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1 Abstract
Sign Language Recognition (SLR) systems are vital for bridging communication
gaps between deaf and hearing communities, yet low-resourced languages like Sin-
hala Sign Language (SSL) face challenges due to limited training data. This
thesis investigates the efficacy of cross-lingual transfer learning to enhance SLR
accuracy for SSL, a language with scarce datasets. By pre-training Transformer-
based models on a large Indian Sign Language (ISL) dataset and fine-tuning them
on a 64-word SSL dataset, the study evaluates performance improvements in low-
resource scenarios, simulating data scarcity with 2 to 6 instances per class. Results
demonstrate that transfer learning significantly boosts accuracy with 2 or 3 in-
stances per class, achieving up to an 8% improvement over models trained directly
on SSL, though benefits diminish with 4 or 6 instances per class. The study also
explores the impact of overlapping semantic and movement patterns between ISL
and SSL, finding no conclusive advantage. Additionally, varying base model sizes
(80 to 240 classes) showed no consistent effect on fine-tuning performance, sug-
gesting further research is needed. This work contributes to the field by providing
insights into transfer learning strategies for low-resourced SLR, offering method-
ologies applicable to other under-resourced sign languages, and highlighting the
potential for developing accessible communication systems with minimal data. In
conclusion, this study confirms that pre-training on high-resource sign languages
like ISL can lead to meaningful improvements in recognizing signs from SSL, par-
ticularly in extreme low-resource conditions where only 2–3 video instances per
sign are available. While the benefits of transfer learning diminish as more training
data becomes available, this approach offers a promising pathway for developing
effective SLR systems for underrepresented languages with limited datasets.
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2 Introduction
Over 400 million people worldwide experienced hearing loss, and to bridge the
communication gap, they utilized over 300 distinct sign languages. These lan-
guages enabled the deaf community to communicate with each other and with
hearing individuals. However, despite the significant number of sign language
users, a substantial communication gap persisted between the hearing and deaf
communities. This was primarily due to the limited number of individuals pro-
ficient in sign language in daily interactions. This underscored the importance
of Sign Language Recognition (SLR) systems. The development of such systems
was critical as they facilitated bridging this communication gap. Over the years,
extensive research had been conducted in this field, leveraging advancements in
computer science, including machine learning and deep learning.

Most existing SLR solutions were developed for sign languages with abundant
training data, such as American Sign Language (ASL) and British Sign Language
(BSL). However, with over 300 sign languages worldwide, many were used by
smaller communities and lacked extensive training datasets. Sinhala Sign Lan-
guage (SSL) was one such low-resourced language. Developing SLR systems for
these languages posed challenges due to their unique grammatical structures and
distinct signs for the same concepts compared to other sign languages. For in-
stance, the sign for ”evening” in SSL differed from that in ASL. Consequently,
universal solutions based on data from high-resourced languages like ASL or BSL
were often ineffective for low-resourced languages.

2.1 Motivation
In Sri Lanka, over 300,000 individuals with hearing disabilities primarily used
SSL to communicate with each other and with hearing individuals. However,
only a small fraction of hearing individuals were proficient in this sign language.
As a result, communication difficulties between these groups were common in Sri
Lanka. For example, observations at certain cafeterias in Sri Lanka (Figure 2.1),
staffed by employees with hearing loss, revealed that, despite signboards displaying
commonly used signs and their translations, effective communication remained
challenging. A reliable sign language translation system could have facilitated
communication between these groups in society. However, the primary obstacle to
developing such systems was the scarcity of data in SSL. Consequently, this study
was undertaken to explore methods for training SLR systems with minimal data.

