a varying degree
of autonomy" by (ValerioVelardo 2023). Creating music with a varying degree of auton-
omy explains how successful the automation of the various systems that generate music
has been. Symbolic music generation and audio music generation are two categories of
Automatic Music Generation (AMG) techniques (Guo, Liu, Zhou, Xu & Zhang 2023).
The history of generative music dates back to the 1700s but gained widespread popularity
in recent years. (ValerioVelardo 2023) outlines the evolution of generative music through
five distinct eras. The Pre-computing Era (1700-1956) featured manual algorithms like
Mozarts Dice Game. The Academic Era (1956-2009) were computer-based compositions,
such as the Illiac Suite. From 2010-2016, the first startup wave emerged, introducing ma-
chine learning and AI music generation tools. The Big Tech Experiments Era (2016-2022)
focused on deep learning, with notable advancements like Amazons Deep Composer and
OpenAIs JukeBox. By the late 2020s, generative AI exploded, with models like Googles
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MusicLM and Meta AIs MusicGen leading the Music AI Hype. These advancements
have revolutionized the field, making AMG increasingly scalable and accessible. All of
the music that has been generated by AI comes under two representations,

• Symbolic Representation

• Audio Representations

Example representation types can be seen in the figure 1.3.

Figure 1.4: Types of Music Representation

1.5 Background to the Research
ER and music generation have been an interesting research area in the past decade, and
people tend to listen to music that gives some kind of personalization to their emotions.
Something that resonates with their personal feelings. There has been some attention
to generate melodies related to your emotions that had the capacity to evoke, amplify,
or modulate emotions, making it a powerful tool for emotional expression and regula-
tion. One of the primary focuses of this research area is to explore on how can music
match with specific emotional responses, often leveraging techniques in machine learn-
ing, natural language processing, sentiment analysis techniques and affective computing.
People tend to select music that resonates with their emotional state, seeking songs that
reflect or alter their feelings, which has spurred growing interest in the personalization
of music. A previous study (Wijethunge, Akarawita, Hegodaarachchi, Abeytunge, Gam-
age & Wickramasinghe 2024) focused on generating melodies based on music likability
to introduce an element of personalization. However, recent observations indicate that
songs featuring vocals often evoke a stronger emotional resonance with listeners. People
feel a deeper emotional connection to music with vocals compared to purely instrumental
songs. It’s like there’s something special about hearing actual human voices that touches
our hearts in a way that just instruments can’t quite manage.
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When someone sings, it’s not just about the words - it’s how they say those words. The
way a singer’s voice rises and falls, the warmth or roughness in their tone, the emotions
that slip through between the lyrics. All these create a much more powerful emotional
experience. Think about how a sad song can make you feel the pain in the singer’s voice,
or how a love song can make you feel the passion through their vocal performance. Lyrics
play a big part too. Words give context and meaning that pure instrumental music can’t
easily communicate. When someone sings about heartbreak, joy, or struggle, it feels more
personal and relatable. It’s like the singer is telling a story directly to you, sharing an
emotional journey that you can connect with. This study wants to explore this deep
emotional connection by looking to create a way to generate music that captures these
vocal emotional elements. Instead of just creating melodies, wanted to understand how
to make music that feels personal, that sounds like it’s speaking directly to a listener’s
heart and experiences.

The goal is to go beyond just creating attractive music. Focues on how to create melodies
that truly resonate with people’s emotions, using the power of vocal expression to create
a more meaningful musical experience.

1.6 Problem Definition
ER from EEG signals is a challenging task due to the complexity of brain activity and
the influence of individual and external factors. Conventional EEG-based ER frameworks
involve several steps, including stimuli selection, EEG data collection, pre-processing,
feature extraction, and classification. However, existing methods face challenges such as
noise in EEG signals, variability in emotional responses, and the difficulty of accurately
mapping EEG features to emotional states.

Current approaches often rely on predefined datasets with static annotations, which may
not fully capture the dynamic and subjective nature of emotions, particularly in response
to auditory stimuli like song vocals. In addition, selecting the most relevant EEG features
and designing an effective model for emotion classification remain open challenges.

This research aims to improve EEG-based ER by developing a novel framework that accu-
rately maps EEG signals to emotional values (arousal and valence) when a person listens
to song vocals. By optimizing EEG preprocessing techniques, refining feature extraction
methods, and employing machine learning models tailored for emotion classification, this
study seeks to enhance the accuracy and reliability of EEG-based emotion detection.
The resulting emotional values will serve as the foundation for music that aligns with the
emotional state of the listener.

1.7 Research Aim, Questions, and Objectives

1.7.1 Research Aim
To build an EEG-based ER framework with improved accuracy and efficiency in detecting
emotional states from song vocals. The extracted emotional values will be used to gener-
ate melodies, thus creating a personalized psychological connection between the listener
and the music.
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1.7.2 Research Questions
RQ1 What is the most suitable methodology for accurately identifying and quantifying

emotional responses expressed by song vocals?

Identifying the most suitable methodology for ER from song vocals involves evalu-
ating various physiological and computational approaches. This includes analyzing
techniques like EEG-based modeling, acoustic analysis, or multimodal fusion meth-
ods. This research question aims to determine which approach or combination of
approaches offers the most accurate, efficient, and scalable solution for quantify-
ing emotional responses, considering both the emotional richness of vocals and the
complexity of human affective states.

RQ2 What is the proper systematic approach that will give a likely balanced and repre-
sentative dataset for the selected methodology?

The second research question aims to address the critical need for a well-structured
and representative dataset to support the chosen ER methodology. Emotional data,
especially from sources like EEG or audio, often suffer from imbalance, noise, or sub-
jectivity. Establishing a systematic approach involves selecting appropriate stimuli
(e.g., song vocals), consistent labeling strategies (e.g., using arousal-valence mod-
els), and segmenting data to ensure temporal uniformity. This question seeks to ex-
plore preprocessing techniques, annotation strategies, and data balancing methods
that contribute to a dataset capable of training reliable and generalizable models.

RQ3 What is the impact of different feature extraction methods and model architectures
on the accuracy and robustness of selected ER method?

Feature extraction and model architecture are central to the performance of any
ER system. This research question investigates how various signal processing tech-
niques such as Fourier Transform, Discrete Wavelet Transform (DWT), statistical
descriptors, or frequency domain analyses affect the quality of emotional features
extracted from the input data. In parallel, it examines how deep learning archi-
tectures like LSTM, CNN, or hybrid CNN-LSTM models handle these features in
terms of classification accuracy and robustness. The goal is to identify optimal
combinations that maximize performance while minimizing overfitting and compu-
tational complexity.

RQ4 How can the emotional values derived from EEG responses be meaningfully mapped
into a generative music model?

The final research question focuses on the translation of quantified emotional states
(e.g., arousal and valence scores) into a format that can guide a generative music
model. Given that generative models like MusicGen require textual or symbolic
inputs, this step involves designing a meaningful mapping process from numerical
emotional data to descriptive emotional prompts. This ensures that the emotional
intent captured from the EEG responses is preserved in the resulting music. The
challenge lies in aligning the emotional semantics of brain-derived data with the
expressive capacity of AI-based music generation tools.
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1.7.3 Research Objectives
RO1 To explore and evaluate different methodologies for detecting emotional responses

to song vocals.

This objective focuses on comparing physiological and computational approaches
such as EEG analysis, acoustic ER, or statistical approaches to identify the most
effective framework for emotion detection.

RO2 To develop a systematic data collection and pre-processing pipeline to construct a
balanced and representative dataset.

This includes selecting suitable data acquisition methods, annotation methods (e.g.,
arousal-valence labeling) and effective data pre-processing methods to reduce bias
and noise.

RO3 To extract meaningful emotional features using advanced signal processing tech-
niques.

This involves implementing and comparing Continuous Wavelet Transform(CWT),
, Fast Fourier Transform(FFT), and statistical measures to derive features that
reflect emotional patterns in EEG or vocal signals.

RO4 To design and evaluate deep learning models for classifying emotional states.

The goal is to apply architectures like LSTM, CNN, and hybrid models, assessing
their performance in terms of accuracy, generalization, and computational efficiency.

RO5 To map predicted emotional values into descriptive text prompts for music genera-
tion.

This objective aims to translate the arousal valence output into emotion-rich textual
input compatible with models such as MusicLM, MusicGen allowing personalized
melody generation.

1.8 Justification of the Research
Emotions are fundamental to being human. They determine what we perceive, decide,
and relate to one another. Utilizing brain-computer interface (BCI) technologies such
as EEG to recognize emotions (ER) is very fashionable now, particularly for web-based
and non-invasive applications. Though significant progress has been made, there are
still technical challenges in actually interpreting and deciphering emotional responses,
particularly for something like music vocals, which can elicit strong and varied emotions.
ER systems today do not typically accommodate personal needs and do not encompass
the entire scope of emotional expression articulated in song vocals.

This research addresses the gap of needing a more effective system that identifies emo-
tions and take some initial steps for the use of EEG analysis with music technology. It
demonstrates how vocal songs affect emotions and connects emotional values from EEG
to music generation. The objective is to enhance ER using better preparation methods,
improved methods of identifying key features, and evaluation of deep learning models
tailored specifically for emotions elicited by singing.
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Chapter 2

Literature Review

The literature review was under two main sections as shown in figure ??.

Figure 2.1: Literature Review Taxonomy

2.1 Emotion Models
Emotions are complicated feelings composed of combinations of thoughts, bodily reac-
tions, and behaviors. They arise due to what we feel internally or due to what is tak-
ing place externally, and they influence most human behaviors such as decision-making,
remembering, and communication with other people. Emotions play a crucial role in
psychology and neuroscience, and also in fields such as emotional computing and human-
computer interaction.

Emotions have been explained in various ways from a theoretical perspective. The James-
Lange theory of emotion implies that emotions emerge as a consequence of changes in the
body due to external stimulation. The brain captures the changes and interprets them as
particular emotions. Contrarily, the Cannon-Bard theory of emotion implies that feelings
of emotion and bodily reactions occur simultaneously and in parallel (Levenson 2014).
Current research integrates these theories by acknowledging the role of brain systems
in the production of emotions, emphasizing the coordination of brain regions such as
the amygdala, prefrontal cortex, anterior cingulate cortex, and insula (Pessoa 2013);
(Craig 2009). These regions are involved in the detection of emotional cues, regulation of
emotional responses, and monitoring of bodily states associated with excitement (Phelps
2006); (Shackman, Salomons, Slagter, Fox, Winter & Davidson 2011).
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Researchers in this study area have proposed various models. Two main models are
Categorical models and Dimensional models.

2.1.1 Categorical Models
Categorical models explain emotions as distinct and identifiable categories such as anger,
fear, happiness, and sadness. These models are often applied with instruments such as the
Geneva Emotion Wheel (GEW) and the Differential Emotions Scale (DES). The Geneva
Emotion Wheel (GEW) classifies 20 categories of emotions into four categories depending
on whether they are positive or negative and how energetic they are (Shuman, Schlegel
& Scherer 2015). The Differential Emotions Scale (DES) contains 15 emotions based on
basic feelings (Juslin & Västfjäll 2008)(Figure 2.2). These models are simple to apply
and interpret and, therefore, are often applied in psychological research and computer
programs that recognize emotions.

Figure 2.2: Differential Emotions Scale (DES)

But categorical models have their limits. First, they oversimplify the emotion, even
though emotions are variable and complex. Individuals feel emotions as intensities or
mixtures, not as fixed states, and therefore, it is difficult to classify them into fixed
states. Second, individuals and cultures read and apply emotions differently, and it
becomes more difficult to apply these categorical models across the board. Third, the
requirement to respond in fixed categories when describing feelings can limit the things
that individuals can report, and therefore, their descriptions of emotion become less valid
and informative (Moncrieff & Lienard 2018).
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2.1.2 Dimensional Models
To counter these shortcomings, dimensional models have become increasingly popular.
Such models depict emotions as scales rather than categories. The most common dimen-
sional model is the Valence-Arousal model proposed by (Russell & Barrett 1999), in which
emotional states are placed in two-dimensional space: valence (positive to negative) and
arousal (high to low intensity). Certain models even have a third dimension, dominance,
to encompass the perception of control of an emotional state.

In Russell’s 2D valence-arousal dimensional emotion space(Figure 2.3), when considering
the emotion of happiness, it must be located in the top first quadrat as it is considered to
be a positive emotion (valence) that has a high intensity (arousal). The same for sadness,
it should be in the bottom left quadrant as it is considered to be a negative emotion with
lower levels of arousal.

Dimensional models are more adaptable and better capture the subjective and multi-
faceted nature of emotions. Dimensional models are also consistent across different cul-
tures and people by allowing labeling of emotions using a universal system rather than
culturally labeled terms (Moncrieff & Lienard 2018). Dimensional models in emotion
recognition research using EEG are particularly beneficial because they align well with
continuous brain signal data and allow for real-time monitoring of emotions.

One of greates virtues of Russell’s model is its simplicity and explanatory power. By
positioning emotions on two significant dimensions, the model provides you with a simple
means of comparing and quantifying emotional experience. (Juslin & Västfjäll 2008)
describe arousal as how active or intense an emotion is and valence as how positive or
negative it is. These dimensions relate directly to simple behaviors such as approach or
avoidance, which are central to the way we feel and decide. (Russell & Barrett 1999)
went as far as suggesting that arousal and valence are the "core processes" of emotion,
the basic feelings behind more complex emotional states.

Although this model is helpful, it has been criticized somewhat. A few scientists propose
that the consideration of emotions in only two dimensions may render it too simplistic to
understand and may overlook significant differences between various emotions [Lazarus,
1991]. For instance, anger and fear can have the same degree of excitement and negative
emotions, but very distinct in what we think about them, how we behave, and what pro-
vokes them. Critics propose that such differences may get confused in a straightforward
dimensional model, which could render emotion categorization less accurate ((Russell &
Barrett 1999); (Mauss & Robinson 2009). The 2D valence-arousal model continues to
be useful when analyzing emotions across different domains including music, film, com-
mercials, and cross-cultural research (Gomez, Danuser & Grimm 2019). Happiness, with
high valence and high arousal, for example, will usually be positioned in the upper-right
quadrant of the DES, and sadness, with low valence and low arousal, in the lower-left
quadrant. These positions are used to clearly associate emotional reactions with different
stimuli and groups.

In EEG emotion recognition, both categorical and dimensional theories have been used
by researchers. Categorical theories are easier to annotate and easier to classify but are
prone to confusion and overgenerality, particularly with emotions that are continuum-
based or difficult to categorize neatly. For instance, (Juslin & Västfjäll 2008) employed
categorical emotion labels in an EEG experiment and achieved a 70% accuracy.
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Figure 2.3: Russells’s Arousal Valence 2D Model

Dimensional models provide a more nuanced account of emotions and are better suited
to the continuous nature of physiological signals such as EEG. These are illustrated by
(Zheng 2015) with a capacity to achieve a 77.1% recognition rate by using the valence-
arousal dimensional model. But one of the problems is that it is more cognitively taxing
on annotators since comprehension and use of dimensional ratings require greater levels
of abstract thinking and knowledge of the scale. This proves difficult for inexperienced
participants and can lead to inconsistency in marking emotions.

In short, there are two primary approaches to modeling emotions, categorical and di-
mensional. Categorical models are intuitive and easy to interpret, but they may miss
some information and not be optimal in every context. Dimensional models, such as the
valence-arousal model, represent emotions in a more fine-grained and continuous man-
ner, but they can be complicated and difficult to apply, particularly in large EEG studies.
Achieving the right balance between being easy to interpret and descriptive is one of the
greatest challenges in emotion recognition. Future work must consider the trade-offs
seriously when choosing an emotional representation framework, particularly for EEG
studies with real-world objects such as music.

2.2 Emotion Recognition
Emotion Recognition study was initiated by Charles Darwin. Darwin suggested that
emotions are involved in evolution, are entrenched in human biology, and have evolved
in order to survive and communicate (Darwin 1872). His idea sensitized us to the fact
that emotional signals are universal signs conveyed by biology.

