
Diffusion Inspired Image

Watermarking against Adversarial

Attacks

R. R. Walgama

2025



Diffusion Inspired Image
Watermarking against Adversarial

Attacks

Ramindu Walgama
Index No: 20001959

Supervisor: Dr. Ajantha Atukorale
Co-Supervisor: Mr. Yasas Mahima

May 2025

Submitted in partial fulfillment of the requirements of the
B.Sc. (Honours) in Computer Science Final Year Project



Diffusion Inspired Image Watermarking against Adversarial Attacks — Research Thesis

Abstract

Recent years have seen Deep Learning Neural Networks emerging in the Computer Vision do-

main across various industries like medical, autonomous vehicles, robotics, and the defense

industry, with applications in classification, object detection, and many other tasks. Despite

these improvements, these networks have been exposed to adversarial attacks. Even a small

amount of perturbation can fool deep learning networks. In the context of classification tasks,

this can lead to incorrect class predictions. This research aims to solve this problem by intro-

ducing a novel diffusion-inspired model which adds noise on top of the image as a watermark

before transmitting it through the network. From the receiver’s end, a deployed diffusion-inspired

denoiser extracts those noise layers, aiming to purify the perturbations added by the attacker, and

the deployed classifier aims to classify whether an adversarial attack exists or not based on the

purified image. The extensive experiments showcase that these models can achieve up to 99.9%

uniform accuracy across different attacks and above 94% accuracy across different datasets. The

performance evaluations prove that the proposed solution can identify adversarial samples in less

than half a second.

Keywords— Adversarial Attacks, Adversarial Defenses, Deep Learning, Diffusion Model
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• Computing methodologies → Artificial intelligence → Computer vision → Computer

vision representations → Appearance and texture representations

• Computing methodologies → Machine learning → Machine learning approaches →
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CHAPTER 1: INTRODUCTION
1.1 Chapter Overview

This chapter presents the background and motivation for the research, followed by a discussion

of the identified research gap. The research gap is emphasized through the formulation of a

hypothesis aimed at addressing the problem while achieving the proposed research objectives.

These objectives are aligned with research questions. The chapter also outlines the research

methodology and the publication plan.

1.2 Introduction and Motivation

In recent years, Deep Neural Network (DNN) techniques developed for computer vision have

been an emerging area in various application domains such as object recognition (He et al.,

2016; Zeng et al., 2021), image fusion (Ma et al., 2020), image processing (Dai et al., 2019), and

image segmentation (Liu et al., 2019). These Deep Learning (DL) techniques have been used

in various industries such as medical, autonomous vehicles, social networks, defense, robotics,

etc. Various generative models have been proposed for these tasks, such as Variational Auto-

Encoders (VAEs), Generative Adversarial Networks (GAN)s, and diffusion models. However,

recent research reveals that DNNs like Convolutional Neural Network (CNN)s are susceptible

to intentionally crafted adversarial perturbations (Wang et al., 2021). Attackers have exploited

this limitation to alter the network’s predictions by adding small perturbations to the network’s

inference or training data.

With the rapid growth of emerging generative models such as diffusion models, image

generation has become popular within Computer Vision (CV) research communities (Ho et al.,

2020). This research is based on the concepts of diffusion models and explores the idea of

extracting noise layers from the noisy image through the diffusion inspired reverse process. This

approach has been combined with the watermarking concepts of Quiring et al. (2017) research

and Fei et al. (2022) studies to implement a reactive defense system against adversarial attacks

using noise as a watermark.

Attackers may compromise images during the source image generation, such as with

a camera, or perform attacks on stored data as well as during data transmission to execute a

Man-in-the-Middle (MitM) adversary (Moon et al., 2022). The proposed solution is capable of

detecting adversarial attacks on both training and inference images before downstream processing

to DNNs. Thus, adversarial samples can be rejected before causing erroneous predictions.
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1.3 Research Gap

In recent years, DNN networks have become popular, but they are highly sensitive to adversarial

noise in images, which can lead to incorrect predictions even with a small amount of noise (Dai

et al., 2022; Apostolidis and Papakostas, 2021; Zhang et al., 2021). There have been research

conducted on image watermarking to hide extra information in an image, such as StegaStamp

by Tancik et al. (2020), but lacks of hiding the image for privacy while concerning about the

adversaries. Further, noise-based watermarking has received considerably less attention. To the

best of the authors’ knowledge, no solutions based on image watermarking have been proposed

that use noise to identify where an image has been poisoned by external adversaries.

1.4 Research Aim, Research Questions and Objectives

1.4.1 Research Hypothesis

The diffusion model concept is based on a Markov chain, where it adds a set of noise layers

iteratively (1 → 𝑇) to an image through the forward process. The model is based on auto-

encoders based on UNets (Ho et al., 2020), where it tries to predict the noise layer added through

the Markov chain during each iteration (𝑇 → 1). Thus, subtracting the noise image, 𝑥𝑡 , from the

predicted noise gives 𝑥𝑡−1 (Figure 1.1) (Ho et al., 2020). The diffusion models are mainly used

for generative tasks such as image-generation. Inspired by this process, the author has developed

the concept of watermarking using noise and iteratively denoising the added noise to identify

whether the image data has been poisoned before being passed into other image tasks/models.

Figure 1.1: Diffusion Model process (Ho et al., 2020)

Lorenz et al. (2024) stated that when an input image x, goes through the forward

process of a diffusion model, it maps it to a noise vector of 𝑥𝑇 in the noise space N(0, 𝐼). Then,

after applying the backward process of the diffusion model, the predicted noise should be closer

to the vector space of N(𝑥𝑇 ; 0, 𝐼) samples received. But if the input is altered by adversarial

perturbation, the output of the reverse diffusion process will lie on a different manifold compared

to benignly transformed samples as visualized in the Figure 1.2 (Lorenz et al., 2024).
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Figure 1.2: Lorenz et al. (2024)’s illustration of diffusion model leads to different distributions in benign
and adversarial images.

1.4.2 Research Aim

The aim of this research is to design and develop a novel architecture that embeds a set of

predefined random noise layers into an image as a watermark and enables the extraction of this

noise to classify whether an adversarial attack exists, based on the final denoised output image.

1.4.3 Research Questions

RQ1: How can a diffusion-inspired model be designed and developed to extract predefined noise

embedded in images, functioning as a watermark, in order to detect instances of images

altered by adversarial noise introduced by attackers?

RQ1.1: What is the relationship between the number of noise layers introduced during the

diffusion forward and reverse processes and the quality of the resulting denoised

image?

RQ1.2: How do diffusion-based architectures operate, and in what ways can their un-

derlying principles be employed to isolate predefined noise components from

adversarially manipulated images?

RQ1.3: How can the diffusion process be optimized or approximated to improve the

efficiency of adversarial sample detection without compromising performance?

RQ2: What are the most prevalent adversarial attack strategies in deep learning, and to what

extent can they be effectively identified or mitigated through noise-based detection meth-

ods?

RQ3: What distinguishes adversarially perturbed images from their clean counterparts in terms

of structural or statistical properties?
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RQ3.1: What are the underlying mechanisms through which adversarial perturbations

deceive DNNs into incorrect classifications?

1.4.4 Research Objectives

RO1: To design and implement a novel model architecture inspired by diffusion processes that

can extract predefined noise patterns from images analogous to digital watermarking for

the purpose of detecting image poisoning and preventing the use of adversarial samples

in downstream deep learning tasks.

RO1.1: To analyze the influence of varying the number of noise layers in the diffusion

process on the ability to accurately classify adversarially perturbed images.

RO1.2: To evaluate the suitability of different neural network models for noise extraction

and to explore the applicability of diffusion processes in identifying adversarial

attacks.

RO1.3: To investigate simplified, layer-wise applications of diffusion models that facilit-

ate efficient and interpretable adversarial sample detection.

RO2: To advance the field of adversarial robustness by proposing an effective and generalizable

detection framework capable of defending against diverse attack vectors.

RO3: To examine the nature of adversarial attacks, including how such perturbations are con-

structed and the specific alterations they introduce to fool DNNs.

1.5 Research Methodology

The research methodology adopted for this study is guided by the ”Research Onion” framework

proposed by Saunders et al. (2009). This framework supports the systematic selection of research

strategies and methods in alignment with the research objectives.

This study adopts a positivist research philosophy, as it is grounded in observable,

measurable phenomena. In this case, the detection of adversarial attacks on images through

quantitative evaluation. The research follows a deductive approach, where the development of

the proposed system is inspired by established theories, particularly diffusion models, as outlined

in the research hypothesis.

A series of experiments were conducted to iteratively develop and evaluate the sys-

tem. The architecture designed for this research serves as a detection mechanism for adversarially
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poisoned images, which necessitates its applicability across multiple datasets. To ensure gener-

alizability and reproducibility, publicly available benchmark datasets were used throughout the

experiments.

The study is designed with a cross-sectional time horizon, meaning that data were col-

lected and analyzed at specific points in time rather than over an extended period. This approach

is suitable for performance evaluation and comparative analysis of the proposed architecture

under various attack scenarios and configurations.

Overall, the methodology ensures a rigorous and objective evaluation of the research

hypothesis through structured experimentation, enabling clear insights into the effectiveness and

generalizability of the proposed solution.

1.6 Significance of the Research

1.6.1 Contribution to the Technology

This work proposes a novel architecture inspired by diffusion models. To the best of the author’s

knowledge, there has not been any existing architecture similar to the proposed reactive solution

that is capable of detecting adversarial noise attacks on images. The proposed method introduces

a predefined set of noise layers to an image and then iteratively predicts each noise layer in reverse

order. The denoised image is obtained by subtracting the predicted noise layers from the noisy

input. This denoised image is then used to detect the presence of adversarial manipulations.

