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Abstract

Device-Free Localization (DFL) using Wi-Fi signals has emerged as a compelling

solution for indoor tracking without requiring individuals to carry any device. This

thesis investigates the use of Channel State Information (CSI) for Radio Tomo-

graphic Imaging (RTI) in sparse network deployments. By developing a custom

round-robin protocol over ESP-NOW and a lightweight data processing pipeline,

it was shown that e!ective localization can be achieved with as few as four ESP32

nodes. CSI-based models significantly outperformed traditional Received Signal

Strength Indicator (RSSI) methods, particularly in non-line-of-sight (NLOS) and

multipath-rich environments. Feature importance analysis highlighted the stabil-

ity and informativeness of CSI amplitude features for localization tasks. Although

limitations such as environmental sensitivity and payload constraints were identi-

fied, the study proposes future improvements including phase calibration, domain

adaptation, protocol enhancements, and the use of advanced machine learning

models. This research contributes to the development of practical, low-cost, and

scalable DFL systems suitable for indoor environments.
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Preface

This document has been produced for the partial fulfilment of the requirements

of the B.Sc. in Computer Science (Hons) Final Year Project in Computer Science

(SCS4124).

This dissertation presents a study on DFL using CSI to enhance RTI in sparse

network deployments. A novel data collection protocol and lightweight processing

pipeline were developed to enable e”cient, real-time localization using a minimal

number of ESP32 nodes.

The dissertation is organized as follows: Chapter 1 presents the introduction

and background of the study, along with a brief overview of the entire dissertation.

Chapter 2 discusses related work and existing techniques in the field. Chapter 3

describes the design and methodology of the proposed system, as well as the

implementation process and technical challenges encountered. Chapter 4 provides

a thorough evaluation of the system’s performance. Finally, Chapter 5 concludes

the research and outlines future directions for improvement.

This dissertation represents original work that I, under the guidance of my

supervisor, have carried out. Any material drawn directly from other sources has

been properly referenced; all other content is my own contribution.
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Chapter 1

Introduction

1.1 Background

The resurgence and proliferation of context-aware computing and location-based

services have made the task of localization of people and objects within a given area

more important than ever. It is the process of estimating or predicting the location

of an individual relative to a collection of anchor points in a given AoI. Localization

has seen potential use cases and applications in various fields including but not

limited to disaster management, pervasive computing, health care, surveillance,

home security, and elderly care (Zafari et al. 2017, Gholamhosseini et al. 2019).

Active localization involves tracking objects to carry a transmitter, receiver,

or transmitter (Zhang et al. 2007). In outdoor environments, GPS tracking can

be used to track objects, such as smartphones, accurately within a 5-meter radius

away from obstructions. However, their accuracy degrades with the presence of

buildings, bridges, etc (GPS.gov: GPS Accuracy 2022). This makes them imprac-

tical for use in an indoor setting since the potential location of the user indoors

could theoretically span the entire AoI. Radio Frequency Identification (RFID)

technology o!ers the capability to monitor objects, contingent upon the presence

of an a”xed tag, necessitating premeditation. This makes it ine!ective for localiz-

ing subjects in an emergency. Moreover, RFID tags can only operate over a short

range and are relatively expensive.
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Passive localization (device-free) techniques do not require the objects to carry

any tracking device. Instead, they may use localization techniques that include

acoustic, Bluetooth, infrared, pressure, ultrasound, Wi-Fi, ZigBee, etc (Yang et al.

2013). Techniques using video, pressure, and infrared often have a higher cost

of deployment, su!er from occlusion and short range, and may cause privacy

concerns. Moreover, video-based systems are ine!ective in low-light conditions.

1.2 Research Gap

Figure 1.1: Experimental setup used by Dang et al. (2019)

One initial motivation for introducing indoor localization methods using RTI

is for use in emergencies where information about a particular AoI is limited and

time is of the essence.

Literature surrounding RTI methods have leaned towards improving perfor-

mance by increasing number of nodes or employing learning methods. While most

existing work has demonstrated high accuracy with several proposed methods, the

setups are too complex or require a fingerprinting database to work well. Majority

of papers using non-learning approaches use more than 20 nodes in their setup.

There have been no comparisons made for di!erent devices used as nodes in the

same RTI setup.

For example, the setup used by Dang et al. (2019) (Figure 1.1) looks ideal

2



Figure 1.2: Weighing matrix in multipath-RTI (Kim et al. 2022)

for emergencies since it only requires a single transmitter and receiver on either

end. However, collecting data to build the fingerprinting database requires a lot

of e!ort. There is a need to improve on setups similar to these but with little to

no access to the site.

The recent development of multipath-RTI for localization using virtual nodes

(Kim et al. 2022, Ikegami & Kim 2022) looks promising for sparse topologies

(Figure 1.2). Here, the voxel size does not need to depend on the density of nodes,

increasing its resolution. While it requires fewer nodes, it uses millimeter-waves

of frequencies greater than 50 GHz, making it infeasible.

1.3 Research Questions

1. How can we reduce the number of nodes required to e!ectively

perform RTI using Wi-Fi?

Hypothesis: There should be a way to reduce the number of nodes required

to e!ectively perform RTI using Wi-Fi by leveraging more advanced signal

processing techniques and richer data sources such as CSI. Reducing node

density while maintaining accuracy could make RTI systems more scalable

and cost-e!ective.

2. Which of the parameters, CSI or RSSI, would perform better in

3



sparse networks?

Hypothesis: While previous work such as Kim et al. (2022) utilized RSSI

measurements in their setup, no direct comparison was made between RSSI

and CSI performance in sparse networks. This research hypothesizes that

incorporating both RSSI and CSI measurements may enhance localization

accuracy, with CSI expected to perform better due to its finer-grained infor-

mation.

1.4 Motivation

Imagine an emergency rescue situation in which a building has collapsed and

it is critical to find survivors inside the debris or in a section of the collapsed

building. It is nearly impossible to implement a standard configuration under

such circumstances. Furthermore, maintaining a regular topology surrounding the

region could be fatal in time-sensitive scenarios, particularly in Special Weapons

And Tactics (SWAT) and military operations.

RTI has a big impact on real-world applications. Despite its potential, the

current state of research has not progressed enough for commercial and practical

usage. The goal of this study is to improve the application of RTI in practical

settings.

1.5 Aim and Objectives

1.5.1 Project Aim

This project focuses to exploring the ability to localize objects in an AoI using

RTI when the setup is deployed in a sparse network using multipath-RTI.

