
Enhancing the Performance of
Web-based Extended Reality

with WebAssembly and
WebGPU

T.M.R.D. Rodrigo
2025

Enhancing the Performance of
Web-based Extended Reality with

WebAssembly and WebGPU

T.M.R.D. Rodrigo

Index No: 20001509

Supervisor: Dr. K.D. Sandaruwan

May 2025

Submitted in partial fulfillment of the requirements of the
B.Sc. (Honours) in Computer Science Final Year Project

Declaration

I certify that this dissertation does not incorporate, without acknowledgement,

any material previously submitted for a degree or diploma in any university and

to the best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, to be

made available for photocopying and for interlibrary loans, and for the title and

abstract to be made available to outside organizations.

Candidate Name: T.M.R.D. Rodrigo

Signature of Candidate: Date:

This is to certify that this dissertation is based on the work of Mr. T.M.R.D.

Rodrigo under my supervision. The thesis has been prepared according to the

format stipulated and is of acceptable standard.

Supervisor’s Name: Dr. K.D. Sandaruwan

Signature of Supervisor: Date:

i

14/06/2025

14/06/2025

Abstract

The increasing demand for immersive web-based experiences has driven the de-

velopment of advanced browser technologies capable of delivering rich, interactive

content. Among these, WebAssembly and WebGPU have emerged as powerful

tools that promise near-native performance and high-fidelity rendering capabil-

ities, respectively. This research explores the practical integration of these two

technologies within the context of web-based Extended Reality (XR) applications,

focusing on performance and implementation challenges.

The primary objective of this study is to investigate how WebAssembly and We-

bGPU can be jointly leveraged to implement performant XR applications within

the browser, and to determine whether they offer tangible advantages over tra-

ditional WebGL and JavaScript-based approaches. To explore this, a prototype

system supporting both Virtual Reality (VR) and Augmented Reality (AR) was

developed. WebAssembly was utilized for handling CPU-related tasks, such as

processing scene data, managing XR session data, and preparing GPU commands.

Meanwhile, WebGPU was employed for rendering complex 3D scenes and execut-

ing large-scale matrix computations. Due to the lack of official WebGPU support

in the WebXR Device API, the prototype adopted WebGL as a bridging layer for

XR rendering layer handling, resulting in a hybrid rendering pipeline that was

critically evaluated throughout the study.

The study was driven by a series of research questions aimed at identifying suit-

able implementation approaches, demonstrating a practical integration strategy,

and assessing performance outcomes. A comprehensive performance evaluation

was conducted across multiple dimensions, including CPU usage, GPU workload,

frame rate stability, and draw call behavior under varying scene complexities.

The results showed that the integration of WebAssembly and WebGPU led to

notable improvements in CPU efficiency—especially in scenarios involving high-

volume matrix computations. However, it did not consistently outperform the

traditional WebGL-based implementation in terms of overall performance. This

limitation may have caused by the overhead introduced by the interoperability

ii

layer required to bridge WebGPU with WebGL in the absence of native WebXR

support.

In the course of conducting these experiments, the relationship between scene

complexity and the number of draw calls was thoroughly examined. This provided

valuable insights into CPU-GPU communication bottlenecks and validated the

use of draw call merging as a viable optimization technique in WebGPU-based

rendering pipelines.

Despite certain limitations—such as incomplete browser support, device com-

patibility constraints, and the necessity for prototype-specific optimizations—the

study provides a valuable foundation for future research. It offers practical guid-

ance for developers navigating the challenges of next-generation XR development

on the web and lays the groundwork for more seamless and efficient integration of

WebGPU within the WebXR ecosystem.

As browser vendors continue to evolve their support for WebGPU and improve

XR APIs, the insights and implementation strategies presented in this thesis will

serve as a stepping stone for more performant, portable, and interactive web-based

XR applications.

Keywords— Computer Graphics, Extended Reality, WebXR, Performance Op-

timization, WebAssembly, WebGPU, WebGL, Texture Blitting, Interoperability

iii

Preface

This dissertation, titled ”Enhancing the Performance of Web-based Extended Re-

ality with WebAssembly and WebGPU”, has been completed as partial fulfil-

ment of the requirements for the B.Sc. in Computer Science Final Year Project

(SCS4224) at the University of Colombo School of Computing, Sri Lanka. The

research was conducted from June 2024 to April 2025.

The representation of computer graphics in video games and immersive experi-

ences plays a significant role in determining real-time performance. However, as

these graphical representations grow more advanced, some hardware and devices

struggle to maintain adequate performance. This raises the question of whether

such performance limitations can be overcome—particularly through software-

level optimizations. This curiosity inspired an exploration of the domains where

performance bottlenecks exist and where targeted improvements may be possible.

The development of immersive technologies on the web has reached a pivotal point,

where performance and accessibility are converging to shape the next generation

of digital experiences. This thesis investigates a key aspect of that evolution—the

integration of WebAssembly and WebGPU in web-based Extended Reality (XR)

applications. Although both technologies are powerful individually, combining

them in an XR context introduces distinct challenges, especially considering the

current limitations of browser APIs and inconsistent platform support.

At the heart of this research is an attempt to move beyond the theoretical promise

of WebAssembly and WebGPU by implementing and evaluating a functional

system that tests their practical viability in immersive web-based applications.

Through design, development, and empirical evaluation, this study aims to pro-

vide insights into how these emerging technologies can be effectively leveraged for

XR, and where their performance boundaries currently lie.

This document presents the outcomes of the inquiry along with the technical

insights and reasoning that shaped the project, aiming to guide others working on

web-based immersive systems.

iv

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my supervi-

sor, Dr. K.D. Sandaruwan, for his continuous support, insightful guidance, and

encouragement throughout the duration of this project. His expertise and con-

structive feedback were instrumental in shaping the direction and outcome of this

research.

I am also grateful to the academic and administrative staff at the University

of Colombo School of Computing for providing the necessary resources and an

intellectually stimulating environment that enabled the successful completion of

this work.

A special thanks goes to my fellow colleagues and peers, whose helpful discussions

and collaboration have greatly contributed to my learning experience during this

project. This is including to the people who lent their devices to conduct the

quantitative experiments and the participants who engaged in the qualtitative

experiment, in which the results contributed to formulating the conclusion of the

study.

I would also like to acknowledge the developers and maintainers of the open-source

tools, libraries, and documentation that were crucial in the implementation and

testing phases of this research.

Finally, I extend my heartfelt appreciation to my family and friends for their

unwavering support, understanding, and patience throughout this journey. Their

belief in me has been a constant source of motivation.

v

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 New Technologies and Solutions . 2

1.3 Research Motivation and Objectives 3

1.4 Scope and Limitations . 4

1.5 Research Aim, Questions and Objectives 4

1.5.1 Research Aim . 4

1.5.2 Research Questions . 5

1.5.3 Research Objectives . 5

1.6 Key Terms and Concepts . 6

2 Literature Review 8

2.1 History and Problem . 8

2.2 WebXR . 9

2.3 WebGPU . 10

2.4 WebAssembly . 11

2.5 WebAssembly and WebGPU . 12

2.6 Critical Analysis of the Literature 13

3 Methodology 16

3.1 Research Methodology . 16

3.2 Experimental Setup . 16

3.3 Evaluation Plan . 17

3.3.1 Quantitative Evaluation . 18

3.3.2 Qualitative Evaluation . 19

3.4 Proposed System Architecture . 20

4 Implementation 22

4.1 WebGPU incompatibility . 22

4.2 Finding a Solution for the Incompatibility 22

vi

4.3 WebGPU-WebGL Interoperability 23

4.4 Performance Considerations . 26

4.4.1 Merging Draw Calls . 26

4.4.2 Render Bundles . 27

4.4.3 Compute Shaders . 27

4.4.4 Communication between JavaScript and C++ 28

4.4.5 Compiler Optimizations . 29

4.5 3D Model Import . 30

4.6 Rendering Frameworks . 31

4.7 Practical Implementation and Integration 32

4.7.1 ControlXR . 32

4.7.2 WasmXRGPU . 33

5 Results and Analysis 35

5.1 WebGPU-WebGL Interoperability Experiment 36

5.1.1 Using a Single High Poly 3D Model 37

5.1.2 Using Two 3D Models . 40

5.2 ControlXR and WasmXRGPU Experiment - Quantitative Analysis 41

5.2.1 Virtual Reality (VR) . 46

5.2.2 Augmented Reality (AR) . 62

5.3 ControlXR and WasmXRGPU Experiment – Qualitative Analysis . 88

5.3.1 Virtual Reality (VR) . 88

5.3.2 Augmented Reality (AR) . 88

6 Critical Evaluation of Results 95

6.1 WebGPU-WebGL Interoperability Experiment 95

6.1.1 Using a Single High Poly 3D Model 95

6.1.2 Using Two 3D Models . 96

6.2 ControlXR and WasmXRGPU Experiment - Quantitative Evaluation 97

6.2.1 Virtual Reality (VR) . 97

6.2.2 Augmented Reality (AR) . 100

6.3 ControlXR and WasmXRGPU Experiment - Qualitative Evaluation 102

6.4 Virtual Reality vs. Augmented Reality 102

6.5 The Impact of WebGPU–WebGL Interoperability 103

6.6 Findings and Contributions . 104

7 Conclusion 106

7.1 Overall Outcome . 107

7.2 Limitations . 108

7.3 Future Directions . 109

vii

References 112

A Appendix 118

A.1 Scatter Plots of Measured Metrics in VR 118

A.1.1 CPU Time (ms) . 118

A.1.2 GPU Time (ms) . 122

A.2 Violin Plots of Measured Devices in VR 125

A.2.1 Google Pixel 4A . 125

A.2.2 Google Pixel 6A . 126

A.2.3 Samsung Galaxy A15 . 127

A.2.4 Samsung Galaxy A52 . 128

A.2.5 Samsung Galaxy S23 Ultra 129

A.2.6 Meta Quest 2 . 130

A.3 Scatter Plots of Measured Metrics in AR 131

A.3.1 CPU Time (ms) . 131

A.3.2 GPU Time (ms) . 135

A.4 Violin Plots of Measured Devices in AR 138

A.4.1 Google Pixel 4A . 138

A.4.2 Google Pixel 6A . 139

A.4.3 Samsung Galaxy A15 . 140

A.4.4 Samsung Galaxy A52 . 141

A.4.5 Samsung Galaxy S23 Ultra 142

A.4.6 Meta Quest 2 . 143

viii

List of Figures

3.1 Design Science Methodology (Krupitzer 2018) 17

3.2 WebXR Device API with WebGL to create a traditional WebXR

app. (ControlXR Design) . 20

3.3 WebXR Device API with WebGPU and WebAssembly to create a

WebXR App. (Proposed WasmXRGPU Design) 21

4.1 Graphics Rendering Pipeline. (Bi et al. 2024) 23

4.2 WebGPU-WebGL interoperability approach where both graphics

APIs work together . 24

4.3 WebXR Device API with WebGPU and WebAssembly to create a

WebXR App, that uses WebGL to copy WebGPU rendered frames.

(WasmXRGPU Design) . 25

4.4 ControlXR Implementation . 32

4.5 WasmXRGPU Implementation . 33

5.1 Comparison of Average Frame Time (ms) between defined scenarios

in Table 5.1. Lower is better. 38

5.2 Comparison of Average FPS between defined scenarios in Table 5.1.

Higher is better. 39

5.3 Comparison of Average WebGL Time (ms) between defined scenar-

ios in Table 5.1. Lower is better. 39

5.4 Comparison of Average WebGPU Time (ms) between defined sce-

narios in Table 5.1. Lower is better. 40

5.5 Comparison of Average JavaScript Time (ms) between defined sce-

narios in Table 5.1. Lower is better. 40

5.6 Comparison of Average Frame Time (ms) between defined scenarios

in Table 5.2. Lower is better. 42

5.7 Comparison of Average FPS between defined scenarios in Table 5.2.

Higher is better. 42

5.8 Comparison of Average JavaScript Time (ms) between defined sce-

narios in Table 5.2. Lower is better. 43

ix

5.9 Comparison of Average WebGL Time (ms) between defined scenar-

ios in Table 5.2. Lower is better. 43

5.10 Comparison of Average WebGPU Time (ms) between defined sce-

narios in Table 5.2. Lower is better. 44

5.11 Used 3D model . 45

5.12 Comparison of Average CPU Time (ms) between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Virtual Reality (VR).

Lower is better. 47

5.13 Comparison of Average GPU Time (ms) between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Virtual Reality (VR).

Lower is better. 48

5.14 Comparison of Average FPS between ControlXR andWasmXRGPU

with respect to the defined scenarios in Table 5.3 and the devices

in Table 5.4, in the context of Virtual Reality (VR). Higher is better. 48

5.15 Comparison of Average Frame Time (ms) between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Virtual Reality (VR).

Lower is better. 49

5.16 Heatmap Visualization of Average CPU Time (ms) between Con-

trolXR and WasmXRGPU with respect to the defined scenarios in

Table 5.3 and the devices in Table 5.4, in the context of Virtual

Reality (VR). Lower the color, better. 50

5.17 Heatmap Visualization of Average GPU Time (ms) between Con-

trolXR and WasmXRGPU with respect to the defined scenarios in

Table 5.3 and the devices in Table 5.4, in the context of Virtual

Reality (VR). Lower the color, is better. 51

5.18 Heatmap Visualization of Average FPS between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Virtual Reality (VR).

Higher the color, is better. 52

5.19 Heatmap Visualization of Average Frame Time (ms) between Con-

trolXR and WasmXRGPU with respect to the defined scenarios in

Table 5.3 and the devices in Table 5.4, in the context of Virtual

Reality (VR). Lower the color, better. 53

5.20 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 1 in Table 5.3 and the devices in Table 5.4,

in the context of Virtual Reality (VR). Higher is better. 55

x

5.21 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 1 in Table 5.3 and the de-

vices in Table 5.4, in the context of Virtual Reality (VR). Lower is

better. 55

5.22 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 2 in Table 5.3 and the devices in Table 5.4,

in the context of Virtual Reality (VR). Higher is better. 56

5.23 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 2 in Table 5.3 and the de-

vices in Table 5.4, in the context of Virtual Reality (VR). Lower is

better. 56

5.24 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 3 in Table 5.3 and the devices in Table 5.4,

in the context of Virtual Reality (VR). Higher is better. 57

5.25 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 3 in Table 5.3 and the de-

vices in Table 5.4, in the context of Virtual Reality (VR). Lower is

better. 57

5.26 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 4 in Table 5.3 and the devices in Table 5.4,

in the context of Virtual Reality (VR). Higher is better. 58

5.27 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 4 in Table 5.3 and the de-

vices in Table 5.4, in the context of Virtual Reality (VR). Lower is

better. 58

5.28 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 5 in Table 5.3 and the devices in Table 5.4,

in the context of Virtual Reality (VR). Higher is better. 59

5.29 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 5 in Table 5.3 and the de-

vices in Table 5.4, in the context of Virtual Reality (VR). Lower is

better. 59

5.30 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 6 in Table 5.3 and the devices in Table 5.4,

in the context of Virtual Reality (VR). Higher is better. 60

5.31 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 6 in Table 5.3 and the de-

vices in Table 5.4, in the context of Virtual Reality (VR). Lower is

better. 60

xi

5.32 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenarios defined in Table 5.3 for Google Pixel 4A,

in the context of Virtual Reality (VR) 62

5.33 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenarios defined in Table 5.3 for

Google Pixel 4A, in the context of Virtual Reality (VR) 63

5.34 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenarios defined in Table 5.3 for Google Pixel 6A,

in the context of Virtual Reality (VR) 63

5.35 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenarios defined in Table 5.3 for

Google Pixel 6A, in the context of Virtual Reality (VR) 64

5.36 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenarios defined in Table 5.3 for Samsung Galaxy

A15, in the context of Virtual Reality (VR) 64

5.37 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenarios defined in Table 5.3 for

Samsung Galaxy A15, in the context of Virtual Reality (VR) 65

5.38 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenarios defined in Table 5.3 for Samsung Galaxy

A52, in the context of Virtual Reality (VR) 65

5.39 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenarios defined in Table 5.3 for

Samsung Galaxy A52, in the context of Virtual Reality (VR) 66

5.40 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenarios defined in Table 5.3 for Samsung Galaxy

S23 Ultra, in the context of Virtual Reality (VR) 66

5.41 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenarios defined in Table 5.3 for

Samsung Galaxy S23 Ultra, in the context of Virtual Reality (VR) . 67

5.42 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenarios defined in Table 5.3 for Meta Quest 2, in

the context of Virtual Reality (VR) 67

5.43 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenarios defined in Table 5.3 for

Meta Quest 2, in the context of Virtual Reality (VR) 68

5.44 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 1, across the devices listed in Ta-

ble 5.4, in the context of Virtual Reality (VR). 68

xii

5.45 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 2, across the devices listed in Ta-

ble 5.4, in the context of Virtual Reality (VR). 69

5.46 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 3, across the devices listed in Ta-

ble 5.4, in the context of Virtual Reality (VR). 69

5.47 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 4, across the devices listed in Ta-

ble 5.4, in the context of Virtual Reality (VR). 70

5.48 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 5, across the devices listed in Ta-

ble 5.4, in the context of Virtual Reality (VR). 70

5.49 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 6, across the devices listed in Ta-

ble 5.4, in the context of Virtual Reality (VR). 71

5.50 Comparison of Average CPU Time (ms) between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Augmented Reality

(AR). Lower is better. 72

5.51 Comparison of Average GPU Time (ms) between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Augmented Reality

(AR). Lower is better. 73

5.52 Comparison of Average FPS between ControlXR andWasmXRGPU

with respect to the defined scenarios in Table 5.3 and the devices

in Table 5.4, in the context of Augmented Reality (AR). Higher is

better. 73

5.53 Comparison of Average Frame Time (ms) between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Augmented Reality

(AR). Lower is better. 74

5.54 Heatmap Visualization of Average CPU Time (ms) between Con-

trolXR and WasmXRGPU with respect to the defined scenarios in

Table 5.3 and the devices in Table 5.4, in the context of Augmented

Reality (AR). Lower the color, better. 75

5.55 Heatmap Visualization of Average GPU Time (ms) between Con-

trolXR and WasmXRGPU with respect to the defined scenarios in

Table 5.3 and the devices in Table 5.4, in the context of Augmented

Reality (AR). Lower the color, is better. 76

xiii

5.56 Heatmap Visualization of Average FPS between ControlXR and

WasmXRGPU with respect to the defined scenarios in Table 5.3

and the devices in Table 5.4, in the context of Augmented Reality

(AR). Higher the color, is better. 77

5.57 Heatmap Visualization of Average Frame Time (ms) between Con-

trolXR and WasmXRGPU with respect to the defined scenarios in

Table 5.3 and the devices in Table 5.4, in the context of Augmented

Reality (AR). Lower the color, better. 78

5.58 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 1 in Table 5.3 and the devices in Table 5.4,

in the context of Augmented Reality (AR). Higher is better. 79

5.59 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 1 in Table 5.3 and the de-

vices in Table 5.4, in the context of Augmented Reality (AR). Lower

is better. 80

5.60 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 2 in Table 5.3 and the devices in Table 5.4,

in the context of Augmented Reality (AR). Higher is better. 80

5.61 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 2 in Table 5.3 and the de-

vices in Table 5.4, in the context of Augmented Reality (AR). Lower

is better. 81

5.62 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 3 in Table 5.3 and the devices in Table 5.4,

in the context of Augmented Reality (AR). Higher is better. 81

5.63 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 3 in Table 5.3 and the de-

vices in Table 5.4, in the context of Augmented Reality (AR). Lower

is better. 82

5.64 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 4 in Table 5.3 and the devices in Table 5.4,

in the context of Augmented Reality (AR). Higher is better. 82

5.65 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 4 in Table 5.3 and the de-

vices in Table 5.4, in the context of Augmented Reality (AR). Lower

is better. 83

5.66 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 5 in Table 5.3 and the devices in Table 5.4,

in the context of Augmented Reality (AR). Higher is better. 83

xiv

5.67 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 5 in Table 5.3 and the de-

vices in Table 5.4, in the context of Augmented Reality (AR). Lower

is better. 84

5.68 Distribution of FPS between ControlXR and WasmXRGPU with

respect to the scenario 6 in Table 5.3 and the devices in Table 5.4,

in the context of Augmented Reality (AR). Higher is better. 84

5.69 Distribution of Frame Time (ms) between ControlXR and Was-

mXRGPU with respect to the scenario 6 in Table 5.3 and the de-

vices in Table 5.4, in the context of Augmented Reality (AR). Lower

is better. 85

5.70 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 1, across the devices listed in Ta-

ble 5.4, in the context of Augmented Reality (AR). Lower is better. 85

5.71 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 2, across the devices listed in Ta-

ble 5.4, in the context of Augmented Reality (AR). Lower is better. 86

5.72 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 3, across the devices listed in Ta-

ble 5.4, in the context of Augmented Reality (AR). Lower is better. 86

5.73 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 4, across the devices listed in Ta-

ble 5.4, in the context of Augmented Reality (AR). Lower is better. 87

5.74 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 5, across the devices listed in Ta-

ble 5.4, in the context of Augmented Reality (AR). Lower is better. 87

5.75 Distribution of the first 10 Frame Time (ms) values for ControlXR

and WasmXRGPU in Scenario 6, across the devices listed in Ta-

ble 5.4, in the context of Augmented Reality (AR). Lower is better. 88

5.76 Qualitative evaluation of ControlXR andWasmXRGPU in VRmode

across multiple criteria. 89

5.77 Participant preference of ControlXR and WasmXRGPU in VR mode. 90

5.78 Qualitative evaluation of ControlXR andWasmXRGPU in VRmode

across multiple criteria. 92

5.79 Participant preference of ControlXR and WasmXRGPU in AR mode. 93

A.1 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 1 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 118

xv

A.2 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 2 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 119

