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Abstract

Human emotions are complex, personal, and vary often across individuals, situ-

ations, and cultures. Many existing emotion recognition systems focus only on

identifying emotional states at a given moment. This research aims to address that

limitation by developing a personalized multimodal emotion recognition framework

that identifies and adapts to each user’s emotional baseline over time.

The framework combines facial and vocal signals using Decision Level Fusion, where

Mean Squared Error (MSE) is used to assign personalized weights based on how

close each modality’s prediction is to user reported emotions. Kernel Density Es-

timation (KDE) method introduced to estimate the initial emotional baseline in

the arousal-valence space. This baseline is further refined through reinforcement

learning, using user feedbacks through emoji-based mechanism. Experiments were

conducted across five emotional categories (Happy, Angry, Sad, Boredom, and

Calm) using a group of 10 participants.

The fused method yields an average improvement of 33.92% over the facial method

and 6.52% over the vocal method. Emotionally enhanced responses using person-

alized emotional inputs showed improvements of Empathy (75.3%) and Emotional

Alignment (69.5%), followed by Satisfaction (37.6%). Most participants (66.67%)

agreed with the computed refinement baseline values.

This research makes three main contributions: a personalized emotion fusion method,

baseline identification, and an iterative refinement process. While the system cur-

rently supports a limited set of emotions and uses only facial and vocal inputs, it

opens pathways for including more emotional categories, physiological data, and

advanced context aware fusion techniques in future work.

ii



Acknowledgment

I would like to express my heartfelt gratitude to my research supervisor, Dr. Enosha

Hettiarachchi, and my co-supervisor, Mr. Amod Pathirana, for their invaluable

guidance, encouragement, and continuous support throughout the course of this

research. Their insights, expertise, and constructive feedback greatly contributed to

the quality and direction of my study. Their encouragement have been instrumental

in shaping this work and helping me navigate the challenges of academic research.

I am also sincerely grateful to Dr. Kasun Karunanayaka, Dr. Lasanthi De Silva,

and Ms. Sanjani Gunathilaka of the University of Colombo School of Computing

for their valuable feedback during the research proposal and interim evaluations,

which helped me improve and refine my work.

A special thanks goes to my fellow colleagues and friends for their constant motiva-

tion and collaborative spirit, which kept me focused and inspired during challenging

times. I would also like to acknowledge the participants of my study who generously

volunteered their time and shared their experiences, without whom this research

would not have been possible.

Above all, I am deeply thankful to my family for their unwavering support, patience,

and love. Their encouragement has been a cornerstone of my academic journey.

It is with great pleasure that I acknowledge the support and contributions of all

those who have helped me in numerous ways to successfully complete this research.

iii



Contents

Abstract ii

Acknowledgment iii

1 Introduction 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Facial Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Speech Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Multi-modal Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Reinforcement Learning Approaches for Personalized Applications . 14

3 Motivation and Research Questions 16

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Significance of the Research . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Research Aim, Questions and Objective . . . . . . . . . . . . . . . . 17

3.4.1 Research Aim . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Research Questions and Objectives . . . . . . . . . . . . . . 18

3.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Research Approach . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.1 In Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.2 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



4 Design and Implementation 22

4.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Phase 1 – Selecting Suitable Emotion Recognition Models . . . . . 24

4.2.1 Facial Expression Experiment Setup . . . . . . . . . . . . . 26

4.2.2 Vocal Emotion Experiment Setup . . . . . . . . . . . . . . . 26

4.3 Phase 2 – Multimodal fusion with personalized emotion recognition 28

4.3.1 Emotion Eliciting Tasks . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Emotion Mapping to A-V Plan . . . . . . . . . . . . . . . . 41

4.3.3 Personalized Multimodal Fusion . . . . . . . . . . . . . . . . 44

4.4 Phase 3 - Initial Baseline Identification . . . . . . . . . . . . . . . . 45

4.4.1 Initial Baseline Identification Using Kernel Density Estima-

tion (KDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Phase 4 - Evaluating Responses from LLM with Emotional State . . 48

4.6 Phase 5 - Refining the Initial Baseline using Reinforcement Learning 54

4.6.1 Relationship with Emojis and Arousal-Valence Values . . . . 55

4.6.2 Emotion Refining Using Reinforcement Learning . . . . . . . 56

5 Results and Evaluation 62

5.1 Participant Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Phase 1: Selecting Suitable Emotion Recognition Models . . . . . . 63

5.2.1 Facial Expression Experiment . . . . . . . . . . . . . . . . . 63

5.2.2 Vocal Emotion Recognition Models Analysis . . . . . . . . . 65

5.3 Phase 2: Personalized Multimodal Fusion . . . . . . . . . . . . . . . 68

5.3.1 Personalized Weights . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Multimodal Fusion Analysis . . . . . . . . . . . . . . . . . . 72

5.4 Phase 3: Initial Baseline Identification . . . . . . . . . . . . . . . . 76

5.5 Phase 4: LLM Response Evaluation . . . . . . . . . . . . . . . . . . 83

5.6 Phase 5: Baseline Refinement . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 87

6.1 Conclusions about the Research Questions and Aim . . . . . . . . . 87

6.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 90

v



A Appendix 99

vi



List of Figures

2.1 Emotion categorization . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Main stages of the research methodology . . . . . . . . . . . . . . . 22

4.2 Experimental flow of Phase 1 . . . . . . . . . . . . . . . . . . . . . 24

4.3 Experiment snapshot for facial expression recognition . . . . . . . . 26

4.4 Experimental flow of Phase 2 . . . . . . . . . . . . . . . . . . . . . 28

4.5 Arousal-Valence space with diverse emotion regions . . . . . . . . . 29

4.6 Eliciting tasks for Happy Emotion . . . . . . . . . . . . . . . . . . . 31

4.7 Eliciting tasks for Anger Emotion . . . . . . . . . . . . . . . . . . . 34

4.8 Eliciting tasks for Sad Emotion . . . . . . . . . . . . . . . . . . . . 35

4.9 Eliciting tasks for Boredem emotion . . . . . . . . . . . . . . . . . . 37

4.10 Screenshots from the three tasks used to elicit calmness and the

evaluation page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.11 Snapshots of participants engaged in the emotion elicitation tasks. . 39

4.12 Circumplex Model of Affect Russell (1980). This circular model

shows how emotions are distributed in a two-dimensional space using

arousal and valence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.13 Emotion coordinates adapted from Paltoglou & Thelwall (2012).

These values are used in this study to map categorical emotions

to A-V values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.14 Experimental flow of Phase 2 . . . . . . . . . . . . . . . . . . . . . 49

4.15 Example of LLM prompt with emotional baseline data . . . . . . . 52

4.16 Experimental flow of Phase 5 . . . . . . . . . . . . . . . . . . . . . 55

vii



4.17 Emoji feedback interface used for lightweight user input. . . . . . . 57

5.1 Emotion categorization results for facial expression experiment . . . 63

5.2 Emotion intensity identification results for facial expression experiment 64

5.3 Vocal emotion categorization results: HUME vs Wave2Vec2 . . . . 66

5.4 Vocal emotion intensity identification: HUME vs Wave2Vec2 . . . . 66

5.5 Average fusion weights per emotion category . . . . . . . . . . . . . 69

5.6 Weight distribution boxplot across all participants . . . . . . . . . . 69

5.7 Fusion weight visualization for each participant . . . . . . . . . . . 70

5.8 Performance comparison by Euclidean distance for each emotion . . 74

5.9 Improvement heatmaps: Fused vs Facial and Fused vs Vocal by

Emotion and Intensity . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Statistical improvement (percentage) by emotion . . . . . . . . . . . 76

5.11 Initial Emotional data mapping for all participants . . . . . . . . . 77

5.12 3D surface plots of KDE-based emotional distributions for all par-

ticipants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.13 2D mapping of KDE-estimated baseline zones for each participant . 80

5.14 Participant agreement frequency with identified baseline values . . . 81

5.15 Scatter plot comparing identified and participant-proposed baseline

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.16 Comparison of average ratings for LLM responses . . . . . . . . . . 83

5.17 Initial and refined baseline regions for selected participants. . . . . . 85

A.1 Baseline evaluation Questionnaire Screenshot 1 . . . . . . . . . . . 103

A.2 Baseline evaluation Questionnaire Screenshot 2 . . . . . . . . . . . 104

A.3 Baseline evaluation Questionnaire Screenshot 3 . . . . . . . . . . . 105

A.4 Baseline Refinement Questionnaire Screenshot 1 . . . . . . . . . . . 106

A.5 Results for the questionnaire . . . . . . . . . . . . . . . . . . . . . . 107

A.6 Informed Consent Form Page 1 . . . . . . . . . . . . . . . . . . . . 108

A.7 Informed Consent Form Page 2 . . . . . . . . . . . . . . . . . . . . 109

viii



List of Tables

2.1 Comparison of Suitable Datasets . . . . . . . . . . . . . . . . . . . 7

2.2 Comparison of Emotion Recognition Models . . . . . . . . . . . . . 9

2.3 Comparison of Speech Emotion Recognition Datasets . . . . . . . . 10

2.4 Comparison of Speech Emotion Recognition Studies . . . . . . . . . 13

2.5 Summary of Reinforcement Learning Approaches for Personalized

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Summary of Emotion Eliciting Experiments . . . . . . . . . . . . . 40

4.2 Emotion Intensity Coordinates Based on Paltoglou & Thelwall (2012) 43

4.3 Emotional Intelligence Benchmarking of LLMs (adapted from Wang

et al. (2023)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Clusters of emojis and their valence-arousal values from Kutsuzawa

et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Mean Euclidean Distances for Each Method . . . . . . . . . . . . . 74

5.2 T-test Results for Fused Method Comparisons . . . . . . . . . . . . 74

5.3 Participant baseline values estimated from KDE peak density . . . 78

5.4 Participant Agreement and Baseline Discrepancy Summary . . . . . 82

5.5 Comparison of participant evaluations for control vs emotionally en-

hanced responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Participant Agreement on Refined Baselines . . . . . . . . . . . . . 86

A.1 Self-reported values for Happy emotion . . . . . . . . . . . . . . . 99

A.2 Self-reported values for Angry emotion . . . . . . . . . . . . . . . . 100

A.3 Self-reported values for Sad emotion . . . . . . . . . . . . . . . . . 100

A.4 Self-reported values for Boredom emotion . . . . . . . . . . . . . . 100

ix



A.5 Self-reported values for Calm emotion . . . . . . . . . . . . . . . . 101

A.6 Modality Weights and MSE for Participants (Left: 1–5, Right: 6–10) 102

x



Listings

4.1 Emotion-specific fusion weights per user . . . . . . . . . . . . . . . 44

4.2 Gaussian KDE implementation . . . . . . . . . . . . . . . . . . . . 46

4.3 Baseline region identification with KDE . . . . . . . . . . . . . . . . 47

4.4 Example of emotional data sent to LLM . . . . . . . . . . . . . . . 50

A.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.2 State and Coordinate Conversion . . . . . . . . . . . . . . . . . . . 110

A.3 Action Selection and State Transition . . . . . . . . . . . . . . . . . 111

A.4 Reward Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.5 Placeholder Functions for Data Input . . . . . . . . . . . . . . . . . 112

A.6 Q-Learning with Eligibility Traces . . . . . . . . . . . . . . . . . . . 113

1



1

Introduction

1.1 Introduction

Envision a scenario where your devices not only understand your words but also

your emotions, responding with empathy and personalized interactions tailored to

your emotional state. This vision drives research in multi-modal emotional state

recognition, a field at the intersection of affective computing, human-computer

interaction, and artificial intelligence. Affective computing is a multidisciplinary

research area where computer science bridges the gap between cognitive science,

psychology, and social science. It empowers intelligent systems to recognize, con-

clude, and interpret human emotions, facilitating better human-machine interac-

tion by responding to humans based on their emotional state (Picard 2000).

The emotional state of individuals varies significantly from person to person (Lim,

2016), making it essential to create customized and personalized models for emotion

recognition. This is particularly important for applications like personal assistants,

where user satisfaction and engagement are paramount (Salama AbdELminaam

et al. 2020). Personalization in emotion identification is essential for building truly

adaptable and empathetic systems that can transform industries like healthcare,

customer service, education, and entertainment. Research by Gelbrich et al. (2021),

Mariacher et al. (2021), and Inkster et al. (2018) has expanded this area, showing

the potential of emotionally aware AI systems.

This study focuses on building a personalized emotion recognition system by first

2



selecting the most effective facial and speech emotion models. These models are

then fused to capture emotions more accurately while considering individual dif-

ferences. An emotional baseline is established for each user, which is later re-

fined through reinforcement learning. The system also explores how incorporating

emotional context can improve responses from large language models during user

interactions.
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2

Literature Review

2.1 Background

Emotions are complex experiences of consciousness, bodily sensation, and behavior

that reflects the personal significance of a thing, or an event. Plutchik introduced

the Wheel of Emotions, a model that identifies eight fundamental emotions: joy,

sadness, trust, disgust, fear, anger, anticipation, and surprise. According to this

model, these basic emotions can combine in varying intensities to form more com-

plex emotional states. Other emotions are overlapping those fundamental emo-

tions which can be seen in Figure 2.1a. This research is the base for upcoming

research in emotion categorization (Plutchik 1980). Valence-Arousal-Dominance

(VAD) model represents emotions along three dimensions: pleasantness (valence),

activation (arousal), and control (dominance). It provides a simple and intuitive

way to understand the different components of emotion Figure 2.1b. (Oberlander

& Klinger 2018).

These emotions are expressed using both verbal and nonverbal channels. As Ek-

man & Friesen (1971) showed, facial expressions universally convey six basic emo-

tions across cultures. Our voices carry emotional information through tone, pitch,

and pace, with high-arousal emotions often involving higher pitch and faster pace

(Barrett, 2004). Body language, such as posture and gestures, also communicates

emotional states (Ekman & Friesen 1971). Verbally, we directly express our feelings

using linguistic patterns and exact words reflecting higher emotional granularity

4



(a) Wheel of emotions
(b) Russell’s two-dimensional model of
valence and arousal

Figure 2.1: Emotion categorization

(Smidt & Suvak 2015). In today’s digital age, we frequently express emotions

in text, a focus of sentiment analysis in natural language processing (Lim 2016).

Physiological changes like increased heart rate also signal emotions, particularly

their arousal levels (Barrett et al. 2004).

However, the expression of the emotions varies significantly from person to person

and across different cultures. Emotional granularity, which is a factor in this vari-

ability, is the ability to make fine-grained distinctions between similar emotions

(Smidt & Suvak 2015). The cultural differences profoundly influence emotional

arousal and expression. For instance, research by (Lim 2016) highlights that West-

ern cultures tend to value and promote high-arousal emotions such as excitement

and anger, whereas Eastern cultures prioritize low-arousal emotions like calmness

and contentment. Because of that, it’s important to establish a baseline behavior

of individuals in advance to identify their emotional state in a more precise manner.

Baseline behavior refers to an individual’s typical or normal pattern of behavior,

thoughts, and emotions when they are not experiencing any specific external stim-

uli or circumstances that would significantly influence their state. It represents the

default or resting state from which deviations or changes can be measured. Emo-

tional baseline, also known as emotional homeostasis or emotional equilibrium, is

the relatively stable state of emotional experience that an individual tends to re-

turn to after experiencing temporary emotional fluctuations. It is the individual’s

5



characteristic or typical level of emotional arousal and emotional experience when

not influenced by external events or stimuli. (Davidson 1998)

2.2 Facial Emotion Recognition

Facial expressions occur by contracting and releasing of the muscles under the skin.

Most existing applications use the movements of facial muscles considering action

units and this uses supervised learning approach which is known as Facial Action

Coding System (FACS) (Kantharia & P. 2015). By using the CNN, the emotion

recognition can be done in real time. This Technology is known as Facial Expression

Recognition using CNN (FERC). FERC has two parts, first it removes background

and noises from the source and second part entirely focuses on extracting facial

features. FERC model uses Expressional Vector to identify the basic emotions,

and this was able to achieve 96% accuracy (Mehendale 2020)

Our research interest is mostly on the continuous emotion prediction models rather

than distinct emotion classification models. Study done by Savchenko (2024) pro-

poses EmotiEffNet family of models (a series of pre-trained convolutional networks)

for valence-arousal prediction. These networks extract frame-level features which

are fed into a Multi Layer Perceptron (MLP) and a LightAutoML classifier ensem-

ble, with a post-processing step using smoothing to stabilize results across sequen-

tial frames. The Aff-Wild2 (Kollias & Zafeiriou 2018) dataset is used in this study.