1.5.2 Objectives

• Exploring the ability to form an image/detect the occupancy in an enclosed

area when the setup used is sparse and deployed in a non-uniform manner.
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• Evaluating the behaviour of RSSI and CSI parameters under sparse network

conditions.

1.6 Research Scope

1.6.1 In Scope

• Developing a scalable protocol of collecting CSI and RSSI data from multiple

devices.

• Investigating the capability of RTI systems in randomly deployed sparse

setups using Wi-Fi.

1.6.2 Out of Scope

• The project’s feasibility will not be tested in large or outdoor environments.

1.7 Significance of the Research

1.7.1 Concerning Related Theories and Similar Works

There was not enough research done on the issue of when the setup is nonuniform,

according to the relevant material that was examined during the preliminary lit-

erature review. The findings of this study will make a substantial contribution to

the eventual development of a setup that can self-localize in the best possible way

to produce a realistic image of an enclosed region.

1.7.2 Research Contribution and Benefits to Society

The results of this study would greatly enhance the applicability of the RTI system

in targeted real-world scenarios. Deploying RTI systems around an area of interest

in di”cult situations could provide significant insight without requiring direct

access to compromised regions, thereby saving the lives of military and security

personnel.
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Chapter 2

Literature Review

Some of the shortcomings of the techniques mentioned above alleviated the im-

portance of employing Radio Frequency (RF) in passive localization. It is often

cost-e!ective, can work over a large area, and can pass through non-metallic walls

and obstacles. In the late 20th century, as the field of wireless communication

began to flourish, researchers recognized the potential of RF signals beyond com-

munication. Bahl & Padmanabhan (2000) developed an RF-based system to track

users inside buildings using signal propagation models and physical measurements

to estimate and track user locations. RF-based systems have been used to estimate

locations using ultra-wideband (UWB). However, they require specialized military

equipment that is costly and not available to the general public Zhao et al. (2013).

Zhang et al. (2007) devised a RF-based localization technique that utilized RSSI

measurements of an AoI covered by a wireless sensor grid. This system could also

keep count of the number of objects that are not close to each other by tallying

the resulting number of clusters.
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2.1 Radio Frequency Signal Metrics

Various metrics have been used to characterize and analyze the properties of RF

signals. These metrics provide valuable insights into signal strength, quality, and

propagation characteristics which vary in granularity, stability, resolution, and

level of detail.

2.1.1 Received Signal Strength Indicator

RSSI is a metric used to gauge the strength or intensity of the RF signal received

by a device’s antenna. This metric provides details about the signal’s strength

at the receiving end of a communication link. It is a function of the length of

the link between the transmitting and receiving node i.e. as the propagation

distance increases, the signal power decreases and is the basis of the Log-normal

Distance Path Loss (LDPL) propagation model. Using this model, the RSSI can

be estimated using the following equation (Kumar et al. 2009):

P (r) = P0 ↑ 10n log10

(
d

d0

)
(2.1)

where:

P (d) : Received Signal Strength (RSS) at distance d

P0 : reference RSS

n : path loss exponent

d : distance from transmitter

d0 : reference distance from the transmitter where RSS is P0

A key limitation of RSSI is its susceptibility to temporal fluctuations in elabo-

rate indoor environments due to multipath e!ects (Farahani 2008). When signals

take multiple paths due to reflection, di!raction, and scattering, the phase of

these signals can change rapidly. This fast-changing phase can lead to the super-

imposition of multipath signals, making it challenging for RSSI measurements to

accurately capture the characteristics of each signal component, making RSSI a

coarse-grained feature.
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2.1.2 Channel State Information

In Orthogonal Frequency Division Multiplexing (OFDM) systems, data is trans-

mitted and obtained across numerous overlapping frequency bands simultaneously,

known as sub-carriers. For this, data transmission and reception involve using mul-

tiple antennas through Multiple Input and Multiple Output (MIMO) technology.

As the data travels via the channel, it may take various routes, leading to attenu-

ation caused by path loss, fading due to multipath, and fading due to shadowing.

It contains details on the properties of the sub-carriers including the amplitude

and phase, and di!erent sub-carriers can have di!erent signal strengths. The fre-

quency and spatial diversity provided by CSI can be utilized to mitigate the e!ects

of multipath propagation (Chapre et al. 2015).

Unlike RSSI, which only captures signal strength, CSI records both the signal

strength and phase information for each OFDM sub-carrier and between every

pair of transmit-receive antennas (Al-qaness et al. 2019). CSI is a more detailed

RF measurement than RSSI. It o!ers a more comprehensive view of the RF chan-

nel, encompassing details such as amplitude, phase, and frequency response. CSI

measurements provide insights into the characteristics of the propagation medium,

including multipath e!ects, fading, and interference. A tool developed by Halperin

et al. (2011) can record CSI information based on the IEEE 802.11 standard. How-

ever, while RSSI is almost ubiquitous, CSI is only available in a handful of Network

Interface Cards (NICs).

In an OFDM transmission system, the measured signal of the j-th receiving

antenna in the frequency domain can be modeled as (Al-qaness et al. 2019):

yj(t) =
nt∑

i=1

hi,jxi(t) + ωj(t) (2.2)

where:
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Metrics RSSI CSI

Level of Detail Coarse Fine

Time Resolution Low High

Temporal Stability Lower Higher

Frequency Resolution Low High

Ubiquity Widely available Limited

Table 2.1: Comparison of RSSI and CSI

i : index of transmit antenna

j : index of receive antenna

yj(t) : received signal at the jth antenna at time t

hi,j : channel fading factor between the ith and jth antenna

xi(t) : signal transmitted by ith antenna at time t

ωj(t) : additive noise at jth antenna at time t

2.1.3 Other Metrics

Some features that can extracted from RF waves in the time domain include Time

of Arrival (ToA) and Time of Flight (ToF). The specific instance when a radio

signal sent from a transmitter reaches a remote receiver is known as ToA. The

time it takes for this transmission to travel from the transmitter to the receiver is

known as the ToF. Angle of Arrival (AoA), the direction in which the signal has

been received, introduces an additional dimension orthogonal to the distance for

geometric mapping purposes.

2.2 Radio Tomographic Imaging

RTI utilizes the impact of obstacles on the propagation of wireless signal to infer

the presence and movement of objects in an AoI (Yang et al. 2013). An RTI sys-

tem comprises access points or signal emitters, monitoring points for signal metric
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Figure 2.1: Shadowing of a link caused by objects in the LOS of the two nodes

(Wilson & Patwari 2010)

measurement, and an application server responsible for processing the measure-

ments to determine the locations of pertinent subjects within an AoI.