A.3 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 3 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 119

A.4 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 4 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 120

A.5 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 5 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 120

A.6 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 6 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 121

A.7 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 1 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 122

A.8 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 2 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 122

A.9 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 3 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 123

A.10 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 4 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 123

A.11 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 5 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 124

A.12 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 6 in Table 5.3 and the devices in Table

5.4, in the context of Virtual Reality (VR). Lower is better. 124

A.13 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

4A, in the context of Virtual Reality (VR) 125

A.14 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

4A, in the context of Virtual Reality (VR) 125

xvi

A.15 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

6A, in the context of Virtual Reality (VR) 126

A.16 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

6A, in the context of Virtual Reality (VR) 126

A.17 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A15, in the context of Virtual Reality (VR) 127

A.18 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A15, in the context of Virtual Reality (VR) 127

A.19 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A52, in the context of Virtual Reality (VR) 128

A.20 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A52, in the context of Virtual Reality (VR) 128

A.21 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy S23 Ultra, in the context of Virtual Reality (VR) 129

A.22 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy S23 Ultra, in the context of Virtual Reality (VR) 129

A.23 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Meta Quest

2, in the context of Virtual Reality (VR) 130

A.24 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Meta Quest

2, in the context of Virtual Reality (VR) 130

A.25 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 1 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 131

A.26 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 2 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 132

A.27 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 3 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 132

xvii

A.28 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 4 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 133

A.29 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 5 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 133

A.30 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenario 6 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 134

A.31 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 1 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 135

A.32 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 2 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 135

A.33 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 3 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 136

A.34 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 4 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 136

A.35 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 5 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 137

A.36 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenario 6 in Table 5.3 and the devices in Table

5.4, in the context of Augmented Reality (AR). Lower is better. . . 137

A.37 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

4A, in the context of Augmented Reality (AR) 138

A.38 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

4A, in the context of Augmented Reality (AR) 138

A.39 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

6A, in the context of Augmented Reality (AR) 139

A.40 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Google Pixel

6A, in the context of Augmented Reality (AR) 139

xviii

A.41 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A15, in the context of Augmented Reality (AR) 140

A.42 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A15, in the context of Augmented Reality (AR) 140

A.43 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A52, in the context of Augmented Reality (AR) 141

A.44 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy A52, in the context of Augmented Reality (AR) 141

A.45 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy S23 Ultra, in the context of Augmented Reality (AR) 142

A.46 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Samsung

Galaxy S23 Ultra, in the context of Augmented Reality (AR) 142

A.47 Distribution of CPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Meta Quest

2, in the context of Augmented Reality (AR) 143

A.48 Distribution of GPU time between ControlXR and WasmXRGPU

with respect to the scenarios defined in Table 5.3 for Meta Quest

2, in the context of Augmented Reality (AR) 143

xix

List of Tables

2.1 Analysis of surveyed work with respect to the technologies that they

have used . 14

4.1 Chrome hardware support for various devices in WebXR Device

API (”WebXR Device API - Chrome Hardware Support” 2025) . . . 30

5.1 Polygon and draw call count for each scenario when using a single

high poly 3D model . 37

5.2 Polygon and draw call count for each scenario when using multiple

instances of two 3D models . 41

5.3 Polygon count for each scenario . 44

5.4 Selected devices and the web browser details 45

5.5 Qualitative evaluation partipant preference and justification - Vir-

tual Reality (VR) . 91

5.6 Qualitative evaluation partipant preference and justification - Aug-

mented Reality (AR) . 94

6.1 ANOVA results for performance metrics when multiple instances of

single high poly 3D model are used. 96

6.2 ANOVA results for performance metrics when multiple instances of

two 3D models are used. 96

xx

List of Acronyms

API Application Programming Interface. 2, 3, 7, 8, 18, 20–26, 28–35, 37, 39, 40,

88, 91–93, 95–101

AR Augmented Reality. 2, 6–9, 13–15, 61, 71–87, 90, 93–96, 98, 119–135

CPU Central Processing Unit. 2, 3, 11, 15, 17, 18, 26, 27, 34, 37, 43, 45, 46, 50,

70, 71, 75, 90, 91, 93, 94, 98, 99, 102, 104–106, 111, 112, 114, 115, 117, 118,

120–122, 127, 128, 130, 131, 133, 134

FBX Filmbox. 29

FPS Framerate Per Second. 14, 18, 34, 35, 37, 45–48, 54–59, 61–66, 70–73, 77–83,

89, 91, 92, 94, 95

GLSL OpenGL Shading Language. 27

gLTF Graphics Library Transmission Format. 29

GPU Graphics Processing Unit. 2, 3, 7, 8, 11, 12, 14, 15, 17, 18, 21, 24, 26–29,

32, 34, 35, 45–47, 51, 70, 72, 76, 90, 91, 93, 94, 98–101, 107–111, 113, 114,

116, 117, 119, 123–127, 129, 130, 132, 133, 135

JSON JavaScript Object Notation. 29

MR Mixed Reality. 6

VR Virtual Reality. 2, 6–9, 13, 15, 26, 45–52, 54–59, 61–71, 84, 90, 93–96, 98,

99, 103–119

W3C World Wide Web Consortium. 20

WGSL WebGPU Shading Language. 27

XR Extended Reality. 2, 3, 6–10, 13, 15–18, 20, 23, 31–35, 43, 60, 88, 91–93,

96–102

xxi

Chapter 1

Introduction

Technological advancements have made significant strides in recent years, particu-

larly in the field of immersive technologies, which have had a profound impact on

a wide array of sectors. One such breakthrough is Extended Reality (XR), a term

that encompasses a range of immersive experiences designed to alter or enhance

the user’s perception of reality. XR serves as an umbrella term that includes three

distinct components: Virtual Reality (VR), Mixed Reality (MR), and Augmented

Reality (AR)(Mendoza-Ramı́rez et al. 2023). These technologies differ in their

approach to user interaction and immersion. VR creates fully virtual worlds that

replace the real world entirely, immersing the user in a completely digital environ-

ment. AR, on the other hand, overlays digital content onto the user’s real-world

view, enhancing their interaction with their surroundings. MR sits between these

two extremes, blending the physical and digital worlds by allowing users to in-

teract with both virtual and real-world objects simultaneously (Mendoza-Ramı́rez

et al. 2023).

As immersive technologies like VR and AR continue to advance, they have found

application in a variety of fields including entertainment, education, healthcare,

architecture, gaming, and more. While AR has already gained significant traction,

VR is also beginning to grow in prominence, particularly in gaming, training

simulations, and virtual tourism (Carmigniani & Furht 2011). Both VR and AR

hold great promise for reshaping the way people interact with digital content,

creating new opportunities for innovation and engagement.

1.1 Problem Statement

The rapid evolution of XR technologies has been matched by the growth in their

use on mobile devices, which are increasingly equipped with the hardware capa-

1

bilities necessary for delivering compelling immersive experiences (Carmigniani

& Furht 2011). Traditionally, XR applications—whether AR or VR—have been

distributed through app stores, requiring users to download and install platform-

specific apps. However, this model has become less appealing to both users and

developers. Users often face the inconvenience of needing multiple apps for dif-

ferent use cases, while developers are forced to create separate versions of their

applications for each platform, leading to increased development time and cost

(Qiao et al. 2019). Web browser-based applications offer a compelling alternative,

as they are accessible across platforms without the need for installation, making

them more user-friendly and less restrictive for developers. However, despite the

advantages of cross-platform accessibility, web-based XR applications currently

lag behind their native counterparts in terms of performance (Qiao et al. 2019).

Web applications are typically constrained by the limitations of the web browser

environment, which adds layers of abstraction between the application and the

device hardware. While native applications have direct access to the Graph-

ics Processing Unit (GPU) and other hardware resources, web applications must

work within the constraints of the browser, which impacts their ability to deliver

high-performance immersive experiences. This discrepancy is particularly evident

in resource-intensive tasks such as real-time 3D rendering for XR applications.

Web browsers, being general-purpose tools designed for a wide range of tasks, are

not optimized for the specific needs of hardware-intensive applications like XR.

As a result, developers face challenges in delivering seamless, high-performance

experiences for users, particularly in the context of mobile and web-based XR

(Hamzaturrazak et al. 2023).

1.2 New Technologies and Solutions

A key component of immersive XR applications is the ability to render 3D ob-

jects accurately and in real-time, seamlessly blending virtual content with the

physical world. This requires leveraging the full potential of the device’s graph-

ics hardware, specifically the Graphics Processing Unit (GPU). For many years,

OpenGL (OpenGL 1997) has been the standard graphics API for rendering 3D

content, but it has limitations, particularly when working with modern hardware

and large-scale immersive applications. To address these challenges, new, more

efficient graphics APIs such as Vulkan (Vulkan 2016) and DirectX (DirectX by

Microsoft 1995) have been developed. These APIs offer low-level access to the

GPU, providing developers with greater control over hardware resources for en-

hanced performance. Apple’s Metal API (Metal by Apple 2014) further adds to

2

the landscape of platform-specific graphics APIs.

For web-based applications, WebGL (WebGL 2011) has traditionally been the go-

to solution for rendering 3D graphics in the browser. While WebGL has been

instrumental in bringing 3D content to the web, its capabilities are limited when

compared to more modern APIs like Vulkan and Metal. WebGPU (WebGPU

2024) was developed as the next-generation graphics API for the web, designed to

address the limitations of WebGL. WebGPU provides low-level, high-performance

access to the GPU, enabling developers to create more sophisticated and effi-

cient 3D graphics and computation pipelines. This makes WebGPU a critical

component for improving the performance of web-based XR applications, offering

closer-to-native performance for immersive experiences.

In addition to WebGPU, WebAssembly (WebAssembly 2017) plays a key role in

optimizing the performance of web-based applications. By allowing developers to

compile code written in languages like C, C++, and Rust into efficient, portable

binary formats, WebAssembly enables near-native execution speeds for web ap-

plications. This capability is especially important for performance-sensitive tasks

such as 3D rendering and real-time physics simulations, which are central to XR

applications.

Finally, the WebXR Device API (WebXR Device API 2024) serves as a unified

standard for building immersive XR experiences across different devices, including

smartphones, headsets, and other specialized hardware. WebXR simplifies the

process of creating cross-platform XR applications by providing a consistent API

for both VR and AR experiences. This allows developers to create applications

that work seamlessly across a wide range of devices, bridging the gap between

different hardware platforms.

1.3 Research Motivation and Objectives

This research aims to explore how modern web technologies, particularly We-

bGPU, WebAssembly, and the WebXR Device API, can be leveraged to improve

the performance and user experience of web-based XR applications. While na-

tive applications have long been considered the benchmark for performance in

XR, recent advancements in web technologies offer promising opportunities to

narrow the performance gap. By investigating the integration of WebGPU, We-

bAssembly, and WebXR, this research seeks to contribute to the development of

high-performance, cross-platform XR applications that offer a seamless experience

for users, whether they are interacting with virtual or augmented content.

3

1.4 Scope and Limitations

This research investigates the performance of web-based Extended Reality (XR)

applications developed using WebAssembly and WebGPU. While the study aims

to provide insights into the effectiveness and viability of these technologies in sup-

porting immersive web-based XR experiences, the following scope and limitations

apply:

Firstly, this study does not incorporate cloud servers or edge computing ap-

proaches for performance enhancement. Although previous studies such as Qiao

et al. (2019) suggest that offloading computation to the cloud or edge servers

may improve the performance of web-based XR applications, this research focuses

solely on client-side processing. For instance, 3D models and other assets are

rendered and managed locally within the browser environment without relying on

remote servers.

Secondly, although dedicated XR devices such as AR glasses or VR headsets are in-

creasingly becoming popular and specialized for immersive experiences (Mendoza-

Ramı́rez et al. 2023), this study does not aim to cover the full range of such

devices. Instead, the focus is on commonly available XR-compatible hardware.

Experiments were conducted using a limited set of XR devices, but the gener-

alization of results to a wide variety of dedicated XR hardware platforms is not

within the scope of this research.

Lastly, this research does not investigate performance improvements for specific

XR-related tasks such as 3D pose estimation or lighting estimation. As discussed

in Bi et al. (2023), such tasks are essential for creating rich and immersive XR

experiences, but often require substantial computational resources. Current web-

based XR frameworks may not allocate enough time for accurate execution of these

tasks. Therefore, this study evaluates performance improvements at a general

level, focusing on the overall system responsiveness and rendering performance,

rather than on enhancements to these individual computational tasks.

1.5 Research Aim, Questions and Objectives

1.5.1 Research Aim

It is evident that the use of emerging web technologies such as WebAssembly and

WebGPU has led to notable improvements in the performance of immersive web

applications. Thus, the main aim of this study is stated as follows:

4

To investigate the performance of web-based XR applications that are powered by

WebAssembly and WebGPU

1.5.2 Research Questions

1. What are the suitable approaches to implement web-based XR applications

using WebGPU and WebAssembly?

� This question seeks to determine how WebAssembly and WebGPU can

be effectively integrated in the context of WebXR. The answer will

identify an approach that leverages the strengths of both technologies

to support immersive XR experiences in the browser.

2. How can web-based XR applications be implemented using WebAssembly

and WebGPU following the most suitable approach?

� Once a suitable integration strategy is identified, the practical imple-

mentation of WebXR applications using that approach will be explored

and demonstrated.

3. How do web-based XR applications perform when implemented using We-

bGPU and WebAssembly?

� This question evaluates the performance of the implemented WebXR

application in comparison to traditional WebXR implementations (e.g.,

using WebGL), focusing on key performance metrics such as frame rate,

responsiveness, and rendering quality.

1.5.3 Research Objectives

To address the research questions and accomplish the overall aim of the study, the

following research objectives are defined:

1. To identify the challenges of using WebAssembly and WebGPU together for

implementing web-based XR applications

2. To implement a web-based XR application using WebAssembly and We-

bGPU

3. To assess the performance of web-based XR applications implemented using

WebAssembly and WebGPU

5

1.6 Key Terms and Concepts

This section defines several technical terms that are used throughout the thesis to

ensure clarity and consistency.

Framebuffer A memory buffer that stores the final rendered image before it

is displayed on the screen. It holds color, depth, and stencil information

required for rendering a frame.

Draw Call A command issued by the CPU to instruct the GPU to render a set

of primitives (such as triangles or lines) using specified resources. Each draw

call typically includes:

� Vertex buffer(s) – containing the geometry data such as positions, nor-

mals, UVs, etc.

� Index buffer (optional) – defining how vertices are reused to form prim-

itives.

� Pipeline state – including the shader programs, blending, depth, ras-

terization, and other GPU state settings.

� Bind groups or descriptor sets – providing access to textures, uniform

buffers, and other GPU resources.

� Number of vertices/indices to draw – determining the size of the draw.

� Instance count (for instanced rendering) – if applicable.

Render Bundle In WebGPU, a render bundle is a pre-recorded set of rendering

commands that can be efficiently reused in a render pass. It helps reduce

CPU overhead and improve rendering performance by avoiding redundant

state setup.

Compute Shader A programmable shader stage that runs general-purpose com-

putations on the GPU. Unlike vertex or fragment shaders, compute shaders

are not bound to the graphics pipeline and are ideal for parallel computations

like physics, lighting, or image processing.

Viewport The rectangular area of the window where the final image is rendered.

It defines how normalized device coordinates (from -1 to 1) map to screen

coordinates.

Projection Matrix A matrix that transforms 3D coordinates into a 2D repre-

sentation for display on the screen. It handles perspective distortion to give

the illusion of depth.

6

View Matrix A matrix that represents the camera’s position and orientation in

the scene. It transforms world coordinates into camera (view) coordinates.

Model Matrix A matrix that transforms object coordinates (also known as local

coordinates) into world coordinates. It is used to position, rotate, and scale

an object within a scene.

Uniform A uniform is a variable in shaders that holds constant data, like trans-

formation matrices or lighting settings, which doesn’t change during a single

draw call.

Uniform Bind Group A uniform bind group is a collection of uniforms that

are bound together and used by a shader during rendering, allowing efficient

management of shader inputs.

GPU Buffer A GPU buffer is a chunk of memory allocated on the GPU used

to store data, such as vertex positions, indices, or other resources, that the

GPU can access during rendering or computation tasks.

7

Chapter 2

Literature Review

2.1 History and Problem

The technology of simulation dates back to the 1920s, originally developed to

mimic real-life flight experiences. Over time, these systems evolved and found

applications in numerous domains. In 1989, Jaron Lanier coined the term Vir-

tual Reality (VR) to describe immersive, computer-generated environments (Zhao

2009). As computing power advanced, particularly with the rise of portable de-

vices such as smartphones, Zhao (2009) also highlighted their growing relevance

in VR applications, referring to them as hand-held displays capable of supporting

intensive computations.

With the expansion of web technologies, the idea of delivering VR experiences

through the browser gave rise to web-based VR. Neelakantam & Pant (2017) gave

an introduction to the WebVR API, outlining the potential of implementing VR

directly on the web platform. Building upon this, Toasa G et al. (2019) evaluated

the performance of WebVR and WebGL across different devices and browsers.

Their findings indicate that while both perform comparably in terms of Framer-

ate Per Second (FPS) on desktop systems, WebVR has an advantage in mobile

environments due to lower VRAM usage and more stable frame rates—making it

more suitable for mobile-based 3D VR content. However, the WebVR API has

since been deprecated (WebVR 2024), paving the way for more modern APIs like

WebXR.

According to Lee (2012), the term ”Augmented Reality (AR)” was given by a

researcher named Thomas Caudell back in 1990. However, Carmigniani & Furht

(2011) acknowledges that AR technology dates back to the 1950s. The work

of Azuma (1997) serves as one of the earliest surveys for AR. While both of

8

these surveys discuss specific devices catered toward AR, Carmigniani & Furht

(2011) addresses that mobile device-specific applications in AR are worthy of being

studied as mobile devices are starting to become an integral part of people’s lives

at that time. Following that, Qiao et al. (2019) surveys the literature based on

mobile AR and discusses what the capabilities are when mobile AR meets the web.

They mention the 5G network speed, computation outsourcing to the cloud, and

edge computing as some of the methods to improve the performance of WebAR.

Moreover, they also list down various web technologies that enable the possibility

of implementing AR on web, such as WebRTC (WebRTC 2018), WebAssembly

(WebAssembly 2017), Web Workers (MozDevNet 2023), and WebGL (WebGL

2011). Apart from this, McNally & Koviland (2024) reviews some of the web-

based AR platforms and their features with respect to the different web browsers,

different devices, and different platforms. Yet they do not assess the performance

capabilities.

2.2 WebXR

The WebXR Device API (WebXR Device API 2024), provided by modern browser

vendors, enables the creation of immersive and interactive sessions for both Vir-

tual Reality (VR) and Augmented Reality (AR). Leveraging this capability, Ferrão

et al. (2023) proposed a framework aimed at enhancing the efficiency of WebAR

development by exploiting the interactive features offered by WebXR. Specifi-

cally, they have used “depth”, “lighting-estimation”, “hit-test”, “anchors”, and

“geo-alignment” features to implement shadow casting, physics simulation, occlu-

sion, etc. Their work evaluates performance primarily through frame time metrics

and compares the results with other WebAR frameworks such as MyWebAR and

DepthLab (Du et al. 2020). However, they also highlight a significant limitation:

the tight coupling between WebGL rendering textures and the WebXR Device API

introduces challenges for implementing real-time reflections, restricting rendering

flexibility in Web-based AR/VR applications.