The area of automated emotion recognition started to emerge with new computer tech-
nologies. One such breakthrough was offered by Rosalind Picard, whose valuable con-
tribution in Affective Computing (Picard 1997) put the idea of machines sensing and
reacting to human emotions in the spotlight. Her initial work, especially in creating
systems that can detect subtle facial expressions through computer vision, helped in the
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creation of emotion recognition technologies in various fields like healthcare, marketing,
and human-computer interaction (HCI).

Scientists have questioned numerous alternative ways of emotion recognition (ER) from
various signals and behaviors throughout history. One of these areas is facial expres-
sion analysis, which received a great deal of attention. Paul Ekman and Wallace Friesen
were the leaders in this area. Their Facial Action Coding System (FACS) (Ekman &
Friesen 1978) introduced a scientific approach to the study of facial muscle movement.
This system enabled objective measurement of emotional expressions and became com-
mon in psychological and computer-based ER research. In addition to facial expressions,
other methods have been investigated, such as speech, body cues (e.g., heart rate, skin
conductance, and brain waves), and behavioral patterns. For instance, emotion recogni-
tion from speech has been extensively researched, e.g., (Schuller 2013) in their research
on acoustic parameters and language cues. Similarly, (Busso, Deng, Yildirim, Bulut, Lee,
Kazemzadeh, Lee, Neumann & Narayanan 2004) highlighted the importance of combining
various types of inputs to develop more robust emotion recognition systems.

The latest advancements in deep learning (DL) and machine learning (ML) have revo-
lutionized how we comprehend emotion recognition. Techniques founded on deep neu-
ral networks (DNNs) have proved extremely accurate in identifying complex patterns
in detailed emotional data. The yearly Emotion Recognition in the Wild (EmotiW)
competition, initiated in 2013, has become a benchmark for evaluating ER systems
in practical applications. The competition generally involves the state-of-the-art sys-
tems based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), which are efficient in processing spatial and time-based information respectively
(Zeng 2019);(Zhang 2020).

The application of deep learning in affective research has enabled researchers to cope
with varied and evolving affective data. The technology is taking the field to real-time
applications that take context into account in education, entertainment, and mental
health measurement.

2.3 EEG-based Emotion Recognition
The electroencephalogram (EEG) is a non-invasive neuroimaging method that measures
the electrical activity of the brain by applying electrodes to the scalp. EEG technology
began with Hans Berger’s first experiments in the 1920s. Berger initially measured elec-
trical activity from the human brain and stored these signals in the form of rhythmic
wave patterns, the beginning of modern EEG (Berger 1929). Berger’s technique was to
apply electrodes to the scalp and measure electrical signals using a galvanometer. EEG
systems have improved considerably over the years and now possess multi-channel ar-
rays with the ability to measure brain activity with millisecond-level temporal resolution
(Davidson 2002)

EEG is based on the premise that brain cells talk to one another by creating voltage
changes. These changes appear as changing wave patterns on the scalp. The wave
patterns are classified according to their frequency and amplitude into typical bands:
delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz), and gamma
(>= 30 Hz). Each band is associated with various states of thinking and behavior. For
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instance, alpha and beta waves are associated with relaxation and alertness, whereas delta
and theta are associated with sleep and deep relaxation. The gamma band is generally
associated with processing sensory information and awareness (Yasin, Hussain, Aslan,
Raza, Muzammel & Othmani 2021). Figure 2.4 shows the EEG Brainwave frequency
and their brain states.

Figure 2.4: EEG Frequency Bands

EEG-based emotion recognition relies on the fact that our emotions cause diverse brain
activity patterns. Certain brain regions, such as the amygdala, insula, and prefrontal
cortex, are involved in emotion processing and are associated with EEG signal changes.

Initial research indicated that positive affect is associated with increased alpha and beta
activity in the left prefrontal cortex. Negative affect, on the other hand, is found to induce
delta and theta activity in the right prefrontal cortex (Davidson 1990);(Davidson 2002).
Furthermore, emotions such as fear and anxiety are associated with high gamma activity
in the amygdala. This indicates the significance of high-frequency waves in emotional
arousal (Adolphs 2002); (Herrmann, Matthias & Andreas 2005).

Other emotion-specific patterns have also been found:

• Happiness is associated with greater alpha power in the left front region of the brain
(Davidson 1990).

• Sadness is associated with higher theta activity in the right prefrontal cortex
(Schmidt & Trainor 2001).
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• Anger is related to heightened beta and gamma activity in the prefrontal and
anterior cingulate regions (Knyazev 2013); (Gable & Harmon-Jones 2010).

The study of emotion identification with EEG began in the late 1970s and early 1980s.
EEG activity was recorded by researchers as subjects viewed emotional stimuli such as
pictures, sounds, or videos. Early work revealed that different EEG wave patterns corre-
sponded to different emotions. Alpha waves corresponded to relaxation, and beta waves
corresponded to heightened alertness (Gunes & Piccardi 2011). Problems of interpreting
the signals and distinguishing fine emotions slowed early advances.

Subsequent work considered extracting significant features, attempting to transform raw
EEG data into useful information to distinguish between emotions. Machine learning
(ML) significantly enhanced this capability. Early models employed Linear Discriminant
Analysis (LDA) and Quadratic Discriminant Analysis (QDA) to distinguish emotional
states from EEG (Keil, Bradley, Hauk, Rockstroh, Elbert & Lang 2002), but they did not
succeed because of high inter-subject variability as well as the complex nature of EEG
signals.

In recent years, DL has facilitated the amazing progress in EEG emotion recognition.
Network types such as CNNs and RNNs have been shown to possess significant capacity
in emotion identification through the automatic learning of meaningful features from raw
EEG input (Acharya, Oh, Hagiwara, Tan, Adeli & Subha 2018). These models enable
correct classification, capturing subtle patterns that earlier methods used to miss.

Some major findings of current EEG-based emotion research are:

• Frontal Alpha Asymmetry (FAA) is a consistent indicator of approach-avoidance
behaviors (Coan & Allen 2004).

• Individual differences in gender, age, and culture influence EEG responses to emo-
tional stimuli. This implies that we require individualized models for emotion
detection (Cartocci, Modica, Rossi, Inguscio, Arico, Levy, Mancini, Cherubino &
Babiloni 2019).

Cumulatively, these developments highlight the increasing promise of EEG as a neuro-
physiological instrument for recording and interpreting human emotional states, with
potential applications in mental health, adaptive systems, and affective computing.

2.4 Framework of EEG-based Emotion Recognition
Framework for EEG-based emotion recognition can be introduced under five steps(Figure:
2.5. (S. Alarcao and M. J. Fonseca 2019)

Figure 2.5: Steps of EEG-based Emotion Recognition Framework
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2.4.1 Data Acquisition
The data acquisition phase is the first and most important aspect of EEG-based emo-
tion recognition. Research requires thoughtful consideration to obtain true and correct
results. In this section, you can see what are the steps you should follow in the data acqui-
sition phase, including participant recruitment, consent process, EEG devices, electrode
placement, playing stimuli, annotation process, and recording EEG.

• Participant Recruitment

Finding subjects is an important part of research that uses EEG to recognize emo-
tions. Researchers got subjects from different places, like university students and
hospitals. patients and community members. The process of selection must be
random and fair. to ensure that no bias in the data set exists. The population
sample should be of a significant size to depict the population and facilitate statis-
tical analysis. Various studies have used various methods to recruit participants,
for example, advertisements, leaflets, and word of mouth. For instance, (Hamedi
et al. 2020) enrolled 40 healthy male and female volunteers through ads on social
media and bulletin boards, while (Yuchen Zhang et al. 2020) recruited 15 healthy
male volunteers through flyers and word-of-mouth.

• Consent Process

Informed consent is a significant and necessary element of the research process
because it ensures that the participants know the aim of the research, the hazards,
and their rights as participants. In past studies, consent was provided in written
form, and the subject was allowed time to read and comprehend the consent form
prior to signature. The consent form must provide for the subject’s data confi-
dentiality and their right to withdraw at any time during the research. In some
research, written informed permission of all subjects, and informing subjects of the
purpose of the study, the risks involved, and the rights of the participants to with-
draw from the study at any time Baur al. 2019; Sander Koelstra and others 2012.

• Selecting Stimuli

Stimuli selection is an important process in EEG-based emotion recognition studies
since it can influence the quality of data gathered. The stimuli should be selected
according to their efficacy for the subjects and their valence and arousal ratings.
Application Biased stimuli may produce outcomes that are not valid or reliable,
and this can affect the understanding of the outcomes. Moreover, most data sets
employed in previous research do not have balanced data, which will most proba-
bly influence the validity and generalizability of results. One of the most popular
databases employed in studies of emotion recognition from EEG. is the International
Affective Picture System (IAPS) database. It is a standardized photos that include
various feelings and levels of excitement, and has been employed in numerous re-
search to evoke the emotions of individuals. However, some research has challenged
the issue of use of IAPS images, since they might not elicit emotion in every sub-
ject (Lang, Bradley, and Cuthbert 2005; Palomba et al. 2000). Other databases
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employed Studies on emotion recognition with EEG involve the Geneva Affective
Picture Database. (GAPED), Chinese Affective Picture System (CAPS), and Af-
fective Norms for English Words (ANEW) database. However, these databases also
come with some limitations, such as not encompassing all affect categories, having
unbalanced data, or having non-standardized ratings across cultures (Sander Koel-
stra et al. 2012).

• EEG Devices Electrode Types

Different EEG devices are employed, with different hardware specifications, dif-
ferent software features, and varying from the number of channels such as Emotiv
(14 channels or 32 channels) to higher-end configurations. The nature of the con-
figuration also affects data quality:

– Wet electrodes provide higher quality signals, but are less comfortable.

– Dry electrodes are less accurate but more convenient.

– Semi-dry electrodes are an excellent trade-off between comfort and clean sig-
nals.

• Presentation of Stimuli and EEG Recording

The standard procedure includes the installation of the EEG system, the presen-
tation of stimuli (images, sounds, or videos), and the recording of EEG data. The
subjects must be restrained to minimize movement or eye blink artifacts (Makeig
et al., 2004). Standardized presentation software is used to synchronize stimuli and
EEG recordings effectively.

• Annotation and Labeling

Following data acquisition, EEG epochs are labeled based on the emotional state
of the subject using categorical (e.g., happy, sad) or dimensional (e.g., valence,
arousal) models. Annotation is time-consumingZhang et al. (2020) estimated la-
beling at around 30 hours per participantmaking automation essential.

The overall process of EEG Data Acquisition experiment is shown in figure 2.6. Stim-
uli selection and annotation are necessary but are under-developed areas in EEG-based
emotion recognition. Current approaches are non-standardized and inefficient. There-
fore, further research and development are necessary to improve these processes, and it
is crucial to explore new and innovative approaches to overcome the current challenges.

2.4.2 Preprocessing
EEG signals are afflicted with a number of types of noise, such as electrical (line) noise,
Muscle movement, eye blinking, and other actions can significantly influence how precise
things are and the accuracy of emotion recognition outcomes. Hence, a proper pre-
processing pipeline is needed to remove these sources of noise and problems and to increase
the signal-to-noise ratio of the EEG data. The pre-processing process typically includes
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Figure 2.6: Overall process of EEG Data Acquisition experiment

some significant steps, including filtering, electrical (line) noise removal, bad channel
rejection, bad artifact detection and removal, and re-referencing. Figure 2.7 illustrates
the general pre-processing Pipeline for EEG processing.

Figure 2.7: EEG Pre-processing Steps

• Filtering

Filtering is an essential pre-processing process in EEG-based emotion recognition
research. The primary function of filtering is to eliminate noise from the recorded
EEG signals and enhance the critical frequency bands associated with how we ex-
perience emotions. EEG signals are frequently infested with a wide range of noise,
both biological and environmental noise, and motion artifacts that can impact the
validity and reliability of the emotion recognition system (Arvaneh, Gargiulo, and
K.-Y. Kim 2018).

In EEG-based emotion recognition studies, two types of filters are usually uti-
lized: high-pass and low-pass filters. High-pass filters eliminate the low-frequency
components of the EEG signals, and low-pass filters eliminate the high-frequency
components. A bandpass filter(Figure 2.8) is typically employed to obtain the de-
sired frequency range (Jalilifar and Roshani 2018). The cut-off frequencies of the
filters rely on the frequency range of Interest and the character of the EEG signal.

Also, researchers have proposed some equations and methods for filtering EEG
signals. The most commonly used filters include Butterworth, Chebyshev, and
Elliptic filters. Butterworth filters are the most widely used filters for processing
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Figure 2.8: Bandpass Filtering Process

EEG signals as they are flat. Steep transition from stopband to passband with
frequency response. Chebyshev filters provide a sharper transition from stopband to
passband but at the cost of passband ripple. Elliptic filters have a steeper transition
than Chebyshev filters but with ripples both in the passband and stopband Kumar,
Aggarwal, and Singh 2020.

The Butterworth filter is used because it is simple and has a smooth frequency It
is a low-pass filter that lowers the intensity of all frequencies greater than a cut-off.
frequency. The Butterworth filter transfer function is given by,

H(s) = 1
1 + ( s

wc
)2n

where s is the complex frequency variable, c is the cut-off frequency, and n is the
order of the filter. The Butterworth filter’s frequency response is given by,

H(f) = 1
1 + ( f

wc
)2n

where f is the frequency variable. (Butterworth 1930). Butterworth filters possess a
flat the passband frequency response and the slow roll-off in the stopband, rendering
them suitable for applications with a smooth transition between the passband and
stopband. However, they could fail to reduce the stopband frequencies enough,
resulting in remaining noise in the filtered signal.

The Chebyshev filter is another filter that is widely utilized in the processing of
EEG signals. It is meant to provide a steeper roll-off than the Butterworth filter
but with greater ripple in the passband. The transfer function of the Chebyshev
filter is described by,

H(s) = 1
1 + ε2Cn( s

wc
)2n
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where is the ripple factor, Cn is the nth order Chebyshev polynomial, and the
other variables are given the same meaning as the Butterworth filter. The frequency
response of the The Chebyshev filter is characterized by,

H(f) = 1
1 + ε2Cn( f

wc
)2n

where f is the frequency parameter. (Chebyshev 1885). Chebyshev filters roll off
more rapidly at the stopband than Butterworth filters, and that is advantageous
for some applications. which require a larger attenuation in the stopband. They
do possess ripples in the passband, which can influence the precision of the filtered
signal.

The Elliptic filter is a filter that incorporates the best characteristics of both the
Chebyshev and Butterworth filters. It has a steeper drop-off than the Butterworth
filter and a flatter passband than the Chebyshev filter. The transfer function of the
Elliptic filter is provided by,

H(s) = 1
1 + εCn( s

wc
)2n

where is the largest ripple in the passband, Cn is the nth order elliptic polynomial,
s is the complex frequency variable, c is the cut-off frequency, and n is the order.
of the filter. The frequency response of Elliptic filter can be expressed as below.

H(f) = 1
1 + εCn( f

wc
)2n

where f is the variable frequency. (Harris 1978). Elliptic filters have the steepest
descent in the three filters’ stopband and a smooth passband, so they are suitable for
Applications that call for a steep cut in the stopband and a shallow slope. response
in the passband. But they have ripples in both the passband and stopband, which
can change the precision of the filtered signal.

These equations can be used in several EEG signal processing software such as
EEGLAB (Delorme and Makeig 2004), MATLAB (Mathworks, Inc.), and Python-
based packages such as MNE (Gramfort et al. 2013) and PyEEG (Python EEG
signal processing toolbox) (https://github.com/forrestbao/pyeeg). These tools pro-
vide users with a set of filtering alternatives for EEG signals, such as the filter order,
filter type, and cut-off frequencies. Typically, the selection of the filter is based on
the individual characteristics of the EEG signals and the noise to be eliminated,
including the range of interest of frequency and the level of attenuation in the stop-
band desired. Evaluating the performance of varying filters based on factors such as
signal-to-noise ratio (SNR) and mean squared Error (MSE) assists in determining
the optimum filter for a particular application.

