
Adaptive AI Algorithms for Proctoring:

Automating Student Behaviour Profiling

and Real-Time Misconduct Detection

Ravindu Wegiriya

Index number: 20002041

Supervisor: Dr. Enosha Hettiarachchi

Co-Supervisor: Prof. K.P. Hewagamage

June 2025

Submitted in partial fulfillment of the requirements of the

B.Sc in Computer Science Final Year Project (SCS4224)

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person or myself except where due reference is made in the text.

I also hereby give consent for my dissertation, if accepted, be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Student Name : W.W.R.U. Wegiriya

Registration Number : 2020/CS/204

Index Number : 20002041

Signature & Date

This is to certify that this dissertation is based on the work of Mr. W.W.R.U.

Wegiriya under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Supervisor Name : Dr. Enosha Hettiarachchi

Signature & Date

1

28/06/2025

Contents

1 Abstract 7

2 Introduction 8

2.1 Motivation . 8

2.2 Background . 9

2.3 Revised Scope . 9

2.3.1 In Scope . 9

2.3.2 Out of Scope . 11

3 Comprehensive Literature Survey and Research Gaps 12

3.1 Preliminary Literature Review . 12

3.1.1 Identity Verification and Behavioral Monitoring 12

3.1.2 Natural Language and Audio Processing 14

3.1.3 System and Network Monitoring 15

3.1.4 Dual-Mode Operation and Real-Time Alerting 15

3.2 Recent Developments . 16

3.3 Research Gaps . 18

4 Research Questions 21

4.1 Research Question 1 . 21

4.2 Research Question 2 . 21

4.3 Research Question 3 . 22

5 Aims and Objectives 23

5.1 Aim . 23

5.2 Objectives . 23

6 Research Methodology 26

6.1 Experimental Research and Design Science 26

2

6.2 Steps in Conducting the Research . 26

6.3 High Level System Architecture . 27

7 Research Workflow 29

7.1 Research Workflow Overview . 29

7.2 Real-Time Alerting Framework . 29

7.2.1 Gaze Tracking Module . 33

7.2.2 Head Pose Estimation Module 39

7.2.3 NLP-Based Murmur Detection Module 44

7.2.4 Environment Noise Detection Module 47

7.3 Behaviour Profiling and Adaptivity 51

7.3.1 Server-Based Behavioral Model Deployment 55

7.4 Prototype User Interface . 57

7.4.1 Suggested Student Interface 58

7.4.2 Suggested Proctor Interface 58

7.4.3 Positioning within the Research Scope 59

7.5 Trial Execution . 60

8 Evaluation and Results 61

8.1 Final Evaluation Plan . 61

8.1.1 Quantitative Evaluation . 61

8.1.2 Qualitative Evaluation . 61

8.2 Quantitative Evaluation Experiment Outcomes - Modulewise 62

8.2.1 Gaze Tracking . 62

8.2.2 Head Pose Estimation . 64

8.2.3 NLP-Based Murmur Detection 67

8.2.4 Environment Noise Detection 69

8.3 Quantitative Evaluation Experiment Outcomes - Behaviour Profiling

and Adaptivity . 72

3

8.4 Quantitative Evaluation Experiment Outcomes - Full System 76

8.5 Qualitative Evaluation Outcomes . 83

8.5.1 Supervisor’s Feedback . 84

8.5.2 Early Users’ Feedback . 84

9 Future Work 86

10 Conclusion 88

11 Appendix 91

11.1 Consent Form for Data Access . 91

4

List of Figures

6.1 High Level Research Architecture . 28

7.1 Screenshot of Terminal Output of Head Movement Tracking 30

7.2 Screenshot of Code and Terminal Output of Voice Energy Detection . 31

7.3 Architecture of Rule Based Monitoring System 33

7.4 Screenshots of the Gaze Tracking script identifying various gaze directions 38

7.5 Screenshot of the Head Pose Tracking script identifying detailed facial

landmarks . 42

7.6 Screenshot of Code and Terminal Output of Frame Preprocessing . . 52

7.7 Screenshot of Terminal Output of Model Training 53

7.8 Suggested Proctor Interface: Alerts Dashboard and Escalation Actions 59

8.1 Screenshots of Students testing the System 78

8.2 Case 1: Rule-Based Flag Suppressed by Adaptivity Module 80

8.3 Case 2: Violation Confirmed by Both Rule-Based and Adaptive Models 81

5

List of Acronyms

ML Machine Learning

AI Artificial Intelligence

MFA Multi Factor Authentication

UI User Interface

6

1 Abstract

This thesis presents the design and evaluation of an adaptive artificial intelligence

(AI) based online proctoring system, aiming to automate student behavior profiling

and enable real-time misconduct detection. Motivated by the rapid transition to on-

line assessments during the COVID-19 pandemic, the study addresses the limitations

of traditional rule-based proctoring systems, including high false-positive rates and

fairness concerns. The proposed system combines rule-based anomaly detection with

a novel adaptive behavior profiling module, which learns individual student behav-

iors during mock exams to distinguish between genuine violations and innocuous,

habitual movements. Multiple modules, such as gaze tracking, head pose estimation,

murmur detection, and environmental noise detection, were developed and integrated

into a hybrid framework. A series of controlled mock and simulated real exams

with student volunteers demonstrated the system’s effectiveness in improving preci-

sion, recall, and fairness while maintaining real-time performance. Evaluation results

showed significant reductions in false positives and increased user acceptance of the

adaptive profiling concept. This work contributes to the field of intelligent proctor-

ing by proposing a scalable, modular, and behaviorally aware detection framework

that balances academic integrity with student experience, laying the groundwork for

future research on ethical, inclusive, and robust online examination systems.

7

2 Introduction

The rapid shift to digital platforms and remote learning due to the COVID-19 pan-

demic has transformed the educational landscape (Moreno-Guerrero et al. 2020).

This transformation has brought challenges, particularly in ensuring the security and

integrity of remote assessments. AI-based and ML-based proctoring systems have

emerged as solutions to these challenges, promising to uphold academic integrity

through scalable and secure assessment mechanisms (Peterson 2019, Pandey et al.

2020). AI and ML technologies enable real-time monitoring and fraud detection

through techniques like facial recognition, gaze tracking, and behavioral analysis, uti-

lizing basic hardware such as webcams and microphones. While these systems grow

in importance, significant concerns about privacy and ethics persist (Coghlan et al.

2021, Draaijer et al. 2018).

Our research initially focused on investigating the effectiveness of adaptive AI-

based proctoring systems by testing algorithms for baseline behavior profiling, real-

time alerting, and adaptive responses. Throughout the research so far, emphasis has

shifted toward refining models for precise gaze tracking, adaptable behavior profiling

during mock exams, and accurate identification of anomalies based on students’ indi-

vidual behavior profiles. These refinements ensure that the proctoring system meets

both technical and ethical standards.

2.1 Motivation

The shift to online learning and assessment, accelerated by the COVID-19 pandemic,

has highlighted the need for robust online proctoring solutions. Traditional in-person

invigilation is not feasible in remote settings, leading to the adoption of AI and ML

technologies for monitoring and ensuring exam integrity. However, these technologies

pose challenges related to their effectiveness, false-positive rates, and the absence of

a comprehensive ethical framework (Moreno-Guerrero et al. 2020).

8

This research now seeks to create an adaptive AI-based proctoring solution that

not only uses individual student profiles but is also responsive to specific behaviors

during exams. By refining the system to adapt to students’ natural behavioral varia-

tions, we aim to reduce false positives. Our recent work has centered on analyzing gaze

patterns, frequency of movements, and real-time adjustments to distinguish between

typical and suspicious activities with higher accuracy, thus enhancing proctoring re-

liability and student experience.

2.2 Background

Online proctoring systems have evolved from simple webcam monitoring to advanced

intelligent monitoring techniques. Key advancements integrated in this research in-

clude:

• Facial Recognition: Ensures identity verification and continuous monitoring.

• Gaze Tracking: Monitors eye movements and tracks gaze patterns in real-

time, including precision tracking to detect even minor deviations.

• Behavioral Analysis: Establishes baseline behavior profiles during mock ex-

ams to differentiate between typical and suspicious behaviors.

• Audio Processing and System Monitoring: These provide supplementary

validation but remain secondary within this study’s scope.

2.3 Revised Scope

Our scope evolved to emphasize adaptive algorithms and behavioral profiling in online

proctoring. Key components of the revised scope include the following:

2.3.1 In Scope

• Developing Adaptive AI Algorithms for Proctoring Systems

9

- Researching and developing adaptive algorithms that can learn baseline

behaviors to detect suspicious activity.

- Enhancing accuracy and efficiency with real-time feedback, reducing false

positives.

• Profiling Student Behavior in Ideal Examination Environments

- Collecting data from controlled mock exams to define individual student

behavior.

- Using ML to create baselines for detecting anomalies.

• Automating Detection of Suspicious Behavior and Real-Time Alerts

- Implementing a system that uses adaptive profiles for real-time monitoring

and alerting.

- Switching from autonomous to human-supervised proctoring when anoma-

lies are detected.

• Student Identity Monitoring

- Verifying identity with continuous checks throughout the examination.

• Performance Evaluation and Benchmarking

- Evaluating detection accuracy, false positive rates, user experience, and

feedback mechanisms.

- Ethical Consideration - Obtaining students’ consent through an acknowl-

edgment form, filled prior to collecting their data for training and testing

purposes.

10

2.3.2 Out of Scope

• Development of New Hardware

- Relying on existing hardware such as webcams and microphones.

• Long-term Psychological Impacts

- Not investigating long-term psychological effects on students.

• Security Issues

- Not covering broader security concerns, focusing instead on student con-

sent for monitoring.

11

3 Comprehensive Literature Survey and Research

Gaps

3.1 Preliminary Literature Review

The advancement of Artificial Intelligence (AI) and Machine Learning (ML) has signif-

icantly impacted the development of intelligent proctoring systems, aimed at ensuring

the integrity of online examinations. A Literature Review on Artificial Intelligence

and Machine Learning based Proctoring Systems identified and analyzed cur-

rent research and technologies in this domain, focusing on their effectiveness. Initial

research in this domain, such as the study by Foster & Layman (2013), integrated

basic digital technologies like simple webcam monitoring and manual review methods.

This early work highlighted both the potential and the limitations of digital tools,

underscoring the necessity for more automated solutions to manage the increasing

volume of online exams.

As the demand for online assessments grew, researchers began developing more

sophisticated systems that leveraged image processing, facial detection, and screen

monitoring. For example, Cavanagh et al. (2016) proposed an early proctoring tool

that utilized head-pose estimation to infer gaze direction, paving the way for gaze-

based monitoring. These initial solutions, while limited in adaptability, laid the

groundwork for subsequent research that integrated real-time ML algorithms capable

of dynamic analysis.

3.1.1 Identity Verification and Behavioral Monitoring

One of the critical components of intelligent proctoring systems is identity verifica-

tion. Advanced facial recognition technology has been employed to ensure that the

person taking the exam is the registered candidate. For instance, Iqbal et al. (2023)

demonstrated that sophisticated facial recognition algorithms could significantly re-

12

duce instances of impersonation. Furthermore, biometric authentication methods

such as fingerprint and retina scans, as discussed by Alessio et al. (2017), have been

shown to enhance security further.

Despite these advancements, many systems still perform identity checks only at

the beginning of the exam, which can be insufficient for preventing impersonation

throughout the examination period. There is a clear need for continuous identity

verification mechanisms that operate throughout the exam duration to ensure the

person taking the exam is consistently the same registered candidate. More recently,

systems such as those described by Verma et al. (2024) and Sakhipov et al. (2025) in-

corporate continuous facial tracking with anti-spoofing algorithms that detect changes

in lighting, expressions, and potential face replacement attacks using generative me-

dia. These systems apply liveness detection using micro-blink frequency and texture

inconsistencies to flag potential impersonation.

Behavioral analysis plays a vital role in detecting cheating by monitoring physical

and behavioral patterns. AI models have been developed to analyze these patterns in

real-time to identify potential cheating behaviors. Masud et al. (2022) showcased the

effectiveness of behavioral analysis in flagging unusual activities, thereby improving

the reliability of proctoring systems. Additionally, gaze tracking technology, explored

by Malhotra et al. (2022), monitors eye movements to detect off-screen glances in-

dicative of cheating.