It draws concepts from existing Computed Tomography (CT) techniques like

X-Ray and RAdio Detecting And Ranging (RADAR) systems. In CT methods,

physical measurements are conducted along diverse trajectories to approximate

how transmission parameters are distributed spatially across the medium (Kak

et al. 1988). RADAR systems transmit RF pulses and images the surrounding

area. The distance to the scatter is a function of the delay between transmis-

sion and reception (Bahl & Padmanabhan 2000). On the contrary, RTI, which

uses lower-bandwidth RF-waves, have to deal with substantial NLOS transmission

which complicates the localization process. Conversely, it does not require costly

and specialized hardware (Wilson & Patwari 2010).

Various approaches have been proposed, using di!erent signal metrics with sta-

tistical, and learning methods. Statistical (non-learning) methods were often used
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in approaches where information about the AoI may not be known beforehand, or

when the environmental conditions may change. An advantage is its adaptability

in various environments as well as fast computational time. Learning methods are

often employed in a known AoI with a substantial amount of data collected at

various points. It uses data to learn the complex relationships between the signal

measurements and the environment. Give enough data, it may be able to achieve

higher accuracy than statistical methods, however it requires more computational

resources and only works on known environments.

Table 2.2: Overview of Techniques and References by Signal Type

Signal Type Technique References

RSSI Geometric Mapping Wilson & Patwari (2010), Wilson & Pat-

wari (2012), Kaltiokallio et al. (2012b),

Kim et al. (2019), Ikegami & Kim (2022),

Kim et al. (2022)

Fingerprinting Youssef & Agrawala (2005), Seifeldin &

Youssef (2009), Xu et al. (2013), Mager

et al. (2015), Mahfouz et al. (2014), Lu

et al. (2016), Xu et al. (2016), Subhan

et al. (2020), Liu et al. (2019), Hoang et al.

(2019), Denis et al. (2020), Poulose & Han

(2021), Su et al. (2023)

Variance Wilson & Patwari (2011), Kaltiokallio

et al. (2012a)

Kernel Distance Zhao et al. (2013)

CSI Geometric Mapping Wu et al. (2012)

Fingerprinting Xiao et al. (2012), Sanam & Godrich

(2018), Dang et al. (2019), Chapre et al.

(2015), Wang et al. (2017), Chen et al.

(2017), Hsieh et al. (2019)
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2.3 RTI Topology

Figure 2.2: Experimental setup used by Patwari & Wilson (2010)

Many setups involves non-learning approaches requires a large number of nodes

arranged in an almost perfect grid like pattern (Figure 2.2). The voxels created are

a result of the intersection of the LOS of oppositely placed nodes. That means the

resolution and accuracy of the image generated would correspond to the number

of nodes. Adding more nodes to the RTI network reduces the magnitude of errors

(Kaltiokallio et al. 2012a). However, there was not a lot of work done to reduce

the number of nodes to make it practical in real-life situations.
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Chapter 3

Methodology

3.1 Preliminary Study

This study builds upon prior work conducted by Rodrigo & Sayakkara (2024),

which, although unpublished, served as the basis for a preliminary investigation

into indoor localization using RTI with CSI in sparse wireless networks. The

objective of this stage was to replicate Rodrigo’s experimental setup in a new

environment in order to assess the reproducibility and robustness of the method-

ology. This approach aims to evaluate the reliability and generalizability of the

system under varying spatial and environmental conditions.

• Experimental Setup: The testbed consisted of a square area measuring

1.8m→1.8m, subdivided into nine equal square voxels, each measuring 0.6m→

0.6m, as depicted in Figure 3.1. Two ESP32 microcontrollers were employed,

with one configured as a transmitter and the other as a receiver. Both devices

operated at a tick rate of 100 Hz using the ESP32 CSI Toolkit (Hernandez

& Bulut 2020).

The receiver was connected to a MacOS 15.1 laptop via a serial connection for

real-time CSI data acquisition. The transmitter was powered externally and

positioned just outside voxel 8, while the receiver was located just outside

voxel 2. Both devices were mounted approximately 0.7 meters above the

ground (see Figure 3.2).
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Figure 3.1: Schematic diagram of the area of interest, showing the placement of

the two transmitters and the floor layout.

• Data Collection Protocol: CSI data were collected for a duration of 30

seconds within each voxel, with the subject performing the following activity

types:

– Standing-Stationary : standing motionless.

– Standing-Moving : standing with arm movements.

– Sitting-Stationary : sitting cross-legged without movement.

– Sitting-Moving : sitting cross-legged with arm movements.

– Walking : dynamic movement within the voxel.

These variations were designed to capture the e!ects of di!erent postures and

motion profiles on the CSI measurements. Data collection was performed in

isolation with only one individual present in the room to minimize external

interference.

• Model Development and Evaluation: A non-learning localization model

14



Figure 3.2: Testbed setup in bedroom environment.

was initially developed using the training dataset. Data preprocessing in-

volved the removal of null subcarriers and subsequent storage in a structured

database. Separate testing datasets were then collected and used to assess

the model’s accuracy in voxel prediction.

• Future Work: Future experiments will include diverse node placement

topologies and environmental scenarios to investigate system performance

under more complex conditions. These will encompass multi-user presence,

the introduction of physical obstructions, and dynamic activity sequences to

further evaluate localization robustness and adaptability.

3.1.1 Evaluation Plan

The evaluation process involved systematic testing of the localization model using

both RSSI and CSI data across multiple network topologies (Figure 3.3). Perfor-

mance was assessed based on the Euclidean distance between the predicted and

actual voxel positions.
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Start

Set up topologies and scenarios

Collect data from RSSI and CSI measurements

Evaluate and compare results

End

Figure 3.3: Evaluation chart flowchart

3.1.2 Results and Discussion

The initial evaluation involved predicting the user’s voxel based on collected CSI

data under various activity scenarios. A significant amount of e!ort was dedicated

to interpreting legacy code—primarily implemented in Jupyter Notebooks—and

adapting it for this analysis. Future iterations of the model will benefit from au-

tomation techniques, such as incorporating activity recognition to reduce manual

labeling.

One challenge encountered was the inconsistency in subcarrier performance

across activities and locations. For instance, Figure 3.4 presents subcarrier accu-

racy for the activity ”Standing-Stationary” across all voxels, revealing significant

variability. Even within a single voxel, such as voxel 6, two measurements (Fig-

ures 3.4d and 3.4e) demonstrated divergent subcarrier profiles.