• Electrical noise removal
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Many techniques have been suggested and tried to minimize the Electrical line
noise. The most common are filtering and regression methods.

Filtering is the most common technique used for noise reduction. Some of the filters
that are widely used by individuals include notch filters, bandpass filters, and adap-
tive filters. Notch filters are very effective at removing narrow-band interference,
especially the common 50 Hz or 60 Hz electrical noise from power lines.

Bandpass filters help to target a specific range of frequencies by removing frequen-
cies outside of the desired range. Adaptive filters are special because they can adapt
to remove different frequency components, making them ideal for real-time applica-
tions. A study conducted by Güler, Unal, and Akin (2018) examined these filtering
methods to ascertain how efficient they were at removing electrical noise from EEG
signals. They found that adaptive filters performed better, both at reducing noise
as well as keeping the original EEG signal clear.

Apart from filtering, regression methods provide yet another effective way of re-
ducing noise. These methods include linear regression, least mean square (LMS)
adaptive filtering, and principal component analysis (PCA) (Widrow and Stearns,
1985; Pearson, 1901). These methods rely on the assumption that electrical noise
can be separated from the brain signal and hence can be identified and removed.
LMS adaptive filtering has also worked well in removing noise from EEG signals.
This can be seen in studies by Li et al. (2020) and Khan, Khalid, and Javaid (2021).
This method calculates the power spectrum of the noise and subtracts it from the
noisy EEG signal. PCA has also worked well by breaking down the EEG data and
separating noise from genuine brain activity (Li et al., 2020; Zhang et al., 2021).

Each denoising method has its own strengths based on the nature of the noise.
Notch filters are ideal for fixed frequency interference, e.g., 50/60 Hz, but might
not deal well with wider or changing noise. Bandpass filters improve signals by
eliminating frequencies outside of the brainwave range of interest, but some noise
can remain. Adaptive filters are very adaptable, hence perfect for variable and
complicated noise conditions. Regression-based techniques, such as LMS and PCA,
perform well when the noise is dissimilar to the EEG signal. Individuals typically
select these techniques when maintaining the quality of the signal high with most
types of noise is crucial. The optimal selection is based on the type of noise and
the objectives for preparing the EEG analysis.

• Bad channels Detection and Removal

EEG signals can be influenced by different artifacts that can hide real brain ac-
tivity and decrease the performance of models recognizing emotions. A common
problem is the presence of "bad" channels, which can appear as a result of such
problems as electrodes moving, not getting in good contact with the scalp, or other
sources of external noise.

Figure 2.9 is a sample simulated EEG trace. Channel 16 has been highlighted in red
to signify that it is troubled by peculiar artifacts. It is thus unreliable for analysis.
The remaining channels, which appear in black, are normal and are not affected by
these problems.
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Figure 2.9: Bad EEG Channel

Several approaches exist for identifying poor EEG channels. Perhaps the most
prevalent is for skilled technicians to manually, visually inspect the signals to de-
termine problems, including very high amplitudes or flat, unresponsive signals.
Although effective, this approach can be time-consuming, based on subjective de-
cisions, and have inconsistencies in results.

To avoid these limitations, automatic approaches have been devised. One is based
on kurtosis (O’Reilly, Nielsen, and Hansen, 2007), in which channels with very
high kurtosis values are identified as outliers. Correlation-based detection (Nolan,
Whelan, and Reilly, 2010) and variance-based analysis (Viola et al., 2009) are also
popular approaches that examine how each channel stands in relation to others and
look for abnormal variability, respectively.

When the faulty channels are identified, they are usually removed or corrected
before EEG analysis is continued. One of the usual techniques for correcting them is
interpolation, where the data in the faulty channel is reconstructed using data from
the surrounding electrodes. There are different techniques of interpolation, ranging
from the simple linear interpolation to more complex techniques like spherical spline
interpolation and multi-sphere head modeling (Fabien Perrin et al., 2011; Kayser
and Tenke, 2006). The selection of an interpolation technique may have a significant
impact on the final quality of the EEG signal.

Aside from interpolation, other removal strategies exist. Robust averaging (Pernet,
Wilcox, and Rousselet, 2011), for example, involves averaging EEG signals across
multiple trials but excluding data from bad channelsespecially useful when bad
channels appear intermittently throughout trials. Another approach is threshold-
based rejection, where channels with signal-to-noise ratios falling below a certain
threshold are excluded (Mognon et al., 2011).

Bad channel detection and correction is one of the key steps in preprocessing EEG
data to achieve appropriate emotion recognition. Several methods may be employed
to detect and correct them, and all methods have advantages and disadvantages.
Programs like EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld et
al., 2011), and MNE-Python (Gramfort et al., 2013) offer great platforms for re-
searchers to remove bad channels effectively.
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• Artifcat Detection and Removal

An important function of preparing EEG data is detecting and eliminating unde-
sired noise that reduces the quality of the signal as well as the reliability of results.
It is extremely critical to detect and eliminate artifacts from emotion recognition
applications that employ EEG.

EEG signals may be influenced by various kinds of artifacts, such as eye movements,
muscle contractions, and electrode movement. Eye blinks occur frequently and
alter the frontal and temporal regions of the EEG. Muscle artifacts occur when the
muscles move or contract, such as on the facial regions or the neck, and interfere
with the adjacent electrodes. Electrode movement artifacts occur when electrodes
move, resulting in indistinct and unsteady recordings. Since these artifacts have a
significant influence on analysis, they must be identified and eliminated effectively.

(Plass-Oude Bos 2012) did an analysis on identifying physiological artifacts in EEG.
In figure 2.10, the first image(a) is eye movement, second image(b) is eye blink, and
final image(c) indicates muscle tension.

Figure 2.10: Several types of Artifacts in EEG

There are numerous methodologies for the identification and removal of undesired
anomalies from EEG recordings. One of them is visual inspection based on examin-
ing the EEG traces for detecting anomalies. This method is effective but time-con.

Another stronger method that operates independently is Independent Component
Analysis (ICA). It separates EEG signals into independent components. We may
identify and eliminate the components associated with artifacts by examining their
location and frequency characteristics (Makeig et al., 2004).

Another useful technique is wavelet analysis. It decomposes EEG signals into fre-
quency bands, eliminating high-frequency noise or brief artifact (Cohen, 2014).
It is particularly effective in eliminating artifacts with definite frequency patterns
from the brain activity we are interested in. There are numerous special soft-
ware programs that give end-to-end solutions for artifact removal. Some of them
are EEGLAB (Delorme Makeig, 2004), FieldTrip (Oostenveld et al., 2011), and
BrainVision Analyzer (GmbH, 2021). All of these software tools have sophisticated
algorithms that assist with operations such as ICA, filtering, and automatic removal
of artifacts.

EEGLAB is a widely used free software tool for resolving many of the problems
presented by data. One of its useful features is the extended Infomax ICA algorithm.
The algorithm decomposes the EEG signal into independent components using
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mathematical methods (Bell Sejnowski, 1995). The EEG signal appears as a
combination of several sources, and the algorithm attempts to "unmix" the signals
so that they are not dependent on one another by eliminating mutual information.

The Extended Infomax method employs a measure called maximum entropy in
an effort to enhance statistical independence while preserving the essential time
and frequency characteristics of the signal. For this reason, it is possible for it to
identify and eliminate eye blinks and muscular movements because they possess
unique frequency patterns.

Removal of artifacts is the most crucial initial step when doing EEG analysis, partic-
ularly for identifying emotion. Procedures such as ICA and wavelet de-composition,
as well as useful software such as EEGLAB and BrainVision Analyzer, easily remove
the EEG artifacts. One of these techniques, the extended Infomax ICA algorithm,
is a useful method of decomposing the elements and eliminating various types of
non-neural noise, that enhances the quality of the signal for subsequent analysis.

• Re-referencing

Re-referencing is a fundamental pre-processing operation of EEG data that seeks to
normalize the captured signals by converting them into a common reference point
(Fabienne Perrin et al., 1989). Since EEG captures the voltage difference between
scalp electrodes and a reference electrode, the initial reference selection may sig-
nificantly influence the captured signal (Yao, 2001). Therefore, re-referencing is
important to remove the bias introduced by the reference electrode and to make
signal interpretation consistent (Sara M. Alarcão Maria J. Fonseca, 2017).

Though widely used reference points such as earlobes, nose, or the average of all
electrodes are widely used, they may impact the signal differently in some cases
and result in varying results (Zhu et al., 2017). Thus, re-referencing helps prevent
such differences and yields better data analysis.

Two of the most common procedures to re-reference EEG recordings are the Average
Reference (AR) and the Reference Electrode Standardization Technique (REST)
(Zhu et al., 2017).

– The AR method is to calculate the mean of all the electrode potentials and
use this mean as a new reference. Simple as it is, this will introduce a shift
in the global signal, and this might make subsequent analysis complicated in
terms of accuracy (Fabienne Perrin et al., 1989).

– The REST method offers a better solution. REST considers the physical
layout of the electrodes and resorts to a simulated head model that generates
reference-free signals. Despite being more complex than AR, REST has reg-
istered higher consistency and reliability, particularly for emotion estimation
tasks (Zhu et al., 2017).

To wrap up, re-referencing is necessary for enhancing the consistency and accuracy
of EEG data towards the goal of emotion recognition. The method needs to be
carefully selected, where REST is heavily employed because of its ability to give
reference-independent results (Sara M. Alarcão Maria J. Fonseca, 2017). Packages
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such as EEGLAB (Delorme Makeig, 2004), BrainVision Analyzer (GmbH, 2021),
and FieldTrip (Oostenveld et al., 2011) include built-in facilities for using such re-
referencing techniques to the best possible advantage.

2.4.3 Feature Extraction
Feature extraction is the conversion of meaningless data into meaningful features that
reflect vital information in the data. Feature extraction in the identification of emotions
from EEG tries to obtain features that reflect brain activity associated with emotion.
Features are utilized as an input for the machine learning model in identifying the emo-
tional state of the individual. Raw EEG recordings are cluttered and complicated, and
detecting emotion from them is difficult. Feature extraction simplifies EEG signals and
makes them easier to interpret. It also identifies significant content in EEG signals that
aids in emotion identification. Our extracted features have the ability to indicate how the
brain relates with emotion, making understanding emotion regulation possible. There are
several ways to extract key features from the data in several ways for EEG-based emotion
recognition systems. The most popular techniques are time-domain, frequency-domain,
and time-frequency analysis.

• Time-Domain Feature Extraction Method

Time-domain features are a basic part of EEG signal processing. Since most EEG
recording instruments are recording signals in the time domain, an inspection of
these unprocessed signals reveals the dynamics of neural activity over time. Features
usually focus on amplitude, length, and waveform shape. The central objective of
time-domain analysis is ultimately that of reducing the very high dimensionality
of EEG signals with minimal loss of important information, making subsequent
operations like emotion classification more efficient.

Time-domain features play an important part in improving the efficiency of EEG
processing, thus improving the performance of emotion recognition algorithms.
Time-domain features can either be utilized individually or coupled with other
approaches like frequency-domain and time-frequency analysis of the EEG in or-
der to provide more accurate results. Some of the most widely used time-domain
statistical features include mean, variance, standard deviation, skewness, and kur-
tosis. The above measures capture the central tendency, variability, and shape
of the distribution of the signal effectively. Other features like root mean square
(RMS), peak-to-peak amplitude, zero crossing (ZC), mean amplitude (MA), inte-
gral of absolute value, and autocorrelation provide further insight into the energy,
fluctuations, and rhythm of the signal.

More sophisticated time-domain features include histogram analysis, wherein the
EEG values’ distribution is illustrated, thus making patterns or abnormalities easier
to identify. Kurtosis quantifies the pointed nature of the peak of the signal when
compared with a normal distribution, while skewness reveals any asymmetry of the
shape of the signal. The fractal dimension, called the Hurst exponent, indicates
the long-memory or intricateness of a time series. Entropy is one other effective
measure that captures the randomness and irregularity of EEG fluctuationsfeatures
which are of particular relevance when examining emotional and cognitive function-
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ing. Overall, features in the time domain are necessary for filtering through raw
EEG data while maintaining the underlying patterns of brain activity. Not only
do they reduce the dimensionality and noise of the data, but they also provide use-
ful information that aids the construction of efficient emotion recognition systems
based on EEG.

• Frequency-Domain Feature Extraction Method

Frequency-domain feature extraction involves altering EEG signals from time-based
into frequency-based data in order to view their frequency features. This transfor-
mation enables researchers to view the power spectral density (PSD), indicating
the power of signals spread over the frequency bands. Since some of the frequency
bands of EEG signals correlate with thoughts and feelings, observing them provides
critical information for emotion identification.

For instance, alpha and beta bands are associated with pleasant feelings, whereas
theta and delta bands are associated with unpleasant feelings. By isolating these
bands and examining them, scientists are able to discover indications of what a
person feels. This makes frequency-domain features extremely useful for emotion-
detecting systems. A popular method of calculating PSD is with the Fast Fourier
Transform. It de-composes the EEG signal into frequency components. We have the
option of applying measures such as mean, variance, and skew on the transformed
signal. Wavelet transforms are utilized frequently because they both show time
and frequency simultaneously. It becomes easy for us to identify particular bands
associated with emotional activity. The PSD is computed by the autocorrelation
function of EEG signal using Welchs method. The information about the sequence
is as follows:

Xi(n) = x(n+ iD)

here n = 0, 1, 2. . . ., M-1, and i = 0, 1, 2. . . .. L-1. If Xi (n) is the sequence,
iD will be the first point, and L shows the length of 2M, which is a segment of
information. The output is presented as,

p≈(t)
xx (f) = 1

MU

∣∣∣∣∣∣
M−1∑
n=0

xi(n)w(n)e−j2πfn

∣∣∣∣∣∣
2

In the above window function, U is the regularization feature of the power and it
is denoted by,

U = 1
M

M−1∑
n=0

w2(n)

Here, w (n) is window function that describes Welchs power spectral as,

p(W )
xx = 1

L

L−1∑
t=0

p≈(t)
xx (f)
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PSD isn’t the only key attribute in the frequency-domain. Other key attributes
include higher-order spectra (HOS), higher-order crossings (HOC), differential en-
tropy (DE), and the logarithmic energy spectrum. Differential entropy(DE) ad-
dresses the intricacies of continuous EEG signals, and within specific frequency
bands, DE will equal the logarithmic energy. Studies have indicated that regions
of EEG signals that have been filtered using band-pass filters typically exhibit a
Gaussian distribution, making DE a useful method for measuring intricacies in
these regions.

DE == −
∫

X
f(x)log(f(x))dx

The above expression measures the differential entropy, where X is a random vari-
able and f(x) is the probability density function of the experimental studies.

• Time-Frequency Domain Feature Extraction Method

Time-frequency domain analysis approach merges information from both time do-
main and frequency domain and has local analysis capability in time-frequency
domain simultaneously.

The original signal time-domain information will not be lost in frequency domain
analyses of the EEG signals, and in analyses, it is also possible to preserve greater
resolution.

Short-time Fourier transform (STFT) - is a highly popular time-domain fea-
ture extraction technique. It comprises breaking up the EEG signal into short
intervals and performing a Fourier transform on each one segment. STFT provides
time-frequency characterization of the signal and can be used to It extracts features
such as spectral power, spectral entropy, and spectral centroid. Non-stationary pro-
cess is considered to be a sum of an aggregation of short-time stationary signals.
Its calculation formula can be expressed as:

X(t, f) =
∫ +∞

−∞
x(u)w(u− t)e−j2πfudu

Where w(u-t) is the short time window function. The fixed size and shape of the
window function make it incompatible with high-frequency temporal subdivision
and low-frequency subdivision needs.