1.6.2 Contribution to the Problem Domain

This research introduces a novel approach to detecting adversarial manipulations performed on

images by attackers. Deep neural networks (DNNs) are highly sensitive to adversarial noise,

where even minor perturbations can lead to incorrect predictions (Dai et al., 2022; Apostolidis

and Papakostas, 2021; Zhang et al., 2021). The proposed solution is capable of identifying such

adversarial manipulations before the data is passed downstream to DNNs.

This method is applicable both during training, to filter out poisoned data, and during

inference, to reject compromised samples before they influence predictions. Attackers can

introduce backdoor attacks into the training data stored on user devices, which are increasingly

used to continuously train on-device models such as those in smartphones (Li et al., 2023;

Gong et al., 2023). Moreover, attackers can conduct man-in-the-middle attacks during data

transmission from a source to a server for downstream DNN tasks, potentially leading to malicious

predictions (Moon et al., 2022). The proposed solution has the potential to mitigate such risks
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by detecting adversarially manipulated inputs in advance.

1.7 Scope of the Project

1.7.1 In-Scope

• The scope is limited to detecting poisoned images (reactive defense) before they are

processed by downstream DNNs or image processing tasks.

• The proposed solution is intended for use during either the training or inference stages of

downstream DNNs.

• The attack model is limited to scenarios where adversarial attacks are performed prior to

the proposed noise watermark prediction network, and it is assumed that the attacker is

unaware of the existence of the proposed defense mechanism.

1.7.2 Out-of-Scope

• Environmental factors such as noise introduced during image capture or corruption that

occurs during image transmission are not considered in this study.

• Model efficiency in terms of computational light-weightiness or deployment on resource-

constrained environments is beyond the scope of this research.

• Attacks targeting the proposed noise prediction network itself, or attacks carried out on the

original image after noise removal by the network, are considered out of scope.

1.8 Chapter Conclusion

This chapter established the foundational context for the research by presenting the motivation,

research gap, and hypothesis. It laid out the objectives and research questions that guide the

direction of the study. The chapter also introduced the research methodology and philosophical

approach, providing a roadmap for how the study will be conducted. The subsequent chapters will

delve deeper into the theoretical background, implementation, experimentation, and evaluation

of the proposed model.
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CHAPTER 2: LITERATURE REVIEW
2.1 Chapter Overview

This chapter presents a review of existing literature relevant to the research. It highlights the

practicality and growing concern of adversarial attacks, as well as the importance of developing

effective defense mechanisms. The literature is used to categorize various types of adversarial

attacks and corresponding defense strategies. In addition, the chapter discusses the vulnerabilities

of generative models such as VAEs, GANs, and diffusion models to adversarial perturbations,

along with the defense techniques proposed in the literature to mitigate such threats.

2.2 Adversarial Machine Learning

With the rapid growth of DNN networks, image-processing tasks have become increasingly pop-

ular. However, these networks can be fooled by adding small perturbations that are imperceptible

to the human eye (Dai et al., 2022). These adversarial examples significantly degrade system

performance (Moon et al., 2022), and DNN models in real-world applications may lose users’

trust (Apostolidis and Papakostas, 2021).

Attackers use small perturbations, as shown in Figure 2.1, to alter the predictions

of DNN methods. The example below demonstrates the classification models’ vulnerability to

small amounts of noise.

(a) Zhang et al. (2021) example of perturbation added
to a model classified correctly as Vulture but after per-
turbations added, model classifies it as a Bullfrog.

(b) Correctly classified panda with 57.7% before
adding 0.007 perturbation while classified as Gib-
bon with 99.3% confidence after adding perturbations
(Apostolidis and Papakostas, 2021)

Figure 2.1: Perturbation Examples: Before adding perturbations, the image was correctly classified as
Vulture/Panda. However, after adding perturbations, each model misclassified the image.

These attacks raise serious security concerns for DNN models. Attackers can exploit

these vulnerabilities to gain unfair advantages. For instance, Apostolidis and Papakostas (2021)

highlights how attackers could perturb medical test reports to fraudulently claim compensation,

leading to a waste of critical resources such as patient care, personnel time, medications, and

diagnostics. Similarly, Wang et al. (2024) points out that object detection and EEG signal

processing can be disrupted by perturbing drone imagery, potentially misidentifying a passenger
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plane as an attacker plane. Such vulnerabilities also pose significant risks to autonomous vehicles,

which rely heavily on DNNs for perception (Chahe et al., 2024). Furthermore, adversarial attacks

can be leveraged through MitM exploits to compromise recommendation systems, such as those

used in social media auto-tagging applications (Moon et al., 2022).

2.2.1 Adversarial Attack Catergorization

Adversarial attacks can be formally described using the formulae 2.1. Consider the model being

targeted by the adversary, denoted as 𝑓 (𝑥). An adversary is the attacker who performs the

attack. The function 𝑓 (𝑥) −→ 𝑦 takes an input 𝑥, where 𝑥 ∈ D (the input space), and produces a

corresponding output 𝑦, where 𝑦 ∈ R (the output space). A perturbed input 𝑥∗, where 𝑥∗ ∉ D, is

created by adding a small perturbation 𝛿 to the original input 𝑥, in order to produce an incorrect

target 𝑦̄ from the model. For classification tasks, 𝑦̄ ∈ R and 𝑦̄ ≠ 𝑦, while for non-classification

tasks such as image segmentation or image generation, 𝑦 ∉ R.

𝑓 (𝑥) −→ 𝑦, 𝑥∗ = 𝑥 + 𝛿 such that 𝑓 (𝑥∗) −→ 𝑦̄, where 𝑦 ≠ 𝑦̄ (2.1)

There are several ways to classify adversarial attacks based on different aspects.

The rest of this section highlights the various categories into which adversarial attacks can be

classified. A summary of these findings is provided in Table 2.1.

Attack Citation Attacker’s

Knowledge

Attack

Frequency

Attacker Scope Attack’s In-

tention

L-BFGS Szegedy et al. (2014) White box One shot Image Specific Targeted

FGSM Goodfellow et al. (2015) White box One Shot Image Specific Targeted

BIM &

ILCM

Kurakin et al. (2017) White box Iterative Image Specific Un-targeted

JSMA Papernot et al. (2016) White box Iterative Image Specific Targeted

One-Pixel Su et al. (2019) Black box Iterative Image Specific Un-targeted

C & W Carlini and Wagner (2017) White box Iterative Image Specific Targeted

DeepFool Moosavi-Dezfooli et al.

(2016)

White box Iterative Image Specific Un-Targeted

Universal Per-

turbations

Moosavi-Dezfooli et al.

(2017)

White box Iterative Universal Un-Targeted

UPSET Sarkar et al. (2017) Black box Iterative Universal Targeted

ANGRI Sarkar et al. (2017) Black box Iterative Image Specific Targeted

Houdini Cisse et al. (2017) Black box Iterative Image Specific Targeted
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ATNs Baluja and Fischer (2018) White box Iterative Image Specific Targeted

Table 2.1: Summary of Adversarial Attacks

2.2.1.1 Phase of the Attack

The categorization can start from the phase of the victim model. A victim model here refers

to the model that is being attacked by an attacker. An attacker can execute attacks either

during the training phase or during the inference phase. Training phase attacks are carried out

either by perturbing the training samples or by adding perturbed samples into the training data

to compromise the training process. Inference attacks, which are known as evasion attacks

(Qayyum et al., 2020), involve the attacker providing adversarial samples to mislead the model

and achieve falsified results.

2.2.1.2 Attack Specificity

The attacks can be caused by the influence of the attacker or specificity to achieve security

violations. The influence of the attacker refers to gaining control over the training data or

performing an exploratory attack, which aims to exploit the misclassification of the model

without affecting the training process. The adversary specificity can be divided into two sections:

targeted and untargeted. Targeted attacks aim to gain an advantage from the victim model to

achieve an attacker-specified result, while untargeted attacks target all of the model’s outputs to

result in falsified outputs. Attackers perform security violations to disrupt the service, integrity,

and availability of the model.

2.2.1.3 Attack’s Knowledge

The attacks can be categorized based on the information that the adversary knows about the

targeted system. This can be divided into three categories: White-Box, Black-Box, and Grey-

Box. According to Pitropakis et al. (2019), the categorization is formally denoted as follows.

Let the knowledge of the attacker be denoted by K. K1 indicates that the attacker is aware

of the ground truth, and K2 means the attacker has knowledge of the victim algorithm/model.

The categorization can be expressed as: Black-Box Attacks: ¬K1
∧¬K2; Grey-Box Attacks:

K1
∨K2; White-Box Attacks: K1

∧K2. The attacker’s knowledge K may refer to the training

data, the feature set, the machine learning algorithm including the loss function or the objective

function, and the training parameters (Biggio and Roli, 2018). A white-box attack is performed

when an attacker has full information about the target model and internal operations regarding
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defense systems (Lal et al., 2021). The FGSM (Goodfellow et al., 2015) and DeepFool (Moosavi-

Dezfooli et al., 2016) attacks fall into this category. A black-box attack means that the attacker

is unaware of the system and performs random attacks on it. Momentum Iterative Boosting,

Diverse Input, and Transition-Invariant attacks are some examples. When the attacker is not

completely aware of the system but has some information, they perform grey-box attacks.

2.2.1.4 Attack Computation

Some attacks are conducted only once, which is known as single-step attacks, while others take

iterative steps to produce perturbation 𝑥∗. Under this attack frequency classification, iterative

attacks are more robust than single-step ones. These attacks try to maximize the model loss.

Single-step attacks generate perturbations by calculating the gradient of the model loss only

once, adding perturbation in the direction of gradient ascent. FGSM is one such example of a

single-step adversarial attack. Multi-step or iterative attacks calculate and add perturbations in

each iteration. Basic Iterative Method (BIM) (Kurakin et al., 2017), Carlini and Wagner (C&W)

(Carlini and Wagner, 2017), DeepFool, and PGD are examples of iterative attacks (Zhang et al.,

2021).

