
IMPROVING LOW-LEVEL
ISOLATION OF CONTAINERS

INSIDE MICROKERNEL

C.J. PIETERSZ
2025

Improving Low-Level Isolation of
Containers Inside Microkernel

C. J. Pietersz
Index No: 20001347

Supervisor: Dr. Chamath I. Keppetiyagama

May 2025

Submitted in partial fulfillment of the requirements of the

B.Sc. (Honours) in Computer Science Final Year Project

Acknowledgment

I would like to express my sincere gratitude to my supervisor, Dr. Chamath Kep-

petiyagama and co-supervisor, Mr. Tharindu Wijethilake for their valuable advices,

guidance and feedbacks throughout this research. Special thanks to Mr. Ravin Perera for

providing insightful perspectives that enhanced this work.

Finally, I wish to extend my heartfelt appreciation to my parents and Miss. S.H.P.S.

Fernando for their unwavering support and encouragement, which greatly contributed to

the completion of this work.

2

Table of Contents

1 Introduction 2

1.1 Background . 3

1.2 Isolation . 4

1.2.1 Importance of Isolation in Virtualization 5

1.2.2 Improving Isolation . 6

1.3 Gap and Research Questions . 6

1.4 Research Aims and Objectives . 7

1.5 Research Scope . 7

1.5.1 In Scope . 7

1.5.2 Out Scope . 8

1.6 Significance of the Research . 8

1.7 Research Methodology and Evaluation Criteria 9

2 Literature Review 13

2.1 Virtualization . 13

2.1.1 What is Virtualization . 13

2.1.2 Key Features of Virtualization 14

2.1.3 Types of Virtualization . 14

2.2 Containerization . 16

2.2.1 Containerization Technologies 18

2.2.2 Container Security . 19

2.2.3 Microkernel-based Containerization 20

i

2.3 Operating System Kernels . 21

2.3.1 Monolithic Kernel Approach 21

2.3.2 Microkernel Approach . 22

2.3.3 Hybrid Kernel Approach . 26

2.4 Reliable Operating Systems . 27

2.4.1 Current Operating System Issues 27

2.4.2 Solutions . 28

3 Design 31

3.1 Selection of a Suitable Environment 31

3.1.1 Main Characteristics of GNU/Hurd & GNU/Mach 31

3.1.2 Setting Up a Working GNU/Hurd System 35

3.2 Containerization Within GNU/Linux 36

3.3 Containerization Within GNU/Hurd 38

3.3.1 Current Features . 39

3.4 Initial Design - Handle Namespaces in the Kernel 41

3.5 Second Design Approach - Handle Namespaces in the Proc Server . . . 44

3.6 Analyse Isolation . 45

3.7 Inherent Isolation Within GNU/Mach 45

4 Implementation 47

4.1 Environment Setup . 47

4.1.1 Run the Disk Image using Qemu 48

4.1.2 Expanding the Disk Image Size 48

4.1.3 Compilation of GNU/Mach 49

4.1.4 Compilation of GNU/Hurd . 50

4.1.5 Compilation of GNU/Mig . 51

4.1.6 Compilation of GNU/Glibc 51

4.1.7 Challenges and Troubleshooting 51

4.1.8 Reproducibility . 54

ii

4.2 Implementation of First Design Approach 55

4.3 Implementation of Second Design Approach 56

4.3.1 Namespace Implementation 58

4.3.2 Enforce process Isolation . 62

4.3.3 Design Decision . 76

5 Results & Evaluation 77

5.1 Setup Environments . 77

5.2 Isolation Analysis . 77

5.2.1 Qualitative Isolation . 78

5.2.2 Quantitative Isolation . 83

5.3 Performance Comparison . 84

5.3.1 CPU . 85

5.3.2 File System . 87

5.3.3 Memory . 89

6 Conclusions 93

6.1 Limitations . 93

6.2 Future Works . 95

iii

List of Figures

2.1 Application Deployment using traditional, hypervisor and container

architecture (Bhardwaj and Krishna 2021) 17

2.2 Simple architecture of a modular monolithic system (Tanenbaum and

Woodhull 1997) . 22

3.1 Subhurd Architecture . 41

3.2 Design Approach 1 . 42

3.3 Design Approach 2 . 44

4.1 Hurd Architecture (R. Espinola 2009) 52

4.2 /GNU/Hurd system failure during boot due to simple kernel changes . . 56

4.3 Simple Isolation . 68

4.4 ls /proc behavior on simple isolation 69

4.5 Enhanced Isolation . 73

5.1 Setup two namespaces to monitor filesystem behavior 80

5.2 Failure of namespace 1 filesystem . 80

5.3 Re-invoke namespace 1 filesystem . 81

5.4 Setup two namespaces to monitor procfs behavior 81

5.5 Failure of namespace 1 procfs . 82

5.6 Re-invoke namespace 1 & 2 procfs translators 82

5.7 CPU Performance Comparison: Linux vs Hurd 85

5.8 Linux: Impact of Enhance namespace isolation on cpu performance . . 86

5.9 Hurd: Impact of Enhance namespace isolation on cpu performance . . . 87

iv

5.10 Application Overhead:Linux vs Hurd 88

5.11 App Overhead across scenarios . 88

5.12 Memory Bandwidth: Linux vs Hurd namespace 89

5.13 Namespace Isolation on Memory Bandwidth: hurd 90

5.14 Namespace Isolation on Memory Bandwidth: linux 90

5.15 Memory Latency: Linux vs Hurd namespace 91

5.16 Namespace Isolation on Memory Latency: hurd 91

5.17 Namespace Isolation on Memory Latency: linux 92

v

List of Tables

3.1 Key Containerization Features in Linux Kernel 38

3.2 Comparison of Containerization Features 39

4.1 Comparison: Namespace Design inside Kernel Space vs User Space . . 57

5.1 CPU Information of the Host Laptop 78

5.2 Test Environment Configuration: Linux vs GNU/Hurd 85

vi

List of Acronyms

IPC Inter Process Communication

VM Virtual Machine

VMM Virtual Machine Monitor

LXC Linux Containers

KVM Kernel-based Virtual Machine

QEMU Quick Emulator

IOT Internet of Things

OS Operating System

CPU Central Processing unit

HPC High-Performance Computing

RPC Remote Procedure Calls

ARM Advanced RISC Machine

SKI Single Kernel Image

NS NAMESPACE

vii

Abstract

Namespace isolation plays a major role in modern containerization, enabling secure and

efficient process separation in operating systems like Linux. This research introduces

a novel approach to implementing namespace awareness in the GNU/Hurd, a system

traditionally lacking such mechanisms due to its minimalist design. Two design ap-

proaches were evaluated: embedding namespace awareness within the Mach microkernel

versus implementing it externally in Hurd’s user-space servers. The latter was chosen,

aligning with Hurd’s philosophy of excluding policies from the kernel and adhering to

minimalist design, thus maintaining system modularity & flexibility. In this study, a

new unshare command is proposed on the selected design, achieved through targeted

modifications to Hurd’s proc server & message passing interfaces, to enable process

namespace isolation. The implemented unshare command successfully isolates process

namespaces, and when combined with chroot, it achieves enhanced isolation comparable

to Linux container mechanisms. Using the same design methodology, further namespace

isolations can be developed with additional research and optimization. Performance

evaluations demonstrate that the isolation introduces acceptable overheads in Hurd, with

memory bandwidth and latency impacts higher than Linux’s. . Specifically, memory

bandwidth and latency impacts are 7–15% and 5.4%, respectively, compared to Linux’s

0–1.3% and 1.0%. These results validate the feasibility of namespace isolation in micro-

kernels, showcasing Hurd’s potential for container-like functionality, and pave the way

for future research into broader namespace support.

Chapter 1

Introduction

Microkernels, characterized by their minimalist architectural design and strict separation

of concerns, provide a robust framework for isolating core system functionalities such

as memory management, scheduling, and Inter Process Communication (IPC) from

user-space applications (Tanenbaum and Woodhull 1997). This inherent isolation, which

removes device drivers, file systems, and other utilities from kernel mode to user mode,

has long been regarded as a security advantage over monolithic kernels, where such

components are tightly integrated (Tanenbaum, Herder, and Bos 2006). Given this

foundation, a critical question arises: can the isolation capabilities of microkernels be

leveraged to support containerization, a paradigm that fundamentally relies on isola-

tion? This research addresses this question by designing, implementing and evaluating

namespace awareness in the GNU/Hurd Operating System (OS), a system tradition-

ally lacking such mechanisms. Adhering to the proposed design we developed a new

unshare command that utilizes implemented Remote Procedure Calls (RPC) call by

modifying Hurd’s proc server, enabling process namespace isolation, and combined it

with chroot to achieve enhanced isolation akin to Linux container mechanisms. Two

design approaches were considered: embedding namespace awareness within the Mach

microkernel versus implementing it externally in Hurd’s user-space servers. The latter

was adopted, preserving Hurd’s minimalist philosophy. Performance evaluations using

cputest, tinymembench, and fs_mark benchmarks reveal that Hurd achieves effective iso-

2

lation with acceptable trade-offs. Memory bandwidth and latency impacts are 7–15% and

5.4%, respectively, compared to Linux’s 0–1.3% and 1.0%. Although implementation is

limited to process namespaces due to time constraints, this approach demonstrates the

feasibility of container-like isolation in microkernels and lays the groundwork for future

research into broader namespace support. By showcasing the potential of microkernels,

comparing design approaches, and analyzing performance trade-offs across memory,

computational, and filesystem operations, this work contributes to the ongoing research

on the future of containerization in alternative kernel architectures.

1.1 Background

The GNU project was started by Richard Stallman in 1983 to give a free OS and

supported software to all people just like Air is free. Because of that almost every

utility, program(extended) in the UNIX system is developed by worldwide developers

for free use. But the main part missed was the kernel for the OS. That’s when new

microkernels and monolithic kernels emerged like Trix, Mach, Linux. Gnu project

first used different types of kernels and all were not fully developed yet. In 1981 they

decided to have Linux kernel developed by a student named Linus Torvalds over the

GNU/Mach microkernel which was developed by some expert developers but wasn’t

fully developed - (Tanenbaum, Herder, and Bos 2006). After that, all the GNU software

and hardware created to support Linux and Linux developed rapidly while Gnu/Hurd

which uses Gnu/mach as the underline kernel slowed down the development due to

the lack of contribution. So, the world of OSs has been built around monolithic and

hybrid kernels. Researchers have long debated the merits of monolithic kernels versus

microkernels. Since we now have efficient and faster hardware support, enthusiasts all

over the world are thinking about the revolution of powerful secure microkernels.

Despite being revolutionary, the earlier microkernels discussed above frequently

experienced performance overhead, less development contribution, and limited adoption

- (Tanenbaum and Woodhull 1997). While the GNU Hurd remains in microkernel

3

philosophy, its special purposes had a limited impact on the OS mainstream. However,

the underlying ideas behind microkernels have remained fascinating to researchers and

developers.

Early virtualization improved with the rise of multiprogramming and OSs since

the 1950s, with the sole purpose of having safely shared physical machine resources

between several processes, but it expanded into an isolated chunk of shared resources

from the host machine. However, all implementations of virtualization (Virtual Machine

(VM)s & Containers) expose a surface more than necessary to the underlying kernel.

Therefore the features of the OS kernel directly affect the security of the virtualized

environment - (Randal 2020). Traditional containerization solutions, while powerful,

face inherent limitations in security and isolation in distributed environments because of

the dependency on current kernel architectures. This is where the microkernel re-enters

the scene, with its inherent isolation potentially offering a solution.

1.2 Isolation

In the realm of virtualization and containerization, isolation is broadly understood

as the prevention of unintended interactions between distinct systems or processes,

encompassing data sharing, resource access, or behavioral interference. There isn’t an

accepted standard definition for isolation. Hakamian and Rahmani define a properly

isolated virtualized system as one that confines programs within their own boundaries,

preventing them from affecting other systems or the host (Hakamian and Rahmani 2015).

This research adopts a similar perspective, defining isolation as the capability to restrict

a process’s interactions across namespaces in the GNU/Hurd microkernel, ensuring

that processes within a namespace cannot access or influence processes, filesystems,

or resources in another namespace, whether maliciously or inadvertently. However,

isolation is a multifaceted concept, spanning security, performance, and fault propagation

dimensions, which renders comprehensive measurement and comparison challenging

(Popek and Goldberg 1974).

4

This study specifically focuses on process namespace isolation within GNU/Hurd,

capitalizing on the microkernel’s inherent architectural advantages to enhance container-

like isolation. Unlike monolithic kernels like Linux, which expose a large attack surface

through approximately 360-441 system calls (Torvalds 2025), microkernels such as

GNU/Mach minimize the kernel’s role, delegating functionalities like filesystem man-

agement and process handling to user-space servers. This design reduces the attack

surface, as GNU/Mach employs around 197 message-passing interfaces (GNU Project

2025), which are less numerous and more dynamic than Linux’s system calls, thereby

limiting potential attack vector. Moreover, microkernel isolation provides qualitative

benefits, including tolerance to parent namespace failures and unchanged kernel behavior,

ensuring that namespace-specific failures do not propagate system-wide (Popek and

Goldberg 1974). In Hurd, these advantages are realized through features such as isolated

filesystems per namespace, local and shared system servers per namespace, and the use

of translators like procfs to enforce namespace boundaries, as demonstrated in the

proposed design. These attributes position microkernels as a promising foundation for

containerization.

1.2.1 Importance of Isolation in Virtualization

Isolation is a cornerstone of virtualization, as articulated by Popek and Goldberg, who

defined a virtualized system as an “efficient, isolated duplicate of a real computer ma-

chine” (ibid.). This significance has intensified with the advent of containerization, where

isolation directly influences security, performance, and fault containment. Inadequate

isolation can lead to severe consequences, such as fault propagation, where a failure

in one container disrupts others due to shared kernel dependencies. Microkernels like

GNU/Hurd address these risks by isolating system components in user space, reducing

shared areas and dependencies between processes, aligning with established methods for

enhancing isolation.

5

1.2.2 Improving Isolation

Enhancing isolation involves minimizing shared areas and dependencies between sys-

tems, as exemplified by microkernel designs. In this research, namespace awareness

in Hurd’s proc server, combined with chroot, isolates filesystems and system servers

per namespace, reducing cross-namespace interactions. Future improvements could

integrate security frameworks like seccomp or SELinux-inspired policies to further

confine processes, leveraging microkernel modularity to enforce mandatory access con-

trols while preserving performance and fault tolerance (namespace_selinux(8) - Linux

manual page 2025).

1.3 Gap and Research Questions

Containerization inside microkernels has not evolved to a stage that can be used to isolate

code and dependencies into a single container and there aren’t any implementations of

containers popular within the industry leveraging this kernel architecture. Perera (2024)

has highlighted containerization like technology inside Gnu/Hurd OS by leveraging

subhurd system but, with several limitations. Such as, this research primarily concen-

trated on file system isolation, the isolation analysis doesn’t delve deeply into drivers

& other utilities, the research does not extensively explore high technical aspects of

Gnu/Hurd OS and it’s system servers & subhurd has its own system servers replicating

hurd system servers, make this design more like a VM ignoring lightweightness of

containers. So according to that, additional isolation using subhurd hasn’t been explored

and implementation doesn’t touch the Mach microkernel as well as Hurd servers which

may cause to exhibit additional performance limitations. It is important to address and

explore how the architectural advancement of microkernels can be applied to containers

to gain greater isolation. The research intends to fill that gap by continuing the discussion

initiated by Perera (ibid.) about the relationship between containers and microkernels.

The research primarily revolves around exploring the following research questions.

• What is the suitable architecture to implement namespaces inside microker-

6

nels?

• What are the advantages/disadvantages of hurd-based containers compared

to Linux-based containers?

1.4 Research Aims and Objectives

The research aims to investigate the potential of implementing containers inside the Hurd

OS to improve isolation using the architectural advantages and special characteristics

provided by its kernel design, specifically using in-kernel features. The research process

intends to achieve the following objectives.

• Design the architecture for the modifications and addition of services such as

namespaces into the Gnu/Hurd to support containers at low levels.

• Add the necessary improvements to the Gnu/Hurd OS and Gnu/Mach according

to the designed architecture.

• Implement a primitive version of containers using implemented kernel features

such as namespaces to isolate processes.

• Assess the isolation provided by the implemented namespace inside the Gnu/Hurd.

• Assess the performance, attack surface, and security of implemented namespaces

inside the Gnu/Hurd.

• Evaluate results by discussing limitations, issues, advantages, and disadvantages

using the outcomes.

1.5 Research Scope

1.5.1 In Scope

The research will primarily cover the following tasks.

7

• Explore the topics of microkernels and containers

• Explore the relationship between the isolation mechanisms of microkernels and

monolithic kernels.

• Explore the capabilities of Hurd OS to isolate the processes of each container.

• Design an architecture to implement namespaces in Hurd OS.

• Implement a primitive version of a container using features provided by

GNU/Hurd.

• Analyze the overall isolation provided by the aforementioned setup concerning

the process isolation.

• Measure the performance of the aforementioned setup to analyze potential &

limitations.

• Suggest future work and improvements to the topic.

1.5.2 Out Scope

The capability of implementing an entire container engine that could support many

features in platforms such as Docker can be extremely challenging due to the time

constraints of the research. Popular container engines use many different kernel services

other than process isolation and analyzing all these services and how mach microkernel

handles isolation in each area can be difficult and time-consuming. Due to the strict

timeline of the research, the project will only focus on the process namespace isolation of

a container which is the first step in namespace isolation and any further improvements

to design will be considered as future work.