The wavelet transform (WT) - inherits the STFT’s capacity to do local analysis.
The Fourier Transform breaks down a signal into its sinusoidal components. But,
it lacks time localization. This means, if a brief but significant event occurs in a
signal, the Fourier Transform might not capture it effectively. Enter wavelets. With
their localized nature, wavelets can capture both frequency and time information.
This dual nature makes them especially suited for non-stationary signals, where
the signal’s properties change over time. It decomposes the EEG signal into a set
of wavelet coefficients at different scales and positions in time. WT can be used to
extract features such as wavelet entropy, wavelet energy, and wavelet variance.
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The Discrete Wavelet Transform (DWT) is one of the commonly used meth-
ods for time-frequency-domain feature extraction in EEG-based emotion recogni-
tion. The signal is reconstructed using DWT. The DWT decomposition produces
two sets of functions on both sides: scaling coefficients (xk+1(n)) and wavelet coef-
ficients (yk+1(n)) (Pooja, Pahuja & Veer 2022). The following equation illustrates
the use of two coefficients.

Xk=1(n) =
2n∑
i=1

h(2n− i)Xk(n)

Y k=1(n) =
2n∑
i=1

h(2n− i)Xk(n)

Where k denotes the scaling coefficient. It offers a multi-resolution description of
the signal that is useful in representing low- and high-frequency components at
various scales. DWT is generally applied in EEG systems for extracting features
like delta (0.54 Hz), theta (48 Hz), alpha (813 Hz), beta (1330 Hz), and gamma
(>30 Hz) rhythms. An advantage of DWT is that it is computation efficient, which
is appropriate for use in real-world systems and in embedded systems. Apart from
that, signal feature compact representations help in dimensionality reduction that
could assist machine learning models to avoid overfitting. Statistical features like
mean, variance, skewness, and entropy of DWT coefficients could also prove helpful
in representing emotional state and cognitive activity.

Continuous Wavelet Transform(CWT) provides a clearer additional version of
the signal by computing wavelet coefficients at every possible place with all scales.
It serves to examine the signal closely, which is why CWT is so useful for displaying
time-frequency patterns along with abrupt changes in EEG signals.

In deep learning systems, we can use CWT-based techniques, particularly with 2D
images referred to as scalograms. They can be fed to CNNs to identify emotion or
illnesses. Although it needs more computational demands compared to DWT, it
enables better time-frequency information and is extremely useful in situations in
which small changes in brain activity need to be noticed.

CWTx(a, b) =
∫ +∞

−∞
x(t). 1√

|a|
ψ

t− b

a

dt
Where x(t) is the input signal, ψ is the mother wavelet function, a is the scaler
function that give information about the frequency component and b is the trans-
lator factor which gives information on the time localization. CWT uses mother
wavelets as its fundamental functions for signal analysis and representation. Using
scaling and translating operations, a mother wavelet which is a finite-energy func-
tion with zero meanis utilized to create a family of wavelets. The properties of the
signal being examined and the required time-frequency resolution determine which
mother wavelet is used. To extract time-frequency information, the CWT compares
the signal with translated and scaled version of the mother wavelet. Following are
some of the Mother Wavelet used in CWT(Figure 2.12).
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– Gaussian Wavelet: A time-domain wavelet, it is derived from a Gaussian
function centered at t0 and modulated by a complex exponential function with
frequency f0.

– Gabor Wavelet: Gabor wavelet is perhaps the most widely used function for
various applications. It is essentially the same as Gaussian wavelet function,
with simplified equations.

– Morlet Wavelet: Morlet is considered very similar to Gabor wavelet and
Gabor filters. The oscillation of Morlet wavelet is controlled by . A higher
value of results in higher oscillation.

– Poisson Wavelet: Poisson wavelet is defined by positive integers (n), unlike
other, and associated with Poisson probability distribution.

– Complex Mexican hat wavelet: Complex Mexican hat wavelet is derived
from the conventional Mexican hat wavelet. It is a low-oscillation wavelet
which is modulated by a complex exponential function with frequency f0.

– Complex Shannon wavelet: Complex Shannon wavelet is the most simpli-
fied wavelet function, exploiting Sinc function by modulating with sinusoidal,
which results in an ideal bandpass filter. Real Shannon wavelet is modulated
by only a cos function.

Figure 2.11: Mother Wavelets used in CWT

2.4.4 Feature Selection
Feature selection is required for emotion recognition based on EEG due to several reasons.
First, EEG data is inherently high-dimensional with hundreds if not thousands of fea-
tures recorded from multiple electrodes. It retains irrelevant or redundant features that
can lead to overfitting and reduce the ability of machine learning models to generalize.
Feature selection can also reduce computational costs for the analysis and enhance the
system’s scalability. Last but not least, feature selection can enhance interpretability of
the outcome by determining the most significant features that are relevant to the brain
processes that deal with emotion. There are various kinds of feature selection techniques
that are applicable to EEG-based emotion recognition depending on the particular study
question and type of data. Most often, Feature selection can be broadly classified under
two main categories,
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• Filtration methods

• Wrapper Methods

Filtering techniques assess each of these features regardless of the classification algo-
rithm and choose the highest-ranked features according to some predetermined criterion.
The the most commonly used filter methods are mutual information (Ross, Jaroszewski,
and Schmidhuber Styczynski 2014), correlation based feature selection(H. Liu 2018), and
(Agresti Finlay 2009). These methods estimate the relevance of each feature with for
the target variable (i.e., emotional state) and select the top-ranked features dependent
upon a threshold or a specified number. On the contrary, wrapper methods make feature
selection an intrinsic process of classification algorithm and rank them based on their
performance under a cross-validation procedure. Wrapper methods are computationally
more expensive but can offer better performance than filter methods by incorporating
feature selection process into the classification algorithm. Most common wrapper ap-
proaches in EEG-based emotion recognition are genetic algorithms (Goldberg 1989), par-
ticle swarm optimization(Kennedy and Eberhart 1995), and Sequential Forward/Back-
ward Selection(Kohavi and John 1997).

2.4.5 Classification
Emotion Classification from an EEG signal refers to determining what people feel based
on their brain activity patterns. We use the EEG signal, and we have to assign to it an
appropriate emotional label according to its features. Various approaches, ranging from
simple machine learning to sophisticated deep learning models, are applied to accomplish
this task.

• Traditional Machine Learning Approaches

Traditional learning techniques such as Support Vector Machine (SVM), k-Nearest
Neighbours (k-NN), and Naive Bayes (NB) are generally applied to identify emo-
tions from EEG.

– SVM determines an optimal hyperplane to establish maximum distance be-
tween various emotion classes.

– KNN is a straightforward approach that assigns a label to new data based on
looking at which label is most commonly found among its k nearest points.

– Naive Bayes applies probability to predict the likelihood of a data point
belonging to some class, given the features being independent.

• Deep Learning Techniques

Currently, deep learning algorithms are gaining popularity due to deep models’
ability to learn complicated patterns from raw EEG data independently.

– Convolutional Neural Networks (CNNs) excel at detecting patterns and
shapes with the use of specialist filters.

– RNNs, such as LSTMs, are well suited for handling sequential EEG signals
since these can extract time-related information from the signal.
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• Datasets Used for Understanding Emotions

In order to validate these classification techniques, a number of publicly available
EEG datasets are tested. Some standardly used benchmarks include DEAP, SEED,
and DREAMER.

– DEAP Dataset: This dataset was developed by Koelstra et al. in 2012.
It contains EEG recordings along with other recordings from 32 individuals
viewing 40 one-minute music videos. 32 channels of EEG, EOG, and EMG
signals are present too. These can be used to investigate emotion based on
diverse aspects. Each video recording begins with 3 seconds of baseline.

– SEED Dataset: SEED dataset was captured by the BCMI lab with 15
individuals. They presented every individual with fifteen emotional movie
clips three times. They recorded with 62 electrodes at 200 Hz. This dataset
is suitable for exploring stable emotional patterns over multiple sessions.

– DREAMER Dataset: Katsigiannis and Ramzan developed this dataset in
2017. 23 individuals were recorded with EEG while viewing 18 emotional
movie clips. Each individual rated their emotion for valence, arousal, and
dominance. 14 channels of EEG were recorded with a 128 Hz sample frequency.

2.5 Emotion Recognition(ER) in Song Vocals
In the domain of ER in music or on song vocal most of the researchers have used methods
based on Physiological responses. Lets go through some literatures and their limitations.

In 2011 (Pell & Kotz 2011) introduced a method, which utilizes the auditory gating
paradigm to study the temporal dynamics of vocal emotion recognition, which provides
significant insights into how listeners recognize emotions from speech as it unfolds. By
segmenting pseudo-utterances into increasing syllable durations and analyzing recognition
patterns across six emotions (anger, disgust, fear, sadness, happiness, and neutral), the
study effectively maps the progression of recognition accuracy and confidence. It high-
lights that fear, sadness, and neutral expressions are recognized faster and with greater
accuracy at early stages, whereas happiness and disgust take longer and show more vari-
ability in recognition. The integration of acoustic measures at the "identification point"
further illuminates the specific features, such as pitch and speech rate, that characterize
each emotion’s unique recognition trajectory.

So many limitations can be found in this model. First, gating by syllable duration in-
stead of fixed time intervals might introduce variability in temporal estimates due to
differences in emotion-specific syllable lengths. This could skew recognition times, par-
ticularly for emotions like sadness or disgust with longer syllables. Second, the reliance
on pseudo-utterances, while controlling for semantic bias, may not fully replicate the
complexities of natural speech, limiting the generalizability of findings to real-world com-
munication. Finally, forced-choice tasks, while useful for categorization, may not capture
the nuanced and dynamic nature of emotional perception in less constrained listening
conditions. These factors underscore the need for further methodological refinements
and complementary approaches to build on the study’s findings.
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EmoMucs(Berardinis, Cangelosi & Coutinho 2020), a novel computational model de-
signed to enhance Music Emotion Recognition (MER) by integrating music source sep-
aration techniques. The model decomposes a music track into separate sources (vocals,
drums, bass, etc.) and processes each component through specialized sub-models to
predict emotions based on valence and arousal. By combining these predictions using
various fusion strategies, EmoMucs provides improved interpretability and accuracy in
predicting emotional responses to music. Tested on the PMEmo dataset, EmoMucs out-
performed existing deep learning models in valence prediction while offering comparable
results for arousal. A significant advantage of EmoMucs is its modular design, which
facilitates tailored analysis of the emotional contributions of individual musical elements.
But EmoMucs model(Berardinis et al. 2020), while innovative, faces challenges related
to its dependence on the pre-trained Demucs system for source separation, which might
introduce errors if the separation quality is poor. The modular design, though flexible,
increases the computational complexity and training time compared to simpler models.
Additionally, the model’s performance improvements are limited for arousal prediction,
where it achieves results comparable to baseline methods. The lack of a systematic evalua-
tion of the interpretability aspect in real-world settings and reliance on static annotations
further limits its broader applicability to dynamic, real-time emotional analysis.

CFIA-Net(Hu, Yang, Huang & He 2024), introduces a Cross-modal Features Interaction-
and-Aggregation Network with a self-consistency training strategy for speech emotion
recognition (SER). It leverages audio and textual features extracted via pre-trained mod-
els like emotion2vec and BERT. The CFIA module ensures effective integration of mul-
timodal data through adaptive interaction and aggregation, while the self-consistency
training supervises shallower layers with deeper ones to enhance feature learning without
increasing model complexity. Experimental results on the IEMOCAP dataset demon-
strate state-of-the-art performance with weighted and unweighted accuracies of 83.37%
and 83.67%, respectively, outperforming existing bimodal SER methods.

However, this method also has some limitations. It heavily relies on the quality of pre-
trained models and may face challenges when applied to datasets with different distribu-
tions or noise characteristics. The computational overhead of the CFIA(Hu et al. 2024)
modules and self-consistency strategy might limit its scalability to real-time applications
or low-resource environments. Additionally, while effective for bimodal audio-text inte-
gration, its adaptability to other modalities like video or physiological signals remains
unexplored. Further research could explore these aspects to enhance the robustness and
generalizability of CFIA-Net.

So we can come to the conclusion that existing models for vocal emotion recognition,
such as those utilizing acoustic features or behavioral paradigms, often face limitations
in capturing the nuanced, dynamic, and neural underpinnings of emotional perception.
These approaches primarily rely on explicit responses or acoustic pattern analysis, which
may not fully account for the rapid and subconscious nature of emotional processing
in real-world scenarios. In contrast, using EEG to assess emotional responses to vocal
stimuli offers significant advantages. EEG provides high temporal resolution, enabling
researchers to capture the brain’s immediate reactions to emotional prosody as it unfolds.
This approach goes beyond surface-level acoustic analysis, allowing for the exploration
of neural markers associated with discrete emotions, such as event-related potentials
(ERPs). By directly tapping into the neurocognitive processes underlying emotion recog-
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nition, EEG can provide a more comprehensive understanding of how the brain processes
vocal emotions in real-time, overcoming the limitations of models that focus solely on
external behavioral or acoustic cues.

2.6 Emotion to Melody Generation
In this section, I’ll be looking into some state of the art standard models for Emotion based
music generation models and their limitations. The EmotionBox model (Zatorre, Mori,
Sang & Wang 2022) aims to advance emotional music generation by leveraging music psy-
chology principles and deep neural networks. Unlike previous label-based methods that
depend on extensive emotion-labeled datasets, EmotionBox uses intrinsic musical fea-
turesnote density and pitch histogramto control arousal and valence, respectively. These
features are mapped to specific emotions using the Russell emotion model, enabling the
generation of music in four emotional categories: happy, sad, tensional, and peaceful.
The use of a classical piano MIDI dataset simplifies preprocessing and eliminates the
need for manual emotion labeling. Subjective listening tests demonstrate that Emotion-
Box performs comparably to traditional label-based systems and is particularly effective
in generating low-arousal emotions like peaceful and sad, highlighting its potential for
applications such as music therapy.

However, the model(Zatorre et al. 2022) has notable limitations. Valence representation
remains challenging, as the reliance on mode (major or minor) inadequately captures its
complexity. Additionally, the generated music lacks structural coherence, resembling im-
provisation rather than complete compositions. The homogeneity of the training dataset,
limited to classical piano pieces, restricts the model’s adaptability to diverse musical gen-
res and instruments. While effective for low-arousal emotions, high-arousal emotions such
as happy and tensional are less distinct, pointing to variability in performance. Future
work should focus on enhancing valence features, incorporating long-term structural pat-
terns, diversifying training datasets, and balancing subjective evaluations with objective
metrics for a more comprehensive assessment.

SentiMozart (Madhok, Goel & Garg 2018) framework highlights its dual-purpose struc-
ture: capturing human emotions via facial expression analysis and generating correspond-
ing music. The system employs a Convolutional Neural Network (CNN) for sentiment
classification into seven categories, which are further grouped into three main classes
(Happy, Sad, Neutral) for music generation. The music generation model uses a Doubly
Stacked LSTM architecture, trained on a manually annotated dataset of MIDI files. The
framework’s performance is evaluated using the emotional Mean Opinion Score (MOS),
revealing a strong correlation (0.93) between detected facial sentiments and the generated
music, indicating its efficacy in sentiment-aligned music generation.

Also SentiMozart (Madhok et al. 2018) face several limitations. Firstly, the reliance on
manually labeled MIDI files may introduce subjective bias and restrict scalability, as
the dataset requires significant human effort to expand. Secondly, the CNN’s sentiment
classification, while achieving an accuracy of 75 percent, may struggle with more complex
emotional nuances or diverse datasets. Additionally, the LSTM-based generation model
might face challenges in capturing the intricate global and local musical patterns due to
the inherent complexity of music composition. Lastly, the MIDI format, while efficient in
size, produces inconsistent audio quality across systems, potentially reducing the end-user
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Figure 2.12: SentiMozart Model Architecture

experience. These limitations suggest areas for improvement, such as incorporating larger,
more diverse datasets and exploring advanced architectures to enhance both classification
accuracy and musical creativity.