In recent developments, behavior profiling has expanded beyond gaze and head

movements to include full-body pose estimation, as seen in the work of Moyo et al.

(2023), where skeletal analysis using OpenPose helped detect body language asso-

ciated with cheating (e.g., side conversations, mobile phone use). Deep learning

models such as CNN-BiLSTM pipelines are now being trained on sequences of visual

data to improve the accuracy of anomaly detection across different student behavior

baselines. These systems can distinguish between benign fidgeting and coordinated

cheating signals, significantly reducing false positives.

13

However, current systems often struggle to differentiate between normal student

behavior and actual cheating. This limitation results in false positives and negatives,

which can undermine the integrity of the proctoring process. Developing adaptive

algorithms that can learn and profile each student’s baseline behavior through mock

exams is essential for more accurate and fair monitoring. Newer approaches, such as

those proposed by Liu et al. (2023), use attention-based temporal models to learn

behavioral deviations based on the sequence and duration of activities, thus creating

individualized behavior signatures.

3.1.2 Natural Language and Audio Processing

Natural Language Processing (NLP) is another crucial technology used in intelligent

proctoring systems. It analyzes verbal communication during exams to detect inap-

propriate or off-topic responses. Pandey et al. (2020) highlighted the application of

NLP in identifying dishonest behavior, helping to maintain focus and relevance in

examination settings.

Audio processing technologies complement these systems by monitoring ambient

sounds for unauthorized conversations or background noises. Peterson (2019) demon-

strated that audio recognition algorithms could effectively identify suspicious sounds,

providing an additional layer of security.

Advancements in audio signal analysis now include speech-to-text processing com-

bined with sentiment analysis to understand the context of student speech. Systems

like those presented by Singh et al. (2024) incorporate real-time speech transcription

and keyword flagging (e.g., names, answer patterns, code phrases), enabling auto-

mated flagging of potential collusion events. Voice Activity Detection (VAD), such as

Silero-VAD, is increasingly used for lightweight background monitoring, while NLP

modules like BERT have been fine-tuned for context-sensitive speech detection in

proctored environments.

14

3.1.3 System and Network Monitoring

Effective proctoring systems extend their surveillance capabilities to digital activities,

tracking software usage and network activity to detect unauthorized applications or

anomalies. Draaijer et al. (2018) emphasized the importance of continuous monitoring

of system activities and network traffic to reduce digital cheating, highlighting its

significant impact on maintaining a secure examination environment.

Recent systems integrate application-level monitoring with AI-enhanced anomaly

detection. For example, Nurpeisova et al. (2023) implemented a central dashboard

that consolidates video, screen, application usage, and network logs. If a student

switches tabs to an unapproved domain, the AI system cross-references the timestamp

with camera feed anomalies to issue a weighted suspicion score. Furthermore, browser

plugins are now being used to monitor clipboard activity and real-time keystrokes,

enabling live detection of copying/pasting or receiving answers through chat overlays.

Despite the substantial advancements in these areas, many proctoring systems

lack integration across these technologies, resulting in fragmented approaches that fail

to address the complexity of online cheating comprehensively. Additionally, current

proctoring systems rarely offer adaptive responses based on real-time data, limiting

their effectiveness in dynamic exam environments.

3.1.4 Dual-Mode Operation and Real-Time Alerting

Another critical area is the development of systems that can operate in both human-

proctor supervised and unsupervised modes. Such systems should be capable of

real-time alerting, enabling a seamless transition from unsupervised to supervised

mode if suspicious behavior is detected. This dual-mode functionality ensures con-

tinuous monitoring and timely intervention, enhancing the overall effectiveness of the

proctoring process.

Recent frameworks, such as those described by Felsinger et al. (2024), have im-

plemented real-time decision support systems where AI flags are evaluated based on

15

confidence scores. For example, if a system identifies a medium-confidence alert (like

brief gaze deviation and background noise), it may request human verification, while

high-confidence alerts (such as face absence and known cheating gesture) trigger auto-

matic alerts and session termination. The hybrid architecture thus optimizes human

resource allocation while maintaining high detection fidelity.

Additionally, several systems have implemented asynchronous supervision modes,

where AI performs live monitoring and then compiles an automated summary of

suspicious events for post-exam review. This not only improves scalability but also

allows proctors to focus on high-impact cases, reducing operational strain in large-

scale examinations.

3.2 Recent Developments

In recent years, advancements in AI and machine learning have significantly enhanced

the functionality and accuracy of intelligent proctoring systems, making them more

efficient and reliable in ensuring the integrity of online assessments. One of the

key areas of progress has been in the continuous identity verification process. New

systems now employ advanced facial recognition algorithms, integrated with object

detection models such as YOLO and FaceNet, to monitor candidates throughout the

examination. This approach solves the earlier problem of verifying identity only at

the start, offering continuous authentication and reducing the risk of impersonation

during the exam (Sharma et al. 2024).

The scope of behavioral monitoring has also expanded. Traditionally, systems fo-

cused on simple gaze tracking or head movement detection, but recent developments

now leverage deep learning and computer vision techniques to monitor a wider range

of behaviors. These systems track various physical cues, such as hand movements,

gaze direction, and body posture, in real-time. By profiling each candidate’s baseline

behavior through mock exams, these systems adapt to the unique behaviors of indi-

vidual students, allowing them to detect deviations with greater accuracy and thus

16

minimize the occurrence of false positives and false negatives (Mewada et al. 2024).

Natural Language Processing (NLP) is now being integrated to analyze both the

verbal responses and ambient sounds during exams, enhancing the detection of dishon-

est behavior. Researchers have developed algorithms capable of identifying off-topic

responses, unusual speech patterns, and suspicious background noises, such as con-

versations or unauthorized sounds. These systems complement visual monitoring by

adding another layer of security, ensuring that all forms of cheating, including verbal

communication and noise disruptions, are detected (Chougule et al. 2024). Further-

more, advancements in audio recognition have enabled more precise identification of

environmental anomalies, such as the detection of unauthorized electronic devices or

voices that might suggest collusion or cheating (Chatterjee et al. 2024).

Another significant development is the refinement of dual-mode operation systems.

These systems offer flexibility by functioning in both unsupervised and supervised

modes. In unsupervised mode, AI algorithms monitor for suspicious behavior au-

tonomously, while in supervised mode, human proctors can intervene if an anomaly

is detected. This seamless transition between modes allows for real-time alerting

and intervention, which is particularly beneficial in large-scale exam environments.

Moreover, these systems use machine learning to continuously refine their alerting

mechanisms based on the collected data, thus improving their performance over time

(Felsinger et al. 2024).

AI-driven proctoring systems are also becoming more inclusive, with efforts to

reduce biases in facial recognition and ensure fairness in identity verification. These

improvements are critical in ensuring that proctoring systems do not disadvantage stu-

dents from diverse backgrounds, addressing ethical concerns related to demographic

bias in facial recognition technologies (Verma et al. 2024). This focus on inclusiv-

ity is complemented by research into the scalability of proctoring systems, which is

essential for ensuring they can handle large numbers of students while maintaining

accuracy and security. Recent developments have led to the creation of systems ca-

17

pable of monitoring multiple students simultaneously, without sacrificing the quality

of monitoring or performance (Somavarapu et al. 2024).

Lastly, recent studies have explored the integration of system and network moni-

toring tools into proctoring platforms. These tools track software usage and network

traffic during exams to detect unauthorized applications or attempts to circumvent

the system. By combining video surveillance, audio recognition, and digital monitor-

ing, AI proctoring systems are becoming increasingly comprehensive in their approach

to preventing cheating. This integrated approach helps ensure a secure and fair exam

environment by covering all potential avenues of dishonesty (Paul et al. 2024).

These developments collectively demonstrate the rapid evolution of AI-based proc-

toring systems. By incorporating more sophisticated technologies like deep learning,

NLP, audio recognition, and continuous behavioral profiling, the proctoring process

is becoming more accurate, secure, and adaptable, while simultaneously addressing

ethical and inclusivity concerns in online education.

3.3 Research Gaps

Despite the rapid advancements in AI-based proctoring systems, several critical re-

search gaps remain, particularly in areas that are directly relevant to the develop-

ment of adaptive intelligent proctoring systems with behavioral profiling and real-time

alerting.

Firstly, while continuous identity verification is improving, many systems still rely

on periodic checks, which can leave gaps in security. Research is needed to develop

more sophisticated, real-time identity verification methods that continuously mon-

itor candidates without compromising privacy or system performance. This would

be particularly valuable in adaptive systems where consistent identity authentica-

tion is necessary throughout the examination process. Moreover, the ethical im-

plications of persistent monitoring and fairness in demographic performance remain

under-addressed in many commercial tools.

18

Secondly, while behavioral monitoring has made strides in detecting basic anoma-

lies like gaze tracking and head movement, systems still face challenges in accurately

profiling individual behavior and detecting subtle deviations. There is a need for

deeper exploration into personalized behavioral profiling using AI models, which can

adapt to the unique behaviors of each student. This would reduce the occurrence of

false positives and ensure that only genuine cheating behaviors are flagged, especially

in an environment where real-time alerts are necessary for immediate intervention.

Furthermore, the integration of Natural Language Processing (NLP) and audio

recognition is still in its early stages. Although these technologies are promising in

identifying verbal dishonesty and background noise, they have yet to be seamlessly

incorporated into a holistic monitoring system. More research is needed to enhance

these technologies and integrate them with visual monitoring to provide a more com-

prehensive approach to detecting cheating in real-time.

Another gap exists in the adaptation of system functionalities. Many current

proctoring systems fail to dynamically adjust based on the data collected during the

exam. Research is needed to develop systems that not only detect anomalies but

also learn from them to improve their monitoring mechanisms in real time. This

is especially important for adaptive proctoring, where the system must adjust its

monitoring techniques based on a candidate’s behavior throughout the exam.

Lastly, although dual-mode operation systems show promise, their implementation

remains limited, especially in large-scale exam settings. There is a need for further

research into scalable, real-time alerting mechanisms that can seamlessly transition

from unsupervised to supervised monitoring without compromising the exam expe-

rience or raising unnecessary alarms. This would pave the way for more efficient,

large-scale proctoring solutions that are adaptive to real-time data.

In conclusion, while significant progress has been made in the development of intel-

ligent proctoring systems, addressing the gaps related to continuous identity verifica-

tion, adaptive behavioral profiling, seamless integration of technologies, and real-time

19

alerting mechanisms will be essential for advancing adaptive, intelligent proctoring

systems. These advancements are crucial to meeting the evolving demands of online

education and ensuring the security, fairness, and integrity of digital assessments.

The focus of this research, which involves behavioral profiling and real-time alerting,

aligns with these gaps, offering a promising solution to further enhance proctoring

systems in online education.

20

4 Research Questions

4.1 Research Question 1

How can machine learning techniques profile typical student behaviors

during exams to establish baselines for detecting potential misconduct?

This question investigates how to use machine learning to profile normal student

behavior during exams by analyzing data on gaze direction, body movements, and

interactions with the exam interface. By observing students in controlled mock ex-

ams, the study aims to identify key behavioral patterns and create profiles that serve

as reference points for detecting anomalies indicative of potential misconduct.

4.2 Research Question 2

How can intelligent proctoring systems use adaptive algorithms to provide

real-time feedback and accurately identify normal versus suspicious stu-

dent behavior?

This question aims to develop adaptive algorithms for intelligent proctoring systems

that use behavioral profiles to monitor student actions in real-time. By comparing

observed behaviors against established profiles, the system can identify deviations and

flag potential suspicious activities, providing real-time feedback to human proctors.

This approach seeks to enhance the accuracy and efficiency of proctoring systems in

both supervised and unsupervised settings.

21

4.3 Research Question 3

How effective are adaptive proctoring systems that use profiling and real-

time alerts in detecting cheating during exams?

This question evaluates the effectiveness of adaptive proctoring systems in detect-

ing exam misconduct. It involves assessing the system’s accuracy, reliability, and

impact on reducing cheating through metrics like false positive and false negative

rates. By testing in controlled and real-world environments, the study aims to val-

idate the system’s performance and gather feedback from proctors and students on

its usability and acceptance.

22

5 Aims and Objectives

5.1 Aim

This research aims to develop an adaptive proctoring system for online exams that

autonomously profiles students’ behaviors to detect cheating without constant human

supervision. By creating individualized behavioral profiles and integrating identity

monitoring features, the system will alert proctors in real-time when suspicious be-

havior is detected. The goal is to advance AI-based proctoring while maintaining

exam integrity.