1.6 Significance of the Research

Strong isolation between and within containers is a major challenge due to sharing the

same kernel features underline. Although perfect isolation is unachievable, advance-

8

ments in areas such as microkernel architecture that have the potential to contribute to

the inherent isolation can be a game changer. Although, the same isolation in VMs can’t

be achievable using containers, using microkernel architectural advancement to gain

better isolation since less kernel-level privilege is used can be beneficial. The goal of this

research is to improve process namespace isolation inside a microkernel, by ensuring

the safety and resilience of containers. Progress in this area in the future could lead

to better isolation in other important namespace isolation technologies. Prioritizing

designs that limit kernel interference is imperative for developers to reduce the danger

of kernel exploitation, which has the risk of compromising all containers on a single

host. Microkernels’ overhead in IPC is one of their main drawbacks. A performance

comparison of many research papers reveals that monolithic design is preferred over

microkernel architecture because of this significant difference. However, considering the

advancements in technology, it is reasonable to be optimistic about the huge computa-

tional power that will be available in the future. Hence, keeping aside the performance

limitations of microkernels and implementing future advancements will prove their

usefulness in the future. This trend has been seen in research on neural networks, virtual

reality, and related fields where theoretical advances have frequently come before the

necessary tools to prove their usefulness. Looking ahead to the future of computing

with optimism, it makes sense to assume that because of their superior architecture,

microkernels will become the standard. When that time comes, this research will provide

a strong basis for shifting containers and other virtualization technologies to adjust to

the change in architecture.

1.7 Research Methodology and Evaluation Criteria

The design science research methodology will be the main focus of the research. Three

cycles will comprise the process, as stated in Hevner (2007). The relevance cycle will

transfer the requirements, evaluation criteria, and problems from the environment to the

design science research. The appropriate artifacts that meet the specified requirements

9

and evaluation criteria will then be produced by the design cycle. The newly discovered

information and artifacts will be added to the knowledge base by the rigor cycle. T he

key aspects applicable to the three cycles are listed below.

• Stakeholders

– Researchers related to the area of research

– Primary users of containers and virtualization

– Industries that use containers and virtualization

• Requirements

– Improvements to isolation in containers at a lower level closer to the micro-

kernel

– Reduction of potential vulnerabilities and faults in the kernel that can affect

the performance or reliability of the container infrastructure hosted on top of

it

– improvements to the microkernel at the lower level to support container

isolation and reliability.

– Identify the relationship between the inherent isolation provided by the

microkernel architecture and the current isolation provided by monolithic

kernels at lower-level

• Artifacts

– A primitive version of container implementation utilizing or implementing

the services and features of the Mach microkernel

– An addition of comprehensive knowledge regarding the relationship between

microkernels and container isolation to the related field

• Evaluation criteria

10

– The result will be compared with metrics of existing Linux-based systems

for comparison

• Additions to the knowledge base

– A research paper providing a detailed explanation of the methods, findings,

and conclusions of the research

The research process shall also satisfy the design science guidelines as follows.

• Design as an artifact

– The problem is well-defined and has a set of well-defined requirements. The

artifact consists of a model and instantiation

• Problem relevance

– The problem revolves around technology which is used by large tech compa-

nies and therefore has business relevance to it.

• Design Evaluation

– The methodology consists of strict evaluation criteria and shall use rigorous

methods to maintain consistency and integrity

• Research contributions

– The research will contain verifiable contributions and references where nec-

essary and will always give credit to relevant parties when deemed necessary

• Research rigor

– Evaluations will always be conducted as accurately as possible

– The methods used for evaluation will be transparent and would be repro-

ducible

• Design as a search process

11

– The research will undergo review once completed analyzing limitations and

future work that could eventually improve the artifact to better meet the

requirements of the stakeholders

• Communication as research

– The research process and methods involved will be disclosed publicly through

one or more research papers or other common mediums of research docu-

mentation at the end of the process to communicate the findings

12

Chapter 2

Literature Review

2.1 Virtualization

2.1.1 What is Virtualization

In the 1960s, virtualization emerged as a method to manage time-sharing systems,

addressing the high costs of providing individual mainframes for each user. During

that period, the expense of buying separate mainframe units was impractical, leading

to the practice of sharing a single mainframe among multiple users who accessed it

in allocated time segments. To protect user privacy, it was essential to isolate their

sessions, a problem that virtualization effectively resolved (Crosby and Brown 2006).

The broad acceptance of virtualization got popular largely from industrial demands rather

than academic exploration, making it valuable to define virtualization from an industry

perspective (Sharma and Park 2011).

Some definitions for virtualization:

• The separation of a service request from the underlying physical delivery of that

service - VMWare (VMWARE 2007).

• The abstraction of the computer hardware, that is, hiding the physical computer

from the way in which it is used - Intel (Uhlig et al. 2005).

Virtualization can generally be understood as an abstraction that separates the physi-

13

cal properties of computing resources, establishing a clear division between hardware

and software elements (Sharma and Park 2011).

2.1.2 Key Features of Virtualization

Although virtualization is applied in numerous fields, its most significant use lies in

cloud computing. This preference arises from its ability to simplify the allocation

and administration of cloud computing infrastructure, thereby reducing both expenses

and operational difficulties (Bhardwaj and Krishna 2021). Cloud computing integrates

hardware, storage, networks, and services to deliver computing resources as a service. In

the context of cloud computing, virtualization demonstrates three main characteristics

(Tamane 2015).

1. Partitioning: A single physical system should be able to run multiple software

systems by partitioning various resources

2. Isolation: Each virtualized system can exist in isolation without affecting other

systems or the host system. This should also isolate data among those systems.

3. Encapsulation: A virtualized system should be able to package the software into

a single file or bundle. This improves portability and safety as each bundle is

separate and less dependent from others.

2.1.3 Types of Virtualization

Historically, virtual machines that used hypervisors have been the major virtualization so-

lution. However, advancements in technologies over time have paved the way to various

alternative solutions, each highlighting distinct aspects of virtualization (Bhardwaj and

Krishna 2021). These are the two main solutions that is highly used by many industries

over the years.

1. Virtual Machines (Full virtualization)

14

A virtual machine (VM) serves as a simulated representation of a physical com-

puter system, commonly referred to as a guest, while the actual physical machine

hosting it is denoted as the host. Unlike direct interaction with physical hardware, a

VM requires mediation through a lightweight software layer known as a hypervisor

to facilitate communication with the underlying physical infrastructure. The hyper-

visor assumes the responsibility of allocating physical computing resources such as

processors, memory, and storage to each VM, ensuring their segregation to prevent

interference between them. Employing a hypervisor on a physical computer or

server, often termed a bare metal server, enables the separation of the operating

system and applications from the underlying hardware. Subsequently, the physical

machine can partition itself into multiple independent ”virtual machines,” each

capable of executing its own operating system and applications autonomously

while leveraging shared resources managed by the hypervisor, including memory,

RAM, and storage (IBM 2025).

A VM acts as an emulated version of a physical computer system, often called

a guest, with the physical machine it operates on referred to as the host. Rather

than directly accessing physical hardware, a VM relies on a lightweight software

component known as a hypervisor to mediate interactions with the host system.

The hypervisor controls the distribution of physical resources, such as processors,

memory, and storage, to each VM, ensuring their isolation to avoid interference

among them. By deploying a hypervisor on a physical computer or server (com-

monly known as a bare metal server), the operating system and applications are

decoupled from the hardware. This allows the physical machine to divide itself

into several independent VMs, each able to run its own operating system and

applications independently while utilizing shared resources like memory, RAM,

and storage, all managed by the hypervisor (ibid.).

2. Containers (Operating System layer virtualization)

This concept, also known as Single Kernel Image (SKI) or container-based vir-

tualization, operates by concurrently executing applications on top of a single

15

kernel image separately using OS level policies & restrictions. Consequently, the

virtualization occurs at the level of the host OS rather than at the hardware level.

All VMs use an virtualized image (bundled applications & libraries), referred to as

the virtual machine image herein. This approach simplifies system administration

by enabling administrators to allocate resources such as memory, CPU, and disk

space both during VM instantiation and dynamically during runtime. Operating

system-layer virtualization proves to be more efficient & lightweight than alterna-

tive virtualization methods, though it doesn’t provide complete isolation. However,

as VMs share the kernel with the host OS, compatibility necessitates that the

guest virtual image matches the host virtual image, making scenarios like running

Windows on a Linux host unfeasible (Landaeta 2024).

The categorization of containerization, which involves the use of containers, as a type

of virtualization remains a topic of debate within the community. However, a detailed

analysis of virtualization definitions suggests that it fits within the broader virtualization

framework. A growing number of researchers are recognizing operating system-based

virtualization, including containerization, as essential elements of the wider virtualization

landscape (Bhardwaj and Krishna 2021; Landaeta 2024; Tamane 2015).

2.2 Containerization

Sharing physical resources between several users and applications is considered one

of the major reasons for initiating current cloud services. Each guest OS in the cloud

(installed in each user) thinks it controls the whole computer & resources and doesn’t

know they are residing in a virtualized environment and share the hardware resources

(Central Processing unit (CPU), memory, cache, devices) - (Watada et al. 2019). Two

main technologies implement virtualization, which are virtualization-based hypervisors

& virtualization-based containers. Virtualization using hypervisors is considered to have

less performance than using containers because, hypervisor technology installs a new OS

(guest) on top of the host OS, while containers share the same OS kernel as in figure 2.1.

16

Therefore, containers are smaller. Containerization technology uses virtualization-based

containers to isolate from the other applications - (Bentaleb et al. 2022).

The main reason to use containerization is it contains all dependencies & OS libraries

needed for its application so that the application can run in any environment without

concern about dependencies or libraries (portability & platform independence) - (Prins

2022). While at present containerization is used vastly by not only large tech companies

but also developers, and students to develop and deploy their products, Let’s take a look

at the history of this technology to get an idea about their performance, reliability &

security.

Figure 2.1: Application Deployment using traditional, hypervisor and container architec-
ture (Bhardwaj and Krishna 2021)

The complexity of the system software increased with the multiprogramming be-

cause concurrent processes interacted with other processes and started to share multiple

hardware resources like memory. In response to this, a privileged kernel was introduced

to the system software responsible for managing every other process and resource (Ran-

dal 2020). While improving this isolation, the origin of the containers began with the

introduction of the chroot system called in the seventh edition of UNIX OS by Bell

Labs. filesystem namespace isolation introduced by chroot influenced the development

of containers. Containers are not using solely chroot, it uses namespaces, cgroups,

seccomp, and capabilities to provide isolation (ibid.).

Term capability in theoretical work introduced by Dennis and Van Horn (1966), de-

17

fined the set of memory segments a process allowed to read, write, or execute. The early

capability systems prioritized security over complexity. The security working group of

the POSIX standards project began extending the POSIX.1 standard, which introduced a

capability feature. POSIX capabilities (a set of flags that determine whether a process is

allowed to perform specific actions, etc) are entirely different implementations of early

capabilities, but similar concepts were there in both - (Randal 2020). FreeBSD added

jails to the system Kamp and Watson (2000), which isolated filesystem namespaces

using chroot in an improved manner. It isolated the filesystem, processes, and network

resources inside a jail so that the process has the root access privilege inside the jail

but can’t perform operations beyond the jail. Biederman and Networx (2006) proposed

expanding namespaces isolation in the Linux OS to isolate process IDs, IPC, and network

stack. Between 2006 and 2007, the process containers feature was introduced to the

Linux kernel, later renamed to cgroups (control groups) - which introduced resource

limiting, prioritization, accounting, and control features for processes. Seccomp is a fea-

ture added to the Linux kernel to restrict processes so that it can only run limited system

calls to work with already open file handles and to terminate a process attempting to run

any other system call. in 2008, to create low-level containers, Linux Containers (LXC)

combined cgroups, namespaces, and capabilities from the Linux kernel. (Randal 2020).

2.2.1 Containerization Technologies

Container-based virtualization technology has been widely used in several industries.

In this chapter, Let’s discuss briefly some popular container technologies: Docker, and

Singularity, each focusing on different use cases.

Docker

Docker is a lightweight container-based virtualization platform. Docker extended func-

tionality from LXC, called libcontainer (ibid.). The performance of LXC and Docker

was contrasted by Morabito, Kjällman, and Komu (2015) and found both are roughly

equal in CPU performance, disk I/O, and network I/O except in random writes(LXC

18

performed 30% better). Docker container uses namespaces, and cgroups to provide

process & resource isolation. Namespaces (user, net, PID, mnt, cgroup) will limit

the user’s space and provide isolated Linux kernel resources. creating, running, and

managing containers easier with the help of Docker. Docker images can be built using

.Dockerfile in the project folder, which contains commands to initialize and run the

image. There is a container registry called Docker Hub that can be used to share and save

images (can manage different versions). To run microservices using several containers

(multi-containers) and manage those containers, we can use docker-compose. (Bentaleb

et al. 2022)

Singularity

While docker focuses on applicability in the industry, Singularity focuses on the portabil-

ity of the containers, optimized for High-Performance Computing (HPC) environments.

HPCs are usually used in scientific research, engineering simulations, etc. Singularity is

a pattern, which allows users to deploy and create their execution environments. Sin-

gularity can be used to configuration of namespaces for containers and minimize the

number of virtualized namespaces. Singularity allows untrusted users to run untrusted

containers safely. The security design of the singularity uses kernel security modules

like SELinux, and AppArmor and can load security policies at runtime. (ibid.)

2.2.2 Container Security

Containerization comes with some security benefits. providing "secure-by-default" ap-

proach container management engines support the same isolation techniques as the host

OS. So, Security permissions will be managed by the engine itself to check communica-

tion between containers - (Prins 2022). Technology doesn’t come with 100% security &

reliability. All the current VMs and containers are weak abstractions, providing underly-

ing software surface or hardware than it is supposed to the outer environment through

the OS kernel. Security research conducted in 2018 showed that isolation of virtualized

environments (guests) can be easily broken using some hardware vulnerabilities related

19

to speculative execution like Spectre Meltdown, Foreshadow, L1TF, and variants. The

large companies using virtualization in cloud-based environments know these security

vulnerabilities & risks, but they ignore them because of the benefits like flexibility,

performance, cost, portability, and customer reach. (Randal 2020). Implementation

of Docker, Quick Emulator (QEMU)+Kernel-based Virtual Machine (KVM), and Xen

on Advanced RISC Machine (ARM) hardware architecture has been done by Raho

et al. (2015). Adversaries can take over all containers residing on the same host by

subverting the Linux kernel. Linux isolation is strict, but it’s not secure in front of

ARP poisoning. The kernel provides this security model using kernel security models:

Seccomp, Apparmor, and SELinux.(Watada et al. 2019).

Considering these security & isolation issues, more secure and reliable solutions are

strongly needed!

2.2.3 Microkernel-based Containerization

Till now containers and microkernels have been discussed separately. Containerization

is very popular with monolithic OSs like Linux, Windows, and Apple Mac but not with

microkernel-based OSs like Gnu Hurd, Minix, or Sel4. The existence of microkernel-

based containerization technologies currently in use is discussed below.

To overcome some container security shortcomings discussed in Chapter 2.2.2, many

researchers proposed using unikernels (minimal OSs focused on security used for special

purposes & are not general-purpose complete OSs) to create or manage containers. But

these can be used for special needs like secure military vehicle cybersecurity - (Prins

2022).

Prins (ibid.) have discussed containerization with SeL4 microkernel. SeL4 is consid-

ered a secured microkernel since its formal verification, without sacrificing performance,

means it has strong isolation. Here, SeL4 Virtual Machine Monitor (VMM) is used

to separate criticality levels into separate VMs, and then each VM can run various

containers by using SeL4 security benefits. While these containers had nearly native

performance, the boot time of VMs and the initializing time of the container engine make

20

it slower. However, native support for namespaces and isolation in SeL4 microkernel

has greater security advantages toward containerization.

2.3 Operating System Kernels

OSs are required by Central Processing unit (CPU)s to manage their resources and

abstract hardware from applications that are running on them and the users who use

those applications. So, mainly OSs perform two basic functions, extending the machine

and managing resources as stated by Tanenbaum and Woodhull (1997). An OS is a

group of system software applications that has many functions like management of the

memory units, management of the process creation to termination, handling IPC, and

managing input/output(I/O) devices (Isaac et al. 2021). A CPU has privilege modes

that are typically named from 0 to 3. 0 is the most privileged mode (kernel mode) of

all and 3 is the least privileged level (user mode). An OS kernel is the set of processes

that are running in the most privileged mode where it can control all the hardware and

execute any instruction that the machine’s hardware has the capability to run. Every other

software process runs in user mode. The kernel is identified as the heart of the OS. There

are two major approaches to designing a kernel architecture, namely the monolithic

kernel architecture approach, and the microkernel architecture approach. Let’s discuss

the above-mentioned kernel architecture solutions in detail.

2.3.1 Monolithic Kernel Approach

The most common approach by far, has no standard structure, subtitled as “The Big

Mess” by Tanenbaum and Woodhull (1997). The OS is a collection of procedures,

each one can call any of the other ones whenever it wants to. Each procedure has a

well-defined interface that other procedures can call. As the name suggests, there is no

information hiding except for structures designed using modules or packages, in which

much of the information is encapsulated inside modules, and only the designated entry

points are visible to other modules. Using modules, it is possible to design the system

21

with a little structure like the example in figure 2.2.

Figure 2.2: Simple architecture of a modular monolithic system (Tanenbaum and Wood-
hull 1997)

Even if every module producing these procedures is separate from the whole, the

code integration is very tight and difficult to perform effectively. Since all the modules

run in the same address space, an error in one module may affect the whole system.

More modern monolithic kernels such as Linux, FreeBSD, and Solaris can dynamically

load (and unload) executable modules at runtime. This modularity of the kernel is not

at the kernel architecture level. Instead, it is at the binary (image) level. No one should

conflict modular monolithic kernels with the architectural level modularity inherent in

microkernels - (Stankov and Spasov 2006). Due to this “System as a whole” structure,

monolithic kernels can work near userland processes, thus it can predict resource usage

patterns, and more components directly interact with schedular, memory & process

management units. So, the system can have a higher-level view of how users and

processes use resources. (Walfield and Brinkmann 2007).

2.3.2 Microkernel Approach

As the demand for the OS grows, the kernel becomes larger and more complex, the

microkernel approach solves this problem by providing only a minimal set of services.