Finally want to mention about MusicGen(Copet, Kreuk, Gat, Remez, Kant, Synnaeve,
Adi & Défossez 2023) model which is a single-stage transformer-based model designed
for conditional music generation. Unlike traditional multi-stage models, MUSICGEN
employs a single language model operating over compressed discrete music representa-
tions (tokens). It integrates text or melody conditioning, allowing users to generate music
aligned with specific instructions or melodic features. The model leverages an autoregres-
sive decoder and efficient token interleaving strategies to produce high-quality stereo and
mono music at 32 kHz. Extensive evaluations reveal that MUSICGEN outperforms other
baselines in text-to-music tasks, ensuring better control and adherence to the provided
conditions. Its key advancements include simplifications in model architecture and new
conditioning approaches, making it robust and versatile for music creators. So according
to the literatures this model has been a state of the art model to get music generated ac-
cording to condition on melody and prompt texts. So if tend to use this model by (Copet
et al. 2023) for the proposed task we have to use emotions as inputs, the model can be
conditioned on features that represent arousal and valence values derived from the desired
emotional state. These values could guide the generation process by aligning them with
corresponding melodic or harmonic structures. For instance, high arousal and positive
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valence might translate into upbeat and energetic music, while low arousal and negative
valence might result in slow and somber compositions. By mapping emotional inputs
to chromagrams or textual descriptors that convey the intended mood, MUSICGEN can
produce music that reflects specific emotional landscapes, thus enabling personalized and
emotion-driven music creation.

2.7 AI Music Evaluation Methods
After delving into the two main topics in the literature, when discussing about the evalu-
ation methods, almost all of the generative music studies evaluate their respective models
under a Subjective or an Objective perspective. A survey on evaluation methods of AI-
generated music models done by (Xiong et al. 2023) categorizes the evaluation criteria
under three main categories as presented in Figure 2.13.

Figure 2.13: Evaluation Structure Proposed by (Xiong et al. 2023)

Most of the AMG have used music listening tests to evaluate their model one way or
another. The researchers of the MusicVAE(Roberts, Engel, Raffel, Hawthorne & Eck
2018), gave participants two 30-second musical pieces, one from the produced piece and
the other from the original, and asked them to rank which one they felt was more musical
on a Likert scale. (Chu, Urtasun & Fidler 2016) surveyed 27 music professionals by
providing them with several pairs of 30-second melody pieces and asked for a vote to
decide which piece was better in the pair. Over 84% voted the piece generated by their
model is better than the other generated models they have used to pair up against.
Komposer (Dias & Fernando 2019) mentioned in his work, that user criticism should
be acquired because computers and algorithms are incapable of evaluating music. They
implemented a web-based inference tool to gather user feedback and examined it to
determine the reliability and correctness of the outputs that were produced. Comments
were gathered from both music professionals and amateurs.

The objective evaluation involves analyzing the generated melody using computation to
produce metrics that can be measured of its quality. Meaurements of AMG qualities
derived from the musical concept are considered as Music Metrics Evaluation. (Ji, Luo
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& Yang 2020) categorized the metrics under Pitch, Harmoney, Rythm, and Style-related
matrices. (Dias & Fernando 2019) introduced a novel algorithm called the Consistency
Evaluation Algorithm. They reasoned that if ABC notation is used to train the model, the
resulting output ought to adhere to the standard, teaching the model some fundamental
principles of music theory. Specifically, they examined the trained model’s ability to
understand that for each melodic sector, the number of notes in the produced output
should be the same. In other words, each sector of a 4-by-4 melody should have four
notes. Using the suggested algorithm, they tallied the notes that were included in each
sector and group, as well as the quantity of notes included in each component that had
the same amount of notes. They then identified the group that appeared most frequently
and used the equation to calculate consistency. c = no of sectors in the most frequent
group/total no. of sectors

As you may clearly see current models typically struggle when attempting to match vocals
and melodies on a more profound emotional level, particularly when the vocals are self-
reflective. They tend to focus more on the technical details of the generated melodies
more than the emotional response that the vocals convey. Because of this, it could be
difficult for listeners to emotionally relate to a particular musical piece.

This study seeks to address this problem by developing a novel approach to melody
generation that is based on the emotional responses of listeners interacting with song
vocals. The emotional feedback of people listening to vocals will be use as the input
for the melody generation model. Above approach promises to open up new avenues for
music personalization. We can make customized, emotionally charged music that truly
connects with each listener by comprehending and addressing the emotional landscape of
song vocals.
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Chapter 3

Methodology

3.1 EEG Emotion Recognition Process

3.1.1 Data Acquisition Experiment
The EEG data acquisition process involved multiple steps using the Emotiv Pro software
and EEG headset. The headset was first connected, calibrated, and assessed to ensure
100% contact and EEG signal quality. Participants were then instructed to close their
eyes while listening to each song’s vocals. Immediately after listening, they annotated
their arousal and valence levels. This process was repeated for all songs, and the cor-
responding annotations were mapped to the EEG recordings before proceeding to data
pre-processing.

Song and Subject Selection
A total of 104 songs were used in this study, comprising 65 Sinhala and 39 English tracks.
The songs were carefully selected to represent the full spectrum of emotions within the
arousal valence dimensional model. The dataset includes high arousal positive valence
songs (e.g., energetic dance tracks), high arousal negative valence songs (e.g., intense or
aggressive pieces), low arousal positive valence songs (e.g., calm and relaxing tunes), and
low arousal negative valence songs (e.g., melancholic or sad ballads).

To determine the placement of each song within the arousal valence space, user comments
from the corresponding YouTube videos were extracted and analyzed using a custom
Python based script. These comments, which reflect the emotional reactions of listeners,
were processed to evaluate sentiment polarity and identify emotion related keywords asso-
ciated with arousal (e.g., energetic, chill, relaxing, intense) and valence (e.g., happy, sad,
beautiful, painful). Each song was then assigned an estimated arousal valence position
based on aggregated comment analysis. The study involved 33 participants, all university
students aged between 20 and 26. Each participant was randomly assigned 10 song vo-
cals from a pool of 104 tracks. Each song vocal lasted 45 seconds, and participants were
instructed to listen attentively with their eyes closed. After each track, they provided self
assessed arousal and valence ratings. The complete session for each participant, including
EEG headset setup, calibration, and signal quality checks, took approximately one hour.

With each participant annotating 10 songs, each song was annotated by approximately
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Figure 3.1: Overall Data Acquisition Experiment

three different individuals, ensuring redundancy and reliability in the emotional ratings.
Prior to classification, both the EEG signal features and the arousal valence annotations
were averaged across annotators for each song. This averaging helped reduce individual
bias and variability, providing a more consistent representation of emotional response.

EEG Device and Annotation Model
The EEG data were recorded using a 32-channel Emotiv EPOC Flex headset(figure 3.2
& 3.3) and Emotiv Pro software. The headset was connected to the software either by
USB or Bluetooth, and it was preferable to use USB since it provided a more robust and
stable signal. EEG Gel was applied to the electrodes in order to ensure the electrodes
came in contact with the scalp effectively. The sampling rate was configured at 128 Hz
throughout the experiment.

For emotional labeling, we employed the Self Assessment Manikin (SAM) model(figure
3.4, which was derived from Russell’s arousal valence theory. Individuals provided ratings
for their arousal and valence feelings immediately following every EEG recording, enabling
us to closely and continuously monitor their emotional responses.

Figure 3.5 show three participants carrying out the experiment.
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Figure 3.2: Emotive EPOC Flex Headset Components

Figure 3.3: Emotive EPOC Flex Headset plugged in

3.1.2 Data Pre-processing
For the data pre-processing EEGLAB (Delorme and Makeig, 2004) WAS used, which was
an extension for MATLAB Software to handle EEG Data. To enhance the quality and
reliability of the EEG data, a comprehensive pre-processing pipeline was applied using
EEGLAB. The pre-processing steps are summarized in Figure 3.6 and detailed below.

Initially, select the EEG channels and configure their respective scalp locations. Event
markers were then identified to segment the EEG data appropriately.

The slow changes and high frequency noise were eliminated using Finite Impulse Response
(FIR) bandpass filter spanning 0.5 to 50 Hz, leaving critical frequency components asso-
ciated with thoughts and feelings in place. Line noise and other unwanted interference
were eliminated by the use of the CleanLine algorithm.

Following line noise removal, re-referencing was performed to standardize the EEG signals
and reduce reference related bias across channels. was then conducted to decompose the
EEG signals into statistically independent components. The components were automati-
cally labeled using the ICLabel plugin, which classifies components based on their source
(e.g., brain, eye, muscle, line noise, channel noise, and others). Non neural components
(e.g., those representing ocular, muscular, or noise artifacts) were subsequently flagged as
artifcats and removed based on ICLabel confidence scores. Finally, any boundary events
and discontinuities in the EEG recordings were removed to ensure clean and continuous
data segments for further analysis.

This multi stage pre-processing approach significantly improved the signal to noise ratio,
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Figure 3.4: Self Assessment Manikin(SAM

Figure 3.5: Snapshot of participants during data collecting experiments

reduced the presence of artifacts, and ensured the data was clean, consistent, and ready
for feature extraction and classification.

3.1.3 Feature Extraction
EEG signals are inherently non stationary and composed of multiple oscillatory compo-
nents distributed across distinct frequency bands which are delta (0.5 - 4 Hz), theta (4 -
8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz), and gamma (>= 30 Hz). These bands are
functionally associated with different cognitive and emotional states; for instance, delta
waves are linked to deep sleep and unconscious processing, while alpha activity is typi-
cally observed during relaxed wakefulness and visual attention. Analyzing the spectral
power distribution across these bands offers critical insight into the participant’s neural
and emotional states during auditory stimulation.

To capture these dynamic characteristics, wavelet transforms were employed due to their
ability to provide localized information in both time and frequency domains. In this
study, the primary focus was on the Continuous Wavelet Transform (CWT) using the
Morlet wavelet, owing to its excellent time frequency resolution and suitability for analyz-
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Figure 3.6: Pre-processing Methodology

ing transient oscillatory patterns in EEG. The Morlet wavelet was particularly effective
in highlighting subtle changes in low frequency bands, as observed in the resulting scalo-
grams.

The transformation to morlet wavelet was done within a scale range of 1 to 64, which
corresponds to different frequency resolutions. Each EEG channel was independently
transformed, producing a detailed time frequency representation for the entire signal.
Scalograms generated using CWT revealed significantly more nuanced temporal patterns
compared to traditional spectrograms. Moreover, wavelet functions such as Poisson,
Complex Shannon, and Complex Mexican Hat were also experimented with. While simi-
larities were observed among the latter two, Morlet and Poisson wavelets offered enhanced
resolution at lower frequencies, which are particularly relevant in emotional EEG studies.

To benchmark the performance of Continuous Wavelet Transform (CWT), a comparative
analysis was also conducted using Discrete Wavelet Transform (DWT). Unlike the Fourier
Transform, which provides uniform frequency resolution, DWT adapts to the frequency
characteristics of the signal by varying time and frequency resolution based on scale. This
makes it especially effective for analyzing non stationary EEG data.

In the DWT approach, the EEG signal was decomposed into wavelet coefficients at dif-
ferent scales using mother wavelets tailored to the properties of the EEG signal. These
coefficients represent the energy localized in specific frequency bands and time intervals.
Band specific spectral powers corresponding to delta, theta, alpha, beta, and gamma
bands were computed by summing the squared magnitudes of coefficients within each
respective band. These features were then used for classification and correlation analysis.
While DWT allowed for efficient extraction of frequency band specific features and was
computationally less intensive, CWT provided a richer and more continuous view of EEG
dynamics. Ultimately, this dual approach enabled both a robust benchmark comparison
and a deeper understanding of how wavelet selection impacts feature representation in
EEG based emotion recognition.

3.1.4 EEG Feature Classification
In the final step of using EEG to recognize emotions, the features are classified into
categories like Happy, Sad, Angry, and Calm. But, this taxonomy makes it too simple for
the complex range of human emotions. People often find it hard to tell apart emotions
that are very similar. For example if someone feels sad and calm kind of a sense for
some stimuli, he might get confused. It leads to ambiguity and reduced accuracy for
the classification model. In order to resolve this problem, this study utilizes Russell’s
Arousal Valence Model, which represents emotions in two dimensional space in terms
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Figure 3.7: Complex Morlet Wavelets with different frequencies and bandwidths

of arousal (the intensity of the emotion) and valence (how pleasurable the emotion is).
Instead of using discrete tags, emotions are defined as continuous values between 0.0 and
1.0 where valence represents stronger positive emotions and arousal represents stronger
emotional intensity. This approach offers a comprehensive, more nuanced, and psychology
informed description of human emotions, thus rendering the model easier to comprehend
and applicable to daily life.

In this study, three machine learning and deep learning models, namely Support Vec-
tor Regression (SVR), Long Short-Term Memory (LSTM), and a hybrid Convolutional
Nueral Network + Long Short-Term Memory (CNN+LSTM) were used to classify emo-
tional states based on features extracted from EEG signals. The models were implemented
in Python using libraries such as NumPy, Pandas, Scikit learn, TensorFlow, and Keras.

• SVR: Is the regression counterpart of Support Vector Machine. Unlike traditional
regression that minimizes squared error, SVR focuses on keeping the predicted
values within an epsilon tube around the true values.
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Figure 3.8: A 5level DWTbased decomposition of an electroencephalographic (EEG) signal

• LSTM: A type of recurrent neural network (RNN) capable of learning long term
dependencies in time series EEG data.

• CNN+LSTM: A hybrid deep learning architecture where CNN layers were used
to extract local spatial features from EEG input, which were then passed to LSTM
layers for sequential learning and classification.

Three complementary metrics were computed on the held out test set to assess the re-
gression performance of the arousal and valence models: Mean Absolute Error (MAE),
Coefficient of Determination (R2), and the Pearson Correlation Coefficient (r). Together,
they quantify prediction error magnitude, explained variance, and linear association, re-
spectively.

Mean Absolute Error (MAE)
MAE measures the average magnitude of errors in a set of predictions, without considering
their direction. It is defined as:

MAE = 1
N

N∑
i=1

(ŷi − yi)2

where yi is the true value, ŷi is the predicted value, and N is the number of samples.
A lower MSE indicates that predictions are closer to the actual arousal/valence levels.
Unlike MAE, in MSE larger errors are penalized much more heavily which would be good
for EEG data as there are so many outliers.

Mean Squared Error (MSE)
Mean squared error (MSE) is a metric to calculate the average of the square of the
differences between predicted and actual values of the data. It is determined by taking
the average of the squared residuals, where residual = predicted value - actual value for
each data point. It can be given by:

MAE = 1
N

N∑
i=1

|ŷi − yi|
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where yi is the true value, ŷi is the predicted value, and N is the number of samples. A
lower MAE indicates that predictions are closer to the actual arousal/valence levels.

Pearson Correlation Coefficient (r)
Pearsons r measures the linear correlation between predicted and true values:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ·

√∑n
i=1(yi − ȳ)2

Where xi is the model’s predicted value for the i-th sample, yi is the true target value
(ground truth) for the same sample, and x̄ and ȳ are the mean values of predictions
and true labels, respectively. In Pearson Correlation Coefficient values range from -1 to
+1, where r = +1 indicates perfect positive linear correlation, r = 0 indicates no linear
correlation, and r = -1 indicates perfect negative linear correlation.

These metrics were computed separately for arousal and for valence, yielding a clear
picture of each models predictive accuracy (via MAE), explanatory power (via R2), and
linear agreement with the ground truth (via Pearson r).

Support Vector Regression(SVR)
SVR is a regression technique derived from Support Vector Machines (SVM). While SVM
is widely used for classification tasks, SVR is designed to predict continuous numerical
values. The fundamental objective of SVR is to find a function that best approximates
the relationship between the input features and output values, while maintaining an
acceptable level of prediction error defined by a margin of tolerance, known as epsilon
(ε).

Unlike traditional regression methods that attempt to minimize the error for all data
points, SVR introduces an epsilon insensitive zone around the predicted function, often
visualized as a tube around the regression line. Predictions that fall within this tube are
considered sufficiently accurate, and no penalty is applied to them. Only data points that
fall outside this epsilon margin contribute to the error term and influence the learning
process. These critical points are referred to as support vectors, and they define the final
models shape and position.