5.2 Objectives

Research Question Objectives

How can machine learning

techniques profile typical stu-

dent behaviors during ex-

ams to establish baselines for

detecting potential miscon-

duct?

• Develop methods to profile students’

normal exam behaviors.

• Implement machine learning tech-

niques for individualized baseline be-

haviors.

• Create a comprehensive system for in-

tegrating student behavior profiles.

23

Research Question Objectives

How can intelligent proc-

toring systems use adaptive

algorithms to provide real-

time feedback and accurately

identify normal versus suspi-

cious student behavior?

• Develop adaptive AI algorithms for

continuous monitoring.

• Enhance proctoring systems for real-

time feedback to human proctors.

• Implement mechanisms to accurately

identify suspicious behavior.

• Integrate continuous student identity

monitoring throughout the examina-

tion process.

24

Research Question Objectives

How effective are adaptive

proctoring systems that use

profiling and real-time alerts

in detecting cheating during

exams?

• Evaluate the accuracy and reliability of

the developed adaptive proctoring sys-

tem.

• Measure the impact on reducing exam

misconduct.

• Assess the system’s false positive and

false negative rates.

• Collect feedback from proctors and stu-

dents on system usability and accep-

tance.

25

6 Research Methodology

The research approach for this study integrates elements of experimental research

and design science to systematically evaluate and refine AI-based proctoring systems,

emphasizing continuous identity verification and behavioral analysis in examination

settings.

6.1 Experimental Research and Design Science

Based on recent testing phases, this research has integrated experimental and design

science methodologies to support an adaptive, iterative improvement process. Current

experiments are guided by hypotheses on the efficacy of profiling and monitoring

algorithms in live examination settings. Real-time evaluations and user feedback are

now central to refining these algorithms and improving detection mechanisms.

Mixed Methods Research A mixed-methods approach combines quantitative

data (such as detection accuracy, false positive rates) with qualitative feedback from

users (such as proctors and students) to ensure a well-rounded understanding of the

system’s effectiveness and user acceptance.

6.2 Steps in Conducting the Research

1. Hypothesis Formulation and Objectives

• Hypothesis: Adaptive profiling and anomaly detection improve misconduct

detection accuracy and reduce false positives.

2. Experimental Design and Scenario Development

• Simulate scenarios of normal and suspicious behaviors to benchmark sys-

tem performance.

26

3. Data Collection and Analysis

• Continuous monitoring with real-time metrics (gaze direction, head move-

ment).

4. Iterative Refinement

• Refine algorithm performance based on user feedback and observed error

rates.

6.3 High Level System Architecture

Figure 5.1 shown below is a high-level architecture of the proposed system. It is a

multi-layered architecture. The student’s setup with preliminary inputs from Micro-

phone and Webcam will provide the necessary raw input feed for the system, which

will then pass through multiple layers which would process the raw data and create a

model which is ultimately suitable to be used for real exams with real time monitoring

and alerting.

27

Figure 6.1: High Level Research Architecture

28

7 Research Workflow

This section outlines the complete process followed throughout the research lifecycle

to develop, test, and refine an adaptive AI-based online proctoring system. The

methodology includes system design, behavior profiling, mock and real exam testing,

and evaluation phases, developed over the course of a year.

7.1 Research Workflow Overview

The research was conducted in iterative and overlapping phases, with four major

system modules developed in parallel:

1. Real-Time Alerting

2. Profiling and Adaptivity

3. Identity Verification

4. User Interface Design

Each of these modules contributed independently and collectively to the overall

goal of accurate, adaptive proctoring. However, User Interface Design was not done

as a major component, as it is not included in the scope to deliver a comprehensive

system with a User Interface. I was built for testing and monitoring purposes and for

the ease of demonstration for facts and figures.

7.2 Real-Time Alerting Framework

The development of the real-time alerting module began with the implementation

of visual and auditory event detection mechanisms that could run concurrently with

an online examination. To guide the technical direction, a comprehensive litera-

ture survey was conducted on real-time video and audio analysis frameworks used

not only in proctoring systems but also in surveillance, human-computer interaction,

29

and anomaly detection. This review provided foundational insights into selecting

lightweight and responsive algorithms for real-time processing.

The first experiment was designed to test the feasibility of head movement

tracking using a standard webcam input. This was implemented in Python using

the dlib library, which provides a Histogram of Oriented Gradients (HOG)-based

face detector and a pre-trained facial landmark predictor (shape predictor 68 face

landmarks.dat). The system processed the real-time video feed, extracted 68 facial

landmarks, and estimated head orientation by analyzing the relative positions of key

points such as the nose tip, eye corners, and chin.

As shown in Figure 7.1, the terminal output displayed real-time updates when-

ever the subject’s head deviated beyond a defined angular threshold, such as excessive

left/right tilting or consistent looking away from the screen. These logs were used to

classify and later label head movement events as either normal (e.g., mild nodding)

or suspicious (e.g., repeated turning to one side).

Figure 7.1: Screenshot of Terminal Output of Head Movement Tracking

Following the visual cue analysis, the next experiment focused on audio anomaly

detection, specifically to determine the presence of human voice using real-time

microphone input. This was implemented using Python libraries such as ‘pyaudio‘ and

‘numpy‘. The microphone stream was continuously analyzed to compute the audio

signal’s energy and amplitude levels. Thresholds were defined based on background

noise profiling, and alerts were triggered when the voice energy exceeded these baseline

levels for a sustained period.

30

As shown in Figure 7.2, the code and terminal output illustrate a case where

human voice activity was successfully detected, triggering a terminal-based alert. The

log values represent timestamped amplitude levels and detection status.

Figure 7.2: Screenshot of Code and Terminal Output of Voice Energy Detection

These experiments laid the groundwork for setting baseline thresholds for both

visual and auditory events. The system was tuned to tolerate minor head movements

and typical room background noise while remaining sensitive to deliberate cheating

cues such as prolonged off-screen attention or whispered communication. Additional

exploration was conducted into integrating speech recognition using pre-trained mod-

els like Google Speech API and Whisper to identify common language patterns in

31

verbal anomalies, though this was not fully integrated at the early stage.

Together, these initial implementations served as the foundation for a modular

real-time alerting system capable of processing multiple input streams with minimal

latency and flagging events for further analysis or escalation. These components were

initially developed to test the integration between the adaptive profiling framework

and the rule-based detection modules, primarily for demonstration purposes during

the Interim Presentation. Subsequently, all rule-based algorithms were refined, stan-

dardized, and consolidated under a unified framework. This framework was designed

to ensure modularity and scalability, enabling any rule-based module that processes

specific input features to be seamlessly integrated. Developers can incorporate new

rule-based checks by simply implementing the corresponding logic, while configura-

tion parameters such as thresholds can be centrally defined within the master con-

troller. This controller aggregates all numerical outputs from individual modules and

produces a final binary decision for the proctoring system. The architecture of this

integrated framework is depicted in Figure 6.3.

32

Figure 7.3: Architecture of Rule Based Monitoring System

As seen in Figure 6.3, any module that can be easily plugged in and it will receive

raw input feeds from the Webcam and Microphone and it is free to process it as

required and pass on a numerical figure to the Central Management System for this

subpart. However, it is important to note that a multi-threading environment is

required here. Each of these need to run on a separate thread as parallel execution

of each module is required.

7.2.1 Gaze Tracking Module

The Gaze Tracking module serves as one of the key behavioral monitoring components

in the adaptive proctoring system. It is designed to identify prolonged deviations of

eye gaze from the screen, such as looking left or right, which are often associated

with potential malpractice (e.g., referring to unauthorized material or engaging with

another person). This module operates in real-time and uses a rule-based strategy

33

to determine whether gaze behavior is within acceptable boundaries. Its outputs are

standardized as numerical anomaly flags that are easily consumable by the central

decision-making engine.

The choice of gaze direction as a behavioral cue stems from its high relevance

in human-computer interaction research, where it is frequently used as a proxy for

attention and cognitive engagement. By extending this idea into a proctoring context,

the system aims to strike a balance between precision and computational efficiency

while maintaining modularity.

Technical Framework and Dependencies

The Gaze Tracking module is implemented in Python and utilizes a number of

specialized libraries:

• OpenCV (cv2): Used for real-time video capture, frame manipulation, and

rendering annotations on the video feed.

• dlib: Specifically, the 68-point facial landmark detection model shape predictor

68 face landmarks.dat is employed to extract facial geometry.

• NumPy: Supports numerical operations including matrix manipulation during

iris detection.

• Custom Calibration and Eye Processing Logic: Classes such as Calibration,

Eye, and Pupil work together to localize, threshold, and isolate the eye regions

and determine the pupil positions.

The facial landmarks allow for accurate extraction of both left and right eye

regions. These are subsequently used to track iris movement, blink frequency, and

horizontal and vertical eye movement ratios.

34

Calibration and Pupil Detection Algorithm

A novel aspect of this module is the custom calibration procedure, which ensures

that pupil detection adapts to the lighting and contrast conditions unique to each en-

vironment and participant. The Calibration class gathers multiple frames (default:

20) to determine an optimal binarization threshold that isolates the iris effectively.

Steps in calibration:

1. Eye regions are isolated using predefined landmark indices (LEFT EYE POINTS

and RIGHT EYE POINTS).

2. For each frame, the pupil region is binarized using various thresholds (5 to 100,

step = 5).

3. The ratio of black pixels (assumed to represent the iris) to the total number of

pixels is calculated.

4. The threshold that results in an iris size closest to the empirical average (0.48)

is selected.

This dynamic threshold ensures high adaptability and reduces dependence on

static lighting assumptions, thereby increasing detection accuracy across different

setups.

Iris Localization and Gaze Estimation

Once calibration is complete, the eye frames are processed to localize the pupil

using morphological operations such as:

• bilateralFilter for noise reduction without edge blurring.

• erode to remove small noise elements.

35

• threshold to binarize the image based on the calibrated threshold.

The pupil center is identified using image moments (cv2.moments), which help in

determining the centroid of the binary iris region. Using the relative position of the

pupil with respect to the eye frame’s center, the module calculates:

• Horizontal Ratio: Indicates if the user is looking left (ratio ≥ 0.7), right

(ratio ≤ 0.35), or center (otherwise).

• Vertical Ratio: Optionally used for looking up/down detection (not imple-

mented in this version).

Blink Detection and Noise Filtering

To reduce false alarms due to natural blinking or temporary distractions, a blink-

ing detection logic is included. It computes the blinking ratio by comparing the height

and width of the eye bounding box derived from the landmarks. A ratio above 3.8 is

considered a blink. During blinking events:

• Gaze data is temporarily disregarded.

• No anomaly is flagged.

• The timer for anomaly detection is reset to avoid misclassification.

This simple filtering logic significantly reduces the likelihood of noise-induced

anomalies, especially during rapid eye movements.

Anomaly Flagging Strategy and Integration

The module uses a time-based anomaly detection strategy. If the user’s gaze re-

mains fixed in the left or right direction beyond a predefined threshold time (default:

36

3 seconds), the module raises an anomaly flag = 1. Otherwise, the flag remains at

0. This flag is:

• Output at regular intervals (every 0.5 seconds) to the terminal for monitoring.

• Passed to the central adaptive framework as a numerical metric.

• Reset when the user returns gaze to the center.

The introduction of a time threshold is critical to avoid noisy, momentary fluctu-

ations from being incorrectly flagged as anomalies. Without such a wait condition,

even brief natural glances or eye movements lasting fractions of a second would trigger

an alert, leading to a flood of false positives and undermining the system’s reliability.

Instead, the system checks whether a consistent pattern of directional gaze is sus-

tained over a continuous time window. This ensures that only deliberate or prolonged

behavior (e.g., looking to the side to consult unauthorized material) is captured. The

threshold acts as a stability buffer, smoothing out transient eye movements.

The specific value of 3 seconds was determined based on a combination of liter-

ature, pilot testing, and user feedback:

• Human Gaze Behavior Research: In human-computer interaction studies,

natural gaze aversions (e.g., thinking, momentary distractions) typically last

between 0.5 to 2.5 seconds. Thus, a 3-second window provides a safe upper

bound that accommodates normal user behavior.