These findings suggest that due to the high variance in subcarrier-level accu-

racy, relying solely on non-learning methods may be insu”cient for robust local-

ization. Future e!orts may require the integration of learning-based models or

increased node density to enhance spatial resolution and classification reliability.
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(a) ”Standing-Stationary” on voxel 1. (b) ”Standing-Stationary” on voxel 1.

(c) ”Standing-Stationary” on voxel 2. (d) ”Standing-Stationary” on voxel 6.

(e) ”Standing-Stationary” on voxel 6. (f) ”Standing-Stationary” on voxel 9.

Figure 3.4: Accuracy of subcarriers for activity ”Standing-Stationary” on di!erent

voxels.
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3.2 Custom Protocol for Data Collection

To ensure reliable and interference-free data collection, a round-robin communica-

tion protocol was implemented, wherein only one device broadcasts an ESP-NOW

packet at a time while other devices obtains the CSI of the packet.

This approach avoids packet collisions inherent in simultaneous transmissions

over the shared Wi-Fi medium, which would otherwise degrade the quality and

consistency of CSI measurements. Prior work by Halperin et al. (2011) empha-

sized the sensitivity of CSI to channel conditions and interference, reinforcing the

importance of minimizing concurrent transmissions to maintain fidelity in wireless

measurements.

By serializing transmissions, the system maintains a clear transmission timeline

and provides clear associations between sender-receiver pairs, which is critical for

accurate spatial modeling and feature extraction in RTI.

One key advantage of the proposed protocol is that only a single device needs

to be connected to a computer to collect data. The other devices in the network

only need to be powered on and do not require a direct connection. This setup

helps reduce bandwidth usage and makes data collection more straightforward.

The connected device is responsible for recording both its own CSI measurements

and those received from the other devices, saving all data in a well-organized

format for later analysis.

Another advantage is the number of links for a given number of nodes is in-

creased. Most setups involve a sender-receiver pair, where one device sends out

packets and another device reads the CSI data obtained from those packets Zhang

et al. (2019) Lu et al. (2023) Choi et al. (2022). Only a single link exists be-

tween each pair, restricting spacial diversity. Given n devices, there would be

n
2 links made for each pair. Moreover, data needs to be collected from multiple

transceivers, making data collection complex. Some involve a single access point

(AP) with multiple stations (STA) connected to it Wang et al. (2014) Schäfer

(2022) Suroso et al. (2021) Yin et al. (2024) Brinke et al. (2023). While it makes

it easier to collect data if the AP is measuring the CSI data received from the
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other STAs, obtaining CSI data collected by the STAs will still be a challenge if

spatial diversity is to be improved. If there are n devices, assuming only the AP

is collecting data, there would be n↑ 1 links in total. Our protocol increases the

number of unique links for the given number of nodes to P (n, 2) = n(n↑ 1).

Device 0

Device 1

Device 2

Device 3

Laptop
Receives CSI

Receives CSI

Broadcast

Broadcast

Broadcast

Serial Write

Receives CSI &

extracts Payload

Broadcasts Packet

with Payload

Figure 3.5: Behavior of devices at a time index in the custom round-robin protocol.

3.2.1 Protocol Overview

• The transmission starts from a designated node, referred to as Device 0,

which is also connected via USB to a laptop.

• At any given time, one device acts as the sender, while the rest of the devices

act as receivers, as shown in Figure 3.5.

• Each device takes turns being the sender across time intervals in a round-

robin fashion, depending on the device that has broadcasted the last Wi-Fi

packet.
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• The receivers collects the CSI data and stores it temporarily in memory. To

prevent the receivers from reading CSI data from packets sent from devices

outside the network, each packet contains a magic number and an organiza-

tion ID which are checked before temporarily storing the data.

• When it is the device’s turn to send out data, the sender piggybacks the

latest CSI data measured from the other devices.

• Device 0 writes to serial the payloads of all the packets received from other

devices, as well as its own when sending out data. This data is read by the

laptop and stored as CSV files for further processing. The logs include:

– CSI data for each sender-receiver pair with the time-index.

– Other metadata associated with the Wi-Fi packets, like RSSI, channel,

signal mode, etc.

3.2.2 Firmware

Each ESP32 node operates using identical custom firmware that implements round-

robin transmission logic with data piggybacking. When a device is flashed for the

first time, it is manually assigned a unique device identifier (ID) in the range

[0, n↑ 1] where n denotes the total number of devices in the network.

Nodes transmit payloads containing their own device ID, a time index, Wi-Fi

metadata, and CSI from other devices. Transmission is event-driven, such that a

node only initiates communication upon receiving a payload from the node with

the preceding device ID in the round-robin sequence.

To ensure robustness against packet loss or delays, a timeout mechanism is

incorporated. If a node does not receive the expected packet within a certain

timeframe, it proceeds to transmit its payload. The timeout duration is propor-

tional to the relative distance in the round-robin sequence between the current

node and the node that sent the last received packet. This design ensures that

devices wait longer to transmit if the last received packet originated from a node
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further ahead in the logical sequence, thereby preserving the intended communi-

cation order while maintaining fault tolerance.

3.2.3 Data logging

During the data collection process, Device 0 — connected to a laptop via serial

— acts as the central logger. Whenever any device transmits a packet, it includes

its own CSI along with measurements from the other devices. All devices receive

the broadcast and extract CSI locally, while Device 0 also parses the payload to

extract the embedded measurements. These are then written to serial as comma-

separated values for subsequent analysis.

An unexpected behavior was observed during payload parsing on Device 0.

Specifically, while extracting the csi data arr from received payloads, an o!set

of 7 bytes per element had to be manually accounted for, depending on the index

of the data being accessed from the csi data arr array. This discrepancy was

not present when accessing the data locally on the transmitting device. The

pseudocode for this is as shown:

f o r i from 0 to payload . c s i d a t a a r r . l en ( ) − 1 do

i f payload . d e v i c e i d i s not 0 then

o f f s e t = 7 x i

e l s e

o f f s e t = 0

end i f

p r i n t ( address o f payload . c s i d a t a a r r [ i ] + o f f s e t )

end f o r

At present, the origin of this o!set remains unclear. A potential explanation

might involve unintended padding introduced during serialization. It is also pos-

sible that structure packing or the transmission process itself results in additional

bytes being inserted between elements, which only a!ects devices receiving the

data, not the sender. Further investigation is required to isolate and fully under-

stand this anomaly.
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Each logged entry records both metadata and the corresponding CSI trace,

structured as follows:

Field Description

type Type of entry, in this case, CSI DATA.

time index Index indicating when the packet was captured.

device id Identifier for the transmitting device.

recv device id Identifier for the receiving device.

mac MAC address of the transmitting device.

rssi RSSI (in dBm).

rate PHY rate encoding of the packet.

sig mode Index of protocol of the received packet (non-

HT/HT/VHT).

mcs Modulation Coding Scheme.

cwb Index of Channel width (20 MHz/40 MHz).

smoothing Whether channel estimate smoothing is recommended.

not sounding Whether the packet (Physical Layer Protocol Data Unit

(PPDU)) is not a sounding packet.

aggregation Whether packet aggregation is used.

stbc Spatial Time Block Coding (STBC) (disabled/enabled).

fec coding Forward Error Correction type (for LDPC 11n packets).

sgi Short Guard Interval (Long GI/Short GI).

noise floor Measured background noise level.

ampdu cnt Number of aggregated packets in an AMPDU.

channel Primary channel on which the packet was received.

secondary channel Secondary channel on which the packet was received

(non/above/below)

timestamp Local device timestamp of packet arrival.

ant Antenna index used for reception.

sig len Length of the signal field.

rx state State of packet (no errors/error number).
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len Length of CSI data bu!er.

csi data CSI (complex values per subcarrier).

3.2.4 Limitations

• The payload size of ESP-NOW v2 is limited to 1490 bytes. As a result, only

four readings, each containing CSI data and Wi-Fi packet metadata, can be

transmitted at once. Consequently, if multiple transmission timeouts occur,

older CSI readings stored on each device may be overwritten.

• To simplify memory management and adhere to the ESP-NOW payload size

constraint, the maximum length of a CSI data array is limited to 256 bytes.

However, devices operating in HT mode with a channel bandwidth of 40 MHz

produce 384 bytes of CSI data. Under these conditions, the complete CSI

array cannot be transmitted unless either the payload capacity of ESP-NOW

is increased or dynamic memory allocation is supported in the firmware.

• The protocol does not include a mechanism for precisely controlling the

transmission rate of packets over time. This limitation arises from the lack

of time synchronization between devices, which was chosen to reduce sys-

tem complexity. As a result, the amount of CSI data collected may vary

depending on environmental conditions and hardware performance.

3.3 Data Collection

3.3.1 Collection Setup

Figure 3.6 presents the schematic layout of the experimental testbed, where four

ESP32s (Device 0 to Device 3) are positioned at the corners of a 1.8m→1.8m square

grid, which is divided into nine equal regions. All devices are placed directly on

the floor level (0m height).

The ESP32 modules utilized in this study were configured to operate on the 2.4

GHz Wi-Fi band, using High Throughput (HT) mode with a channel bandwidth of
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20 MHz. The devices were set to operate on channel 11 with a secondary channel

positioned below the primary with STBC disabled.

Devices 1, 2, and 3 are powered independently using portable power banks,

ensuring untethered operation and consistent power supply. Device 0 is powered

via a USB connection to a MacBook Pro M1 laptop running MacOS Sequoia 15.4.1

A FastAPI-based backend Python web server runs on the laptop, continuously

reading and processing serial input data from Device 0. The server dynamically

labels the collected data based on incoming requests from a React-based frontend

application, also hosted on the same laptop. This frontend interface is accessed

through a mobile device, allowing for remote control and real-time interaction with

the system.

For the purposes of data processing, analysis, and model development, the

Python libraries numPy, pandas, matplotlib, and scikit-learn were used.

1 2 3

4 5 6

7 8 9

Device 0 Device 1

Device 2 Device 3

Laptop

U
S
B

1.8m

1.8m

0.6m

0.6m

Figure 3.6: Schematic diagram of the AoI with four devices.

Data was collected across three distinct physical environments to capture di-

verse signal propagation characteristics:
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• Empty Floor: An open and unoccupied space on the 5th floor of the

university building, with only structural pillars located outside the region

of interest. The environment was static, with minimal interference and no

human activity during the data collection sessions. The testbed was setup

in two di!erent locations (see Figure 3.7 and Figure 3.8).

Figure 3.7: Testbed setup in the empty 5th floor environment (Loc 1).

• Laboratory: A busy 4th-year student laboratory containing chairs, desks,

and other furniture in close proximity to the testbed area. This setting

introduced a more cluttered environment with potential for signal multipath

(see Figure 3.9).

• Bedroom: A domestic bedroom setting with a wall directly adjacent to

one side of the grid. This setup provided insight into how typical household

elements and nearby obstructions can impact wireless signal characteristics.

(see Figure 3.2)
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Figure 3.8: Testbed setup in the empty 5th floor environment (Loc 2).

3.3.2 Collection Methodology

An occupant was instructed to remain stationary at the center of each voxel, during

which CSI data was collected over a duration of 30 seconds. The number of data

points obtained per voxel varied, which may be attributed to random fluctuations,

the specific positioning of the occupant within the AoI, or interference from other

radio wave sources operating at the same frequency.

3.4 Data Preparation

3.4.1 Data Preprocessing

The preprocessing of CSI data was carried out in accordance with the ESP32

documentation Espressif Systems (2024). As described in the Data Collection

subsection, CSI data was collected using an ESP32 device configured for Wi-Fi

communication. Each CSI measurement consisted of 256 values, representing 128

complex numbers, with each subcarrier encoded as a pair of imaginary and real

components.

According to the ESP32’s implementation of the IEEE 802.11n standard, the

CSI vector includes subcarrier indices ranging from ↑64 to +63, with the center
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Figure 3.9: Testbed setup in the 4th-year laboratory environment.

frequency at index 0. However, due to the specific Wi-Fi configuration used during

data collection—namely, the secondary channel set to below, HT mode enabled,

and no STBC—only subcarriers corresponding to indices 0 to 63 in the CSI vector

were considered for analysis.

Within this range, only the subcarriers from ↑28 to +28 (inclusive) carry

usable data, as subcarriers outside this range are designated as null subcarriers

and do not contain meaningful channel information. These null subcarriers were

excluded from further processing.

Additionally, four pilot subcarriers—located at indices ↑21, ↑7, +7, and

+21—are embedded within the usable range. These are reserved for synchroniza-

tion and channel estimation and were therefore also removed from the analysis.

After excluding the null and pilot subcarriers, a total of 52 usable subcarriers

remained where were used as the basis for all subsequent tasks.