2



Figure 2.1: Pizza Hut embraces inclusivity. Ref: ft.lk (2019)

2.2 Problem Definition
Training a Deep Learning (DL) model to classify or recognize sign language typi-
cally required large datasets, often comprising more than 15 1 instances per class
on average. For a practical vocabulary, datasets needed to include at least 50 to
100 words. Constructing such datasets presented significant challenges, particu-
larly in reducing bias, ensuring generalizability, and managing background noise.
Therefore, it was valuable to investigate technical approaches for training models
with small datasets, especially for low-resourced languages, where datasets often
contained extremely low number of instances per word (class).

2.3 Aims and Objectives
The primary aim of this study was to investigate the potential of cross-lingual
transfer learning to enhance the accuracy of SLR systems for SSL. Specifically,
this study sought to:

1. Evaluate the effectiveness of cross-lingual transfer learning for Sinhala Sign
Language (SSL): A base model was trained on a high-resourced sign language
and fine-tuned for SSL to improve SLR accuracy.

2. Contribute to the broader field of low-resourced SLR: The study provided
insights and methodologies applicable to other low-resourced sign languages,
thereby advancing research in this domain.

1This number is based on datasets considered during this study
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This study synchronized SSL with global advancements in SLR technology for
low-resourced sign languages and aimed to surpass the performance of existing
methods. The research made significant contributions to the field of SLR and
benefited the large community of low-resourced sign language users.
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3 Literature Review

3.1 Literature Review
3.1.1 Overall structure of SLR domain

SLR is divided into various branches that play important roles in understanding
and interpreting sign language. Each of these sub-branches has its own imple-
mentation methodology and theoretical concepts. According to Elakkiya (2021),
there are four major branches in this topic. However, since most modern method-
ologies like deep learning rely on datasets, preparing proper datasets can also be
considered as an area in this field. Overall the field looks like this as shown in 3.2.

Figure 3.2: Sign Language Recognition Branches

Recognition approaches in SLR include various methods to recognize and inter-
pret sign language gestures, classified into sensor-based, vision-based, and hybrid
approaches. Sensor-based techniques use sensors like gloves used in Quesada et al.
(2017) and Madushanka et al. (2016) , while vision-based approaches rely on com-
puter vision techniques as in Hu et al. (2023) and Kumar & Bajpai (2023). Vision
based methods are further divided into static images and dynamic videos. Hybrid
approaches combine both technologies for better accuracy. Each approach has its
own pros and cons.

Feature Extraction in SLR involves capturing attributes from hand gestures
and facial expressions, making them manageable for analysis. Features include
hand shape, motion trajectories, spatial details, and facial expressions. This can be
divided into Manual (appearance-based and 3D-based models) and Non-Manual
feature extraction. Studies such as Elmezain et al. (2008), Haputhanthri et al.
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(2022) and Coogan & Sutherland (2006) have investigated the deep insights be-
tween these feature extraction methods.

The classification component identifies the actual sign post-feature extrac-
tion. According to Elakkiya (2021), methods include Artificial Neural Networks
(ANN) (Elmezain et al. (2008), Cicirelli & D’Orazio (2017)), Hidden Markov
Model (HMM) (Cicirelli & D’Orazio (2017), Tur & Keles (2021)), Support Vector
Machine (SVM) (Dardas & Georganas (2011)) , and Relevance Vector Machines
(RVM) (Wong & Cipolla (2005)). This process is crucial for mapping features to
signs.

Recognition is divided into Isolated Sign Language Recognition (ISLR) and
Continuous Sign Language Recognition (CSLR). ISLR translates signs word by
word, using static images or videos. This area has been stuided in most researches
such as Aly & Aly (2020). CSLR recognizes full sentences at once, which is more
useful but complex. Since this is the most desirable version of SLR studies such as
Pramanto & Suharjito (2023) have tried to comeup with solutions for this problem.

Datasets are vital for SLR research. For example, Li et al. (2020) created a
large American Sign Language (ASL) dataset for word-level recognition, and Latif
et al. (2019) developed a labeled Arabic Sign Language (ArSL) image dataset.
Liyanaarachchi et al. (2021) also attempted to create a dataset for Sign Language
Recognition (SLR).