Model achieved a valence CCC of 0.5603 and an arousal CCC of 0.5597 on the

Aff-Wild2 dataset. This model is efficient in terms of computational requirements,

reaching 45 FPS on a GPU and 12 FPS on a CPU, with a model size of 15MB,

making it adaptable for mobile deployment.

The MaxViT model (Wagner et al. 2024) utilizes a hybrid approach, combin-

ing continuous valence-arousal labels with discrete emotion categories to train a

transformer-based architecture. This circumplex model-guided inference provides

a more nuanced approach by learning from both types of labels, thus enhancing ex-

pression recognition accuracy. The model is trained with AffectNet (Mollahosseini

et al. 2017) and EMOTIC (Kosti et al. 2019) datasets. CAGE achieved a CCC

of 0.716 for valence and 0.642 for arousal on AffectNet, with a root mean square
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error (RMSE) reduction of 7% for valence and 6.4% for arousal. This model has

a larger footprint, with a size of 86MB, and processes at 30 FPS on a GPU and 8

FPS on a CPU, making it suitable for high-end applications where computational

resources are available.

Study done by Savchenko (2023) introduce EmotiEffNet model which leverages the

EfficientNet-B0 architecture for frame-level feature extraction, followed by an MLP

and LightAutoML classifier ensemble for downstream emotion analysis tasks. This

approach is applied to predict VA, FER, and AU tasks within the video frames.

Aff-Wild2 is again the primary dataset and the model achieves a valence CCC of

0.494 and an arousal CCC of 0.607. For FER, the F1 score reaches 0.433, while the

AU detection F1 score is 0.486. This balance between accuracy and computational

efficiency results in an inference speed of 40 FPS on GPU and 15 FPS on CPU,

with a model size of 23MB, providing a suitable option for applications needing

moderate computational efficiency.

Table 2.1: Comparison of Suitable Datasets

Aspect AffWild2 AffectNet EMOTIC Hume
Facial
Dataset

Total
Frames/Im-
ages

2.8M frames
(545 videos)

320,739
(train) +
41,406 (val)

23,266 (train)
+ 7,203 (test)

452,783
mimic images
+ 534,459
judgments

Annotations VA (-1 to
+1), 8
expressions,
12 AUs

8 expressions,
VA (-1 to +1)

26
expressions,
VA, arousal,
dominance

28+
continuous
emotional
dimensions

Resolution Varying
(in-the-wild)

High-
resolution

Context-rich,
full-body

160x160
pixels (stan-
dardized)

Annotators Expert-
labeled

12
professionals

Multi-
annotator
settings

5,833
participants
(6 countries)

Key
Features

Video-based
dynamic
expressions

Large-scale
static images

Contextual
full-body
analysis

Cross-
cultural
mimicry,
controls for
demographic
bias
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A comparison of suitable datasets for our study is shown in Table 2.1. These

datasets vary in terms of labeled expressions, complexity, and real-world applica-

bility. While AffWild2 and AffectNet focus on detailed face annotations, EMOTIC

extends beyond facial analysis to include body language in contextual settings.

Hume.ai has developed sophisticated facial expression analysis technology cen-

tered on ”semantic space theory,”(Cowen & Keltner 2021) which enables a high-

dimensional, data-driven understanding of human emotional expressions. This ap-

proach transcends traditional models by capturing hundreds of dimensions of hu-

man expression, allowing for the identification of subtle emotional nuances. Their

Facial Expression Model identifies over 28 distinct facial expressions by analyz-

ing millions of natural facial expressions collected from a diverse global popu-

lation across six countries (USA, China, India, Venezuela, Ethiopia, and South

Africa), comprising over 452,783 participant-generated mimic images and 534,459

emotion judgments from 5,833 participants. This extensive cross-cultural dataset

deliberately controls for demographic variables to isolate genuine emotional sig-

nals, addressing limitations of culturally homogeneous samples in previous re-

search.(Brooks et al. 2024)

The technology relies on a DNN model built on a FaceNet Inception ResNet v1

architecture pretrained on the VGGFace2 dataset that specifically analyzes facial

features. Their FACS 2.0 Model provides an enhanced automated version of the Fa-

cial Action Coding System that measures 26 facial action units and 29 other facial

features, offering detailed breakdown of facial movements that contribute to emo-

tional expressions. The company employs principal preserved components analysis

(PPCA) and generalized PPCA (G-PPCA) to extract 28 shared or culture-specific

emotional dimensions from facial data. Unlike traditional models constrained to

basic emotion categories, Hume.ai’s system evaluates performance via correlation

with human ratings of facial expressions rather than conventional metrics, ensuring

alignment with real-world emotional interpretations while minimizing demographic

biases(Brooks et al. 2024).

Hume.ai’s expression measurement technology is particularly valuable for practical

applications through its WebSocket-based streaming capabilities, which facilitate
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real-time data processing without burdening local machines. This API-based ap-

proach enables continuous data flow between applications and Hume’s models,

providing immediate feedback on facial expressions through persistent two-way

communication optimized for high throughput and low latency (Hume AI 2025b).

The system can process various media formats with reasonable size limits (im-

ages up to 3,000 x 3,000 pixels, video up to 5 seconds) and offers both REST

endpoints for batch processing and WebSocket endpoints for real-time predictions

from sources like webcam streams. This infrastructure makes the sophisticated fa-

cial analysis technology highly accessible for applications requiring instant process-

ing such as live customer service tools with the computational complexity handled

on Hume.ai’s servers rather than client devices (Hume AI 2025a).

Table 2.2: Comparison of Emotion Recognition Models

Aspect MT-
EmotiDDA
MFN

MaxViT EmotiEffNet Hume
Facial
Expression

Dataset Aff-Wild2 AffectNet,
EMOTIC

Aff-Wild2 Hume Facial
Dataset

Model
Architecture

MobileNetV3
(lightweight
MTL)

MaxViT
(transformer-
based hybrid)

EfficientNet-
B0 with MLP
ensemble

FaceNet
Inception
ResNet v1

Post-
processing

Gaussian/Box
filters

Not specified Box filtering
for smoothing

MTCNN face
detection,
160x160 pixel
standardiza-
tion

Suitability Real-time,
mobile
deployment

High-end
applications

Moderate
real-time
applications

Cross-
cultural, Real
time

The table 2.2 provides a summarized, side-by-side comparison of each model’s

architecture, performance metrics, inference efficiency, and suitability for specific

use cases, highlighting key findings.

2.3 Speech Emotion Recognition

Our study focusing on identify the arousal valence values of speech emotions. Al-

though there are many categorical datasets in SER, Only few has data with arousal,
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valence labeled and also in English language. Table 2.3 shows a detailed comparison

on available SER datasets.

Dataset Year Content Emotions
RAVDESS 2018 7,356 recordings

by 24 actors
7 emotions: calm,
happy, sad, an-
gry, fearful, sur-
prise, disgust

MuSe-CAR 2021 40 hours, 6,000+
recordings of
25,000+ sentences
by 70+ speakers

Continuous
dimensions: va-
lence, arousal,
trustworthiness

Morgan Emo-
tional Speech Set

2019 999 spontaneous
voice messages
from 100 speakers

Valence, arousal,
4 emotions: hap-
piness, anger, sad-
ness, calm

OMG Emotion 2018 420 videos, avg.
length 1 min

7 emotions cat-
egories; valence,
arousal

IEMOCAP 2007 12 hours, 5 ses-
sions, 10 actors

15 emotion cat-
egories; valence,
arousal and dom-
inance

HUME-VB 2023 282,906 vocal-
izations from
4,080 participants
across 5 countries

48 emotion cate-
gories and 24 emo-
tional dimensions

HUME-Prosody 2023 5,000+ ”seed”
samples and
282,906 trials of
crowd-sourced
mimicry re-
sponses across
English, Man-
darin, Spanish,
Hindi

48 emotion cate-
gories with con-
tinuous values

Table 2.3: Comparison of Speech Emotion Recognition Datasets

The study Zhang et al. (2017) utilizes the IEMOCAP dataset with CNNs for emo-

tion recognition, extracting MFCCs, pitch, and prosodic features. The model

achieved better performance on high-arousal emotions like anger and happiness

but had challenges with neutral, low-arousal states. CNNs effectively captured

emotional features relevant to both arousal and valence dimensions, highlighting

the importance of carefully selected acoustic features in SER.
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Another study done by Martinez-Lucas et al. (2020) Leveraging the MSP-Podcast

corpus with time-continuous annotations, this study applied RNNs, particularly

LSTMs, to capture sequential dependencies in speech emotions. By modeling con-

tinuous changes in emotions, the model achieved high correlation scores in arousal

and valence prediction, making it well-suited for applications where emotions evolve

over time.

Using the RAVDESS dataset, the study Jalal et al. (2019) explored LSTMs to

enhance emotion detection, especially for low-arousal states. Focusing on features

like pitch, energy, and spectral elements, the LSTM-based model demonstrated

effectiveness in classifying nuanced emotions, achieving significant accuracy gains

on emotions with subtle arousal shifts. The study supports the use of LSTMs in

capturing temporal patterns, particularly for more subtle, low-arousal emotions.

This recent studyWagner et al. (2023) applied transformer architectures like wav2vec

2.0 and HuBERT, pre-trained on large audio datasets, for SER across MSP-Podcast,

IEMOCAP, and MOSI. Transformers achieved state-of-the-art performance in va-

lence recognition, with results revealing robust performance across diverse condi-

tions and fairness in gender representation. The study showed that fine-tuning

transformers with continuous annotations allows them to implicitly capture lin-

guistic cues, which significantly improves valence prediction.

Hume.ai’s Vocal Burst dataset (HUME-VB) represents a groundbreaking resource

for emotion recognition research, comprising 282,906 vocalizations from 4,080 par-

ticipants across five culturally diverse countries (USA, China, India, Venezuela,

South Africa) spanning multiple languages (English, Mandarin, Spanish, Hindi).

This extensive dataset captures emotional expressions in real-world conditions with

varied recording environments, making it the largest of its kind. The dataset has

been leveraged in two significant ways: first, done by Brooks et al. (2023) to train

DNNs that predict 48 emotion categories from vocal bursts, revealing that nonver-

bal vocalizations express 24 distinct emotional dimensions with 79% cross-cultural

consistency, supporting Semantic Space Theory which conceptualizes emotions as

continuous multi-dimensional states rather than discrete categories. Second done

by Tzirakis et al. (2023), used the dataset to develop transformer-based mod-
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els, particularly Whisper architectures for detecting and classifying 67 vocalization

types in audio streams, with the best-performing models achieving F1-scores of

96.2% even in challenging noisy environments. These studies demonstrate the

HUME-VB dataset’s value in advancing understanding of cross-cultural emotional

communication while providing practical applications for affective computing tech-

nology.

Hume.ai’s Speech Prosody dataset (Hume-Prosody Corpus, HP-C) represents an-

other significant contribution to emotional expression research, containing over

5,000 ”seed” samples of emotional vocalizations and 282,906 trials of crowd-sourced

mimicry responses collected across multiple languages (English, Mandarin, Spanish,

Hindi) and cultures (USA, China, India, Venezuela, South Africa). This dataset

was prominently featured in the 2023 Computational Paralinguistics Challenge

(ComParE), where researchers tackled the ”Emotion Share” task of predicting

continuous emotion proportions across 48 emotion categories in speech segments

Schuller et al. (2023). The challenge evaluated models using Spearman’s rank corre-

lation metrics, with baseline approaches including both modern transformer-based

systems (Wav2Vec2) and traditional acoustic feature engineering (OpenSMILE).

Research findings revealed that models struggled particularly with low-prevalence

emotions, highlighting the need for balanced datasets, while also demonstrating

significant cross-cultural variability in emotion expression. This work established

important benchmarks for emotion share prediction while suggesting that future

advances could come from combining acoustic and linguistic features, extending the

dataset’s utility for developing robust speech-based affective computing systems.

In summary, emotion recognition research has evolved from foundational psycho-

logical theories like Plutchik’s wheel and the VAD model to sophisticated multi-

modal systems that analyze facial, vocal, and textual cues. Modern FER models

such as EmotiEffNet and MaxViT demonstrate strong performance in valence-

arousal prediction, balancing accuracy with computational efficiency. Hume.ai’s

approach offers a culturally diverse and highly detailed understanding of emotional

expression. Similarly, SER leverages CNNs, LSTMs, and transformers to model

emotional variations in audio, with recent advances achieving state-of-the-art re-

sults using large, diverse datasets. Together, these developments underscore the
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Study Dataset Methodology Key Results Performance
CNN on
IEMOCAP

IEMOCAP CNN,
MFCC, pitch,
prosodic

High ac-
curacy on
high-arousal

82% for
anger/happi-
ness, 65% for
neutral

RNN on
MSP-Podcast

MSP-Podcast RNN,
LSTM, time-
continuous
annotation

Continuous
tracking of
emotions

Correlation:
0.403
(arousal),
0.196 (va-
lence)

LSTM on
RAVDESS

RAVDESS LSTM, pitch,
energy, spec-
tral features

Low-arousal
detection
improved

75% accuracy
for primary
emotions,
68% for low-
arousal

Transformer-
based Models
on MSP-
Podcast

MSP-
Podcast,
IEMOCAP,
MOSI

Transformer
(wav2vec 2.0,
HuBERT)

Robust
valence
recognition,
state-of-the-
art on valence

CCC of 0.638
on MSP-
Podcast for
valence

Table 2.4: Comparison of Speech Emotion Recognition Studies

importance of multimodal, culturally-aware, and continuously annotated datasets

for advancing emotion recognition technologies.

2.4 Multi-modal Fusion

Multimodal analysis leverages input data from various channels like video, au-

dio, and text to enhance the performance and accuracy of emotion recognition

systems. The fusion of this multi-modal data is crucial, with techniques including

feature-level fusion (combining features into one vector), decision-level fusion (inde-

pendently classifying features and fusing outcomes), hybrid fusion (combining fea-

ture and decision-level approaches), model-level fusion (using correlations between

models), rule-based fusion (assigning normalized weights), classification-based fu-

sion (employing algorithms like SVMs and neural networks), and estimation-based

fusion (useful for real-time audio and visual data, with filters like Kalman and par-

ticle filters). These fusion methods aim to effectively combine the data gathered

from multiple modalities, enabling better emotional classification and recognition

(Poria et al. 2017).
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In summary, emotion recognition research has evolved from foundational psycho-

logical theories like Plutchik’s wheel and the VAD model to sophisticated mul-

timodal systems that analyze facial, vocal, and textual cues. FER models such

as EmotiEffNet and MaxViT demonstrate strong performance in valence-arousal

prediction, balancing accuracy with computational efficiency. Hume.ai’s approach

offers a culturally diverse and highly detailed understanding of emotional expres-

sion. Similarly, SER leverages CNNs, LSTMs, and transformers to model emo-

tional variations in audio, with recent advances achieving state-of-the-art results

using large, diverse datasets. Together, these developments underscore the im-

portance of multimodal, culturally-aware, and continuously annotated datasets for

advancing emotion recognition technologies.

2.5 Reinforcement Learning Approaches for Per-

sonalized Applications

Reinforcement Learning (RL) is a powerful method for building personalized sys-

tems. It helps systems to learn and improve based on user interactions over time.

Many RL techniques have been used in different fields like entertainment, health-

care, education, and e-commerce. This section explains some popular RL ap-

proaches that are used for personalization.

Contextual Bandits

This method is used by Netflix to show different artwork (thumbnails) for movies

and series to different users. It learns from the user’s past behaviour and decides

which artwork will attract the user more. It balances between trying new options

(exploration) and using known successful options (exploitation) Blog (2018).

Proximal Policy Optimization (PPO)

In healthcare, PPO has been used to suggest personalized cancer treatments. It

works by ranking different drugs based on the data from each patient. This helps

doctors to choose better treatments that match each patient’s unique condition Liu

et al. (2022).
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Deep Q-Learning (DQN)

DQN has been applied to recommend projects to users based on their interests.

It improves the accuracy of recommendations and helps users to trust the system

more Wang et al. (2019).

Q-Learning

This is a simple and popular RL method. It can be used for many general recom-

mendation tasks and is good at adapting to changes in user preferences Edirisinghe

(2020).

A study done by Moise et al. Moise et al. (2020) reviewed 166 research papers and

found that Q-learning is the most commonly used RL method (used in 60 studies).

It has been used in many areas like healthcare, entertainment, education, and

commerce. According to the study, commerce and entertainment domains often

use realistic experiments, while healthcare and communication have limitations due

to safety and data issues.