3.4.2 Feature Extraction

The feature extraction process was designed to transform the preprocessed CSI

data into a format suitable for machine learning tasks. For each voxel, time index,

sender, and receiver combination, the amplitude and phase of the CSI data were
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computed. The amplitude was derived as the absolute value of the complex CSI

data, while the phase was obtained as the angle of the complex values.

To reduce noise and smoothen the data, a moving average filter was applied to

both the amplitude and phase components. These filtered components were then

concatenated to form a feature vector.

This process was repeated for all combinations of voxel, time index, sender,

and receiver, resulting in a comprehensive feature matrix (X) and corresponding

labels (y), where each label represents the voxel index. The extracted features

served as the input for subsequent classification tasks.

3.5 Data Analysis and Model Development

In this work, the objective is to estimate the location of an occupant within an

AoI using four ESP32 devices. Two distinct problem formulations were explored:

classification and regression. In the classification approach, each voxel is treated

as a categorical class. Conversely, in the regression approach, each voxel is rep-

resented by a continuous-valued coordinate pair in the range (↑1, 1) → (↑1, 1),

corresponding to a normalized spatial position. These approaches were applied to

analyze the CSI data collected from all three test-bed setups.

3.5.1 Classification-Based Localization

The classification-based formulation aims to determine the voxel in which the

occupant is located, treating the problem as a multi-class classification task over

a 3→ 3 spatial grid. Each voxel is assigned a unique integer label from 0 to 8.

Initially, a threshold-based method was considered, similar to the one discussed

in Section 3.1. However, while the earlier setup employed only a single transmitter-

receiver pair, the updated configuration utilized four ESP32 devices, as illustrated

in Figure 3.6. This expansion resulted in 12 directional communication links

(P (4, 2) = 4 → 3 = 12), significantly increasing the spatial diversity captured by

the system.
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Given that CSI is direction-sensitive—meaning the values depend on the spe-

cific transmitting and receiving device—each ordered transmitter-receiver pair

must be treated as a distinct source of spatial information. Consequently, simple

thresholding techniques proved inadequate for generating robust feature represen-

tations across all links.

To address this, a data-driven approach was adopted. For each ordered sender-

receiver pair (excluding self-links), a moving average filter was first applied across

the temporal dimension to smooth CSI measurements and mitigate noise. Feature

vectors were then constructed by extracting the magnitude and phase of the 128

subcarriers for each link and appending one-hot encoded vectors to indicate the

identities of the sender and receiver devices.

Formally, the feature vector for each time index t and voxel v is defined as:

x(s,r)
v,t =

[
one-hot(s), one-hot(r),magnitude(csi(s,r)v,t ), phase(csi(s,r)v,t )

]

where s ↓= r represent the sender and receiver device indices, respectively. This

process is repeated for all 12 directional links, and the resulting features are ag-

gregated into the dataset X, with corresponding voxel labels stored in y.

A Random Forest Classifier was chosen due to its ability to model non-linear

decision boundaries and to handle high-dimensional input data e!ectively. More-

over, it provides built-in feature importance scores, enabling interpretability of

which CSI components are most informative for voxel classification.

The model was implemented using the scikit-learn library with 150 decision

trees (n estimators=150) and a fixed random seed (random state=42) to ensure

reproducibility:

RandomForestClassifier(n_estimators=150, random_state=42)

The dataset was partitioned into training and testing subsets using an 80:20

split:

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42)
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Here, X contains the flattened input feature vectors constructed from all valid

CSI measurements across time, voxels, and device pairs, and y contains the cor-

responding voxel indices. The trained classifier was then evaluated on the test set

using standard metrics such as accuracy and macro-averaged F1-score.

In addition to the CSI data, similar pre-processing steps were applied to the

collected RSSI data. The same model parameters were used for consistency. This

approach allows for a fair comparison of localization performance between RSSI

and CSI data within the same environment, while using a reduced number of

nodes.

3.5.2 Regression-based Approach

To formulate the localization task as a regression problem, each voxel in the 3→

3 spatial grid was mapped to a continuous-valued coordinate pair in the range

(↑1, 1)→ (↑1, 1), reflecting its normalized position within the AoI. The mapping

for the standard 9-voxel layout is defined as follows:

voxel coord map =






1 ↔ (↑1,↑1), 2 ↔ (↑1, 0),

3 ↔ (↑1, 1), 4 ↔ (0,↑1),

5 ↔ (0, 0), 6 ↔ (0, 1),

7 ↔ (1,↑1), 8 ↔ (1, 0),

9 ↔ (1, 1)

(3.1)

In one particular setup—the empty floor—additional data was collected at

four finer-grained locations within the center voxel (voxel 5). These supplementary

samples were appended to the dataset and assigned fractional coordinates to reflect

their o!set positions. This extended mapping was used only for analyzing whether

increased granularity a!ects prediction performance:

10 ↔ (↑0.5,↑0.5), 11 ↔ (↑0.5, 0.5), 12 ↔ (0.5,↑0.5), 13 ↔ (0.5, 0.5)

(3.2)
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Figure 3.10: Voxel-to-coordinate mapping used for regression. Each square rep-

resents a voxel in the 3 → 3 grid, labeled by its (x, y) coordinate. Additional

coordinates at the corners of the center voxel indicate extended positions used in

one specific setup.

A multi-output regression model was trained to jointly predict the (x, y) coor-

dinates of the occupant’s location based on features extracted from the CSI data.

The model used was the RandomForestRegressor from the scikit-learn library,

configured with 50 trees and a fixed random seed to ensure reproducibility:

RandomForestRegressor(n_estimators=50, random_state=42)

Random Forest was chosen for its e!ectiveness in modeling non-linear relation-

ships and its interpretability through built-in feature importance scores.

The dataset was randomly split into training and testing subsets using a 60:40

ratio. The same model was used to predict both coordinates simultaneously:

X_train, X_test, y_train, y_test, time_indices_train, time_indices_test =

train_test_split(X, y, time_indices, test_size=0.4, random_state=42)

Here, X contains the input features derived from the CSI data, and y con-

sists of the ground truth (x, y) coordinates. The time indices were retained for
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visualization purposes, such as temporal color coding in scatter plots.

Model performance was evaluated using MAE and the Coe”cient of Determi-

nation (R2 score), providing a detailed view of prediction accuracy across both

spatial dimensions.
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Chapter 4

Results and Evaluation

4.1 Classification-based Approach

The classification performance across three deployment environments—laboratory,

empty floor, and bedroom—shows a similar performance when evaluated using

a conventional train-test split from the same data collection session (Figure 4.1,

Figure 4.2, Figure 4.3). The empty floor environment achieves the highest accuracy

at 96%, followed by the laboratory at 92%, and the bedroom at 85%. This

indicates that CSI-based features can encode spatial signatures reliably within a

consistent environmental and temporal context.