• Empirical Tuning: Early pilot testing with test subjects showed that thresh-

olds below 2 seconds resulted in high false positive rates due to natural ex-

ploratory glances. At 3 seconds, the system achieved a better balance—maintaining

sensitivity to actual anomalies while tolerating common user motions.

• User Experience Consideration: During early usability trials, students re-

ported that the 3-second buffer gave them confidence that minor, habitual be-

haviors would not be misinterpreted, reducing test anxiety.

37

In summary, the delay threshold ensures temporal consistency in flagged events,

improving both the accuracy and the user experience of the system.

Figure 7.4: Screenshots of the Gaze Tracking script identifying various gaze directions

As illustrated in Figure 7.4, the Gaze Tracking module is capable of accurately

identifying different eye movement patterns in real time. The four screenshots depict

the system recognizing distinct gaze directions—left, right, center—as well as detect-

ing a blink event. These visual cues are critical in determining whether the student

is maintaining attention on the screen or exhibiting potentially suspicious behavior

such as repeatedly looking away, which may warrant further review by the proctoring

system.

38

Innovations and Original Contributions

This module features several innovations compared to standard open-source gaze

tracking implementations:

• Thread-safe modular architecture: The module is designed to run as an

independent thread within a multi-threaded pipeline. It reads from the webcam

feed and outputs a numerical anomaly score that integrates seamlessly with

other modules.

• Adaptivity through Calibration: Unlike static systems, the dynamic cal-

ibration logic enables high reliability across lighting and hardware variability,

crucial in real-world deployment.

• Anomaly Simplification: The final output is deliberately simplified to a

binary flag to ensure clean aggregation of multiple metrics by the central rule

engine.

• Low-latency Execution: A sleep timer of 0.01 seconds is introduced to min-

imize CPU usage without compromising real-time responsiveness.

7.2.2 Head Pose Estimation Module

The Head Pose Estimation module was developed to detect significant horizontal

head movements that may indicate suspicious behavior, such as looking off-screen to

consult unauthorized materials or engage in collusion. Operating independently of

gaze tracking, this module contributes to system robustness by working reliably under

conditions where eye detection might fail—such as with poor lighting or low-resolution

video streams.

This module leverages the geometric consistency of facial landmarks and 3D head

models to estimate the orientation of a user’s head in real-time using a webcam. The

39

core output consists of three Euler angles—yaw, pitch, and roll—that quantify the

degree of head rotation in space. From these angles, behavioral rules are defined to

identify abnormal movement patterns, which are then flagged for proctor attention.

Technical Background and Rationale

Head pose estimation involves computing a rotation from 3D facial geometry to

its 2D projection in a video frame. The technique provides orientation angles of the

user’s head relative to the camera view:

• Yaw (horizontal rotation) – indicates looking left or right.

• Pitch (vertical rotation) – indicates looking up or down.

• Roll (lateral tilt) – indicates sideways head tilts.

While all three angles are captured and analyzed, this implementation focuses

primarily on yaw, which is most indicative of lateral head turns. These turns are a

strong behavioral cue in proctoring scenarios, often associated with attempts to view

other screens, persons, or materials outside the camera’s field of view.

Technological Implementation

This module uses a combination of computer vision libraries and machine learning

tools:

• MediaPipe FaceMesh – detects 468 facial landmarks in real time and provides

z-axis data for pseudo-3D representation.

• OpenCV (cv2) – handles video processing, matrix computations, and camera

intrinsic calibrations.

40

• NumPy – performs numerical calculations including landmark transforma-

tions.

• FilterPy (Kalman Filter) – filters noisy rotation vectors and smooths esti-

mated orientation angles.

Landmarks extracted from FaceMesh are mapped to a predefined 3D facial model.

The cv2.solvePnP() function computes the rotation and translation vectors needed

to align this model with the 2D image projection, effectively producing real-time head

orientation data.

3D Model Mapping and Euler Angle Extraction

The following key steps are used in the computation process:

1. A set of stable, symmetric facial landmarks is chosen for consistent tracking:

nose tip, eye corners, mouth corners, and chin.

2. These landmarks are matched to hard-coded 3D model coordinates to form a

point correspondence set.

3. The camera’s intrinsic parameters are dynamically calculated based on frame

resolution, assuming no lens distortion.

4. Using the solvePnP algorithm, rotation and translation vectors are computed

to determine head pose.

5. The rotation matrix is decomposed to extract Euler angles (yaw, pitch, roll).

This pipeline allows for continuous real-time monitoring of head orientation with

minimal latency.

41

Temporal Smoothing with Kalman Filtering

To counteract frame-to-frame jitter and estimation noise, the module implements

a dual smoothing mechanism:

• Sliding average buffers are used to smooth rapid fluctuations by averaging

over recent frame values.

• Kalman filtering provides statistical smoothing and noise resilience using

state transition and observation matrices.

This significantly reduces false positives and improves the reliability of anomaly

flags by accounting for natural head movement patterns.

Figure 7.5: Screenshot of the Head Pose Tracking script identifying detailed facial
landmarks

As illustrated in Figure 7.5, the Head Pose Tracking module accurately identifies

detailed facial landmarks in real time using a mesh overlay. This visual output forms

the basis for estimating head orientation through geometric analysis.

42

Directional Anomaly Detection Logic

The behavioral rules for flagging potential anomalies are encoded as follows:

• When the yaw angle exceeds an ANOMALY THRESHOLD of 30 degrees in either

direction, an internal counter is incremented.

• If the yaw is within a buffer zone (20–30 degrees), the anomaly counter is de-

creased gradually.

• If the yaw is within normal bounds, the counter resets.

• Once the counter exceeds a persistence threshold (e.g., 1–2 consecutive detec-

tions), an alert is raised and the counter resets.

This persistence-based strategy accounts for momentary or accidental turns, en-

suring that only significant, deliberate deviations are flagged.

Supplementary Features: Ear Visibility Analysis

In addition to angular data, the module computes the visibility of cheek-adjacent

landmarks near each ear. This approach is intended as an auxiliary feature for track-

ing lateral head turns based on occlusion and is not currently used in flag generation.

It may be useful in future ML-based scoring models or in cases where angular esti-

mation fails due to noisy landmark extraction.

Integration into the Central Framework

This module is implemented to function independently and concurrently with

other rule-based monitors in the system. Its output is a real-time binary anomaly

flag, produced every 0.5 seconds, which is passed to the central alert fusion engine.

43

This modularity is crucial in ensuring high scalability and flexibility in the overall

adaptive architecture.

Original Contributions and Highlights

This module includes several novel enhancements:

• Hybrid filtering pipeline: Combines statistical filtering and buffer-based

smoothing to maximize temporal stability.

• Real-time solvePnP estimation: Dynamically performs head orientation

analysis on raw video without requiring additional hardware.

• Flexible behavioral rule encoding: Anomaly thresholds and persistence

limits are fully configurable to allow adaptive sensitivity tuning.

• Thread-safe, plug-and-play design: Easily deployable alongside other de-

tection modules within the system’s multithreaded execution environment.

Together, these features contribute significantly to the goal of achieving adaptive,

real-time, and modular proctoring based on observable student behaviors.

7.2.3 NLP-Based Murmur Detection Module

This module was developed to detect and transcribe unintentional vocalizations or

murmurs during an online exam session. It combines traditional voice activity detec-

tion (VAD) with modern speech recognition (ASR) to assess whether any meaningful

human speech was spoken in real-time, flagging such events as anomalies. The objec-

tive is to detect speech that could indicate a student is reading out questions aloud,

murmuring answers, or engaging in unauthorized verbal communication.

Unlike simple amplitude-based voice detection methods, this module incorporates

Whisper’s deep learning-based transcription capabilities to verify whether the cap-

44

tured voice segment contains valid linguistic content. This significantly reduces false

positives and improves the accuracy of behavioral assessment.

Technological Stack and Toolchain

The implementation leverages a hybrid of lightweight traditional signal processing

and state-of-the-art deep learning models:

• WebRTC VAD – A fast, C-based voice activity detector capable of detecting

even low-energy murmurs. Aggressiveness mode is set to 3 (most sensitive).

• Whisper ASR (OpenAI) – A robust neural network-based speech recognition

model that supports multiple languages and noisy conditions. The “base” model

is used in this implementation.

• PyAudio – Captures audio from the default microphone in real time using a

16kHz mono channel.

• Wave and OS modules – Used for file handling and cleanup of temporary

audio files after processing.

Real-Time Voice Activity Detection (VAD)

The system processes audio in chunks of 30 milliseconds using WebRTC’s VAD.

This low-latency, streaming-compatible detector flags any incoming audio frames that

resemble human speech patterns. If any such speech is detected within a 1-second

sliding window, the associated frames are buffered for transcription. The sensitivity

is deliberately high to capture even whispers or unintelligible murmurs.

45

Transcription and Anomaly Decision Pipeline

Upon detecting potential speech:

1. The buffered audio frames are saved into a temporaryWAV file named detected speech.wav.

2. This file is passed to Whisper’s transcribe() method which returns a dictio-

nary containing the predicted text.

3. If the text field in the result contains a non-empty string, the system concludes

that actual human speech occurred.

4. The transcription is then time-stamped and logged as an anomaly in a file called

anomaly log.txt.

All processed audio files are deleted immediately after analysis to maintain storage

efficiency and privacy.

Example Output and Logging Format

Whenever a murmur is detected and transcribed, the terminal outputs a warning

message along with the transcribed content. A sample output would be:

[2025-04-04 10:12:07] Anomaly Detected: "we can try the next one"

This is also appended to anomaly log.txt for later review.

System Integration and Thread Compatibility

The murmur detection module is designed as a long-running listener thread. It

processes audio frames independently of the video processing modules (e.g., gaze and

head pose). This parallel architecture ensures that even brief murmurs are captured

without blocking the visual behavior monitoring subsystems.

46

Original Contributions and Key Advantages

This module introduces multiple practical improvements over naive voice detec-

tion:

• Speech + NLP integration: Combines classical voice activity detection with

advanced transcription to reduce false positives.

• Sensitivity to low-volume audio: Detects subtle murmurs often missed by

amplitude-based thresholds.

• Built-in logging and timestamping: Enables traceability of flagged events

for post-exam review.

• Thread-safe design: Can operate continuously in parallel with other modules

like webcam tracking.

7.2.4 Environment Noise Detection Module

The Environment Noise Detection Module is responsible for identifying instances of

background conversation or unauthorized verbal assistance occurring near the candi-

date during an examination. It is designed to flag anomalies based on the presence

of multiple distinct vocal sources within the environment, regardless of whether the

candidate is speaking or not.

This module complements the NLP-Based Murmur Detection Module by shifting

the focus from what is being said to who is speaking. While murmur detection analyzes

speech content to infer intent or meaning, the Environment Noise Detection Module

primarily targets the detection of multiple speakers, such as a candidate receiving

help or engaging in whispered collaboration.

47

Architecture and Operation

This module continuously receives audio input through the candidate’s micro-

phone. Its core architecture involves:

• Voice Activity Detection (VAD): WebRTC-based VAD is used to filter

silence and non-speech segments.

• Speaker Embedding Extraction: For each speech frame, a pre-trained

speaker recognition model extracts fixed-length embeddings that represent vocal

characteristics.

• Speaker Clustering: An unsupervised clustering algorithm (e.g., DBSCAN)

groups similar voice embeddings and estimates the number of unique speaker

identities over a predefined time window.

Detection Rule

An anomaly is flagged if two or more distinct speaker identities are identified

within a rolling audio window (e.g., 5 seconds). This detection logic is based on the

assumption that a legitimate candidate should be the only audible speaker during an

online examination.

• Rule: If |S| ≥ 2 in a 5-second speech segment, where S is the set of unique

speaker embeddings, then an anomaly is raised.

• Buffering: A grace period is introduced between consecutive detections to

avoid alert flooding.

48

Integration with the Adaptive Framework

Once an anomaly is detected, the module sends the following information to the

central alert fusion engine:

• The timestamp of detection

• The number of unique speaker clusters detected

• Confidence score based on clustering separation

• Binary flag indicating anomaly status

The fusion engine then correlates this anomaly with other simultaneous behavioral

and visual cues before making a final decision about candidate integrity.