Another noteworthy advancement in WebAR research is the integration of mas-

sive 3D point clouds with semantics into web-based, marker-less mobile AR ap-

plications. (Kharroubi et al. 2020) propose a system that supports real-time vi-

sualization and interaction with point clouds comprising up to 29 million points,

achieving frame rates between 27 and 60 FPS on mobile browsers. Their approach

involves a hierarchical structuring of the point cloud data using an adapted ver-

sion of Potree’s Octree, allowing the system to operate within a manageable point

budget while maintaining interactivity. The study also addresses key challenges

9

in mobile WebAR, including network dependency and battery consumption, es-

pecially as sensor usage remains continuous during the experience. Their findings

highlight that the system’s responsiveness depends more on the number of dis-

played points rather than the total dataset size, suggesting scalability for even

larger point clouds.

Bi et al. (2023) addresses the performance of WebXR in their work by comparing

a few of the popular JavaScript frameworks used for creating XR experiences

on the web. To evaluate, they have also created a separate tool to capture the

results in the web browser, which is currently publicly accessible. Bi et al. (2023)

shows that each framework has its own strengths and weaknesses, but there is no

framework that dominates in all aspects. Because of this, they give implications

catered towards different stakeholders, such as WebXR developers, web browser

developers, and XR framework developers. Bi et al. (2023)’s one of the important

findings shows that the current frameworks are incapable of fulfilling the real-

world understanding task as the rendering and the camera capture take the most

of the time to have interactive FPS.

Taking the rendering process of web-based AR applications into account, Hamzatur-

razak et al. (2023)’s work compares WebGL and OpenGL shading languages. Their

motivation for this study is to show that WebGL and WebAR applications in

general have limited capabilities to access the hardware compared to native ap-

plications, and they try to investigate this by using OpenGL shader and WebGL

shader and comparing their rendering performance. Hamzaturrazak et al. (2023)

states that WebGL consists of two shaders, namely WebGL raw shader and GLSL

shader. By using these two shaders, they have obtained a result indicating that

GLSL shader performs better when the rendering mesh consists of a higher num-

ber of polygons. They further state that rendering low-poly and medium-poly

meshes didn’t indicate differences between the shaders, yet their suggestion for

this observation is the limitation of the hardware that they have used. They con-

clude by stating that GLSL shader is the recommended rendering shader for web

based AR applications.

2.3 WebGPU

WebGL has been the standard for rendering 3D objects in the web browser (We-

bGL 2011). With the release of its successor, WebGPU (WebGPU 2024) is said

to have better performance than WebGL due to it’s capability of accessing the

device’s GPU directly. Usta (2024) studies the performance of WebGPU in the

context of web-based geographic information systems. Since it also considers the

10

rendering aspect of the web, this study’s results are relevant. Here, Usta (2024)

shows their results, indicating that WebGPU is at-most three times more perfor-

mant than WebGL. To obtain such results, they rendered some number of objects

using both of the technologies and kept increasing that number, which ended up

increasing the number of vertices. Their reasoning for the improvement is that

WebGPU’s capabilities include direct access to the GPU, parallelism, and multi-

threading. An important aspect of this study is that they haven’t used available

JavaScript frameworks that include WebGPU. Usta (2024) states that it is unfair

to compare using the frameworks as WebGL is more mature compared to We-

bGPU within those frameworks. Another study done by Chickerur et al. (2024)

shows how WebGPU performs better than WebGL in a Web 3.0 environment.

However, a recent work by Bi et al. (2024) analyzes the performance of current

frameworks when they use WebGPU. Their findings have shown that WebGL

implementations give better performance than WebGPU implementations. From

these findings, they conclude that the frameworks have not utilized WebGPU’s

capabilities correctly. Thus, they introduce their own system called FusionRen-

der that overcomes the previously found limitations. In their proposed system,

it identifies 3D objects that can be rendered together, so those can be rendered

using a single draw call, thus optimizing the performance. Furthermore, they

have incorporated this system with three.js (Three.js 2010) to use some graphical

rendering components such as cameras and lighting effects. Their results show

that their proposed system outperforms both WebGL implementations and cur-

rent WebGPU implementations of the frameworks. But Bi et al. (2024) states

that the performance difference can vary if the rendering scene does not contain a

large amount of 3D objects. This is because having a small number of 3D objects

means there are fewer to merge, so the number of draw calls will not differ that

significantly. Furthermore, it is also worth noting that this study focuses purely

on rendering 3D graphics on the web.

2.4 WebAssembly

Khomtchouk (2021) also addresses the issue of web-based AR/VR applications

being less performant than their native counterparts. Their argument for this is-

sue is the use of JavaScript in web applications, which is a Just-In-Time compiling

language. They state that using an Ahead-Of-Time compiling language can cause

better performance. Therefore, they propose to use WebAssembly (WebAssem-

bly 2017) that acts as a compilation target. They compared the performance

of WebAssembly with JavaScript and asm.js (Asm.js Specification 2011) by im-

11

plementing an algorithm. Khomtchouk (2021)’s results show that WebAssembly

implementation is twenty times faster than JavaScript and two times faster than

asm.js. Hence, they recommend integrating WebAssembly into WebXR libraries

and standardizing it by introducing a WebXR framework that is based on We-

bAssembly.

Liu et al. (2023) in their work compares the performance of WebAssembly to

JavaScript in the context of WebXR. To conduct the experiment, they have used

Magnum Engine (Magnum Engine 2022) and OpenCV (OpenCV 2000) to write

the code and cross-compile using Emscripten (Emscripten 2015) to port the code

into JavaScript and WebAssembly. Based on these implementations, their results

show that WebAssembly has major improvements over JavaScript in various as-

pects such as Page load Time, Object Tracking and slightly on Central Processing

Unit (CPU) and GPU utilization (Liu et al. 2023). However, they note that

the memory utilization in WebAssembly falls short behind JavaScript as it can

dynamically handle the memory allocations, which is not done by WebAssembly

automatically. They conclude that WebAssembly performs better than JavaScript,

but it has more room for improvement in closing the gap between native applica-

tions and web-based applications. Finally, Liu et al. (2023) state that WebGPU

(WebGPU 2024) should be used since GPU is used extensively in XR applications.

They indicate that accelerating and optimizing the performance of WebGPU by

integrating with WebAssembly is their future work.

2.5 WebAssembly and WebGPU

The combined use of WebAssembly and WebGPU has been explored across various

performance-critical domains. For instance, Erazo & Demir (2023) introduced a

novel computational library targeting hydrology and environmental sciences that

leverages both WebAssembly and WebGPU to enable high-performance scientific

simulations directly in the browser. Similarly, Ammann et al. (2022) developed a

map rendering library as a proof-of-concept, demonstrating how these technologies

can enhance rendering performance and responsiveness for interactive geospatial

applications.

Image processing represents another domain that benefits significantly from this

integration. Nam et al. (2024) showed that combining WebAssembly with We-

bGPU can yield execution speeds up to ten times faster than traditional JavaScript

implementations, due to the efficient utilization of lower-level programming lan-

guages and parallelized GPU computation. In the context of AI, Odume et al.

(2024) investigated the integration of WebAssembly and WebGPU for running

12

machine learning models directly in web applications. Their results indicate that

WebGPU accelerates parallelizable tasks such as image classification, while We-

bAssembly optimizes CPU-bound operations. This synergy enables real-time in-

ference, enhances privacy by reducing server-side dependencies, and lowers oper-

ational costs—making it a compelling approach for deploying AI models on the

web.

2.6 Critical Analysis of the Literature

A comprehensive survey of recent work in web-based XR and rendering technolo-

gies, summarized in Table 2.1, reveals a notable gap in the joint utilization of

WebGPU and WebAssembly for implementing immersive XR applications. While

various studies have explored WebGL-based XR frameworks (Ferrão et al. 2023,

Kharroubi et al. 2020, 8th Wall 2024), and others have adopted WebAssembly

for computational acceleration (Liu et al. 2023, Khomtchouk 2021, Wonderland

Engine 2024), none have effectively combined WebGPU’s modern GPU rendering

capabilities with WebAssembly’s near-native performance benefits in the context

of WebXR.

Several works have demonstrated the potential of WebGPU and WebAssembly for

general-purpose rendering and computation on the web, especially in domains like

GIS visualization (Usta 2024), machine learning (Odume et al. 2024), and image

processing (Nam et al. 2024), but these are not targeted towards WebXR use cases.

Importantly, Liu et al. (2023) explicitly identify the need for further exploration

of WebGPU and WebAssembly in XR contexts as future work, signaling an open

challenge in the field.

This lack of integration highlights a crucial gap: despite both technologies be-

ing highly promising for delivering performant and interactive experiences in web

environments, they have not yet been jointly explored within immersive WebXR

applications.

This identified gap directly informs the research questions outlined in Section

1.5.2, each of which is detailed below to frame the core investigative focus of this

thesis:

� The first research question asks:

What are the suitable approaches to implement web-based XR

applications using WebGPU and WebAssembly?

– This seeks to address the methodological vacuum revealed by the cur-

rent literature, where integration patterns between these technologies

13

Work Context Technologies WebGPU WebAssembly

Hamzaturrazak
et al. (2023)

WebAR WebGL,
OpenGL

✗ ✗

Liu et al. (2023) WebXR WebGL, We-
bAssembly

✗ ✓

Ferrão et al.
(2023)

WebAR Frame-
work

WebGL
(Three.js)

✗ ✗

Kharroubi et al.
(2020)

WebAR Point
Cloud Intergra-
tion

WebGL
(Three.js)

✗ ✗

Liu et al. (2023) WebXR WebGL, We-
bAssembly

✗ ✓

Bi et al. (2024) 3D rendering on
web

WebGPU, We-
bGL

✓ ✗

Usta (2024) WebGIS WebGPU, We-
bGL

✓ ✗

Chickerur et al.
(2024)

Rendering on
Web 3.0

WebGPU, We-
bGL

✓ ✗

Bi et al. (2023)’s
review

WebXR WebGL,
JavaScript
Frameworks

✗ ✗

Khomtchouk
(2021)’s review

WebAR, WebVR WebAssembly,
asm.js,
JavaScript

✗ ✓

Wonderland En-
gine (2024)

Engine for
WebXR develop-
ment

WebGL, We-
bAssembly

✗ ✓

8th Wall (2024) WebXR JavaScript, We-
bGL

✗ ✗

Ammann et al.
(2022)

Map Renderer WebGPU, We-
bAssembly,

✓ ✓

Erazo & Demir
(2023)

Computational
Library

WebGPU, We-
bAssembly,

✓ ✓

Nam et al. (2024) Image Processing
on Web

WebGPU, We-
bAssembly,

✓ ✓

Odume et al.
(2024)

Machine Learn-
ing on Web

WebGPU, We-
bAssembly,

✓ ✓

Table 2.1: Analysis of surveyed work with respect to the technologies that they
have used

14

in XR contexts remain largely undocumented.

� The second question follows up with:

How can web-based XR applications be implemented using We-

bAssembly and WebGPU following the most suitable approach?

– This reflects the implementation challenge that arises from the lack of

real-world systems combining these technologies in WebXR pipelines.

� The third question addresses:

How do web-based XR applications perform when implemented

using WebGPU and WebAssembly?

– Since no prior work evaluates the performance of such a combination in

XR, this study contributes novel empirical findings, especially regard-

ing CPU/GPU times, frame rates, and draw call behavior in hybrid

rendering pipelines.

Thus, the absence of prior work combining WebGPU and WebAssembly in We-

bXR, alongside the explicit need for such research mentioned in existing studies,

serves as a clear and compelling justification for this thesis.

15

Chapter 3

Methodology

3.1 Research Methodology

This study adopts a Design Science Research (DSR) methodology, supported by

empirical experimentation. As illustrated in Figure 3.1, the central problem is

identified as the performance gap between native and web-based Extended Real-

ity (XR) applications. This gap can hinder the widespread adoption of WebXR

experiences due to latency, reduced frame rates, or limited feature support.

To address this, the research proposes the use of WebGPU and WebAssembly as

an alternative rendering and execution pipeline to improve the performance of

web-based XR applications. Within the DSR process, the proposed combination

serves as an artifact, which is iteratively designed, developed, and evaluated.

This iterative approach allows exploration of different integration methods be-

tweenWebGPU andWebAssembly, assessing their effectiveness in delivering smooth,

high-performance XR experiences. The final outcome is expected to provide prac-

tical guidance for developers, while also contributing new insights for researchers

and browser vendors. The design and results of the study are intended to be

shared with the wider community of WebXR practitioners.

3.2 Experimental Setup

To implement the methodology and evaluate the proposed solution, the experi-

mental approach is inspired by the comparative study from Hamzaturrazak et al.

(2023), adapted for the context of WebXR. The study consists of developing and

comparing two distinct XR applications, followed by a detailed performance eval-

uation.

16

Figure 3.1: Design Science Methodology (Krupitzer 2018)

1. WebXR Application using WebGL (ControlXR): An XR application

is implemented using WebGL, the conventional standard for rendering 3D

graphics in web environments. This application represents the control group,

providing a performance baseline for web-based XR experiences using tradi-

tional technologies. It is referred to as ControlXR.

2. WebXR Application usingWebGPU andWebAssembly (WasmXRGPU):

The proposed solution is implemented by combining WebGPU and We-

bAssembly to build an advanced web-based XR application. This approach

aims to overcome the limitations of WebGL and JavaScript, and the appli-

cation is referred to as WasmXRGPU.

3. Performance Evaluation and Comparison: All three implementations

are evaluated in terms of key performance metrics such as frame rate, ren-

dering time, CPU and GPU times. The findings are analyzed to assess the

feasibility, advantages, and limitations of the WebGPU and WebAssembly

approach for delivering practical WebXR experiences.

This experimental setup enables a structured and measurable comparison of ren-

dering pipelines across web environments, ensuring that the research conclusions

are evidence-based and practically relevant.

3.3 Evaluation Plan

To determine the effectiveness and practicality of the proposed WebXR solution,

the evaluation consists of both quantitative and qualitative assessments. These

evaluations are inspired by the methodologies and metrics used in prior work,

particularly Liu et al. (2023), Bi et al. (2023), and Bi et al. (2024).

17

3.3.1 Quantitative Evaluation

Quantitative evaluation focuses on measuring system performance using technical

metrics commonly used in the context of WebXR and web rendering. Based on

the literature, the following performance metrics will be considered:

� Framerate Per Second (FPS)

– FPS is a direct indicator of rendering performance. Since rendering

complexity and the number of 3D objects significantly influence FPS,

experiments in this study will involve variations in both factors to eval-

uate performance consistency. In the work by Bi et al. (2023), FPS is a

primary metric used to assess the performance of different frameworks.

They measure it over a one-minute duration and compute the average

to represent the framework’s rendering efficiency.

� Frame Time

– Frame time represents the duration needed to render a single frame. It

gives insight into how rendering load is distributed between the CPU

and GPU. Bi et al. (2024) puts an emphasis into this metric because as

they quote ”The FPS matches the screen’s refresh rate when sufficient

resources ar available. Framework differences can be observed through

frame time when FPS remains constant for scenes with less complexity.”

� Session Load Time

– In this study, performance metrics are recorded starting from the mo-

ment the user explicitly initiates an XR session via an event. This

design choice stems from a restriction imposed by the WebXR Device

API, which mandates user consent before initiating any XR session.

While previous works such as Liu et al. (2023) consider page load

time—measuring the duration from page request to first frame ren-

der including asset decoding and model preparation—this metric does

not fully reflect startup performance in an immersive context. Instead,

session load time is adopted as a more representative metric in this

research, capturing the time from session request to the rendering of

the first immersive frame. This better aligns with user-perceived per-

formance in WebXR applications, where the immersive experience only

begins once the session is explicitly started.

� CPU and GPU Times

– Since WebGPU provides lower-level access to the GPU, analyzing the

18

distribution of computational load between the CPU and GPU offers

valuable insights into performance characteristics and potential bot-

tlenecks. Additionally, as WebAssembly code is executed on the CPU,

measuring CPU performance becomes crucial for a comprehensive eval-

uation. Liu et al. (2023) examine these metrics to compare the perfor-

mance of JavaScript and WebAssembly and to understand how exe-

cution time is distributed over different phases. Moreover, different

frameworks and libraries adopt varied optimization strategies, result-

ing in distinct low-level instructions executed on the CPU and GPU.

To investigate these differences, Bi et al. (2023) measure and visualize

CPU and GPU usage over time and under varying scene complexities,

enabling deeper insights into how different frameworks utilize hardware

resources.

These metrics will be evaluated across the following experimental dimensions:

� Rendering scenarios with varying levels of complexity

� A range of devices with diverse hardware specifications

Due to platform limitations on Apple/iOS devices—particularly restricted access

to WebXR Device API—this study will focus solely on Android-based devices.

Additionally, Google Chrome will be used as the primary web browser, as it offers

the most up-to-date support for the relevant WebXR and WebGPU.

3.3.2 Qualitative Evaluation

While quantitative results reveal system-level performance, the user experience

provides insights into practical usability. To complement the technical evaluation,

a qualitative study will be conducted involving human participants. Each partic-

ipant will interact with all two implementations: ControlXR and WasmXRGPU.

Participants will be asked to respond to the following questions, rating each on a

scale from 1 (very poor) to 10 (excellent), with justification:

� How do you rate the responsiveness of the implementation?

� How do you rate the accuracy and precision of the virtual objects in

the implementation?

� How do you rate the overall experience of the implementation?

� Which implementation did you prefer overall, and why? How did the imple-

mentation compare to the other?

19

Figure 3.2: WebXR Device API with WebGL to create a traditional WebXR app.
(ControlXR Design)

By triangulating quantitative performance metrics with qualitative user feedback,

the study aims to present a well-rounded evaluation of the proposed solution’s

viability in real-world WebXR scenarios.

3.4 Proposed System Architecture

In the realm of WebXR literature, the WebXR Device API (WebXR Device API

2024) is widely used (Liu et al. 2023, Qiao et al. 2019, Khomtchouk 2021, McNally

& Koviland 2024, Hamzaturrazak et al. 2023, Lee et al. 2021, Maclntyre & Smith

2018) to leverage XR functionalities in web environments. This is primarily be-

cause the WebXR Device API is developed based on specifications provided by

the World Wide Web Consortium (W3C) (W3C 2024), ensuring a standardized

interface for accessing XR capabilities in web browsers. Furthermore, the API is

open-source and actively developed, enabling progressive integration of new fea-

tures. Given this, using the WebXR Device API to access XR functionalities

becomes a natural choice.

However, the API specification clearly states that its role is limited to comput-

ing the necessary XR-related tasks—it does not perform any 3D rendering itself.

Instead, developers must use the results of these computations to render 3D con-

tent using their preferred graphics pipeline. To support this rendering process,

the WebXR Device API requires access to a rendering context’s framebuffer. For

example, in a WebAR application, the API must access the device’s camera and

render the feed within the browser, which necessitates a valid framebuffer from

a rendering context. Figure 3.2 depicts how a simple WebXR application works

with the use of above stated APIs. This architecture can be followed to implement

the control group of the experiment, ControlXR.

Since 3D rendering only depends on the graphics API, it should be trivial to switch

20

Figure 3.3: WebXR Device API with WebGPU and WebAssembly to create a
WebXR App. (Proposed WasmXRGPU Design)

WebGL with WebGPU in Figure 3.2 and expose WebXR Device API to C++ and

obtain the architecture for WasmXRGPU as depcited in Figure 3.3.

21

Chapter 4

Implementation

Conducting this research involves investigating the defined research problem and

formulating answers to the corresponding research questions. The research objec-

tives serve as fundamental guides that support and direct this process. This study

involves two major implementations: ControlXR, which serves as the control

group, and WasmXRGPU, which represents the experimental group.

4.1 WebGPU incompatibility

Currently, the WebXR Device API only supports WebGL-based rendering con-

texts. While support for WebGPU has been proposed, it has not yet been fully

implemented or shipped within the API (”WebXR/WebGPU Binding Module”

2025). This limitation poses a challenge for this research, particularly when con-

sidering the use of WebGPU as part of the proposed solution.

4.2 Finding a Solution for the Incompatibility

Understanding the distinction between different graphics APIs—namely WebGL

and WebGPU—is essential here. Graphics APIs provide the interface through

which developers issue rendering commands to the GPU. As shown in Figure 4.1,

the graphics rendering pipeline consists of multiple stages. Among these, the

vertex and fragment shader stages are programmable, meaning developers can

write custom shader code to define how those stages operate. Other stages are

considered fixed-function, though they can still be configured to some degree (Bi

et al. 2024).

One key distinction is that WebGPU offers finer-grained control and configura-

bility over the pipeline compared to WebGL, making it a more modern, low-level

22

Figure 4.1: Graphics Rendering Pipeline. (Bi et al. 2024)

API. In programmable stages, shaders perform essential tasks such as 3D-to-2D

projection (via matrix multiplication), lighting calculations, and color computa-

tions. Once these calculations are complete, the final output is stored in the

framebuffer.

This leads to a potential workaround for the WebXR limitation discussed earlier:

WebGPU–WebGL interoperability.