In addition to these main branches, there are subfields such as SLR for low-
resourced languages. Most of the sign languages in the world are used by smaller
communities. Therefore, it is inevitable to have smaller or no datasets for these
sign languages although developing SLR systems for these languages is a require-
ment. Therefore, a few researchers have been conducted to study methodologies
to develop SLR systems for these low-resourced languages and so far there has
been improvement in this area as there is a requirement for such low resourced
systems.

3.1.2 Low resourced sign language recognition

Holmes et al. (2023) conducted a study regarding how transfer learning would
create linguistic relationships between American Sign Language (ASL) and Irish
Sign Language (IrSL) which is a low-resourced language. Here, they have em-
ployed a 5-staged model that is made with 1D CNN, keypoint embeddings, and
transformers. Their study shows the usefulness of primary datasets containing
or articulated signs. Furthermore, the most important finding of their research
is the relationship between the frequency of overlapping glosses/lemmas/Parts of
Speech (PoS) tags between datasets. It seemed that if the distribution is closer
to each other, the accuracy of the fine-tuning shows an improvement. This is an
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important observation that helps to select a primary dataset when doing research
in transfer learning.

Another study conducted by Selvaraj et al. (2021) shows how techniques used
in Natural Language Understanding (NLU) can be applied for SLR. Pretrained
encoders such as BART are used in NLU. Similarly Selvaraj et al. (2021) proposes a
standardized pose-extractor to be used as an encoder. They trained this encoder
using a large corpus of sign language data in Indian Sign Language under self-
supervised methods. Then this model is fine-tuned using other sign languages
such as Argentinian Sign language. Here, authors have shown the improvements
between 3% to 18% based on the fine-tuned language.

Coster et al. (2023) has done research on a robust method for extracting sign
embeddings from low-resource languages. Here, they have addressed the issues
when using pose estimation models such as OpenPose by introducing solutions
for dealing with missing points. Then they used a ResNet and transformers-
based architecture to create pose embeddings and detect ISLR. They have con-
ducted to experiments for both fixed and variable length sequences and shown
this method outperforms image-based models that were previously more powerful
than keypoint-based models for SLR.

Another interesting study is conducted on identifying new signs of inferring
time using Zero-shot learning. effectiveness of this method is described in Bilge
et al. (2019). Here, they have used textual descriptors of sign classes in order to
realize seen-to-unseen class transfer. They have used a model with two main com-
ponents. One is to learn visual data using 3-Dimensional Convolutional Neural
Networks (3DCNN) and Long Short Term Memory (LSTM). The other compo-
nent is to learn the embedding of the visual reprxesentation to the closest text
description. However, this method does not show any improvement compared to
other methods since it is difficult to differentiate signs using textual descriptions
because hand movement differences might be subtle.

3.1.3 Other related recent studies

A study conducted by Moryossef et al. (2021) evaluates the applicability of pose
estimations for SLR. This study has used multiple pose estimation models and
multiple classification networks. All the results show over 80% accuracy in SLR
tasks, hence this study is a good example of proving the power of pose estimation
models. Also, this study cites a library that contains tools for process pose data.

However, the study conducted by Coster et al. (2023) finds a few ways to
improve the output of pose estimation models using methods like imputation and
normalization. There, they show the significance of the post-processing of the
skeleton points before using them for SLR tasks.
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3.2 Research Gap
Most studies on SSL required large datasets to achieve optimal performance. How-
ever, SSL, as a low-resourced language, lacked such datasets, resulting in subop-
timal performance in existing SLR systems. The primary barriers to creating
large datasets for SSL included limited data sources and privacy concerns. Conse-
quently, there was a significant gap in the application of low-resource SLR methods
to SSL. This study explored methods such as cross-lingual transfer learning, and
to a lesser extent contrastive learning, to elevate the accuracy of SLR systems for
SSL to competitive levels.