Even though we don’t hear much about this architecture, it has been there since the

1980s. Researchers and developers didn’t pay attention much because of its inherent

22

performance overhead over the inherent security it provided at that time. After the GNU

project decided to choose Linux as its kernel, All the software and hardware support

for Linux started emerging. Also, the researchers have focused on Linux. That’s where

enthusiasts who are interested in microkernels have to slow down the development due

to low contribution. But with the people realizing the true benefits of higher security

and reliability, people are starting to develop OSs around microkernels. Therefore, we

can see microkernels are used in several products: mobile phones, embedded devices,

distributed systems, Internet of Things (IOT) devices, and mission-critical systems like

medical devices.

Unlike monolithic kernels, microkernels have a very minimalistic design, providing

only the most essential OS functions ensuring enhanced security, modularity, isolation,

and adaptability. These systems can be expanded with more services without modi-

fication to the core. The kernel’s reduced size and straightforward design simplifies

security and accuracy checking. Based on their design principles and development

we can identify several microkernel generations. 1st generation establishes the core

concepts and limited functionality will be there in the kernel mainly focusing on IPC and

memory management. 2nd generations were focused on the limitations of 1st generation

and improved performance, security, and modularity. 3rd generation microkernels can

work with practical applications like real-time systems and try to improve usability. To

understand a handful of trends in the microkernel-based OSs design let’s review several

microkernel-based OSs and underline components.

Microkernel-based Operating Systems

1. Mach Microkernel

The effectiveness of three microkernels: Amoeba, Mach, and Chorus was com-

pared by Tanenbaum (1995). Comparison has been conducted focusing on Memory

Management, process management, and IPC. Similarities and differences in the

components of the three microkernels were assessed. Mach, considered as a 1st

generation microkernel, was first developed by the University of Rochester as

23

RIG and then by Carnegie-Mellon University (CMU), It was not a microkernel

at first but then developed into a much smaller microkernel. Because of limita-

tions in interprocess communication, Mach experienced a performance overhead.

Mach kernel ran on a variety of supercomputers. Mach threads are managed

by the kernel and provide extensive support for multiprocessor systems and are

based on processes, threads, memory objects, ports, and messages. Despite each

microkernel being developed by a different group, all three have numerous simi-

larities.(Tanenbaum 1995)

2. L4 Microkernel

German National Research Center for Information Technology developed the

L4 kernel in 1995. which can be considered as 2nd generation microkernel.

The development of L4 microkernel was discussed over 20 years. Performance is

improved by designing a better synchronized IPC approach. IPC has rich semantics

and the minimality design was supportive of gaining the performance.(Elphinstone

and Heiser 2013)

3. L4RE Microkernel

The L4re microkernel is a later version of the original L4 microkernel. The system

follows the same design principle as the L4 family. Any component in the kernel

cannot be removed from the kernel space. if so, it’ll affect the proper functionality

of the system. At the lowest level of the L4re microkernel is the Fiasco-OC

microkernel. it runs in the highest privilege mode. L4re microkernel is compatible

and scalable in embedded devices and High-Performance Computing (HPC). So,

it was used by secure systems, mobile phones, and the automobile industry. (Rana

et al. 2023)

4. SeL4 Microkernel

This highly secure microkernel was considered as a 3rd generation microkernel.

The design goal of this kernel is to use this in security and safety-critical systems

24

Rana et al. (2023). The implementation of this microkernel was formally machine-

checked and proven for functional correctness and the formal model applies

integrity and confidentiality in Klein et al. (2014). seL4 uses capabilities for access

control.

5. GNU Hurd Microkernel

Gnu Hurd is an open-source, Unix-compatible microkernel-based OS that has

continued development till now. But not completely suitable for day-to-day usage

due to lack of contribution thus slow development. In Walfield and Brinkmann

(2007), critique the architecture of the Gnu Hurd and assess it in terms of user

environment focusing on security. Hurd consists of a set of objects: system

services represented as kernel objects. Capabilities are used to authorize access to

objects. The system uses Remote Procedure Calls (RPC) to communicate between

servers and clients. Also, this paper discusses Hurd’s architecture in different

aspects like structure, security, abstraction, etc. Hurd architecture values both

security and flexibility. The Hurd OS has used Mach 3.0 as the core once. but due

to some compatibility issues, Hurd tried different microkernels and now it uses its

microkernel. But, seems some shortcomings are still there to remedy.

6. Minix 3 Microkernel

Andrew S. Tanenbaum wrote the Minix OS, compatible with Unix but the under-

lying design is different from one another. In 2004, he & some of his students

developed Minix 3, a major redesign of the Minix system by restructuring the

microkernel and increasing reliability & modularity. It is an open-source project

and was developed for use in both PCs and embedded systems. Minix 3 provides

three primitives for communication: send, receive, send & wait, which are C

library procedures. schedular uses a multilevel queuing system. (Tanenbaum and

Woodhull 1997). Although Minix 3 hasn’t released a stable version since 2014, It

is a great source to learn about OSs from the start.

7. QNX Neutrino Microkernel

25

QNX Neutrino is a vastly used proprietary real-time microkernel-based OS in

embedded devices due to its reliability, security, and performance. In Stankov and

Spasov (2006), a comprehensive comparison was done between QNX Neutrino

and Linux-based distribution: RedHat Embedded. The use of microkernel in QNX

gives inherent distributed characteristics and real-time behavior to the OS. In this

comparison, the conclusion is that QNX neutrino is well-suited for real-time OSs

because of its performance, security, better memory management, and real-time

supportiveness. Still, in performance, both OSs had a fast performance.

2.3.3 Hybrid Kernel Approach

A hybrid kernel is another type of OS kernel that combines characteristics of both

microkernels and monolithic kernels. Modern OSs use this approach to acquire better

security than monolithic OSs & performance than microkernel-based OSs. That is,

they are using a microkernel as the core of their kernel to handle essential tasks and

integrate the kernel with some additional functionalities like virtual memory management,

networking, and security mechanisms. Remaining services like device drivers can run as

user processes separate from the kernel. However, in this approach, not all device drivers

will be thrown out from the kernel space. So, hybrid kernels are a kind of compromise

between security and performance while introducing some complexity in their design.

For example:

• Apple Mac OS uses a hybrid kernel method by integrating with a modified Mach

microkernel.

• Android uses a hybrid Linux kernel.

• Windows uses Windows NT (influenced by microkernel design) as the kernel

26

2.4 Reliable Operating Systems

"Improving reliability can also improve security" is a popular phrase stated by Tanen-

baum, Herder, and Bos (2006). Current computers are not reliable due to sudden crashes,

implored users to download some emergency software updates from the internet, etc.

While TV sets, DVD recorders, MP3 players, and other software-laden electronic de-

vices are reliable and secure, computers are not! A few major reasons are computers

are flexible, anyone can change the software, the IT industry is immature, users haven’t

much knowledge about security or reliability, etc. To make computers reliable, the main

thing we need to delve into in this case is the OS. Because even application programs

contain many flaws, if the OS is reliable & secure, bugs in other programs can do only a

limited harm to the system. (ibid.)

2.4.1 Current Operating System Issues

As Tanenbaum, Herder, and Bos (ibid.) says, Current OSs have two features that make

them unreliable and insecure: "They are huge and have very poor fault isolation".

Currently, the Linux kernel has about 20 million lines of code, and the Windows kernel

is more than twice the size of the Linux kernel. And day by day they are getting even

bigger. As the code itself gets bigger and bigger the error count of that code will be very

high. Typically, about 70 percent of the OS consists of device drivers. Because of this

size, no single person can understand the whole system can be an issue when it comes to

debugging and further improvements. The second issue comes with binding all possible

modules or functionality with the OS: fault isolation. Although the kernel consists of

modules, they all live together in the same container. If one module or procedure fails

or crashes the whole container will be affected. For example, if a virus or worm infects

one procedure, it can easily spread to others. In early times people didn’t have much

need for security and reliability but performance. With the change in human needs and

behaviors, now we are in an era where people consider security and reliability more.

27

2.4.2 Solutions

To this reliability problem, there are 4 approaches discussed in Tanenbaum, Herder, and

Bos (2006). The noticeable thing in these solutions is that 3 of those 4 approaches use

microkernels! Let’s discuss those approaches.

Armored Operating Systems

This approach called the Nooks project, is designed to improve the reliability of existing

OSs like Linux and Windows without affecting their monolithic structure by making

device drivers, the core reason for the problem less dangerous. Nooks tries to do this

by wrapping each device driver in a layer of protective software (wrapper) to form a

kind of protection domain. Nooks project’s goal is to protect the kernel against buggy

device driver failures and recover automatically when a driver fails by performing as

few changes as possible to the existing drivers and kernel. When a driver loads into the

kernel, there are several functions provided by the driver to the kernel and vice-versa.

Nooks provides wrappers for all those such functions and then each function call from

the kernel to drivers and vice-versa will go through a wrapper and will be checked and

monitored for validity. Upon successful completion of the calling request (the operation

will be performed to a copy of the kernel object), the isolation manager in the wrapper

will change the kernel accordingly. In this way, a driver failure will not directly affect to

the kernel. After a failure happens, the user-mode recovery agent runs and tries to restart

the driver using recorded old logs. While this method is a proven better way to catch

driver failures, it’s not perfect. because still drivers are running in kernel mode and thus

can perform any privileged instruction it should not execute, and Nooks have to write a

large number of wrappers for each driver and those wrappers can contain faults.(ibid.).

ParaVirtual Machines

This approach tries to use virtualization to provide isolation and prevention from device

driver failures. This approach was implemented by a research group at the University

of Karlsruhe using the L4 microkernel as the host kernel. Instead of only one OS, this

28

uses two or more OSs in a virtual manager by slightly modifying Linux into L4Linux to

match with paravirtualization (Old OSs were not developed enough to fully virtualize).

With each OS thinking it has the entire machine to itself, this approach gained better

isolation. The most interesting part here was this system uses one Linux machine to

run the user applications while one or more other Linux machines run device drivers.

By doing that, if a device driver fails, only the affected VM will crash, and other VMs

will continue to work. An additional advantage of this is no need to modify the pool of

device drivers. However, the kernel has to be modified slightly to achieve integration,

and handle interrupts, and IPC. While this approach will have a performance overhead

of about 3 to 8 percent, theoretically, it should provide greater reliability than a single

OS because VMs can restart to their initial state after a crash happens. (Tanenbaum,

Herder, and Bos 2006)

MultiServer Operating Systems

Even though the first two approaches focused on modifying legacy OSs, the latter

approaches focus on a different architecture. This approach uses Minix microkernel as

the core of the system and every other service and device driver will serve as separate

servers (multi-server) by eliminating the buggy device driver problem. By executing

device drivers as the user processes, one failure in one device driver will not crash

the system because drivers are not in the kernel space, they can’t perform privileged

instructions directly without the kernel. Using a reincarnation server, it kills failed,

crashed, buggy device drivers and restarts them. The use of separate instruction and

data spaces will ensure no injected code or error can crash the system. While the

performance loss that user-mode drivers cause is less than 10 percent when compared

with the monolithic OSs, the Minix microkernel approach provides more reliable features

like minimum code lines to minimize errors, self-healing properties, etc. (ibid.)

29

Language-Based Protection

This approach from a Microsoft research, called singularity is implemented using a

new type-safe language named Sing#. All processes can run in a single virtual address

space because language safety tightly constrains the system and processes. The compiler

will not allow a process to meddle with the other process’s data and eliminates kernel

traps and context switches. This will provide both safety and efficiency to the OS.

Each process is a closed entity and has its own code, memory, runtime, libraries, and

garbage collector. That will ensure isolation in the system. Loadable modules like device

drivers must run as separate processes because unverified foreign code can corrupt

the system. This approach also consists of a microkernel (implemented using sing#)

and a set of processes, all running in a common virtual address space. All process-to-

process communication uses point-to-point bidirectional channels because sing# supports

channels in the language. (Tanenbaum, Herder, and Bos 2006)

Even though microkernels have long been considered as lower performance than

monolithic kernels, observing all four approaches and discussions, we can see micro-

kernel approaches are more suitable than monolithic kernels when it comes to isolation,

reliability, and security. And that is exactly what we expect in containerization technolo-

gies today!

30

Chapter 3

Design

3.1 Selection of a Suitable Environment

Access to an operating system based on a microkernel architecture is required for the

research. Even though there are many microkernels, it can be difficult to find a reliable

operating system that has the tools required to set up a container-like environment and

run tests. Due to the presence of a highly developed operating system called GNU/Hurd,

GNU/Mach was chosen as the preferred microkernel among the variety of microkernels

that were available, including L4, seL4, GNU/Mach, Minix, and others. Supported

by Debian, GNU/Hurd is completely integrated with the well-known GNU toolset and

provides the ease of use of Debian’s strong package manager, "apt." These qualities

make GNU/Hurd a reasonable choice for the current research goals in this research.

(“GNU Hurd/ Documentation” 2024)

3.1.1 Main Characteristics of GNU/Hurd & GNU/Mach

Hurd is a multi-server system

Many operating systems are based on Mach, but they are implemented as a single process

running on top of the kernel, they have the same limitations as a monolithic kernel. All

of the services that a monolithic kernel would normally provide are provided by this

one process. Aside from the possibility of running several separate, isolated servers on

31

a single computer, this strategy might not seem very sensible. These kinds of systems

are frequently called single-server systems. The Hurd, however, is unique in that it

is the only workable multi-server system based on Mach. Numerous server programs

manage various operating system services within the Hurd. These servers use Mach’s

message-passing capabilities to communicate and function as Mach tasks. Even though

each server only provides a small portion of the system’s capabilities, taken as a whole,

they create a complete and functional operating system that is compatible with POSIX

(R. Espinola 2009).

Mach ports

Within Mach, IPC is based on the idea of ports. A port facilitates one-way communication

channels by acting as a message queue. It is required to have a corresponding port right

(a capability) in addition to a port. This right can be send, receive, or send-once. Users

can transmit a single message, receive messages from the server, or send messages to the

server, depending on the type of port right they possess. There is exactly one task that

holds the receive right for every port, but there may be zero or more senders. For clients

who are waiting for a response message, the send-once right is advantageous. Along

with the message, these clients have the ability to assign a send-once right to the reply

port. The kernel makes sure that a message—which may contain a notification that the

server has set up the send-once right—will eventually arrive on the reply port (Walfield

and Brinkmann 2007).

Capabilities

We should discuss capabilities in relation to GNU/Mach and what they represent when

discussing Mach ports. By fusing reference and protection features, a capability acts

as a secure reference. It serves as a pointer to an object and is protected from forgery,

guaranteeing its integrity. Essentially, a capability carries the power to manipulate the

referenced object in addition to identifying it. Delegation procedures are streamlined

when designation and authorization are combined within capabilities (“GNU Hurd/

32

Documentation” 2017).

Components of GNU/Hurd

• File System Server

– The file system server is one of the most crucial core servers of GNU/Hurd

as it implements two very important functionalities.

* Function as the nameserver - We’ve explored the significance of

ports in Mach and their role as communication endpoints. But, how

can we locate a port to a selected server? This task requires a dedicated

nameserver in Mach. If the intended server has previously registered

with the nameserver, a task can query the nameserver to obtain a port

to a server with send rights. But in Hurd, the file system server serves

as the nameserver instead of having a separate one. To do this, the file

system server provides the Hurd file name lookup RPC.

* Function as a data source - The file system server manages pathname

resolution and provides a port to the associated file (node) when a path

is accessed, as was previously mentioned. When compared to a single

nameserver, this method has several advantages. First of all, it makes it

possible to limit access to a server by using standard Unix permissions

on directories. Access can be managed by properly configuring a parent

directory’s permissions and making sure there are no other ways to

access a server port. But the ramifications go far beyond that. It is

noteworthy that a pathname indicates a server port rather than a file.

Because of this flexibility, the server can choose to serve static data

from a regular file. As an alternative, data can be dynamically generated

by a server. A server connected to /dev/random, for example, might

provide new random data with each io read() on its port, whereas a server

connected to /dev/fortune might provide a fresh fortune cookie with each

open(). Other servers provide virtual information or a combination of

33

both, whereas a traditional filesystem server serves data as it is stored

on disk. Every time a remote procedure is called, the server is in charge

of making sure the data is consistent and useful. If this isn’t done, the

results could be confusing and different from what the user expected.

(Perera 2024)

• Auth Server

– Identity-Based Access Control (IBAC) authorizes access based on user iden-

tity. As a result, a subject must identify itself to an object under such a system

in order to gain access to it. In Unix, the majority of servers and the identity

manager are located in the same trust domain. In the Hurd environment,

this is different, which creates a significant difficulty: the object’s managing

server must be able to verify user identities, but it must also be prohibited

from exploiting them. The Hurd’s auth server solves this problem by en-

abling a three-way handshake that permits mutually insecure cooperation and

sharing without the need for prior collaboration. Every port that connects to

this server is used to identify a user and is linked to an ID block that includes

both available user IDs and group IDs as well as sets of effective user IDs

and group IDs. (ibid.)

• Password Server

– After receiving a Unix password, the password server issues a new authen-

tication port and runs with root privileges. To ensure POSIX compliance,

the IDs linked to the authentication port match the Unix user and group

IDs. Additionally, this system incorporates support for shadow passwords.

The password server, which runs as root and is located at /servers/password,

exchanges Unix passwords with the auth server and verifies them using

the password or shadow file. Many applications make use of this server,

eliminating the necessity of directly managing passwords.

(ibid.)

34

• Proc server

– The process server is crucial for preserving system integrity because it acts

as a central location for organizing information about the system. Opting out

means giving up the Hurd system’s POSIX-like appearance, even though its

use is not required. Four main services are provided by this server: First of

all, it controls c rucial host-level information like the hostname, hostid, and

system version that the Mach kernel does not handle. Second, preserving

sessions and process groups, makes POSIX functionalities easier. Thirdly,

by giving each task a distinct process ID (PID), it creates a direct mapping

between Mach tasks and Hurd processes. Processes can register message

ports with the server, accessible to any requesting program. Additionally,

the process server allows processes to disclose their current command-line

arguments and environment variables, enabling PS-like programs and fa-

cilitating information manipulation. Moreover, the server supports process

collections for managing multiple process message ports simultaneously. It

also provides mechanisms for converting between pids, process server ports,

and Mach task ports while ensuring port security. While the default system

process server is unavoidable, users have the flexibility to run additional

process servers with non-superuser privileges to implement specific features

as needed. (Perera 2024)

3.1.2 Setting Up a Working GNU/Hurd System

A functional GNU/Hurd system can be established through various approaches, with the

most accessible and widely recommended method involving the use of a prebuilt disk

image. This method significantly reduces setup complexity and enables quick access to

a working system, making it especially suitable for experimentation and development.