Mathematically, the model aims to fit a linear function of the form

y => f(x) = wx + b (equation of hyperplane)

Where w is the weight vector, x is the input vector, and b is the bias term. Epsilon
insensitive zone or the loss function can be shown as below:

−ε ≤ yi − (wxi + b) ≤ ε

The optimization seeks to keep this function as flat as possible, thereby minimizing the
models complexity, while also penalizing large deviations from the epsilon margin using
slack variables. These slack variables allow the model to tolerate some data points falling
outside the margin if necessary. A regularization parameter C is used to balance the
trade off between model flatness and tolerance to error beyond epsilon.
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The optimization goal of SVR becomes minimizing the following objective function:

1
2 ||w||2 + C

∑
(εi + ε∗

i )

Where ||w2|| ensures flatness(model simplicity), C is the regularization parameter and
εi, ε

∗
i are slack variables for errors beyond ε.

In terms of decision boundaries, SVR creates two lines parallel to the regression line,
distanced by epsilon above and below it. The aim is to fit the regression line such that
the majority of the data points lie within this band. Any points outside this zone are
considered as violations and are penalized proportionally during training.

One of the notable strengths of SVR is its ability to produce robust predictions, especially
in cases where the data contains noise or outliers. By ignoring small fluctuations within
the epsilon tube and focusing only on significant deviations, SVR can generalize well and
avoid overfitting. This makes it particularly useful in real world regression tasks where
perfect precision is not required, but stable and reliable predictions are crucial.

The performance of the Support Vector Regression (SVR) model was evaluated using
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Pearson correlation. The
SVR model achieved an MAE of 0.1862 for arousal and 0.1931 for valence. The corre-
sponding MSE scores were 0.0521 (arousal) and 0.0565 (valence), indicating a relatively
low average prediction error. The Pearson correlation coefficients were 0.0973 for arousal
and 0.2038 for valence, suggesting a weak but noticeable linear relationship between the
predicted and actual values.

Long Short Term Memory(LSTM)
LSTM networks are a special type of Recurrent Neural Network (RNN) designed to han-
dle sequential data and learn long term dependencies. Traditional RNNs struggle with
the vanishing gradient problem when dealing with long sequences, making it difficult to
retain information from earlier time steps. LSTMs overcome this limitation through a
unique memory cell structure that includes three gates: the forget gate, which decides
what past information to discard; the input gate, which determines what new information
to store; and the output gate, which decides what information to output based on the
cell state. These gates allow the model to maintain, update, and pass information over
long sequences effectively.

Forget Gate
The forget gate decides what information from the previous cell state should be discarded:

ft = σ(Wf · [ht−1, xt] + bf )

Input Gate
The input gate determines what new information will be stored in the cell state:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
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Cell State Update
The cell state is updated using the output of the forget and input gates:

Ct = ft ∗ Ct−1 + it ∗ C̃t

Output Gate
The output gate determines what the next hidden state should be:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Where,

• σ is the sigmoid activation function.

• ∗ denotes element wise multiplication.

• xt is the input at time step t.

• ht is the hidden state at time t.

• Ct is the cell state at time t.

• W and b are the weights and biases for each respective gate.

In the context of EEG based emotion recognition, LSTMs are ideal because EEG signals
are inherently temporal and they change over time and often contain subtle patterns that
span multiple seconds. An LSTM model can capture the progression of brain signals and
relate them to emotional states such as arousal and valence.

The LSTM model that was also implemented and evaluated using the same metrics
yielded an MAE of 0.1649 for arousal and 0.1993 for valence. The MSE scores were 0.0425
and 0.0577 respectively. The Pearson correlation coefficients were 0.1226 for arousal and
0.0984 for valence, reflecting the models ability to learn temporal dependencies in the
EEG data, though the overall correlation remained modest.

CNN+LSTM
CNN + LSTM models combine the strengths of Convolutional Neural Networks (CNNs)
and LSTM networks to effectively learn both spatial patterns and temporal dependencies
from sequential data like EEG signals. CNNs are excellent at detecting local patterns
in input data such as wave like structures, frequency bursts, or signal peaksby applying
learnable filters across the input space. This makes them ideal for feature extraction from
raw or engineered EEG signals. On the other hand, LSTMs are well suited to learning
from time dependent sequences, helping capture temporal dependencies. When used to-
gether, CNNs first reduce the dimensionality and extract meaningful spatial features, and
then LSTMs model the sequence of those extracted features to understand the dynamics
and temporal relationships in the EEG signals.

The basic operations in a CNN involve convolution, where a kernel K slides across the
input signal X, computing a feature map:

Conv(X) = X ∗K + b
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This is typically followed by a non linear activation function. In this study, ReLU was
used:

ReLU(x) = max(0, x)

and used maxpooling to downsample the signal:

MaxPool(x) = max(x1, x2, x3, ....xn)

Once spatial features are extracted, they are passed to the LSTM, which uses the same
gates as described earlier (forget gate, input gate, output gate) to learn the sequence of
those features across time.

The hybrid CNN+LSTM model demonstrated the strongest correlation among the models
tested. It achieved an MAE of 0.2591 for arousal and 0.2374 for valence. Despite slightly
higher error metrics (MSE: 0.0950 for arousal, 0.0796 for valence), the Pearson correlation
coefficients were 0.2950 for arousal and 0.5109 for valence. These values indicate a more
substantial linear relationship between the predicted and true values, highlighting the
models effectiveness in capturing both spatial and temporal EEG features.

Among the models evaluated, the CNN+LSTM model demonstrated the strongest cor-
relation with the ground truth labels, particularly for valence, indicating its effectiveness
in capturing both spatial and temporal dynamics of EEG data. Interestingly, the SVR
and LSTM models exhibited lower prediction errors, which may be attributed to the
relatively small sample size, simpler models like SVR or a shallower LSTM may general-
ize better in such scenarios. Nonetheless, the CNN+LSTM’s higher correlation suggests
it holds promise for generating more emotionally accurate predictions when trained on
larger datasets.

3.2 Music Generation

3.2.1 Data Collection
Initially, the goal was to perform transfer learning on a pre trained melody generation
model, conditioned on arousal and valence values. To support this, a dedicated study was
conducted using the same set of 104 songs (39 English, 65 Sinhala) from the EEG exper-
iment. In this study, 39 participants each annotated 8 songs, including their full versions
(melody + vocals), isolated vocals, and isolated melodies. Each clip was annotated by
three different participants to minimize bias in emotional labeling.

The intention was to use the 104 melody annotations to pre train a model capable of
emotion conditioned melody generation. However, preliminary outcomes revealed several
limitations, including the relatively small dataset size for effective transfer learning, lack
of access to suitable pre trained models compatible with the annotation format, and
computational constraints. As a result, the transfer learning approach could not be
pursued.

Given the broad scope and limited time available, an alternative solution was adopted:
mapping arousal valence values directly into textual emotion descriptions (e.g., "happy
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and energetic", "calm and sad"). These descriptions were then used as prompts for the
MUSICGEN ((Copet et al. 2023)) model, a state of the art text to music generation
system. As supported by the literature review, MUSICGEN is capable of generating
musically coherent outputs from high level emotional text prompts, making it a suitable
alternative for the task of emotion reflective melody generation.

3.2.2 Text to Melody Generation
Arousal and valence values from the labeled dataset were initially brought into alignment
and examined to observe how emotional states are distributed among the songs. These
continuous values were then converted into some emotional categories with the help of
a quadrant based model(mentioned in the section 4), which is commonly utilized in the
research of emotions. Each quadrant represented a general emotional state as below:

• High Arousal, High Valence "Happy and Energetic"

• High Arousal, Low Valence "Tense and Anxious"

• Low Arousal, High Valence "Calm and Peaceful"

• Low Arousal, Low Valence "Sad and Depressed"

Based on these mappings, each song or melody annotation was assigned a descriptive
emotion label in natural language.

The emotional lables that produced were used as text inputs for the MUSICGEN model.
MUSICGEN is a transformer model that can produce expressive and understandable
musical pieces from natural language. Using MUSICGEN’s ability to understand emo-
tional language, melodies were produced that matched the emotional tone conveyed by
the original arousal valence values. Since the model produces music probabilistically,
MUSICGEN can produce different musical outputs even with repeated use of the same
text input. This is due to random sampling at each step such that there can be nu-
merous different melody variations conveying the same emotional content but varying in
musical form, instrumentation, or phrasing. This is particularly helpful in creative work
since it introduces diversity and freedom into music composition without the necessity
for additional data or new labels.

3.3 Discussion
The processes explored in this study are consistent with prior findings in the domain of
EEG based emotion recognition and emotion conditioned music generation (Chapter 2).
However, several methodological and practical limitations were identified that need to be
addressed to improve the efficiency, accuracy, and applicability of this research area.

One of the key challenges observed was in the subjective annotation of emotional re-
sponses to the vocals. While the use of YouTube comments and sentiment analysis
helped categorize songs into arousal valence quadrants, the emotional interpretations
varied significantly across participants. Despite the effort to average out annotations,
individual biases were still present. For instance, the same song was perceived as sad
by one participant and peaceful by another. This indicates a limitation in the current
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Figure 3.9: MusicGen Model Architecture

annotation approach and suggests the need for either more refined emotional taxonomies
or the inclusion of physiological or behavioral correlates to support subjective reporting.

The EEG data acquisition and pre processing pipeline, although thorough and compliant
with best practices, was found to be highly resource and time intensive. Each participant
session spanned nearly an hour, and subsequent pre processing using EEGLAB including
ICA, artifact removal, and re referencing, took several hours per recording. This ineffi-
ciency makes it difficult to scale the system for larger studies or real time applications.
Similar concerns have been echoed in the literature, underscoring the need for automated
or semi automated pipelines that maintain quality while reducing processing time.

In terms of feature extraction, the combination of CWT and DWT provided comple-
mentary insights into EEG dynamics. However, CWT was found to be computationally
expensive, and DWT, though it is efficient but offered less interpretability in temporal
resolution. The dual usage allowed for comparative benchmarking, but future research
should focus on optimizing wavelet selection and dimensionality reduction techniques to
balance computational efficiency and performance.

For classification, the deep learning models (LSTM and CNN+LSTM) outperformed the
traditional SVM approach, especially the Hybrid model, particularly in capturing tempo-
ral patterns and spatial features of the EEG signals. However, the small dataset size and
limited number of annotations per song may have constrained the models’ generalizabil-
ity. Additionally, a full scale comparison between different deep learning architectures
was beyond the scope of this study, indicating the need for more exhaustive algorithmic
evaluations in future work.

Regarding the music generation component, the initial plan to use transfer learning with
a pre trained melody generation model was limited by dataset size and hardware con-
straints. The alternative method using arousal valence based text prompts with the MU-
SICGEN model was more practical and yielded emotionally aligned melodies. However,
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since MUSICGENs outputs are probabilistic, the consistency of emotional expression
varied between generated samples. This stochastic behavior, while useful for creative
diversity, raises questions about how to evaluate the emotional accuracy of AI generated
music systematically.
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Chapter 4

Implementation and Evaluation

In this section, we’ll be explaining the implementation steps done during the EEG Emo-
tion Recognition Framework and Music Generation steps which were discussed in Method-
olgy(Chapter 3) and the Evaluation process done during the research study.

4.1 EEG Emotion Recognition Framework
First, The focus will be on the implementation of the Data Acquisition framework, Pre-
processing methods, feature extraction and classification models used during the study.

4.1.1 Comment-Based Emotion Estimation of Song Tracks
Before conducting the EEG, there was a need to select appropriate songs as the emotional
content and diversity of the songs influenced the outcome. To ensure that the selected
songs catered for all the emotional responses within the arousal-valence (AV) model, we
have developed a specific Python program developed that would analyze user comments
on the YouTube video of each song and return some estimation for arousal valence values.
People would naturally express how they feel when they listened to a song, so it was a
convenient way of getting emotional responses.

The words employed two kindsone for arousal (how much energy or relaxation a song
conveys) and one for valence (whether the emotion is positive or negative). For instance,
words such as energetic, intense, and fast indicated the higher arousal, whereas words
such as calm, relaxing, and chill indicated lower arousal. Similarly, words such as happy,
beautiful, and uplifting indicated positive valence, whereas words such as sad, painful,
and depressing indicated negative valence.

Each of the comments had their occurrences of certain words verified, and a record of
how many times each of them occurred was made. The totals were scaled by the total of
comments so songs with lots of comments couldn’t skew the results. Each song had then
automatically assigned one of the four AV categories. Table 4.1 and figure 4.1 shows the
selected song track distribution results and distribution on A-V scale respectively.

This created a quick and easy method for labeling the emotions within the songs prior
to their being tested on listeners. It ensured the song set varied in emotions and stayed
balanced, as required for training as well as testing emotion recognition systems. Using
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Figure 4.1: Track Distribution on A-V Scale

Dimension Track Count Percentage
High Arousal - Positive Valence 30 28.8%
High Arousal - Negative Valence 28 26.9%
Low Arousal - Positive Valence 24 23.1%
Low Arousal - Negative Valence 22 21.2%

Table 4.1: Stimuli Selection - Track Distribution Results

listeners’ reaction that anyone could view, it provided additional credibility for the feed-
back from participants on how they themselves felt, making the emotion labels within
the study more accurate.

After selecting the music tracks, the Spleeter model was used to separate the vocals and
melody, as only the vocal track was required for the EEG data collection experiment.
Spleeter is an open-source source separation library developed by Deezer, written in
Python and built on TensorFlow. For this study, the 2-stem model was applied, which
splits the audio into two components: vocals and accompaniment (melody). This method
ensured that only vocal elements were presented during the experiment, minimizing the
impact of instrumental components on EEG recordings.
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Figure 4.2: Implemented System Architecture

4.1.2 Data Collection Framework
A web User Inteface for data collection of EEG was created after splitting the vocal
tracks from the selected music with the Spleeter model. The web application provided
an interactive and user-friendly method of listening to vocals and providing feedback.
The web page consisted of various important wep pages: an information-gathering page,
an instructions page, a stumili interaction page, arousal annotation pages and valence
annotating pages, and an Completion page.

The Information Gathering Interface(figure 4.3) gathered data from participants, such as
name, gender and age, and provided a brief introduction to the experiment. The Instruc-
tion Page(figure 4.4) defined what was to be annotated and provided clear explanations
of the terms "arousal" and "valence" as well as an annotated tutorial for annotating and
a consent form. At the Stimuli Interaction Page(figure 4.5) , the system randomly se-
lected an available music track from the database and loaded it into the player where
participants could play, pause, and replay tracks at their convenience.

In annotation process it followed Self Assessment Manikin(SAM) method in the Arousal
Annotation Interface(figure 4.6) enabled people to indicate the extent to which they
were excited on a scale. The Valence Annotation Interface(figure 4.7) enabled people to
indicate the postivity-negativity of the feelings they had towards the song played to them.
The Completion Page informed them that annotation and the recording was complete,
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Figure 4.3: Information Gathering

Figure 4.4: Instruction Page

and either they could complete or begin another annotation process.

The front end was developed using JavaScript frameworks, as well as CSS. The back end
was created using Node.js and ExpressJS.

EEG recording headset and software was established before the annotation sessions. A 32-
channel "EMOTIV EPOC FLEX" system was used to record the EEG signals. The EEG
was recorded utilizing Emotiv Pro software that possessed numerous tools for connecting
the hardware to the computer and data management. To synchronize the music stimuli
with the EEG recordings, there was an added trigger marking server(figure 4.8) to the
system. The server provided the starting time of the stimulus to the EEG recorder so
that both sound playback and EEG signal could be synchronized.

EEG data was recorded at 128 Hz. The EEG system utilized good Ag/AgCl sensors,
and EEG gel was applied to the contact points to reduce resistance. The sensors were
placed according to the international 10-20 system. The experiments were done within an
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Figure 4.5: Stimuli Interaction Page

Figure 4.6: Arousal Annotation Interface

isolated laboratory setting(In a Studio), and music was played via Sony SMS-1P near-field
studio monitor speakers.

Previously, they recorded the emotions they experienced while undergoing music tests on
paper or filled up questionnaires on the computer. They even managed the EEG recording
themselves. They initiated and terminated the recording independently and stored every
EEG record individually. As a result, it became tedious and time-consuming to prepare
the data after the test.