Approach Application Domain Key Features

Contextual Ban-
dits

Artwork Person-
alization

Entertainment Balances exploration/-
exploitation, scalable

Proximal Policy
Optimization
(PPO)

Treatment Rec-
ommendation

Healthcare Ranks drugs using
DRL, handles high-
dimensional data

Deep Q-
Learning (DQN)

Project Recom-
mendations

Recommendation Learns user preferences,
boosts trust

Q-Learning General Recom-
mendations

Recommendation Adapts to changing
preferences, versatile

Table 2.5: Summary of Reinforcement Learning Approaches for Personalized Ap-
plications
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3

Motivation and Research Questions

3.1 Motivation

While progress in affective computing has enabled machines to recognize emotions

in the moment, a critical challenge remains: capturing the dynamic, personalized

nature of emotional experiences. This leads to frustration and dissatisfaction, as

these systems provide generic, one-size-fits-all responses that fail to account for

user’s emotional context (Kim et al. 2024).

When emotions are triggered, they emerge from a foundational ”Baseline” or

mood, representing our stable emotional state. Emotional changes can be under-

stood as shifts or escalations from this baseline (Davidson 1998). By disregarding

the baseline, these systems lack an essential element of emotional understanding,

leading to responses that may feel disconnected or inadequate. For instance, in

urgent situations, long responses can increase frustration, while in joyful moments,

generic responses can reduce engagement.

3.2 Research Gap

Most current systems overlook the significance of longitudinal analysis and fail to

capture individual baseline behavior. Neglecting these unique emotional baselines

can compromise accuracy of emotion identification, as readings may not align with

an individual’s natural emotional biases. This research aims to bridge this gap by
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developing a framework that collects long-term multimodal data to understand each

person’s emotional baseline, enabling adaptive shifts in these baselines over time.

By considering individuals’ baseline behavior alongside a multimodal approach

combining facial expressions and interaction patterns, the proposed system strives

to achieve precise, personalized, and context-aware emotion recognition.

3.3 Significance of the Research

This research addresses a critical gap: the lack of emotional awareness and per-

sonalized responses in current AI systems. By developing systems that accurately

recognize users’ emotional states through multimodal data in a more personalized

way using fine-tuned weights according to user emotions.

Also, it captures the baseline of users’ emotion in context, and system continuously

monitors for deviations, identifying subtle emotional shifts that represent changes

from user’s typical emotional state. Through an iterative process, the system will

adjust the baseline of the user from time to time.

This personalized emotional insight is crucial in domains where ongoing and ac-

curate understanding of user emotions is essential, such as mental health support,

customer service, and adaptive learning. By focusing on both baseline and changes

in emotional states, our approach paves the way for interactions that are genuinely

responsive, supportive, and adaptive to users’ evolving emotional needs.

3.4 Research Aim, Questions and Objective

3.4.1 Research Aim

To develop and evaluate a personalized emotion recognition framework that uses

facial expressions and audio data to identify an individual’s emotional baseline,

with the goal of enhancing the emotional intelligence of LLM responses.
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3.4.2 Research Questions and Objectives

Objective 1 - Develop a multi-modal emotional recognition framework

with Personalized Arousal-Valence Identification

� RQ 1.1: What are suitable pre-implemented models that can be used to get

a higher accuracy for emotion recognition?

� RQ 1.2: How the recognized emotion values from different modalities fused

together in order to get more personalized arousal-valence value?

� Approach: Conduct a comprehensive literature review to identify suitable

pre-trained ML models along with the suitable datasets for each modality.

Participants will engage in emotion-eliciting tasks to gather real-time data,

enabling fine-tuning of the fusion technique. User feedback will guide adjust-

ments, refining the model to accurately capture personalized arousal-valence

values, thereby enhancing the system’s adaptability to individual emotional

responses.

Objective 2 - Identify Initial Baseline and Implement Dynamic Person-

alized Baseline Identification Using Reinforcement Learning Iterations

� RQ 2.1: What techniques are most suitable for establishing an initial emo-

tional baseline and how can this baseline be dynamically adjusted over time to

reflect changes in the user’s emotional responses and self-reported feedback?

� Approach: Begin by evaluating various techniques to determine the best

fit for identifying an initial emotional baseline using data from emotional-

eliciting tasks. Implement an iterative adjustment process where participant

feedback and ongoing data inputs help refine the baseline over time. This

approach enables the model to dynamically adapt to individual users.

Objective 3 - Integrate the personalized emotional state information

with user queries and measure the impact on the quality of responses

generated by a LLM, compared to a control condition without emotional

state input
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� RQ 3.1: How does integrating personalized emotional state information with

user queries affect the relevance and user satisfaction of responses from LLMs?

� Approach: Participants will interact with a LLM by providing queries and

receiving two responses: one from passing the raw query to the LLM (con-

trol condition), and another one combining the personalized emotional state

information along with the user query (experimental condition).

3.5 Research Methodology

3.5.1 Research Approach

The planned approach for this research is a combined approach using Action re-

search and mixed methods.

Action research is suitable for this research because we plan to use iterative cycles

of action, observations, and the participatory nature of the research. Participants

feedback and information will continuously refine the emotion baseline recognition

system, ensuring the research addresses practical challenges and generates action-

able knowledge.(figure 3.1)

The mixed-methods approach integrates quantitative data with qualitative insights,

providing a comprehensive evaluation of the framework’s effectiveness. Quantita-

tive data will be used to train and validate the machine learning model, while

qualitative feedback will offer deeper insights into the participants’ experiences

and the system’s practical applicability.

3.6 Scope

3.6.1 In Scope

1. Use existing pre-trained models for multimodal emotion recognition

� Our key contribution lies in effectively combining facial and audio emo-

tion recognition modalities. By fusing data from facial and audio inputs,

we can cross-validate and enhance overall emotion detection accuracy.
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Figure 3.1: Action Plan

2. Develop personalized, adaptive emotional baselines model

� Many emotion recognition systems use universal, static baselines, lead-

ing to inaccuracies as individual behaviors change over time. Our in-

novative approach is to establish and continuously update personalized

baselines for each user.

3. Develop an application that captures data to recognize the user’s emotional

state and facilitates interaction with large language models.

� This application will use prompt engineering to combine the user’s emo-

tional state with their query, enhancing the relevance and personaliza-

tion of the responses from the LLM.

3.6.2 Delimitations

1. Develop new facial and audio emotion modals from scratch

� Given the abundance of highly accurate, well-established models in each

domain, reimplementing these is unnecessary. Our focus is on mul-

timodal integration and personalization, not on improving individual

modalities.

2. Modify core AI models (GPT architecture)

� Our scope is to enhance LLM responses by providing emotional context,
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not to alter the fundamental architecture of LLMs.

3. Making a dataset suited to the cultural context of Sri Lankans.
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4

Design and Implementation

4.1 Methodology Overview

The research methodology is designed to address the research objectives mentioned

in Section 3.4.2. This chapter first presents a general idea of the research process

and then provides a detailed explanation of each stage, including how it was im-

plemented and the experiments conducted at each step.

Figure 4.1: Main stages of the research methodology

The whole research is divided into five main stages. The overall design of these

stages is illustrated in Figure 4.1. Each stage is designed in a way that supports the
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next stage and contributes to the final objective of the research. A short overview

of each stage is given below, and a more detailed explanation is provided in the

following sections of this chapter.

1. Selecting emotion recognition model: In this stage, the main focus is

to identify effective models that can recognize human emotions using both

facial expressions and speech signals. Several existing models were reviewed

and tested to choose the most suitable ones to address Research Question

1.1.

2. Personalized emotion identification: After selecting the models, the next

step is to combine both facial and speech data for better emotion recogni-

tion. Also, the system is adjusted to consider individual differences by using

dynamic weighting machanism by addressing Research Question 1.2, making

it more personalized.

3. Establish initial Baseline: This stage involves setting up the Emotional

Baseline which can be used to identify the emotional mood of the user to

address Research Question 2.1. The baseline is established using data col-

lected from participants during emotion-eliciting tasks. The aim is to create

a reference point for each participant that can be used to measure deviations

in their emotional state.

4. Evaluation of Empathyic Response Generation: In this stage, par-

ticipants interact with a LLM by submitting their queries. Two types of

responses are collected: one using the original query, and another combining

the query with the user’s current emotional state using prompt engineering.

The goal of this stage is to observe how emotional context can influence the

quality and personalization of responses given by the LLM. This stage is

designed to address Research Question 3.1.

5. Refining the Emotional Baseline using Reinforcement Learning: Fi-

nally, the initial baseline is improved using reinforcement learning techniques

by addressing Research Question 2.1. This allows the system to learn and

improve over time based on feedback and performance.
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Each of these stages will be discussed in detail in the following sections. Experi-

ments, implementation methods, tools, and results related to each stage will also

be described.

4.2 Phase 1 – Selecting Suitable Emotion Recog-

nition Models

After conducting a literature review as discussed in Sections 2.2 and 2.3, the next

task involved identifying and setting up suitable pre-trained models for emotion

recognition. The experimental flow is illustrated in Figure 4.2.

Figure 4.2: Experimental flow of Phase 1

We initially explored the EmoNet model (Toisoul et al. 2021), available at https:

//github.com/face-analysis/emonet, which is well-regarded for arousal-valence

detection. However, it presented several technical challenges due to its outdated

dependencies, as it was developed in 2021. Although We was able to configure the

environment, the model took over four seconds to process a single frame on a CPU,

making it unsuitable for real-time applications.

To overcome these issues, We explored alternative options and identified the CAGE
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expression inference model (Wagner et al. 2024), which is optimized for real-time

arousal-valence detection.

Additionally, We found Hume AI’s expression recognition API to be valuable

for practical applications. Hume provides real-time facial expression predictions

through WebSocket-based streaming, allowing continuous data flow without over-

loading local resources. It supports a variety of media formats and offers both

REST and WebSocket endpoints for batch and live processing, respectively. This

makes it a strong candidate for integration with interactive applications.

Based on model performance, practicality, and ease of integration, We selected the

CAGE model and the Hume facial expression model for experimental evaluation.

For discrete emotion classification in speech, several datasets are widely available,

including RAVDESS (Livingstone & Russo 2018), Emo-DB, and MSP-IMPROV.

However, for continuous speech emotion assessment with arousal-valence labeling

in English, only a few datasets meet the criteria, such as OMG Emotion, IEMO-

CAP (Busso et al. 2008), and MSP-Podcast (Lotfian & Busso 2017). These datasets

provide audio clips labeled with arousal and valence scores, enabling a more gran-

ular emotional analysis.

Among the available pre-trained models, we identified the wav2vec2 model (Wagner

et al. 2023) on Hugging Face, which outputs arousal-valence values from speech

signals and showed strong compatibility with the project requirements.

Additionally, Hume.ai’s speech emotion recognition system, trained on the large-

scale HUME-VB dataset, provides high-performance real-time prediction capabil-

ities. The HUME-VB dataset contains over 280,000 vocalizations from 4,000+

participants across five culturally diverse countries, including the USA, China, In-

dia, Venezuela, and South Africa, making it a valuable addition for multilingual

and cross-cultural emotion recognition scenarios.

For the experiment, we selected both the wav2vec2 model and the Hume vo-

cal expression model to assess and compare their performance in recognizing

emotional states from speech input.
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4.2.1 Facial Expression Experiment Setup

To evaluate the accuracy of the selected facial models (Hume and CAGE), we

conducted an experiment using acted facial expressions. Participants were asked

to express five emotions, Happy, Angry, Sad, Boredom, and Calm across

three intensity levels: Low, Medium, and High. Each emotion was performed

intentionally, and recordings were captured under similar lighting conditions using

the webcam. An experiment snapshot is shown in Figure 4.3.

Figure 4.3: Experiment snapshot for facial expression recognition

4.2.2 Vocal Emotion Experiment Setup

For vocal emotion recognition, participants were asked to read emotion-evoking

phrases that are commonly used in scientific emotion corpora such as RAVDESS
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and IEMOCAP. A total of 15 phrases were used, covering all five target emotions.

These phrases were selected to be emotionally neutral in content so that the emotion

would be expressed purely through vocal tone and prosody.

Emotion phrases used in the experiment:

� Happy:

– ”I’m glad you’re here.”

– ”That was a fantastic surprise.”

– ”You made my day!”

� Angry:

– ”This is completely unacceptable.”

– ”I’ve told you this before!”

– ”Why didn’t you listen to me?”

� Sad:

– ”I miss you so much.”

– ”Everything feels so heavy today.”

– ”I just want to be alone.”

� Boredom:

– ”There’s nothing to do.”

– ”Same thing every day.”

– ”I don’t care anymore.”

� Calm:

– ”Everything is going to be okay.”

– ”Let’s take a deep breath.”

– ”I’m feeling at peace.”
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4.3 Phase 2 – Multimodal fusion with personal-

ized emotion recognition

This phase focuses on combining the selected models from Phase 1 to create a

multimodal emotion recognition system. The goal is to enhance the accuracy and

personalization of emotional state detection by integrating both facial and vocal

data. The experimental flow for this phase is illustrated in Figure 4.4.

Figure 4.4: Experimental flow of Phase 2

4.3.1 Emotion Eliciting Tasks

In this phase, a set of emotion-eliciting tasks were designed to capture both facial

and vocal expressions for five target emotions: Happy, Angry, Sad, Boredom,

and Calm. These emotions were specifically chosen because they cover diverse

directions in the Arousal-Valence (A-V) space, which helps in achieving better

separation between emotional states. This separation allows the system to identify

a clearer origin point for emotional detection, as illustrated in Figure 4.5.

During the tasks, participants were asked to perform actions or respond to situa-
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Figure 4.5: Arousal-Valence space with diverse emotion regions

tions that naturally induce each of the five emotions. While they were doing the

tasks, both facial expressions and vocal responses were recorded. The emotional

points collected in this phase are later used in the next step to identify the user’s

emotional baseline.

As discussed in Section 2.1, emotions are highly personalized, and different people

express them in unique ways. Therefore, to make the system more personalized,

we combined the model outputs with user feedback. After each task, participants

were asked to report how they actually felt and to rate the intensity of the emotion

they experienced as shown in figure 4.10. This provided quantitative data directly

from the user, which was used to adjust the emotion recognition output.

In addition, after collecting vocal expressions during each task, participants were

briefly asked to describe how the experience felt in their own words. These voice

recordings were used as extra vocal samples corresponding to that emotion.

At the end of the entire experiment, we also collected qualitative feedback from

participants. While this feedback was not used to measure emotional levels, it

gave valuable insights into how the system and tasks could be improved in future

iterations of the research.
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4.3.1.1 Experiments for Eliciting Happy Emotion

To induce the emotion of happiness across different intensity levels, three separate

tasks were designed. Each task corresponds to one of the three intensity levels: low,

medium, and high. The tasks were chosen based on findings from psychological and

affective computing literature that demonstrate the effectiveness of various stimuli

for emotion elicitation.

Low-Intensity Happiness – Watching a Funny Video

The first task involved participants watching a short prank video clip titled “Cir-

cus Elephant Prank,” sourced from YouTube (https://youtu.be/ZwJfXgTO7J4)

(Just For Laughs Gags 2011). This video features a light-hearted, humorous in-

teraction involving a hidden elephant costume, designed to surprise and entertain

pedestrians.

Studies show that visual stimuli, especially comedic videos, are highly effective for

inducing happiness, as they generate strong self-reported emotions and physiologi-

cal responses such as smiling and increased heart rate (Siedlecka & Denson 2019).

Light-hearted content like animal pranks is typically perceived as safe and amusing,

making it ideal for gently elevating mood without causing overstimulation.

The emotional intensity expected from such clips is generally low. Research indi-

cates that cute or humorous videos involving animals or children tend to trigger

emotions of low motivational intensity, which means the emotional state is pleasant

but not highly arousing or action-driven (Wang & Chen 2022).

Medium-Intensity Happiness – Autobiographical Recall

For medium-intensity happiness, participants were asked to recall and verbally

describe a recent event that made them feel happy. This task relies on autobio-

graphical recall, a well-established emotion elicitation technique in psychological

research.

Recollecting personal happy memories has been shown to increase both self-reported

happiness and physiological responses such as heart rate (Siedlecka & Denson 2019).

Moreover, autobiographical recall engages brain regions linked to reward process-
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ing, reinforcing the positive emotional experience (Speer & Delgado 2017). This

method is particularly meaningful because it draws from the participant’s own

experiences, often resulting in a more personalized and emotionally moderate re-

sponse compared to passive methods like video watching.