35

Using a Prebuilt Image

Among the available options, the prebuilt disk image approach offers the most straightfor-

ward experience. These images are prepared in advance and designed to work seamlessly

within virtual machine environments like QEMU. By eliminating the need for manual

configuration, this method minimizes the technical barriers typically associated with

installing Hurd. The Debian GNU/Hurd project maintains these images and provides

clear guidance on their use. For the i386 architecture, a stable version is available, while

a 64-bit version exists in pre-release form. Once the image is obtained and run in a

virtual environment, users are presented with a ready-to-use Hurd system, making it

possible to explore its features with minimal setup effort (Debian Project 2025).

Alternative Methods

In contrast, other installation methods, such as using the Debian Installer or tools like

crosshurd, require a more involved setup process. The Debian Installer method involves

creating installation media from ISO images and proceeding through a traditional install

routine, including manual partitioning and system configuration. Similarly, the crosshurd

method sets up the system over the internet and typically involves multiple steps like

system compilation and network setup. These alternatives, while flexible and more

customizable, are generally more time-consuming and error-prone, making them less

suitable for newcomers or quick evaluations.

Overall, the prebuilt image method remains the most efficient and reliable way to

get started with GNU/Hurd. Its simplicity and ease of use, especially when run in a

virtualized environment, allow users to bypass many common setup challenges and begin

exploring the system with confidence.

3.2 Containerization Within GNU/Linux

Linux kernel containerization relies on namespaces, cgroups, chroot, and system calls

like unshare, pivot_root, and mount. These features isolate processes, manage resources,

36

and create container-like environments, forming the foundation for tools like Docker and

LXC.

• Namespace:

Isolate process views using unshare and clone system calls. Code in kernel/n-

sproxy.c and include/linux/nsproxy.h manages namespace creation (Torvalds

2025), (The Linux Kernel Community 2025b).

– PID Namespace: Isolates process IDs, ensuring processes in different names-

paces have independent PID spaces. The init process in a PID namespace

has PID 1.

– Network Namespace: Isolates network stacks, allowing separate network

interfaces, IP addresses, and routing tables.

– Mount Namespace: Isolates filesystem mount points, enabling different

views of the filesystem hierarchy.

– User Namespace: Isolates user and group IDs, allowing a process to be root

inside a namespace without root privileges on the host.

– UTS Namespace: Isolates hostname and domain name, allowing containers

to have unique identifiers.

– IPC Namespace: Isolates System V IPC objects and POSIX message queues.

– Time Namespace: Isolates system clocks, introduced in Linux 5.6 (2020).

– Cgroup Namespace: Isolates cgroup hierarchies, ensuring processes see only

their cgroup subtree.

• Cgroups: (The Linux Kernel Community 2025a)

Control resource allocation (e.g., CPU, memory) via cgroupfs. Code in kernel/c-

group/ handles cgroup operations (Torvalds 2025).

– usage: Processes are added to cgroups by writing their PIDs to /sys/fs/c-

group/<controller>/tasks.

37

– Example: Limit CPU usage.

• Chroot and Filesystem Isolation:

chroot and pivot_root system calls (code in fs/namespace.c) isolate filesystem

views (Torvalds 2025).

(Hallyn 2013)

Table 3.1: Key Containerization Features in Linux Kernel

Feature Mechanism System Calls
Process Isolation Namespaces clone, unshare, setns
Resource Control Cgroups (via cgroupfs)
Filesystem Isolation Chroot, Pivot_root chroot, pivot_root, mount
Security Seccomp, Capabilities seccomp, capset

Listing 3.1: Create a new process namespace

1 #!/bin/bash

2 sudo unshare --fork --pid --mount-proc /bin/bash

3 # this will hide all other processes in the system from

4 # the processes inside the namespace

(Kerrisk 2025)

3.3 Containerization Within GNU/Hurd

After having a thorough research (chapter 2), we can state confidently GNU/Hurd lacks

native containerization like Linux, but its microkernel design allows for isolation via

tasks and translators, where each task operates in its own address space with dedicated

resources. (Loepere 1992). Implementing container-like behavior, including unshare and

jail-like features, requires a careful design, with no standardized tools currently available.

GNU/Hurd uses the Mach microkernel, where system services are user-space servers

called translators, providing inherent isolation for tasks and resources (gnu.org/ 2003b),

which offers potential for container-like environments.

38

Table 3.2: Comparison of Containerization Features

Feature Linux GNU/Hurd
Native Container Support Yes (namespaces, cgroups) No
Unshare-like Behavior Yes (unshare syscall) No
Performance High Lower
Hardware Support Broad Limited

3.3.1 Current Features

This section highlights some fetures GNU/Hurd provides currently that complements

container-like environment. While it’s important to note that these features are not

namespace equivalent, Linux uses these type of functionality to implement full container-

ization.

Hurd Jails

Creating a task with restricted filesystem translator (ext2fs) and limited device access

can approximate a jail, similar to FreeBSD’s jails. This involves setting up a new disk

image & setting up ext2fs translator to make the disk image accessible as a filesystem in

hurd. Then limit its interaction with the system, enforcing resource boundaries manually

as shown in listing 3.2 with the use of chroot (GNU Project 2016a).

Listing 3.2: Jail-like environment (ibid.)

1 #!/bin/bash

2 mkdir container

3 dd if=/dev/zero of=container.img bs=1M count=100

4 mke2fs container.img

5 settrans -a container /hurd/ext2fs --writable container.img

6 mkdir -p container/{bin,lib}

7 cp /usr/bin/bash container/bin/

8 cp /lib/i386-gnu/libtinfo.so.6 container/lib/

9 cp /lib/i386-gnu/libc.so.0.3 container/lib/

10 cp /lib/ld.so container/lib/

11 cp /lib/i386-gnu/libmachuser.so.1 container/lib/

12 cp /lib/i386-gnu/libhurduser.so.0.3 container/lib/

13 chroot container /bin/bash

39

SubHurd

GNU/Hurd’s inherent support of isolation paved the way to build subhurd, a concept that

is experimental and community-driven, with no standardized tools available. Further can

be refers to running a subset of Hurd services or a lightweight Hurd instance within a

larger Hurd system, leveraging the microkernel’s ability to create nested or sandboxed

environments. Subhurd primarily have introduced to debugging core servers (proc server,

etc) so that developers can attach to system servers using GDB. This happens specially

because, no one can start a translator without bootstrap process that runs at the begining

of the hurd boot process (gnu.org/ 2003a). So, GDB into system translators cannot

be done directly and it returns translator didn’t run using bootstrap message to avoid

deadlocks (gnu.org/ 2017).

While this looks like a container environment inside Hurd, primary focus of subhurd

which is debugging the hurd servers have overlooked lightweightness & performace.

That solves the concern why subhurd have replicated many servers including proc server

by running boot process (bootstrap) equivalent as shown in boot command in figure

3.3. Therefore, when a process inside a subhurd requests a service from proc server,

main proc server will definetely receive this request but without handling the request by

itself, proc server queries the proc servers inside each deployed subhurd and forward

the request to the relevant proc server. While this is a good solution to debug system

servers by replicating them, subhurd shouldn’t consider as a container equivalent since

primary and important reason of containers was not considered when designing subhurds

which is lightweightness & performace. Even though GNU/Hurd has lesser performance

compared to Linux as a microkernel based OS, When designing something performace

critical, lightweightness should be a major concern of the design. This design error

in-terms of lightweightness inside subhurd lead to the proposed design in section 3.5.

Listing 3.3: Creating a subhurd environment (ibid.)

1 sudo wget https://cdimage.debian.org/cdimage/ports/latest/hurd-i386/\

2 debian-hurd-20230608.img.tar.gz

3 tar -xvzf debian-hurd-20230608.img.tar.gz

40

4 sudo settrans -a /mnt /hurd/ext2fs /dev/hd1s2

5 sudo boot --kernel-command-line="fastboot root=pseudo-root" /dev/

hd1s2

Figure 3.1: Subhurd Architecture

3.4 Initial Design - Handle Namespaces in the Kernel

GNU/Mach uses a port mechanism to IPC, this approach is designed to alter this port

mechanism to spread namespace awareness into the other servers by combining a byte-

size message into IPC. But, to do so, the kernel should maintain & manage namespaces

like the Linux kernel to some extent. As we can see in figure 3.2, the namespace manager

in Kernel has the responsibility to create namespaces and bind resources(processes, file

systems, mount points, network interfaces) to the created namespace. Each created

namespace will have a unique number (eg: 00000001). Any process IPC will go through

this namespace manager to append the unique number of the respective namespace at

the end of the IPC message so that any receiving end server can check the last byte to

retrieve the namespace of the associated process quickly. And any restriction can be

enforced at the kernel level. For example, if a process in namespace ‘ns1‘ wants a port

sent right to a port associated with a process in namespace ‘ns2‘, the kernel can deny it

as a security of namespace isolation mechanism. Since this research mainly focused on

41

Figure 3.2: Design Approach 1

process isolation, the design here in figure 3.2 shows an example usage in a proc server.

This approach has several main steps from 1 to 7 as you can see in figure 3.2:

1. user issues the command to initiate process isolation along with the initial pro-

cess(file) to be executed. (same kind as the ‘unshare‘ command in Unix).

2. above command will fork & create the given initial process & create a namespace

inside mach and bind the given process to that namespace.

• This binding is done only considering process isolation. Therefore any

process in any namespace still could see the entire file system.

3. after forking, the given initial process is a child process of the namespace create

42

process.

• Now created child process is in a namespace and it can only see & work with

processes inside the same namespace. However, other hurd system servers

are also processes. Every process irrespective of its namespace should be

able to reach those servers to call operating system functionalities. this is one

point microkernel design defers from monolithic kernel design. Therefore

by default, every namespace (process group) has all the hurd system server

processes.

4. If the initial process wants to access a file in the file system server, It sends an IPC

through a port associated with the file system server.

• First this process has to request a send port right from the Mach kernel. mach

kernel (namespace manager) permits it because the file system server is in

the same namespace by default as mentioned.

5. Mach kernel (namespace manager) altering the IPC sent by the initial process

above to append the ending byte indicating the namespace that process belongs to.

6. namespace manager forward altered IPC to the file system server.

7. file system server can give the requested file according to the defined file system

isolation based on the namespace that the process belongs to.

• File system isolation can be defined & implemented here. For example,

if the retrieved namespace is associated with a mounted file system (file

system isolation), the file system server only give permission to files in that

associated file system not to the entire file system.

Therefore, by studying the above steps in figure 3.2, we can clearly see mach kernel

managing namespaces but awareness is delegated to other Hurd operating system servers

43

3.5 Second Design Approach - Handle Namespaces in

the Proc Server

Figure 3.3: Design Approach 2

As shown in figure 3.3, the namespace awareness applied to the proc server which is

fundamentally responsible for process related policies. This is solely done not only to

reduce the kernel complexity but also to consider the container characteristics. Because

containerization is primarily separating a group of processes from others in a system (a

responsibility of the proc server). All the other namespace isolation can be achieved by

delegating proc server namespace awareness into respective system server. The main

steps in the second design approach have changed like this:

1. user issues namespace create command (‘unshare‘)

2. namespace create command creates the given process by forking. Then creates a

new namespace & assigns the forked process to it.

• Here kernel is not aware of namespaces, proc server creates processes as

44

usual using mach kernel. But, inside the proc server, there is an abstraction

layer that handles namespace awareness. proc server (namespace manager)

creates namespaces and process groups.

3. forked new process is a child process of namespace create process.

4. when forked child process needs access to a specific file in the file system, it sends

IPC to file server through namespace manager.

• namespace manager will filter every process IPC based on its namespace so

that a process in a namespace is not aware of other processes not in the same

namespace.

5. namespace manager alters the IPC to have a new property called namespace in

RPC sent from the proc server.

• Proc server will send namespace information to other servers through RPC.

By studying above design, we can see that kernel is not aware of namespaces and

therefore micro-kernel complexity is minimal as before. But, namespace awareness is

still delegate to the other system servers through IPC mechanism.

3.6 Analyse Isolation

3.7 Inherent Isolation Within GNU/Mach

• Tasks and Threads: Mach organizes execution into tasks (which encapsulate

virtual address spaces) and threads (which are schedulable units within tasks).

This separation ensures that each task operates in its own protected memory space

(gnu.org 2008-11-13b).

• Ports and Capabilities: Inter-process communication (IPC) in Mach is facilitated

through ports, which are protected message queues. Access to these ports is

45

controlled via capabilities, ensuring that only authorized tasks can communicate

or access specific resources (gnu.org 2008-11-13a).

• Message-Oriented IPC: All interactions with kernel services and other tasks occur

through message passing, reinforcing isolation by preventing direct access to

another task’s memory or resources (ibid.).

In monolithic architectures, a significant drawback lies in the integration of file

system logic within the kernel. This ensures that if a a kernel crash happened due to

a file system logic bug, all containers will cease to function. However, microkernels

relocate this logic to user space via servers, thereby insulating the kernel from such

failures. Therefore employing a microkernel architecture, such as Mach, can enhance

the isolation of containers by ensuring that a failure in one container does not affect the

kernel or other containers. While microkernels inherently offer extensive isolation across

their systems, our examination will concentrate solely on process namespace isolation.

46

Chapter 4

Implementation

4.1 Environment Setup

Setting up the environment for developing and testing process namespaces in GNU/Hurd

is a critical step that lays the foundation for this research. This process is inherently

complex due to several factors:

• Interdependent Components: GNU Mach, GNU Hurd, GNU MIG, and GNU

C Library are tightly coupled. Building or modifying one often necessitates

rebuilding the others to maintain compatibility.

• Limited Documentation: The lack of up-to-date and comprehensive documen-

tation can lead to a trial-and-error approach, consuming significant time and

resources.

• Cross-Compilation Requirements: Given that GNU/Hurd primarily targets the

i386 architecture, setting up a cross-compilation environment on modern systems

adds another layer of complexity.

• Sparse Community Support: GNU/Hurd has fewer community resources and

forums for troubleshooting, making problem-solving more challenging.

47

Components Overview and used versions:

• GNU Mach: The microkernel responsible for low-level tasks such as memory

management and inter-process communication. (v1.8+git20230526)

• GNU Hurd: A collection of servers running on top of GNU Mach that implement

higher-level operating system functionalities. (v0.9.git20230520)

• GNU MIG (Mach Interface Generator): A tool that generates code to facilitate com-

munication between the microkernel and user-space servers. (v1.8+git20230520)

• GNU Libc: The C standard library, which in the context of GNU/Hurd, includes

specific adaptations to interface correctly with the Hurd servers. (v2.36)

4.1.1 Run the Disk Image using Qemu

As we dicussed in Design phase (section 3.1.2), we can obtain an GNU/Hurd pre-built

image easily without doing the hastle of cross compiling or installing from scratch. Even

though we can use direct qemu command to run the image, it’s better to use an script

that we can handle parameters our selves easily as shown in appendix.

This script allows to change the hurd image, set the ssh port, ram storage easily.

for example: ./runHurd hurd-deb.img 2222 4 command will run the hurd image named

hurd-deb.img opening port 2222 to SSH with 4GB of ram storage.

4.1.2 Expanding the Disk Image Size

As development progresses, you may find the default disk image size insufficient. Here

is an example shell commands to increase the size of hurd image named ready14-deb-7-

8G.img by 4GB (Debian GNU/Hurd Maintainers 2023).

Listing 4.1: Resize the GNU/Hurd Disk Image

1 #!/bin/bash

2 qemu-img resize -f raw ready14-deb-7-8G.img +4G

3 fdisk -l ready14-deb-7-8G.img # to see where partition 2 starts

48

After execution of the above command, look for the start sector of the second

partition.

Listing 4.2: modify the partition layout

1 parted ready14-deb-7-8G.img

2 # Inside parted

3 resizepart 2 100% # Expand partition 2 to use all available space

4 quit

Listing 4.3: attach the loop device & resize the filesystem

1 # attach the loop device

2 sudo losetup -o $((512*<start_sector>)) /dev/loop0 ready14-deb-7-8G.

img

3 sudo e2fsck -f /dev/loop0 # require before resize2fs

4 sudo resize2fs /dev/loop0 # resize the filesystem

5 sudo losetup -d /dev/loop0 # Detach the Loop Device

Replace <start_sector> with the partition’s start sector

Listing 4.4: verify changes

1 # boot into hurd

2 df -h

4.1.3 Compilation of GNU/Mach

as we disussed in design chapter, to implement namespace awareness inside the GNU/-

Mach directly, we have to compile and install the GNU/Mach microkernel from the

sources.

Listing 4.5: verify changes

1 #!/bin/bash

2 # GNU Mach

3 mkdir gnumach && cd gnumach

4 chown _apt:root .

5 apt-get source gnumach

49

6 cd gnumach-*/

7 sudo apt-get build-dep gnumach

8 sudo apt install debhelper quilt

9 dh_quilt_patch

10 # can employ new changes into the source code

11 dpkg-buildpackage -us -uc -b -rfakeroot

12 sudo dpkg -i \

13 ../gnumach-image-1.8-486_1.8+git20230526-2_hurd-i386.deb \

14 ../gnumach-dev_1.8+git20230526-2_hurd-i386.deb \

15 ../gnumach-common_1.8+git20230526-2_hurd-i386.deb

16 sudo update-grub

17 sudo reboot

4.1.4 Compilation of GNU/Hurd

Compiling and installing GNU/Hurd system is crucial in this research since, to implement

each new designs proposed, we have to change the hurd system servers.