4.3 WebGPU-WebGL Interoperability

WebGPU–WebGL interoperability refers to the approach where both APIs

are used in conjunction, each handling specific parts of the rendering pipeline. At

first glance, this might seem to undermine the objective of this study—which is

to explore the performance benefits of WebGPU. However, it is important to note

that the WebXR Device API requires only a WebGL-based framebuffer—that is,

the final output of the rendering pipeline. The actual computation, including

vertex processing, shading, and rasterization, can still be carried out using We-

bGPU. The rendered output can then be transferred fromWebGPU to the WebGL

framebuffer for display within the WebXR pipeline. The process of transferring

the texture data from one place to another, can be done using a technique called

”Texture blitting”.

In this setup, the role of WebGL is reduced to a minimal one, acting only as

a passthrough for the rendered frame. Specifically, its responsibilities can be

summarized as follows:

1. Create a WebGL texture.

2. Copy the rendered texture/frame from WebGPU to the WebGL’s texture.

23

Figure 4.2: WebGPU-WebGL interoperability approach where both graphics APIs
work together

3. Upload that texture data to WebGL’s framebuffer.

This interoperability is feasible due to the nature of framebuffers. Ultimately, a

framebuffer holds the final rendered output, which is essentially a texture—a 2D

image with specific dimensions. Thus, the rendered result from WebGPU can be

treated as a regular image or frame and transferred accordingly.

The overall process can be outlined in the following steps and it is depicted in

Figure 4.2.

1. Initialize the WebXR Device API with a WebGL rendering context.

2. Initialize an Offscreen Canvas (OffScreenCanvas - MDN Web Docs 2024)

using a WebGPU context.

3. Use the WebXR Device API to handle XR-specific tasks such as tracking

and pose estimation.

4. Pass the results of the WebXR computations to the WebGPU pipeline for

rendering.

5. Use WebGL’s blitFramebuffer (BlitFramebuffer - MDN Web Docs 2024)

or a similar method to copy the content from the WebGPU-based offscreen

canvas to the WebGL framebuffer.

One significant challenge in the WebGPU-WebGL interoperability approach is

the difference in framebuffer coordinate systems. WebGPU uses a left-handed

coordinate system, while WebGL operates in a right-handed coordinate system.

This can lead to discrepancies when copying frames between the two APIs.

24

Figure 4.3: WebXR Device API with WebGPU and WebAssembly to create a We-
bXR App, that uses WebGL to copy WebGPU rendered frames. (WasmXRGPU
Design)

To address this, the blitFramebuffer function is configured to invert the source

framebuffer’s vertical axis when transferring the frame to WebGL. This is achieved

by swapping the srcY0 and srcY1 coordinates in the blitFramebuffer call as spec-

ified in Listing 4.1.

The inversion ensures that the WebGPU-rendered frame is correctly oriented when

displayed by WebGL, maintaining visual consistency across rendering pipelines.

Listing 4.1: Blitting a texture

gl.blitFramebuffer(

// Source coordinates (inverted vertically)

0, gpuCanvas.height , gpuCanvas.width , 0,

// Destination coordinates

0, 0, gpuCanvas.width , gpuCanvas.height ,

gl.COLOR_BUFFER_BIT , gl.NEAREST

);

This workaround introduces the possibility of combining the computational ad-

vantages of WebGPU with the current constraints of the WebXR Device API,

allowing to implementation an app that follows an architecture depicted in Figure

4.3. However, this also raises the question of performance impact due to the in-

teroperation overhead. Therefore, in addition to the main experiments described

earlier, a set of preliminary experiments has been conducted to evaluate this hy-

brid rendering approach. While previous studies have demonstrated WebGPU’s

superior performance over WebGL (Chickerur et al. 2024, Usta 2024), they also

caution against direct translation of WebGL applications into WebGPU. The per-

formance gains stem not only from the API design differences, but also from how

25

effectively developers utilize each API’s features to interact with the GPU.

Keeping this in mind, a preliminary experiment is carried out to evaluate the

feasibility and performance implications of this WebGPU–WebGL interoperability

approach. The results of the experiment are available in Chapter 5 and it’s detailed

discussion is available in Chapter 6.

4.4 Performance Considerations

The WebGPU-WebGL interoperability method demonstrated no significant over-

heads, making it a viable approach for implementing the proposed system archi-

tecture. However, its results revealed some noteworthy observations. Specifically,

the performance impact caused by the number of draw calls in WebGPU highlights

the need to explore appropriate optimization strategies.

4.4.1 Merging Draw Calls

The issue of issuing individual draw calls per object has been addressed by Bi

et al. (2024). They suggest that WebGPU’s asynchronous and stateless API design

offers greater flexibility compared to WebGL, which relies on a global state model.

In their work, they propose an optimization technique that merges draw calls

wherever possible to reduce the total number of draw invocations.

By merging draw calls, the following process typically occurs:

1. Objects that use the same pipeline and shader programs are grouped to-

gether.

2. Their vertex and index data are combined into two large buffers: one for

vertices and the other for indices.

3. A single draw call is then issued, using offsets and counts to access the

relevant geometry for each object.

4. Per-object data—such as transformation matrices or material properties—is

passed via uniform or storage buffers (or vertex attributes) to distinguish

between instances during rendering.

This approach reduces CPU overhead by minimizing the number of state changes

and API calls required per frame. It also leverages WebGPU’s efficient buffer and

pipeline management to achieve higher performance.

However, the above steps are not API-specific; they can be implemented in both

WebGPU and WebGL. Bi et al. (2024) emphasize that current web-based 3D

26

frameworks and libraries do not fully utilize the capabilities of WebGPU. Their

experiments highlight the differences between their approach and the performance

of other existing frameworks. Consequently, it is important to investigate how

WebGL performs when draw calls are merged as well.

To address this, both graphics backends in the ControlXR and WasmXRGPU

implementations include the draw call merging feature. This ensures a fair com-

parison, minimizing any discrepancies between the two backends.

Moreover, in contrast to (Bi et al. 2024), this study focuses on rendering the same

3D object multiple times. As a result, there won’t be different shader programs

used to differentiate object groups for separate draw calls. Instead, the entire

application creates a single draw call to render all instances of the 3D objects

with a single rendering pipeline.

4.4.2 Render Bundles

In WebGPU, a feature called Render Bundles ”WebGPU Specification - GPURen-

derBundle” (2025) allows the recording of a set of GPU commands so that the

application does not have to re-encode or recreate these commands for every frame.

These commands typically include setting the rendering pipeline, binding uniform

bind groups, and issuing draw calls for a specific configuration.

Uniform bind groups are associated with GPU buffers. If the buffer itself does not

change (meaning the buffer is the same, though its content may change), there is

no need to recreate these commands in every frame. Recreating commands each

frame introduces unnecessary work for the CPU, as it is responsible for generating

the relevant commands that will be sent to the GPU.

WebGPU’s Render Bundles address this by bundling the commands for reuse in

future frames, reducing the overhead on the CPU. This is particularly beneficial

in scenarios like VR, where there are two views per eye. In such contexts, only

certain parameters—such as the projection and view matrices and the viewport

configurations—need to be updated, while the rest of the rendering commands

can remain unchanged.

4.4.3 Compute Shaders

Another powerful feature provided by WebGPU is Compute Shaders (”WebGPU

Specification - GPUComputePipeline” 2025). Unlike traditional graphics rendering

shaders, compute shaders enable general-purpose computations on the GPU—such

as large-scale, highly parallel matrix multiplications.

27

According to the study by Kligge (2024), while WebGL can be used for such

general-purpose computing by uploading matrix data to textures, performing com-

putations in fragment shaders, and reading back results from the framebuffer, this

approach is suboptimal. WebGPU has demonstrated significantly better perfor-

mance for these tasks (Kligge 2024).

In a 3D scene, a scene hierarchy is typically represented as a tree. This hierar-

chical structure allows the transformations of child objects to be influenced by

their parent’s transformation. Specifically, the model matrix of a parent node

is multiplied with the model matrices of its children to compute their respective

world transformations. When the root node represents the world origin, its model

matrix must be propagated down to all first-level child objects and recursively

through the entire scene graph.

In the experiments conducted for this study, a large number of objects are ren-

dered, resulting in a significant number of matrix multiplications. Initially, both

implementations—ControlXR and WasmXRGPU—performed these computations

on the CPU. In ControlXR, JavaScript was responsible, while in WasmXRGPU,

the computations were handled by C++.

These matrix operations were implemented using third-party libraries: glMa-

trix for JavaScript and glm for C++. However, profiling revealed a bottleneck

in WasmXRGPU related to computing model matrices on the CPU. This obser-

vation motivated the use of compute shaders in WebGPU to offload the matrix

multiplications to the GPU, thereby improving performance and reducing CPU

workload. As for ControlXR, the third-party library was used to perform the

matrix multiplications.

Moreover, the inverse of each model matrix is required to accurately calculate

lighting effects on surfaces—particularly the diffuse component. Unlike WebGL’s

OpenGL Shading Language (GLSL), WebGPU’s WebGPU Shading Language

(WGSL) does not provide a built-in inverse function for matrix inversion. Of-

floading this computation to the CPU for a large number of objects can lead to

performance bottlenecks. Therefore, performing matrix inversion on the GPU is

a more suitable and scalable approach.

4.4.4 Communication between JavaScript and C++

Chrome’s WebGPU implementation is called Dawn, an open-source project (”Dawn,

a WebGPU implementation” 2025). It provides C/C++ header files that can be

used to configure the graphics pipeline and issue GPU commands directly, mak-

ing it suitable for use in the graphics backend of a WebXR application. With a

28

toolchain like Emscripten (Emscripten 2015), such C++ programs can be com-

piled into WebAssembly for web deployment.

However, the same flexibility is not available for the WebXR Device API. Its source

code is not publicly available, and access is restricted to JavaScript interfaces. In

their work, Liu et al. (2023) focus on improving the performance of WebXR appli-

cations using WebAssembly. Their experimental system is based on the Magnum

Engine (Magnum Engine 2022), an open-source C++ engine. An investigation of

Magnum’s source code reveals that they implemented a minimal C++ wrapper to

interface with the WebXR Device API via JavaScript.

While this approach can be adopted in this study’s setup, it is important to

recognize a key performance implication. Internally, the WebXR Device API

ultimately delegates XR tasks to native backends written in languages like C++.

Table 4.1 summarizes the types of runtime environments used by the WebXR

Device API depending on the device. This indicates a runtime transition from

JavaScript to native backends such as C++.

Using a wrapper, therefore, introduces an indirect execution path: C++� JavaScript

� C++

To minimize this back-and-forth transition overhead, this study proposes a more

efficient alternative: initialize the WebXR session and call the API directly in

JavaScript, then write the resulting data (such as view matrices or input states)

into the WebAssembly memory heap. This allows the C++/WebAssembly side to

directly access the data, reducing runtime switches and improving performance.

4.4.5 Compiler Optimizations

Compiler optimization plays a crucial role in improving the performance of applica-

tions, especially in high-performance computing domains like graphics rendering.

In this study, the WebAssembly backend of the system is implemented in C++

and compiled using the Emscripten toolchain. The efficiency of the generated We-

bAssembly code heavily depends on how well the compiler optimizes the source

code during the compilation process.

Emscripten supports several optimization levels, similar to traditional compilers

like GCC and Clang. The optimization level is specified using flags such as -

O0, -O1, -O2, -O3, or -Os. In this study, the -O3 optimization level is used to

generate WebAssembly code for the C++-based system (WasmXRGPU). This

ensures that the WebAssembly output is heavily optimized for execution speed,

which is essential when performing computationally intensive tasks such as matrix

29

Device OS Runtime Supported Ses-
sion Modes

Oculus,
SteamVR, Win-
dows Mixed Real-
ity, OpenXR com-
patible HMDs

Windows OpenXR immersive-vr

Cardboard, Day-
dream View,
Lenovo Mirage
Solo

Android Google VR immersive-vr

ARCore-
compatible
mobile devices

Android ARCore immersive-ar

Android XR de-
vices

Android OpenXR immersive-vr,
immersive-ar

Table 4.1: Chrome hardware support for various devices in WebXR Device API
(”WebXR Device API - Chrome Hardware Support” 2025)

multiplication, memory management, and GPU pipeline configuration.

Emscripten also supports link-time optimization (LTO), which enables the com-

piler to perform global optimizations across multiple translation units during the

linking phase. This is particularly effective in eliminating unused code and reduc-

ing memory usage in the final WebAssembly binary.

4.5 3D Model Import

3D model rendering is a fundamental component of any graphics application. Al-

though a 3D model is essentially a collection of vertices, indices, and texture co-

ordinates, various file formats exist to store and organize this data—such as FBX,

gLTF, and OBJ. Among these, glTF stands out as an open-source format that uses

JavaScript Object Notation (JSON) and supports a scene graph structure, mak-

ing it well-suited for representing parent-child relationships between primitives.

Additionally, Nam et al. (2019) highlight that glTF offers superior performance

on mobile web browsers.

Parsing a glTF file, however, involves additional complexity and falls outside the

scope of this study. Therefore, third-party libraries are utilized to handle parsing:

loaders.gl (”loaders.gl - A collection of loaders modules for Geospatial and 3D visu-

alization use cases” 2025) is used for the JavaScript-based ControlXR, and fastgltf

30

(”fastgltf - Documentation” 2025) is used in the C++-based WasmXRGPU.

Once the glTF files are parsed, the subsequent extraction and storage of relevant

data follow an identical process in both implementations.

4.6 Rendering Frameworks

As discussed in Section 4.3, two separate frameworks were developed to evaluate

the WebGPU-WebGL interoperability method. Similarly, the rendering backends

for the two major implementations—ControlXR and WasmXRGPU—are designed

as independent rendering frameworks. This design approach ensures consistency

and minimizes discrepancies in implementation details, enabling a fair comparison.

To enhance performance while leveraging the unique capabilities of WebGPU and

WebAssembly, both frameworks incorporate the performance considerations de-

scribed in Section 4.4. The ControlXR backend is implemented in TypeScript,

benefiting from type safety and reduced runtime errors. In contrast, WasmXRGPU’s

backend is developed in C++, compiled to WebAssembly for browser execution.

Despite the difference in languages, the two frameworks follow similar architecture

and design principles. The following are key classes commonly implemented in

both frameworks:

� Renderer – Initializes and configures the rendering pipeline for the chosen

graphics API (WebGL or WebGPU).

� SceneObject – Represents a single 3D object in the scene, including trans-

formation data such as position, rotation, and scale.

� Mesh – Stores geometry data, including vertices, indices, and texture coor-

dinates.

� Texture – Represents a texture resource that can be applied to one or more

meshes.

� Model – Handles model importing and constructs scene objects based on

the imported data.

� Camera – Represents the scene’s view camera, responsible for computing

the view and projection matrices.

31

Figure 4.4: ControlXR Implementation

4.7 Practical Implementation and Integration

Based on the concepts discussed thus far, appropriate implementations were de-

veloped for both groups—ControlXR and WasmXRGPU. This section outlines

the specific implementation details for each group and demonstrates how the

performance-oriented techniques were practically integrated.

4.7.1 ControlXR

This implementation serves as the control group of the study. It represents tra-

ditional WebXR applications that rely solely on JavaScript and WebGL. While

numerous 3D libraries and frameworks currently exist for building WebXR appli-

cations, using them in this context would introduce potential bias, as they may

include internal optimizations (e.g., frustum culling, LOD management) that are

not present in the experimental group. Therefore, to ensure a fair comparison,

only essential third-party libraries were used—specifically those that solve specific

problems without introducing unrelated optimizations.

The overall implementation architecture is illustrated in Figure 4.4. The interac-

tions can be described as follows.

1. The main file of the application initiates the process by calling essential func-

tions such as navigator.xr.requestSession() to create a WebXR session

using the WebXR Device API.

2. Once the session is created, the application utilizes it to access the relevant

XR data provided by the WebXR Device API.

3. This XR data is then passed to the GLRenderer, which is the core render-

ing framework responsible for rendering the frames.

32

Figure 4.5: WasmXRGPU Implementation

4. As previously mentioned, WebXR relies on WebGL to display XR content.

Therefore, the necessary WebGL rendering context (GLContext) is created

and managed by the GLRenderer.

5. The GLRenderer encapsulates the low-level WebGL operations, handling

buffer configurations, pipeline setup, and issuing rendering commands to the

GPU.

The deployed version of ControlXR is publicly accessible here .

4.7.2 WasmXRGPU

This implementation represents the experimental group of the study, showcasing

the performance advantages of using WebGPU and WebAssembly. In contrast to

traditional WebXR applications written entirely in JavaScript, this implementa-

tion is primarily written in C++ and compiled to WebAssembly using Emscripten.

It leverages WebGPU as the graphics API. As with ControlXR, certain third-party

libraries are used to handle non-core tasks such as model parsing, to maintain con-

sistency across both implementations and avoid deviation from the research scope.

Notably, the rendering backend is built as a custom C++ framework that handles

GPU resource management, rendering pipelines, and frame submission logic.

The overall architecture of WasmXRGPU is illustrated in Figure 4.5, and the

interactions can be summarized as follows:

1. The main file of the application initiates the WebXR workflow by invok-

ing navigator.xr.requestSession() to create a WebXR session using the

WebXR Device API.

33

https://controlxr.vercel.app/

2. Once the session is established, the application uses it to access the relevant

XR data provided by the WebXR Device API.

3. To comply with WebXR’s requirement for a WebGL context, a WebGL

rendering context is still used—both to initiate the session and to blit the

WebGPU-rendered frame into the WebGL framebuffer for display.

4. The created WebGL context is provided to WebXR Device API to create

the rendering layer.

5. When the XR data (e.g., view and projection matrices) is retrieved, it is

written to theWebAssembly memory heap, allowing it to be accessed directly

from the C++ side of the application.

6. The WebGPU rendering backend is implemented in C++ using Dawn—the

native C/C++ implementation of WebGPU, which provides the necessary

headers and low-level control.

7. TheGPURenderer class is the core rendering framework for WasmXRGPU.

It is responsible for managing pipeline configuration, buffer setup, and issu-

ing draw commands.

8. TheGPURenderer source code is compiled using Emscripten, which trans-

lates the C++ code intoWebAssembly binaries and the accompanying JavaScript

glue code required for browser execution.

9. The resulting .wasm binary is then used within the WebXR application to

render the scene through WebGPU, while still maintaining communication

with the WebXR runtime via JavaScript.

The deployed version of WasmXRGPU is publicly accessible here .

34

https://wasmxrgpu.vercel.app/

Chapter 5

Results and Analysis

This chapter presents the outcomes derived from the implementation of the two

experimental groups—ControlXR and WasmXRGPU—and analyzes their perfor-

mance based on the evaluation plan proposed in Section 3.3. Two major exper-

iments are conducted as part of this study. The first focuses on evaluating the

WebGPU-WebGL interoperability method, while the second compares the overall

performance of the two experimental groups. The results from both experiments

are analyzed to assess the practical effectiveness of the interoperability technique

and the performance benefits of using WebGPU and WebAssembly in real-time

XR applications.

The following metrics are measured in the both experiments except for the CPP

Time as CPP time can only be measured in the implementation that uses C++.

� Frame Time (ms): The average time taken to render a single frame, which

is inversely related to FPS. This metric provides a comprehensive measure

of overall application performance, encompassing both CPU and GPU con-

tributions.

� JavaScript Time (ms): The total time spent executing JavaScript code dur-

ing the rendering process. This metric highlights CPU-side performance,

including scene updates, API calls, and resource management, which can

impact the efficiency of graphics rendering.

� CPP Time (ms): The total time spent executing C++ code during the

rendering process. This metric highlights CPU-side performance, including

scene updates, API calls, and resource management, which can impact the

efficiency of graphics rendering.

� Framerate Per Second (FPS): The number of frames rendered per second,

35

serving as a direct indicator of rendering smoothness and real-time perfor-

mance. A higher FPS generally signifies a more responsive and visually fluid

experience.

� WebGL Time (ms): The GPU-side rendering time measured using WebGL’s

EXT disjoint timer query extension. This metric isolates the GPU workload

in WebGL, helping to analyze rendering efficiency and potential bottlenecks.

� WebGPU Time (ms): The GPU-side rendering time measured using We-

bGPU’s timestamp-query extension. This metric provides insights into GPU

processing efficiency within WebGPU, facilitating comparisons with WebGL

and evaluating WebGPU’s potential advantages.

5.1 WebGPU-WebGL Interoperability Experiment

Due to a limitation in WebXR Device API that doesn’t support WebGPU, a

method was introduced in Section 4.3. As that section suggests, one needs to

evaluate that method to check for potential overheads. To conduct the experiment,

following approach is taken.

Since this interoperability does not depend on any other factors such as WebXR

tasks, the experiment is setup to render some scenes with different complexities.