A fully digital annotation system was proposed to address these issues and was imple-
mented(Shown in figure 4.2). The system linked directly the annotation tool to the EEG
recorder and possessed multiple key elements: an EEG event extraction and mapping al-
gorithm, an EEG data storage, an annotation database, an EEG recorder, an annotation
interface, a music library, and a marking server.

For every session, the annotation tool randomly selected a music track to play indepen-
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Figure 4.7: Valence Annotation Interface

Figure 4.8: Event Marker in EEG Recorder

dently. As the music played, the tool transmitted the stimulus ID and start time to the
marking server. The server converted this data into code and transmitted it to the EEG
recorder as a signal via Emotivs API and Python serial communication. The participant
rated arousal and valence values after listening to the vocal via the interface. The EEG
records with markers and the corresponding notes were stored in independent databases.

The recorded data passed through an event finder system that labeled events. The
system separated EEG signals with markers and linked them to certain notes. The
number of additional EEG files was significantly lessened, unwanted data (such as EEG
without emotional content) was eliminated, and it became easier to label, reducing the
requirement to check manually. The server was created with Flask, a lightweight Python
web tool. The server was programmed to receive stimulus events and interact with the
EEG hardware so that the given sounds corresponded exactly with the recorded EEG
signal. Figure (figure 4.8) is an illustration of the complete system setup, including both
the software interface as well as the integration of the markers.
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4.1.3 Pre-processing Methodology
The pre-processing step is important for enhancing the quality and reliability of EEG
signals, as raw EEG data is often contaminated with various types of noise and artifacts
that can compromise the accuracy of downstream analysis. In this study, a comprehen-
sive pre-processing steps was applied using EEGLAB (Delorme and Makeig, 2004), a
MATLAB-based toolbox specifically designed for processing EEG data.

The pre-processing steps began by configuring the selected EEG channels and their cor-
responding scalp locations. Event markers were identified within the data to facilitate
accurate segmentation of EEG signals in relation to the onset of stimuli.

Figure 4.9: Finite Impulse Response (FIR) Bandpass Filter Configurations

To eliminate low-frequency drifts and high-frequency noise, a Finite Impulse Response
(FIR) bandpass filter was applied, filtering the data between 0.5 Hz and 50 Hz(Shown in
figure 4.9). This range was chosen to preserve frequency components relevant to cognitive
and emotional processes while removing undesired background activity. In addition, line
noise and periodic electrical interference were effectively removed using the CleanLine
algorithm(Figure 4.10), configured with the following parameters:

• Remove Channel if it is flat for more than: 50 seconds

• Max acceptable high-frequency noise standard deviation: 10

• Min acceptable channel correlation threshold: 0.5

• Max acceptable 0.5 sec window standard deviation: 25

Following line noise removal, re-referencing was performed to standardize the EEG signals
across all channels. For this study, the re-referencing was done by computing the average
reference for all channels. This step helps minimize the influence of reference electrode
placement and improves comparability across trials and subjects.

Subsequently, Independent Component Analysis (ICA) was applied to decompose the
EEG data into statistically independent components. This was done by calling the
runica() function with proposed rank of 31(Figure 4.11). The "proposed rank" refers
to the number of independent components the runica algorithm determines to be present
in the data. Here proposed rank was influenced by the Number of Channels where the
algorithm can estimate the rank based on the number of channels or a predefined num-
ber of components to compute. These components were automatically classified using
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Figure 4.10: CleanLine Algorithm Configurations

Figure 4.11: Excuting Independent Component Analysis(ICA)

the ICLabel plugin, which assigns probability scores indicating whether a component
originates from brain activity, ocular artifacts, muscle noise, line noise, or channel noise.
Components identified as non-neural (e.g., eye movements, muscle contractions, or elec-
trical interference) were flagged(Figure 4.12) and removed based on confidence thresholds
provided by ICLabel. The parameters for flagging component for rejection was configures
as follows:

• Probability range for "Brain": 0.0 - 0.1

• Probability range for "Muscle": 0.9 - 1.0

• Probability range for "Eye": 0.9 - 1.0

Additionally, any boundary events or discontinuities in the EEG recordings were detected
and excluded to ensure that only clean and continuous signal segments were retained for
further processing(Boundary Events Shown in Figure 4.13).

This multi-stage pre-processing steps substantially improved the signal-to-noise ratio,
removed irrelevant and noisy components, and ensured that only high-quality data were
retained. The use of EEGLAB, in conjunction with CleanLine and ICLabel, provided
a robust and semi-automated approach for artifact removal and signal standardization.
Final step is to remove epocs from the dataset for feature extraction. Removing epocs
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Figure 4.12: Identified Flagged components of ICLabel

means one data comprises of many tracks(10 tracks in our study), so have to extract
cleaned eeg recording for each track before moving on to feature extraction step. Finally,
the cleaned EEG dataset obtained was both reliable and consistent, making it well-
suited for subsequent stages of feature extraction, emotion annotation alignment, and
classification analysis. In the two figures shown below 4.14 and 4.15 you can see the
difference between the EEG signals before and after pre-processing.

4.1.4 Feature Extraction Implementations
Feature extraction was performed using both Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT). The pre-processed EEG data, originally stored
in EEGLAB format (.set files), was loaded using an MNE-Python library capable of
handling EEG datasets. To ensure accessibility for downstream analysis, the data was
fully loaded into memory during the import process. Upon loading, key metadata was
extracted, including the sampling frequency, which defines the temporal resolution of the
EEG signal, and the total number of recorded samples. These parameters were used to
calculate and verify the overall recording duration.

To standardize the input length across all samples for consistent feature engineering
and dimensionality reduction, each EEG recording was cropped to a fixed duration of
10 seconds. This ensured uniformity in data length, which is critical for feeding into
machine learning models. Following the cropping process, the EEG data was converted
into a two-dimensional matrix, where each row corresponds to an EEG channel and each
column represents a time point.

The core of the transformation pipeline involved applying a Continuous Wavelet Trans-
form to each EEG channel individually. This transformation was carried out using a
Morlet wavelet, a complex wavelet that provides a balanced resolution in both time and
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Figure 4.13: Boundary Event Removal

Figure 4.14: Before Pre-Processing

frequency domains, making it well-suited for analyzing non-stationary EEG signals. The
signal was decomposed over 64 scales, allowing the analysis of time-varying frequency
components across a wide spectrum. For each channel, this process produced a time-
frequency matrix representing how the frequency content of the signal evolved over time.

The resulting wavelet coefficients for all EEG channels were organized into a three-
dimensional array, structured to preserve information across spatial (channel), frequency
(scale), and temporal (time) domains. This representation was particularly well-suited for
statistical analysis and deep learning applications, enabling the extraction of both global
and localized patterns in the EEG data. It was further utilized as input to neural mod-
els such as CNNs and LSTMs, which are capable of capturing complex spatial-temporal
dependencies.

For the DWT-based analysis, also like in CWT, 10-second segment was individually
processed using Discrete Wavelet Transform to extract hierarchical frequency-domain
features. The PyWavelets (pywt) library was used to perform multi-level wavelet de-
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Figure 4.15: After Pre-Processing

composition. The db4 Daubechies wavelet was selected as the mother wavelet due to its
balance between time and frequency localization and its widespread use in EEG analysis.
Decomposition was carried out up to level 5, yielding both approximation and detail
coefficients at each level, where each level corresponds to a distinct frequency band. The
correspondence between decomposition levels and canonical EEG bands was established
based on the sampling rate and the DWTs dyadic scale property.

For each decomposition level, the spectral power was computed by taking the squared
magnitude of the wavelet coefficients and summing them within each frequency band of
interestdelta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz), and
gamma (>= 30 Hz). These band-specific power features were extracted for each EEG
channel and then concatenated to form a comprehensive feature vector representing the
entire EEG segment.

This feature vector served as input for downstream machine learning tasks such as clas-
sification or regression. Compared to the CWT-based representation, the DWT method
offered a more compact and computationally efficient feature set. However, it trades off
some temporal resolution and continuity in frequency representation, which may affect
performance depending on the nature of the classification task. Nonetheless, comparing
both DWT and CWT approaches provided valuable insight into the trade-offs between
discrete and continuous wavelet frameworks for EEG-based emotion recognition.

4.1.5 Feature classification Models
The first model architecture implemented in this study is a deep LSTM network that
takes in EEG data in the shape of (1281, 960), where 1281 represents time steps and
960 represents features extracted at each step. It begins with a wide LSTM layer of 256
units to capture rich temporal dynamics, followed by batch normalization and dropout
for regularization. A second LSTM layer with 128 units continues the temporal abstrac-
tion, again with regularization. The third LSTM layer with 64 units summarizes the
entire sequence into a compact representation by setting return sequences = False. After
the sequence processing, a dense layer with 64 neurons and ReLU activation provides
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non-linear feature transformation, and the final dense layer outputs two continuous val-
uesarousal and valenceusing a linear activation function. The model is compiled with
the Adam optimizer, mean squared error (MSE) loss function, and mean absolute error
(MAE) as an additional evaluation metric, which are well-suited for this type of regres-
sion task. This layered approach ensures the model learns complex patterns in EEG data
across time while maintaining robustness and generalizability.

Feature Extraction Method Emotion Dimension MAE MSE Pearson Correlation

CWT Arousal 0.1649 0.0425 -0.1226
Valence 0.1993 0.0577 0.0984

DWT Arousal 0.1639 0.0423 0.2275
Valence 0.1977 0.0577 0.0850

Table 4.2: Evaluation Results - Deep LSTM

In the CNN + LSTM model, the input shape corresponds to EEG time series where
each timestep includes a set of features (e.g., EEG channels or wavelet coefficients). You
begin with a 1D convolution layer with 64 filters and a kernel size of 3, followed by batch
normalization to stabilize learning and max pooling to reduce the spatial dimension.
Dropout is used for regularization. A second Conv1D layer with 128 filters deepens the
spatial abstraction before another round of normalization, pooling, and dropout.

Feature Extraction Method Emotion Dimension MAE MSE Pearson Correlation

CWT Arousal 0.2591 0.0950 0.2950
Valence 0.2374 0.0796 0.5109

DWT Arousal 0.1613 0.0420 -0.0865
Valence 0.1980 0.0577 -0.0089

Table 4.3: Evaluation Results - Hybrid Model (CNN+LSTM)

After the CNN layers, we have introduce a single LSTM layer with 64 units. This layer
learns to model how the spatial features evolve over time, capturing emotional state
transitions. Dropout is again applied to prevent overfitting. Finally, a dense layer with 2
outputs and linear activation predicts the arousal and valence values, making the model
suitable for continuous regression tasks. The model is compiled using the Adam optimizer
with Mean Squared Error (MSE) as the loss function and Mean Absolute Error (MAE)
as a performance metric.

Support Vector Regression (SVR) was chosen considering the small dataset available,
consisting only of 169 EEG samples. The method is especially well-suited here, presenting
satisfactory performance even with a smaller number of training samples, and with a lower
chance of overfitting compared to more complex deep models. The features for predictions
were extracted from EEG signals using both Discrete Wavelet Transform (DWT) as well
as the Continuous Wavelet Transform (CWT), thus capturing intricate time-frequency
features of the emotional states.

The features extracted initially using multidimensional configurations, including time
windows, channels, and frequency components, were then converted to one-dimensional
vectors to conform to the SVR’s input requirements. The emotional labels, namely
arousal and valence, were formatted as a two-column matrix where each row described
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the emotional state for one sample. Standardization of features was performed before
the training step using z-score normalization to guarantee equal scaling on all inputs,
a requirement for the proper operation of kernel models like SVR. The data were split
between training and test sets at a ratio of 80-20 for evaluating the generalization ability
of the model on test data that had not been seen during training.

Also two different Support Vector Regression (SVR) models were trained, one for pre-
dicting arousal and one for estimating valence. Each was set to use a radial basis function
(RBF) kernel, which is especially suited to finding non-linear relationships between the
input features and their respective target values. Hyperparameter selection, including
the penalty factor (C) and epsilon within the loss function, followed widely established
defaults, but there is a potential for tuning that might lead to improved results. In or-
der to determine how accurate the predictions were, a variety of regression performance
measures were implemented. The Mean Absolute Error (MAE) and Mean Squared Error
(MSE) both provided insights regarding the magnitude of the prediction errors, while
Pearson correlation coefficients were obtained to examine both the magnitude and the
direction of the linear relationship between observed values and predicted values.

Feature Extraction Method Emotion Dimension MAE MSE Pearson Correlation

CWT Arousal 0.1862 0.0521 0.0973
Valence 0.1931 0.0565 0.2038

DWT Arousal 0.2005 0.0610 0.1446
Valence 0.1949 0.0544 0.2924

Table 4.4: Evaluation Results - SVR

4.2 Music Generation Model
To translate emotions into music, an arousalvalence pair was converted into natural lan-
guage words by employing a rule-based system. The arousal and valence values were
derived from a sample’s emotion classifier that was attached to every music sample and
were displayed on a graph to observe the way the emotions are distributed across the
samples. To make things easier, the continuous emotion scores were divided into emo-
tion labels utilizing an ten-quadrant model. In this quadrant model, the arousalvalence
plane was partitioned into ten regions of emotion proposed as in (Sehgal, Sharma &
Anand 2021) with varying combinations of emotional arousal and valence. Figure 4.16
shows the Russels circumplex model of emotions mapped to certain label quadrants.

To operate this model, a set of conditional sentences was defined to according to the figure
shown in 4.16 to assign natural language prompts to each emotional zone. These prompts
were crafted to reflect the musical character and emotional essence of each region.

These descriptive prompts were then used as input to MUSICGEN, a transformer-based
language-to-music generation model. The model interprets the emotional cues embedded
in the prompt and synthesizes corresponding melodies. Due to MUSICGENs probabilistic
generation mechanism, repeated use of the same prompt may yield different musical
outputs, enabling diverse emotional expressions under the same emotional label.

To enhance personalization and flexibility, additional user-defined parameters were sup-
ported in the prompt formulation. These included melody duration, instrumentation,
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Figure 4.16: Regions of Emotion Labels

genre, and tempo, allowing more fine-grained control over the musical output. For in-
stance, users could request: Create a deeply emotional, slow, and sad composition like
a lament, using strings and piano, 30 seconds long, in a classical style.

This rule-based mapping approach, combined with prompt augmentation, established a
transparent and controllable interface between emotion recognition and generative music
synthesis, enabling both systematic evaluation and artistic exploration.

Table 4.5 shows the evaluation results for 10 melodies which was generated by various
arousal and valence inputs.To test the quality and emotional fit of the music samples
generated, a subjective evaluations was conducted. Each melody was generated from a
given arousalvalence pair using a set of rules. The subjects were exposed to the samples
and was asked to annotated arousal and valence values and, Music Quality (quality of
sound overall, sound, musicality). Music Quality was rated on a continuum from 1 to 10.

In addition to the scores, the listeners were questioned on their opinions regarding the
music. What they said illustrated how individuals responded to the music even more
clearly than the scores themselves did. It was intended to blend figures with actual emo-
tions to determine how well the system translated emotions into music that individuals
could comprehend clearly and feel it themselves(Feedbacks also shown in Table 4.5).
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Track
No

Avg.
Arousal

Avg.
Va-
lence

Input
Arousal

Input
Va-
lence

Avg.
Audio
Qual-
ity

Comments

1 0.20 0.13 0.1 0.2 9.0 Mystical and calm. Good audio
quality. Feels sad.

2 0.83 0.33 0.9 0.2 8.0 The melody is intense, but the au-
dio is repetitive. Nothing much
to be happy about. Good audio
quality.

3 0.60 0.53 0.6 0.6 7.33 Monotonous. Lacks variety. Feels
neutral.

4 0.70 0.67 0.9 0.8 7.67 The audio is intense. Good bass.
A bit noisy.

5 0.67 0.53 0.5 0.5 7.0 Neutral audio. Sounds like back-
ground music suitable for work.

6 0.37 0.53 0.2 0.7 8.33 Soothing and calm music. Less
intensive.

7 0.63 0.43 0.8 0.3 8.33 Dominated by the bass. Other in-
struments are hard to hear.