2.2.1.5 Attack Scope

The attacks have a limited scope, where the attacker might be limited to performing unique attacks

for each deep learning or machine learning task, whereas some attacks could be generalized to

effectively attack all kinds of tasks, independent of the task or the training dataset.

2.2.2 Adversarial Defense Strategies

There are different categorizations proposed by various authors. The following sections have

been categorized based on the findings and authors’ preferences.

2.2.2.1 Security and Privacy

The findings in Gondim-Ribeiro et al. (2018) have been divided into three categories of se-

curity and privacy-safe approaches: hardware-assisted approaches, cryptographic approaches,

and differential privacy-based approaches. The hardware-assisted approaches include Trusted-

Execution Environments (TEEs) and Dynamic Root of Trust Measurement (DRTM), which offer

security and privacy via dedicated hardware modules or operating systems. TEEs lead to white-

box scenarios and can invalidate the attacker’s hypothesis (Queyrut et al., 2023). Encryption

techniques include Homomorphic Encryption (Gondim-Ribeiro et al., 2018) and chaotic-based
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image encryption (Rezaei et al., 2023), among others. Differential privacy is a technique that

protects data by adding noise at a level where the original information becomes unrecoverable.

This has been widely used in many domains, including GANs, which are further discussed under

countermeasures for adversarial attacks based on generative networks.

2.2.2.2 Level of Defense

Adversarial defense systems have been developed against the above-mentioned adversarial at-

tacks. These can be categorized into two main domains: reactive defense methods and proactive

defense methods. Reactive defense methods focus on detecting the attack and taking counter-

measures after an attack, while proactive methods aim to improve the resilience of the deep

learning network prior to the attack. PixelDefend (Song et al., 2018), ComDefend (Jia et al.,

2019), and Defense-GAN (Samangouei et al., 2018) are reactive methods designed to remove

perturbations added to the image.

2.2.2.3 Technological Approach

Mahima et al. (2024)’s work has been categorized following Qiu et al. (2019), which consists of

three main categories: modifying victim model-based defenses, modifying data-based defenses,

and using auxiliary tools against adversarial attacks.

The data-level modifications are applied to the input data or the training data of

the deep learning model. Data-level methods include adversarial training (Bai et al., 2021),

data compression, transferability blocking, gradient hiding, and random transformation methods

(Mahima et al., 2024). In adversarial training, the model is trained with adversarial samples to

learn to distinguish between adversarial and original samples.

Model-level defenses include modifying the model’s architecture, classifier, and ca-

pacity (Apostolidis and Papakostas, 2021). This includes techniques such as feature squeezing

(Xu et al., 2018) and defensive distillation. Adversarial training is far more costly than fea-

ture squeezing (Xu et al., 2018), but these methods are limited to specific models and lack

transferability.

Auxiliary tools are more modular, where these tools are separate components of the

deep learning model. These tools could be another model that performs reconstruction and

purification, as explained in the countermeasures for adversarial attacks based on generative

networks. However, this increases the weight of the deep learning model pipeline due to the

addition of a defensive module beforehand.
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2.2.2.4 Defense Scope

Most of these defense methods are attack-specific. Model-specific defenses are primarily based

on adversarial training, gradient regularization, and input transformation-based methods. Ad-

versarial training methods are tailored to specific attacks, which re-train the network using

adversarial samples; hence, they are known as attack-specific defenses. Several studies have

been conducted in the domain of model-agnostic strategies, but these often lack quality for

long-term use (Zhang et al., 2021). Model-agnostic strategies include Super-Resolution defense

(Mustafa et al., 2020), JPEG compression (Dziugaite et al., 2016), High-level representation

Guided Denoiser (HGD) (Liao et al., 2018), PixelDefend (Song et al., 2018), Defense-GAN

(Samangouei et al., 2018), and random resizing and padding (Xie et al., 2018).
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Figure 2.2: Research Findings (Self-Composed)
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2.3 Generative Networks in Adversarial Machine Learning

2.3.1 Generative Network Summary
2.3.1.1 Variational Auto Encoders

The VAEs was first introduced by Kingma and Welling (2022). The goal of a VAEs is to

reconstruct or generate an output similar to training samples. Its architecture consists of an

encoder, which transforms the input data into a probability distribution within the latent space.

This latent space is then transformed back into a specific target data space that the model

aims to achieve using a decoder. During the training process, both the encoder and decoder

aim to minimize the reconstruction loss to achieve a targeted meaningful data distribution or

representation.

VAEs can be used as an autoencoder as well as a generative model (Gondim-Ribeiro

et al., 2018). The applications of VAEss span various domains such as Natural Language

Processing (NLP) and image processing tasks, including text embedding, image or signal com-

pression (Berahmand et al., 2024), generating images, and image classification (Imran and

Terzopoulos, 2021).

2.3.1.2 Generative Adversarial Networks

GAN networks were initially introduced by Goodfellow et al. (2014) and consist of two network

architectures: the generator and the discriminator.

The generator model aims to generate synthetic samples starting from random noise.

The discriminator is provided with both real samples and the synthetic samples from the gen-

erator to distinguish between them. In this two-player network, the generator tries to fool the

discriminator by generating realistic synthetic samples. GANs have expanded into various ar-

chitectures, such as Conditional GAN (Mirza and Osindero, 2014), Deep Convolutional GAN,

and even more complex architectures like Cycle-GAN (Zhu et al., 2020).

The applications of GANs extend to real-world scenarios such as image-to-image

translation for improving image quality in mobile phones (Zhu et al., 2020; Walgama and

Mahima, 2024), image super-resolution (Zhang et al., 2022), and data augmentation (Bissoto

et al., 2021).

2.3.1.3 Diffusion Models

In recent years, diffusion models have become more popular due to their enormous capability to

generate quality samples surpassing GANs and VAEs. The state of research in diffusion models
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expands across different domains such as image processing, NLP, temporal data modeling, multi-

modal modeling, robust machine learning, and interdisciplinary applications in fields such as

computational chemistry and medical image reconstruction (Yang et al., 2023).

Diffusion models consist of a forward and a backward process, where the forward

process continues to iteratively add random noise to the initial image (denoted as 𝑇 ; typically 𝑇

is around 1000 to 2000+ iterations) until the image is completely filled with noise. The reverse

process then tries to remove the noise added in the forward process and attempts to generate an

image. Based on these diffusion processes, state-of-the-art diffusion models can be categorized

into discrete-time diffusion models and continuous-time diffusion models.

2.3.2 Denoising Diffusion Probabilistic Model Process

The DDPM formally the forward diffusion process generates a sequence of distribution denoted as

𝑥1, 𝑥2, ...𝑥𝑇 using transition kernel 𝑞(𝑥𝑡 |𝑥𝑡−1) where this Markov chained distribution conditioned

on the initial image 𝑥0.

𝑞(x1, . . . , x𝑇 | x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 | x𝑡−1). (2.2)

The transition kernel with the prior distribution of 𝑞(x𝑡 | x𝑡−1) is defined as,

𝑞(x𝑡 | x𝑡−1) = N
(
x𝑡 ;

√︁
1 − 𝛽𝑡 x𝑡−1, 𝛽𝑡I

)
, (2.3)

where 𝑡 ∈ {0, 1, . . . , 𝑇} and the 𝛽 is a hyperparameter such that 𝛽𝑡 ∈ (0, 1). Simpli-

fying the equation by substituting 𝛼𝑡 := 1 − 𝛽𝑡 and 𝛼𝑡 :=
∏𝑡

𝑠=0 𝛼𝑥 .

𝑞(x𝑡 | x0) = N
(
x𝑡 ;

√
𝛼𝑡 x𝑡−1, (1 − 𝛼𝑡)I

)
, (2.4)

Can derive sample of 𝑥𝑡 by obtaining the 𝑥0 with the Gaussian vector 𝜖 N(0, 𝐼) and

applying the transformation,

x𝑡 =
√
𝛼𝑡𝑥0 +

√︁
1 − 𝛼𝑡𝜖 (2.5)

The reverse diffusion process of DDPM iteratively predicts and removes the noise

added during the forward process mentioned above by running a learnable chained Markov

model in the reverse time direction, i.e. T to 1. The forward process prior distribution was

𝑞(𝑥𝑇 ) ≈ N (𝑥𝑇 ; 0, 𝐼) which would be similar in the reverse process as 𝑝(𝑥𝑇 ) = N(𝑥𝑇 ; 0, 𝐼). The

reverse process kernel, 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡) is defined as follows.
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𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡) = N (x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) , (2.6)

where 𝜃 is parameters of the models to the mean, 𝜇𝜃 (x𝑡 , 𝑡) and the variance, Σ𝜃 (𝑥𝑡 , 𝑡).