Listing 4.6: verify changes

1 mkdir hurd

2 chown _apt:root hurd

3 apt-get source hurd

4 cd hurd-*/

5 # install all dependancies for hurd

6 sudo apt-get build-dep hurd

7 # apply deb patches

8 sudo apt install debhelper quilt

9 dh_quilt_patch

10 # build deb packages

11 dpkg-buildpackage -us -uc -nc -b -rfakeroot

12 # install new hurd deb packages

13 dpkg -i ../hurd_*.deb ../hurd-libs0.3_*.deb ../hurd-dev_*.deb

14 reboot

50

4.1.5 Compilation of GNU/Mig

To compile GNU/Mach and GNU/Hurd we need the support of GNU/Mig which is

used to generates RPC stubs and skeletons to facilitate communication between the

microkernel and user-space servers.

Listing 4.7: verify changes

1 #!/bin/bash

2 sudo apt source mig

3 sudo apt build-dep mig # get all dependancies

4 cd mig-1.8+git...

5 dpkg-buildpackage -us -uc -b -rfakeroot

6 cd ../

7 dpkg -i mig_1.8+git...

8 mig -a # verify

4.1.6 Compilation of GNU/Glibc

Compilation of Glibc library will be crucial when we have implemented new calls into

hurd servers or microkernel so that it provides the general interface to user level programs

to use those internel calls, acting as a standard wrapper as shown in figure 4.1.

Listing 4.8: verify changes

1 #!/bin/bash

2 # Cause: CET (Control-flow Enforcement Technology) is not supported

on Hurd.

3 ../glibc-2.36/configure --prefix= --disable-werror --disable-cet

4 make

5 make install

4.1.7 Challenges and Troubleshooting

Building container-like functionality in GNU/Hurd, especially with a focus on enhancing

namespace awareness and leveraging concepts like subhurds, involves several challenges.

51

Figure 4.1: Hurd Architecture (R. Espinola 2009)

These stem from the system’s unique microkernel architecture, limited community sup-

port, and the experimental nature of Hurd. These are the challenges, and troubleshooting

strategies, identified after critically examining the development process for a more

comprehensive understanding.

Compiling using original gnu source code & version conflicts

Compiling GNU/Hurd components like GNU Mach, the Hurd servers, or the proc server

often requires using the original source code from the GNU repositories. However,

version mismatches between components—such as GNU Mach, Hurd, and the GNU C

Library can lead to compilation failures or runtime errors. For instance, hurd OS freezes

at "start acpi:" after modifying mach_msg_header_t highlights how a change in one

component (Mach) can break compatibility with others (Hurd servers).

Troubleshooting:

• Version Pinning: Ensure all components are from compatible versions. Use the

exact commit hashes or tags and verify compatibility with the glibc version of

the Debian GNU/Hurd environment. Check the Debian GNU/Hurd port page for

recommended versions.

52

• Dependency Tracking: Use dpkg -l | grep hurd and dpkg -l | grep gnumach to list

installed versions, ensuring alignment.

• Build Isolation: Compile in a clean environment to avoid interference from system-

wide libraries or mismatched headers.

• Using Debian repositories: As in subsection 4.1.3 and following other subsections

about compiling sources, it’s very convenient to use debian repositories dirrectly

as they have some patches which will help to stabilize the build.

Installing glibc library

The GNU C Library (glibc) is a critical dependency for GNU/Hurd, providing essential

system calls and runtime support. Installing or upgrading glibc can be challenging

because Hurd relies on a specific (older) ported, version of glibc. Upgrading glibc to a

newer version may break Hurd’s servers or introduce bugs due to differences in system

call implementations or Mach-specific extensions. For example, creating and defining a

new RPC will involve update glibc executable on the new RPC. Othewise other processes

cannot use the defined new RPC. An incompatible glibc could cause segmentation faults

or unexpected behavior.

Troubleshooting:

• Use Hurd-Compatible glibc: Stick to the glibc version provided by Debian

GNU/Hurd. Avoid manual upgrades unless explicitly supported by the Hurd

team.

• Copy binaries directly: Try to use specific library binaries by copying them into

the standard library directory if that updation is enough for the implementation

without trying to compile entire glibc library.

53

Potential Data Loss Due to System Crashes

Developing on GNU/Hurd, carries the risk of system crashes. Custom code changes

can be lost if not properly backed up. Additionally, Hurd’s limited stability means

crashes during development are more frequent, especially when experimenting with

kernel changes.

Troubleshooting:

• Version Control: Use Git to track all changes.

• Frequent Backups: Before rebuilding or rebooting, back up modified source

directories. (using scp like commands or even image level backups)

• Incremental Testing: Apply changes incrementally and test after each step to

isolate crash causes.

4.1.8 Reproducibility

Reproducibility is a cornerstone of reliable system development, ensuring that builds

can be consistently replicated. The following measures were undertaken to achieve

reproducible builds:

Controlled Build Environment

• Host System: All builds were performed on a Debian 12 host, providing a stable

and consistent environment.

• Toolchain Consistency: Specific versions of compilers, linkers, and related tools

were used, and their versions documented, to prevent discrepancies arising from

toolchain variations.

Verification

• Repeat Builds: Multiple builds were performed in clean environments to confirm

that the process yields identical results, reinforcing the reproducibility of the setup.

54

By adhering to these practices, the development process for the GNU/Hurd environ-

ment achieves a high degree of reproducibility.

4.2 Implementation of First Design Approach

First design approach tries to implement namespace awareness within the kernel and

delegate this awareness into the other part of the OS (system servers) eventually as

explained in section 3.4. While process/task isolation (preventing one process from

accessing or interfering with another) is a mechanism of an operating system, Process

Namespace Isolation (process abstraction of isolating one or a group of processes from

others) is a policy of an operating system. For example, while process abstraction is

completely unknown to the mach kernel, proc server tracks & manage process metadata

and relations and provides the interface that userland tools use. The kernel even doesn’t

know what a pid is.

/GNU/Hurd as a microkernel based operating system emphasizes minimality and

clear division between mechanisms(kernel level) and policies(user level). Therefore

trying to implement namespace awareness within the kernel is not the correct design

principle (Levin et al. 1975).

"A concept is tolerated inside the microkernel only if moving it outside the kernel

would prevent the implementation of the system’s required functionality." (Liedtke 1995)

But in the other hand, implementing the namespace awareness within the kernel

might increase the performance since less IPCs are involved. If the namespace awareness

solely inside the kernel, still users are interacting with the proc server to perform process

level operations. That means users have to use system servers to perform their relevant

operations. Therefore there need to be a mechanism to spread namespace awareness

into the system servers. That will definetely involve IPC calls again. Therefore the

performace advantage can be expected from using less IPCs in this design will not have

a significant difference.

Further more, as discussed above, this design have to delegate namespace awareness

55

from kernel to the other system servers. That process is very complex and error prone

since changing kernel affects all the other part of the hurd system overall. Therefore

without implementing namespace awareness into the other servers and services of the

hurd system first, kernel modifications cannot apply. Otherwise it causes the system to

fail at the booting as provided in the figure 4.2, when trying to change a struct of the

kernel which is mach_msg_header_t. Since this research only focuses on the process

namespace awareness, dealing with all the system servers and implmenting all the other

namespaces functionalities are out of scope and time frame not allows it.

Figure 4.2: /GNU/Hurd system failure during boot due to simple kernel changes

Because of the incorrectness of the design and mentioned issues above, this approach

of designing namespaces inside the kernel concluded as incorrect. Table 4.1 summarizes

the comparison between implementing namespace awareness inside the kernel and

outside the kernel.

4.3 Implementation of Second Design Approach

Second design approach tries to implement namespace awareness mainly inside proc

server and other system servers which are related to each type of namespace isolation

without employing kernel modifications unless it’s required as discussed in section 3.5.

As pointed out in the section 4.2, namespace isolation is a policy and implementing

56

Table 4.1: Comparison: Namespace Design inside Kernel Space vs User Space

Aspect Kernel Implementation OS Server (User-space)
Implementation

Speed (Performance) Faster – direct memory
access, fewer context
switches.

Slower – due to IPC
overhead, context switches,
and possibly extra data
copying.

Flexibility Harder to change or
update.

More modular and flexible.
Can be replaced or
updated without touching
the kernel.

Security/Stability Bug in kernel equals to
system crash or exploit.

Crashing user-space server
doesn’t bring down the
whole system.

Philosophical
Alignment (with
Hurd)

Violates Hurd’s
microkernel design
philosophy.

Matches Hurd’s vision:
policy outside, mechanism
inside.

such policies outside the kernel is a great design principle which emphasizes minimality

design principle in microkernel based operating systems (Levin et al. 1975). Furthermore,

end to end argument in networks suggests that certain functions are best implemented at

the application level, where the full context is available, rather than at lower levels of the

system.

"The function in question can completely and correctly be implemented only with the

knowledge and help of the application standing at the endpoints of the communication

system. Therefore, providing that questioned function as a feature of the communication

system itself is not possible." (Saltzer, Reed, and Clark 1984)

In the context of microkernel architectures, such as GNU/Hurd, this argument sup-

ports the design choice of implementing only essential mechanisms within the kernel,

while delegating policies to user-space servers. For example, the Mach microkernel pro-

vides fundamental mechanisms like inter-process communication and memory manage-

ment, but higher-level abstractions like process management are handled by user-space

servers like proc. Therefore the seperation of namespace awareness from the kernel level

in this design approach, perfectly aligns with the End-to-End Argument by ensuring

that policy decisions, which may vary between applications, are implemented where the

necessary context and flexibility exist (outside the kernel).

57

4.3.1 Namespace Implementation

As we discussed in section 3.2, Linux uses CLONE system call undeneath the unshare

command to create new namespaces. Since this research mainly focuses on process

namespaces, to create such process namespace using the help of proc server, we need

to define a function inside proc server, so that user processes can call that function to

tell proc server to create a new namespace using the caller process (process called that

function) as the first process of that namespace. But calling such function inside proc

server is not straight forward as in linux since in GNU/Hurd, proc server is a seperate

process. Since it’s a system server, using GNU/Mach ports capabilities and GNU/Mig

defined RPC stubs, user programs can call exposed functions of the proc server. Source

files related to the proc server can be found in a directory called proc inside the hurd

source code.

Before defining the new RPC, new struct was created as showed in listing 4.9

inside proc/proc.h to represent a namespace inside the proc server so that applying

improvements & new features could be easier. Even though namespace inheritance is

not a concern in this research scope, a field to keep track of the parent namespace also

can be added allowing future improvements.

1 struct namespace {

2 pid_t ns_id; // Unique ID for the namespace

3 struct proc *root_proc; // First process in the namespace

4 struct proc *proc_list; // List of processes in this

namespace

5 // struct namespace *parent_ns; // Parent namespace, NULL for

root namespace

6 };

Listing 4.9: Namespace struct

Namespace Create Functionality

There is a function that creates the init process proc structure namely create_init_proc in

proc/mgt.c. To prevent unintentional conflicts, a line was added to set init proc namespace

58

as a NULL since, host system processes considered doesn’t have a namespace. hence

NULL. Then, a new function to create a namespace was defined in proc/mgt.c as shown

in listing 4.10.

1 error_t

2 S_proc_create_namespace(struct proc *callerp, task_t task) {

3 struct proc *shadow;

4 if (! callerp)

5 return EOPNOTSUPP;

6 shadow = task_find (task);

7 if (shadow)

8 {

9 /* found the fake_init process */

10 // create a namepace

11 struct namespace *ns = allocate_namespace (shadow);

12 if(!ns)

13 return EOPNOTSUPP;

14 else

15 shadow->p_namespace = ns;

16 }

17 else {

18 // task not found

19 return EOPNOTSUPP;

20 }

21 return 0;

22 }

23 struct namespace *

24 allocate_namespace (struct proc *fake_init)

25 {

26 struct namespace *ns;

27 /* all other processes inherit from fake_init here. */

28 size_t size = sizeof (struct namespace);

29 ns = malloc (size);

30 if (!ns)

31 return NULL;

32 memset (ns, 0, sizeof(&ns));

59

33 // assign pid of the fake init for temporary

34 ns->ns_id = ((fake_init)->p_pid);

35 ns->root_proc = fake_init;

36 ns->proc_list = NULL;

37 ns->parent_ns = NULL;

38 return ns;

39 }

Listing 4.10: Function to create a namespace

Namespace inherite Functionality

Even though, now proc server allows to create a namespace, a logic to inherit namespace

from parent process to child process is needed. When created a new task, mach kernel

norifies the proc server about the newly added task to handle process level abstractions.

S_mach_notify_new_task function inside proc/mgt.c is responsible to handle such no-

tifies from mach kernel. Therefore the namespace inherent logic has implemented as

shown in listing 4.11 inside the S_mach_notify_new_task function.

1 /*** S_mach_notify_new_task function ***/

2 // task is the new task created by mach kernel

3 childp = task_find_nocreate (task);

4 if (! childp)

5 {

6 mach_port_mod_refs (mach_task_self (), task,

MACH_PORT_RIGHT_SEND, +1);

7 childp = new_proc (task);

8 /* by charith pietersz */

9 inherit_namespace(parentp, childp);

10 /* end charith pietersz */

11 }

12 /*** end of S_mach_notify_new_task function ***/

13 /* Ensure child process inherits namespace from parent */

14 void inherit_namespace(struct proc *parent, struct proc *child)

15 {

60

16 if (parent->p_namespace)

17 {

18 // allocated a namespace

19 child->p_namespace = parent->p_namespace;

20 }

21 else

22 {

23 // allocated a NULL namespace

24 child->p_namespace = NULL; // Root namespace

25 }

26 }

Listing 4.11: Inherit namespaces

Define a New RPC

Still the defined function S_proc_create_namespace is just a function. Proc server

doesn’t expose this function to others to call. This is where GNU/Mig plays a crucial

role by letting define new RPCs using specific standard method. All the process related

RPC routines were defined in hurd/process.defs. Newly defined RPC reply and request

routines were added in the exact order of these routines were defined in process.defs,

hurd/process_reply.defs and hurd/process_request.defs accordingly. Therefore new

routines to the S_proc_create_namespace function inside proc server were defined in

those three files respecting the order as shown in listing 4.12.

1 // hurd/process.defs

2 routine proc_create_namespace (

3 process: process_t;

4 task: task_t);

5 // hurd/process_request.defs

6 simpleroutine proc_create_namespace_request (

7 process: process_t;

8 ureplyport reply: reply_port_t;

9 task: task_t);

10 // hurd/process_reply.defs

61

11 skip; /* proc_create_namespace */

Listing 4.12: Define RPC routines

During compilation, GNU/Mig generates client & server functions related to these

routines defined in .defs files and at the end of the compilation, process.h header file is

created containing function declarations to the RPCs defined in process.defs. After the

successful installation of the hurd source, this process.h header file will move into the

/usr/include/hurd/ directory.

But still after successfull updation of these header files about the new function

proc_create_namespace, function calls from user processes fails at run time because,

libc.so.0.3 library which provides the POSIX like interface to the user space, doesn’t

expose function call to the new RPC defined. This is where we have to compile the

GNU/Glibc. During compilation of the GNU/libc, it notices changes in hurd libraries,

and uses new header files like process.h to create new POSIX like interface so that

user space programs can call the new RPC function. After the successfull updation of

libc.so.0.3 library, we can invoke proc_create_namespace function within user space

programs.

4.3.2 Enforce process Isolation

Unshare Client

With the given namespace awareness into the proc server, user programs can use

proc_create_namespace function by including process.h header file into the code base.

There should be a client program that uses the new RPC to create process namespaces.

Just like unshare command in linux. To experience namespace creation as same as linux,

client program named as unshare.

Basically, unshare client perform these tasks:

• fork and create a new child

• new child is expected to be the fake init function inside the process namespace.

62

• child process calls to proc_create_namespace function

• after successful creation of process namespace, execute exec to replace child

process with the bin/bash providing an interactive shell to the users.

1 #include <sys/types.h>

2 #include <unistd.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <sys/wait.h>

6 #include <hurd.h>

7 #include <hurd/process.h>

8 #include <mach/mach.h>

9 #include <error.h>

10

11 mach_port_t get_procserver() {

12 return getproc(); // Returns the ‘procserver‘ port for the

calling process

13 }

14

15 int main()

16 {

17 int id = fork();

18 if(id == 0)

19 {

20 pid_t pid = getpid();

21 mach_port_t procserver = get_procserver();

22 if (procserver == MACH_PORT_NULL) {

23 printf("Failed to get procserver\n");

24 exit(1);

25 }

26 task_t task;

27 error_t err;

28 err = proc_pid2task (procserver, pid, &task);

29 if (err)

30 {

63

31 error(0, err, "Getting task for the child process

: %lu\n",pid);

32 exit(1);

33 }

34 // call to create namespace function

35 err = proc_create_namespace(procserver, task);

36 if (err) {

37 printf("RPC call failed: %d\n", err);

38 exit(1);

39 }

40 execl("/bin/bash","bash",NULL);

41 // if exec failed

42 perror("execl failed");

43 exit(1);

44 }

45 else if(id > 0)

46 {

47 pid_t pid = getpid();

48 int status;

49 // Wait for the child to terminate

50 waitpid(id, &status, 0);

51 exit(0);

52 }

53 else{

54 printf("fork failed");

55 exit(1);

56 }

57 return 0;

58 }

Listing 4.13: Unshare client program

64

Simple Isolation

Current implementation of the process namespace in proc server, only has the namespace

awareness, not any isolation enforced using the given namespace awareness. Therefore

executing unshare client is not significant & useful. To enforce full isolation, every

process related function inside proc server have to use the given process namespace

awareness. But, this is extensive work for this research as it is enough to show this

method can enforce full isolation. Those, tiny yet vast amount of changes can be

modified lator as updates to this work. But after reading the proc server source code

thoroughly, we found out that there is a functions that is used by many programs like ps,

procfs to know about other processes which is getallpids function. Therefore enforcing

process namespace isolation to this function is the current best & easy option to see the

effectiveness of this design. Current getallpids function returns all the process ids in

the system using an assembly function called prociterate. Even though there is proc* p

(proc struct pointer of the caller process) as a parameter of this function as you can see

in listing 4.14, comments have specifically mentioned they don’t use it right now. But as

of this new namespace awareness, proc* p is a crucial parameter because, using caller p

namespace information, we can filter the processes that should be return. That is what

exactly done in modified getallpids function shown in listing 4.14.