8 0.60 0.27 0.7 0.1 8.33 Good beat. Feels energetic.
9 0.50 0.70 0.4 0.6 8.33 Good audio quality. Bit of noise

present. Gives good vibes.
10 0.40 0.63 0.3 0.7 8.0 Dominated by a humming sound.

Repetitive, but gives pleasant
vibes.

Table 4.5: Emotion Ratings, Audio Quality and Comments for the Generated Melodies
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Chapter 5

Results and Analysis

This study explored two primary feature extraction methods: Discrete Wavelet Transform
(DWT) and Continuous Wavelet Transform (CWT) for EEG-based emotion recognition,
targeting arousal and valence dimensions. The extracted features were used to train and
evaluate three machine learning models: Support Vector Regression (SVR), Long Short-
Term Memory (LSTM) networks, and a hybrid Convolutional Neural Network with LSTM
(CNN+LSTM). The models were assessed using three evaluation metrics, Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Pearson correlation coefficient. This
section presents an analysis of the obtained results, comparing model performance across
feature extraction methods and reflecting on their alignment with findings in existing
literature.

5.1 DWT-Based Results Analysis
In the DWT feature extraction approach, features were extracted using a 5-level de-
composition with the Daubechies 4 (db4) wavelet. Band-specific power features were
computed for delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz),
and gamma (>= 30 Hz) bands across 32 EEG channels.

When evaluated using Support Vector Regression (SVR), the DWT features yielded mod-
est results. The MAE for arousal was 0.2005 and valence was 0.1949, while the Pearson
correlations were 0.1446 and 0.2924, respectively. Although these results demonstrate
some linear trend alignment especially for valence, the performance remained limited,
highlighting the difficulty SVR has with capturing non-linear temporal dependencies.

The LSTM model showed slight improvements over SVR. Using DWT features, it achieved
MAE values of 0.1639 (arousal) and 0.1977 (valence), with Pearson correlations of 0.2275
and 0.0850, respectively. This indicates better estimation accuracy but a weaker ability
to capture temporal emotional dynamics, especially for valence.

The CNN+LSTM hybrid model achieved the lowest MAE for arousal at 0.1613, but
interestingly, it had negative Pearson correlation values (-0.0865 for arousal and -0.0089
for valence), suggesting poor trend alignment despite low error magnitudes. This may
indicate overfitting or the models difficulty in generalizing from the simpler DWT features
as well as dataset sample being low.
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Model Emotion Dimension MAE MSE Pearson Correlation

SVR Arousal 0.2005 0.0610 0.1446
Valence 0.1949 0.0544 0.2924

LSTM Arousal 0.1639 0.0423 0.2275
Valence 0.1977 0.0577 0.0850

CNN + LSTM Arousal 0.1613 0.0420 -0.0865
Valence 0.1980 0.0577 -0.0089

Table 5.1: DWT Feature Extraction Evaluation Results

While previous literature reports classification accuracies of 80% or higher using DWT,
it is important to note that those studies typically frame emotion recognition as a classi-
fication task, mapping EEG signals to discrete labels (e.g., "happy", "sad"). In contrast,
this study uses a regression-based approach, predicting continuous arousal and valence
scores, which is inherently more challenging and realistic. Thus, while the performance
may seem modest compared to classification benchmarks, this study represents a neces-
sary step toward more precise and nuanced emotion modeling.

5.2 CWT-Based Results Analysis
The Continuous Wavelet Transform (CWT) offers a denser, more expressive time-frequency
representation by capturing frequency content at multiple scales across the full signal.
In this study, the Morlet wavelet was used to generate CWT coefficients across 64 scales
for each EEG channel. Unlike DWT, which simplifies signals into band powers, CWT
retains both time and frequency continuity, making it ideal for learning models that can
extract meaningful temporal dependencies.

The CWT features proved more challenging for SVR. The MAE values were 0.1862
(arousal) and 0.1931 (valence), with Pearson correlations of 0.0973 and 0.2038, respec-
tively. Compared to DWT, SVR performance degraded slightly, especially for arousal,
likely due to the higher dimensionality of CWT features which SVR could not handle
efficiently.

LSTM models showed mixed performance with CWT. While MAE for arousal remained
similar (0.1649) and valence slightly higher (0.1993), the correlation values were 0.1226
for arousal and 0.0984 for valence, indicating weaker alignment. These results suggest
that while LSTM can handle sequence data, the raw CWT coefficients may require more
pre-processing or dimensionality reduction to be effective in this architecture.

However, the CNN+LSTM model demonstrated the best trend prediction performance
using CWT features. It achieved Pearson correlation coefficients of 0.2950 for arousal and
0.5109 for valence, the highest correlations across all experiments, showing its superior
ability to capture emotional progression. Despite higher MAEs of 0.2591 (arousal) and
0.2374 (valence), the CNN+LSTM model with CWT proved the most capable in learning
the nuanced, temporal patterns that underlie emotional states.

These findings are particularly newly discovered because, to our knowledge, no prior
studies have used Morlet-based CWT coefficients in EEG emotion recognition. Thus,
while the error margins may appear higher, this approach introduces a novel feature rep-
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Model Emotion Dimension MAE MSE Pearson Correlation

SVR Arousal 0.1862 0.0521 0.0973
Valence 0.1931 0.0565 0.2038

LSTM Arousal 0.1649 0.0425 -0.1226
Valence 0.1993 0.0577 0.0984

CNN + LSTM Arousal 0.2591 0.0950 0.2950
Valence 0.2374 0.0796 0.5109

Table 5.2: CWT Feature Extraction Evaluation Results

resentation that captures richer dynamics, laying the groundwork for future exploration
and optimization.

5.3 Cross-Method Comparison between CWT and
DWT

To evaluate the relative performance of the DWT (Discrete Wavelet Transform) feature
extraction method compared to CWT (Continuous Wavelet Transform), we calculated
the percentage change in three evaluation metrics: Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Pearson Correlation. These percentage changes are computed
using the formula:To evaluate the relative performance of the DWT (Discrete Wavelet
Transform) feature extraction method compared to CWT (Continuous Wavelet Trans-
form), we calculated the percentage change in three evaluation metrics: Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Pearson Correlation. These percentage
changes are computed using the formula:

• % Change = ((DWT - CWT) / CWT) X 100 for MAE and MSE.

• For Pearson Correlation, since values can be negative or close to zero, we use
% Change = ((DWT - CWT) / |CWT|) X 100 to better capture the directional
difference relative to the magnitude of the CWT correlation.

Model Emotion MAE (%) MSE (%) Pearson Corr (%)
SVM Arousal +7.68 +17.09 +48.63
SVM Valence +0.93 -3.72 +43.46

CNN+LSTM Arousal -37.72 -55.79 -129.32
CNN+LSTM Valence -16.56 -27.47 -101.75

LSTM Arousal -0.61 -0.47 +285.69
LSTM Valence -0.80 0.00 -13.57

Table 5.3: Percentage change from CWT to DWT for MAE, MSE, and Pearson Correlation

The interpretation of these results gives us insight into how each feature extraction
method impacts model performance. A positive percentage in MAE or MSE indicates
that DWT produced higher error, meaning worse performance, whereas a negative value
suggests lower error and improved prediction accuracy. For Pearson correlation, a positive
percentage means DWT improved correlation with ground truth values, while a negative
percentage indicates a decline in the model’s ability to capture true emotion trends.
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From the analysis, it is evident that DWT improved correlation for the SVM model in
both arousal and valence dimensions, despite a slight increase in MAE. For the LSTM
model, DWT significantly boosted the Pearson correlation for arousal (+285%), indicat-
ing better temporal learning with DWT-based features. However, CNN+LSTM showed
a drastic drop in correlation when using DWT, even though the MAE and MSE were
lower. This suggests that while DWT may reduce raw error, it might not preserve the
necessary temporal-frequency features for deeper networks like CNN+LSTM, which seem
to benefit more from the richer representations of CWT.

Overall, DWT seems better suited for simpler models like SVM and LSTM, especially in
scenarios prioritizing correlation over raw error. In contrast, CWT is more effective for
deep hybrid models like CNN+LSTM, where capturing nuanced time-frequency dynamics
is critical for strong performance.

5.4 Emotion Mapping Strategy
The first step in this process involved mapping the continuous arousal-valence values
into natural language prompts that could guide a generative music model. The arousal-
valence space was divided into eight emotional zones, each representing a unique quadrant
or emotional tone (e.g., high arousal + low valence = aggressive or chaotic; low arousal
+ high valence = calm or soothing). This mapping was implemented according to an
ten-quadrant model where the arousalvalence plane was partitioned into ten regions of
emotion proposed as in (Sehgal et al. 2021) with varying combinations of emotional
arousal and valence.

This discrete partitioning of a continuous space enabled a meaningful translation between
the numeric outputs of the EEG model and a text-driven generative process. Each
description was carefully curated to reflect the emotional qualities of the target quadrant,
ensuring the music generated would be semantically aligned with the emotional experience
of the subject.

5.5 Music Generation with MusicGen
The evaluation of arousal and valence across the 10 tracks reveals meaningful patterns
in how emotional characteristics are perceived and how they align with the input values.
Arousal, which measures the energy or intensity of a track, shows a generally consis-
tent relationship between the input arousal values and the average arousal ratings. For
instance, tracks like 2, 4, and 7, which had higher input arousal values (0.8 or above),
also resulted in relatively high average arousal scores, indicating that energetic or intense
music is being accurately captured by the input-emotion mapping.

In contrast, the valence ratings, indicating emotional positivity or pleasantness show a
weaker and more varied relationship. Some tracks, such as Track 6, had a high input
valence (0.7) and a reasonably close average valence (0.53), suggesting good alignment.
However, others, like Track 8, had a very low input valence (0.1) but a moderately higher
average (0.27), and Track 2 had a low input valence (0.2) but was perceived at 0.33 on
average. These differences suggest that valence is more subjective and possibly influenced
by melodic, harmonic, or stylistic elements that are not always captured through basic
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audio features.

The emotional interpretations for each track support these numeric trends. Track 1, for
example, is characterized by low arousal and moderate valence, described as mystical
and calm, which matches its peaceful emotional profile. Track 2, which has high arousal
but low valence, is noted for being intense yet emotionally flatconsistent with an anxious
or agitated mood. Tracks like 6 and 10, which have low arousal but higher valence, are
described as soothing or pleasant, reinforcing the idea that music can be emotionally
positive even if not highly energetic.

From an audio quality perspective, most tracks maintain a score above 8, indicating gen-
erally good production value. Even tracks with comments noting noise or repetitionsuch
as Track 3 ("monotonous") or Track 10 ("repetitive") still achieved fair emotional ratings,
suggesting that minor imperfections do not significantly hinder emotional perception.
However, tracks where elements like bass dominance (e.g., Track 7) or lack of variety are
present may slightly affect clarity in emotional delivery.

In the table 5.4 shows how the emotional alignment between the input emotion values
correlates with emotion values we got from subjective evaluation. This helps quantify
how closely the perceived (average) emotion matches the intended (input) emotion. The
formula used:

Alignment(%) = (1 − |Average− Input|)»100

This gives 100% if there’s perfect alignment (no difference), and drops as the difference
increases.

Track Arousal Alignment (%) Valence Alignment (%)
1 80.00 86.67
2 92.59 66.67
3 100.00 88.89
4 77.78 83.33
5 83.33 96.67
6 45.71 76.19
7 79.17 56.67
8 85.71 16.67
9 80.00 91.67
10 75.00 91.43

Table 5.4: Emotion Alignment between Input and Evaluated Arousal/Valence

The emotion alignment results reveal that arousal alignment is generally strong, with
most tracks achieving over 80% alignment and Track 3 even reaching a perfect 100%.
This indicates that the perceived energy or intensity of the tracks closely matches the
intended input values, suggesting effective modeling of arousal. In contrast, valence
alignment is more varied, with some tracks like 5, 9, and 10 showing high accuracy (over
90%), while others such as Tracks 7 and 8 exhibit significant mismatches. Track 8, for
instance, was intended to be very low in valence (0.1) but was perceived much higher
(0.27), resulting in only 16.67% alignment. This discrepancy highlights the subjective
nature of valence perception and suggests that modeling valence accurately may require
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more nuanced features or refined approaches. Overall, while arousal detection appears
robust, valence alignment remains an area for improvement.
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Chapter 6

Conclusion and Future Work

This study presents a comparative exploration of DWT and CWT feature extraction
methods for EEG-based emotion recognition, implemented in a regression based frame-
work predicting continuous arousal and valence scores. The comparison results reveal that
while DWT continues to offer reliable, low-error feature representations, CWT introduces
a promising new direction through the use of Morlet wavelet coefficients, a contribution
not previously addressed in the literature. Using these predicted arousal and valence val-
ues, we mapped them to user preferences to generate melodies that reflect the emotional
impression conveyed by song vocals. This mapping serves as an intermediate step toward
more personalized and emotion-sensitive music experiences.

Among the evaluated models, the CNN+LSTM architecture, when paired with CWT fea-
tures, demonstrated the highest Pearson correlation particularly for valence indicating its
strength in capturing overall emotional trends even when prediction errors (MAE/MSE)
were slightly higher. This makes it suitable for real-time or dynamic emotional analy-
sis tasks, including adaptive music generation, neuro-feedback systems, and affect-aware
applications. Also have to mention two datasets were created during the study. First
one is the annotated dataset of arousal valence values for the vocal, melody and the full
song and has 104 tracks. Second one is the EEG Data for the all 104 vocal tracks with
at least two recordings per song vocal. Both the datasets have been made publicly avail-
able to encourage further research in emotion recognition and its applications in music
generation.

To improve generalizability, future work should prioritize expanding the dataset beyond
the current 169 samples, incorporating more participants and diverse stimuli. Addition-
ally, integrating dimensionality reduction techniques such as PCA or autoencoders may
help in refining CWT features for compatibility with both traditional and deep learning
models, while also addressing overfitting concerns.

Performance could also be enhanced by leveraging advanced architectures such as atten-
tion mechanisms or transformers, which would allow the model to focus on emotionally
salient parts of the EEG signal. Furthermore, combining EEG with other modalities like
facial expression analysis, voice tone, or physiological measurements could lead to more
robust and comprehensive emotion recognition systems.

Comparing the results of predicting emotions as classes versus predicting continuous
values from EEG data reveals a noticeable difference in accuracy. When emotions are
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predicted as discrete classes (e.g., high arousal vs. low arousal, positive vs. negative
valence), the model often performs better due to the clear, bounded nature of the classes.
This makes the classification problem less complex and may lead to more accurate pre-
dictions, as the model can focus on distinguishing between distinct groups.

On the other hand, predicting continuous values for emotional states (such as exact
arousal and valence scores) introduces additional challenges. Continuous regression re-
quires the model to not only capture the general trend but also predict more precise
values, which can be harder due to the variability and noise present in EEG signals.
Small errors in continuous predictions may have a more significant impact on evaluation
metrics like Mean Absolute Error (MAE) or Pearson correlation, making them appear
less accurate.

In terms of music generation, a promising future direction involves moving beyond text-
based melody mapping to a fully data-driven generation model. By training deep gen-
erative architectures (e.g., Transformers, VAE, or MusicVAE) on a large-scale dataset
of music annotated with continuous arousal-valence scores such as DEAM or curated
MIDI/audio corporawe could develop a model that learns to produce music directly from
emotional cues. This would enable the generation of emotionally expressive and contex-
tually coherent melodies across various genres and tempos, based on learned patterns
rather than predefined mappings.

Such a generative model could be integrated with the EEG emotion recognition pipeline
for real-time, neuroadaptive music generation. As the system continuously interprets the
user’s emotional state from EEG data, it could dynamically generate and adapt music
in response, creating a deeply personalized and interactive experience. This could have
significant applications in personalized music therapy, immersive media, and emotional
wellbeing. Future evaluations should include user studies to assess perceived emotional
alignment, music quality, and responsiveness, supported by physiological metrics to val-
idate real-time emotional effects. Overall, this approach represents a significant step
toward merging human affective states with artificial creativity.
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