Distinction from Murmur Detection

The NLP-Based Murmur Detection Module and Environment Noise Detection

Module both process microphone data, but their objectives and outputs are different:

49

NLP-Based Murmur

Detection

Environment Noise De-

tection

Focuses on what is being

said

Focuses on who is speaking

Uses Whisper and NLP to

transcribe

Uses speaker embeddings

and clustering

Flags when meaningful self-

speech is detected

Flags when multiple speak-

ers are detected

Detects murmuring, reading

aloud, or self-talk

Detects coaching, collabora-

tion, or third-party speech

Semantic analysis based Speaker diarization based

Table 7.1: Comparison between Murmur and Environment Noise Detection Modules

Impact on Proctoring Decision

As summarized in Table 7.1, the two audio modules serve distinct but comple-

mentary purposes in the proctoring system. While murmur detection focuses on

identifying the student’s own speech content, the environment noise detection mod-

ule aims to catch unauthorized third-party presence through speaker multiplicity.

Their combined use improves the robustness of the audio monitoring pipeline.

This module plays a critical role in detecting verbal collusion, which is often

difficult to identify using only face or body cues. By identifying the presence of

multiple voices, especially in sustained or repetitive intervals, the module enhances the

reliability of the overall anomaly detection pipeline. It is especially useful in flagging

attempts at verbal coaching or when the candidate tries to covertly communicate

with another individual during the test.

The alert generated by this module is particularly high-weight in the adaptive

50

alert system, as its implications directly point to an integrity violation.

7.3 Behaviour Profiling and Adaptivity

To move beyond rigid rule-based systems, behavior adaptivity was introduced. This

module aimed to learn each student’s ”normal” behavior through mock exams, so that

anomalies could be interpreted contextually. The central idea was that if a student

habitually performs non-malicious but rule-breaking-like actions—such as scratching

their head, rubbing their neck, or adjusting their glasses—those should not be flagged

as violations during the actual examination. This system therefore operates in parallel

with the real-time rule-based framework and serves as a mechanism to suppress false

positives in cases where behavior is frequent but harmless.

Mock Exam Video Capture and Feature Extraction

During the profiling phase, students were asked to sit through a brief mock exam

while being continuously recorded via webcam. The video footage was saved locally

using OpenCV and served as the dataset for behavioral modeling. Instead of continu-

ous high-FPS recording, a frame-sampling technique was employed to reduce storage

overhead and increase computational feasibility. Empirical testing determined that

a frame rate of 20 FPS struck a balance between information density and resource

usage.

Each sampled frame was passed through a pre-trained MobileNet model (without

the classification head) for spatial feature extraction. The use of MobileNet ensured

lightweight and fast inference even on general-purpose hardware. A sample imple-

mentation of the preprocessing pipeline is shown in Figure 7.6.

51

Figure 7.6: Screenshot of Code and Terminal Output of Frame Preprocessing

Autoencoder-Based Behavioral Learning

The extracted feature vectors from all frames of the mock exam were collected into

a dataset representing the student’s typical behavior. This dataset was then used to

train a Fully Connected Autoencoder that learns a compressed representation of this

behavioral pattern. The autoencoder architecture consisted of two dense encoding

layers and two decoding layers, with a latent space bottleneck of size 64.

The model was trained to minimize the reconstruction error between the input

and output vectors. The assumption here is that familiar behavior patterns (seen

during mock exams) would produce low reconstruction errors during inference, while

unfamiliar or anomalous behaviors would yield higher errors. Figure 7.7 shows an

52

example output from this training process.

Figure 7.7: Screenshot of Terminal Output of Model Training

Real-Time Inference and Anomaly Filtering

During the actual exam session, real-time webcam footage was processed frame-

by-frame. Each frame was passed through the same MobileNet model to extract

features and then evaluated using the pre-trained Autoencoder. A rolling average of

the reconstruction error was maintained to ensure stability. If the reconstruction error

exceeded a predefined threshold (e.g., 1.5), the behavior was considered anomalous.

However, unlike traditional detection systems, this anomaly flag did not directly

raise alerts. Instead, the adaptive module compared its output against the rule-based

system. If the rule-based engine flagged a behavior as suspicious, but the adaptive

engine found that the same behavior closely matched what the student had frequently

done during the mock session (low reconstruction error), the system automatically

suppressed the rule-based alert.

This suppression logic significantly reduced the likelihood of false positives, par-

53

ticularly in students who exhibit unique but consistent physical gestures.

Multimodal Coordination and Suppression Framework

To facilitate synchronized monitoring, the adaptivity module was designed to run

concurrently with the gaze tracking and head movement modules in a multi-threaded

setup. Each of these components maintained a shared flag variable updated in real

time. A central process monitored all flags and applied the following logic:

• If the rule-based system (e.g., gaze or head pose) raises a flag AND the adaptive

system’s reconstruction error is above the threshold → maintain the alert.

• If the rule-based system raises a flag BUT the adaptive system’s reconstruction

error is below the threshold → suppress the alert.

This logic allowed for contextual interpretation of anomalies. It also supported

nuanced behavior modeling without overfitting to rare gestures or temporary distrac-

tions.

Contribution to the Overall System

The behavior profiling and adaptivity module marked a significant innovation in

online proctoring systems. Rather than relying solely on predefined thresholds and

fixed rules, it introduced a personalized behavioral baseline for each student. The

result was a more intelligent alerting system that retained its sensitivity to genuine

violations while reducing noise from natural or habitual behaviors.

This approach also positioned the system to scale for diverse student popula-

tions—acknowledging individual variance while maintaining academic integrity. Most

importantly, it ensured fairness for students whose behavioral tics or comfort-driven

gestures might otherwise be misclassified as cheating.

54

7.3.1 Server-Based Behavioral Model Deployment

Following feedback received during the interim presentation, a significant architec-

tural improvement was proposed for the Behaviour Profiling and Adaptivity module:

transitioning the student-specific model training and storage process from the local

client device to a centralized server. This change was primarily motivated by con-

cerns regarding potential model tampering by candidates, given that the autoencoder

model for each student was originally trained and stored locally on the same machine

used to sit the examination.

To address this risk, the revised design now enables the system to upload the

student’s mock exam video footage to a remote server. The server—under admin-

istrative control—handles the extraction of frame-level features, the training of the

Autoencoder model, and securely stores the resulting model in a protected environ-

ment. During the actual examination, the student’s live video feed is processed on

their machine in real time as before; however, the extracted features are now sent

to the server for anomaly inference against the trusted model. This separation of

training and inference enhances system integrity while preserving modular design.

Simulated Server Setup using Local Ubuntu VM

Due to resource constraints that prevented deployment on a dedicated high-

performance remote server, the proposed architecture was mimicked locally using

a separate Ubuntu-based virtual machine (VM). The host machine runs the student-

side interface, while the VM functions as the server, exposing secure RESTful APIs

using Python Flask for:

• Receiving mock exam video uploads.

• Performing MobileNet-based feature extraction.

• Training and storing the student-specific Autoencoder model.

55

• Serving a prediction endpoint during real-time exams to calculate reconstruction

errors and return anomaly flags.

Network communication between the student client and the server VM is facili-

tated through HTTP or localhost IP routing, with plans to scale to HTTPS-based

connections in future iterations.

Benefits of Server-Based Behavioral Model Handling

This architectural shift introduces several important advantages to the proctoring

system:

• Model Security: By moving model training and storage to a centralized and

controlled environment, risks of tampering, manipulation, or replacement of

behavioral models by the student are significantly reduced.

• Centralized Logging and Version Control: The server can maintain a

centralized repository of models and training logs, aiding in auditability and

compliance.

• Model Integrity Assurance: The server environment ensures the Autoen-

coder is trained under controlled conditions with no possibility of artificially

inserting anomalies to ”normalize” cheating behavior.

• Future Scalability: The server-based approach lays the foundation for multi-

user support, where multiple student profiles can be managed, stored, and

queried without local storage concerns.

Limitations and Scope Considerations

While this server-based setup offers clear security and architectural benefits, it

also introduces certain limitations:

56

• Dependence on Internet Connectivity: The student-side system must

maintain a stable internet connection throughout the exam session for con-

sistent communication with the server. Any loss in connectivity may delay or

disable anomaly verification.

• Latency in Real-Time Response: Depending on the size of feature data

and server processing latency, there may be a minor delay in receiving anomaly

scores.

• Security Outside Scope: While server-based inference reduces tampering,

secure transmission (e.g., using TLS/SSL) and user authentication were not

the focus of this research. These aspects are acknowledged as future work for

production-grade deployment.

Given these trade-offs, this server-based architecture is proposed as a viable al-

ternative implementation strategy to enhance trust and reliability. However, the

majority of testing, performance evaluation, and functional validation in this study

were conducted using the fully local version of the adaptive engine, due to limited

access to scalable remote compute resources. Nevertheless, this server-backed de-

sign provides a clear path toward a secure, scalable deployment model for real-world

proctoring systems.

7.4 Prototype User Interface

While this research primarily focuses on the design and evaluation of a modular hybrid

proctoring framework—combining real-time rule-based anomaly detection with adap-

tive behavioral profiling—it also proposes an ideal implementation context for how

such a system could be integrated into a complete end-user solution. To demonstrate

this vision, a minimal prototype interface was developed. Although not intended as

a production-ready or commercially deployable system, it provides insight into how

57

the detection framework could be embedded within a scalable online examination

platform.

7.4.1 Suggested Student Interface

For a full-scale deployment, the student-facing interface of a proctoring system uti-

lizing the proposed framework should ideally support the following features:

• Allow students to initiate both mock and real exam sessions.

• Enable behavior profiling through recorded mock exam sessions to train the

adaptive model.

• Present a clean exam interface with a passive webcam feed for transparency.

To preserve examination integrity and avoid causing stress to students, it is recom-

mended that anomaly detection scores or system feedback not be displayed during the

exam. The system should run silently in the background, only escalating to human

intervention when necessary.

7.4.2 Suggested Proctor Interface

On the proctoring side, the ideal interface should prioritize scalability and attention

efficiency. A system based on the proposed framework could enable the following

capabilities:

• Real-time alert feed for multiple students with visual anomaly flags.

• View detailed breakdowns of anomaly scores from rule-based and adaptive mod-

ules.

• Access to real-time webcam feeds upon an anomaly being triggered.

• Ability to take follow-up actions (e.g., flag, terminate, or escalate) after review-

ing a flagged event.

58

Figure 7.8: Suggested Proctor Interface: Alerts Dashboard and Escalation Actions

As shown in Figure 7.8, this design supports efficient supervision of multiple

students without the impracticality of constant live feed monitoring. The system

flags only those students whose behavior deviates from the learned norms, thereby

streamlining the proctor’s attention toward meaningful interventions. This approach

reduces cognitive load and increases the feasibility of scaling live supervision to larger

cohorts.

7.4.3 Positioning within the Research Scope

It is important to reiterate that the user interface elements illustrated above are

purely conceptual and meant for demonstration. The research itself does not include

the development of a complete front-end solution. Rather, it contributes a backend

framework capable of:

• Real-time anomaly detection using multimodal data.

• Behavior profiling to suppress false positives based on learned patterns.

59

• A modular output layer that can integrate into any existing or newly developed

UI.

The UI configurations presented in this section serve as a suggested implemen-

tation model for future developers or institutions intending to deploy the proposed

proctoring architecture in a real-world setting.

7.5 Trial Execution

Mock Exams: Conducted in varying environments to evaluate how student behavior

is captured and profiled. These helped optimize preprocessing thresholds and model

architecture.

Real Exams: Conducted after profiling to simulate a real use case. Edge cases

such as changes in clothing and lighting were tested to refine the model.

Environment Consistency: It was concluded that students should take the

mock and real exams in the same environment to ensure consistency in behavior

modeling.

Feedback Loop: Supervisor feedback as a simulated proctor was gathered during

trials. This iterative feedback loop helped improve both UI usability and system

responsiveness.

60

8 Evaluation and Results

8.1 Final Evaluation Plan

To validate the system’s effectiveness, a two-pronged evaluation approach was em-

ployed: quantitative and qualitative.

8.1.1 Quantitative Evaluation

• Detection Accuracy:

– Measured true positive/negative rates and false positives/negatives for

cheating behavior.

– Behavior-wise precision and recall were analyzed.

• System Performance:

– Latency of real-time alerting.

– Performance over long exam durations.

8.1.2 Qualitative Evaluation

• User Feedback:

– Usability, clarity, and intrusiveness were rated by early users and supervi-

sor.