High-Intensity Happiness – Playing a Game (Minesweeper)

The third task was designed to evoke high-intensity happiness through a con-

trolled gaming experience. Participants played a version of the classic puzzle game

Minesweeper, which was modified to have a high probability of success—though

this was not disclosed to the participant. Upon winning, the system delivered

verbal praise and congratulations to enhance the reward experience.

Games, especially those that involve cognitive effort and strategic thinking, have

been shown to elicit strong feelings of accomplishment and positive emotion (Jones

et al. 2014). Puzzle-based games like Minesweeper can be particularly rewarding

when players succeed after investing effort, making them suitable for eliciting high-

arousal positive emotions such as excitement and joy. By ensuring a high chance of

winning, the task aimed to maximize the user’s feeling of success, thereby producing

a more intense emotional response.

The screenshots related to happiness eliciting tasks are shown in Figure 4.6. The

first image shows the video clip, the second image shows the participant describing

their happy memory, and the third image shows the Minesweeper game interface.

The tasks were designed to be engaging and varied, ensuring that participants

could experience happiness at different intensity levels.

Figure 4.6: Eliciting tasks for Happy Emotion
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4.3.1.2 Experiments for Eliciting Anger Emotion

To study the emotion of anger across various intensity levels, three custom-designed

gameplay tasks were developed. All tasks introduce frustration through interrup-

tions, distractions, or interface issues—elements proven to induce negative emo-

tional responses like anger in controlled experiments.

Low-Intensity Anger – Chrome Dino Game with Noise Distraction

The first task involves participants playing the well-known Chrome Dino game.

However, to introduce a frustrating element, the game is played while the partici-

pant listens to honking vehicle sounds and other urban noise distractions via au-

dio playback (https://www.youtube.com/watch?v=d0k1JFAAMCo) (soundsforyou

2021).

Research has shown that auditory noise, particularly when irrelevant to the task,

can significantly interfere with attentional control and lead to feelings of frustration

and mild anger (Choi et al. 2013). Even non-hazardous noise levels can trigger emo-

tional stress, especially during cognitive tasks. In gaming scenarios, background

noise is found to negatively affect concentration and cognitive performance, making

it a useful tool to induce low levels of anger or irritation.

Medium-Intensity Anger – Number Game with Pop-Up Interruptions

The second task involves a number selection game where participants must click

numbers in ascending order under a time constraint. As the game progresses and

the participant nears completion, random pop-up ads begin appearing more fre-

quently. In the last 10 seconds, a countdown starts flashing and loud beep sounds

are introduced to further stress the player. Ultimately, due to these disruptions,

the game becomes unwinnable.

Scientific literature supports the idea that unexpected interruptions such as pop-

up ads can be strong triggers for anger and frustration. Such ads are perceived as

highly intrusive and break the player’s sense of immersion and control (Hanbazazh

& Reeve 2021). The psychological theory of reactance further suggests that when

individuals feel their freedom to act is restricted (e.g., by pop-ups interfering with
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gameplay), they experience negative emotions such as frustration and anger. These

effects are even more pronounced when the interruptions occur during critical mo-

ments, which is intentionally designed in this task.

High-Intensity Anger – Flappy Bird Variant with Broken Controls

The third task is based on the classic Flappy Bird game. However, participants

are given no instructions on how to play. Furthermore, the game mechanics behave

unpredictably: pressing the spacebar does not always trigger a jump, and some-

times causes the window to scroll instead. As in the first task, distracting honking

sounds play in the background to further irritate the participant.

This task is designed to provoke a high level of anger by breaking the user’s mental

model of how the game should behave. When participants feel they are failing

not due to their own skill but because of poor or broken game mechanics, frus-

tration increases dramatically. Studies have shown that unclear game objectives

and malfunctioning controls significantly reduce players’ sense of competence and

autonomy, which are essential psychological needs (Bevilacqua et al. 2019). When

those needs are blocked, it can lead to intense anger and even aggressive reactions,

including what’s commonly known as “rage quitting.”

Screenshots related to the anger eliciting tasks are shown in Figure 4.7. The fourth

image shows the Chrome Dino game with noise distractions, the fifth image shows

the number game with pop-up interruptions, and the last image shows the Flappy

Bird variant with broken controls. These tasks were designed to be engaging and

varied, ensuring that participants could experience anger at different intensity lev-

els.

4.3.1.3 Experiments for Eliciting Sad Emotion

To capture sad emotional responses at different intensities, three distinct tasks were

designed. These tasks use music and emotionally powerful videos, which are known

to effectively evoke sadness through auditory and visual pathways.
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Figure 4.7: Eliciting tasks for Anger Emotion

Low-Intensity Sadness – Listening to “Little Motel” by Modest Mouse

The first task involves participants listening to the song “Little Motel” by Modest

Mouse https://youtu.be/zqQTODR3kR8?si=yqNkeWlbUYPNUEXb (Mouse 2007), ac-

companied by a short explanation highlighting the lyrical themes of heartbreak, re-

gret, and emotional distance. Sad music has been shown to be an effective tool for

inducing low-level sadness, although the emotional response may include feelings

of nostalgia, aesthetic pleasure, or being emotionally moved (Ribeiro et al. 2019).

“Little Motel” is commonly described by listeners as emotionally evocative and

melancholic, largely due to its subdued instrumentation and reflective lyrics. Anec-

dotal listener feedback, such as that found in public forums Reddit users (n.d.),

reinforces this emotional interpretation. Providing context before playing the song

helps guide participants’ emotional attention, making the sadness more focused

and easier to observe.

Medium-Intensity Sadness – Viewing a Clip of a Young Person in Dis-

tress

For medium-intensity sadness, participants were shown a video clip of a young per-

son crying while overwhelmed by everyday struggles. Research supports the use

of video stimuli for eliciting sadness, particularly when they depict realistic, relat-

able struggles and human vulnerability. Visual and auditory cues together create

a more immersive emotional experience compared to music or images alone (Noja-

vanasghari et al. 2016).

Scenes involving children or youth in distress can be especially powerful due to
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their perceived innocence and relatability, increasing empathy from the viewer. As

a result, this type of content tends to generate a moderate level of sadness while

remaining emotionally grounded.

High-Intensity Sadness – ”The Champ” (1979) Death Scene

The third task used a well-known emotionally intense video: the final scene from

the 1979 film ”The Champ”, in which a young boy reacts to the death of his father

(https://youtu.be/b5qwTeCj4jc?si=2HJe3G0KL6U6azXY) (Lootens 2013). This

particular clip is considered a gold standard in emotion research for eliciting high-

intensity sadness. It has been cited in numerous studies, including foundational

work by Gross and Levenson (1995), and appears in validated databases like E-

MOVIE (Kuijsters et al. 2016, Maffei & Angrilli 2019).

The scene evokes intense grief and helplessness, making it a powerful tool for elic-

iting high levels of sadness. Its use in many research studies confirms its reliability

and emotional impact across different participant groups.

Figure 4.8 shows the screenshots related to the sadness eliciting tasks.

Figure 4.8: Eliciting tasks for Sad Emotion

4.3.1.4 Experiments for Eliciting Boredom Emotion

To explore boredom at different intensity levels, three carefully designed tasks were

conducted. These tasks are grounded in psychological literature that identifies

monotony, repetition, and lack of engagement as key contributors to boredom.
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Low-Intensity Boredom – Repetitive Button Clicking Task

In the first task, participants were instructed to click a button at exact intervals

over a duration of two minutes. This task is intentionally repetitive and minimally

demanding, with no variation or challenge to stimulate cognitive engagement.

Boredom frequently arises from repetitive, purposeless actions that fail to engage

mental resources (Bench & Lench 2013). This low-intensity task aligns with such

conditions, offering minimal novelty and no meaningful outcome, which is expected

to produce a mild but noticeable feeling of boredom due to understimulation.

Medium-Intensity Boredom – Watching a Dripping Water Video

The second task involves watching a video of water dripping from a tap for two

minutes (https://youtu.be/lVrYV0odeFY) (Filmmaker 2013). The visual stimu-

lus is static and unchanging, offering no narrative or engaging content, which has

been shown to reliably induce medium levels of boredom in controlled settings.

The use of unchanging visual stimuli is a validated method for boredom induc-

tion (Markey et al. 2014). The slow, repetitive nature of the dripping water presents

a low-information environment that sustains passive attention without mental en-

gagement. Compared to the motor activity of button clicking, this passive viewing

requires continuous focus but offers no new stimulation, making it suitable for

inducing a moderate level of boredom (Bench & Lench 2013).

High-Intensity Boredom – Watching a Yawning Video

For high-intensity boredom, participants watched a two-minute video of someone

yawning repeatedly (https://youtu.be/M3QYDtSbhrA) BuzzFeedVideo (2018). Yawn-

ing is closely associated with boredom, low arousal, and disengagement. Watching

someone yawn repeatedly is likely to trigger similar responses in viewers, including

physiological reactions like contagious yawning and a reduction in alertness.

Research has linked the act of yawning with increased feelings of boredom, drowsi-

ness, and mind-wandering (Norscia et al. 2020). The lack of narrative or engaging

visual stimuli in the video is expected to amplify this effect. Additionally, conta-

gious yawning may create a feedback loop of low arousal, further reinforcing the
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emotional state of boredom and making this task suitable for inducing high levels

of boredom in participants.

Screenshots of the videos used in the experiments are shown in Figure 4.9.

Figure 4.9: Eliciting tasks for Boredem emotion

4.3.1.5 Experiments for Eliciting Calm Emotion

To elicit the emotional state of calmness across three intensities, participants were

exposed to video and audio stimuli known to promote relaxation. These tasks

include a combination of soothing visual elements, relaxing music, and breathing

techniques that are widely used in stress reduction and mindfulness practices.

Low-Intensity Calmness – Rain and Relaxing Music Video

The first task aimed at inducing a low level of calmness involved watching a

video featuring soft rain visuals accompanied by relaxing ambient music (https:

//youtu.be/PjUZbgZfMOo) (Professor 2024). This combination is often used in

meditative settings and is known for its ability to promote mild tranquility.

Research indicates that auditory stimuli such as slow-tempo, gentle music, when

paired with natural sounds like rainfall, can work synergistically to reduce phys-

iological arousal and promote emotional relaxation. These types of stimuli are

frequently used in guided meditations and background soundtracks for relaxation,

reflecting their general effectiveness in inducing calmness at a subtle level.

Medium-Intensity Calmness – Music with Guided Breathing Exercise

The second task combines relaxing music with a breathing exercise guided through

video (https://youtu.be/uxayUBd6T7M) (Calm 2020). This task requires the
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participant to actively engage in slow, deep breathing synchronized with musical

rhythm, which helps regulate physiological responses and reduce stress.

Scientific evidence supports the role of deep breathing in stimulating the parasym-

pathetic nervous system and lowering stress levels. When breathing is consciously

controlled and paired with soothing music, it can lead to a more focused and deeper

relaxation experience than passive listening alone. This form of active engagement

is shown to promote a stronger state of calmness by influencing heart rate variabil-

ity and promoting emotional self-regulation.

High-Intensity Calmness – Listening to “Weightless” by Marconi Union

For high-intensity calmness, participants listened to the song “Weightless” by Mar-

coni Union while watching its official visual accompaniment (https://youtu.be/

UfcAVejslrU) (JustMusicTV 2015). This song has been labeled as “the world’s

most relaxing song” and has been scientifically validated for its profound impact

on stress and anxiety levels.

Studies have reported that listening to “Weightless” can reduce anxiety by up

to 65% and lower physiological resting states by up to 35% (Cooper 2011). The

song was developed in collaboration with sound therapists, featuring a gradually

slowing tempo from 60 to 50 beats per minute, low-frequency tones, and ambient

instrumentation including piano, guitar, chimes, and subtle vocals.

Comparative studies suggest that listening to this track can be more relaxing than

receiving a massage, and in some cases, it has shown effects comparable to anx-

iety medications (Today 2020). These scientifically designed elements make it a

powerful tool for eliciting deep calmness and emotional stillness.

Screenshots from the three tasks are shown in Figure 4.10. The first task features a

serene rain scene, the second task includes a guided breathing exercise with calming

music, and the third task showcases the ambient visuals accompanying “Weight-

less.” Figure 4.11 presents some of the participants engaged in the experimental

tasks.

Summary of all the emotion eliciting experiments is shown in Table 4.1, which is

reproduced below for convenience.
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Figure 4.10: Screenshots from the three tasks used to elicit calmness and the
evaluation page

Figure 4.11: Snapshots of participants engaged in the emotion elicitation tasks.
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Table 4.1: Summary of Emotion Eliciting Experiments

Emotion Intensity Stimulus Description

Happiness
Low Funny prank video

(https://youtu.be/
ZwJfXgTO7J4)

Comedy video to induce mild
amusement and smiling
through light-hearted content

Medium Autobiographical
recall

Participants describe recent
happy personal memory to
invoke moderate happiness

High Minesweeper game
(high chance of
winning)

Designed to trigger joy
through accomplishment and
reward feedback

Anger
Low Chrome Dino game +

city noise
(https://youtu.be/
d0k1JFAAMCo)

Simple game with distracting
honking sounds to create mild
frustration

Medium Number-clicking
game + pop-ups +
countdown

Ads and timers disrupt
gameplay, increasing
frustration and loss of control

High Flappy Bird variant
with broken controls

Unclear mechanics + noise
designed to frustrate and
break user expectation

Sadness
Low ”Little Motel” song

(https://youtu.be/
zqQTODR3kR8)

Sad music with contextual
explanation to invoke
reflective sadness

Medium Clip of young person
in distress

Emotionally relatable video
showing personal struggles
and crying

High ”The Champ” (1979)
death scene
(https://youtu.be/
b5qwTeCj4jc)

Highly validated emotional
clip used to induce intense
grief

Boredom
Low Button clicking task Repetitive motor task with no

variation or challenge
Medium Dripping water video

(https://youtu.be/
lVrYV0odeFY)

Monotonous, slow-paced video
with low informational
content

High Yawning video
(https://youtu.be/
M3QYDtSbhrA)

Triggers low arousal and
disengagement, possibly
contagious yawning

Calmness
Low Rain + relaxing music

(https://youtu.be/
PjUZbgZfMOo)

Gentle visuals and soft
ambient music for mild
relaxation

Medium Relaxing music +
breathing
(https://youtu.be/
uxayUBd6T7M)

Guided breathing exercise
synchronized with music to
enhance calm

High ”Weightless”(https:
//youtu.be/

UfcAVejslrU)

Scientifically validated song
with strong calming effect
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4.3.2 Emotion Mapping to A-V Plan

After collecting the emotional data, we need to represent these emotions in the

arousal-valence (A-V) space. To do this, we convert the categorical emotion labels

(like happy, sad, angry) into numerical coordinates on the A-V plane.

Arousal and valence are two important dimensions in emotion research. Valence

shows how pleasant or unpleasant a feeling is, while arousal shows how calm or

excited the feeling is. The Circumplex Model of Affect, proposed by Russell

(1980), is widely used to represent this concept. It places emotions in a circular 2D

space, where each emotion is mapped according to its valence and arousal values.

For example, happiness is usually high in both valence and arousal, while sadness

is low in both.

However, the original model does not give exact numbers for each emotion. So, for

this research, we use the numerical coordinates for emotions proposed by Paltoglou

& Thelwall (2012). Their work gives us empirically validated A-V values for a set of

common emotions. These values are especially suitable for computational models

and were derived from large-scale emotion analysis in text data, which makes them

practical and tested.

We selected these values for a few key reasons:

� Empirical Validation: The values are based on real data and experiments,

not just theory.

� Computational Use: The values are already tested in affective computing

systems.

� Standardization: Using known values makes our system easier to compare

with other studies.

� Dimensional Mapping: They fit well with our aim to measure emotions

on a scale, not just labels.

Figure 4.12 shows the general circular A-V model proposed by Russell, and Fig-

ure 4.13 presents the exact coordinates used in this study, based on the work of

Paltoglou and Thelwall.
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Figure 4.12: Circumplex Model of Affect Russell (1980). This circular model shows
how emotions are distributed in a two-dimensional space using arousal and valence.

Figure 4.13: Emotion coordinates adapted from Paltoglou & Thelwall (2012).
These values are used in this study to map categorical emotions to A-V values.

� Happy: Valence = 0.89, Arousal = 0.17

� Angry: Valence = -0.40, Arousal = 0.79

� Sad: Valence = -0.81, Arousal = -0.40

� Boredom: Valence = -0.35, Arousal = -0.78

� Calm: Valence = 0.78, Arousal = -0.68

To show different emotional intensities, we applied a linear scaling method.