1 kern_return_t

2 S_proc_getallpids (struct proc *p,

3 pid_t **pids,

4 mach_msg_type_number_t *pidslen)

5 {

6 if (!p)

7 {

8 return EINVAL;

9 }

10 else

11 {

12 struct ns_filter caller;

13 caller.ns = p->p_namespace;

65

14 caller.count = 0;

15 add_tasks(0);

16 /* Count number of processes in the same namespace */

17 prociterate(count_ns_up, &caller);

18 if (caller.count > *pidslen)

19 {

20 *pids = mmap (0, caller.count * sizeof (pid_t),

PROT_READ|PROT_WRITE,MAP_ANON, 0, 0);

21 if (*pids == MAP_FAILED)

22 return ENOMEM;

23 }

24 caller.pids = *pids;

25 prociterate(store_ns_pid, &caller);

26 *pidslen = caller.count;

27 return 0;

28 }

29 }

Listing 4.14: getallpids function modification

Another important point to mention is, current getallpids function uses two callbak

functions to feed into prociterate function to get different type of process information.

These two callback functions are store_pid (get pids) & count_up (get pid count). In

modified version of getallpids function, we had to use new callback functions namely

store_ns_pid & count_ns_up that has namespace awareness. These functions returns

same namespace process information only. Collectively, with the help of these important

callback functions as shown in listing 4.15, modified getallpids correctly returns only

the same namespace pids to the caller process.

1 struct ns_filter {

2 struct namespace *ns; // Pointer to the namespace (can be NULL)

3 int count; // Counter for the number of processes

4 pid_t *pids; // Pointer to store PIDs

5 };

6 static void

66

7 count_ns_up (struct proc *p, void *data)

8 {

9 struct ns_filter *caller = (struct ns_filter *)data;

10 if (!caller->ns)

11 {

12 /* If caller is in the main namespace (NULL ns), include all

*/

13 caller->count++;

14 return;

15 }

16 /* If the process is in the same namespace, filter by namespace

*/

17 if (p->p_namespace && caller->ns->ns_id == p->p_namespace->ns_id)

18 {

19 caller->count++;

20 return;

21 }

22 // printf("caller_ns:%d, processID:%d\n",caller->ns->ns_id,p->

p_pid);

23 // namespace doesn’t match

24 return;

25 }

26 static void

27 store_ns_pid(struct proc *p, void *data)

28 {

29 struct ns_filter *filter = (struct ns_filter *)data;

30 if (!filter->ns) {

31 /* If caller is in the main namespace (NULL ns), include all

*/

32 *filter->pids++ = p->p_pid;

33 return;

34 }

35 /* If the process is in the same namespace, store its PID */

36 if (p->p_namespace && filter->ns->ns_id == p->p_namespace->ns_id)

{

67

37 *filter->pids++ = p->p_pid;

38 return;

39 }

40 // namespaces doesn’t match

41 return;

42 }

Listing 4.15: Define new callback function for getallpids function

With the enforced isolation into the getallpids function, after successful compilation

& installation, we can see simple process namespace isolation by executing unshare

client as shown in figure 4.3. As you can see now processes inside a namespace can’t

access information about processes outside of the same namespace. ps command returns

only the namespace processes. In figure 4.3, we can clearly see the behavior of ps

command changed in two scenarios (inside and outside namespace).

Figure 4.3: Simple Isolation

68

Concern about Procfs

Above mentioned simple isolation isolate the processes inside a namespace from access-

ing other processes outside of the namespace. But, as shown in figure 4.4, performing

ls command on /proc directory reveals all the process information inside the system

to the processes even if we are executing ls process inside a namespace. That’s why

aforementioned isolation referred to as the simple isolation.

Figure 4.4: ls /proc behavior on simple isolation

This behavior is anticipated. procfs translator is mounted on /proc directory to

provide process related information to the user using special utility program called

settrans. As mentioned above, even though procfs uses getallpids function, getallpids

function uses namespace of the caller process (procfs in this case) to filter processes

that should be return. It’s important to notice that procfs process is not a process in the

created namespace. Therefore procfs process doesn’t have namespace (hence NULL)

and that’s why getallpids function returns all the available process ids to the procfs.

procfs in-turns return all the process information to the user or ls process (caller of the

proc fs) which breaks the isolation at some point. To show that this design provides

process isolation, we atleast need to isolate process visibility. Because, if a process can’t

name another process, it can’t get access to that process.

69

As a solution to enforce process information isolation, we can’t put procfs into the

namespace since it will affect to the other users and namespaces. Bacause, all others will

only see the processes inside the namespace of procfs. Even global namespace (NULL)

processes will only see processes inside the namespace of the procfs not all processes

of the system which is unintentional and incorrect behavior in a concurrent system. we

have one of two solutions to enforce better isolation:

• procfs namespace awareness: Provide namespace awareness to the procfs trans-

lator so that procfs aware of the namespace of the caller process(ls process in ls

/proc scenario).

• Invoke another procfs: create another procfs translator process in current names-

pace on different directory that is specific to the current namespace rather than

/proc.

procfs namespace awareness

Let’s consider ls /proc as an example. To procfs to aware of namespace of the caller (ls)

process, procfs need to know task_id or process_id of the caller. In /GNU/Hurd unlike

linux, /proc behavior is handled by procfs and the procfs process is mount to /proc at the

booting process. We can remove and set the procfs process using specific utility program

named settrans as shown in listing 4.16.

Listing 4.16: remount procfs on /proc

1 settrans -fg /proc # remove current procfs translator

2 settrans -ca /proc /hurd/procfs --compatible # remount procfs on /

proc

To access pid information of the caller, the function which is responsible to invoke

procfs to return process information when executing ls /proc need to be found out. That

was accomplished by tracing RPC calls of ls /proc using rpctrace command (rpctrace ls

/proc).

Even though RPC trace is over 120 lines, after careful read of the trace, only few

70

important lines are need to discuss here to get an overall idea. The relevant interaction

with /proc starts here:

1 7<--40(pid2497)->dir_lookup ("proc" 128 0) = 0 1 "" 52<--25(

pid2497)

• Port 7 is the root directory (/) port for ls (PID 2497).

• dir_lookup ("proc" ...) resolves /proc, returning port 52.

1 52<--25(pid2497)->io_stat_request () = 0 {23 8 0 113388 ...}

2 7<--40(pid2497)->dir_lookup ("proc/" 2097161 0) = 0 1 "/" 52<--47(

pid2497)

3 52<--47(pid2497)->dir_lookup ("/" 2097161 0) = 0 1 "" 54<--25(

pid2497)

4 54<--25(pid2497)->dir_readdir (0 -1 0) = 0 "*\0\0\0..." 79

• Port 52 is the /proc node port, used for io_stat_request and further dir_lookup

calls.

• The caller (PID 2497) interacts with /proc via port 52, which is managed by

/hurd/procfs (PID 2446).

netfs_S_dir_lookup in libnetfs is the RPC handler for dir_lookup calls, which ls

uses to access /proc. This is the entry point where /hurd/procfs receives requests. After

extensive research and attempts, the fact that task id or task port id of the caller doesn’t

receives to the dir_lookup function but needed data & user credentials (uid, gid, etc) can

be access through procfs.

2nd attempt was carried out to get the pid or tid of the caller process through

mach_msg_header_t in netfs_S_dir_lookup function. This attempt also failed since

mach_msg_header_t doesn’t contain caller process information. Therefore conclusion

was accessing caller process information is impossible without changing RPC call itself

(which have to change how ls works behind the scene) or modifying the mach kernel

to include caller process tid in mach_msg_header_t. Changing the RPC call of the

71

dir_lookup, will affect all the utility applications that are using it. Therefore the 3rd

attempt was to modify the mach kernel to add task id of the caller process when passing

the RPC from caller to receiver (ls process to procfs process in this scenario). There are

two main source files in gnumach source turned out to be important in this modification.

• include/mach/message.h: Define the mach_msg_header_t struct that needs to be

modified to contain mach_port_t field(sender’s task port).

• ipc/ipc_kmsg.c: Defines functions for message construction and port handling.

mach_msg_send (in mach_msg.c) invokes ipc_kmsg_copyin in ipc/ipc_kmsg.c

which invokes ipc_kmsg_copyin_header function. This is where the user-space

msg_header_t gets translated into the kernel’s ipc_kmsg_t structure, including port

rights and header fields.

Modifying mach_msg_header_t to contain an additional field of type mach_port_t &

ipc_kmsg_copyin_header function to fill the new field of mach_msg_header_t with caller

task port, ensures receiver process has the task id of the caller process. Even though this

seems practically feasible, applying this will handover the tid of another process to any

3rd party user application which might be a security concern. After having several failed

compilations since assertion failures due to the size change in mach_msg_header_t, new

kernel binary was installed to the system. But during bootup process, even though mach

kernel loaded correctly, hurd system servers and services gets freezed no matter what

changes applied to the kernel. This suggests changing something simple part of the

kernel will affect all the other components using that modified part. Therefore the procfs

namespace awareness attempt concluded as a failure due to security issues as well as

changing mach_msg_header_t affects other components like a chain reaction.

Invoke another procfs

Current procfs process is mounted to /proc during bootup to handle dir lookups. Since

the attempt to apply process namespace awareness into the procfs failed, the option to

having one procfs process to handle lookup requests from different process namespaces

72

is not feasible. Therefore this attempt is to having a new procfs process to each namepace

to handle their lookup requests locally without botherting the procfs in global names-

pace(NULL). This doesn’t means we have to use settrans to mount another procfs to

/proc. Because global procfs process is already mounted on /proc. This is where we can

use the jail behavior using chroot as shown in section 3.3.1 to have different filesystem

to each namespace. By combining this filesystem isolation with implemented process

namespace isolation, we can enforce better process isolation. After having a shell inside

the jail using the chroot command, /proc is different from real /proc. Now we can use

settrans to mount the procfs into fake /proc. This will nicely isolate other processes from

namespace processes as shown in figure 4.5.

Figure 4.5: Enhanced Isolation

Why this works:

• Invoking new procfs process inside the process namespace assigns the relevant

namepace to the procfs. Therefore the new procfs is now a process inside the

namespace.

• For each request procfs receives will be handled exactly same as before. But, now

73

proc server knows this procfs is in a namespace and reveals only what it needs to

know.

Enhanced Isolation & Final Usage

Final usage of the implemented process namepace isolation, can be demonstrate using

the listing 4.17. Since this case doesn’t mount procfs inside the isolated filesystem, ls

/proc returns nothing. Listing 4.18 shows the commands to execute to copy required

binaries, of procfs & settrans and setting up a new procfs process to serve lookup requests

from the user processes.

Listing 4.17: Process isolation using unshare

1 #!/bin/bash

2 # configure a container

3 mkdir container

4 dd if=/dev/zero of=container.img bs=1M count=100

5 mke2fs container.img

6 settrans -a container /hurd/ext2fs \

7 --writable \

8 container.img

9 mkdir -p container/{bin,lib,sbin,etc,usr,var,tmp,dev,proc,hurd}

10 # copy bash binary and associated libraries

11 cp /usr/bin/bash container/bin/

12 cp /lib/i386-gnu/libtinfo.so.6 container/lib/

13 cp /lib/i386-gnu/libc.so.0.3 container/lib/

14 cp /lib/ld.so.1 container/lib/

15 cp /lib/i386-gnu/libmachuser.so.1 container/lib/

16 cp /lib/i386-gnu/libhurduser.so.0.3 container/lib/

17 cp /lib/ld.so container/lib/

18 # copy ls,ps-hurd,unshare binaries & associated libraries

19 cp ./unshare container/bin/

20 cp /bin/ps-hurd container/bin/

21 cp /usr/bin/ls container/bin/

22 cp /lib/i386-gnu/libps.so.0.3 container/lib/

23 cp /lib/i386-gnu/libpthread.so.0.3 container/lib/

74

24 cp /lib/i386-gnu/libihash.so.0.3 container/lib/

25 cp /lib/i386-gnu/libcrypt.so.1 container/lib/

26 cp /lib/i386-gnu/libfshelp.so.0.3 container/lib/

27 cp /lib/i386-gnu/libshouldbeinlibc.so.0.3 container/lib/

28 cp /lib/i386-gnu/libports.so.0.3 container/lib/

29 cp /lib/i386-gnu/libnetfs.so.0.3 container/lib/

30 cp /lib/i386-gnu/libiohelp.so.0.3 container/lib/

31 # enter into the jail using chroot

32 chroot container /bin/bash

33 ps-hurd aux

34 unshare

35 ps-hurd aux

Listing 4.18: Procfs isolation using unshare

1 #!/bin/bash

2 # copy hurd server binaries - only procfs is enough for now

3 cp -a /hurd/* container/hurd/

4 # copy settrans binary

5 cp /usr/bin/settrans container/bin/

6 # enter into the jail using chroot

7 chroot container /bin/bash

8 ps-hurd aux

9 unshare

10 ps-hurd aux

11 settrans -ca /proc /hurd/procfs --compatible

12 ls /proc

Isolation measurements

The proposed design introduces namespace awareness into the GNU/Hurd microkernel

by modifying the proc server, establishing a critical foundation for process namespace

isolation. While this implementation does not implement the full functionality of process

isolation, it represents a pivotal component by enabling the proc server to recognize

and manage namespace boundaries for processes. Specifically, the design allows for the

75

isolation of namespace-specific processes by ensuring that operations such as process

enumeration (via the getallproc function) are namespace-aware, restricting visibility to

processes within the same namespace. Further isolation mechanisms, such as preventing

a process from terminating another outside its namespace (through a namespace-aware

kill function), can be incrementally implemented by extending namespace awareness

to the other exposed functionalities of the proc server. However, due to the constrained

timeframe of this research, a comprehensive implementation of such application-level

isolation and security mechanisms was not feasible. Developing these features is a

complex and time-intensive process, potentially requiring the integration of advanced

security components like in Linux (seccomp within the proc server to enforce fine-grained

policies).

However pivotal role in proc server in this design, complements GNU/Mach inherent

isolation. As stated in 3.7, GNU/Mach provides isolated IPCs and message passing

between processes using port rights & capabilities. Therefore providing process names-

pace isolation is enough to leverage IPC namespace isolation since processes are not

visible beyond namespaces makes IPCs automatically cannot pass between processes of

different namepaces. Also, enhancing namespace isolations like auth & network can be

done in the same way procfs was enhanced(examining pros and cons): either invoking

each Inside a namespace or enforcing namespace awareness into them.

4.3.3 Design Decision

In designing namespace awareness for GNU/Hurd, we have logically chosen the design

that implements namespace awareness primarily within the proc server rather than

embedding it inside the Mach kernel. This choice aligns with Hurd’s minimalist design

philosophy, which excludes policies from the kernel, ensuring modularity and flexibility

for future extensions while maintaining the microkernel’s separation of concerns.

76

Chapter 5

Results & Evaluation

5.1 Setup Environments

Since many popular tools are designed for the Linux kernel, smaller open-source bench-

marks compatible with Hurd’s glibc interface were utilized. Setting Up tinymembench

and c-cpu-bench is exactly the same as instructed in their git repositories (linux com-

patible). The source code of fs_mark have to ported into GNU/hurd to configure on the

system correctly. (ssvb 2025), (freshe 2025), (Bacik 2025)

Since comparisons have to be made between linux namespaces and designed

GNU/hurd namespaces, linux server is used inside a Qemu environment with the same

settings applied to the hurd instance as shown in table 5.2. Also, the same host machine

(figure 5.1) was used to instantiate both linux and hurd images.

5.2 Isolation Analysis

The main focus of this reasearch is to improve container isolation using the microkernel

architecture. While assess and compare isolation is subjective as we discussed in section

1.2, the comparisons & assessments was done qualitatively as well as quantitatively

between linux namespaces and GNU/hurd namespaces to get insights on how the design

of GNU/hurd namespaces can improve isolation.

It is worth noting that Linux’s own namespace isolation framework evolved incremen-

77

Table 5.1: CPU Information of the Host Laptop

Attribute Value
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Address Sizes 39 bits physical, 48 bits virtual
Byte Order Little Endian
CPU(s) 8
Threads per Core 2
Cores per Socket 4
Socket(s) 1
Model Name 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
CPU Min MHz 400.0000
CPU Max MHz 4700.0000
Virtualization VT-x
L1d Cache 192 KiB (4 instances)
L1i Cache 128 KiB (4 instances)
L2 Cache 5 MiB (4 instances)
L3 Cache 12 MiB (1 instance)
NUMA Node(s) 1
NUMA Node0 CPU(s) 0-7

tally over more than a decade (Smalley 2016), (Smalley 2019b), with features like PID,

mount, and network namespaces introduced and refined progressively. Similarly, the

isolation landscape in microkernels like Hurd is a broader and multi domain that cannot

be fully analyzed or realized in the early stages of this research. The proposed design,

not limited to process namespaces. It establishes a modular and extensible foundation

where other namespaces can be implemented in the future.

5.2.1 Qualitative Isolation

These are the major isolation improvements that can be achieved using the proposed

design because of the microkernel architecture and the design itself.

Isolated filesystems from one another

In GNU/hurd, file system server (ext2fs) is a seperate process unlike in linux. Designing

and implementing GNU/hurd namespaces, will inherite the advantage of GNU/hurds’

ability to remain unharmed even if the filesystem was failed due to an unintentional

behavior. But the important point here is, combining process namespace creation with the

78

chroot assigns a new filesystem (ext2fs) to the created namespace. Therefore, failures of

internel filesystem of a process namespace will not affect to the host machines’ filesystem

or other namespaces’ filesystems. While this is the case in theory, can be shown by

creating two different namespaces and monitoring the behavior of each including the

host system during a filesystem failure.

In figure 5.1, two namespaces were created. There is a seperate filesystem process

running inside each namespace. The filesystem (ext2fs) process of NAMESPACE (NS)

1 is 969 and NS2 is 882. Then from the host system, pid 969 was killed to simulate

filesystem failure. Figure 5.2 shows the behavior of the NS1 after filesystem failure. The

host system and NS2 are not affected by the failure of NS1 filesystem. This shows that

the filesystem of each namespace is isolated from one another and the host system. The

failed filesystem process can be re-invoked to get the continuous service as shown in

figure 5.3.