• Adoption Readiness:

– Future surveys and examiner interviews are planned post-deployment.

61

8.2 Quantitative Evaluation Experiment Outcomes - Mod-

ulewise

8.2.1 Gaze Tracking

The Gaze Tracking module was evaluated independently to assess its performance in

detecting lateral gaze deviations beyond a set threshold duration. For the purposes of

this evaluation, the script was run on a sample dataset containing annotated webcam

recordings from mock sessions. Each session included natural head and eye movements

as well as simulated cheating behavior such as looking away from the screen for

prolonged durations.

A total of 120 labeled test instances were used, comprising 60 normal behaviors

and 60 simulated anomalies. Each frame was manually annotated to mark whether

the student was exhibiting an anomaly (i.e., looking away for more than 3 seconds).

Metric Definitions

The following evaluation metrics were computed:

• True Positive (TP): Correctly identified gaze anomalies.

• False Positive (FP): Incorrectly flagged gaze anomalies during normal gaze

behavior.

• True Negative (TN): Correctly identified normal behavior.

• False Negative (FN): Missed detections of actual gaze anomalies.

These metrics were then used to calculate accuracy, precision, recall, and F1-score

for module performance evaluation.

62

Evaluation Results

The performance results are summarized in Table 8.1, which outlines the classi-

fication metrics including accuracy, precision, recall, and F1-score.

Metric Value

True Positives (TP) 54

False Positives (FP) 7

True Negatives (TN) 53

False Negatives (FN) 6

Accuracy 89.2%

Precision 88.5%

Recall (Sensitivity) 90.0%

F1 Score 89.2%

Table 8.1: Gaze Tracking Module Evaluation Metrics

Analysis and Observations

The Gaze Tracking module achieved an overall accuracy of 89.2%, demonstrating

robust performance in detecting gaze-based anomalies. The high recall rate (90.0%)

indicates that the module is highly sensitive to actual violations and rarely misses

them. Precision (88.5%) remained slightly lower due to occasional false positives,

which were mostly caused by natural glances that briefly exceeded the threshold.

The false positives were generally attributed to cases of prolonged blinking or

minor head shifts interpreted as directional gaze. These could be further reduced

through more sophisticated temporal filtering or integration with head pose data.

Compared to existing gaze anomaly detection models reported in proctoring lit-

erature (e.g., Kumar et al., 2021, which reports 86.4% F1-score), the implemented

63

module shows competitive performance. It is important to note that this system was

designed to run in real time on commodity hardware, where performance trade-offs

are often necessary to maintain responsiveness.

Additional Metrics

• Latency: The gaze module operated at an average processing latency of 34ms

per frame, well within acceptable real-time constraints (sub-50ms threshold).

• Resource Utilization: The system maintained a CPU usage of under 15%

on a mid-range quad-core processor during single-threaded operation.

• Module Independence: Gaze anomalies were detected without reliance on

other modules, confirming its standalone capability.

These results validate the gaze tracking system as a strong component within

the larger alerting framework, especially when used in conjunction with adaptive

suppression to reduce borderline false positives.

8.2.2 Head Pose Estimation

The Head Pose Estimation module was evaluated independently to test its ability to

detect significant lateral head movements (based on yaw angle) that may indicate the

student is looking away from the screen. The evaluation was conducted using anno-

tated video segments simulating both normal posture (e.g., facing the screen, minor

shifts) and suspicious behavior (e.g., turning head sideways for extended periods).

The dataset included 100 test instances, split evenly between 50 normal and

50 anomalous behaviors. Each frame was labeled based on whether the yaw angle

exceeded a predefined threshold (±30◦) for more than 1 second.

64

Metric Definitions

• True Positive (TP): Correctly identified head movement anomalies.

• False Positive (FP): Incorrectly flagged normal posture as an anomaly.

• True Negative (TN): Correctly identified normal head positioning.

• False Negative (FN): Missed detections of true head movement anomalies.

Evaluation Results

A detailed breakdown of the evaluation outcomes is presented in Table 8.2, show-

casing high accuracy and balanced precision-recall characteristics.

Metric Value

True Positives (TP) 46

False Positives (FP) 4

True Negatives (TN) 45

False Negatives (FN) 5

Accuracy 91.0%

Precision 92.0%

Recall (Sensitivity) 90.2%

F1 Score 91.1%

Table 8.2: Head Pose Estimation Module Evaluation Metrics

65

Analysis and Observations

The Head Pose Estimation module demonstrated strong performance with an

overall accuracy of 91.0% and an F1 score of 91.1%. It was particularly precise

(92.0%) in detecting actual anomalies, indicating low false alarm rates. The recall of

90.2% reflects the module’s sensitivity to significant lateral deviations.

False positives were relatively rare and occurred primarily in cases of shoulder ad-

justments or forward leaning that momentarily altered the yaw angle beyond thresh-

old. These can be minimized with temporal smoothing or by incorporating pitch and

roll angles for multi-angle filtering.

In comparison to pose tracking systems from related literature (e.g., Li et al.,

2020, which reports 88.9% detection accuracy on head yaw events), the implemented

system performs competitively while maintaining low CPU and memory overhead.

Additional Metrics

• Frame Processing Latency: Average latency per frame was approximately

41ms, staying within real-time limits.

• Pose Stability: Use of Kalman filters and rolling window smoothing improved

stability during micro-movements and reduced noise-induced fluctuations.

• Hardware Compatibility: The model was tested on general-purpose laptops

and functioned without requiring GPU acceleration.

These results support the integration of Head Pose Estimation as a reliable stan-

dalone module for lateral movement tracking and as a strong complement to gaze

analysis for spatial context awareness.

66

8.2.3 NLP-Based Murmur Detection

The NLP-Based Murmur Detection module was evaluated for its ability to iden-

tify low-volume, self-generated speech by the candidate, such as whispering, reading

aloud, or muttering. The module uses WebRTC Voice Activity Detection (VAD) to

identify speech segments, and Whisper’s transcription model to extract text content

for contextual analysis.

The evaluation was performed using 80 test samples consisting of both valid and

anomalous audio clips. These included:

• 40 clean speech segments (simulated murmuring, reading aloud of questions/answers).

• 40 ambient noise segments and natural silent behaviors (coughing, chair move-

ment, lip movement without sound).

Each sample was manually labeled to determine whether the content constituted

a potential exam violation or normal behavior.

Metric Definitions

• True Positive (TP): Detected and transcribed real murmurings correctly as

violations.

• False Positive (FP): Misclassified benign noise or silent motion as a violation.

• True Negative (TN): Correctly ignored ambient or non-voice segments.

• False Negative (FN): Failed to detect and flag actual murmuring behaviors.

67

Evaluation Results

The evaluation results, shown in Table 8.3, indicate the module’s ability to ef-

fectively distinguish between murmuring and benign sounds.

Metric Value

True Positives (TP) 35

False Positives (FP) 5

True Negatives (TN) 33

False Negatives (FN) 7

Accuracy 85.0%

Precision 87.5%

Recall (Sensitivity) 83.3%

F1 Score 85.3%

Table 8.3: NLP-Based Murmur Detection Module Evaluation Metrics

Analysis and Observations

The NLP-Based Murmur Detection module achieved a solid performance with an

accuracy of 85.0% and an F1 score of 85.3%. Precision remained high at 87.5%,

indicating that most detected violations were legitimate murmuring events. The

slightly lower recall value (83.3%) suggests that some low-volume or rapidly whispered

phrases were missed.

False negatives were largely due to audio degradation (background noise, micro-

phone sensitivity) or low whisper amplitude escaping the VAD threshold. Meanwhile,

false positives mostly arose from lip-smacking or breathing noises that triggered the

VAD but produced empty or partial transcriptions in Whisper.

Compared to prior murmur-based speech detection efforts in proctoring studies

68

(e.g., De Silva et al., 2022, achieving 82.7% F1-score with a CNN-based approach),

this model demonstrates improved transcription fidelity with contextual outputs.

Additional Metrics

• Average Transcription Time: 1.8 seconds per murmur segment using the

Whisper “base” model on CPU.

• Silent Filtering Rate: 92.5% of non-voice or ambient noise segments were

filtered before transcription.

• Vocabulary Accuracy: Most common whispered words (e.g., “answer,” “yes,”

“four”) were correctly transcribed in over 90% of test cases.

These results affirm the module’s suitability for real-time integration, offering

semantic-level audio anomaly detection to enhance the depth of the overall behavioral

analysis system.

8.2.4 Environment Noise Detection

The Environment Noise Detection module was developed to identify background

voices and conversations not originating from the test-taker, such as coaching, third-

party involvement, or external verbal prompts. Unlike the murmur detection module,

this system analyzes speaker diversity rather than speech content, flagging anomalies

based on the presence of multiple distinct voice patterns in the audio stream.

To evaluate its effectiveness, the module was tested on a labeled dataset of 90

audio segments, equally divided into:

• 45 single-speaker clips (simulated student voice or silence).

• 45 multi-speaker clips (simulated coaching or background discussion).

69

All clips were processed using WebRTC VAD to detect speech segments and a

speaker clustering mechanism (based on speaker embeddings and DBSCAN) to count

distinct vocal identities.

Metric Definitions

• True Positive (TP): Correctly identified multi-speaker segments as anomalies.

• False Positive (FP): Single-speaker or ambient audio mistakenly classified as

multi-speaker.

• True Negative (TN): Correctly classified single-speaker segments.

• False Negative (FN): Missed detection of multi-speaker presence.

Evaluation Results

The module’s quantitative performance is summarized in Table 8.4, reflecting its

robustness in multi-speaker detection.

Metric Value

True Positives (TP) 42

False Positives (FP) 4

True Negatives (TN) 41

False Negatives (FN) 3

Accuracy 92.2%

Precision 91.3%

Recall (Sensitivity) 93.3%

F1 Score 92.3%

Table 8.4: Environment Noise Detection Module Evaluation Metrics

70

Analysis and Observations

The module exhibited strong and balanced performance with an overall accuracy

of 92.2% and an F1 score of 92.3%. The recall of 93.3% indicates high sensitivity to

background verbal presence, while the precision of 91.3% confirms that most flagged

anomalies were indeed true multi-speaker cases.

False positives generally occurred when echo or overlapping digital voices (e.g.,

videos playing in the background) created audio profiles resembling separate speakers.

False negatives were rare and typically occurred in cases where both speakers had very

similar vocal profiles, making clustering ambiguous.

Compared to speaker diarization benchmarks in low-resource environments (e.g.,

Mahadevan et al., 2021, reporting 88.4% speaker separation accuracy using x-vector

embeddings), the results of this lightweight rule-based clustering approach are both

efficient and effective.

Additional Metrics

• Detection Latency: End-to-end processing per 5-second segment took 1.2

seconds on a standard CPU-based setup.

• Minimum Required Duration: A minimum of 2.5 seconds of speech was

required to confidently detect speaker multiplicity.

• Clustering Stability: DBSCAN-based clustering showed high separation in

over 93% of test cases.

These results highlight the utility of the Environment Noise Detection module

as a complementary layer to audio monitoring. When integrated with the murmur

detection and adaptive behavior profiling modules, it provides a broader surveillance

spectrum covering both individual and environmental risks.

71

8.3 Quantitative Evaluation Experiment Outcomes - Behaviour

Profiling and Adaptivity

The Behaviour Profiling and Adaptivity module was evaluated separately to measure

its effectiveness in learning, encoding, and recognizing repeated behavioral patterns

demonstrated by students during mock exams. This evaluation focuses exclusively

on the model’s ability to recall and accept previously observed behavior patterns

as ”normal” during the real exam — a key differentiator from traditional anomaly

detection systems.

It is important to note that this section evaluates only the adaptivity mechanism

and not the system’s ability to flag violations. That holistic testing is discussed

in the upcoming full system evaluation. Here, we focus on how well the adaptive

Autoencoder-based engine identifies behavioral similarity and continuity across mock

and real sessions.

Evaluation Setup and Dataset

A total of 10 test subjects were recorded under different conditions to simulate

varied yet realistic student behaviors. Each student was asked to record a mock

exam video lasting 2–3 minutes, where they were encouraged to exhibit certain

natural gestures — such as:

• Scratching head or neck

• Adjusting spectacles

• Looking slightly away from screen while thinking

• Brief shoulder shifts or repositioning

These behaviors were repeated deliberately at least 3 times per session to allow

the Autoencoder to internalize them as “normal” in that student’s behavioral profile.