The reverse transition kernel aims to achieve 𝑥0 by sampling through the noise distribution till 𝑡 =

1. This forward Markov chain process in Equation 2.2, 𝑞(𝑥0, 𝑥1, . . . , 𝑥𝑇 ) := 𝑞(𝑥𝑇 )
∏𝑇

𝑡=1 𝑞(𝑥0 |𝑥𝑇 )

been trying to closely approximate using the reverse Markov process of 𝑝𝜃 (𝑥0, 𝑥1, . . . , 𝑥𝑇 ) :=

𝑝(𝑥𝑇 )
∏𝑇

𝑡=1 𝑝𝜃 (𝑥0 |𝑥𝑇 ). Minimization can be achieved using Kullback-Leibler (KL) divergence

as follows,

KL(𝑞(𝑥0, 𝑥1, · · · , 𝑥𝑇 ) ∥ 𝑝𝜃 (𝑥0, 𝑥1, · · · , 𝑥𝑇 )) (2.7)
(𝑖)
= −E𝑞(𝑥0,𝑥1,··· ,𝑥𝑇 ) [log 𝑝𝜃 (𝑥0, 𝑥1, · · · , 𝑥𝑇 )] + const (2.8)

(𝑖𝑖)
= E𝑞(𝑥0,𝑥1,··· ,𝑥𝑇 )

[
− log 𝑝(𝑥𝑇 ) −

𝑇∑︁
𝑡=1

log
𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡)
𝑞(𝑥𝑡 | 𝑥𝑡−1)

]
+ const (2.9)

(𝑖𝑖𝑖)
≥ E [− log 𝑝𝜃 (𝑥0)] + const. (2.10)

Here, (𝑖) is direct applying KL divergences while the (𝑖𝑖) is products of two dis-

tributions of 𝑞(𝑥0, 𝑥1, . . . , 𝑥𝑇 ) and 𝑝𝜃 (𝑥0, 𝑥1, . . . , 𝑥𝑇 ). The (𝑖𝑖𝑖) is a derivation from Jensen’s

inequality. The first term of the Equation (8), E𝑞(𝑥0,𝑥1,··· ,𝑥𝑇 )
[
− log 𝑝(𝑥𝑇 ) −

∑𝑇
𝑡=1 log 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )

𝑞(𝑥𝑡 |𝑥𝑡−1)

]
is

the variational lower bound (VLB). Yang et al. (2023) have used 𝑐𝑜𝑛𝑠𝑡, constant independent of

𝜃 model parametrization which will not affect the optimizations. The aim here is to maximize

the VLB which eventually minimizes the negative VLB during the DDPM training. Yang et al.

(2023) have stated that this is unchallenging to optimize as the sum of independent terms which

could be estimated by Monte Carlo sampling and optimized using stochastic optimization.

2.3.3 Adversarial Attacks Based on Generative Networks

Adversarial attacks are most common in classifiers, but attacks on autoencoders are a much

less explored area, possibly due to the complexity of the encoder-decoder architecture (Gondim-

Ribeiro et al., 2018). The first attacks on VAEs were introduced by Tabacof et al. (2016). This

section primarily focuses on attacks generated using generative models such as VAEs and GANs.

VAEs and GAN are generative models that raise concerns about generating adversari-

ally perturbed samples. This was highlighted by Zhang et al. (2023), who introduced three major
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threats posed by GANs:

• Data Generation and Manipulation: GANs are commonly used for the generation of

images that can be used to create synthetic samples aligned with the data distribution.

• Detection Evasion: GAN-generated samples can be crafted in such a way that classifier

networks misclassify the samples, mislead the victim model, or are ignored by the detection

system.

• Privacy Breach: Data manipulation and replication can be performed using GANs. For

example, user-sensitive data transferred in Federated Learning (FL)-like architectures may

be replicated using GANs. In FL, a single model is trained on multiple clients and the

trained weights are transferred to the server, where a GAN model could interpret the

weights transferred between the server and clients (Maliakel et al., 2024).

Sun et al. (2024) has proven the risks of GAN-based image fusion by demonstrating

attacks on them. Sun et al. (2024) has proposed two methods. First, proposed a subtle attack

on an input image which could lead the GAN-based image fusion model to yield the same

results for all inputs; secondly, proposed adversarial patches which could cause the image fusion

GAN-based model to produce meaningless outputs. Their patch attacks are universal and could

even be transferable to other datasets. Real-world applications such as re-identification (ReID)

of humans or vehicles require more robust methods. This has been demonstrated by Zhao et al.

(2022), where a GAN-based patch attack was applied to images for ReID. The attacks were

performed using the proposed Adversarial Patch GAN (AP-GAN), which is trained on a small

amount of data, addressing the issue of the lack of retrieval of well-defined labels from datasets.

Moreover, minor perturbations do not cause significant changes in the ranking of results. Zhao

et al. (2022) classified their work as a semi-white-box attack. Similar work, UAA-GAN, has

been carried out by Zhao et al. (2019) on the same domain of image retrieval, except for vehicle

ReID, but extending the work with face search. Both architectures, unsupervised GANs, are

similar, but Zhao et al. (2022) focused on mask-provided attacks where the attack is performed

on the masked region, while Zhao et al. (2019) generates perturbations without a mask on the

object region of the photo. The attacks are invisible to the human eye, even the UAA-GAN attack

performed on the object of the image rather than the background, which is not the focus.

A couple of attacks have been proposed against intrusion detection systems (IDS)

based on GANs (Hu and Tan, 2017; Lin et al., 2022; Usama et al., 2019; Zhao et al., 2021).
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MalGAN generates malware to bypass black-box machine learning-based IDS (Hu and Tan,

2017).

2.3.4 Defense Methods Developed using Generative Networks
2.3.4.1 Adversarial Purification

Defense-GAN is a robust defense mechanism proposed against adversarial attacks which does not

require knowledge of the adversary or how the attack was performed to purify the image. Defense-

GAN is trained on unperturbed images and is more reliable since it does not modify the main

perception network. Further studies (Qin et al., 2024; Kang et al., 2021) are a few more examples

of GAN-based adversarial attacked image purification. However, studies Nie et al. (2022) have

identified that using GAN for the purification process can lead to mode collapse, while energy-

based models can lead to low-quality purification and a lack of randomness. Supporting this, Shi

et al. (2021) used Pixel-Defend, which is a purification-based network training approach (Song

et al., 2018), instead of a GAN-based purification approach.

The concept proposed by Santhanam and Grnarova (2018) works similarly to the

theory based on the Lorenz et al. (2024) work, where Santhanam and Grnarova (2018) stated

that adversarial samples lie outside of the data manifold. In simple terms, attacked images have

a different distribution compared to unattacked images, and while this is not identifiable by the

human eye, it can be identified using a discriminator of a GAN. Santhanam and Grnarova (2018)

used a discriminator to score the samples without providing any adversarial samples during

training. Observations show that adversarial samples score lower, and once an attack is detected,

they used the generator of the GAN for purification and observed a lower score. Extensive

experiments have been conducted with 5 different attacks on 3 different datasets. Zhang et al.

(2023) stated that these kinds of techniques are ”counter GAN-based attacks using another GAN

- like cures like”. A Cycle-GAN can be used to demonstrate this, as it consists of two generators.

CycleAdvGAN is such an example, where both adversarial samples and clear samples for sample

images are generated using the translation process of the CycleGAN Jiang et al. (2020).

Inspired by Samangouei et al. (2018)’s DefenseGAN and Kim et al. (2017)’s Dis-

coGAN, Laykaviriyakul and Phaisangittisagul (2023) proposed Collaborative Defense-GAN,

which is very similar to CycleAdvGAN. This architecture consists of an attacker generator that

generates a noise image instead of a perturbed image. The generated noise is combined with

the original image to create a perturbed image, which is then fed into another generator for the

purification process. This collaborative network includes two discriminators during training,
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similar to CycleAdvGAN.

A conditional paired image GAN model has been proposed by Yu et al. (2020). The

conditional Pix2Pix-based GAN is able to purify adversarial samples. This network is trained

with a PatchGAN as a discriminator for better localized results (Yu et al., 2020).

2.3.4.2 Adversarial Training

Hashemi and Mozaffari (2019) proposed an adversarial training method that could make DNNs

more robust against adversarial evasion attacks by training with adversarial samples generated

by the proposed Noise-GAN network. The study by Hashemi and Mozaffari (2019) used a

multi-class discriminator to generate adversarial noise, which is combined with the input of the

DNN network for adversarial sample generation. A counter-argument was found in Zhang et al.

(2023)’s work, which mentioned that only the discriminator has access to real data, but not the

generator; hence, there is a natural cover for privacy in GANs. The evaluations of Hashemi and

Mozaffari (2019)’s work were done on the MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky

et al., n.d.) datasets.

2.3.4.3 Differential Privacy

Differential privacy has been used in almost all domains, such as FL (Xin et al., 2020) and GANs,

where the privacy of the data is hidden by adding noise to the data. However, this has shown a

lack of improvement in GAN-based attacks (Zhang et al., 2023). The importance of differential

privacy application on GAN was highlighted in Xu et al. (2019)’s work, mentioning the weak

side of GANs: information leakage. In contrast, several differential privacy-based GANs have

been proposed, but mostly in domains outside of image processing (Jiang et al., 2022; Yoon

et al., 2019).

2.3.5 Diffusion Models against Adversarial Attacks

There have been a couple of studies on the use of diffusion models against adversarial attacks.

In the following section, categorize diffusion model applications in adversarial defense into two

main categories: adversarial purification, which involves using diffusion models to purify or

recover the attacked image (Nie et al., 2022), and diffusion model-based classification, which is

used to determine whether an image has been attacked. These categories fall under the reactive

defense methods in the taxonomy shown in Figure 2.2. The diffusion model for adversarial

defense is a more robust method compared to approaches like adversarial training (Blau et al.,

2022; Yu et al., 2024).
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There has been research conducted using diffusion models for adversarial image

purification, which outperform GAN models (Nie et al., 2022; Ho et al., 2020). The study by

Nie et al. (2022) proposed a continuous-time diffusion network based on Stochastic Differential

Equations (SDE) as an adversarial purification method. Notably, this purification model only

requires a few steps 𝑥𝑡∗ rather than fully reaching 𝑥𝑇 , where 𝑡∗ < 𝑇 , as it only requires noise that

is not high enough to destroy the label semantics of the images while being sufficient to remove

adversarial perturbations. However, Xiao et al. (2022) stated that DiffPure is not robust due to

the careful consideration needed regarding the amount of noise to add to the image.

The study by Lorenz et al. (2024) highlights and demonstrates an insightful concept

where a perturbed image going through the forward and reverse diffusion processes would

have a distinct distribution compared to a non-perturbed image undergoing the same diffusion

processes. Further explained, the output distributions of attacked and non-attacked images

are clearly separable. In the aforementioned studies, CIFAR10 (Krizhevsky et al., n.d.) and

ImageNet (Deng et al., 2009) are recognized as widely used datasets.