Here, each emotion starts at the neutral point (0, 0), and intensity levels from 1
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to 10 move the emotion point closer to its full coordinate. This follows the idea

that emotional intensity changes smoothly in a straight line from neutral to peak

intensity, which is also supported in literature Posner et al. (2005).

To calculate the valence and arousal coordinates at any intensity level i, where

i ∈ {1, 2, ..., 10}, the following formula is used:

Valencei =
Valencemax × i

10
, Arousali =

Arousalmax × i

10
(4.1)

Where:

� Valencemax is the valence value at maximum intensity (level 10)

� Arousalmax is the arousal value at maximum intensity (level 10)

� i is the current intensity level

This formula creates a straight path from the neutral point (0, 0) to the maximum

intensity point for each emotion. For example:

� At intensity level 1, the coordinates are 10% of the maximum

� At level 5, they are 50%

� At level 10, the full intensity is reached

Table 4.2 presents the standardized valence and arousal coordinates for five testing

emotions across different intensity levels scale from 1 to 10.

Table 4.2: Emotion Intensity Coordinates Based on Paltoglou & Thelwall (2012)

Int. Happy Angry Sad Boredom Calm
Val Aro Val Aro Val Aro Val Aro Val Aro

1 0.089 0.017 -0.040 0.079 -0.081 -0.040 -0.035 -0.078 0.078 -0.068
2 0.178 0.034 -0.080 0.158 -0.162 -0.080 -0.070 -0.156 0.156 -0.136
3 0.267 0.051 -0.120 0.237 -0.243 -0.120 -0.105 -0.234 0.234 -0.204
4 0.356 0.068 -0.160 0.316 -0.324 -0.160 -0.140 -0.312 0.312 -0.272
5 0.445 0.085 -0.200 0.395 -0.405 -0.200 -0.175 -0.390 0.390 -0.340
6 0.534 0.102 -0.240 0.474 -0.486 -0.240 -0.210 -0.468 0.468 -0.408
7 0.623 0.119 -0.280 0.553 -0.567 -0.280 -0.245 -0.546 0.546 -0.476
8 0.712 0.136 -0.320 0.632 -0.648 -0.320 -0.280 -0.624 0.624 -0.544
9 0.801 0.153 -0.360 0.711 -0.729 -0.360 -0.315 -0.702 0.702 -0.612
10 0.890 0.170 -0.400 0.790 -0.810 -0.400 -0.350 -0.780 0.780 -0.680
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4.3.3 Personalized Multimodal Fusion

In the multimodal fusion stage, we selected decision-level fusion over feature-level

and hybrid fusion. This choice allows each modality to output its results indepen-

dently, which we can then combine without altering the internal architecture of

pre-trained models. Decision-level fusion is particularly effective here, as it main-

tains modularity while still leveraging each modality’s unique strengths.

Decision-Level Fusion Techniques: Support Vector Regression (SVR), Adap-

tive Weighted Fusion Using Reinforcement Learning, Hierarchical Fusion Using

Neural Networks, Dynamic Multi-Head Attention Mechanism, Fuzzy Logic Fusion,

Weighted Functions.

Due to limited user-specific data, we selected a non-machine-learning-based ap-

proach, specifically the MSE-Based Fusion Method. Although we initially con-

sidered fuzzy logic rules—which dynamically adjust weights,like prioritizing facial

modality if facial arousal is high and vocal valence is low, we faced challenges in

rule definition due to data scarcity. Instead, our framework employs Mean Squared

Error (MSE) calculations to derive emotion-specific weights for each modality.

A unique Fusion Matrix is generated for each user using data collected during

the emotion elicitation task. This matrix includes weights for five emotion, where

different modalities may be more reliable for different emotional states:

Listing 4.1: Emotion-specific fusion weights per user

fusion_weights = {

"Happy": {"facial": W_facial , "vocal": W_vocal},

"Sad": {"facial": W_facial , "vocal": W_vocal},

"Angry": {"facial": W_facial , "vocal": W_vocal},

"Boredom": {"facial": W_facial , "vocal": W_vocal},

"Calm": {"facial": W_facial , "vocal": W_vocal}

}

The fusion strategy is grounded in statistical theory: lower error indicates higher

reliability. Thus, weights are assigned inversely proportional to the modality’s
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MSE when compared to self-reported values.

Step 1: Error Calculation

MSEfacial(e) =
(Afacial − Aself )

2 + (Vfacial − Vself )
2

2

MSEvocal(e) =
(Avocal − Aself )

2 + (Vvocal − Vself )
2

2

Step 2: Weight Generation

Wfacial(e) =
1/MSEfacial(e)

1/MSEfacial(e) + 1/MSEvocal(e)
, Wvocal(e) =

1/MSEvocal(e)

1/MSEfacial(e) + 1/MSEvocal(e)

Step 3: Multimodal Fusion Output

Afused(e) = Wfacial(e)× Afacial +Wvocal(e)× Avocal

Vfused(e) = Wfacial(e)× Vfacial +Wvocal(e)× Vvocal

This fusion method allows the system to dynamically adapt to each individual’s

emotion expression style, yielding improved recognition accuracy over single-modality

and non-personalized fusion approaches.

The results from the personalized fusion approach and individual modality ap-

proaches were evaluated and compared to understand whether the fusion process

provides a significant improvement in emotion recognition accuracy and reliability.

This comparison helps to justify the effectiveness of using adaptive, user-specific

weighting in our framework.

4.4 Phase 3 - Initial Baseline Identification

In this section, we present the methods and techniques used to identify the initial

emotional baseline for each participant. We explore two primary methods: Kernel

Density Estimation (KDE) and a simpler Histogram-Based method. Both

methods aim to identify the region of highest density in the A-V space, which cor-

responds to the participant’s emotional baseline. The emotional states often follow
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a emotion escalation cycle, beginning from a neutral or baseline state, escalating

to a peak, and then returning back to baseline. This implies that the highest den-

sity region in the emotional data distribution corresponds to the user’s emotional

baseline.

4.4.1 Initial Baseline Identification Using Kernel Density

Estimation (KDE)

After thorough research and experiments, we identified Kernel Density Estima-

tion (KDE) with a Gaussian kernel as a suitable method to identify the baseline

emotional region in the arousal-valence (A-V) space.

Gaussian KDE Equation and Implementation

The 2D Gaussian KDE function is defined as:

f̂h(x, y) =
1

n · h2 · 2π

n∑
i=1

exp

(
−1

2

[
(x− xi)

2 + (y − yi)
2

h2

])
(4.2)

where:

� n is the number of data points,

� (xi, yi) are the arousal-valence coordinates of each data point,

� h is the bandwidth parameter controlling the smoothness of the density esti-

mate.

The KDE was implemented in Python using scipy.stats.gaussian kde as shown

below:

Listing 4.2: Gaussian KDE implementation

from scipy import stats

kernel = stats.gaussian_kde ([arousal , valence ])

f = np.reshape(kernel(positions), xx.shape)

The bandwidth h is automatically selected using Scott’s Rule, a well-known

heuristic for KDE bandwidth estimation. For d = 2 dimensions (arousal and
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valence), it is computed as:

h = n− 1
d+4 = n− 1

6 (4.3)

Baseline Region Identification and Implementation

Once the density function f̂h(x, y) is estimated, we identify the square region with

the highest total density. We define a 0.1× 0.1 square sliding over the KDE grid.

For each position (x0, y0), the integral over the region is computed as:

D(x0, y0) =

∫ x0+0.1

x0

∫ y0+0.1

y0

f̂h(x, y) dy dx (4.4)

The center of the baseline region is identified by finding the square with the maxi-

mum integrated density:

(xb, yb) = argmax
(x0,y0)

D(x0, y0) (4.5)

This integral is approximated numerically using grid sums. The implementation is

shown below:

Listing 4.3: Baseline region identification with KDE

for i in range(len(x_grid) - grid_points_in_square ):

for j in range(len(y_grid) - grid_points_in_square ):

square_density = np.sum(

f[j:j+grid_points_in_square ,

i:i+grid_points_in_square

]

)

if square_density > max_density:

max_density = square_density

center_x = x_grid[i] + square_size / 2

center_y = y_grid[j] + square_size / 2

baseline_center = (center_x , center_y)

47



Parameter Values Used in Analysis

� Grid Size (g): 0.01

A smaller grid provides higher precision but requires more computation time.

� Square Size (s): 0.1

Defines the size of the candidate region for emotional baseline. Assumes

baseline remains stable in a small area of the A-V space.

� Bandwidth (h): Automatically calculated using Scott’s Rule: h ≈ n−1/6

This KDE-based approach provides a robust and data-driven way to estimate a

participant’s emotional baseline, which can then be used as a reference point for

detecting deviations in real-time emotion tracking.

Baseline Representation and Evaluation

For KDE method, the baseline region is represented as the center point of the region

with highest density. Each baseline center was then compared with emotional val-

ues recorded during emotion eliciting tasks, where participants experienced Happy,

Angry, Sad, Boredom, and Calm states.

These emotional states were recorded alongside their intensity and converted into

arousal-valence values using the method discussed in Subsection 4.3.2. This allowed

a direct comparison between the estimated baseline and observed emotional states,

forming the foundation for evaluating the accuracy and reliability of both KDE

and histogram-based methods.

4.5 Phase 4 - Evaluating Responses from LLM

with Emotional State

In this stage of the research, participants interacted with a Large Language Model

(LLM) to evaluate how emotional context can influence the personalization and

quality of generated responses as shown in Figure 4.14. Two types of responses

were collected for each participant query:

� Control Response: Generated using the original raw query.
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� Emotion-Aware Response: Generated by combining the raw query with

the participant’s baseline emotional state using prompt engineering tech-

niques.

Figure 4.14: Experimental flow of Phase 2

Use of LLMs in Emotionally Intelligent Response Generation

To maintain consistency and reliability in emotional response analysis, we selected

GPT-4o for the experimental phase due to its proven capabilities in emotional

understanding and language generation. According to the study by Wang et al.

(2023) Wang et al. (2023), GPT-4 demonstrated:

� Superior Emotional Intelligence: Achieved an EQ score of 117, outper-

forming 89% of human participants.

� Human-Like Emotional Pattern Recognition: Showed a pattern sim-

ilarity of r = 0.28 (aligning with 67% of humans), indicating it processes

emotions in a manner similar to human cognition.

� High Consistency and Scale: The newer GPT-4.1 offers improved consis-

tency, which is essential for valid response comparisons.

These characteristics make GPT-4o-mini an excellent choice for our task, where

nuanced understanding of user emotions is required to personalize the generated
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text. Using a model with benchmarked emotional intelligence also enhances the

research’s credibility and reproducibility.

Comparison with Alternative LLMs

For reference, Table 4.3 summarizes other potential LLMs and their performance

based on EQ benchmarks from the same study:

Model EQ Score Pattern Similarity Recommendation
GPT-4o 117 (89%) 0.28 (67%) Excellent – Selected Model
Claude 106 (61%) 0.11 (28%) Good alternative
GPT-3.5-turbo 103 (52%) 0.04 (17%) Acceptable but limited
Vicuna 105 (59%) -0.02 (10%) Not recommended
Alpaca 104 (56%) 0.03 (15%) Not recommended
ChatGLM 94 (28%) 0.09 (24%) Not recommended
Koala 83 (13%) 0.43 (93%) Only for analysis comparison

Table 4.3: Emotional Intelligence Benchmarking of LLMs (adapted from Wang
et al. (2023))

While models like DeepSeek and EmoLLM were considered due to their open-source

and emotion-specific capabilities, their relatively small parameter sizes and lack of

academic benchmarking in emotional intelligence made them unsuitable for this

study’s goals.

Prompt Engineering with Emotional Context and Chain-of-Thought

In order to personalize the LLM’s response, we incorporated the user’s emotional

state directly into the prompt. This approach not only injects context but also uses

a chain-of-thought (CoT) mechanism to encourage the LLM to reason about

the user’s emotion before generating the answer.

The emotional data structure used for this task is shown below:

Listing 4.4: Example of emotional data sent to LLM

# Define the emotional data

emotional_data = {

"emotion": "happy",

"intensity": 7,

"arousal": 0.67,
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"valence": 0.58

}

The following is how the emotional data is embedded into the prompt using a

multi-step instruction structure to guide the LLM’s reasoning process:

# Define the user’s query

user_query = "What is the capital of France?"

# Create the prompt with emotional data and Chain-of-Thought

prompt = f"""

SYSTEM: You are an AI assistant designed to provide helpful

responses while considering the user’s emotional state.

Before responding, analyze the provided emotional baseline

data to inform your response approach.

EMOTIONAL BASELINE:

- Emotion: {emotional_data.get(’emotion’, ’neutral’)}

- Intensity: {emotional_data.get(’intensity’, 5)}/10

- Arousal: {emotional_data.get(’arousal’, 0)} (scale -1 to 1)

- Valence: {emotional_data.get(’valence’, 0)} (scale -1 to 1)

INSTRUCTIONS:

1. First, analyze the user’s emotional state based on

the data provided

2. Consider how this emotional state might influence

their needs or expectations

3. Craft a response that addresses both the content of

their query and is appropriate for their emotional context

USER QUERY: {user_query}

"""
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This method ensures that the LLM reasons step-by-step before answering, making

the output more aligned with the user’s emotional state and potentially improving

satisfaction and trust during interaction. Screenshot of the Chat interface with the

prompt and emotional baseline data is shown in Figure 4.15.

Figure 4.15: Example of LLM prompt with emotional baseline data

Proposed Questions and Rationale

To evaluate the influence of emotional context on LLM responses, a set of seven

user questions was developed across a variety of categories. These questions were

selected to reflect common day-to-day topics where emotional tone could realisti-

cally influence the response. The categories included explanatory, advice-seeking,

recommendation, general knowledge, practical, historical explanation, and skill-

building advice.

Ealuation Questions asking for LLM responses were as follows:

� Explanatory: Can you explain what blockchain technology is and how it

works?

� Advice-seeking: What are some effective ways to improve my memory?
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� Recommendation: Recommend a book for someone who enjoys mystery

novels.

� General Knowledge: How does the stock market work?

� Practical: What should I consider when buying a new laptop?

� Historical Explanation: Tell me about the history of the Olympic Games.

� Skill-building Advice: How can I start learning to play the guitar?

These questions were chosen to allow for emotional influence on tone, content, and

empathy. For example:

� For the memory improvement question, a happy emotional state might result

in more engaging or playful suggestions, while a sad state may yield serious,

science-backed advice.

� For book recommendations, positive emotions may lead to light-hearted choices,

while negative emotions could suggest deeper, more reflective books.

� In technical explanations like blockchain, the tone may shift based on emo-

tional state, more enthusiastic with high arousal, or more formal and concise

with low arousal.

Factual questions such as “What is the capital of France?” were intentionally ex-

cluded since emotional data is unlikely to affect the outcome. This design decision

aligns with findings from EmoBench Sabour et al. (2024), which highlight that

LLMs show greater emotional adaptation in open-ended or subjective queries.

This stage aims to determine whether incorporating emotional state into the LLM

prompt results in improved user satisfaction, emotional alignment, and response

relevance.

Evaluation Considerations

The goal of this phase is to determine whether the inclusion of emotional context

improves the perceived relevance, tone, and empathy of responses. To do this, each

query is submitted both with and without emotional context. Responses are then

compared using the following criteria:
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� Tone and Language: Does the emotionally-aware response include more

enthusiastic, calming, or supportive language when appropriate?

� Content Adjustment: Are suggestions or recommendations tailored to the

user’s emotional state (e.g., energetic vs. relaxing activities)?

� Empathy and Relevance: Does the response reflect awareness of the user’s

needs or mood in how it addresses the question?

These metrics are used for both qualitative review and participant feedback, helping

assess how effectively the LLM incorporates emotional awareness into real-world

queries.

4.6 Phase 5 - Refining the Initial Baseline using

Reinforcement Learning

As explained earlier in Section 2.1, the emotion baseline of a user is not something

fixed. It can change over time depending on the person’s mood, situation, and

other conditions. Because of that, our system needs a way to update this baseline

from time to time. But we also want to do this with minimal inputs from the user.

To solve this problem, we are using a Reinforcement Learning (RL) framework.

More specifically, we use Q-learning to refine the emotional baseline in the arousal-

valence plane. This method helps the system to learn how to adjust the baseline

gradually, based on the feedback it gets and how well it performs. It also works

with very little direct input from the user.

Sometimes, the user gives direct feedback using a simple emoji-based system. These

emojis help the system understand how the user is feeling in a lightweight and non-

intrusive way. The overall idea of this stage is shown in Figure 4.16.