For this, only JavaScript APIs of WebGL and WebGPU are used. Furthermore,

two frameworks are built on top of WebGL and WebGPU to replicate the same

tasks and functionalities that are offered by these APIs. For example, WebGPU

provides flexibility in defining how the scene is multisampled. But, WebGL auto-

matically does this by providing the canvas with the relevant options. Hence, to

reduce the discrepancy between the two APIs, such features are turned off.

The experiment is conducted on a laptop with the following specification.

� MSI GF63 Thin 10SC

� Intel Core i5-10300H 2.50GHz

� 16GB DDR4 Memory

� Integrated Graphics : Intel UHD Graphics (VRAM : 128MB)

� Dedicated Graphics : NVIDIA Gefore GTX 1650 with Max-Q Design (VRAM:

3937MB)

The browser used for the experiment:

� Chrome : Version 131.0.6778.205 (Official Build) (64-bit)

36

However, despite having Dedicated Graphics, the browser was forced to use inte-

grated graphics to simulate lower-end devices. Furthermore, the use of dedicated

graphics requires scenes with very high complexity to affect the performance.

In the experiment, the following two scenarios are taken into account.

5.1.1 Using a Single High Poly 3D Model

Five 3D scenes were designed to simulate various rendering complexities. These

scenes were composed of multiple instances of a 3D model. The scenes were

organized as presented in Table 5.1.

Scenario Polygons Draw Calls
1 0 0
2 6,405,421 446
3 12,810,842 892
4 19,216,263 1338
5 25,621,684 1784

Table 5.1: Polygon and draw call count for each scenario when using a single high
poly 3D model

Despite utilizing multiple instances of the same 3D model, instanced drawing

was deliberately not adopted in these experiments. Instead, each instance was

treated as a separate model within the scenario. This approach ensures that

the performance impact of handling individual draw calls for each instance is

evaluated, providing insights into the overhead associated with increased draw

calls rather than leveraging the optimization capabilities of instanced rendering.

Results

We conducted experiments considering each rendering scenario, as outlined above.

The results were analyzed to compare the performance of theWebGL-only, WebGPU-

only, and WebGPU-WebGL interoperability methods.

The experimental results of the scenarios were analyzed by averaging the values

of key performance metrics across all cases. To calculate the average, 1000 frames

were recorded. These averages were plotted in bar graphs for clear comparative

visualization. The performance of the WebGPU-WebGL interoperability approach

is represented by the green bar in the graphs. The key observations on these

results are stated below for each experiment. The detailed discussion is available

in Section 6.1 of Chapter 6.

1) Average Frame Time

37

For the WebGPU-WebGL interop approach, frame time does not reflect the sum

of WebGL and WebGPU times, contrary to expectations if the two APIs operated

independently for a single frame The results can be seen in Figure 5.1.

Figure 5.1: Comparison of Average Frame Time (ms) between defined scenarios
in Table 5.1. Lower is better.

2) Average Framerate Per Second (FPS)

Figure 5.2 illustrates the average FPS across all scenarios. As anticipated, the

FPS decreases with increasing scene complexity. Notably, all methods demon-

strated comparable performance, suggesting that the observed variations in FPS

are primarily attributable to the overall increase in computational load rather than

differences between the rendering approaches.

3) Average WebGL Time and Average WebGPU Time

In the WebGL-only application, WebGPU time cannot be measured, resulting in

a flat, zero-value line in the corresponding graph depicted in Figure 5.3. Similarly,

in the WebGPU-only application, WebGL time is absent as shown in Figure 5.4.

4) Average JavaScript Time

Applications leveraging WebGPU (both WebGPU-only and WebGPU-WebGL in-

terop) exhibit higher JavaScript execution time compared to the WebGL-only

application. This is apparent in the graph visualized in Figure 5.5. This dis-

crepancy likely arises from increased configuration overhead on the CPU-side in

WebGPU, where more detailed and explicit control is required compared to the

relatively streamlined WebGL pipeline.

One interesting observation is that the WebGPU-WebGL interoperability method

38

Figure 5.2: Comparison of Average FPS between defined scenarios in Table 5.1.
Higher is better.

Figure 5.3: Comparison of Average WebGL Time (ms) between defined scenarios
in Table 5.1. Lower is better.

39

Figure 5.4: Comparison of Average WebGPU Time (ms) between defined scenarios
in Table 5.1. Lower is better.

exhibits a gradual reduction in Average JavaScript Time as the scene complexity

increases. Surprisingly, despite the interoperability method requiring additional

JavaScript code to bridge the two APIs, it still outperforms the WebGPU-only

method in terms of timing performance.

Figure 5.5: Comparison of Average JavaScript Time (ms) between defined scenar-
ios in Table 5.1. Lower is better.

5.1.2 Using Two 3D Models

Furthermore, we also created 3D scenarios using two 3D models with fewer poly-

gons than the model specified in Table 5.1. In this experiment, we considered six

40

different scenarios, gradually increasing the complexity of the scenes by scaling

the number of instances of these models. The details of the scenarios, including

polygon and draw call counts, are provided in Table 5.2.

Scenario Polygons Draw Calls
1 0 0
2 4,217,325 1150
3 8,434,650 2300
4 12,651,975 3450
5 16,869,300 4600
6 21,086,625 5750

Table 5.2: Polygon and draw call count for each scenario when using multiple
instances of two 3D models

The purpose of this experiment is to investigate the impact of draw call volume on

the overall performance of graphics APIs, even when the scene complexity remains

similar.

Results

Notably, it is clear that WebGL outperforms WebGPU significantly as the scene

complexity increases. However, when comparing Scenario 6 in Table 5.2 (denoted

as A) with Scenario 5 in Table 5.1 (denoted as B), we observe that the total polygon

count in Scenario A (21,086,625) is lower than that in Scenario B (25,621,684).

Despite this, the total number of draw calls in Scenario A (5750) is considerably

higher than in Scenario B (1784). The results of the experiment are depicted in

Figures 5.6, 5.7, 5.8, 5.9, and 5.10 respectively. The detailed discussion is

available in Section 6.1 of Chapter 6.

5.2 ControlXR and WasmXRGPU Experiment

- Quantitative Analysis

The results of the WebGPU–WebGL interoperability experiment indicate that

there is no significant overhead introduced when utilizing both graphics APIs in

conjunction. This confirms the viability of the proposed interoperability method

and allows us to proceed to the core experiment of the study: evaluating the

runtime performance of the two experimental groups.

As outlined in the evaluation plan, this experiment compares the performance of

ControlXR and WasmXRGPU using the metrics introduced earlier. Given

the considerations discussed in the previous chapters, and based on the outcomes

41

Figure 5.6: Comparison of Average Frame Time (ms) between defined scenarios
in Table 5.2. Lower is better.

Figure 5.7: Comparison of Average FPS between defined scenarios in Table 5.2.
Higher is better.

42

Figure 5.8: Comparison of Average JavaScript Time (ms) between defined scenar-
ios in Table 5.2. Lower is better.

Figure 5.9: Comparison of Average WebGL Time (ms) between defined scenarios
in Table 5.2. Lower is better.

43

Figure 5.10: Comparison of Average WebGPU Time (ms) between defined sce-
narios in Table 5.2. Lower is better.

of the interoperability experiment, a single 3D model is used to construct the

rendering scenarios. This model consists of 5,252 triangles and 15,756 vertices

and is illustrated in Figure 5.11. It should be noted that due to implementation

differences in the fragment shaders, particularly regarding the color handling, the

final rendered appearance of the model differs slightly from the figure itself.

Using this model, a total of six rendering scenarios were created to evaluate perfor-

mance under varying scene complexities and configurations. These scenarios aim

to simulate different rendering loads and stress levels, enabling a comprehensive

comparison between the two implementations. The details of each scenario are

summarized in Table 5.3.

Scenario Polygons
1 131,300
2 262,600
3 525,200
4 1,050,400
5 2,100,800
6 4,201,600

Table 5.3: Polygon count for each scenario

Moreover, to ensure the experiment accounts for a range of hardware capabilities,

the devices listed in Table 5.4 have been selected, encompassing varying specifica-

tions and performance levels.

In both implementations, once the user initiates the XR session, the previously

44

Figure 5.11: Used 3D model

Device Browser and Version
Google Pixel 4A Google Chrome: 133.0.6943.121
Google Pixel 6A Google Chrome: 134.0.6998.39

Samsung Galaxy A15 Google Chrome: 134.0.6998.39
Samsung Galaxy A52 Google Chrome: 133.0.6943.137

Samsung Galaxy S23 Ultra Google Chrome: 133.0.6943.138
Meta Quest 2 Browser: 37.2.0.6.62

Table 5.4: Selected devices and the web browser details

45

mentioned metrics are recorded over a span of 500 frames. These recorded values

are then appropriately plotted to facilitate performance evaluation. From this

point forward, it is important to note that CPU time refers to JavaScript exe-

cution time in the ControlXR implementation and C++ execution time in the

WasmXRGPU implementation, whereas GPU time refers to WebGL time in the

ControlXR implementation and WebGPU time in the WasmXRGPU implemen-

tation.

5.2.1 Virtual Reality (VR)

The VR sessions for each scenario listed in Table 5.3 are rendered independently

in both experimental groups.

Average Performance

The recorded results are averaged over the 500-frame capture window and plotted

to visualize the average performance. The captured results are visualized and

compared between the two implementations for each device.

1) Average CPU Time

Figure 5.12 illustrates the average CPU time across all tested devices for each

scenario. As the scene complexity increases, a clear performance trend emerges:

CPU time in WasmXRGPU implementation consistently improves relative to Con-

trolXR. The average CPU time values for each device are visualized in a heatmap

form which is depicted in Figure 5.16.

2) Average GPU Time

Figure 5.13 illustrates the average GPU time across all tested devices for each sce-

nario. As scene complexity increases, a clear performance trend emerges: contrary

to the improvements observed in CPU time, the GPU time in the WasmXRGPU

implementation increases significantly compared to ControlXR. The average GPU

time values for each device are visualized in a heatmap form which is depicted in

Figure 5.17.

3) Average Framerate Per Second (FPS)

Figure 5.14 illustrates the average FPS across all tested devices for each scenario.

As scene complexity increases, both implementations exhibit a gradual decline in

FPS, which aligns with expected performance behavior. However, ControlXR dis-

plays certain anomalies on specific devices, where the FPS unexpectedly increases

despite a rise in scene complexity. The average FPS values for each device are

46

Figure 5.12: Comparison of Average CPU Time (ms) between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Virtual Reality (VR). Lower is better.

visualized in a heatmap form which is depicted in Figure 5.18.

4) Average Frame Time

Figure 5.15 illustrates the average frame time across all tested devices for each sce-

nario. As scene complexity increases, both implementations exhibit a gradual rise

in frame time, which is consistent with expected performance behavior. Overall,

ControlXR demonstrates better performance than WasmXRGPU across all sce-

narios and devices, with the exception of the sixth scenario on the Google Pixel

6A, where WasmXRGPU slightly outperforms ControlXR. The average frame time

values for each device are visualized in a heatmap form which is depicted in Figure

5.19.

Per-Frame Performance

While average values provide a general understanding of the overall performance,

anomalies were observed in some of the metrics. To identify the cause of these

anomalies and gain a deeper understanding of the performance distribution, it is

crucial to examine the full range of recorded values. In this section, scatter plots

and violin plots are used to visualize the distribution of each performance metric,

allowing for the detection of trends, outliers, and inconsistencies.

The following plots present per-frame data for key performance metrics (e.g., CPU

47

Figure 5.13: Comparison of Average GPU Time (ms) between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Virtual Reality (VR). Lower is better.

Figure 5.14: Comparison of Average FPS between ControlXR and WasmXRGPU
with respect to the defined scenarios in Table 5.3 and the devices in Table 5.4, in
the context of Virtual Reality (VR). Higher is better.

48

Figure 5.15: Comparison of Average Frame Time (ms) between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Virtual Reality (VR). Lower is better.

time, GPU time, frame time, FPS) across different scenarios and devices. This

detailed analysis helps to highlight the variability in performance and provides

insight into the causes behind the observed anomalies. For brevity, this section

will focus on presenting the FPS and Frame Time metrics, as they are directly

related and offer a clear view of overall performance. Visualizations for all other

metrics can be found in the Appendix A.1 and A.2.

1) Scatter Plot

This section will visualize all the recorded data using scatter plots. The first

10 records are omitted from the visualization, as they may skew the data repre-

sentation. These initial 10 records correspond to the initialization phase of the

experiment.

1.1) Scenario 1

Figure 5.20 and Figure 5.21 visualize the distributions of the FPS and Frame Time

(ms) metric values, respectively, for Scenario 1.

1.2) Scenario 2

Figure 5.22 and Figure 5.23 visualize the distributions of the FPS and Frame Time

(ms) metric values, respectively, for Scenario 2.

49

Figure 5.16: Heatmap Visualization of Average CPU Time (ms) between Con-
trolXR and WasmXRGPU with respect to the defined scenarios in Table 5.3 and
the devices in Table 5.4, in the context of Virtual Reality (VR). Lower the color,
better.

50

Figure 5.17: Heatmap Visualization of Average GPU Time (ms) between Con-
trolXR and WasmXRGPU with respect to the defined scenarios in Table 5.3 and
the devices in Table 5.4, in the context of Virtual Reality (VR). Lower the color,
is better.

51

Figure 5.18: Heatmap Visualization of Average FPS between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Virtual Reality (VR). Higher the color, is better.

52

Figure 5.19: Heatmap Visualization of Average Frame Time (ms) between Con-
trolXR and WasmXRGPU with respect to the defined scenarios in Table 5.3 and
the devices in Table 5.4, in the context of Virtual Reality (VR). Lower the color,
better.

53

1.3) Scenario 3

Figure 5.24 and Figure 5.25 visualize the distributions of the FPS and Frame

Time (ms) metric values, respectively, for Scenario 3. While the Samsung Galaxy

S23 Ultra previously showed a high spread in data across both implementations, in

Scenario 3, the metric values for ControlXR are concentrated between two distinct

ranges: a higher end and a lower end.

1.4) Scenario 4

Figure 5.26 and Figure 5.27 visualize the distributions of the FPS and Frame

Time (ms) metric values, respectively, for Scenario 4. Similar to Scenario 3, Con-

trolXR exhibits values that are concentrated between two distinct ranges, indi-

cating variability in frame performance. In contrast, WasmXRGPU maintains a

more consistent distribution across most devices.

1.5) Scenario 5

Figure 5.28 and Figure 5.29 illustrate the distributions of FPS and Frame Time

(ms) metric values for Scenario 5. The pattern of values clustering between two

distinct ranges becomes more pronounced in ControlXR, indicating persistent vari-

ability in frame performance. Interestingly, WasmXRGPU begins to exhibit a

similar behavior on certain devices.

1.6) Scenario 6

Figure 5.30 and Figure 5.31 illustrate the distributions of FPS and Frame Time

(ms) metric values for Scenario 6, which features the highest scene complexity. The

clustering of values between two distinct ranges is most prominent in ControlXR,

suggesting heightened variability under heavier rendering loads. In contrast, Was-

mXRGPU displays similar dual-range behavior only on the Google Pixel 6A, and

to a much lesser extent on the Samsung Galaxy A15 and Samsung Galaxy S23

Ultra.

2) Violin Plot

Violin plots are a method of visualizing the distribution of numerical data. They

combine features of a box plot and a kernel density plot, providing both summary

statistics (like median and interquartile range) and the probability density of the

data at different values. This allows for a clearer understanding of the shape

and spread of the data, making them especially useful for identifying multimodal

distributions, outliers, and variations in performance across scenarios or devices.

In this section, all six scenarios are visualized in a single plot for each device,

providing a comprehensive comparison of performance trends across different scene

54

Figure 5.20: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 1 in Table 5.3 and the devices in Table 5.4, in the context
of Virtual Reality (VR). Higher is better.

Figure 5.21: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 1 in Table 5.3 and the devices in Table 5.4,
in the context of Virtual Reality (VR). Lower is better.

55

Figure 5.22: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 2 in Table 5.3 and the devices in Table 5.4, in the context
of Virtual Reality (VR). Higher is better.

Figure 5.23: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 2 in Table 5.3 and the devices in Table 5.4,
in the context of Virtual Reality (VR). Lower is better.

56

Figure 5.24: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 3 in Table 5.3 and the devices in Table 5.4, in the context
of Virtual Reality (VR). Higher is better.

Figure 5.25: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 3 in Table 5.3 and the devices in Table 5.4,
in the context of Virtual Reality (VR). Lower is better.

57

Figure 5.26: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 4 in Table 5.3 and the devices in Table 5.4, in the context
of Virtual Reality (VR). Higher is better.

Figure 5.27: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 4 in Table 5.3 and the devices in Table 5.4,
in the context of Virtual Reality (VR). Lower is better.

58

Figure 5.28: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 5 in Table 5.3 and the devices in Table 5.4, in the context
of Virtual Reality (VR). Higher is better.

Figure 5.29: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 5 in Table 5.3 and the devices in Table 5.4,
in the context of Virtual Reality (VR). Lower is better.

59

Figure 5.30: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 6 in Table 5.3 and the devices in Table 5.4, in the context
of Virtual Reality (VR). Higher is better.

Figure 5.31: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 6 in Table 5.3 and the devices in Table 5.4,
in the context of Virtual Reality (VR). Lower is better.

60

complexities within the same hardware environment. To ensure that outliers do

not skew the data, the first 10 records are excluded from the plots.

2.1) Google Pixel 4A

Figure 5.32 and Figure 5.33 illustrate the distributions of FPS and Frame Time

(ms) metric values for the Google Pixel 4A. In the case of ControlXR, the distribu-

tions show noticeable variation across different value ranges, suggesting fluctuating

performance. In contrast, WasmXRGPU exhibits a more concentrated distribu-

tion, with most values clustered around a single range, although a few significant

outliers are observed in the Frame Time metric.

2.2) Google Pixel 6A

Figure 5.34 and Figure 5.35 illustrate the distributions of FPS and Frame Time

(ms) metric values for the Google Pixel 6A. In contrast to the Google Pixel 4A, the

results for this device reveal an opposite trend—WasmXRGPU displays a wider

distribution of values, indicating higher variability in performance, whereas Con-

trolXR shows a more concentrated and consistent performance profile. However,

in the scenarios with higher complexities, both exhibit outliers.

2.3) Samsung Galaxy A15

Figure 5.36 and Figure 5.37 illustrate the distributions of FPS and Frame Time

(ms) metric values for the Samsung Galaxy A15. For this device, ControlXR’s

FPS values appear widely dispersed without any clear concentration, while the

Frame Time values are grouped into two distinct ranges in scenario 3 and 4. In

contrast, WasmXRGPU exhibits more stable and consistent distributions across

in FPS, whereas slight variation in Frame Time.

2.4) Samsung Galaxy A52

Figure 5.38 and Figure 5.39 illustrate the distributions of FPS and Frame Time

(ms) metric values for the Samsung Galaxy A52. The instability in ControlXR

becomes more pronounced on this device, with metric values fluctuating across

multiple distinct ranges. In contrast, WasmXRGPUmaintains stable performance,

with values tightly clustered and only a few minor outliers.

2.5) Samsung Galaxy S23 Ultra

Figure 5.40 and Figure 5.41 illustrate the distributions of FPS and Frame Time

(ms) metric values for the Samsung Galaxy S23 Ultra. Similar to the Samsung

Galaxy A52, ControlXR exhibits greater variability in both metrics as the sce-

nario complexity increases. In contrast, WasmXRGPU maintains more consistent

performance, with values concentrated within a narrower range.

61

Figure 5.32: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenarios defined in Table 5.3 for Google Pixel 4A, in the context
of Virtual Reality (VR)

2.6) Meta Quest 2

Figure 5.42 and Figure 5.43 illustrate the distributions of FPS and Frame Time

(ms) metric values for the Meta Quest 2. As a dedicated XR device, its data

distribution significantly differs from that observed in mobile devices. ControlXR

demonstrates consistent performance with virtually no variation across both met-

rics, whereas WasmXRGPU exhibits slight variability in certain scenes, reflected

by a few distinct distribution ranges.

Session Load Time

In this section, the time required to load the very first frame is analyzed by exam-

ining the frame time of the first recorded entry. To provide a comparative view

between the initial and subsequent frames, the first 10 recorded frame times are

visualized using bar plots. These visualizations are shown in Figure 5.44 through

Figure 5.49, corresponding to each scenario respectively. No consistent or distin-

guishable patterns were observed across different devices and scenarios. However,

in the majority of cases, ControlXR demonstrated better initial performance than

WasmXRGPU.