The study by Nie et al. (2022) is the closest research to the proposed solution. Unlike

diffusion networks, which require substantial computational resources, the proposed solution

is comparatively lightweight. The study itself acknowledges its limitations, particularly its

unsuitability for real-time applications due to the diffusion timestep, which leads to lengthy

purification processes. In light of these limitations, the author presents ”Diffusion-Inspired

Image Watermarking Against Adversarial Attacks,” which is inspired by the forward and reverse

processes of diffusion rather than entirely applying a diffusion model as it is.

2.4 Chapter Conclusion

This chapter reviewed existing literature on adversarial attacks and their corresponding defense

mechanisms, emphasizing the limitations of current models that remain vulnerable to such threats.

The discussion highlighted the gap in leveraging generative models, particularly diffusion models

for adversarial defense. Based on the identified shortcomings in existing approaches, the novelty

of the proposed solution was outlined, wherein the diffusion process is utilized as a mechanism

for detecting adversarially perturbed inputs.
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CHAPTER 3: METHODOLOGY
3.1 Chapter Overview

This chapter provides an overview of the proposed system’s design and architecture. It outlines

the overall structure and flow of the process, detailing how each component fits within the broader

framework. The chapter also describes the models utilized in the implementation, emphasizing

their roles and interactions within the system.

3.2 System Flow

Based on the research hypothesis, the following architecture in Figure 3.1 was derived. The

proposed solution can be trained using a dataset in which the system adds a random set of noise

to an image in a sequence through the forward process (𝑥1 → 𝑥𝑇 where 𝑇 > 0). The reverse

process tries to predict each added noise layer in the reverse process (𝑥𝑇 → 𝑥1).

During the inference stage, the proposed solution tries to predict the noise added at the

initial stage. If an attacker poisons the data at any point in the prediction pipeline, the proposed

solution aims to classify whether it is adversarially corrupted or not using three main steps: 1)

iteratively add random noise to the image, 2) denoise the added noise iteratively, and 3) detect

and reject the adversarially altered samples using the denoised image.

Here, the author assumed that the adversary has no knowledge about the proposed

defense solution and is only able to make the attack before it. This is reasonable, as in a well-

secured software system, an attacker has a higher probability of altering the raw sensor inputs

rather than the ones taken into the main prediction pipeline. Hence, the proposed solution can

be used to identify poisoned data before passing it into the DNN networks, either during training

or during inference, to avoid incorrect predictions.

3.3 System Architecture

Based on Lorenz et al. (2024) work, as mentioned in the section 1.4.1, the following architecture

has been proposed.
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Figure 3.1: Proposed System Architecture (Self-composed)

3.4 Models

Several experiments with different model architectures and designs were conducted by the author.

Specifically, the diffusion model and the classification network were experimented with using

different model architectures. The summary of the experimental model architectures is as follows,

and detailed explanations are provided in the subsequent section:

1. UNet + ResNet50 - UNet model as a noise extractor with ResNet50 as the classifier

2. UNet + ResNet50 (Merged Noise Classifier) - UNet model as a noise extractor with

ResNet50 as the classifier. Rather training the classifier with a denoised image, the

classifier trains with the extracted noise layers.

3. DDPM + ResNet50 - DDPM as a noise extractor with ResNet50 as the classifier

4. DDIM + ResNet50 - Denoising Diffusion Implicit Models (DDIM) as a noise extractor

with a simple CNN network

5. DDIM + CNN - DDIM as a noise extractor with a simple CNN network

3.4.1 UNet + ResNet50

The author has used a UNet architecture without a noise scheduler to extract the noise layers. This

UNet is inspired by the study Saharia et al. (2023). As a replacement for the scheduler, the author

created a custom time embedding by adding another channel to the image, which consists of the

time step information. Thus, the image has four channels, with the shape Tensor(4, width,

height), where the first channel is the time embedding, and the remaining three channels are

the color channels of the image. The extracted image from the UNet is input into the ResNet50
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classifier network to determine whether an image has been attacked or not, based on the concept

in Lorenz et al. (2024).

The author conducted two experiments under this architecture using two different

datasets. The first experiment was conducted using the CIFAR-10 dataset, which contains 32

× 32 images, and the second experiment was conducted using the Places365 dataset. During

the experiments with the CIFAR-10 dataset, it was observed that the images lacked sufficient

resolution to determine whether the noise had been extracted correctly by the human eye. Thus,

the first experiment with the CIFAR-10 dataset was limited to training the UNet model. In

contrast, the second experiment trained both the UNet noise extractor and the ResNet binary

classifier network using the Places365 dataset.

3.4.2 UNet + ResNet50 (Merged Noise Classifier)

The experiment was conducted using the same networks used in the previous setup: UNet as

a denoiser to extract the image from the previously added iterative noise, and ResNet50 as the

decision maker to identify whether an attack exists or not. However, as shown in the architecture

3.2, the classification network was modified to take the merged denoised noise layers into a single

noise layer rather than taking the denoised image.

Figure 3.2: Modified Architecture (Self-composed)

The hypothesis behind this architecture is that if a noise attack occurs, the noise

extracted by the UNet would exhibit a different distribution between attacked and non-attacked

layers.

3.4.3 DDPM + ResNet50

The experiment was carried out with the existing pre-trained diffusion model and noise scheduler

introduced in the study Saharia et al. (2023). This model is used for super-resolution, enhancing
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images from a size of 64 × 64 to 512 × 512.

The CelebA-HQ dataset was preprocessed by resizing the 1024 images available in

the dataset. The images were first resized to 64 × 64 and then upscaled to 512 × 512 using

bicubic interpolation. This bicubic-interpolated image was then passed as a conditioned image

to the diffusion model to generate a 512 × 512 output. The generated 512 × 512 image was then

input into the classifier. Before passing the input image to the diffusion model, FGSM attacks

were performed to train the classifier network.

Since the model is a DDPM model, it took an average of 2 minutes and 50 seconds to

generate a single sample. Generating training samples for the classifier network would take more

than 11 days on a RTX-3080 10GB GPU, making the entire training process highly resource-

intensive and time-consuming.

3.4.4 DDIM + ResNet50

This experiment is similar to the previous one, DDPM + ResNet50, where the DDPM based

inference sampling process used in Saharia et al. (2023) was updated to a DDIM sampling process

by analyzing the code-level changes in Guo et al. (2023). The purpose of this modification was

to accelerate the denoising process.

The code was modified to utilize the pre-trained weights of the DDPM model, since

training a diffusion model requires high computational resources. The ResNet50 architecture

was kept the same as before, and the attacks were also performed using the same configuration

as above.

This approach reduced the sample generation time to less than a minute, as the number

of time steps required to remove noise was reduced from 2000 (the default for DDPM) to 1000

in this DDIM setup.

3.4.5 DDIM + CNN

In this experiment, the ResNet50 based classification network was changed to a simple CNN

classification network and combined with the previous DDIM model in order to further reduce

the computational complexity of the proposed solution.

3.5 Chapter Conclusion

This chapter presents the proposed system flow, the hypothesized architectural structure of it,

including the different model configurations used.
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CHAPTER 4: EXPERIMENTAL SETUP
4.1 Chapter Overview

The following chapter contains the datasets used in the experiments, as well as the types of

adversarial attacks employed for both training and evaluation purposes, with the experiment

setup, including both the hardware and the software, are discussed. In addition, the evaluation

metrics used to assess the performance of the models are outlined.

4.2 Datasets

The author has conducted the experiments with the following datasets.

Dataset Resolution Images Description Citation Experiment

CIFAR10 32 × 32 60k It contains 10 classes of images, in-

cluding animals, vehicles, and vari-

ous items. The training dataset con-

sists of 50,000 images, while the test

dataset contains 10,000 images.

Krizhevsky

et al. (n.d.)

UNet +

ResNet50

Places365 256 × 256 1.8

mil-

lion

It contains images of places categor-

ized into 365 scenes. The validation

set includes 50 images per category,

while the test set contains 900 im-

ages per category.

Zhou et al.

(2017)

CelebAHQ 1024 ×

1024

30k This dataset contains a high-

resolution version of the CelebA

dataset (Liu et al., 2015). It consists

of human face images and is com-

monly used for image generation.

Karras

et al.

(2018)

DDPM/

DDIM +

ResNet50,

DDIM +

CNN

Table 4.1: Dataset Details

The reason for choosing the CIFAR-10 dataset was that it is a commonly used dataset

for generative and classification tasks. The initial experiments were conducted with the CIFAR-

10 dataset, but due to its low resolution, the author moved to a higher-resolution dataset like

Places365, which could be implemented with a small classifier network serving as the victim

model.
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Since the author used a pre-trained DDPM model from Saharia et al. (2023), there

was no choice but to use the same dataset as Saharia et al. (2023). The author attempted to feed

the DDPM model with Places365 or another dataset, but the pre-trained DDPM model lacked the

ability to generate images for unseen distributions, such as scenes or locations from Places365.

Generated samples from DDPM are included in Figure 4.2.

Pl
ac

es
36

5

SR
H

R

C
el

eb
A

H
Q SR

H
R

Table 4.2: DDPM generated samples from CIFAR10 and Places365 dataset. SR refers to the Super
Resolution image generated from the DDPM and HR refers to High Resolution image which is the ground
truth.

4.3 Attacks Configuration

The models were primarily trained using the FGSM with an 𝜖 value of 0.3. This value was

selected as it induces significant perturbations, thereby increasing the vulnerability of most

DNN. Although FGSM is a single-step attack, it is considered a foundational method and serves

as the basis for more advanced iterative attacks such as the PGD attack.
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The adversarial attacks employed to evaluate the robustness of the proposed solution

are listed below.