Linux namespaces doesn’t have this kind of behavior since failure of the filesystem

will crash the entire kernel & other namespaces in the system. This is a significant

advantage of the proposed design over linux namespaces since it can be used to create a

better isolated environment for applications.

Local system servers per namespace

As presented in section 4.3.2: Using the proposed design, major services like procfs

can be invoke in each namespace to have clean and clear seperation of services while

maintaining GNU/hurd security mechanisms (processes shouldn’t have other processes’

proc information). This clear separation of the design improves isolation since these

services will be served by processes inside the namespace, not from host system or

kernel (like linux namespaces). By doing so, any failure of such services only affects to

the processes inside the namespace not others. Namespace can create failed translator

process again to get the continuous service. This can be shown by creating two names-

paces and monitoring the behavior of each namespace including the host system during

a procfs failure.

79

Figure 5.1: Setup two namespaces to monitor filesystem behavior

Figure 5.2: Failure of namespace 1 filesystem

In figure 5.4, two namespaces were created inside seperate terminals (ssh). The

procfs process of NS1 is 842 and NS2 is 840. Then from the host system, pid 842

80

Figure 5.3: Re-invoke namespace 1 filesystem

Figure 5.4: Setup two namespaces to monitor procfs behavior

81

Figure 5.5: Failure of namespace 1 procfs

Figure 5.6: Re-invoke namespace 1 & 2 procfs translators

was killed to simulate procfs failure. Figure 5.5 shows the behavior of the NS1 after

procfs failure. The host system and NS2 are not affected by the failure of NS1 procfs.

This shows that the procfs of each namespace is isolated from one another and the host

system. Therefore using the proposed design, other translators also can be invoked in

each namespace after conducting a necessary assessment of the service to be invoked

(because some services better to be shared with the host system like proc server, auth

server) to have clean and clear seperation of services between namespaces and the host

system. The failed procfs process can be re-invoked to get the continuous service as

shown in figure 5.6. This is not achievable in linux namespaces since all major services

are handled by the kernel subsystems and failure of such subsystem will take down the

82

host including other namespaces.

Unchanged kernel behavior

When designing the hurd namespace architecture, only one new message passing in-

terface introduced to the system which is proc_create_namespace while kernel is not

modified. Hence kernel behavior is Unchanged from before and after namespace aware-

ness. In contrast, linux kernel has been changed over the time to implement linux

namespaces. This is also a significant benefit of hurd namespaces since using lesser

codes in specially the kernel is lesser the bugs in code. Therefore we can consider

unchanged kernel behavior ensure better isolation.

5.2.2 Quantitative Isolation

System calls are the fundamental interface between user-space applications and the

operating system kernel, enabling privileged operations like I/O, process management,

and resource allocation. The number of system calls can be considered as a part of the

attack surface, as each call is a potential entry for attackers. For Linux, system calls mean

entry points; for GNU/Mach, the attack surface focuses on message-passing interfaces.

Linux System Calls

Linux, a monolithic kernel, offers a fixed set of system calls, The number of system calls

varies by kernel version and architecture, with recent data indicating 360-441 system

calls for x86-64 in Linux 6.7, as derived from the arch/x86/entry/syscalls/syscall_64.tbl

file in the kernel source (Torvalds 2025).

GNU/Mach System Calls

GNU/Mach uses message passing for most operations, contrasting with Linux’s direct

system calls. The attack surface focuses on the message-passing interfaces (197 - (GNU

Project 2025)).

83

So, using a microkernel for namespace design can lower the attack surface of names-

paces by about 45%–55%, since it reduces the number of exposed kernel interfaces.

Summary of Isolation Analysis

The primary focus of the proposed design was to design a system capable of supporting

namespace isolation mechanisms within the scope of this work, rather than delivering a

fully isolated environment. To assess the current implementation, isolation capabilities

were evaluated using a combination of chroot and implemented unshare command, which

together provides a container-like isolated environment. highlighted characteristicts & re-

sults indicate that the proposed design effectively enhances process namespace isolation.

While a complete analysis of isolation in microkernels requires long-term research and

development, this work successfully demonstrates the feasibility of namespace isolation

in Hurd, providing a robust foundation for future advancements in containerization

within microkernel architectures.

5.3 Performance Comparison

Performance comparisons were conducted between Linux & Hurd. It’s important to

highlight that GNU Hurd used inside QEMU with KVM optimizations since hurd is

not recommended to run on bare-metal. Since the limited capabilities of hurd(Qemu),

comparing bare-metal linux with better hardware requirements is not fair. Therefore

ubuntu (16.04.7) server 32-bit (i386) version was contained in an image to compare

with GNU/hurd. That way both systems have same configurations as shown in figure

5.2. Each test was executed five times on each instances, and the average values were

considered for analysis. Each analysis was performed on three situations in each system.

Those three situations/states are:

1. Directly on the host: Without using any namespace feature, analysis were per-

formed on the host system.

84

2. Simple namespace Isolation: Used process namespace isolation (unshare com-

mand) without using a jail environment(chroot).

3. Enhanced Namespace Isolation: Used process namespace isolate combined with

the jail filesystem isolation (chroot).

Table 5.2: Test Environment Configuration: Linux vs GNU/Hurd

Category Linux (Ubuntu 22.04) GNU/Hurd (Debian Hurd 2020)
OS Version Ubuntu 16.04.7 server Debian GNU/Hurd-0.9
Architecture 32-bit(i386) 32-bit (i386)
Filesystem ext2 ext2
Virtualization KVM Virtual Machine KVM Virtual Machine
CPU 1 Core 1 Core
RAM 3 GB 3 GB

5.3.1 CPU

Figure 5.7 illustrates the duration taken by each environment to execute a benchmark

tasked with calculating the first 5,761,455 primes (freshe 2025).

Figure 5.7: CPU Performance Comparison: Linux vs Hurd

Linux takes about 102-103 seconds on average, while Hurd takes 141-142 seconds—a

difference of approximately 39 seconds. This is expected due to Linux’s monolithic

85

kernel design, which handles system calls and thread management more efficiently, ver-

sus Hurd’s microkernel architecture, where inter-process communication (IPC) between

servers introduces overhead. For a CPU-intensive task like prime number crunching,

Hurd’s IPC overhead likely slows down memory access speeds.

Figure 5.8: Linux: Impact of Enhance namespace isolation on cpu performance

Line plot 5.8 shows the average time for Linux across the three scenarios, with error

bars. The time difference across scenarios is less than 1 second, which is negligible for

a benchmark running over 100 seconds. The unshare process namespace isolates the

PID space, adding a small overhead for process management, but this is minimal for a

CPU-bound task like cputest. Adding chroot (filesystem isolation) has almost no impact,

as the benchmark doesn’t heavily rely on filesystem access beyond initial loading.

Line plot 5.9 shows the average time for Hurd across the three scenarios, with

error bars. Similar to Linux, the time difference across scenarios is less than 1 second,

which is negligible for a benchmark running over 140 seconds. Despite Hurd’s slower

baseline performance, the unshare process namespace and chroot add minimal overhead,

mirroring the behavior seen in Linux. This suggests that the isolation mechanisms (PID

namespace, filesystem jail) do not significantly affect CPU-bound workloads, even on

Hurd’s microkernel architecture.

Both Linux and Hurd show the same pattern: a maximum increase of 0.67 seconds

86

Figure 5.9: Hurd: Impact of Enhance namespace isolation on cpu performance

(0.5% of runtime) when adding unshare, and even less with both unshare and chroot.

This consistency across systems, despite Hurd’s slower baseline, shows that the proposed

namespace isolation design doesn’t exacerbate cpu-bound performance issues in hurd,

making it a viable approach for process isolation in Hurd.

5.3.2 File System

The benchmark utilized in the assessment aimed to generate new files with names of 40

bytes in length and content of 10,240 bytes. A total of 1,000 such files were generated to

evaluate the performance and effectiveness of the file system logic and interfaces (Bacik

2025).

Figure 5.10 shows application overhead of hurd namespace’s filesystem vs linux

namespace’s filesystem. Application Overhead reflects time spent outside filesystem-

related system calls, indicating kernel efficiency and scheduling overhead. Hurd’s

overhead is 6x higher, reflecting microkernel IPC overhead, while Linux handles

filesystem calls more directly.

Figure 5.11 shows how application overhead of each scenario impact on hurd and

linux. Both show a slight decrease, suggesting chroot may streamline some operations,

though the effect is small.

87

Figure 5.10: Application Overhead:Linux vs Hurd

Figure 5.11: App Overhead across scenarios

The graphs provide a clear visual comparison of filesystem performance between

Linux and Hurd, as well as the impacts of unshare and chroot. Hurd’s high Application

Overhead highlights microkernel challenges.

88

5.3.3 Memory

The benchmark conducts a sequence of memory allocations and records the transfer

speeds. Additionally, it reads blocks of varying sizes from memory and measures the

latency in receiving these expected blocks (ssvb 2025).

Memory Bandwidth

Memory bandwidth measures how much data can be transferred per second during

operations like memory copies. Under enhanced namespace isolation, comparison was

done between linux and hurd.

Linux typically delivers high bandwidth due to its optimized, in-kernel memory

management as shown in figure 5.12. Hurd’s microkernel design delegates memory

management to user-space servers, introducing inter-process communication (IPC)

overhead. This often reduces bandwidth as shown in figure 5.12.

Figure 5.12: Memory Bandwidth: Linux vs Hurd namespace

The enhanced isolation setup on hurd amplify this overhead (figure 5.13) slightly

due to additional isolation layer.

Linux’s tight kernel integration keeps isolation overhead tiny. The negligible impact

shows enhanced isolation adds almost no friction to its memory pipeline, even for

optimized operations (figure 5.14).

89

Figure 5.13: Namespace Isolation on Memory Bandwidth: hurd

Figure 5.14: Namespace Isolation on Memory Bandwidth: linux

Memory Latency

Memory latency measures the time for a single random read, varying with block size.

Comparisons was done in three scenarios to get insights on how namespace isolation

affects this. Figure 5.15 shows memory latency on linux vs hurd in enhanced isolation

scenario. Hurd’s latency is 118.0 ns, 15.8% higher than Linux’s 101.9 ns. Linux handles

large memory accesses faster, thanks to direct kernel management. Hurd’s microkernel

IPC slows things down, as memory requests bounce between processes, adding delays.

Figure 5.16 examine how isolation affects Hurd’s memory latency. Latency rises

from 112.0 ns to 118.0 ns, a 5.4% increase.

90

Figure 5.15: Memory Latency: Linux vs Hurd namespace

Figure 5.16: Namespace Isolation on Memory Latency: hurd

Figure 5.17 examine how isolation affects Linux’s memory latency. Latency edges

up from 100.9 ns to 101.9 ns, a 1.0% bump ((101.9 - 100.9) / 100.9 × 100≈1.0). This

tiny increase reflects Linux’s efficiency.

Linux’s monolithic design yields better performance, while Hurd’s microkernel

shows moderate penalties. The 7–15% bandwidth drop and 5.4% latency rise, plus lower

baseline performance, are noticeable but acceptable for non-critical tasks where security

91

Figure 5.17: Namespace Isolation on Memory Latency: linux

or modularity matters more. Performance-sensitive apps might need optimization. But

Hurd’s lack of modern enhancements compared to Linux, specially in memory manage-

ment, can explain the observed differences in the tinymembench memory benchmark

results. Since the main focus of this research is to improve isolation using microkernel,

moderate performance panalties can be opt-out for now expecting future enhancements.

But here the important point is, the proposed design of GNU/hurd namespaces doesn’t

add noticeable overhead to the performance of the system.

92

Chapter 6

Conclusions

6.1 Limitations

While the proposed design successfully introduces namespace awareness into GNU/Hurd

through modifications to the proc server: enabling process namespace isolation, several

limitations highlight areas for future improvements. These limitations span performance,

filesystem operations, isolation scope, security policies, namespace coverage.

Performance Overhead

The implementation has performance overheads in memory operations, as evidenced

by tinymembench results. These overheads stem from Hurd’s microkernel architecture,

where IPC between user-space servers introduces additional latency and reduces through-

put. While acceptable for non-critical workloads, this performance gap may limit the

design’s suitability for memory-intensive applications.

Scope of Isolation

The current design is limited to process namespace isolation, covering functionalities

like process enumeration (e.g., getallproc) within the proc server. However, it does not

prevent other cross-namespace interactions, such as a process sending signals (e.g., via

kill) to processes outside its namespace. This partial isolation isn’t enough for the full

93

process separation needed for strong containerization, which means processes could

still interfere with each other across namespaces, creating potential risks. Extending

namespace awareness to all proc server functionalities, such as signal handling or

resource queries, is necessary to achieve full process isolation, a task that was infeasible

within the project’s timeframe due to the time taken to modifying multiple server

interfaces.

Security Policies

The implementation lacks integration with advanced security policies, such as those

provided by seccomp or SELinux in Linux, which enforce fine-grained access controls.

Without such policies, the design cannot fully mitigate risks like privilege escalation

or unauthorized resource access, limiting its security guarantees compared to mature

container systems.

Support for Other Namespaces

The design currently supports only process namespaces, leaving other critical namespace

types—such as network, mount, and user namespaces—unaddressed. In Linux, these

namespaces evolved over a decade, with features like network namespaces integrated

by 2019 to handle netlink notifications (Smalley 2019a), and SELinux support for

containers maturing by 2022 (Moore 2023). Implementing these in Hurd would require

extending namespace awareness to additional system servers and potentially developing

new translators to manage namespace-specific resources, a complex endeavor beyond

the project’s scope but feasible given the design’s extensible framework.

Despite these limitations, the design’s modularity and alignment with Hurd’s micro-

kernel principles offer a robust foundation for addressing these gaps. The use of system

servers and translators, as demonstrated with the proc server and procfs, provides a

scalable mechanism to implement other namespaces and isolation features. For instance,

re-invoking pfinet translator inside a process namespace could enable network namespace

isolation, while a namespace-aware ext2fs translator could support mount namespaces,

94

mirroring Linux’s comprehensive namespace model. Additionally, integrating secu-

rity policies inspired by SELinux, which enforces mandatory access controls, could

enhance the design’s security profile, making it a viable platform for containerization in

microkernel architectures with continued research and development.

6.2 Future Works

This research began by exploring the applicability of microkernels to enhance container

security, investigating various OS designs and their characteristics, with a focus on

microkernels like GNU/Hurd. Building on prior discussions of OS reliability issues

and microkernel-based solutions proposed by Tanenbaum, Herder, and Bos (2006),

which emphasize the security and isolation benefits of microkernels—key requirements

for containerization—this work implemented namespace awareness in Hurd through

a new unshare command, modifying the proc server to enable process namespace

isolation according to the proposed design. Combined with chroot, this approach achieves

container-like isolation, addressing some of the security and isolation challenges inherent

in traditional container technologies like Docker and Singularity, which share the host

OS kernel and thus face vulnerabilities. Performance evaluations reveal acceptable

overheads in Hurd, with memory bandwidth and latency impacts of 7–15% and 5.4%.

The proposed design perfectly complements mach microkernel isolation features such

as isolated IPCs and message passing showing potential to implement other namespace

isolation directly with the provided process namespace isolation.

Since the proposed design provide the foundation, future research should focus on

extending namespace awareness to additional system servers and translators, leverag-

ing Hurd’s modular architecture to achieve comprehensive resource isolation. Addi-

tionally, integrating advanced security policies, such as seccomp or SELinux-inspired

mechanisms, into Hurd’s proc server could mitigate risks like privilege escalation,

enhancing container security beyond what current capabilities offer (Moore 2023),

(namespace_selinux(8) - Linux manual page 2025).

95

This research proves that microkernel-based approaches remain promising, specially

given Hurd’s inherent isolation advantages. With growing security concerns, developing

microkernel-based operating systems capable of containerization is not merely an op-

tion but a high-priority requirement, and this research lays a foundational framework

for achieving that goal through extensible namespace support and enhanced isolation

mechanisms.

96

Bibliography

Bacik, Josef (2025). fs_mark: A simple file system benchmark. https://github.
com/josefbacik/fs_mark. Accessed: 2025-04-14.

Bentaleb, Ouafa et al. (2022). “Containerization technologies: Taxonomies, applications
and challenges”. In: The Journal of Supercomputing 78.1, pp. 1144–1181.

Bhardwaj, Aditya and C Rama Krishna (2021). “Virtualization in cloud computing:
Moving from hypervisor to containerization—a survey”. In: Arabian Journal for
Science and Engineering 46.9, pp. 8585–8601.

Biederman, Eric W and Linux Networx (2006). “Multiple instances of the global linux
namespaces”. In: Proceedings of the Linux Symposium. Vol. 1. 1. Citeseer, pp. 101–
112.

Crosby, Simon and David Brown (2006). “The Virtualization Reality: Are hypervisors
the new foundation for system software?” In: Queue 4.10, pp. 34–41.

Debian GNU/Hurd Maintainers (2023). Debian GNU/Hurd 2023 "Bookworm" - Un-
official hurd-i386. https://cdimage.debian.org/cdimage/ports/
stable/hurd-i386/README.txt. URL: https://cdimage.debian.
org/cdimage/ports/stable/hurd-i386/README.txt.

Debian Project (2025). Debian GNU/Hurd — Installation. Accessed: 2025-04-24. URL:
https://www.debian.org/ports/hurd/hurd-install.

Dennis, Jack B. and Earl C. Van Horn (Mar. 1966). “Programming semantics for multi-
programmed computations”. In: Commun. ACM 9.3, pp. 143–155. ISSN: 0001-0782.
DOI: 10.1145/365230.365252. URL: https://doi.org/10.1145/
365230.365252.

Elphinstone, Kevin and Gernot Heiser (2013). “From L3 to seL4 what have we learnt in
20 years of L4 microkernels?” In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania: Association
for Computing Machinery, pp. 133–150. ISBN: 9781450323888. DOI: 10.1145/
2517349.2522720. URL: https://doi.org/10.1145/2517349.
2522720.

freshe (2025). c-cpu-bench: Minimal C CPU benchmark with benchmarking framework.
https://github.com/freshe/c-cpu-bench. Accessed: 2025-04-14.