5.2.2 Augmented Reality (AR)

The AR sessions for each scenario listed in Table 5.3 were rendered independently

in both experimental groups. However, the WasmXRGPU implementation did

not function as expected on the Google Pixel 6A device, resulting in the inability

62

Figure 5.33: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenarios defined in Table 5.3 for Google Pixel
4A, in the context of Virtual Reality (VR)

Figure 5.34: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenarios defined in Table 5.3 for Google Pixel 6A, in the context
of Virtual Reality (VR)

63

Figure 5.35: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenarios defined in Table 5.3 for Google Pixel
6A, in the context of Virtual Reality (VR)

Figure 5.36: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenarios defined in Table 5.3 for Samsung Galaxy A15, in the
context of Virtual Reality (VR)

64

Figure 5.37: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenarios defined in Table 5.3 for Samsung Galaxy
A15, in the context of Virtual Reality (VR)

Figure 5.38: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenarios defined in Table 5.3 for Samsung Galaxy A52, in the
context of Virtual Reality (VR)

65

Figure 5.39: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenarios defined in Table 5.3 for Samsung Galaxy
A52, in the context of Virtual Reality (VR)

Figure 5.40: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenarios defined in Table 5.3 for Samsung Galaxy S23 Ultra, in the
context of Virtual Reality (VR)

66

Figure 5.41: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenarios defined in Table 5.3 for Samsung Galaxy
S23 Ultra, in the context of Virtual Reality (VR)

Figure 5.42: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenarios defined in Table 5.3 for Meta Quest 2, in the context of
Virtual Reality (VR)

67

Figure 5.43: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenarios defined in Table 5.3 for Meta Quest 2, in
the context of Virtual Reality (VR)

Figure 5.44: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 1, across the devices listed in Table 5.4, in the
context of Virtual Reality (VR).

68

Figure 5.45: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 2, across the devices listed in Table 5.4, in the
context of Virtual Reality (VR).

Figure 5.46: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 3, across the devices listed in Table 5.4, in the
context of Virtual Reality (VR).

69

Figure 5.47: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 4, across the devices listed in Table 5.4, in the
context of Virtual Reality (VR).

Figure 5.48: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 5, across the devices listed in Table 5.4, in the
context of Virtual Reality (VR).

70

Figure 5.49: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 6, across the devices listed in Table 5.4, in the
context of Virtual Reality (VR).

to record performance metric data for that configuration.

Average Performance

The recorded results are averaged over the 500-frame capture window and plotted

to visualize the average performance. The captured results are visualized and

compared between the two implementations for each device.

1) Average CPU Time

Figure 5.50 illustrates the average CPU time across all tested devices for each

scenario. As the scene complexity increases, a clear performance trend emerges:

CPU time in WasmXRGPU implementation consistently improves relative to Con-

trolXR in all devices except Google Pixel 4A. The average CPU time values for

each device are visualized in a heatmap form which is depicted in Figure 5.56.

2) Average GPU Time

Figure 5.51 illustrates the average GPU time across all tested devices for each sce-

nario. As scene complexity increases, a clear performance trend emerges: contrary

to the improvements observed in CPU time, the GPU time in the WasmXRGPU

implementation increases significantly compared to ControlXR in all devices. The

average GPU time values for each device are visualized in a heatmap form which

71

Figure 5.50: Comparison of Average CPU Time (ms) between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Augmented Reality (AR). Lower is better.

is depicted in Figure 5.55.

3) Average Framerate Per Second (FPS)

Figure 5.52 illustrates the average FPS across all tested devices for each scenario.

As scene complexity increases, both implementations exhibit a gradual decline

in FPS, which aligns with expected performance trends. However, the Samsung

Galaxy S23 Ultra maintains consistent performance across all scenarios, show-

ing no noticeable FPS degradation. The average FPS values for each device are

visualized in a heatmap form which is depicted in Figure 5.56.

4) Average Frame Time

Figure 5.53 illustrates the average frame time across all tested devices for each

scenario. As scene complexity increases, both implementations exhibit a grad-

ual rise in frame time, which is consistent with expected performance behavior.

Similar to the FPS results, the Samsung Galaxy S23 Ultra maintains consistent

performance across all scenarios, showing no significant variation in frame time.

The average frame time values for each device are visualized in a heatmap form

which is depicted in Figure 5.57.

72

Figure 5.51: Comparison of Average GPU Time (ms) between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Augmented Reality (AR). Lower is better.

Figure 5.52: Comparison of Average FPS between ControlXR and WasmXRGPU
with respect to the defined scenarios in Table 5.3 and the devices in Table 5.4, in
the context of Augmented Reality (AR). Higher is better.

73

Figure 5.53: Comparison of Average Frame Time (ms) between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices
in Table 5.4, in the context of Augmented Reality (AR). Lower is better.

Per-Frame Performance

The average values provided a general overview of overall performance. Unlike in

the VR sessions, no clear anomalies were observed in the AR sessions. However,

to explore the possibility of subtler irregularities and to better understand the

distribution of performance metrics, scatter plots were used to visualize per-frame

data.

The following plots present per-frame data for key performance metrics across

different scenarios and devices. This detailed analysis helps to reveal performance

variability and offers insights into any potential anomalies. For brevity, this section

focuses on the FPS and Frame Time metrics, as they are directly correlated and

provide a clear indication of runtime performance. Visualizations of all other

metrics are included in the Appendix A.3.

1) Scatter Plot

This section will visualize all the recorded data using scatter plots. The first

10 records are omitted from the visualization, as they may skew the data repre-

sentation. These initial 10 records correspond to the initialization phase of the

experiment.

Figures 5.58 , 5.60 , 5.62 , 5.64 , 5.66, 5.68 present scatter plots of FPS

74

Figure 5.54: Heatmap Visualization of Average CPU Time (ms) between Con-
trolXR and WasmXRGPU with respect to the defined scenarios in Table 5.3 and
the devices in Table 5.4, in the context of Augmented Reality (AR). Lower the
color, better.

75

Figure 5.55: Heatmap Visualization of Average GPU Time (ms) between Con-
trolXR and WasmXRGPU with respect to the defined scenarios in Table 5.3 and
the devices in Table 5.4, in the context of Augmented Reality (AR). Lower the
color, is better.

76

Figure 5.56: Heatmap Visualization of Average FPS between ControlXR and
WasmXRGPU with respect to the defined scenarios in Table 5.3 and the devices in
Table 5.4, in the context of Augmented Reality (AR). Higher the color, is better.

77

Figure 5.57: Heatmap Visualization of Average Frame Time (ms) between Con-
trolXR and WasmXRGPU with respect to the defined scenarios in Table 5.3 and
the devices in Table 5.4, in the context of Augmented Reality (AR). Lower the
color, better.

78

Figure 5.58: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 1 in Table 5.3 and the devices in Table 5.4, in the context
of Augmented Reality (AR). Higher is better.

across all scenarios, while Figures 5.59, 5.61, 5.63, 5.65, 5.67, 5.69 display the

corresponding scatter plots for Frame Time.

Across all plots, no significant anomalies were observed beyond the expected

spread and fluctuation of metric values. However, in Scenario 4, the Meta Quest

2 exhibits a distinct distribution pattern in the WasmXRGPU implementation,

where the metric data is spread across two separate ranges.

For this reason, violin plot visualizations for the AR mode are not presented in

this section. However, they have been included in the Appendix A.4 for those

interested.

Session Load Time

In this section, we analyze the time required to load the very first frame by ex-

amining the frame time of the first recorded entry. To compare the initial frame

time with subsequent frames, the first 10 recorded frame times are visualized us-

ing bar plots. These visualizations are shown in Figure 5.70 through Figure 5.75,

corresponding to each scenario. No consistent or distinguishable patterns were ob-

served across different devices and scenarios. However, in most cases, ControlXR

exhibited better initial performance than WasmXRGPU, similar to the results

observed in VR mode.

79

Figure 5.59: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 1 in Table 5.3 and the devices in Table 5.4,
in the context of Augmented Reality (AR). Lower is better.

Figure 5.60: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 2 in Table 5.3 and the devices in Table 5.4, in the context
of Augmented Reality (AR). Higher is better.

80

Figure 5.61: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 2 in Table 5.3 and the devices in Table 5.4,
in the context of Augmented Reality (AR). Lower is better.

Figure 5.62: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 3 in Table 5.3 and the devices in Table 5.4, in the context
of Augmented Reality (AR). Higher is better.

81

Figure 5.63: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 3 in Table 5.3 and the devices in Table 5.4,
in the context of Augmented Reality (AR). Lower is better.

Figure 5.64: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 4 in Table 5.3 and the devices in Table 5.4, in the context
of Augmented Reality (AR). Higher is better.

82

Figure 5.65: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 4 in Table 5.3 and the devices in Table 5.4,
in the context of Augmented Reality (AR). Lower is better.

Figure 5.66: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 5 in Table 5.3 and the devices in Table 5.4, in the context
of Augmented Reality (AR). Higher is better.

83

Figure 5.67: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 5 in Table 5.3 and the devices in Table 5.4,
in the context of Augmented Reality (AR). Lower is better.

Figure 5.68: Distribution of FPS between ControlXR and WasmXRGPU with
respect to the scenario 6 in Table 5.3 and the devices in Table 5.4, in the context
of Augmented Reality (AR). Higher is better.

84

Figure 5.69: Distribution of Frame Time (ms) between ControlXR and Was-
mXRGPU with respect to the scenario 6 in Table 5.3 and the devices in Table 5.4,
in the context of Augmented Reality (AR). Lower is better.

Figure 5.70: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 1, across the devices listed in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

85

Figure 5.71: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 2, across the devices listed in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure 5.72: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 3, across the devices listed in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

86

Figure 5.73: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 4, across the devices listed in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure 5.74: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 5, across the devices listed in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

87

Figure 5.75: Distribution of the first 10 Frame Time (ms) values for ControlXR
and WasmXRGPU in Scenario 6, across the devices listed in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

5.3 ControlXR and WasmXRGPU Experiment

– Qualitative Analysis

As discussed in Section 3.3.2, hosted implementations of both ControlXR and

WasmXRGPU were made available to end users in order to gather qualitative

insights into their perceived performance and user experience. Participants in-

teracted with the systems and provided feedback based on a structured set of

questions outlined earlier in the document.

5.3.1 Virtual Reality (VR)

The results of the user feedback are presented in Figures 5.76 and 5.77. Across

all evaluated metrics, ControlXR consistently received higher average scores com-

pared to WasmXRGPU. Additionally, the score distribution for WasmXRGPU

exhibited greater variability, indicating a broader range of user experiences and

perceptions. Their final judgment on overall preference is tabulated in 5.5.

5.3.2 Augmented Reality (AR)

The results of the user feedback are presented in Figures 5.78 and 5.79. Similar

to VR, across all evaluated metrics, ControlXR consistently received higher av-

88

(a) Average Scores for Responsiveness.
Higher is better.

(b) Average Scores for Accuracy and
Precision. Higher is better.

(c) Average Scores for Overall Experi-
ence. Higher is better.

(d) Score Distribution for Responsive-
ness

(e) Score Distribution for Accuracy and
Precision

(f) Score Distribution for Overall Expe-
rience

Figure 5.76: Qualitative evaluation of ControlXR and WasmXRGPU in VR mode
across multiple criteria.

89

(a) Preference Pie Chart

(b) Device vs Preference Heatmap

(c) Chrome Version vs Preference Heatmap

Figure 5.77: Participant preference of ControlXR and WasmXRGPU in VR mode.

90

Device Preference Justification

Google Pixel 6A WasmXRGPU Overall better performance

Xiaomi Mi 11 Lite ControlXR Good

Samsung Galaxy A15 ControlXR WasmXRGPU not working

Samsung Galaxy M31 WasmXRGPU Better than the other

Xiaomi Mi 11 Lite ControlXR Smoothnes

Samsung Galaxy S23 Ultra WasmXRGPU It felt smoother and precise

Google Pixel 6A ControlXR Average smoothness of controlxr than wasm
also in high complexity scenariosm

Samsung Galaxy A21s ControlXR I preffered ControlXR because it felt easier
to work with and overall a better experience.

Samsung Galaxy A70s ControlXR Smoothness

Samsung Galaxy A55 ControlXR WasmXRGPU didn’t work on my device.

Samsung Galaxy A55 ControlXR ControlXR feels better.

Google Pixel 4A WasmXRGPU ControlXR’s objects looked more incomplete
and the perofmrance was bit laggy compared
to WasmXRGPU

Table 5.5: Qualitative evaluation partipant preference and justification - Virtual
Reality (VR)

erage scores compared to WasmXRGPU. Additionally, the score distribution for

WasmXRGPU exhibited greater variability, indicating a broader range of user ex-

periences and perceptions. Their final judgment on overall preference is tabulated

in 5.6.

91

(a) Average Scores for Responsiveness.
Higher is better.

(b) Average Scores for Accuracy and
Precision. Higher is better.

(c) Average Scores for Overall Experi-
ence. Higher is better.

(d) Score Distribution for Responsive-
ness

(e) Score Distribution for Accuracy and
Precision

(f) Score Distribution for Overall Expe-
rience

Figure 5.78: Qualitative evaluation of ControlXR and WasmXRGPU in VR mode
across multiple criteria.

92

(a) Preference Pie Chart

(b) Device vs Preference Heatmap

(c) Chrome Version vs Preference Heatmap

Figure 5.79: Participant preference of ControlXR and WasmXRGPU in AR mode.

93

Device Preference Justification

Google Pixel 6A WasmXRGPU Better overall performance

Xiaomi Mi 11 Lite ControlXR Second link felt laggy

Samsung Galaxy A15 ControlXR WasmXRGPU is not working

Samsung Galaxy M31 WasmXRGPU Worked better than the other

Xiaomi Mi 11 Lite ControlXR Main reason is responsiveness

Samsung Galaxy S23 Ultra WasmXRGPU It had better performance and felt smoother.

Google Pixel 6A ControlXR Performance and stability was good in con-
trolXR than WasmXRGPU

Samsung Galaxy A21s WasmXRGPU I prefer WasmXRGPU because it offered
smoother performance and felt more respon-
sive during use.

Samsung Galaxy A70s ControlXR Smoothness

Samsung Galaxy A55 ControlXR WasmXRGPU didn’t work on my device.

Samsung Galaxy A55 ControlXR ControlXR was better overall.

Google Pixel 4A ControlXR ControlXR had more stable performance
compared to WasmXRGPU

Table 5.6: Qualitative evaluation partipant preference and justification - Aug-
mented Reality (AR)

94

Chapter 6

Critical Evaluation of Results

In this chapter, the results presented in Chapter 5 are critically evaluated to

determine whether the use of WebGPU and WebAssembly in the context of web-

based XR applications leads to performance improvements.

6.1 WebGPU-WebGL Interoperability Experiment

The purpose of this experiment was to determine whether using two graphics APIs

results in significant overhead. This approach is necessary because the WebXR

Device API does not yet have official, built-in support for WebGPU.

6.1.1 Using a Single High Poly 3D Model

The results presented in Section 5.1.1 indicate that there are no significant over-

heads between the three groups: WebGL-only, WebGPU-only, and WebGPU-

WebGL interoperability.

Regarding the AverageWebGL Time and AverageWebGPU Time measures shown

in Figures 5.3 and 5.4, it is evident that in the WebGPU-WebGL interoperability

method, both WebGPU and WebGL times are recorded. The results suggest that

the performance is on par with the respective standalone applications for each

API. This outcome might appear counterintuitive at first glance, as WebGPU is

responsible for the majority of the computations, while WebGL mainly handles

the blitFramebuffer operation.

This seeming anomaly could be attributed to command stalling between WebGL

and WebGPU due to the asynchronous nature of their execution. However, due

to the asynchronous behavior of both APIs, pinpointing the exact execution order

or delays remains a challenge.

95

One-way ANOVA Test

Although visually there are no significant overheads, statistical validation can

provide further assurance. To evaluate whether any significant differences exist, a

one-way ANOVA test was conducted.

The performance comparison for the various rendering methods was performed

using this statistical test, analyzing metrics such as Average Frame Time (ms),

Average JavaScript Time (ms), and Average FPS. The results of the ANOVA

test are summarized in Table 6.1. The F-statistics for the metrics are 0.01, 0.25,

and 0.01, respectively, and the corresponding p-values are 0.99, 0.78, and 0.99.

These high p-values suggest that there are no statistically significant differences

in performance across the evaluated rendering methods for these metrics.

It is important to note that the Average WebGL Time (ms) and Average We-

bGPU Time (ms) were excluded from the analysis. This is because these metrics

are specific to the respective methods: the WebGL-only method does not pro-

duce WebGPU metrics, and the WebGPU-only method does not generate WebGL

metrics. As a result, these metrics were not considered in the ANOVA test.

Based on the ANOVA results, we can conclude that there is no significant dif-

ference in performance between the rendering methods with respect to Average

Frame Time, JavaScript Time, and FPS. This suggests that the different rendering

methods perform similarly across these metrics.

Metric F-statistic p-value
Average Frame Time (ms) 0.0107 0.9894
Average JS Time (ms) 0.2496 0.7831
Average FPS 0.0121 0.9880

Table 6.1: ANOVA results for performance metrics when multiple instances of
single high poly 3D model are used.

6.1.2 Using Two 3D Models

Metric F-statistic p-value
Average Frame Time (ms) 2.9357 0.0840
Average JS Time (ms) 0.0040 0.9960
Average FPS 0.9274 0.4171

Table 6.2: ANOVA results for performance metrics when multiple instances of two
3D models are used.

The results presented in Section 5.1.2 indicate that there are no significant over-

heads between the three groups: WebGL-only, WebGPU-only, and WebGPU-

96

WebGL interoperability. However, further analysis reveals notable differences

between the WebGL-only method and the other two methods. Specifically, We-

bGPU’s performance appears to be significantly reduced when compared to We-

bGL, likely due to the high number of draw calls involved. On the other hand,

the WebGPU-WebGL interoperability approach maintains performance similar to

that of the WebGPU-only method, suggesting that the overhead introduced by

interoperability does not contribute to significant performance degradation.

Moreover, the results shown in Table 6.2 indicate that the p-value for Average

Frame Time (ms) is very close to the 0.05 threshold, hinting at a potential per-

formance difference. However, since the p-value does not exceed this threshold,

we cannot confidently conclude that the differences are statistically significant.

This outcome may be attributed to the fact that both the WebGPU-only method

and the WebGPU-WebGL interoperability method produced similar results, which

likely balanced out any potential differences in performance.

Despite the lack of clear statistical significance, the data clearly suggest that an

increase in the number of draw calls and CPU-GPU communication negatively

impacts WebGPU performance. This aligns with the findings from Bi et al. (2024),

which proposed methods to merge draw calls and reduce communication between

the CPU and GPU. However, it is important to note that their study did not

explicitly address the relationship between scene complexity and the number of

draw calls, which may further explain the observed performance degradation in

more complex scenes.

6.2 ControlXR and WasmXRGPU Experiment

- Quantitative Evaluation

With the conclusion that the interoperability approach does not introduce signif-

icant overheads, the study was able to proceed with its main experiment. The

remainder of this section is divided into two parts, discussing the VR and AR

modes of the experiment.

6.2.1 Virtual Reality (VR)

CPU Time (ms) Figure 5.12 visualizes the average CPU times. As observed,

when the scene complexity increases, ControlXR’s CPU time rises more

significantly compared to WasmXRGPU. Two main reasons contribute to

this behavior:

97

1. Unlike ControlXR, the majority of WasmXRGPU’s codebase is written

in C++. As demonstrated in previous studies, WebAssembly generally

outperforms JavaScript in terms of runtime performance. Similar re-

sults are observed here as well, although the performance improvement

becomes apparent only in scenarios with higher complexity. This leads

to the next point.

2. As mentioned in Section 4.4, the use of compute shaders in WebGPU

allows many matrix multiplications and inversions to be offloaded from

the CPU to the GPU. This is not the case with ControlXR, where such

operations are consistently handled on the CPU. As scene complexity

increases, so does the number of 3D objects—and consequently, the

number of matrix operations. Therefore, it is evident that offloading

these tasks to the GPU frees up CPU resources. However, it is also

observed that WasmXRGPU performs worse than ControlXR in low-

complexity scenarios in terms of CPU time. This is because the number

of 3D objects—and thus the matrix operations—is minimal, making the

overhead of CPU-GPU communication more prominent and impactful.

GPU Time (ms) Figure 5.13 shows the average GPU times. As previously dis-

cussed, a majority of matrix multiplications in WasmXRGPU are performed

on the GPU. As a result, the GPU time in WasmXRGPU is generally higher

than that of ControlXR across most devices.

However, an interesting exception is observed on the Meta Quest 2, where

ControlXR exhibits significantly higher GPU time compared toWasmXRGPU.

This observation suggests that dedicated XR devices like the Meta Quest 2

may be better optimized for modern graphics API architectures such as We-

bGPU.