Prior to examining the structure and functioning of the RL model, the operation

of the emoji feedback mechanism is first considered.
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Figure 4.16: Experimental flow of Phase 5

4.6.1 Relationship with Emojis and Arousal-Valence Val-

ues

Several studies have tried to map emojis into the arousal-valence space. One impor-

tant example is a study published in 2022 titled Classification of 74 facial emoji’s

emotional states on the valence-arousal axes Kutsuzawa et al. (2022). This study

involved 1,082 participants who rated 74 facial emojis using a nine-point scale for

both valence and arousal.

The researchers used cluster analysis and one-way ANOVA to group the emojis

into six main clusters. Each cluster represents a certain emotional state, going

from very negative to very positive. The clusters also show how strong or intense

each emotion is by using arousal values.

The table below shows the main results from the study:

This table helps us understand how different emojis can be used to reflect emotional

states in both valence (positive or negative) and arousal (intensity) dimensions.

Using this idea, we built our emoji feedback mechanism. It allows users to give

lightweight feedback about how they feel. This feedback is then used in the re-

inforcement learning stage. The overall design of this emoji feedback interface is
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Cluster Label N Valence (SD) Arousal (SD)
Strong positive sentiment 12 7.42 (0.40) 7.19 (0.34)
Moderately positive sentiment 9 6.57 (0.62) 5.98 (0.29)
Neutral with positive bias 12 5.49 (0.38) 5.19 (0.29)
Neutral with negative bias 19 4.27 (0.38) 4.83 (0.27)
Moderately negative sentiment 10 3.59 (0.37) 5.84 (0.30)
Strong negative sentiment 12 2.74 (0.40) 6.91 (0.37)

Table 4.4: Clusters of emojis and their valence-arousal values from Kutsuzawa et al.
(2022).

shown in Figure 4.17.

4.6.2 Emotion Refining Using Reinforcement Learning

Initially, RL model was trained using data gathered during the Phase 2 baseline

identification stage. Data points close to the inferred baseline and those confirmed

by user feedback were used as representative values for the baseline emotional state.

To ensure the reliability of the baseline over time, an additional data collection

session was conducted one week later. During this session, each participant engaged

in a 10-minute interaction involving tasks designed to elicit minimal emotional

response. These tasks were chosen specifically to observe the participant’s natural,

non-elicited expressions. Those tasks are:

� Describing their daily routine

� Counting from 1 to 20 accending and decending out loud

� Listing the items they see in a random image

� Request explanations of photosynthesis from LLM and reading the response

� Request explanations of how ballpoint pens work from LLM and reading the

response.

after end of each task, the participants were asked to rate their emotional state

using the emoji feedback system.
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Figure 4.17: Emoji feedback interface used for lightweight user input.

Why Q-Learning?

Q-learning is a model-free RL algorithm that learns which actions give the best

long-term rewards. It is a good fit for this task because of the following reasons:

� The baseline may move slowly over time. Q-learning can learn from experi-

ence and adjust its values to keep up with these changes.

� Direct user input is not given all the time. With eligibility traces, Q-learning

can still learn from delayed rewards.

� The epsilon-greedy method in Q-learning helps the model to explore new

emotional states, while also using what it has already learned.
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Inputs to the Model

The model uses three main types of data:

� Emotional Data: Arousal and valence values collected when the user is

calm (not emotionally elevated). These are close to the real baseline.

� Direct Feedback: Occasionally, the user gives feedback using a lightweight

emoji system. These are assumed to be accurate.

� Initial Baseline: We start with a known estimate of the user’s baseline as

the prior knowledge.

State and Action Spaces

State Space:

The arousal-valence space is divided into a 10x10 grid, resulting in 100 possible

states. Each state is written as s = (i, j), where:

� i ∈ {0, 1, . . . , 9} for arousal

� j ∈ {0, 1, . . . , 9} for valence

Each cell center is calculated as:

Arousal = −1 + (i+ 0.5) · 0.2, Valence = −1 + (j + 0.5) · 0.2

The initial baseline, provided as a continuous point (a0, v0), is mapped to the

nearest grid cell using:

i = max(0,min(9, ⌊(a0 + 1)/0.2⌋))

j = max(0,min(9, ⌊(v0 + 1)/0.2⌋))

Action Space:

The agent can take one of five actions to adjust the baseline position:

� Move Left: Decrease valence by one grid cell (j ← max(0, j − 1))
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� Move Right: Increase valence by one grid cell (j ← min(9, j + 1))

� Move Up: Increase arousal by one grid cell (i← min(9, i+ 1))

� Move Down: Decrease arousal by one grid cell (i← max(0, i− 1))

� Stay: Keep the current position unchanged

Reward Function

The reward function incorporates both emotional data and direct feedback, with

direct feedback given higher priority due to its accuracy. At each time step t + 1,

after transitioning to state st+1, the reward rt+1 is computed based on the available

data Dt+1:

� Direct Feedback: If direct feedback bt+1 = (ab, vb) is available (e.g., every

N steps):

rt+1 = −distance(center(st+1), bt+1)

� Emotional Data: If emotional data et+1 = (ae, ve) is available:

rt+1 = −distance(center(st+1), et+1)

� No Data: If neither is available:

rt+1 = 0

Where distance is calculated using Euclidean distance:

distance(center(s), D) =
√
(center(s)a − ad)2 + (center(s)v − vd)2

with center(s) = (−1 + (i + 0.5) · 0.2,−1 + (j + 0.5) · 0.2) for state s = (i, j), and

D = (ad, vd).
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Learning Algorithm

We use Q-learning with eligibility traces to handle sparse rewards effectively. The

algorithm proceeds as follows:

1. Initialization:

� Q-table Q(s, a) = 0 for all states s and actions a

� Eligibility traces e(s, a) = 0 for all states s and actions a

� Initial state s0

� Parameters: α = 0.1 (learning rate), γ = 0.9 (discount factor), λ = 0.9

(eligibility trace decay), ϵ = 0.3 (initial exploration rate)

2. At each time step t:

1. Observe current state st

2. Choose action at using epsilon-greedy policy:

� With probability ϵ, select a random action

� Otherwise, select at = argmaxa Q(st, a)

3. Take action at, transition to st+1

4. Receive data Dt+1:

� If (t+ 1) mod N = 0, Dt+1 = bt+1 (direct feedback)

� Else if emotional data is available, Dt+1 = et+1

� Else, Dt+1 = None

5. Compute reward rt+1 as defined in the reward function

6. Compute temporal difference error:

δt = rt+1 + γ ·max
a′

Q(st+1, a
′)−Q(st, at)
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7. Update eligibility traces:

e(st, at)← e(st, at) + 1

8. Update Q-values for all states and actions:

Q(s, a)← Q(s, a) + α · δt · e(s, a) for all s, a

9. Decay eligibility traces:

e(s, a)← γ · λ · e(s, a) for all s, a

10. Update state: st ← st+1

11. Decay exploration rate: ϵ← max(ϵmin, ϵ · ϵdecay)

Exploration vs Exploitation:

To balance exploring new baseline positions with leveraging learned knowledge:

� Initial exploration rate: ϵ = 0.3

� Minimum exploration rate: ϵmin = 0.05

� Decay rate: ϵdecay = 0.999

(Code listings for the RL algorithm are provided in Appendix A.)
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5

Results and Evaluation

This chapter presents the evaluation and results for the experiments that were

discussed in Section 4.1. It also addresses the research objectives mentioned in

Section 3.4.2. Chapter begins with Section 5.1, which explains the process of

selecting participants for the study. The following sections, from Section 5.2 to

Section 5.6, present detailed evaluations of each phase of the methodology. These

include selecting suitable emotion recognition models, implementing the person-

alized multimodal fusion approach, identifying the emotional baseline, integrating

emotional context into LLM responses, and refining the baseline using reinforce-

ment learning. Each phase is evaluated using both qualitative and quantitative

feedback from participants to assess how well the system addresses the defined

research objectives.

5.1 Participant Selection

For this research, we selected 10 participants using a quota sampling method com-

bined with convenience sampling. The participants were handpicked, but not based

on expert knowledge. The aim was to make sure there was a balanced representa-

tion in terms of gender, background, and age.

Out of the 10 participants, there were 6 males and 4 females. From a background

point of view, 6 were from Computer Science Background while 4 were from non-

technical backgrounds. Age-wise, 2 participants were from the 15–20 age group, 5
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were in the 24–26 range, and 2 were aged between 50–60.

This method helped to analyze differences in emotional expression and recognition

based on these demographic factors. All participants took part with informed

consent. The consent form used for this purpose is available in the Appendix (see

Appendix A).

5.2 Phase 1: Selecting Suitable Emotion Recog-

nition Models

In Phase 1, we mainly focused on evaluating how well different models performed

when detecting emotional states using facial and vocal data. The evaluation was

based on both the accuracy of emotion classification and how close the predicted

intensity was to the acted intensity levels.

5.2.1 Facial Expression Experiment

This subsection discusses the results from the facial expression experiment. The

emotion categorization performance of the models can be seen in Figure 5.1, and

the intensity identification results are shown in Figure 5.2. In this experiment, two

models were used: the HUME image expression model and CAGE.

Figure 5.1: Emotion categorization results for facial expression experiment
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Figure 5.2: Emotion intensity identification results for facial expression experiment

Observation

This section presents a structured comparison of the performance of the CAGE

and HUME models in emotion category recognition and intensity measurement,

based on experimental results.

Emotion Category Recognition

Both models demonstrated high accuracy in detecting certain emotions, with vary-

ing performance across categories:

� Happy: HUME achieved 86% accuracy, slightly outperforming CAGE at

84%.

� Sad: HUME recorded 85% accuracy, compared to CAGE’s 80%, showing a

modest advantage.

� Angry: Both models struggled with anger recognition. CAGE performed

slightly better at 64%, compared to HUME’s 61%. This difficulty may stem

from participants struggling to express anger naturally during the experiment.

� Boredom: HUME outperformed CAGE, with 77% accuracy compared to

CAGE’s 64%.

� Calm: HUME achieved 74% accuracy, while CAGE recorded 70%, indicating
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a slight edge for HUME.

Intensity Measurement

HUME generally outperformed CAGE in measuring emotion intensity across all

emotions:

� Happy: HUME achieved 89% accuracy in intensity prediction, compared to

CAGE’s 81%.

� Sad: HUME recorded 83% accuracy, significantly outperforming CAGE’s

71%.

� Angry: HUME achieved 58% accuracy, compared to CAGE’s 52%, showing

a modest improvement.

� Boredom: HUME outperformed CAGE, with 81% accuracy compared to

CAGE’s 73%.

� Calm: HUME recorded 51% accuracy, compared to CAGE’s 47%. Both

models struggled, often confusing high calmness with low boredom.

Both models performed well in detecting happiness and sadness, with HUME show-

ing a slight edge in category recognition for most emotions. Anger recognition

remained challenging for both, likely due to unnatural expressions by participants.

HUME consistently outperformed CAGE in intensity measurement across all emo-

tions, with particularly strong performance for happiness and sadness. The con-

fusion between high calmness and low boredom suggests potential limitations in

distinguishing subtle emotional states.

5.2.2 Vocal Emotion Recognition Models Analysis

This subsection presents the analysis of vocal emotion recognition experiments.

The comparison was done between the HUME audio expression model andWave2Vec2

model for both emotion category recognition and intensity identification. The re-

sults are shown in Figure 5.3 and Figure 5.4.

65



Figure 5.3: Vocal emotion categorization results: HUME vs Wave2Vec2

Figure 5.4: Vocal emotion intensity identification: HUME vs Wave2Vec2

Observation

This section presents a structured comparison of the performance of the HUME

andWave2Vec2 models in emotion category recognition and intensity measurement,

based on experimental results for vocal data.

Emotion Category Recognition

Both models demonstrated varying performance across emotion categories:

� Happy: HUME achieved 84% accuracy, outperforming Wave2Vec2 at 79%.
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� Sad: Both models recognized sadness well, with HUME scoring 85% and

Wave2Vec2 83%, showing a slight advantage for HUME.

� Angry: HUME performed better in category identification with 78% accu-

racy, compared to Wave2Vec2’s 70%.

� Boredom: HUME had stronger category recognition at 77%, compared to

Wave2Vec2’s 64%.

� Calm: Both models had similar results, with HUME scoring 74% andWave2Vec2

70%.

Intensity Measurement

Performance in measuring emotion intensity varied, with each model showing strengths

for specific emotions:

� Happy: Both models performed almost equally, with Wave2Vec2 achieving

77% accuracy and HUME 76%.

� Sad: Wave2Vec2 performed slightly better, with 78% accuracy compared to

HUME’s 71%.

� Angry: Wave2Vec2 showed a clear advantage, achieving 75% accuracy, com-

pared to HUME’s 62%.

� Boredom: Wave2Vec2 gave slightly better results, with 81% accuracy com-

pared to HUME’s 83%.

� Calm: HUME was slightly better, with 70% accuracy compared toWave2Vec2’s

65%.

Both models performed well in recognizing sadness, with HUME showing a slight

edge in category recognition for most emotions, particularly happiness, anger, and

boredom. Wave2Vec2 demonstrated strengths in intensity measurement, notably

for anger and sadness, and performed comparably to HUME for happiness and

boredom. The similar performance in calm category recognition suggests robust-

ness in detecting subtler emotions, though intensity measurement differences indi-

cate HUME’s slight advantage for calmness. These results highlight complementary
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strengths, with HUME excelling in category recognition and Wave2Vec2 in specific

intensity measurements.

Based on these results, and since we are planning to perform a multimodal anal-

ysis in the next phase, we chose to continue with the HUME model to maintain

consistency between the facial and vocal emotion recognition results.

5.3 Phase 2: Personalized Multimodal Fusion

In this phase, we analyse the data collected from the experiments mentioned in

Section 4.3, and apply decision-level fusion using weights that are calculated based

on the MSE.

5.3.1 Personalized Weights

At the end of each task, we have facial and vocal predictions collected from the par-

ticipant recordings. However, to properly evaluate how accurate those predictions

are, we need a ground truth. Since emotion is a personal experience, we considered

the self-reported emotional data provided by each participant as the ground truth.

Participants reported which emotion they felt and how intense that emotion was.

This information is used to calculate the personalized reliability of each modality

for each person. The self-reported data is shown in the tables in Appendix A.

Then, Performed data cleaning by removing emotion labels that were outside the

scope of our research. The remaining emotion labels were converted into arousal-

valence values based on the mapping defined in Section 4.3.2. For comparison

with self-reported values, we extracted the highest recorded emotion within each

category from the system outputs. Participants were instructed to provide self-

reported feedback by indicating the strongest emotion they felt during each task.

Subsequently, using the MSE-based weighting method described in Section 4.3.3,

modality-specific errors for each participant were calculated. These were then used

to generate personalized fusion weights, as shown in Listing 4.1. The resulting

modality weights and corresponding MSE values are presented in Appendix A.
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Analysis

A visual representation of the data presented in Appendix A is shown in Figure 5.7,

and the average fusion weights per emotion are illustrated in Figure 5.5. Addition-

ally, the distribution of the fusion weights across participants is displayed using a

box plot in Figure 5.6.

Figure 5.5: Average fusion weights per emotion category

Figure 5.6: Weight distribution boxplot across all participants
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Figure 5.7: Fusion weight visualization for each participant
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The average fusion weights calculated for each emotion category are summarized

below:

Emotion Wfacial Wvocal

Angry 0.46 0.54

Boredom 0.84 0.16

Calm 0.45 0.55

Happy 0.84 0.16

Sad 0.86 0.14

From these weights, the dominant modality for each emotion was determined as

follows:

Emotion Dominant Modality

Angry Vocal

Boredom Facial

Calm Vocal

Happy Facial

Sad Facial

Key Insights from Fusion Weight Analysis

The analysis of fusion weights yields several interesting observations. Firstly, cer-

tain emotions such as Happy, Sad, and Boredom are predominantly recognized

through facial expressions, with facial weights averaging over 0.84. On the other

hand, Angry and Calm emotions appear to depend more on vocal cues, although

the weights remain relatively balanced, indicating contributions from both modal-

ities.

In terms of distribution, Happy and Sad emotions show the strongest modality

preference, where the system clearly leans toward facial data. Conversely, the

weights for Angry and Calm are more evenly distributed, suggesting that both

modalities are essential for recognizing these emotions.

Furthermore, individual variations across participants show higher consistency in

fusion weights for emotions like Happy, Sad, and Boredom. This implies that these

emotions might have more universal expression patterns. However, for Angry and
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Calm, there is greater variation, pointing to the possibility that the expression of

these emotions can differ significantly between individuals.