“GNU Hurd/ Documentation” (June 2017). In: URL: https://www.gnu.org/
software/hurd/documentation.html.

“GNU Hurd/ Documentation” (May 2024). In: URL: https://darnassus.sceen.
net/%7Ehurd-web/documentation/.

GNU Project (2016a). Running a chroot in GNU/Hurd. https://www.gnu.org/
software/hurd/hurd/running/chroot.html. Accessed: 2025-04-24.
URL: https://www.gnu.org/software/hurd/hurd/running/
chroot.html.

97

https://github.com/josefbacik/fs_mark
https://github.com/josefbacik/fs_mark
https://cdimage.debian.org/cdimage/ports/stable/hurd-i386/README.txt
https://cdimage.debian.org/cdimage/ports/stable/hurd-i386/README.txt
https://cdimage.debian.org/cdimage/ports/stable/hurd-i386/README.txt
https://cdimage.debian.org/cdimage/ports/stable/hurd-i386/README.txt
https://www.debian.org/ports/hurd/hurd-install
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2517349.2522720
https://github.com/freshe/c-cpu-bench
https://www.gnu.org/software/hurd/documentation.html
https://www.gnu.org/software/hurd/documentation.html
https://darnassus.sceen.net/%7Ehurd-web/documentation/
https://darnassus.sceen.net/%7Ehurd-web/documentation/
https://www.gnu.org/software/hurd/hurd/running/chroot.html
https://www.gnu.org/software/hurd/hurd/running/chroot.html
https://www.gnu.org/software/hurd/hurd/running/chroot.html
https://www.gnu.org/software/hurd/hurd/running/chroot.html

GNU Project (2016b). Running a chroot in GNU/Hurd. https://darnassus.
sceen.net/~hurd- web/hurd/running/chroot/. Accessed: 2025-
04-24. URL: https://darnassus.sceen.net/~hurd- web/hurd/
running/chroot/.

— (2025). GNU Mach Microkernel. https://git.savannah.gnu.org/git/
hurd/gnumach.git/. Accessed: 2025-04-15. Free Software Foundation.

gnu.org (2008-11-13a). Inter Process Communication. Accessed from gnu.org. URL:
https://www.gnu.org/software/hurd/gnumach-doc/Inter-
Process-Communication.html#Inter-Process-Communication
(visited on 04/14/2025).

— (2008-11-13b). The GNU Mach Reference Manual. Accessed from gnu.org. URL:
https://www.gnu.org/software/hurd/gnumach-doc/ (visited on
04/14/2025).

gnu.org/ (2003a). The GNU/Hurd User’s Guide: Bootstrap. URL: https://www.
gnu.org/software/hurd/users-guide/using_gnuhurd.html#
Bootstrap (visited on 04/14/2025).

— (2003b). The GNU/Hurd User’s Guide: Translators. URL: https : / / www .
gnu.org/software/hurd/users-guide/using_gnuhurd.html#
Translators (visited on 04/14/2025).

— (Mar. 2017). SubHurd. URL: https://www.gnu.org/software/hurd/
hurd/subhurd.html (visited on 04/14/2025).

Hakamian, A. and A. Rahmani (2015). “Evaluation of isolation in virtual machine
environments encounter in effective attacks against memory”. In: Security and Com-
munication Networks 8. DOI: 10.1002/sec.1374.

Hallyn, Serge E. (2013). Namespaces in operation, part 1. Published on LWN.net. URL:
https://lwn.net/Articles/531114/ (visited on 04/14/2025).

Hevner, Alan (Jan. 2007). “A Three Cycle View of Design Science Research”. In:
Scandinavian Journal of Information Systems 19.

IBM (Feb. 2025). Virtual Machines. URL: https://www.ibm.com/think/
topics/virtual-machines (visited on 04/14/2025).

Isaac, Odun-Ayo et al. (Apr. 2021). “An Overview of Microkernel Based Operating
Systems”. In: IOP Conference Series: Materials Science and Engineering 1107.1,
p. 012052. DOI: 10.1088/1757-899X/1107/1/012052. URL: https:
//dx.doi.org/10.1088/1757-899X/1107/1/012052.

Kamp, Poul-Henning and Robert NM Watson (2000). “Jails: Confining the omnipotent
root”. In: Proceedings of the 2nd International SANE Conference. Vol. 43, p. 116.

Kerrisk, Michael (2025). unshare(2) - Linux manual page. Accessed from man7.org. URL:
https://man7.org/linux/man-pages/man2/unshare.2.html
(visited on 04/14/2025).

Klein, Gerwin et al. (2014). “Comprehensive formal verification of an OS microkernel”.
In: ACM Transactions on Computer Systems (TOCS) 32.1, pp. 1–70.

Landaeta, Pedro Selencio (2024). “Uso de PROTEUS y la CYCLONE II para la En-
señanza Práctica de VHDL y FPGA por medio de Software y Hardware”. In: Perfiles
de Ingeniería 21.22, pp. 60–76.

Levin, R. et al. (1975). “Policy/mechanism separation in Hydra”. In: Proceedings of the
Fifth ACM Symposium on Operating Systems Principles. SOSP ’75. Austin, Texas,
USA: Association for Computing Machinery, pp. 132–140. ISBN: 9781450378635.

98

https://darnassus.sceen.net/~hurd-web/hurd/running/chroot/
https://darnassus.sceen.net/~hurd-web/hurd/running/chroot/
https://darnassus.sceen.net/~hurd-web/hurd/running/chroot/
https://darnassus.sceen.net/~hurd-web/hurd/running/chroot/
https://git.savannah.gnu.org/git/hurd/gnumach.git/
https://git.savannah.gnu.org/git/hurd/gnumach.git/
https://www.gnu.org/software/hurd/gnumach-doc/Inter-Process-Communication.html#Inter-Process-Communication
https://www.gnu.org/software/hurd/gnumach-doc/Inter-Process-Communication.html#Inter-Process-Communication
https://www.gnu.org/software/hurd/gnumach-doc/
https://www.gnu.org/software/hurd/users-guide/using_gnuhurd.html#Bootstrap
https://www.gnu.org/software/hurd/users-guide/using_gnuhurd.html#Bootstrap
https://www.gnu.org/software/hurd/users-guide/using_gnuhurd.html#Bootstrap
https://www.gnu.org/software/hurd/users-guide/using_gnuhurd.html#Translators
https://www.gnu.org/software/hurd/users-guide/using_gnuhurd.html#Translators
https://www.gnu.org/software/hurd/users-guide/using_gnuhurd.html#Translators
https://www.gnu.org/software/hurd/hurd/subhurd.html
https://www.gnu.org/software/hurd/hurd/subhurd.html
https://doi.org/10.1002/sec.1374
https://lwn.net/Articles/531114/
https://www.ibm.com/think/topics/virtual-machines
https://www.ibm.com/think/topics/virtual-machines
https://doi.org/10.1088/1757-899X/1107/1/012052
https://dx.doi.org/10.1088/1757-899X/1107/1/012052
https://dx.doi.org/10.1088/1757-899X/1107/1/012052
https://man7.org/linux/man-pages/man2/unshare.2.html

DOI: 10.1145/800213.806531. URL: https://doi.org/10.1145/
800213.806531.

Liedtke, J. (Dec. 1995). “On micro-kernel construction”. In: SIGOPS Oper. Syst. Rev.
29.5, pp. 237–250. ISSN: 0163-5980. DOI: 10.1145/224057.224075. URL:
https://doi.org/10.1145/224057.224075.

Loepere, Keith (1992). Mach 3 kernel principles.
Moore, Paul (2023). “SELinux and Namespaces”. In: LWN.net. URL: https://lwn.

net/Articles/885004/ (visited on 04/22/2025).
Morabito, Roberto, Jimmy Kjällman, and Miika Komu (2015). “Hypervisors vs.

lightweight virtualization: a performance comparison”. In: 2015 IEEE International
Conference on cloud engineering. IEEE, pp. 386–393.

namespace_selinux(8) - Linux manual page (2025). Accessed from linux.die.net. URL:
https://linux.die.net/man/8/namespace_selinux (visited on
04/22/2025).

Perera, B. Ravin (Apr. 2024). “Improving Low-Level Isolation of Containers: Leveraging
Microkernel Design”. In.

Popek, G. J. and R. P. Goldberg (1974). “Formal requirements for virtualizable third
generation architectures”. In: Communications of the ACM 17.7, pp. 412–421. DOI:
10.1145/361011.361073.

Prins, T (2022). “Containerization in Trusted Computing”. In: In Proceedings of the
Ground Vehicle Systems Enginnering and Technology Symposium (GVSETS).

R. Espinola, Stallman’s Dream (2009). “GNU Hurd/ Documentation”. In: URL: https:
//raulespinola.wordpress.com/2009/02/12/el-sueno-de-
stallman-gnu-hurd/.

Raho, Moritz et al. (2015). “KVM, Xen and Docker: A performance analysis for ARM
based NFV and cloud computing”. In: 2015 IEEE 3rd Workshop on Advances in
Information, Electronic and Electrical Engineering (AIEEE). IEEE, pp. 1–8.

Rana et al. (June 2023). “A Survey on Microkernel Based Operating Systems and
Their Essential Key Components”. In: DOI: 10.2139/ssrn.4467406. URL:
http://dx.doi.org/10.2139/ssrn.4467406.

Randal, Allison (Feb. 2020). “The Ideal Versus the Real: Revisiting the History of Virtual
Machines and Containers”. In: ACM Comput. Surv. 53.1. ISSN: 0360-0300. DOI:
10.1145/3365199. URL: https://doi.org/10.1145/3365199.

Saltzer, Jerome H, David P Reed, and David D Clark (1984). “End-to-end arguments in
system design”. In: ACM Transactions on Computer Systems (TOCS) 2.4, pp. 277–
288.

Sharma, Srinarayan and Young Park (2011). “Virtualization: A review and future di-
rections executive overview”. In: American Journal of Information Technology 1,
pp. 1–37.

Smalley, Stephen (2016). SELinux: Add support for per-namespace policy. https:
//lore.kernel.org/selinux/1459958221.7680.2.camel@gmail.
com/. Accessed: 2025-04-22.

— (2019a). selinux: add support for SELinux policy namespaces. https://lore.
kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.
gov/t/. Linux Kernel Mailing List, Patch Submission. URL: https://lore.
kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.
gov/t/.

99

https://doi.org/10.1145/800213.806531
https://doi.org/10.1145/800213.806531
https://doi.org/10.1145/800213.806531
https://doi.org/10.1145/224057.224075
https://doi.org/10.1145/224057.224075
https://lwn.net/Articles/885004/
https://lwn.net/Articles/885004/
https://linux.die.net/man/8/namespace_selinux
https://doi.org/10.1145/361011.361073
https://raulespinola.wordpress.com/2009/02/12/el-sueno-de-stallman-gnu-hurd/
https://raulespinola.wordpress.com/2009/02/12/el-sueno-de-stallman-gnu-hurd/
https://raulespinola.wordpress.com/2009/02/12/el-sueno-de-stallman-gnu-hurd/
https://doi.org/10.2139/ssrn.4467406
http://dx.doi.org/10.2139/ssrn.4467406
https://doi.org/10.1145/3365199
https://doi.org/10.1145/3365199
https://lore.kernel.org/selinux/1459958221.7680.2.camel@gmail.com/
https://lore.kernel.org/selinux/1459958221.7680.2.camel@gmail.com/
https://lore.kernel.org/selinux/1459958221.7680.2.camel@gmail.com/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/t/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/t/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/t/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/t/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/t/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/t/

Smalley, Stephen (2019b). SELinux: Patch series for namespace support. https:
//lore.kernel.org/selinux/20191015132528.13519-8-sds@
tycho.nsa.gov/. Accessed: 2025-04-22.

ssvb (2025). tinymembench: Simple memory benchmark for ARM and x86 systems.
https://github.com/ssvb/tinymembench. Accessed: 2025-04-14.

Stankov, Ivan and Grisha Spasov (2006). “Discussion of microkernel and monolithic
kernel approaches”. In: International Scientific Conference Computer Science. sn.

Tamane, Sharvari (2015). “A review on virtualization: A cloud technology”. In: Interna-
tional Journal on Recent and Innovation Trends in Computing and Communication
3.7, pp. 4582–4585.

Tanenbaum, Andrew S (1995). “A comparison of three microkernels”. In: The Journal
of Supercomputing 9, pp. 7–22.

Tanenbaum, Andrew S, Jorrit N Herder, and Herbert Bos (2006). “Can we make operating
systems reliable and secure?” In: Computer 39.5, pp. 44–51.

Tanenbaum, Andrew S and Albert S Woodhull (1997). Operating systems: design and
implementation. Vol. 68. Prentice Hall Englewood Cliffs.

The Linux Kernel Community (2025a). Cgroup v2 - Linux kernel documentation. Ac-
cessed from kernel.org. URL: https://www.kernel.org/doc/html/
latest/admin-guide/cgroup-v2.html (visited on 04/14/2025).

— (2025b). Namespaces - Linux kernel documentation. Accessed from kernel.org. URL:
https://www.kernel.org/doc/html/latest/admin- guide/
namespaces/index.html (visited on 04/14/2025).

Torvalds, Linus (2025). The Linux Kernel Source Tree. https://github.com/
torvalds/linux. Accessed: 2025-04-14.

Uhlig, Rich et al. (2005). “Intel virtualization technology”. In: Computer 38.5, pp. 48–56.
VMWARE, INC (2007). “Understanding Full Virtualization”. In: Paravirtualization and

Hardware Assist.
Walfield, Neal H. and Marcus Brinkmann (July 2007). “A critique of the GNU hurd

multi-server operating system”. In: SIGOPS Oper. Syst. Rev. 41.4, pp. 30–39. ISSN:
0163-5980. DOI: 10.1145/1278901.1278907. URL: https://doi.org/
10.1145/1278901.1278907.

Watada, Junzo et al. (2019). “Emerging trends, techniques and open issues of container-
ization: A review”. In: IEEE Access 7, pp. 152443–152472.

100

https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/
https://lore.kernel.org/selinux/20191015132528.13519-8-sds@tycho.nsa.gov/
https://github.com/ssvb/tinymembench
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/namespaces/index.html
https://www.kernel.org/doc/html/latest/admin-guide/namespaces/index.html
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://doi.org/10.1145/1278901.1278907
https://doi.org/10.1145/1278901.1278907
https://doi.org/10.1145/1278901.1278907

Appendix

Listing 6.1: runHurd script
1 #!/bin/bash
2 if [-n "${1}"]; then
3 port=2222
4 ram=1
5 if [-n "${2}"]; then
6 port=$2
7 fi
8 if [-n "${3}"]; then
9 ram=$3

10 fi
11 echo "File name is $1"
12 echo "Trying to Run the img file"
13 kvm \
14 -net user,hostfwd=tcp:127.0.0.1:$(echo $port)-:22 -

net nic,model=e1000 \
15 -drive format=raw,file=$(echo $1),cache=writeback -m

$(echo $ram)G &
16
17 #if ["${$?}" -eq "0"]; then
18 #echo "success"
19 #fi
20 else
21 echo "Missing file name"
22 fi

101

System failure due to libc errors

The create_init_proc function

102

Index

ARP poisoning, 20

cgroups, 18
chroot, 18

Docker, 18

GNU Hurd Microkernel, 25
GNU project, 3

L4 Microkernel, 24
L4RE Microkernel, 24
LXC, 18

Mach Microkernel, 23
Minix 3 Microkernel, 25
modular monolithic kernels, 22

namespaces, 18

QNX Neutrino Microkernel, 25

Seccomp, 18
SeL4 Microkernel, 24
Sing#, 30
Singularity, 19

103

	1 Introduction
	1.1 Background
	1.2 Isolation
	1.2.1 Importance of Isolation in Virtualization
	1.2.2 Improving Isolation

	1.3 Gap and Research Questions
	1.4 Research Aims and Objectives
	1.5 Research Scope
	1.5.1 In Scope
	1.5.2 Out Scope

	1.6 Significance of the Research
	1.7 Research Methodology and Evaluation Criteria

	2 Literature Review
	2.1 Virtualization
	2.1.1 What is Virtualization
	2.1.2 Key Features of Virtualization
	2.1.3 Types of Virtualization

	2.2 Containerization
	2.2.1 Containerization Technologies
	2.2.2 Container Security
	2.2.3 Microkernel-based Containerization

	2.3 Operating System Kernels
	2.3.1 Monolithic Kernel Approach
	2.3.2 Microkernel Approach
	2.3.3 Hybrid Kernel Approach

	2.4 Reliable Operating Systems
	2.4.1 Current Operating System Issues
	2.4.2 Solutions

	3 Design
	3.1 Selection of a Suitable Environment
	3.1.1 Main Characteristics of GNU/Hurd & GNU/Mach
	3.1.2 Setting Up a Working GNU/Hurd System

	3.2 Containerization Within GNU/Linux
	3.3 Containerization Within GNU/Hurd
	3.3.1 Current Features

	3.4 Initial Design - Handle Namespaces in the Kernel
	3.5 Second Design Approach - Handle Namespaces in the Proc Server
	3.6 Analyse Isolation
	3.7 Inherent Isolation Within GNU/Mach

	4 Implementation
	4.1 Environment Setup
	4.1.1 Run the Disk Image using Qemu
	4.1.2 Expanding the Disk Image Size
	4.1.3 Compilation of GNU/Mach
	4.1.4 Compilation of GNU/Hurd
	4.1.5 Compilation of GNU/Mig
	4.1.6 Compilation of GNU/Glibc
	4.1.7 Challenges and Troubleshooting
	4.1.8 Reproducibility

	4.2 Implementation of First Design Approach
	4.3 Implementation of Second Design Approach
	4.3.1 Namespace Implementation
	4.3.2 Enforce process Isolation
	4.3.3 Design Decision

	5 Results & Evaluation
	5.1 Setup Environments
	5.2 Isolation Analysis
	5.2.1 Qualitative Isolation
	5.2.2 Quantitative Isolation

	5.3 Performance Comparison
	5.3.1 CPU
	5.3.2 File System
	5.3.3 Memory

	6 Conclusions
	6.1 Limitations
	6.2 Future Works