Framerate Per Second (FPS) Figure 5.14 presents the average FPS measured

across all tested devices under the defined scenarios. As previously noted,

some devices exhibit anomalous behavior where the FPS increases despite

the rising complexity of the rendering scenarios. To investigate potential

causes, scatter plots and violin plots were utilized, as shown in Figures 5.20,

5.22, 5.24, 5.26, 5.28, 5.30 and Figures 5.32, 5.34, 5.36, 5.38, 5.40, 5.42

respectively.

In scenarios with lower complexity, both ControlXR and WasmXRGPU

demonstrate stable performance, with ControlXR generally achieving higher

FPS. However, beginning with scenario 3, ControlXR shows increased insta-

bility on most devices. As previously discussed, the FPS values often fall

98

into two distinct ranges: one with unusually high values that raise the overall

average, and another with significantly lower values that bring the average

down. The combined effect of these two ranges results in an overall average

FPS that is higher than that of WasmXRGPU.

From a user experience perspective, the higher FPS values in ControlXR

are not perceived, likely due to frame drops occurring to synchronize with

the next rendered frame. This phenomenon appears to be the root cause of

the observed anomalies. Additionally, the more stable FPS values of Was-

mXRGPU on some devices tend to be higher than, or comparable to, the

lower range of ControlXR’s fluctuating values—indicating that users may

actually experience smoother performance with WasmXRGPU. An excep-

tion to this trend is observed on the Google Pixel 6A, where WasmXRGPU

exhibits a wider distribution of FPS values, suggesting less consistent per-

formance.

Frame Time (ms) Figure 5.15 presents the average frame time measured across

all tested devices under the defined scenarios. Since FPS is calculated based

on frame time, the anomalies discussed earlier are also reflected here. How-

ever, they are not very apparent in Figure 5.15. Therefore, Figures 5.21,

5.23, 5.25, 5.27, 5.29, 5.31 and Figures 5.33, 5.35, 5.37, 5.39, 5.41, 5.43 vi-

sualize the scatter plots and the violin plots, respectively, to better identify

these anomalies.

Similar to the FPS observations, starting from scenario 3, ControlXR shows

unstable frame time values across most devices. In contrast, WasmXRGPU’s

frame times tend to remain within a consistent range that falls below the

higher end of ControlXR’s fluctuating range. Since lower frame time indi-

cates better performance, this suggests that WasmXRGPU generally per-

forms better under this reasoning. However, this trend does not hold true

for all devices. For example, on the Meta Quest 2, such behavior is not

observed, and in that case, WasmXRGPU does not outperform ControlXR.

Session Load Time The recording of performance metrics starts when the user

requests the API to start a session using some sort of an event. This is

because there’s a limitation/restriction imposed by WebXR Device API to

prevent a XR session being created without the user consent.

Figures 5.44 through 5.49 visualize the first 10 frame time values of each

scenario rendered by all the experimented devices. As previously observed,

nearly every graph shows that ControlXR exhibits better performance (i.e.,

lower frame time values) compared to WasmXRGPU. A possible explanation

99

for this behavior may lie in the underlying WebAssembly implementation.

As discussed in Section 4.4, WasmXRGPU stores WebXR data in the We-

bAssembly memory heap. This introduces additional memory allocations

and WebAssembly-specific configurations that are not present in ControlXR.

Furthermore, WebGPU entails more complex configurations than WebGL.

Although the ‘GLRenderer‘ and ‘GPURenderer‘, shown in Figures 4.4 and 4.5,

are created during the webpage load, the actual creation of scenarios and

the merging of draw calls involve additional dynamic steps that are triggered

when the user initiates a request event.

Even though WasmXRGPU exhibits better load time in the first recorded

value of some scenarios, the frame time remains significantly higher com-

pared to ControlXR in the second recorded value.

6.2.2 Augmented Reality (AR)

CPU Time (ms) Figure 5.50 visualizes the average CPU times. As observed,

when scene complexity increases, ControlXR’s CPU time rises more signifi-

cantly compared to WasmXRGPU on all devices except the Google Pixel 4A.

As discussed in the VR mode section, the reasoning behind WasmXRGPU

outperforming ControlXR is likely the same, since—despite the difference in

modes—the rendered scenarios remain identical.

GPU Time (ms) Figure 5.51 shows the average GPU times. As previously dis-

cussed, a majority of matrix multiplications in WasmXRGPU are performed

on the GPU. As a result, the GPU time in WasmXRGPU is generally higher

than that of ControlXR across most devices. However, Samsung Galaxy

A15 and Samsung Galaxy S23 Ultra show that GPU time in ControlXR is

very similar to that of WasmXRGPU. While it is difficult to pinpoint the

exact cause of this behavior from the data alone, it may suggest that these

specific devices handle GPU workloads more efficiently, or that the overhead

of CPU-based computation in ControlXR is offset by other optimizations

or hardware characteristics. Further investigation into GPU utilization pat-

terns or driver-level optimizations on these devices would be needed to draw

more concrete conclusions.

Another interesting observation lies within Meta Quest 2. In VR mode, Meta

Quest 2 showed the opposite behavior, where WasmXRGPU had better per-

formance in GPU time compared to ControlXR. However, this trend does

not continue in AR mode. In fact, WasmXRGPU’s GPU time is significantly

higher than that of ControlXR, indicating that GPU compute for matrix op-

100

erations is indeed taking place. This contradicts the earlier assumption that

Meta Quest 2 is inherently more optimized for modern graphics API archi-

tectures. A possible explanation could be that this dedicated XR device

handles different XR modes—VR and AR—with different system-level op-

timizations or hardware scheduling strategies. This mode-specific behavior

may be affecting how rendering workloads are distributed between the CPU

and GPU.

Framerate Per Second (FPS) Figure 5.52 presents the average FPS measured

across all tested devices under the defined scenarios. Unlike in VR mode,

no visible anomalies are observed in the graph. However, to investigate

potential outliers and anomalies, scatter plots were utilized, as shown in

Figures 5.58, 5.60, 5.62, 5.64, 5.66, 5.68.

Even after analyzing the scatter plots, no anomalies were detected, indicating

that in AR mode, WasmXRGPU does not outperform ControlXR in terms

of FPS. However, an interesting observation is that the Samsung Galaxy S23

Ultra maintains a consistent FPS range across all scenarios. Compared to

other mobile devices, the Samsung Galaxy S23 Ultra is equipped with su-

perior hardware specifications, which likely contributes to its strong perfor-

mance, consistently achieving 30 FPS. The scatter plots for this device reveal

no distinct ranges that could artificially elevate the average FPS. Throughout

the experiment, both ControlXR and WasmXRGPU consistently maintain

similar and close FPS values.

Samsung Galaxy A52 and Google Pixel 4A exhibit some outliers in scenarios

with higher complexities that may contribute to the average metric value.

However, these outliers do not form a distinct distribution range. The pres-

ence of these outliers may be due to the WebGL time measuring query being

stalled for a period of time.

As for Meta Quest 2, there are some varying distributions in scenario 4 for

WasmXRGPU. However, the ranges of WasmXRGPU do not surpass the

distribution range of ControlXR, which does not alter the final conclusion

regarding their average performance.

Frame Time (ms) Figure 5.53 presents the average frame time measured across

all tested devices under the defined scenarios. Figures 5.59, 5.61, 5.63, 5.65,

5.67, 5.69 visualize the scatter plots to identify any potential anomalies.

Similar to the FPS observations, no significant anomalies are found in this

metric, aside from some outliers observed for Samsung Galaxy A52 and

101

Google Pixel 4A, as mentioned earlier. A similar case is observed for Meta

Quest 2 as well.

Session Load Time Figures 5.70 through 5.75 visualize the first 10 frame time

values of each scenario rendered by all the experimented devices. As previ-

ously observed, nearly every graph indicates that ControlXR demonstrates

better performance (i.e., lower frame time values) than WasmXRGPU. This

aligns with the same observation and reasoning discussed in VR mode.

6.3 ControlXR and WasmXRGPU Experiment

- Qualitative Evaluation

Despite some cases where WasmXRGPU outperforms ControlXR in quantitative

metrics, the qualitative feedback from participants indicates a clear preference for

ControlXR overall. The score distributions, as shown in Figures 5.76, 5.77, 5.78

and 5.79, reveal greater variation in user experiences with WasmXRGPU across

both VR and AR modes, suggesting that the effectiveness of the implementation

depends heavily on the specific device and participant. While a few participants

did rate WasmXRGPU as the better implementation, most found that even if it

performed better in one mode, ControlXR was favored in the other. This points

to the potential influence of different runtime backends used in each mode.

Tables 5.5 and 5.6 present the participants’ justifications for their preferences.

Many highlighted factors such as responsiveness and smoothness of performance

in their chosen implementation. However, some participants reported that Was-

mXRGPU did not function at all, which may suggest compatibility issues related

to hardware or browser versions.

6.4 Virtual Reality vs. Augmented Reality

The study aimed to use the same scenarios, as defined in Table 5.3, across both

VR and AR modes. However, notable differences were observed in the results

produced by these two modes. Furthermore, qualitative feedback revealed that

some participants preferred different implementations depending on the mode,

suggesting discrepancies in the runtime backends of VR and AR. This section

critically examines potential factors contributing to these differences.

First, in the case of VR, the application is required to render two separate views—one

for each eye—creating a fully immersive experience. Additionally, there is no cam-

era overlay involved in the rendering pipeline.

102

In contrast, AR does not render two views for each eye. Instead, the virtual

content is rendered on a separate layer, particularly when the WebXR Device API

is used. Unlike VR, AR includes a camera overlay that displays the real-world

environment captured by the device’s camera.

Furthermore, as previously noted, Table 4.1 illustrates that VR and AR modes rely

on different backend runtimes or SDKs. This discrepancy introduces variation at

the system level that cannot be modified by developers or researchers attempting

to make direct comparisons between the two modes.

In both implementations—ControlXR andWasmXRGPU—Figure 5.14 shows that

FPS gradually decreases as scene complexity increases in the context of VR. In

contrast, Figure 5.52 demonstrates that FPS in AR mode appears to be capped

at certain values depending on the device. On mobile devices, for example, the

maximum FPS tends to be close to 30, whereas in VR, the maximum FPS varies

across devices. This behavior is likely influenced by the presence of the camera

overlay in AR. Since the rendered frames must remain synchronized with the live

camera feed, exceeding the camera’s refresh rate could result in visual artifacts or

latency, degrading the user experience. Therefore, it is plausible that the WebXR

API enforces a cap on the maximum FPS in AR mode.

A notable exception to this trend is the Meta Quest 2, which consistently maintains

an FPS of approximately 90 in both VR and ARmodes. The device’s specifications

indicate that its display supports a 90Hz refresh rate, suggesting that its camera

subsystem is also capable of matching that framerate, thereby avoiding any need

for artificial capping.

Lastly, the observation that devices such as the Google Pixel 4A and Google

Pixel 6A perform significantly worse in AR mode compared to VR, while other

devices perform better in AR mode, further supports the conclusion that hardware

infrastructure plays a substantial role in determining overall performance.

6.5 The Impact of WebGPU–WebGL Interoper-

ability

Although a dedicated experiment concluded that this interoperability method does

not introduce significant overhead in general contexts, it was not conducted specif-

ically within the domain of web-based XR. The reason for this limitation lies in

the lack of official WebGPU support in the WebXR Device API, making it cur-

rently infeasible to implement a fully WebGPU-based XR experiment group for

comparison.

103

This raises the question of whether the chosen interoperability approach may in-

troduce performance overheads or limitations specifically in the context of Web-

based XR. While the WebXR Device API specification (WebXR Device API 2024)

primarily defines how the API interfaces with XR devices and does not explicitly

mandate or restrict the use of specific graphics APIs beyond their role in rendering

virtual content layers, there may still be GPU-level operations, internal configura-

tions, or hidden resource contention that contribute to performance bottlenecks or

inefficiencies. These potential overlaps and constraints remain speculative without

deeper low-level access, but their existence cannot be entirely ruled out.

6.6 Findings and Contributions

After critically evaluating the results presented in Chapter 5, the key findings and

contributions of the evaluation can be summarized as follows:

1. Due to the lack of native or official WebGPU support in the WebXR Device

API, a hybrid rendering approach was introduced in which WebGPU and

WebGL are used together through an interoperability method.

2. This WebGPU–WebGL interoperability method enabled the use of We-

bGPU’s advanced GPU capabilities within immersive web experiences, while

relying on WebGL for XR session context management.

3. Performance comparisons between the interoperability method, standalone

WebGPU, and standalone WebGL revealed no statistically significant over-

head from using the interoperability method, even across scenes of varying

geometric complexity.

4. The significance of these performance observations was confirmed using a

one-way ANOVA test, ensuring statistical robustness.

5. One of the critical findings in the interoperability evaluation was the impact

of draw call count on overall rendering performance. As the number of draw

calls increased, WebGPU time increased disproportionately in WebGPU-

based approaches.

6. To mitigate this variable, a draw call merging strategy, inspired by Bi et al.

(2024), was applied consistently across both ControlXR and WasmXRGPU

implementations to isolate the effect of rendering backends.

7. The evaluation was performed in both VR and AR contexts, across multiple

Android-based mobile devices, to assess the portability and performance

consistency of the proposed approach.

104

8. In both contexts, WasmXRGPU demonstrated significantly improved CPU

performance in complex scenes, as intensive matrix computations were of-

floaded to the GPU via compute shaders and parallel execution.

9. The observed increase in GPU time for WasmXRGPU was an expected result

of this offloading strategy, which highlights the GPU’s effective utilization

rather than inefficiency.

10. While FPS and frame time varied depending on the device and context, the

WasmXRGPU approach exhibited more consistent frame pacing and lower

variability, especially in VR contexts.

11. These variations are likely influenced by differences in XR runtime backends

used by the devices (e.g., ARCore for AR and Google Cardboard for VR), as

shown in Table 4.1. Such backend differences lead to inconsistent scheduling

and rendering behavior across platforms.

12. It was also observed that the ControlXR implementation, which relies solely

on WebGL, had less stable performance in complex scenes, especially in the

VR context in some devices.

13. Overall, WasmXRGPU did not consistently outperform ControlXR across

all metrics. This may be attributed to the additional overhead introduced

by the WebGPU–WebGL interoperability method. However, this cannot

be definitively concluded, as a purely WebGPU-based implementation of

WasmXRGPU could not be developed due to the current lack of native

WebGPU support in the WebXR Device API. Therefore, a direct comparison

between a WebGPU-only and the hybrid WebGPU–WebGL implementation

in WebXR context remains infeasible.

105

Chapter 7

Conclusion

This study set out to investigate the performance of web-based Extended Real-

ity (XR) applications developed using emerging web technologies—namely We-

bAssembly and WebGPU. The motivation stemmed from the increasing need to

push the boundaries of what web applications can achieve in immersive environ-

ments, and to explore whether browser-based XR can compete with or comple-

ment native XR solutions. This aim was achieved by designing and implementing

a novel framework that integrates these technologies, followed by a systematic

performance evaluation across multiple devices and scenarios.

The study identified several integration challenges, including performance consid-

erations, differences in graphics API abstraction between WebGL and WebGPU,

and the lack of official WebGPU support in the WebXR Device API. These chal-

lenges were addressed through an iterative development process that led to the

discovery of practical solutions, ultimately resulting in a performant prototype.

During the prototype design phase, multiple integration strategies were explored.

One viable approach was to create a wrapper around the WebXR Device API for

access from C++ code. Another more practical method involved handling the

WebXR Device API via JavaScript and allocating the data in the WebAssembly

memory heap, making it directly accessible from C++. This approach minimized

communication overhead between JavaScript and WebAssembly contexts.

Following the JavaScript-managed data allocation strategy, the absence of official

WebGPU support in the WebXR Device API necessitated an interoperability layer

between WebGPU and WebGL. To realize the prototype, high-performance third-

party libraries were used for fast 3D model loading. WebGPU compute shaders

were leveraged for efficient matrix operations. Compiler-level optimizations were

applied to the WebAssembly module, and merged draw calls were introduced to

106

minimize CPU-GPU communication overhead.

A fully functioning web-based XR application was implemented, supporting both

VR and AR modes. The system was designed with modular components to pro-

mote flexibility and extensibility.

Performance was evaluated through frame rate analysis, CPU/GPU usage metrics,

and comparative benchmarking with ControlXR (a WebGL-based baseline imple-

mentation). The results, presented in both tabular and graphical form, highlighted

the impact of scene complexity, device hardware, and runtime environments on

overall system behavior.

As stated in Section 6.6, performance analysis revealed that the WebAssembly

+ WebGPU implementation consistently outperformed the WebGL-based version

in terms of CPU time, owing to the offloading of intensive matrix operations to

the GPU. Although the average frame time lagged behind the traditional WebGL

implementation, it remained more stable under increasing scene complexity in the

context of VR. However, performance differed markedly across devices—especially

between mobile devices and standalone XR headsets, highlighting the critical role

of hardware and runtime environments.

7.1 Overall Outcome

The study successfully fulfilled its aim of investigating the performance of web-

based XR applications powered by WebAssembly and WebGPU. A functional pro-

totype was developed and evaluated across multiple scenarios, offering insight into

the strengths and limitations of the combined use of these emerging technologies

in immersive web applications.

The evaluation demonstrated notable improvements in specific metrics, particu-

larly in CPU time, attributed to the offloading of computational tasks to the GPU

via WebGPU. However, the WebAssembly and WebGPU-based implementation

did not consistently outperform the traditional WebGL-based approach across all

performance aspects.

As discussed earlier, the performance limitations observed in the study may stem

from the interoperability method used to integrate WebGPU with the WebXR

Device API, which necessitated the use of WebGL as a bridge. While this hybrid

approach enabled the integration of advanced graphics capabilities, it may have in-

troduced additional overhead affecting overall performance. However, conducting

experiments under this hybrid approach also enabled the evaluation of the rela-

tionship between scene complexity and draw call count. This, in turn, provided an

107

opportunity to validate the effectiveness of draw call merging, as proposed by Bi

et al. (2024), in reducing CPU-GPU communication overhead. Thus, despite its

limitations, the hybrid setup not only served its immediate purpose but also facil-

itated deeper insights into performance optimization strategies relevant to future

WebGPU-based XR systems.

7.2 Limitations

While the study provides meaningful insights into the performance of web-based

XR applications utilizing WebAssembly and WebGPU, several limitations must

be acknowledged:

� Lack of Official WebGPU Support in WebXR: One of the primary lim-

itations was the absence of official WebGPU integration within the WebXR

Device API. As a result, the prototype had to rely on WebGL as an inter-

mediary for XR rendering, potentially introducing overhead and impacting

the overall performance of the application.

� Merging Draw Calls: This technique was employed to enhance WebGPU

performance and reduce CPU-GPU communication overhead. However, it

becomes less effective in scenes with numerous objects that frequently update

or manipulate vertex data directly (as opposed to simple object transforma-

tions). In such cases, the merged buffer must be updated often, diminishing

the benefits of this approach. Additionally, this study utilized a single large

buffer to store all vertex data and issued a unified draw call. While effec-

tive in some scenarios, this method may not be universally applicable due

to WebGPU’s limitations on maximum buffer size (”WebGPU Specification

- Limits” 2025), which vary based on the device’s hardware specifications.

Therefore, special care must be taken to handle such constraints and avoid

runtime errors.

� Interoperability Complexity: The approach depended on complex inter-

operability between JavaScript, WebAssembly, and GPU APIs. Although

functional, the communication overhead and resource management between

these layers might not represent the most efficient solution in future imple-

mentations once native integration of WebGPU into WebXR is possible.

� Limited Device Compatibility and Runtime Support: The experi-

ments were conducted on a limited range of devices and browsers, some of

which had incomplete or inconsistent support for emerging standards like

WebGPU. This constrained the ability to generalize the performance ob-

108

servations across a broader array of platforms and user environments. For

example, due to the closed ecosystem of iOS and Apple, iPhones do not

support WebXR Device API, and Mozilla Firefox’s WebXR Device API and

WebGPU are not supported by default.

� Evaluation Constraints in AR Context: Camera frame rate limita-

tions and API constraints in AR environments prevented a pure separation

between hardware-imposed caps (e.g., 30 FPS on mobile devices) and the

evaluation of rendering capabilities. This limitation made it difficult to as-

sess the true potential of WebGPU-based rendering, especially in the context

of AR performance.

� Prototype-Specific Optimizations: The study’s optimizations and de-

sign decisions were specifically tailored to the prototype system. While ef-

fective within this context, they may not apply universally to all XR appli-

cations or frameworks. One such case is the handling of matrix operations.

Offloading matrix calculations to the GPU is effective for complex scenes,

but for simpler scenarios, this may not provide the same benefits. Further-

more, WebGPU’s high parallelism introduces challenges when working with

parent-child relationships in scene trees. For instance, calculating the child’s

model matrix relies on the parent’s model matrix, but the parallel execution

of GPU threads does not guarantee the necessary order, potentially resulting

in race conditions and incorrect results.