5.3.2 Multimodal Fusion Analysis

In this phase, we performed multimodal fusion by combining both facial and vocal

emotional predictions assigned to each participant. This was done using a weighted

fusion formula for both emotion category (A) and intensity (V), where weights were

assigned per emotion based on the reliability of each modality:

Afused(e) = Wfacial(e)× Afacial +Wvocal(e)× Avocal

Vfused(e) = Wfacial(e)× Vfacial +Wvocal(e)× Vvocal

Using this method, we created a new dataset with fused emotional values. These

fused values were then analyzed and compared with the ground truth using different

statistical methods.

Evaluation Methods

To measure how well the fusion worked, several statistical techniques were applied.

First, we used Euclidean Distance to calculate how close the predicted emotion

coordinates were to the ground truth. The formula used is:

euclidean distance(x1, y1, x2, y2) =
√

(x1 − x2)2 + (y1 − y2)2

Next, we applied a paired t-test to check if there was any significant improvement

in the fused results compared to using facial or vocal data alone. The formula used

was:

t =
d̄

sd/
√
n

where d̄ is the mean of the differences between paired observations, sd is the stan-

dard deviation of those differences, and n is the number of samples.
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To measure improvement, we calculated the percentage gain of the fused method

over the individual modalities. The improvement formula was:

improvement =

(
base distance− fused distance

base distance

)
× 100

In the implementation, it was done using:

facial_vs_fused = ((metrics_df[’facial_distance’] - metrics_df[’fused_distance’]) /

metrics_df[’facial_distance’]) * 100

vocal_vs_fused = ((metrics_df[’vocal_distance’] - metrics_df[’fused_distance’]) /

metrics_df[’vocal_distance’]) * 100

Emotion recognition accuracy was also used as a key metric. It was calculated

by dividing the number of correctly predicted emotions by the total number of

samples:

accuracy =
number of matches

total number of samples

Standard statistical functions were also used for summarizing results, such as mean

and standard deviation:

x̄ =

∑
xi

n
, s =

√∑
(xi − x̄)2

n− 1

These methods helped us understand how much the fusion improved the emotion

recognition task and how reliable the predictions were compared to the original

single-modality models.

Analysis

The fused method consistently shows the lowest average Euclidean distance across

all emotions, which means it aligns better with the ground truth compared to using

facial or vocal data alone. As shown in Figure 5.8, this improvement is seen across

almost all emotion categories.
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Figure 5.8: Performance comparison by Euclidean distance for each emotion

Table 5.1 presents the mean Euclidean distances and their standard deviations for

each method:

Table 5.1: Mean Euclidean Distances for Each Method

Method Mean Distance ± Std. Dev.
Facial 0.1112 ± 0.0773
Vocal 0.0681 ± 0.0472
Fused 0.0577 ± 0.0481

The fused method’s mean distance of 0.0577 is lower than that of the vocal method

(0.0681) and substantially lower than the facial method (0.1112). A lower Euclidean

distance signifies predictions that are closer to the ground truth, demonstrating

that the fused approach enhances accuracy by leveraging the strengths of both

modalities.

To assess the statistical significance of these improvements, paired t-tests were

conducted. The results are shown in Table 5.2:

Table 5.2: T-test Results for Fused Method Comparisons

Comparison T-Statistic P-Value Significant
Facial vs Fused 9.5129 0.0000 Yes
Vocal vs Fused 3.6117 0.0004 Yes

74



Both p-values are below the 0.05 threshold, confirming that the fused method’s

improvements over the facial and vocal methods are statistically significant. The

larger t-statistic for the facial vs. fused comparison (9.5129) compared to the vocal

vs. fused comparison (3.6117) suggests a more pronounced enhancement over the

facial method.

Figure 5.9 shows a visual representation of the fused method’s performance im-

provements over the facial and vocal methods across emotions and intensity levels.

While not explored in depth here, they offer insights into specific conditions where

the fused approach excels or where individual modalities may retain advantages

Figure 5.9: Improvement heatmaps: Fused vs Facial and Fused vs Vocal by Emo-
tion and Intensity

The fused method yields an average improvement of 33.92% over the facial method

and 6.52% over the vocal method. This disparity reflects the vocal method’s

stronger baseline performance compared to the facial method, leaving less room

for improvement when fused with vocal data.

Emotion-wise improvements further highlight the fused method’s efficacy across

different emotional categories, as shown in Figure 5.10.

The fused method consistently improves over both individual methods for all emo-

tions. Notable gains over the facial method are observed for “angry” (47.58%) and

“boredom” (47.54%), with the smallest improvement for “calm” (10.18%). Over

the vocal method, the largest improvement occurs for “sad” (16.27%), while “calm”

shows the smallest gain (1.72%). These variations suggest that the fused method’s
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benefits are emotion-specific, likely influenced by the relative strengths of facial

and vocal cues for each emotion.

Figure 5.10: Statistical improvement (percentage) by emotion

5.4 Phase 3: Initial Baseline Identification

In this phase, we aimed to identify the initial emotional baseline of each participant

by mapping their emotional data points onto the valence-arousal space. For this

purpose, we used the fused emotional data collected in the previous phase. Each

participant’s emotional expressions were visualized on the two-dimensional plane,

representing emotional valence and arousal. The full mapping of all participants’

initial emotional data points is shown in Figure 5.11.
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Figure 5.11: Initial Emotional data mapping for all participants
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To estimate the baseline more accurately, we applied KDE over the mapped points.

After identifying the baseline zones using KDE, we evaluated the correctness and

reliability of the results through a participant questionnaire.

Baseline Identification via KDE

After mapping the emotional data points using KDE, we examined the resulting

density distributions to find the regions with the highest concentration of data.

For each participant, we generated 3D surface plots showing these density values,

as presented in Figure 5.12. The peak of each surface represents the potential

baseline. We selected a 0.1 × 0.1 area around the point of highest density. This

square region was taken as the baseline zone. The exact valence and arousal values

at the peak density, along with the top-left and bottom-right coordinates of the

baseline square, are presented in Table 5.3.

Table 5.3: Participant baseline values estimated from KDE peak density

Participant Valence Arousal Max Density Top-Left Bottom-Right
p1 0.20 -0.07 597.3728 (0.15, -0.02) (0.25, -0.12)
p2 -0.04 -0.15 690.2971 (-0.09, -0.10) (0.01, -0.20)
p3 0.21 -0.07 337.2014 (0.16, -0.02) (0.26, -0.12)
p4 0.05 0.01 430.7903 (0.00, 0.06) (0.10, -0.04)
p5 0.17 -0.18 366.9585 (0.12, -0.13) (0.22, -0.23)
p6 -0.16 -0.09 489.9168 (-0.21, -0.04) (-0.11, -0.14)
p7 -0.16 -0.10 345.6209 (-0.21, -0.05) (-0.11, -0.15)
p8 -0.22 -0.06 262.2035 (-0.27, -0.01) (-0.17, -0.11)
p9 -0.12 0.09 335.896 (-0.17, 0.14) (-0.07, 0.04)
p10 0.19 0.01 318.8352 (0.14, 0.06) (0.24, -0.04)

The identified baseline zones were also visualized on a 2D plane for better inter-

pretability, as shown in Figure 5.13. This visual comparison allows us to see how

each participant’s baseline position varies in the valence-arousal space.
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Figure 5.12: 3D surface plots of KDE-based emotional distributions for all partic-
ipants
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Figure 5.13: 2D mapping of KDE-estimated baseline zones for each participant

Evaluation

To evaluate the accuracy and relevance of the identified baseline values, we con-

ducted a questionnaire with all participants. Each participant was asked to reflect

on the emotional states represented in their baseline region and indicate how closely

those states matched their typical emotional condition during the experiment ses-

sions.

The full questionnaire and participant responses are provided in the Appendix (see

Section A). Based on the collected responses, we calculated the frequency of agree-
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ment between the participants and the computed baseline zones. This frequency

distribution is shown in Figure 5.14, which highlights the overall agreement levels

across all participants.

In addition, we visualized the relationship between the identified baselines and the

participants’ self-reported emotional states using a valence-arousal scatter plot.

This comparison, presented in Figure 5.15, helps illustrate how closely the KDE-

based baseline aligns with the participants’ own perception.

Figure 5.14: Participant agreement frequency with identified baseline values

The analysis of the questionnaire responses provides valuable insights into the

accuracy and acceptance of the computed baseline values.

General Agreement Level: The mean agreement score for Question 1 was 3.70

out of 5, indicating that most participants tended to agree with their computed

emotional baseline. Furthermore, 60% of participants explicitly expressed agree-

ment, which supports the reliability of the baseline computation method for the

majority.

Baseline Discrepancy: To measure how much the participants’ proposed base-

lines differed from the computed values, we used the Euclidean distance. The mean

distance was found to be 0.120 with a standard deviation of 0.122. This result

shows that, on average, participants’ self-identified baseline points differ from the

computed values by around 0.12 units in the valence-arousal space. The similar-

81



Figure 5.15: Scatter plot comparing identified and participant-proposed baseline
coordinates

ity between the mean and standard deviation also indicates a consistent pattern in

how much the computed and proposed baselines deviate from each other. Table 5.4

summarizes the computed distances for each participant.

Table 5.4: Participant Agreement and Baseline Discrepancy Summary

Participant ID Agreement (1-5) Proposed (Valence, Arousal) Distance

P1 4 (0.25, -0.05) 0.054
P2 3 (0.40, -0.02) 0.230
P3 4 (0.20, 0.10) 0.305
P4 5 (0.23, -0.06) 0.014
P5 3 (-0.05, 0.15) 0.071
P6 4 (0.35, -0.10) 0.054
P7 2 (0.20, 0.20) 0.321
P8 4 (0.24, -0.07) 0.014
P9 3 (0.10, -0.05) 0.134
P10 5 (0.21, -0.10) 0.000
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5.5 Phase 4: LLM Response Evaluation

In this phase, participants were asked to evaluate the responses generated by the

language model based on the procedure outlined in Section 4.5. The responses were

assessed using a Likert scale across four criteria: Relevance, Emotional Alignment,

Empathy, and Satisfaction. Each participant rated responses to both a standard

(controlled) query and an emotionally-enhanced query.

This evaluation allowed us to compare how the emotional enhancement influenced

user perception of the generated responses. The comparison of average ratings

between the two types of queries across all four evaluation dimensions is illustrated

in Figure 5.16.

Figure 5.16: Comparison of average ratings for LLM responses
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Overall Analysis Results

Dimension
Mean
Control

Mean
Enhanced

Mean
Difference

Improvement
(%)

Satisfaction 3.343 4.600 1.257 37.6
Empathy 2.200 3.857 1.657 75.3
Emotional Alignment 2.343 3.971 1.629 69.5
Relevance 3.743 3.814 0.071 1.9

Table 5.5: Comparison of participant evaluations for control vs emotionally en-
hanced responses

As seen in Table 5.5, there is a clear overall increase in user satisfaction, indicating

a robust and consistent enhancement in user experience when emotional tailoring

is applied. This suggests that emotionally enhanced responses are more engaging

and fulfilling for users across various types of queries.

The most significant improvements are observed in Empathy (75.3%) and Emo-

tional Alignment (69.5%), followed by Satisfaction (37.6%). These dimensions,

being closely linked to subjective and emotional user experiences, benefit substan-

tially from emotional enhancement.

On the other hand, the impact on Relevance is limited. With only a 1.9% improve-

ment and a low proportion of participants reporting a positive change as relevance

is more dependent on content correctness, which was already adequately addressed

by the control responses.

5.6 Phase 5: Baseline Refinement

Following the initial baseline identification, we selected a subset of participants

whose self-identified baselines aligned closely with the computed values. This se-

lection was based on their agreement level. The selected participants included P1,

P4, P6, P8, and P10. We conducted initial training using those datapoints available

around baseline region.

Subsequently, data was collected during the refinement tasks described in Para-

graph 4.6.2.Then observed about the baseline shofts. Initial and refine baseline

regions are illustrated in Figure 5.17 for above participants.
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Figure 5.17: Initial and refined baseline regions for selected participants.

The results of this section are detailed in Appendix A, where participant feedback

on the refined baselines was collected. As shown in the table, the agreement scores

and refined baseline coordinates were evaluated using a Likert scale. Out of the

six participants, four (P1, P3, P4, and P6) rated the refined baselines with a score

of 4 or higher, indicating agreement with the computed values. This reflects a

66.67% agreement rate, suggesting that the refined baseline identification method

was successful for the majority of users.
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Table 5.6: Participant Agreement on Refined Baselines

PID Refined Baseline (V, A) Likert Score
P1 [(0.3, -0.1), (0.4, -0.2)] 4
P3 [(0.2, -0.1), (0.3, -0.2)] 5
P4 [(0.1, 0.1), (0.2, 0.0)] 5
P6 [(-0.2, 0.0), (-0.1, -0.1)] 4
P8 [(0.1, 0.2), (0.2, 0.1)] 2
P10 [(0.3, -0.1), (0.4, -0.2)] 3
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6

Conclusion

This chapter summarizes the key findings of the research by revisiting the research

aim and questions, highlighting the contributions made, and discussing limita-

tions and possible future directions. Section 6.1 provides a summary of how each

research question was addressed through the different stages of the study. Sec-

tion 6.2 outlines the main contributions of this work, including the personalized

multimodal fusion approach and the novel baseline identification mechanism. Fi-

nally, Section 6.3 discusses the limitations of the current study and suggests several

directions for future research to improve and expand the system further.

6.1 Conclusions about the Research Questions

and Aim

The main aim of this research was to develop a personalized emotion recognition

system using facial and vocal signals, and to integrate these emotional insights

into LLM responses to make them more emotionally intelligent. The research was

divided into five stages, and each stage focused on addressing specific research

questions and objectives.

In the first stage, several pre-implemented facial and vocal emotion recognition

models were compared to answer RQ 1.1 (What are suitable pre-implemented mod-

els that can be used to get a higher accuracy for emotion recognition?). Between

HUME and CAGE for facial expression, HUME scored considerably higher overall.
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In the case of audio models, both HUME Audio and Wave2Vec2 showed different

strengths, but the performance gap between them was smaller compared to facial

models. We selected the HUME model for both modalities to maintain consistency.

This model selection helped to lay a strong foundation for building a multimodal

framework.

In the second stage, we addressed RQ 1.2 (How the recognized emotion values from

different modalities fused together in order to get more personalized arousal-valence

value?) by fusing the facial and vocal predictions using decision-level fusion. Mean

Squared Error was used to calculate the weights for fusion. The fused predictions

showed lower average Euclidean distance compared to using either facial or vocal

data alone, especially in cases where one modality was weaker. This means the

fused model was more accurate and closely matched the ground truth emotions.

The third stage focused on identifying an initial emotional baseline to answer RQ

2.1 (What techniques are most suitable for establishing an initial emotional baseline

and how can this baseline be dynamically adjusted over time to reflect changes

in the user’s emotional responses and self-reported feedback?). We used Kernel

Density Estimation based on participant data. To verify accuracy, we collected

feedback from participants through a questionnaire. The average agreement score

was 3.70 out of 5, showing that most users agreed with the identified baseline

values.

In the fourth stage, we evaluated how emotional input could change the output

of a LLM model. We used GPT-4o-mini and found a noticeable increase in user

satisfaction when emotional context was included with user queries. This confirms

the value of emotionally aware responses and successfully answers RQ 3.1 (How

does integrating personalized emotional state information with user queries affect

the relevance and user satisfaction of responses from LLMs?).

Finally, in the fifth stage, we revisited the emotional baseline and used reinforce-

ment learning to refine it over time. Among six participants, four rated the refined

baseline with 4 or higher out of 5, giving a 66.67% agreement rate. This result

shows that the method works for most users and improves personalization over

time, again supporting RQ 2.1.
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Overall, this research shows that using personalized emotional state recognition

with facial and audio data can meaningfully improve how LLMs respond to users.

The findings give a starting point for building emotionally aware AI systems and

highlight areas for future improvements like larger datasets, longer-term user adap-

tation, and better real-time emotion tracking.

6.2 Research Contributions

This research provides several key contributions in the area of personalized emotion

recognition and emotionally aware AI systems. The focus was on building a sys-

tem that works differently for each user by understanding their unique emotional

patterns through both facial and vocal signals.

� Personalized Emotion Recognition using MSE-based Fusion

One of the main contributions is the implementation of a personalized multi-

modal emotion recognition method. This was done by combining facial and

vocal predictions using a decision-level fusion approach. The weights were

calculated based on the MSE between the predicted values and user self-

reported emotions. This personalized approach was applied for identifying

five target emotions: Happy, Angry, Sad, Boredom, and Calm.