# Attack 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

1 Gaussian Noise 0.1

𝜖 𝛼 𝑠𝑡𝑒𝑝𝑠

2 PGD 0.05
2

255 103 PGD 0.15

4 PGD 0.30

𝜖

5 FGSM 0.05

6 FGSM 0.15

7 FGSM 0.30

𝑐 𝜅 𝑙𝑟 𝑠𝑡𝑒𝑝𝑠

8 CW 1 0 0.01 50

Table 4.3: Attack evaluation setup

4.4 Evaluation Metrics

The evaluation of the proposed system can be done using reference image quality assessment

methods as the system adds noise to the original image and makes it perturbed. Thus, as in

Figure 3.1, the model will extract the added noise to obtain a denoised image and cross-validate

with the original image. The layers would be cross-validated against the model predicted noise

layers during training. This could be achieved using MAE. Other metrics have been used to

prove the hypothesis. The final classifier is evaluated using accuracy.

4.4.1 Accuracy

Accuracy is a way measure a classification model how accurately a model can predict results.

This can be use for classification tasks using the following formulae.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(4.1)
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4.4.2 MAE

The MAE is one of the ways to measure the absolute difference between intensities of the pixels

between the two images, i.e. added noise and the predicted noise from the model. For each noise

layer, the model calculates MAE for a single image. The final MAE would be averaged. The

MAE is calculated as below,

MAE =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

𝑛
(4.2)

4.4.3 SSIM

The SSIM is a reference image quality assessment method that compromises on structural in-

formation of the considered pair of images which includes luminance masking, contrast masking

etc. The structural comparison is done using the inter or spatially closed pixels. In contrast,

contrast masking involves distortions that are also less apparent within the texture of the image.

Luminance masking refers to a situation in which the distorted portions of an image are less

noticeable around the edges (Sara et al., 2019). SSIM is a value between 0 and 1. The higher

the value represents the quality of the image. This could be used to measure the quality are the

extracted images after deducting the predicted noise. SSIM value can be calculated as follow,

SSIM = [𝑙 (𝑥, 𝑦)]𝛼 .[𝑐(𝑥, 𝑦)]𝛽.[𝑠(𝑥, 𝑦)]𝛾 . (4.3)

where l: luminance, c: contrast, s: structure while 𝛼, 𝛽, 𝛾 are parameters greater than 0.

4.4.4 PSNR

PSNR is a paired image quality measurement whereas to uses maximum possible value (power)

of a signal and the distorting noise (Sara et al., 2019). The quality of the image is greater as

the PSNR values are higher (Nadipally, 2019) but that does not guarantee the best visual results

(Ignatov et al., 2018). Similar to the SSIM, this could use to compare the extracted image and

the original image. PSNR value can be calculated as follows,

PSNR = 10 log10

(
peakval2

MSE

)
. (4.4)

where 𝑝𝑒𝑎𝑘𝑣𝑎𝑙 refers to the Peak Value which is the maximal in the image data.
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4.5 Training Setup

This section would give the reader information to replicate results mentioning the software

requirements for the implementations as well as the information about the author’s machine

hardware which is used to train the model.

4.5.1 Software Requirements

The following software with listed version has been used to implement the proposed solution.

Software Version

Python 3.8

Conda 24.1.2

CUDA 12.2

Table 4.4: Software Requirements

The implementation of the proposed solution was done using Python due to the

availability of a wide range of libraries. Also, the author’s expertise dives into Python.

4.5.2 Hardware Setup

The model was trained on an Ubuntu desktop machine using RTX-3080 10 GB GPU. The

operating system was 24.04 LTS. Additionally to that, the processor was 12 core, i5 processor

with 16 GB memory.

4.6 Chapter Conclusion

The experiments outlined in this chapter are structurally aligned with the proposed architecture;

however, variations in the classifier architecture and its input representations were introduced

to explore different configurations aimed at achieving improved performance. The rationale

behind the selection of datasets has been clearly articulated, ensuring relevance to the research

objectives. Additionally, detailed descriptions of attack configurations, software frameworks,

and hardware specifications have been provided to support reproducibility and enable validation

of the results by future researchers.
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CHAPTER 5: EXPERIMENTS AND TRAINING
5.1 Chapter Overview

Building upon the architectural foundation established in the previous chapter, this section details

the training procedures of the proposed solution. It elaborates on the various model training

processes. The chapter provides insights into the specific training strategies, parameters, and

methodologies adopted to evaluate the effectiveness of each model variant.

5.2 UNet: CIFAR10 Dataset Training

The first experiments were conducted using the CIFAR-10 dataset. The image size was much

smaller, making it difficult for a human to identify the images. The following are log samples

taken from Weights and Biases.

The training loss, i.e., noise prediction loss, is shown in Figure 5.1 over 400,000+

iterations.

Figure 5.1: CIFAR10 Training-Training loss (L2 loss)

The following graphs were plotted using the PSNR and SSIM values, considering the

noise-added image at the 𝑡th iteration during the forward process and the recovered image from

the model at the reverse 𝑡th iteration. For a single image, the sum of these values was taken and

averaged over 10 noise layers, as explained in the evaluation chapter.

The following figures 5.3, 5.4, and 5.5 represent the backward process; the noise

extraction process from the original image. The author added 10 random noise image layers,

which have been removed using the UNet model, as visible in the following time sequence from

𝑡 = 10, which is the image with all noise layers added, to 𝑡 = 0, which is the fully noise-extracted

image. From 𝑡 = 9 to 𝑡 = 0, the image is recursively input into the model.

Since the dataset samples are in a lower resolution of 32 × 32, the images are difficult

to compare with the original image since the details are very few. It is very difficult for the
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(a) PSNR Value variation (b) SSIM Value variation

Figure 5.2: PSNR and SSIM Value variation during training

Figure 5.3: CIFAR10 Training sample during 1𝑠𝑡 iteration

Figure 5.4: CIFAR10 Training sample during 200000𝑡ℎ iteration

Figure 5.5: CIFAR10 Training sample during 400000𝑡ℎ iteration

human eye to identify the image object (Figure 5.5). Testing under CIFAR10 has been skipped.

Thus, the experiment was extended with the Places365 dataset to observe the extraction of noise

in higher-quality images.

5.3 UNet + ResNet50: Places365 Dataset Training

The training process was conducted by varying the number of noise layers. The first experiment

was conducted by adding 10 noise layers and extracting them using the UNet. Similarly, the

number of noise layers was changed to 5 for further experimentation to identify the ideal number

of noise layers required to determine whether there is an attack on the input image.
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5.3.1 Training with 10 Noise Layers
5.3.1.1 UNet Training

The experiments were continued from the above experiments using the Places365 dataset. The

training was done in two separate sections where the first training was stopped and then started

again from the last checkpoint of the first section. The L1 loss is as follows during the first and

second sections. There was no purpose for breaking the training into two sections, but due to a

technical issue, the training had to be begun again from the last saved checkpoint from the first

run. There were also some missing iterations in the middle of the graph where the model was

actually trained but lacks visualization due to the technical issue.

(a) Training first run (b) Training second run

Figure 5.6: Places365 Training-Training loss of UNet on 10 noise layer (L2 loss)

The PSNR and SSIM values are as shown in the figure 5.7 and figure 5.8. The PSNR

value has been varied a lot between 15 and 30 while the SSIM value is very close to the 1.

(a) PSNR Value during first run (b) PSNR Value during second run

Figure 5.7: PSNR between denoised image and the original image - UNet training on 5 noise layer

After the above training, the following images in the figure 5.9, figure 5.10 and figure

5.11 were took from the Weights and Biases logs. This is same as the experiments done with the

CIFAR10 dataset.
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(a) SSIM Value during first session (b) SSIM Value during second session

Figure 5.8: SSIM between denoised image and the original image - UNet training on 10 noise layer

Figure 5.9: Places365 Training sample during first iteration

Figure 5.10: Places365 Training sample during a middle iteration

Figure 5.11: Places365 Training sample during last iteration

5.3.1.2 Preliminary experiment for hypothesis validation

The following experiments were conducted to validate the hypothesis before proceeding into

further experiments. The hypothesis was based on the Lorenz et al. (2024) study, where an

attacked image and a non-attacked image would have different distributions after going through

the diffusion process (refer to the research hypothesis section 1.4.1).

The experiments were conducted using 1000 samples of the Places365 dataset with

and without attacks to ensure that the extracted image and denoised image would have a different

distribution after going through the UNet denoising model compared to a non-attacked image

going through the UNet denoising model. For this verification, MAE, PSNR, and SSIM were

used to prove there is a difference in distributions. For each metric, the original image and the

extracted denoised image were used. To verify that the attacks were not biased toward the trained
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attack method, two types of attacks, PGD and FGSM, were performed on the input images to

observe the effects.

Each graph contains two lines which indicate attacked or without attack which means,

1. Without attack - Without adding any attacks, the original image passed through the trained

UNet model to observe the evaluation metric value.

2. With attack - Adding an attack to the input image and passed through the UNet model to

observe evaluation metrics.

(a) FGSM Attack (b) PGD Attack

Figure 5.12: MAE value plots of attacked and without attacked image for 1000 image samples comparing
extracted noise and added noise layers

(a) FGSM Attack (b) PGD Attack

Figure 5.13: Evaluation done using MAE metric on two different attacks - FGSM and PGD
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(a) FGSM Attack (b) PGD Attack

Figure 5.14: Evaluation done using SSIM metric on two different attacks - FGSM and PGD

(a) FGSM Attack (b) PGD Attack

Figure 5.15: Evaluation done using PSNR metric on two different attacks - FGSM and PGD

5.3.1.3 ResNet50 Training

Attacks were performed randomly on the inference input of the UNet model to create binary

classifier training samples. Noise extracted images were used to train the classifier network.