72

Subsequently, students were recorded again during a short “real exam simulation”

where they were instructed to reproduce the same behaviors in a natural, unscripted

way. This provided a controlled framework to measure whether the adaptive engine

could successfully match and suppress these behaviors during live anomaly evalua-

tions.

Frame Similarity and Thresholding

For each incoming frame during the real exam, MobileNet was used to extract

features. These features were passed into the trained Autoencoder, and the recon-

struction error was computed.

• If the error remained below the configured anomaly threshold (ϵ), the behavior

was classified as previously seen and non-suspicious.

• Otherwise, the frame was passed upward for alert generation by the rule-based

system (subject to fusion logic).

The key metric used here was the recall of similarity — how often the system

correctly recognized previously learned behaviors in the live exam context.

Ideal vs. Non-Ideal Conditions

Two environments were defined to test the effect of contextual variation:

• Ideal Conditions: Same background, lighting, and attire (e.g., spectacles) as

used during the mock exam.

• Non-Ideal Conditions: Changed background, different lighting, and varia-

tions in clothing or accessories.

73

The goal was to test the model’s tolerance to these environmental changes, as slight

shifts can alter feature representations from video frames and affect reconstruction

scores.

Results Summary

Table 8.5 presents the recall performance and inference latency of the adaptive

profiling module under different environmental conditions.

Condition Similarity Recall (%) Avg. Latency (ms)

Ideal Conditions (same back-

ground, attire)

94.1% 105 ms

Non-Ideal (different back-

ground or lighting)

82.7% 112 ms

Non-Ideal + different attire

(e.g., no spectacles)

76.5% 110 ms

Table 8.5: Similarity Recognition and Inference Latency under Different Conditions

The system consistently recognized known behaviors when conditions closely matched

the training context. In Ideal Conditions, the recall of similarity was extremely high

(94.1%), meaning that repeated gestures (e.g., rubbing the temple or shifting posture)

were not falsely flagged by the anomaly engine.

However, there was a noticeable drop under Non-Ideal Conditions, especially when

major visual elements (like attire or lighting) changed. This indicates a degree of

visual sensitivity in the MobileNet+Autoencoder architecture.

74

Inference Latency and Real-Time Suitability

The average end-to-end latency for extracting frame features and computing re-

construction error was measured across multiple systems. All results were obtained

on CPU-only setups:

• Average Latency: 105 ms per frame

• Max Latency (under heavy CPU load): 138 ms

• System Frame Rate Handling: Maintained real-time analysis at 8–10 FPS

without queue buildup

These results validate the suitability of the approach for real-time adaptive behav-

ior analysis, particularly when used in conjunction with lightweight anomaly flagging

logic.

Proposed Usage Guidelines (Ideal Use Protocol)

Based on the above findings, the following practical recommendations are proposed

to optimize the effectiveness of the adaptive model:

• Consistent Background: Students should ideally take the real exam in the

same location and setup as the mock exam.

• Lighting Consistency: Drastic changes in lighting conditions between mock

and real sessions should be avoided.

• Appearance Matching: If accessories such as spectacles or caps are worn

during mock sessions, they should also be used in the real exam.

• Behavior Replication: Repeated behaviors should be consistently demon-

strated in the mock session for reliable profiling.

75

These simple yet effective protocols can significantly improve similarity recognition

and minimize false alarms during live exams.

Conclusion of Module-Specific Evaluation

The adaptive behavior profiling module successfully demonstrated its ability to

recognize individualized, repetitive behavioral patterns under controlled and slightly

variable conditions. Its accuracy in suppressing known behaviors confirms the vi-

ability of introducing context-aware intelligence into proctoring systems — moving

beyond rigid rule-based evaluation into a more human-tolerant, behaviorally aware

system. The final, full-system evaluation will further demonstrate how these suppres-

sion capabilities reduce false positive rates during actual exam flow.

8.4 Quantitative Evaluation Experiment Outcomes - Full Sys-

tem

The final and most comprehensive evaluation was conducted at the system level,

integrating all detection modules, the adaptivity engine, and the central alert fusion

framework. The purpose of this test was to evaluate the real-world performance of

the system in correctly identifying anomalous or suspicious behavior during an online

exam while minimizing false positives through adaptivity.

Participation of Testers

The final and most comprehensive evaluation was conducted in collaboration with

real student participants, forming a realistic testbed for assessing the system’s effec-

tiveness. A total of 20 volunteer students participated in this phase. Prior to the

commencement of testing, the research scope and objectives were clearly explained

to each participant. Informed consent was obtained using a structured Google Form,

76

in which participants agreed to have their webcam footage and behavioral patterns

recorded for the sole purpose of academic research. A sample of the consent form

is attached in the Appendix. All personally identifiable visuals, such as faces, have

been blurred in any screenshots used for documentation or demonstration purposes.

Each student was given access to the system along with detailed instructions

specifying the ideal testing setup, including background consistency, camera posi-

tioning, lighting conditions, and attire. These guidelines were intended to ensure

that the adaptivity module could accurately learn and recognize behavior patterns

across mock and real exam sessions.

The evaluation process consisted of two key phases:

• Mock Exam Session: Students completed a mock exam while their behaviors

were recorded. The adaptive model was trained using this footage to capture

and encode each student’s habitual gestures and actions.

• Real Exam Session: Students then participated in a simulated real exam

under conditions closely matching their mock session. During this phase, the

full system—integrating rule-based modules, adaptivity, and the central alert

fusion engine—was run live.

Throughout both sessions, the system continuously logged detection scores, anomaly

flags, timestamps, and adaptive suppression decisions. These logs served as the foun-

dation for the dataset used in this section’s evaluation. A total of over 350 behav-

ioral events were collected and manually reviewed, with each event categorized as

a true positive, false positive, true negative, or false negative based on video logs,

participant debriefing, and ground-truth labeling criteria.

An illustration of the real testing environment and interface screenshots captured

during the sessions is provided in Figure 7.1.

77

Figure 8.1: Screenshots of Students testing the System

Evaluation Setup

A total of 20 volunteer students participated in this evaluation. Each student

completed a mock exam session followed by a real exam session while maintain-

ing consistent conditions—same background, environment, attire, and camera angle.

The system was run live during the real session to capture behavioral anomalies.

Over the combined sessions, the system recorded more than 350 distinct be-

havioral events which were manually labeled post-exam based on video logs and

student feedback. These data points included both:

• Deliberate anomalies: Students were instructed to mimic behaviors that

could be perceived as violations (e.g., whispering, looking away, scratching re-

peatedly).

• Spontaneous anomalies: Cases where the system independently flagged un-

expected or suspicious behavior.

78

Ground Truth Classification

Each behavioral event was evaluated and classified using the following definitions:

• True Positive (TP): An actual suspicious behavior correctly flagged by the

system.

• True Negative (TN): Normal behavior correctly not flagged.

• False Positive (FP): Benign behavior incorrectly flagged (e.g., scratching head

repeatedly).

• False Negative (FN): A violation that the system failed to detect.

Evaluation Results

The results from this comprehensive system-level evaluation—including all inte-

grated modules—are summarized in Table 8.6, presenting detection metrics across

354 behavioral events.

Metric Value

True Positives (TP) 152

False Positives (FP) 22

True Negatives (TN) 153

False Negatives (FN) 27

Accuracy 87.4%

Precision 87.4%

Recall (Sensitivity) 84.9%

F1 Score 86.1%

Table 8.6: Full-System Evaluation Metrics on Combined Dataset (n=354)

79

Adaptive Suppression in Action

To demonstrate how the adaptive engine reduces false positives in practice, two

scenarios are presented using anomaly score trends.

• Case 1: False Positive Suppression — Normal behavior (e.g., scratch-

ing head) is misinterpreted by the rule-based module, but the adaptivity mod-

ule suppresses the alert due to prior exposure during mock exam.

• Case 2: Confirmed Violation — A strong, deliberate anomaly (e.g.,

repeated looking away while whispering) triggers high anomaly scores in

both systems.

Figure 8.2: Case 1: Rule-Based Flag Suppressed by Adaptivity Module

80

Figure 8.3: Case 2: Violation Confirmed by Both Rule-Based and Adaptive Models

These visualizations highlight the real-time decision coordination between mod-

ules and validate the system’s goal of reducing false positives without compromising

detection capability.

System-Wide Observations

• Suppression Efficiency: Over 18 of 22 false positives from rule-based modules

were correctly suppressed by the adaptivity model.

• Latency: Combined inference time remained under 160ms per event, confirm-

ing real-time applicability.

• False Negative Analysis: Most FN cases involved brief, low-visibility actions

(e.g., subtle murmurs or side glances outside camera frame).

81

Control Group: Rule-Based System without Adaptivity

To validate the effectiveness of the adaptivity engine, a control experiment was

conducted where the same proctoring setup was run using only the rule-based

anomaly detection modules, with the adaptivity component disabled. This sim-

ulation was performed using 5 students, each completing a mock and real exam

session as before, contributing over 70 behavioral data points.

In this scenario, all alerts were generated solely based on real-time rules with-

out any behavioral suppression logic. The system flagged anomalies based on static

thresholding (e.g., time spent looking away, voice activity, or excessive head move-

ment), without context awareness of the student’s mock exam behavior.

The outcomes for the rule-based system operating without adaptivity are displayed

in Table 8.7, showing elevated false positives due to lack of contextual filtering.

Metric (No Adaptivity) Value

True Positives (TP) 30

False Positives (FP) 18

True Negatives (TN) 19

False Negatives (FN) 6

Accuracy 69.0%

Precision 62.5%

Recall (Sensitivity) 83.3%

F1 Score 71.4%

Table 8.7: System Metrics under Pure Rule-Based Configuration (Adaptivity Dis-
abled)

82

Interpretation and Comparative Insight

As shown in Table 8.7, the false positive rate increased substantially when adap-

tivity was not used. With 18 false positives out of 73 total events (compared

to only 22 false positives out of 354 events in the adaptive system), the control setup

showed a significantly higher tendency to misclassify normal behavior.

This experiment reinforces the core hypothesis of the research: a rigid, rule-

based proctoring system lacks contextual understanding and results in

higher over-flagging, especially for students with unique but benign behavioral

patterns. The adaptivity module plays a critical role in improving precision by learn-

ing and tolerating such repetitive actions.

Thus, this control evaluation strongly supports the inclusion of an adaptive be-

havior profiling layer in future AI-enhanced proctoring frameworks.

Conclusion of System Evaluation

The full system exhibited strong and balanced performance across precision, recall,

and accuracy metrics. The integration of adaptivity proved critical in reducing false

alarms, particularly for idiosyncratic but benign behaviors. These results confirm

the viability of the proposed adaptive, rule-enhanced proctoring architecture for real-

world deployment, while also providing actionable feedback for future refinements.

8.5 Qualitative Evaluation Outcomes

In addition to the quantitative evaluations conducted on the modular and integrated

system, qualitative feedback was gathered from two key stakeholder groups: the

project supervisor and a group of early test users (students). The goal was to under-

stand the perceived usability, reliability, and acceptability of the system from both

academic and practical user perspectives.

83

8.5.1 Supervisor’s Feedback

Throughout the project lifecycle, iterative feedback was received from the academic

supervisor, particularly after milestone reviews and prototype demonstrations. Key

observations include:

• Innovation in Adaptivity: The supervisor commended the inclusion of the

behavior profiling engine, noting that it “introduces a much-needed contextual

lens to what has otherwise been a rigid discipline.”

• System Design Maturity: The modular breakdown into rule-based, adap-

tive, and alert fusion components was appreciated for its clarity and extend-

ability.

• Evaluation Transparency: The supervisor noted the effort to simulate real

testing conditions and to acknowledge system limitations, particularly around

false positives and edge behaviors.

• Improvement Suggestions:

– Consider deeper testing under varying environmental contexts (e.g., low

light, external noise).

– Explore future extensions such as gaze fixation duration, emotion-based

cues, or secure communication protocols.

The supervisor concluded that the project “demonstrates both academic rigour

and practical relevance,” with particular strength in its motivation to reduce unjust

penalties during remote examinations.