Figure 4.1: Confusion Matrix — Empty Floor (using CSI).
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Figure 4.2: Confusion Matrix — Laboratory (using CSI).

Figure 4.3: Confusion Matrix — Bedroom (using CSI).

Each voxel in the 3→3 grid is classified with high precision and recall across all

classes (Figure 4.1, Figure 4.2, Figure 4.3). The classifier benefits from the com-

bined feature vector that includes amplitude and phase information, along with

one-hot encoded sender and receiver identities. Feature importance analysis (Fig-

ure 4.4) confirms that amplitude features—derived from the first 52 subcarriers—

contribute more significantly to the model’s performance than phase features.

This aligns with prior observations in the literature, such as those by Rao et al.

(2020), which highlight the instability of raw phase data due to clock skew, lack of

time synchronization, and fixed random o!sets between transmitters and receivers.
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While calibration techniques exist to mitigate these e!ects, they are often sensi-

tive to noise and environmental changes. In contrast, amplitude data is inherently

more stable and thus plays a more dominant role in classification.

Figure 4.4: Overall feature importance within the same session across all environ-

ments.

However, this promising performance does not generalize well when training

and testing are performed on data collected during di!erent sessions. In this cross-

session evaluation setting, overall accuracy drops significantly—to 46% in one

case and 33% in another—even though the environment and device placements

remain unchanged. Classification performance becomes uneven across voxels, and

the model exhibits increased confusion, often defaulting to predictions for a few

dominant classes.

Cross-session performance degradation can be attributed to several factors.

CSI is sensitive to small environmental changes such as furniture movement, tem-

perature, humidity, and device orientation, which can cause temporal drift in

signal patterns even when the spatial location is unchanged. Models trained

and tested within the same session may overfit to session-specific noise or arti-

facts, limiting generalization. Additionally, variations in multipath propagation

due to environmental changes can alter channel conditions and degrade classifi-

cation performance. Di!erences in calibration between sessions make things even
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Figure 4.5: Confusion Matrix — Cross-session in same part of empty floor (using

CSI).

harder—especially for phase information—and even amplitude values can change

due to di!erences in signal strength, interference, or how the hardware adjusts

the signal. The assumption that the wireless channel stays mostly stable—used

when applying moving average filters—might not be true across di!erent sessions,

which can make the extracted features less reliable. These findings suggest a need

for more robust modeling techniques, such as phase calibration, domain adap-

tation, or session-agnostic representations, to improve generalization across time

and changing channel conditions.

The localization performance using RSSI data was also evaluated in the same

three environments.
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Figure 4.6: Confusion Matrix — Cross-session in di!erent part of empty floor

(using CSI).

In the empty room environment, the overall accuracy was 0.47. The macro-

averaged F1-score was 0.47, indicating moderate performance. Some locations,

such as class 2 and class 6, showed relatively higher precision, while others had

high recall but low precision, suggesting class imbalance or overlapping signal

characteristics.

In the laboratory, the accuracy was slightly higher at 0.48. While class 8

achieved high recall and F1-score, several other classes, such as class 0 and class

1, exhibited lower precision and recall, likely due to increased multipath e!ects

and signal interference in a cluttered environment.

The bedroom yielded the highest accuracy among the three environments,

at 0.54. Notably, class 0 achieved a high recall of 0.93 and an F1-score of 0.67,

indicating that this location was more easily distinguishable. Similarly, classes 6

and 7 demonstrated strong performance.

To assess the generalization ability of the RSSI-based localization model, an

additional experiment was conducted in the empty room environment, where train-

ing and testing data were collected in separate sessions. The model’s performance

in this cross-session setting significantly decreased, achieving an overall accuracy

of only 0.21. The macro-averaged F1-score was also low at 0.21, indicating a
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considerable drop in classification e!ectiveness compared to within-session evalu-

ations.

The per-class results show large variability. For instance, class 2 exhibited

relatively high precision (0.56), while classes such as 0 and 6 had very low scores

across all metrics. This degradation suggests that the model struggles to maintain

performance across temporal changes, likely due to variations in environmental

conditions, device orientation, and interference between sessions.

Figure 4.7: Confusion Matrix — Empty Floor (using RSSI).

Figure 4.8: Confusion Matrix — Laboratory (using RSSI).
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Figure 4.9: Confusion Matrix — Bedroom (using RSSI).

Figure 4.10: Confusion Matrix — Empty Floor Cross-Session (using RSSI).

4.2 Regression-based Approach

4.2.1 Using 9 coordinates

The performance of the regression model was assessed under both random train-

test splits and cross-session evaluation settings. Two primary metrics were used:

the MAE for each coordinate and the Coe”cient of Determination (R2 score),

which provides insight into how well the model explains the variance in the target

positions.

Table 4.1 presents the MAE and R2 scores for the x and y coordinates across
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di!erent environments under a 60:40 train-test split. The empty room environment

was evaluated using three independent data splits across two physical locations

to observe performance consistency. The 4th year lab and bedroom setups were

evaluated with a single split each.

Table 4.1: MAE and R2 Score for train-test split evaluation.

Environment MAE (X) MAE (Y) R2 (X) R2 (Y)

Empty Room (Loc 1) 0.1062 0.1114 0.9393 0.9316

4th Year Lab 0.1474 0.1445 0.8997 0.9033

Bedroom 0.1927 0.1909 0.8378 0.8413

Figure 4.11: Scatterplots for voxels 1-9 with just the actual/expected location.

To evaluate the generalization of the model across di!erent data collection

sessions, cross-session tests were conducted for the empty room environment. The

results are summarized in Table 4.2.
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Figure 4.12: Scatterplots with time heatmap for voxels 1-9 in the empty floor

environment (train-test split).
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Figure 4.13: Scatterplots with time heatmap for voxels 1-9 in the laboratory

environment (train-test split).
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Figure 4.14: Scatterplots with time heatmap for voxels 1-9 in the bedroom envi-

ronment (train-test split).
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Figure 4.15: Overall feature importance within the same session across all envi-

ronments.

Table 4.2: MAE and R2 Score for cross-session evaluation.