� Emotional Baseline Identification in Arousal-Valence Plane

Another key contribution is the method used to identify each user’s emotional

baseline in the arousal-valence space. KDE was used on the collected data

to estimate a stable starting point for each participant’s emotional state.

� Baseline Refinement using Emoji-Based Feedback Mechanism

A novel method was introduced to refine the baseline over time using user

feedback. Instead of traditional methods, participants gave feedback using

simple emoji-based inputs. These responses were used in a reinforcement

learning loop to adjust the emotional baseline.
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These contributions together help to create a more personalized and emotionally in-

telligent interaction between users and AI systems. They also offer a foundation for

future work in real-time and long-term emotion tracking systems for individuals.

6.3 Limitations and Future Work

This research focused on five basic emotions (Happy, Angry, Sad, Boredom, and

Calm) which helped build the core of the system, but these do not fully represent

the entire arousal-valence plane. Including a wider range of emotional categories

like fear, surprise, or mixed emotions would make the system more complete and

useful in real-life applications. Also, the use of only facial and vocal signals may

not capture the full complexity of human emotions. Previous studies suggest that

physiological signals such as EEG, ECG, and GSR can provide deeper emotional

insights and should be explored in future versions. The fusion process in this re-

search was based on a statistical MSE approach, which showed promising results,

but more advanced fusion methods like deep learning-based techniques could of-

fer better personalization and flexibility depending on the situation. In terms of

emotional baseline estimation, machine learning models can be used to enhance

the current KDE-based approach and allow the system to learn and adapt more

effectively over time. Lastly, since the experiments were conducted with a small

group of participants from similar backgrounds, future work should focus on in-

volving more diverse users in terms of age, language, and culture to ensure the

system performs well across different populations.
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A

Appendix

Self-reported Emotions and Intensities

This appendix provides the details of the self-reported emotions and intensities

used in the emotion elicting task under phase2.

Table A.1: Self-reported values for Happy emotion

Participant ID Test 1 (Intensity) Test 2 (Intensity) Test 3 (Intensity)
1 Happy (0.3) Happy (0.5) Happy (0.8)
2 Happy (0.6) Happy (0.7) Happy (0.5)
3 Happy (0.6) Happy (0.7) Happy (0.5)
4 Happy (0.4) Happy (0.8) Happy (0.3)
5 Happy (0.6) Happy (0.7) Happy (0.5)
6 Happy (0.2) Happy (0.5) Happy (0.7)
7 Happy (0.5) Happy (0.7) Happy (0.5)
8 Happy (0.7) Happy (0.7) Happy (0.5)
9 Happy (0.5) Happy (0.7) Happy (0.8)
10 Happy (0.6) Happy (0.7) Happy (0.8)
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Table A.2: Self-reported values for Angry emotion

Participant ID Test 1 (Intensity) Test 2 (Intensity) Test 3 (Intensity)
1 Angry (0.4) Angry (0.6) Angry (0.6)
2 Angry (0.3) Angry (0.2) Angry (0.3)
3 Angry (0.6) Angry (0.6) Angry (0.8)
4 Angry (0.5) Angry (0.3) Angry (0.8)
5 Angry (0.6) Angry (0.6) Angry (0.8)
6 Angry (0.1) Angry (0.2) Angry (0.8)
7 Angry (0.4) Angry (0.7) Angry (0.9)
8 Angry (0.5) Angry (0.7) Angry (0.8)
9 Angry (0.3) Angry (0.8) Angry (0.9)
10 Angry (0.4) Angry (0.7) Angry (0.8)

Table A.3: Self-reported values for Sad emotion

Participant ID Test 1 (Intensity) Test 2 (Intensity) Test 3 (Intensity)
1 Sad (0.1) Surprised (0.2) Sad (0.5)
2 Sad (0.2) Sad (0.3) Confusion (0.3)
3 Sad (0.3) Confused / Surprise (0.8) Sad (0.8)
4 Sad (0.9) Confused (0.4) Sad (0.6)
5 Sad (0.3) Confused / Surprise (0.8) Sad (0.8)
6 Confused (0.4) Sad (0.5) Sad (0.7)
7 Sad (0.7) Sad (0.5) Sad (0.8)
8 Sad (0.3) Sad (0.5) Sad (0.7)
9 Surprised (0.3) Sad (0.5) Sad (0.8)
10 Sad (0.4) Confused / Surprise (0.8) Sad (0.9)

Table A.4: Self-reported values for Boredom emotion

Participant ID Test 1 (Intensity) Test 2 (Intensity) Test 3 (Intensity)
1 Boredom (0.3) Boredom (0.6) Boredom (0.8)
2 Boredom (0.1) Boredom (0.2) Boredom (0.4)
3 Boredom (0.7) Boredom (0.9) Boredom (1)
4 Boredom (0.4) Boredom (0.6) Boredom (0.5)
5 Boredom (0.7) Boredom (0.9) Boredom (1)
6 Neutral (0.1) Neutral (0.2) Boredom (0.5)
7 Boredom (0.3) Boredom (0.5) Boredom (0.7)
8 Boredom (0.7) Boredom (0.9) Boredom (0.9)
9 Boredom (0.5) Boredom (0.7) Boredom (0.7)
10 Boredom (0.6) Boredom (0.8) Boredom (0.9)
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Table A.5: Self-reported values for Calm emotion

Participant ID Test 1 (Intensity) Test 2 (Intensity) Test 3 (Intensity)
1 Calm (0.5) Calm (0.4) Calm (0.8)
2 Calm (0.1) Calm (0.3) Calm (0.7)
3 Calm (0.4) Calm (0.7) Calm (0.8)
4 Calm (0.8) Calm (0.6) Calm (0.5)
5 Calm (0.4) Calm (0.7) Calm (0.8)
6 Calm (0.5) Calm (0.2) Calm (0.7)
7 Calm (0.3) Calm (0.5) Calm (0.6)
8 Calm (0.4) Calm (0.6) Calm (0.8)
9 Calm (0.4) Focused (0.6) Calm (0.8)
10 Calm (0.4) Calm (0.7) Calm (0.7)

Modality Weights and MSE for Participants

This section provides the Mean Squared Error (MSE) values for each participant,

along with the corresponding modality weights for the facial and vocal modalities.
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Table A.6: Modality Weights and MSE for Participants (Left: 1–5, Right: 6–10)

Participants 1–5 Participants 6–10
P. Emo W f W v MSE f MSE v P. Emo W f W v MSE f MSE v
1 Hpy 0.82 0.18 0.00118 0.00145 6 Hpy 0.85 0.15 0.00122 0.00124
1 Ang 0.48 0.52 0.03890 0.00636 6 Ang 0.43 0.57 0.00433 0.00025
1 Sad 0.87 0.13 0.00133 0.00375 6 Sad 0.86 0.14 0.00092 0.00119
1 Brd 0.86 0.14 0.00520 0.00294 6 Brd 0.88 0.12 0.00015 0.00010
1 Clm 0.46 0.54 0.00800 0.01214 6 Clm 0.41 0.59 0.00261 0.00084
2 Hpy 0.84 0.16 0.01389 0.00333 7 Hpy 0.82 0.18 0.01931 0.00395
2 Ang 0.44 0.56 0.00597 0.00815 7 Ang 0.42 0.58 0.01410 0.00064
2 Sad 0.83 0.17 0.00474 0.00050 7 Sad 0.87 0.13 0.00149 0.00105
2 Brd 0.88 0.12 0.00114 0.00336 7 Brd 0.85 0.15 0.00084 0.00035
2 Clm 0.42 0.58 0.00485 0.00169 7 Clm 0.46 0.54 0.00468 0.00248
3 Hpy 0.79 0.21 0.03200 0.00041 8 Hpy 0.80 0.20 0.02560 0.00447
3 Ang 0.45 0.55 0.02763 0.00305 8 Ang 0.50 0.50 0.00101 0.00332
3 Sad 0.85 0.15 0.03398 0.00301 8 Sad 0.84 0.16 0.00327 0.00142
3 Brd 0.82 0.18 0.01058 0.00035 8 Brd 0.81 0.19 0.00237 0.00017
3 Clm 0.43 0.57 0.01746 0.01366 8 Clm 0.44 0.56 0.01061 0.00403
4 Hpy 0.89 0.11 0.00078 0.00350 9 Hpy 0.86 0.14 0.00137 0.00281
4 Ang 0.49 0.51 0.02585 0.00849 9 Ang 0.48 0.52 0.00152 0.00053
4 Sad 0.88 0.12 0.00232 0.00666 9 Sad 0.89 0.11 0.00034 0.00092
4 Brd 0.81 0.19 0.00918 0.00343 9 Brd 0.84 0.16 0.00322 0.00036
4 Clm 0.47 0.53 0.00461 0.00924 9 Clm 0.49 0.51 0.00995 0.00903
5 Hpy 0.81 0.19 0.00792 0.00020 10 Hpy 0.90 0.10 0.00137 0.00700
5 Ang 0.46 0.54 0.01917 0.00193 10 Ang 0.47 0.53 0.01006 0.00221
5 Sad 0.84 0.16 0.01656 0.00070 10 Sad 0.83 0.17 0.01767 0.00769
5 Brd 0.83 0.17 0.00988 0.00017 10 Brd 0.82 0.18 0.00830 0.00255
5 Clm 0.45 0.55 0.00636 0.00473 10 Clm 0.46 0.54 0.00038 0.00912

Emotion Eliciting Tasks Application

The emotion eliciting tasks application used in this research is available at https:

//github.com/avishka-sathyanjana/amelia-client.git. This application was

used to systematically elicit target emotions during phase 2 of the study and to

record the participants’ facial and vocal responses.
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Appendix B - Questionnaire for Baseline Evalua-

tion

Figure A.1: Baseline evaluation Questionnaire Screenshot 1
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Figure A.2: Baseline evaluation Questionnaire Screenshot 2
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Figure A.3: Baseline evaluation Questionnaire Screenshot 3

Participant Responses and Baseline Data

� Link to the response results: https://drive.google.com/file/d/1h2wEjiNGcKktWG46RgTUiFADrYYfea8V/

view?usp=sharing

� Identified Baseline Data of the participants: https://drive.google.com/

drive/folders/1zxJeYd1LYd66iCwQO1sZSns3szW29ZV4?usp=drive_link

� CSV file of fused emotional data: https://drive.google.com/file/d/1USmPup8HeVyokCh03QYijc47ZkkiXpmR/

view?usp=drive_link
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Appendix C - Questionnaire for Refine Baseline

Evaluation

Figure A.4: Baseline Refinement Questionnaire Screenshot 1
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Figure A.5: Results for the questionnaire
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Appendix D - Informed Consent Form

Figure A.6: Informed Consent Form Page 1
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Figure A.7: Informed Consent Form Page 2
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Appendix E - Code listings

Reinforcement Learning Components

1 # Model Parameters

2 grid_size = 10 # 10x10 grid for arousal -valence

plane

3 num_states = grid_size * grid_size # Total number of states

(100)

4 num_actions = 5 # Actions: left , right , up,

down , stay

5 alpha = 0.1 # Learning rate

6 gamma = 0.9 # Discount factor

7 lambda_trace = 0.9 # Eligibility trace decay rate

8 epsilon = 0.3 # Initial exploration probability

9 epsilon_min = 0.05 # Minimum exploration probability

10 epsilon_decay = 0.999 # Exploration decay rate

11 N = 100 # Interval for direct feedback

12 initial_baseline_a = 0.0 # Initial arousal baseline

13 initial_baseline_v = 0.0 # Initial valence baseline

Listing A.1: Model Parameters

1 def state_to_index(i, j, grid_size =10):

2 """Convert grid coordinates (i, j) to a single state

index."""

3 return i * grid_size + j

4

5 def index_to_state(idx , grid_size =10):

6 """Convert a state index to grid coordinates (i, j)."""

7 i = idx // grid_size

8 j = idx % grid_size

9 return i, j

10

11 def continuous_to_state(a, v, grid_size =10):

12 """Map continuous arousal (a) and valence (v) in [-1, 1]
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to a state index."""

13 step = 2 / grid_size

14 i = max(0, min(grid_size - 1, int(np.floor ((a + 1) /

step))))

15 j = max(0, min(grid_size - 1, int(np.floor ((v + 1) /

step))))

16 return state_to_index(i, j)

17

18 def get_center(state , grid_size =10):

19 """Get the center coordinates (arousal , valence) of a

state."""

20 i, j = index_to_state(state , grid_size)

21 step = 2 / grid_size

22 center_a = -1 + (i + 0.5) * step

23 center_v = -1 + (j + 0.5) * step

24 return center_a , center_v

Listing A.2: State and Coordinate Conversion

1 def get_action(state , Q, epsilon , num_actions =5):

2 """Select an action using epsilon -greedy policy."""

3 if np.random.rand() < epsilon:

4 return np.random.randint(num_actions) # Explore:

random action

5 return np.argmax(Q[state ]) # Exploit: best action

6

7 def get_next_state(state , action , grid_size =10):

8 """Determine the next state based on the current state

and action."""

9 i, j = index_to_state(state , grid_size)

10 if action == 0: # Move left

11 j = max(0, j - 1)

12 elif action == 1: # Move right

13 j = min(grid_size - 1, j + 1)

14 elif action == 2: # Move up

15 i = min(grid_size - 1, i + 1)
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16 elif action == 3: # Move down

17 i = max(0, i - 1)

18 # Action 4: Stay , no change

19 return state_to_index(i, j)

Listing A.3: Action Selection and State Transition

1 def get_reward(current_state , D, grid_size =10):

2 """Calculate reward as negative distance to data point

D, or 0 if None."""

3 if D is None:

4 return 0

5 center_a , center_v = get_center(current_state , grid_size)

6 a_d , v_d = D

7 distance = np.sqrt(( center_a - a_d) ** 2 + (center_v -

v_d) ** 2)

8 return -distance

Listing A.4: Reward Calculation

1 def get_direct_feedback(t):

2 """

3 Simulate direct feedback from the user (e.g., via emoji

system).

4 Returns: tuple (arousal_b , valence_b)

5 """

6 # Placeholder: Replace with actual user input system

7 return (0.1, 0.2) # Example feedback

8

9 def has_emotional_data(t):

10 """

11 Check if emotional data is available at time t.

12 Returns: bool

13 """

14 # Placeholder: 50% chance of data availability

15 return np.random.rand() < 0.5

16
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17 def get_emotional_data(t):

18 """

19 Get emotional data when available (e.g., from calm

states).

20 Returns: tuple (arousal_e , valence_e)

21 """

22 # Placeholder: Replace with actual data collection

23 return (0.05 , 0.15) # Example emotional data

Listing A.5: Placeholder Functions for Data Input

1 def run_q_learning ():

2 """Main Q-learning loop with eligibility traces."""

3 # Initialize Q-table and eligibility traces

4 Q = np.zeros ((num_states , num_actions))

5 e = np.zeros ((num_states , num_actions))

6

7 # Set initial state from initial baseline

8 current_state = continuous_to_state(initial_baseline_a ,

initial_baseline_v)

9

10 # Initialize epsilon for exploration

11 current_epsilon = epsilon

12

13 # Training loop

14 num_steps = 10000 # Number of training steps

15 for t in range(num_steps):

16 # Select action using epsilon -greedy

17 action = get_action(current_state , Q,

current_epsilon , num_actions)

18

19 # Transition to next state

20 next_state = get_next_state(current_state , action ,

grid_size)

21

22 # Determine data D based on time step and
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availability

23 D = None

24 if (t + 1) % N == 0:

25 D = get_direct_feedback(t + 1) # Direct

feedback every N steps

26 elif has_emotional_data(t + 1):

27 D = get_emotional_data(t + 1) # Emotional data

if available

28

29 # Calculate reward

30 reward = get_reward(next_state , D, grid_size)

31

32 # Compute temporal difference error

33 delta = reward + gamma * np.max(Q[next_state ]) -

Q[current_state , action]

34

35 # Increment eligibility trace for current

state -action pair

36 e[current_state , action] += 1

37

38 # Update Q-table and decay eligibility traces for

all state -action pairs

39 for s in range(num_states):

40 for a in range(num_actions):

41 Q[s, a] += alpha * delta * e[s, a]

42 e[s, a] *= gamma * lambda_trace

43

44 # Update current state

45 current_state = next_state

46

47 # Update exploration rate

48 current_epsilon = max(epsilon_min , current_epsilon *

epsilon_decay)

49
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50 # Return final estimated baseline for evaluation

51 final_a , final_v = get_center(current_state)

52 return final_a , final_v , Q

Listing A.6: Q-Learning with Eligibility Traces
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