The process ensured that an equal number of attacked and non-attacked samples were shuffled

randomly and used to train the classifier model. The classification network was trained for 790

iterations with a batch size of 64, totaling 50,560 samples, as shown in Figure 5.16. This graph

has been smoothed to visualize the decrease of the Binary Cross Entropy loss over the iterations

to identify how well the model learns.
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Figure 5.16: UNet - ResNet50 Binary Classifier Training Loss (BCE Loss) - Denoised image to classify
attack or not

5.3.2 Training with 5 Noise Layers
5.3.2.1 UNet Training

The above experimental setup was conducted with 10 noise layers and was kept the same in this

training process, except the number of noise layers added to the image was changed to 5 noise

layers. The training process is similar to the above, as shown in Figure 5.17 on the Places365

dataset. Due to a technical issue, the iterations between 21,000 and 24,000 were missing from

the total of 34,000 iterations.

(a) SSIM Value variation during training (b) SSIM Value variation during training

Figure 5.17: SSIM & PSNR values during training - UNet training on 5 noise layer
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Figure 5.18: Places365 Training-Training loss of UNet on 5 noise layer (L2 loss)

5.4 UNet + ResNet50 (Merged Noise Classifier)

The UNet model trained in the previous experiment (with 10 noise layers) was used to conduct

this experiment using the Places365 dataset, as the UNet architecture remained unchanged. Only

the inputs to the classifier network were modified, as shown in the architecture in Figure 3.2.

Since the input to the classifier network (ResNet50) was changed, it was necessary to re-train

the ResNet50 classifier. The 10 extracted noise layers from the UNet were summed together

into a single noise layer and fed into the classifier network to classify whether an attack exists or

not. The graph in Figure 5.19 represents the learning curve of the ResNet50 classifier under this

setup.

Figure 5.19: ResNet50 Binary Classifier Training Loss (BCE Loss) - Input merged noise layers to classify
attack or not
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5.5 DDPM + ResNet50

There was no training data for DDPM, as the author used the pretrained DDPM from the Saharia

et al. (2023) study. The author experimented to determine whether attacking an image on the

diffusion model would affect the image generation process of the diffusion model (Figure 5.20).

DDPM with Attack DDPM without Attack Reference/Ground Truth

Figure 5.20: The DDPM generated outputs using both attacked and non-attacked images, referencing
them against the ground truth image.

There was no clear difference between the attacked image received from the diffusion

model and the non-attacked image received from the diffusion model to the human eye. However,

the distribution could be different, which may not be visible visually. Thus, these training data

were fed into the classifier to observe whether the classifier would be able to learn to differentiate

the attacked and non-attacked images received from the DDPM. The training loss plotted in

Figure 5.21 clearly shows that the ResNet50 classifier was not able to distinguish the attacks after

128 iterations, as the graph in Figure 5.21 shows a non-decreasing function even after smoothing.
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Figure 5.21: DDPM - ResNet50 Binary Classifier Training Loss (BCE Loss)

5.6 DDIM + ResNet50

Similar to the above experiment, as explained in the previous chapter, DDIM was used to

generate training samples for the classifier network more efficiently. It is observed that there

is no significant improvement after upgrading the DDPM model to a DDIM model, since the

classifier training loss also remains a non-decreasing function, as the smoothed graph shown in

Figure 5.22.

Figure 5.22: DDIM - ResNet50 Binary Classifier Training Loss (BCE Loss)
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5.7 DDIM + CNN

The author only replaced the ResNet50 binary classifier from the above experiment with a

small CNN binary classifier using Binary Cross Entropy loss. Even though there seems to be

a decreasing loss function of BCE (Figure 5.23), the BCE does not change after the first few

iterations (Figure 5.24).

Figure 5.23: DDIM-CNN Binary Classifier Training Loss (BCE Loss)

(a) CNN Training Loss - 328 Iteration (b) CNN Training Loss - 3749 Iteration

Figure 5.24: DDIM-CNN Binary Classifier Training Loss (BCE Loss) during 328th and 3749th iterations
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5.8 Chapter Conclusion

All models introduced in the previous section were trained to evaluate their suitability for the

proposed solution. The training performance of the DDPM + ResNet50, DDIM + ResNet50,

and DDIM + CNN models demonstrated relatively linear learning curves, suggesting limited

learning capacity in the context of adversarial detection. In contrast, the UNet + ResNet50

configuration showed promising learning behavior, indicating its potential as a better fit for the

proposed approach.

However, rather than relying solely on preliminary observations, the author proceeded

with a more in-depth analysis and testing in subsequent sections. A key commonality among

the DDPM + ResNet50, DDIM + ResNet50, and DDIM + CNN experiments was the use of a

pretrained diffusion model, with only the ResNet50 classifier being trained to detect adversarial

attacks. The learning curves from these classifiers revealed minimal loss reduction, suggesting

that the models failed to effectively learn the distinction between adversarial and clean samples.
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CHAPTER 6: EVALUATIONS AND RESULTS
6.1 Chapter Overview

This chapter presents the results obtained from the experiments conducted using the trained

models discussed in the previous section. The primary focus is placed on the UNet + ResNet50

configuration, which was evaluated under various testing setups. These include experiments

involving different numbers of noise layers to assess their impact on model performance and

to identify the optimal number of layers for adversarial detection. Furthermore, a series of

adversarial attacks were applied to evaluate the robustness and generalizability of the proposed

solution.

6.2 UNet: CIFAR10 Testing

Testing for this experiment was skipped since the resolution of the images is too small (32× 32),

as explained in the training phase of this experiment (Reference 5.2).

6.3 UNet + ResNet50: Places365 Testing

Experiment under this setup has done with several configurations but all the tests were based on

the Places365 Dataset.

1. UNet Evaluation for 10 Noise Layers on Places365 Dataset

2. ResNet50 Evaluation for 10 Noise Layers on Places365 Dataset

2.1. ResNet50 Evaluation with Different Number of Noise Layers

2.2. ResNet50 Evaluation with Different Types of Attacks

2.3. Performance evaluation of the pipeline consists of both UNet and ResNet models

3. ResNet50 Evaluation for 5 Noise Layers on Places365 Dataset

3.1. ResNet50 Evaluation with Different Number of Noise Layers

3.2. ResNet50 Evaluation with Different Types of Attacks

3.3. Performance evaluation of the pipeline consists of both UNet and ResNet models

Note that the number of noise layers here refers to the number of random noise layers

that are added to the image during the initial step of training the UNet. These noise layers are

extracted by the UNet to obtain the denoised image (Refer to the Architecture Diagram 3.1).
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6.3.1 Attack Detection Accuracy

The classifier robustness was experimented with different types of attacks. The attack was added

to the input image after adding the noise layers, but performing the attack before adding the

noise layers would not make any difference to the final input image for the UNet. The extracted

image with different attacks at different levels of attack was evaluated under this experiment.

The following attacks were conducted with the following parameters. The tested dataset contains

10,140 images, processed as a batch of 64 images in each iteration, for a total of 156 iterations

to feed into the classifier for testing.

# Attack 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 5 Layer 10 Layer

1 Gaussian Noise 0.1 99.90% 99.67%

𝜖 𝛼 𝑠𝑡𝑒𝑝𝑠

2 PGD 0.05
2

255 10

99.90% 99.64%

3 PGD 0.15 99.90% 99.75%

4 PGD 0.30 99.90% 99.75%

𝜖

5 FGSM 0.05 99.90% 99.63%

6 FGSM 0.15 99.90% 99.77%

7 FGSM 0.30 99.90% 99.77%

𝑐 𝜅 𝑙𝑟 𝑠𝑡𝑒𝑝𝑠

8 CW 1 0 0.01 50 99.90% 99.53%

Table 6.1: Testing phase: Robustness to different attacks on Places365 Dataset

The attacks were applied equally across each type of attack for the 5 noise layer model,

as shown in Figure 6.1, resulting in the overlapping of the plot lines into a single line.
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Figure 6.1: Testing Phase(5 Noise Layers): Robustness to different attacks on Places365 Dataset

Figure 6.2: Testing Phase(10 Noise Layers): Robustness to different attacks on Places365 Dataset

In order to evaluate the model’s robustness across different datasets, the author con-

ducted experiments using the CelebA dataset with a gender classification model. The accuracy

curves obtained from these evaluations are illustrated in Figure 6.3.
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# Attack Accuracy of 5

Layer model on

CelebA Dataset

1 Gaussian Noise 95.58%

2 PGD 95.07%

3 PGD 95.37%

4 PGD 96.40%

5 FGSM 94.83%

6 FGSM 94.92%

7 FGSM 94.99%

Table 6.2: Testing phase: Robustness to different attacks on CelebA Dataset

Figure 6.3: Testing Phase(5 Noise Layers): Robustness to different attacks on CelebA Dataset
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6.3.2 Number of Noise Layers Effectiveness

Even though the classifier was trained with a fixed number of noise layers, where the UNet was

trained to extract a fixed number of noise layers (10 or 5) to obtain a denoised image, and the

ResNet50 classifier was trained to classify whether the image was attacked or not based on the

denoised output, further tests were conducted by varying the number of noise layers added during

the inference process. This was done to evaluate the trade-off between the number of noise layers

and the classification accuracy of the entire network.

The previously trained ResNet50 and UNet models with 5 noise layers were tested

with a reduced number of noise layers, 5, 4, 3, 2, and 1 to assess the effectiveness of varying the

noise layer count.

Similarly, the ResNet50 and UNet models trained with 10 noise layers were tested

with different numbers of noise layers during this test — 2, 4, 6, 8, and 10.