Session MAE (X) MAE (Y) R2 (X) R2 (Y)

Session 1 (Loc 1) 0.5725 0.5877 0.2495 0.2101

Session 2 (Loc 2) 0.6443 0.6459 0.0867 0.0998

Session 3 (Loc 2) 0.6586 0.6376 0.0437 0.1091

The model exhibits strong predictive performance under controlled train-test

splits, particularly in the empty room environment, where both MAE and R2

scores are optimal. Performance is stable across locations within the empty room

and remains reasonably high in the lab setting. The bedroom, likely due to a more

complex physical layout and potential for multipath interference, shows a slight

drop in accuracy. The scatter plots in Figure 4.12, Figure 4.13, and Figure 4.14

illustrate the predicted and actual coordinate positions for each voxel under the

train-test split configuration The predicted coordinates closely align with the ac-

tual positions, forming compact clusters with minimal dispersion.

In contrast, cross-session evaluations reveal a significant reduction in predictive

accuracy, with increased MAE values and low R2 scores. These findings under-
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score the model’s sensitivity to environmental and temporal variability, highlight-

ing challenges for deployment in dynamic or previously unseen conditions. The

scatter plots, as shown in Figure 4.16, Figure 4.17, and Figure 4.18 shows pre-

dicted positions that are more widely scattered across the coordinate space. This

increased spread indicates a reduced spatial agreement between predicted and

actual values in the cross-session setting.

The feature importance profiles observed across all three environments, as il-

lustrated in Figure 4.15, exhibit patterns consistent with those identified in the

classification task shown in Figure 4.4. This similarity may be attributed to

the shared physical relevance of dominant features such as amplitude and phase-

related statistics, which are sensitive to spatial positioning and multipath e!ects,

thereby influencing both classification and regression tasks in a comparable man-

ner.

Figure 4.16: Scatterplots with time heatmap for voxels 1-9 in the empty floor

environment (Loc 1) (cross-session).
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Figure 4.17: Scatterplots with time heatmap for voxels 1-9 in the empty floor

environment (Loc 2) (cross-session).
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Figure 4.18: Scatterplots with time heatmap for voxels 1-9 in the empty floor

environment (Loc 2) taken at a di!erent time (cross-session).
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4.2.2 Using 12 coordinates

Similarly, the configuration utilizing 12 coordinates was assessed using both ran-

dom train-test splits and cross-session evaluation settings. The results, presented

in Table 4.3, indicate that no significant improvement was observed. Although

the overall amount of collected data has increased, the amount of data per voxel

remains unchanged. Additionally, the reduction in relative distances between vox-

els may make it more di”cult for the model to distinguish between the corners of

voxel 5 and its surrounding coordinates.

Table 4.3: MAE and R2 Score for 12 coordinates.

Session MAE (X) MAE (Y) R2 (X) R2 (Y)

Same session 0.1290 0.1277 0.9112 0.9127

Cross-session 0.5958 0.5687 0.0418 0.1224

Previous research involving CSI data used Wi-Fi packets with unchanging pay-

loads to perform RTI. In the custom protocol used in this research, the payload

contains the latest measurements of CSI data from other devices. It is not known

and no research has been done to study the e!ect of changing payloads to the

localization accuracy using the CSI data collected.
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Figure 4.19: Scatterplots for the 12 coordinates with just the actual/expected

location.
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Figure 4.20: Scatterplots with time heatmap for the 12 coordinates in the empty

floor environment (Loc 2) (train-test split).
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Figure 4.21: Scatterplots with time heatmap for the 12 coordinates in the empty

floor environment (Loc 2) (cross-session).
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Chapter 5

Conclusion

5.1 Conclusion on the Research Questions

5.1.1 How can we reduce the number of nodes required

for e!ective RTI be reduced?

The results show that the number of nodes required for RTI can be significantly

reduced by using CSI with the custom round-robin protocol. A minimal setup of

four ESP32 nodes arranged in a square layout gives us P (4, 2) = 4→ 3 = 12 links

which would normally require 6 or 12 pairs of devices depending on whether the

data collection is bi-directional or uni-directional. Data collection is centralized

making it easier to perform real-time processing without requiring complex data

aggregation.

5.1.2 Does CSI outperform RSSI for RTI tasks in sparse

network deployments?

The results confirm that CSI consistently outperforms RSSI across all environ-

ments tested, especially when using a small number of nodes.

In both classification and regression tasks:

1. Models using CSI features outperformed those using RSSI in terms of accu-

racy and robustness.
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2. The advantage of CSI was more significant in complex environments where

multipath e!ects are prominent.

3. Feature importance analysis showed that CSI, particularly amplitude data,

provided more stable and informative signals for localization.

5.2 Contributions

This work makes the following contributions to the field of device-free localization:

1. A data collection protocol using ESP-NOW was designed to enable round-

robin transmission of CSI data without requiring full network synchroniza-

tion.

2. A full data processing pipeline was developed, including CSI preprocessing,

feature extraction, and both classification and regression modeling, all of

which are lightweight and suitable for real-time inference.

3. A direct empirical comparison between CSI and RSSI under identical exper-

imental conditions was presented, o!ering clear evidence of the benefits of

CSI in sparse deployments.

4. Feature importance analysis provided insights into which signal characteris-

tics contribute most to localization performance, aiding in model interpre-

tation and future improvements.

5.3 Limitations

Despite promising results, this study faces several limitations:

1. Cross-session performance is significantly lower than same-session perfor-

mance, suggesting that CSI features are sensitive to environmental changes

and hardware drift.
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2. The ESP-NOW protocol has strict payload size limits, which restricts the

number of CSI samples that can be transmitted in each packet, which in

turn limits the total number of devices that can be used with this protocol.

3. The firmware used limits the maximum CSI array length, particularly in

high-bandwidth Wi-Fi modes, potentially excluding useful data.

4. The system lacks time synchronization between nodes, which may introduce

inconsistencies in data alignment and reduce localization accuracy.

5. While the chosen models are e”cient and interpretable, they may not cap-

ture more complex temporal or spatial patterns needed for better general-

ization.

5.4 Future Work

To address these limitations and build upon current findings, the following direc-

tions are proposed for future research:

1. Explore phase calibration methods or session-invariant representations to

improve robustness to environmental changes across di!erent sessions.

2. Investigate domain adaptation and transfer learning techniques to enhance

generalization across time and space.

3. Improve the round-robin protocol to support larger payloads or incorporate

lightweight time synchronization.

4. Experiment with more complex models, such as convolutional or recurrent

neural networks, to better capture spatial and temporal relationships in CSI

data.

5. Expand the testbed to larger and more complex environments to further

evaluate the scalability and e!ectiveness of the system.
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6. Investigate the e!ect of changing payloads in the Wi-Fi packet to localiza-

tion.
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