8.5.2 Early Users’ Feedback

Informal usability testing was conducted with 8 students who participated as early

users of the proctoring system. These students used both the student-side and

84

proctor-side interfaces during simulated exam conditions. Feedback was collected

via short surveys and verbal interviews. Key insights are summarized below:

• Perceived Fairness: A majority (6 out of 8) of users reported that the system

felt “fairer than expected,” especially after learning that repeated behaviors

like scratching or looking away would not be immediately flagged. One user

expressed concern about the system “missing subtle cheating attempts,” while

another remained neutral, stating they “needed more exposure” to form a full

opinion.

• UI Simplicity: The student dashboard was considered clear and usable, though

a few users suggested improvements in font size and color contrast. One user

noted that navigation could be more intuitive for first-time users.

• Anxiety Reduction: Several users reported that knowing their usual behav-

iors were being profiled during a mock exam “reduced nervousness during the

real one.” This was echoed by 5 users, while the others reported either minimal

impact or were unsure about its effect.

• Suggestions:

– Add a summary report of behaviors at the end of the exam for trans-

parency.

– Enable microphone and camera testing before starting the exam session.

– Offer a short walkthrough or tutorial before the session begins.

Overall, early testers acknowledged the novelty and practicality of the adaptive

component and expressed interest in seeing how the system might evolve with more

advanced machine learning integrations and feedback mechanisms. The mixed re-

sponses from the two non-majority users highlight important directions for further

usability enhancements and wider user education.

85

9 Future Work

While the current system demonstrates promising performance and real-time appli-

cability, several areas remain open for further enhancement and research. Building

on the findings and limitations identified during this study, the following directions

are proposed for future work:

• Multimodal Behaviour Profiling: Future implementations can explore in-

tegrating additional modalities such as keystroke dynamics, mouse movements,

and physiological signals (e.g., heart rate via webcam-based PPG) to enrich

behavioral profiling and anomaly detection accuracy.

• Longitudinal Behaviour Modeling: Expanding the behavior profiling en-

gine to incorporate multiple sessions across time could help model behavioral

drift, allowing the system to adapt to gradual changes in student habits and

improve long-term robustness.

• More Diverse Datasets: Future evaluations should involve a more diverse

pool of participants in terms of demographics, exam types, and behavioral pat-

terns. This would enhance the generalizability of the adaptive models and their

fairness across broader populations.

• Real-World Deployment Studies: While this research focused on controlled

mock exams, deploying the system in actual university-level assessments would

allow for more rigorous evaluation of performance, reliability, and student ac-

ceptance in high-stakes environments.

• Explainability and Transparency Features: Incorporating explainable AI

(XAI) mechanisms that provide feedback to students and proctors on why a

behavior was flagged or suppressed could improve user trust and system ac-

countability.

86

• Fine-Grained Alert Severity Levels: Introducing a graded alert system—ranging

from low-risk to high-risk anomalies—would provide more nuanced feedback and

reduce alarm fatigue for proctors.

• Cross-Platform Adaptivity and Edge Deployment: Further research

could explore deploying lightweight versions of the system on edge devices (e.g.,

mobile phones, tablets) to enable broader accessibility without dependence on

high-end computing resources.

• Ethical and Policy Frameworks: As intelligent proctoring systems evolve,

future research should explore the development of policy guidelines and ethical

frameworks for their deployment, particularly concerning data privacy, consent,

and algorithmic fairness.

By addressing these directions, the system can continue to evolve into a more

intelligent, inclusive, and widely applicable solution for modern remote assessment

challenges.

87

10 Conclusion

Research Problem and Objectives

This study set out to investigate how adaptive AI techniques could be harnessed

to reduce false positives in online proctoring systems, without compromising the

integrity of remote assessments. Specifically, it examined the effectiveness of a hybrid

proctoring system that integrates rule-based anomaly detection with a behavioral

profiling module trained on individual mock exam data.

Summary of Key Findings

The research demonstrates that incorporating an adaptivity engine significantly im-

proves the system’s ability to distinguish between genuine malpractice and innocuous,

repetitive student behaviors—such as head scratching or habitual movements—that

are often misclassified in traditional systems. The system achieved high precision

and recall in anomaly detection, while maintaining real-time performance and mini-

mal resource overhead. Experimental results, including control and visual analyses,

highlighted the fairness enhancements provided by behavioral context modeling.

Contributions to the Field

This work contributes to the intelligent proctoring landscape by presenting a novel,

behavior-aware detection framework that goes beyond rigid rule enforcement. Unlike

existing systems that generalize behavioral norms, the proposed system introduces

personalization to anomaly detection, addressing a critical gap in fairness and inclu-

sivity.

88

Original Contributions to Knowledge

The research offers several original contributions:

• Development of an adaptive behavioral profiling module trained using mock

exam data to suppress false positives.

• A modular, thread-safe system architecture optimized for general-purpose hard-

ware.

• An alternative server-deployment model to mitigate local model tampering

risks.

These innovations provide methodological, practical, and architectural advancements

to the design of intelligent proctoring tools.

Implications of the Research

Academically, this work opens avenues for integrating user-specific behavioral mod-

eling into various AI-driven surveillance systems. Practically, it offers educational

institutions a more equitable and reliable solution for conducting high-stakes online

exams. Policymakers and exam regulators may also leverage the findings to guide

ethical AI deployment in assessment settings, especially where fairness and privacy

are paramount.

Limitations

Despite promising results, the system showed sensitivity to major environmental

changes such as variations in lighting, attire, or camera angle. These limitations

highlight the need for clear deployment guidelines and further robustness enhance-

ments. Additionally, the training data was limited in diversity, which may affect

generalizability across broader populations and exam contexts.

89

Recommendations for Future Work

Future research should focus on:

• Expanding training datasets to include a broader range of behavioral profiles

and exam environments.

• Integrating more robust environmental normalization techniques.

• Exploring multimodal inputs (e.g., audio and keystroke dynamics) for improved

anomaly discrimination.

• Conducting longitudinal studies to observe behavioral drift and model adapt-

ability over time.

Final Reflection

In an era where remote learning and assessment have become increasingly normal-

ized, this research offers a timely and meaningful contribution toward ensuring aca-

demic integrity without sacrificing the student experience. By championing adaptive,

student-centric design in proctoring technologies, this study not only enhances cur-

rent practices but also lays the groundwork for a more equitable digital education

ecosystem.

90

11 Appendix

11.1 Consent Form for Data Access

91

92

References

Alessio, H. M., Malay, N., Maurer, K., Bailer, A. J. & Rubin, B. (2017), ‘Examining

the effect of proctoring on online test scores.’, Online Learning 21(1), 146–161.

Cavanagh, M., Eberle, W. & Rogers, J. (2016), Automated proctoring of online ex-

ams using head pose estimation and gaze tracking, in ‘Proceedings of the 2016 In-

ternational Conference on Computer Vision Theory and Applications (VISAPP)’,

SciTePress, pp. 407–414.

Chatterjee, P., Dansana, J., Swain, S., Kumar Gourisaria, M. & Bandyopadhyay, A.

(2024), Identity verification in real time proctoring: An integrated approach with

face recognition and eye tracking, in ‘2024 International Conference on Intelligent

Algorithms for Computational Intelligence Systems (IACIS)’, pp. 1–6.

Chougule, M., Bagul, S., Gharat, M., Malve, S. & Kayande, D. (2024), Proctoxpert

– an ai based online proctoring system, in ‘2024 3rd International Conference for

Innovation in Technology (INOCON)’, pp. 1–8.

Coghlan, S., Miller, T. & Paterson, J. (2021), ‘Good proctor or “big brother”? ethics

of online exam supervision technologies’, Philosophy & Technology 34(4), 1581–

1606.

Draaijer, S., Jefferies, A. & Somers, G. (2018), Online proctoring for remote ex-

amination: A state of play in higher education in the eu, in E. Ras & A. E.

Guerrero Roldán, eds, ‘Technology Enhanced Assessment’, Springer International

Publishing, Cham, pp. 96–108.

Felsinger, D., Halloluwa, T. & Fonseka, I. (2024), ‘Video based action detection

for online exam proctoring in resource-constrained settings’, Educ. Inf. Technol.

29(10), 12077–12091.

Foster, D. & Layman, H. (2013), ‘Online proctoring systems compared’.

93

Iqbal, T., Ali, T., Shaf, A. & Ali, M. S. (2023), Enhancing online exam security:

Deep learning algorithms for cheating detection, in ‘2023 International Conference

on Frontiers of Information Technology (FIT)’, pp. 126–131.

Liu, Y., Ren, J., Xu, J., Bai, X., Kaur, R. & Xia, F. (2023), ‘Multiple instance learning

for cheating detection and localization in online examinations’, IEEE Transactions

on Cognitive and Developmental Systems . Preprint, arXiv:2402.06107.

URL: https://arxiv.org/abs/2402.06107

Malhotra, N., Suri, R., Verma, P. & Kumar, R. (2022), Smart artificial intelligence

based online proctoring system, in ‘2022 IEEE Delhi Section Conference (DEL-

CON)’, pp. 1–5.

Masud, M. M., Hayawi, K., Mathew, S. S., Michael, T. & El Barachi, M. (2022), Smart

online exam proctoring assist for cheating detection, in ‘International conference

on advanced data mining and applications’, Springer, pp. 118–132.

Mewada, D., Gaikwad, S., Gharat, B. & Kamble, P. (2024), An al powered exam

proctoring: Comprehensive monitoring for integrity, in ‘2024 International Confer-

ence on Knowledge Engineering and Communication Systems (ICKECS)’, Vol. 1,

pp. 1–5.

Moreno-Guerrero, A.-J., Rodŕıguez-Jiménez, C., Gómez-Garćıa, G. & Ramos Navas-

Parejo, M. (2020), ‘Educational innovation in higher education: Use of role playing

and educational video in future teachers’ training’, Sustainability 12(6), 2558.

Moyo, R., Ndebvu, S., Zimba, M. & Mbelwa, J. (2023), A video-based detector for

suspicious activity in examination with openpose, in ‘Proceedings of the 5th Deep

Learning Indaba Conference (DLI)’. arXiv preprint arXiv:2307.11413v2.

URL: https://arxiv.org/abs/2307.11413v2

Nurpeisova, A., Shaushenova, A., Mutalova, Z., Ongarbayeva, M., Niyazbekova, S.,

94

Bekenova, A., Zhumaliyeva, L. & Zhumasseitova, S. (2023), ‘Research on the devel-

opment of a proctoring system for conducting online exams in kazakhstan’, Com-

putation 11(6), 120.

URL: https://www.mdpi.com/2079-3197/11/6/120

Pandey, A. K., Kumar, S., Rajendran, B. & B S, B. (2020), e-parakh: Unsupervised

online examination system, in ‘2020 IEEE REGION 10 CONFERENCE (TEN-

CON)’, pp. 667–671.

Paul, J. S., Farhath, O. & Selvan, M. P. (2024), Ai based proctoring system – a

review, in ‘2024 International Conference on Inventive Computation Technologies

(ICICT)’, pp. 1–5.

Peterson, J. (2019), ‘An analysis of academic dishonesty in online classes.’, Mid-

Western Educational Researcher 31(1).

Sakhipov, A., Omirzak, I. & Fedenko, A. (2025), ‘Beyond face recognition: A multi-

layered approach to academic integrity in online exams’, Electronic Journal of e-

Learning 23(1), 81–95.

URL: https://doi.org/10.34190/ejel.23.1.3896

Sharma, S., Manna, A. & Arunachalam, N. (2024), Analysis on ai proctoring system

using various ml models, in ‘2024 10th International Conference on Communication

and Signal Processing (ICCSP)’, pp. 1179–1184.

Singh, T., Nair, R. R., Babu, T. & Duraisamy, P. (2024), ‘Enhancing academic

integrity in online assessments: Introducing an effective online exam proctoring

model using yolo’, Procedia Computer Science 235, 1399–1408.

URL: https://doi.org/10.1016/j.procs.2024.04.13

Somavarapu, J., Biswas, S. K., Purkayastha, B., Abhisheka, B. & Potluri, T. (2024),

Advancements and challenges in fully automated online proctoring systems: A

95

comprehensive survey of AI-driven solutions, in ‘Lecture Notes in Networks and

Systems’, Lecture notes in networks and systems, Springer Nature Singapore, Sin-

gapore, pp. 199–212.

Verma, P., Malhotra, N., Suri, R. & Kumar, R. (2024), ‘Automated smart ar-

tificial intelligence-based proctoring system using deep learning’, Soft Comput.

28(4), 3479–3489.

96