7.3 Future Directions

While the current study provides a foundation for implementing and evaluating

web-based XR applications using WebAssembly and WebGPU, several avenues

remain open for future exploration and improvement:

� Native WebGPU Support in WebXR: One of the most significant im-

provements would come from the integration of native WebGPU support

within the WebXR Device API. Future developments in the WebXR stan-

dard may allow WebGPU to be used directly for rendering, removing the

need for WebGL as an intermediary and thus eliminating the associated

overhead. This would enable more efficient XR rendering with better per-

formance and lower latency.

� Cross-Platform Compatibility: Expanding the range of devices and

browsers used in testing would allow for a broader understanding of how

WebGPU-based XR applications perform across different environments. As

109

WebGPU support continues to evolve, it would be crucial to assess perfor-

mance on a wider variety of platforms, including mobile devices, standalone

XR headsets, and desktops. Ensuring cross-platform compatibility is essen-

tial for the widespread adoption of web-based XR applications.

� Addressing Performance Bottlenecks in AR: Future work could focus

on further isolating AR performance from hardware-imposed limitations,

such as camera frame rates. One potential direction would be to develop

better techniques for decoupling camera performance from rendering tasks,

allowing for more accurate evaluations of the rendering capabilities in AR

environments.

� Refining Optimizations for Scene Complexity: As seen in this study,

certain optimizations, such as offloading matrix operations to the GPU, are

effective only in complex scenes. Future research could investigate other

optimizations tailored to less complex scenes, or even dynamic optimizations

that adjust based on scene complexity. Additionally, further exploration of

the challenges related to parallel execution and thread synchronization in

WebGPU could lead to new solutions for handling parent-child relationships

in scene trees more effectively.

� CPU Parallelism Using Pthreads or Web Workers: Another promis-

ing direction for future work is the use of CPU parallelism through Pthreads

or Web Workers, which is supported by Emscripten. It provides built-in

support for parallel execution using Web Workers (MozDevNet 2023) (in

the case of JavaScript) and Pthreads (for multi-threaded C/C++ code). By

leveraging these technologies, it’s possible to offload computationally inten-

sive tasks to multiple threads or workers, allowing for better parallelism

and more efficient CPU usage. This could lead to significant performance

improvements, especially for tasks like physics simulations, AI processing,

or other heavy calculations in XR applications. However, using Pthreads

or Web Workers in a web-based environment introduces challenges such as

managing thread synchronization and ensuring compatibility across different

browsers, as not all platforms provide complete support for multi-threading

in the same way. Future work could investigate how to efficiently imple-

ment and optimize these parallel processing techniques in the context of

WebGPU and WebAssembly-based XR applications, potentially improving

responsiveness and performance in both AR and VR scenarios.

� Real-Time Collaborative Experiences: With the increasing demand

for multiplayer or collaborative XR experiences, future studies could explore

110

the potential of WebGPU and WebAssembly in enabling real-time collab-

orative applications. This would require addressing issues such as latency,

synchronization, and data sharing between users, while ensuring smooth

performance across a wide range of devices.

These directions collectively highlight the evolving landscape of web-based immer-

sive technologies and point toward a future where WebGPU and WebAssembly

may be seamlessly integrated into WebXR workflows. As browser vendors con-

tinue to advance support for these technologies, future research and development

efforts will be better positioned to achieve true native-level performance on the

web. By addressing the current limitations and exploring these promising avenues,

subsequent studies can build upon this foundation to deliver richer, more efficient

XR experiences directly through the browser.

111

References

8th Wall (2024). Last accessed on 2024-06-19.

URL: https://www.8thwall.com/docs/home/intro/

Ammann, M., Drabble, A., Ingensand, J. & Chapuis, B. (2022), ‘Maplibre-

rs: Toward portable map renderers’, The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-

4/W1-2022, 35–42.

URL: https://isprs-archives.copernicus.org/articles/XLVIII-4-W1-

2022/35/2022/

Asm.js Specification (2011). Last accessed on 2024-06-03.

URL: http://asmjs.org/spec/latest/

Azuma, R. T. (1997), ‘A Survey of Augmented Reality’, Presence: Teleoperators

and Virtual Environments 6(4), 355–385.

URL: https://doi.org/10.1162/pres.1997.6.4.355

Bi, W., Ma, Y., Han, Y., Chen, Y., Tian, D. & Du, J. (2024), Fusionrender:

Harnessing webgpu’s power for enhanced graphics performance on web browsers,

in ‘Proceedings of the ACM on Web Conference 2024’, WWW ’24, Association

for Computing Machinery, New York, NY, USA, p. 2890–2901.

URL: https://doi.org/10.1145/3589334.3645395

Bi, W., Ma, Y., Tian, D., Yang, Q., Zhang, M. & Jing, X. (2023), Demystifying

mobile extended reality in web browsers: How far can we go?, in ‘Proceedings

of the ACM Web Conference 2023’, WWW ’23, Association for Computing

Machinery, New York, NY, USA, p. 2960–2969.

URL: https://doi.org/10.1145/3543507.3583329

BlitFramebuffer - MDN Web Docs (2024). Last accessed on 2024-11-06.

URL: https://developer.mozilla.org/en-US/docs/Web/API/WebGL2RenderingContext/blitFramebuffer

Carmigniani, J. & Furht, B. (2011), Augmented Reality: An Overview, Springer

112

New York, New York, NY, pp. 3–46.

URL: https://doi.org/10.1007/978-1-4614-0064-6 1

Chickerur, S., Balannavar, S., Hongekar, P., Prerna, A. & Jituri, S. (2024), ‘Webgl

vs. webgpu: A performance analysis for web 3.0’, Procedia Computer Science

233, 919–928. 5th International Conference on Innovative Data Communication

Technologies and Application (ICIDCA 2024).

URL: https://www.sciencedirect.com/science/article/pii/S1877050924006410

”Dawn, a WebGPU implementation” (2025). Last accessed on 2025-04-11.

URL: https://dawn.googlesource.com/dawn

DirectX by Microsoft (1995). Last accessed on 2024-06-03.

URL: https://learn.microsoft.com/en-us/windows/win32/getting-started-with-

directx-graphics

Du, R., Turner, E., Dzitsiuk, M., Prasso, L., Duarte, I., Dourgarian, J., Afonso,

J., Pascoal, J., Gladstone, J., Cruces, N., Izadi, S., Kowdle, A., Tsotsos, K. &

Kim, D. (2020), Depthlab: Real-time 3d interaction with depth maps for mobile

augmented reality, in ‘Proceedings of the 33rd Annual ACM Symposium on

User Interface Software and Technology’, UIST ’20, Association for Computing

Machinery, New York, NY, USA, p. 829–843.

URL: https://doi.org/10.1145/3379337.3415881

Emscripten (2015). Last accessed on 2024-06-03.

URL: https://emscripten.org/

Erazo, C. & Demir, I. (2023), ‘Hydrocompute: An open-source web-based com-

putational library for hydrology and environmental sciences’.

”fastgltf - Documentation” (2025). Last accessed on 2025-04-06.

URL: https://fastgltf.readthedocs.io/latest/

Ferrão, J., Dias, P., Santos, B. S. & Oliveira, M. (2023), ‘Environment-aware

rendering and interaction in web-based augmented reality’, Journal of Imaging

9(3).

URL: https://www.mdpi.com/2313-433X/9/3/63

Hamzaturrazak, M., Jonemaro, E. M. A. & Pinandito, A. (2023), Performance

analysis of 3d rendering method on web-based augmented reality application us-

ing webgl and opengl shading language, in ‘Proceedings of the 8th International

Conference on Sustainable Information Engineering and Technology’, SIET ’23,

Association for Computing Machinery, New York, NY, USA, p. 637–643.

URL: https://doi.org/10.1145/3626641.3626949

113

Kharroubi, A., Billen, R. & Poux, F. (2020), ‘Marker-less mobile augmented re-

ality application for massive 3d point clouds and semantics’, The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences XLIII-B2-2020, 255–261.

URL: https://isprs-archives.copernicus.org/articles/XLIII-B2-

2020/255/2020/

Khomtchouk, B. B. (2021), ‘Webassembly enables low latency interoperable aug-

mented and virtual reality software’.

Kligge, M. (2024), ‘Comparison of webgl and webgpu as alternatives for imple-

menting gpgpu computing in the browser’, Abschlussbericht FEP 2023/2024

p. 13.

Krupitzer, C. (2018), A framework for engineering reusable self-adaptive systems,

PhD thesis.

Lee, D., Shim, W., Lee, M., Lee, S., Jung, K.-D. & Kwon, S. (2021), ‘Performance

evaluation of ground ar anchor with webxr device api’, Applied Sciences 11(17).

URL: https://www.mdpi.com/2076-3417/11/17/7877

Lee, K. (2012), ‘Augmented reality in education and training’, TechTrends 56.

Liu, K., Wu, N. & Han, B. (2023), Demystifying web-based mobile extended

reality accelerated by webassembly, in ‘Proceedings of the 2023 ACM on Internet

Measurement Conference’, IMC ’23, Association for Computing Machinery, New

York, NY, USA, p. 145–153.

URL: https://doi.org/10.1145/3618257.3624833

”loaders.gl - A collection of loaders modules for Geospatial and 3D visualization

use cases” (2025). Last accessed on 2025-04-06.

URL: https://loaders.gl/

Maclntyre, B. & Smith, T. F. (2018), Thoughts on the future of webxr and the im-

mersive web, in ‘2018 IEEE International Symposium on Mixed and Augmented

Reality Adjunct (ISMAR-Adjunct)’, pp. 338–342.

Magnum Engine (2022). Last accessed on 2024-06-03.

URL: https://magnum.graphics/

McNally, K. F. & Koviland, H. (2024), ‘A web-based augmented reality system’,

EAI Endorsed Transactions on Scalable Information Systems .

URL: https://publications.eai.eu/index.php/sis/article/view/5481

114

Mendoza-Ramı́rez, C. E., Tudon-Martinez, J. C., Félix-Herrán, L. C., Lozoya-

Santos, J. d. J. & Vargas-Mart́ınez, A. (2023), ‘Augmented reality: Survey’,

Applied Sciences 13(18).

URL: https://www.mdpi.com/2076-3417/13/18/10491

Metal by Apple (2014). Last accessed on 2024-06-03.

URL: https://developer.apple.com/documentation/metal

MozDevNet (2023), ‘Using web workers - web apis: Mdn’. Last accessed on

2024-06-03.

URL: https://developer.mozilla.org/en-US/docs/Web/API/Web Workers API/Using web workers

Nam, D., Lee, D., Lee, S. & chul Kwon, S. (2019), Performance comparison of 3d

file formats on a mobile web browser.

URL: https://api.semanticscholar.org/CorpusID:235468359

Nam, H., Lee, M. & Park, N. (2024), ‘Image processing acceleration using we-

bgpu and webassembly’, The Transactions of the Korea Information Processing

Society 13(10), 574–578.

Neelakantam, S. & Pant, T. (2017), Introduction to VR and WebVR, Apress,

Berkeley, CA, pp. 1–4.

URL: https://doi.org/10.1007/978-1-4842-2710-7 1

Odume, B. W., Okodugha, P. E. & Madu, I. (2024), ‘Leveraging we-

bassembly and webgpu for efficient integration of ai models into web

applications’. Available at SSRN: https://ssrn.com/abstract=5078445 or

http://dx.doi.org/10.2139/ssrn.5078445.

OffScreenCanvas - MDN Web Docs (2024). Last accessed on 2024-11-06.

URL: https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas

OpenCV (2000). Last accessed on 2024-06-03.

URL: https://opencv.org/

OpenGL (1997). Last accessed on 2024-06-03.

URL: https://opengl.org/

Qiao, X., Ren, P., Dustdar, S., Liu, L., Ma, H. & Chen, J. (2019), ‘Web ar: A

promising future for mobile augmented reality—state of the art, challenges, and

insights’, Proceedings of the IEEE 107(4), 651–666.

Three.js (2010). Last accessed on 2024-06-03.

URL: https://threejs.org/

115

Toasa G, R. M., Baldeón Egas, P., Saltos, M., Perreño, M. & Quevedo, W. (2019),

Performance Evaluation of WebGL and WebVR Apps in VR Environments,

pp. 564–575.

Usta, Z. (2024), ‘Webgpu: A new graphic api for 3d webgis applications’, The

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences XLVIII-4/W9-2024, 377–382.

URL: https://isprs-archives.copernicus.org/articles/XLVIII-4-W9-

2024/377/2024/

Vulkan (2016). Last accessed on 2024-06-03.

URL: https://www.vulkan.org/

W3C (2024). Last accessed on 2024-11-06.

URL: https://www.w3.org/

WebAssembly (2017). Last accessed on 2024-06-03.

URL: https://webassembly.org/

WebGL (2011). Last accessed on 2024-06-03.

URL: https://www.khronos.org/webgl/

WebGPU (2024). Last accessed on 2024-06-03.

URL: https://www.w3.org/TR/webgpu/

”WebGPU Specification - GPUComputePipeline” (2025). Last accessed on 2025-

04-06.

URL: https://www.w3.org/TR/webgpu/#gpucomputepipeline

”WebGPU Specification - GPURenderBundle” (2025). Last accessed on 2025-04-

06.

URL: https://www.w3.org/TR/webgpu/#gpurenderbundle

”WebGPU Specification - Limits” (2025). Last accessed on 2025-04-17.

URL: https://www.w3.org/TR/webgpu/#limits

WebRTC (2018). Last accessed on 2024-06-03.

URL: https://webrtc.org/

WebVR (2024). Last accessed on 2025-04-11.

URL: https://webvr.info/

WebXR Device API (2024). Last accessed on 2024-06-03.

URL: https://www.w3.org/TR/webxr/

116

”WebXR Device API - Chrome Hardware Support” (2025). Last accessed on 2025-

04-06.

URL: https://immersiveweb.dev/chrome-support.html

”WebXR/WebGPU Binding Module” (2025). Last accessed on 2025-04-11.

URL: https://immersive-web.github.io/WebXR-WebGPU-Binding/

Wonderland Engine (2024). Last accessed on 2024-06-14.

URL: https://wonderlandengine.com/

Zhao, Q. (2009), ‘A survey on virtual reality’, Science in China Series F: Infor-

mation Sciences 52(3), 348–400.

117

Appendix A

Appendix

A.1 Scatter Plots of Measured Metrics in VR

A.1.1 CPU Time (ms)

Figure A.1: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 1 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

118

Figure A.2: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 2 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

Figure A.3: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 3 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

119

Figure A.4: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 4 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

Figure A.5: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 5 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

120

Figure A.6: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 6 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

121

A.1.2 GPU Time (ms)

Figure A.7: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 1 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

Figure A.8: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 2 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

122

Figure A.9: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 3 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

Figure A.10: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 4 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

123

Figure A.11: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 5 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

Figure A.12: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 6 in Table 5.3 and the devices in Table 5.4, in the
context of Virtual Reality (VR). Lower is better.

124

A.2 Violin Plots of Measured Devices in VR

A.2.1 Google Pixel 4A

Figure A.13: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 4A, in the
context of Virtual Reality (VR)

Figure A.14: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 4A, in the
context of Virtual Reality (VR)

125

A.2.2 Google Pixel 6A

Figure A.15: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 6A, in the
context of Virtual Reality (VR)

Figure A.16: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 6A, in the
context of Virtual Reality (VR)

126

A.2.3 Samsung Galaxy A15

Figure A.17: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A15, in the
context of Virtual Reality (VR)

Figure A.18: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A15, in the
context of Virtual Reality (VR)

127

A.2.4 Samsung Galaxy A52

Figure A.19: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A52, in the
context of Virtual Reality (VR)

Figure A.20: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A52, in the
context of Virtual Reality (VR)

128

A.2.5 Samsung Galaxy S23 Ultra

Figure A.21: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy S23 Ultra,
in the context of Virtual Reality (VR)

Figure A.22: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy S23 Ultra,
in the context of Virtual Reality (VR)

129

A.2.6 Meta Quest 2

Figure A.23: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Meta Quest 2, in the context
of Virtual Reality (VR)

Figure A.24: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Meta Quest 2, in the context
of Virtual Reality (VR)

130

A.3 Scatter Plots of Measured Metrics in AR

A.3.1 CPU Time (ms)

Figure A.25: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 1 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

131

Figure A.26: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 2 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure A.27: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 3 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

132

Figure A.28: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 4 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure A.29: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 5 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

133

Figure A.30: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenario 6 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

134

A.3.2 GPU Time (ms)

Figure A.31: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 1 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure A.32: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 2 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

135

Figure A.33: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 3 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure A.34: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 4 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

136

Figure A.35: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 5 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

Figure A.36: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenario 6 in Table 5.3 and the devices in Table 5.4, in the
context of Augmented Reality (AR). Lower is better.

137

A.4 Violin Plots of Measured Devices in AR

A.4.1 Google Pixel 4A

Figure A.37: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 4A, in the
context of Augmented Reality (AR)

Figure A.38: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 4A, in the
context of Augmented Reality (AR)

138

A.4.2 Google Pixel 6A

Figure A.39: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 6A, in the
context of Augmented Reality (AR)

Figure A.40: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Google Pixel 6A, in the
context of Augmented Reality (AR)

139

A.4.3 Samsung Galaxy A15

Figure A.41: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A15, in the
context of Augmented Reality (AR)

Figure A.42: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A15, in the
context of Augmented Reality (AR)

140

A.4.4 Samsung Galaxy A52

Figure A.43: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A52, in the
context of Augmented Reality (AR)

Figure A.44: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy A52, in the
context of Augmented Reality (AR)

141

A.4.5 Samsung Galaxy S23 Ultra

Figure A.45: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy S23 Ultra,
in the context of Augmented Reality (AR)

Figure A.46: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Samsung Galaxy S23 Ultra,
in the context of Augmented Reality (AR)

142

A.4.6 Meta Quest 2

Figure A.47: Distribution of CPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Meta Quest 2, in the context
of Augmented Reality (AR)

Figure A.48: Distribution of GPU time between ControlXR and WasmXRGPU
with respect to the scenarios defined in Table 5.3 for Meta Quest 2, in the context
of Augmented Reality (AR)

143

	Introduction
	Problem Statement
	New Technologies and Solutions
	Research Motivation and Objectives
	Scope and Limitations
	Research Aim, Questions and Objectives
	Research Aim
	Research Questions
	Research Objectives

	Key Terms and Concepts

	Literature Review
	History and Problem
	WebXR
	WebGPU
	WebAssembly
	WebAssembly and WebGPU
	Critical Analysis of the Literature

	Methodology
	Research Methodology
	Experimental Setup
	Evaluation Plan
	Quantitative Evaluation
	Qualitative Evaluation

	Proposed System Architecture

	Implementation
	WebGPU incompatibility
	Finding a Solution for the Incompatibility
	WebGPU-WebGL Interoperability
	Performance Considerations
	Merging Draw Calls
	Render Bundles
	Compute Shaders
	Communication between JavaScript and C++
	Compiler Optimizations

	3D Model Import
	Rendering Frameworks
	Practical Implementation and Integration
	ControlXR
	WasmXRGPU

	Results and Analysis
	WebGPU-WebGL Interoperability Experiment
	Using a Single High Poly 3D Model
	Using Two 3D Models

	ControlXR and WasmXRGPU Experiment - Quantitative Analysis
	vr
	ar

	ControlXR and WasmXRGPU Experiment – Qualitative Analysis
	vr
	ar

	Critical Evaluation of Results
	WebGPU-WebGL Interoperability Experiment
	Using a Single High Poly 3D Model
	Using Two 3D Models

	ControlXR and WasmXRGPU Experiment - Quantitative Evaluation
	vr
	ar

	ControlXR and WasmXRGPU Experiment - Qualitative Evaluation
	vr vs. ar
	The Impact of WebGPU–WebGL Interoperability
	Findings and Contributions

	Conclusion
	Overall Outcome
	Limitations
	Future Directions

	References
	Appendix
	Scatter Plots of Measured Metrics in vr
	CPU Time (ms)
	GPU Time (ms)

	Violin Plots of Measured Devices in vr
	Google Pixel 4A
	Google Pixel 6A
	Samsung Galaxy A15
	Samsung Galaxy A52
	Samsung Galaxy S23 Ultra
	Meta Quest 2

	Scatter Plots of Measured Metrics in ar
	CPU Time (ms)
	GPU Time (ms)

	Violin Plots of Measured Devices in ar
	Google Pixel 4A
	Google Pixel 6A
	Samsung Galaxy A15
	Samsung Galaxy A52
	Samsung Galaxy S23 Ultra
	Meta Quest 2