Model (No. of noise FGSM ( 𝜖 = 0.3 )

layers the model has trained) No. of Noise Layers Accuracy

5

1 99.92%

2 99.92%

3 99.92%

4 99.91%

5 99.90%

10

2 94.08%

4 98.51%

6 99.20%

8 99.55%

10 99.77%

Table 6.3: Testing Phase: effectiveness of noise layers
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Figure 6.4: Testing Phase(5 Noise Layers): effectiveness of noise layers

Figure 6.5: Testing Phase(10 Noise Layers): effectiveness of noise layers

6.3.3 Performance Evaluation

Both model pipelines, consisting of both the UNet image purifier and the ResNet50 classifier,

perform under Places365 10,140 image samples. The time taken for the entire image classification

process is divided by the time taken for classifying all 10,140 images.

Performance is considered for the above Table 6.2. Refer to Table 6.2 for attack

configurations.
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# Attack

Time in minutes for Average Time in

all testing samples milliseconds for one sample

5 Layer 10 Layer 5 Layer 10 Layer

1 Gaussian Noise 55.75252 109.65887 329 649

2 PGD 71.41789 124.89266 423 739

3 PGD 71.11372 125.62177 421 743

4 PGD 71.11100 125.53311 421 743

5 FGSM 56.11143 109.68333 332 649

6 FGSM 56.11189 110.33841 332 653

7 FGSM 56.11189 109.9742 332 651

8 CW 69.86054 126.88656 413 750

Table 6.4: Testing Phase: Performance of the models based on different attacks

Performance based on the number of noise layers referring to the Table 6.3 as follows,

Model (No. FGSM ( 𝜖 = 0.3 )

of noise layers the

model has trained)

No. of Noise

Layers

Time in minutes

for all test samples

Average time in

milliseconds for one sample

5

1 13.11059 77

2 23.31707 138

3 34.2046 202

4 44.95609 266

5 55.86192 331

10

2 25.01688 148

4 46.2248 274

6 68.25018 404

8 90.11074 533

10 109.9742 651

Table 6.5: Testing Phase: Performance under different number of noise layers
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Figure 6.6: Testing Phase(10 Noise Layer): Power and time usage during attacks

Figure 6.7: Testing Phase(5 Noise Layer): Power and time usage during attacks

Figure 6.8: Testing Phase(10 Noise Layer): Power and Time usage during noise layer evaluations
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Figure 6.9: Testing Phase(10 Noise Layer): Power and Time usage during noise layer evaluations

6.4 DDPM + ResNet50, DDIM + ResNet50 and DDIM + CNN Testing

The tests for these experiments were skipped due to the models being untrained. As observed

in the previous model training section, the models were unable to learn to differentiate between

attacked and non-attacked images, as the learning curve remained almost linear throughout the

training process.

6.5 Critical Evaluation of Results

The UNet and ResNet50 models were able to achieve excellent results, surpassing the rest of the

other diffusion models mentioned in the thesis.

It is observed that the model trained with 5 noise layers obtained a higher uniform

accuracy of 99.9%, with only a 0.37% maximum accuracy gap compared to the model trained

on 10 noise layers (Table 6.2). A key highlight is that the 5-layer model maintained a constant

accuracy of 99.9% across different attacks as well as across different numbers of noise layers

(Table 6.3).

It is worth noting that decreasing the number of noise layers increases the visibility

of the image, thereby reducing the privacy provided by the noise addition process. Thus, the

number of noise layers is directly proportional to the level of privacy added. Privacy here refers

to the fact that noise can be added at the source device before transmitting the image through the

network to the destination, making it difficult for an intruder to identify the original image since

it is obscured by noise.

The performance of these models (Table 6.5) demonstrates that they can be deployed
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in real-world environments, as they are capable of detecting adversarial samples in less than half

a second.

6.6 Chapter Conclusion

The UNet + ResNet50 model trained with 5 noise layers demonstrated greater overall effectiveness

in handling adversarial attacks compared to the model trained with 10 noise layers. Specifically,

the 5-layer model maintained consistent accuracy across various attack types, whereas the 10-

layer model exhibited fluctuating accuracy depending on the nature of the attack. Furthermore,

the 5-layer model displayed robustness in scenarios involving different numbers of noise layers

during training and inference, suggesting its ability to generalize better under varying conditions.

In conclusion, the model trained with 5 noise layers proved to be both more efficient and more

accurate, making it a stronger candidate for the proposed adversarial detection framework.
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CHAPTER 7: CONCLUSION
7.1 Chapter Overview

This chapter presents a summary and conclusion of the research, reflecting on the key findings

and achievements derived from the previous chapters. It highlights the challenges encountered

during the research process and outlines the strategies implemented to overcome them, ultimately

leading to promising results from the proposed novel architecture. The chapter also discusses

any deviations from the original plan and suggests potential directions for future enhancements.

Finally, the chapter concludes by summarizing the overall contributions and significance of the

research.

7.2 Achievements of Research Aims, Objectives Research Questions

7.2.1 Aim of the Project

The aim of this research is to design and develop a novel architecture that embeds a set of

predefined noise layers into an image as a watermark and enables the extraction of this noise to

classify whether an adversarial attack exists, based on the final denoised output image.

The aim of this research was successfully achieved using a UNet architecture along

with a ResNet50 classifier. The hypothesis was successfully proven within Section 5.3.1.2, where

there is a separation of benign samples and adversarial samples.

7.2.2 Research Questions and Objectives

This research was guided by a set of clearly defined research questions and objectives aimed at

addressing the growing challenge of adversarial attacks on deep neural networks. The central

research question explored how predefined noise added as a watermark could be extracted using

diffusion-based models to detect whether an image has been manipulated through adversarial

attacks.

To this end, a series of sub-questions were investigated, including the impact of the

number of noise layers on the denoising process, the applicability of diffusion models in extracting

noise, and the efficiency of the diffusion process in real-time scenarios. These were aligned with

objectives that involved designing and implementing a novel architecture inspired by diffusion

processes, evaluating its performance on various datasets and attack types, and contributing to

the understanding of adversarial image behavior.

Throughout the experimentation and implementation phases, the research demon-
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strated that the proposed architecture, particularly the UNet and ResNet50 combination—was

capable of effectively detecting adversarial interference in images. The findings validated the hy-

pothesis that noise extracted through a diffusion-inspired process carries distinguishable patterns

for adversarially perturbed images, and these patterns could be leveraged for robust classification.

Overall, the research successfully fulfilled its primary objectives and answered the

corresponding research questions, laying the foundation for future exploration of diffusion based

watermarking techniques as a defense against adversarial attacks.

7.3 Problems and Challenges Faced

The author conducted several experiments in order to improve the novelty and performance of

the proposed solution. Throughout these experiments, multiple challenges were encountered,

most of which were successfully mitigated.

Initial experiments using a pre-existing UNet architecture combined with a ResNet50

classifier yielded promising results. These models were sourced from well-established imple-

mentations—UNet from a diffusion model architecture and ResNet50 from the PyTorch model

zoo. However, subsequent experiments involving custom-designed models from scratch did not

perform as well, highlighting the challenges in recreating complex architectures with equivalent

performance.

Further experimentation involving DDPM and DDIM models required not only a deep

theoretical understanding but also practical implementation knowledge. In particular, while the

diffusion process is described theoretically as an iterative denoising procedure, its practical

implementation relies on the use of schedulers. The author utilized a pre-trained DDPM model

and modified it to follow a DDIM approach, which required a careful translation of mathematical

theory into functional code.

Due to the computational complexity and size of diffusion models, running and de-

bugging them locally posed a significant challenge. With the guidance of the co-supervisor,

the author was able to understand the underlying codebase. The inference process was locally

executed using an RTX 3080 (10GB) GPU by strategically placing breakpoints in the PyCharm

debugger to trace data flow across functions. Although local resource limitations were a con-

straint, they were partially addressed using Kaggle’s virtual machines equipped with P100 GPUs

and local training sessions on the RTX 3080.

Ramindu Walgama — 20001959 — 2020/CS/195 53



Diffusion Inspired Image Watermarking against Adversarial Attacks — Research Thesis

7.4 Deviations

The project was completed according to the initial plan without any major deviations. The

UNet + ResNet50 model demonstrated strong performance and outperformed the alternative

experimental setups discussed in previous chapters. While other models were explored, they did

not yield satisfactory results, affirming the validity and strength of the selected architecture.

7.5 Future Enhancements

This research primarily focused on introducing a novel approach to adversarial attack detec-

tion by embedding noise layers into images as a unique form of watermarking. These noise

layers were later extracted, and the denoised image was used to determine the presence of ad-

versarial perturbations. The central objective was to enhance the robustness of the model, while

computational efficiency, particularly GPU utilization was not a primary concern.

The UNet + ResNet50 architecture demonstrated strong performance with minimal

GPU usage, making it an efficient and effective baseline. However, the diffusion-based models,

such as DDPM and DDIM, imposed significantly higher computational demands. Although

resource optimization for these models was beyond the scope of this research, it remains a

viable direction for future work. Specifically, optimizing the diffusion process to reduce GPU

consumption could enable more practical deployment of such models.

To address some of these challenges, the author attempted to convert DDPM models

into DDIM models to improve inference efficiency. However, the combined diffusion-classifier

models did not succeed in learning to differentiate between benign and adversarial samples.

This limitation was primarily due to the lack of a proper noise scheduling mechanism in the

experiments; instead of leveraging schedulers to add noise progressively, noise was added directly

in an iterative manner. Integrating a proper scheduler into the training process remains an

important avenue for future exploration, which could significantly enhance model learning and

adversarial detection accuracy. This would have better results in purification as well which was

a limitation in this research.

7.6 Concluding Remarks

This research introduced a novel approach to adversarial attack detection by leveraging noise-

based watermarking through diffusion-inspired architectures. The experiments demonstrated the

potential of using extracted noise patterns and denoised images to effectively classify adversarial
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samples, particularly with the UNet + ResNet50 architecture. Despite challenges in training

diffusion models due to computational constraints and implementation complexity, the findings

lay a strong foundation for future enhancements. The proposed framework offers a promising

direction for building robust, noise-aware defense mechanisms against adversarial attacks in deep

learning models.
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