This research investigated the potential of cross-lingual transfer learning for
SLR in SSL and assessed its improvements over existing SSL studies.

8



4 Research Questions and Contribution

4.1 Research Questions
1. Is it possible to improve the accuracy of Sinhala Sign Language

(SSL) models using cross-lingual transfer learning?

Cross-lingual transfer learning had shown improvements in other sign lan-
guages, leading this study to investigate its applicability to SSL. The re-
search evaluated the extent of accuracy improvements, established baseline
results using small datasets, and analyzed the effectiveness of this approach
for SSL.

2. What underlying patterns and trends can be uncovered through
transfer learning techniques?

This study intended to examine the most effective transfer learning tech-
niques (such as what parameters are the best, any trends with different
parameters) for SLR and quantified the accuracy improvements achieved,
providing insights into their applicability for low-resourced sign languages
like SSL.

3. What are the most suitable primary languages for pre-training a
model to recognize Sinhala Sign Language (SSL)?

Different sign languages have different gestures and signs for the same word.
Different primary languages may share varying degrees of similarity in signs
or sign components with low-resource sign languages. This question aimed
to identify which primary language is most suitable for SSL so that transfer
learning methods can be effectively implemented with that language. 2

4.2 Significance of the Project and Research Contribution
4.2.1 Research Contribution to Computer Science

1. Advancement in Transfer Learning

This study explored cross-lingual transfer learning inSLR, contributing valu-
able insights on optimizing these strategies for low-resourced sign languages
like SSL. Identifying suitable primary languages for model pre-training and
fine-tuning will inform best practices in this area.

2However, due to tim constraints it was possible to explore this only on single primary
language
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2. What are the most effective transfer learning methods for SLR
and how much it is possible to improve

By adapting feature extraction and fine-tuning, this study tried to show the
effectiveness of transferring knowledge between different sign languages.

4.2.2 Research Contribution to Society

1. SSL Recognition Systems with Minimal Data

By following the methodologies explored in this project, it may be possi-
ble to develop effective SLR communication systems for SSL with minimal
training data. This is crucial for low-resourced languages and represents
a significant advancement in creating accessible SLR technologies for small
language communities.

2. Educational Empowerment

Using enhanced SLR systems it is possible to develop learning platforms for
SSL as well as normal people to learn SSL. This can further cause to connect
people who are having hearing loss with rest of the population.

10



5 Methodology and Data Analysis

5.1 Research Approach
The research approach adopted in this project was based on an Experimental Re-
search Methodology, which focused on the empirical evaluation of Deep Learning
(DL) techniques to assess their effectiveness in recognizing SSL. Specifically, this
study investigated the impact of cross-lingual transfer learning by comparing the
performance of models trained with and without transfer learning strategies.

The goal was to determine whether cross-lingual transfer learning could achieve
measurable improvements in accuracy for recognizing SSL. This approach involved
a structured process of defining the problem, selecting appropriate datasets and
models, applying transfer learning techniques, and evaluating the outcomes using
quantitative measures, primarily accuracy.

Unlike Design Science Research, which emphasizes the creation of novel arti-
facts, this study did not propose new model architectures or systems. Instead,
it contributed to the body of knowledge by providing experimental evidence and
practical insights into the applicability and benefits of cross-lingual transfer learn-
ing in the context of SSL.

The high-level plan of the research approach was executed as follows. Large
sign language datasets were identified to train base models. The selected datasets
were used to train multiple SLR models. Baseline models were then trained using
an SSL dataset. Subsequently, the base models were fine-tuned with the same
SSL dataset, and the results were collected. Finally, these results were analyzed
to identify meaningful relationships. The flow of this process is illustrated in
Figure 5.1.

Initially, the study planned to evaluate different model architectures and their
performance in cross-lingual transfer learning for SLR, including hyperparameter
tuning, to explore optimal configurations. Also trying out multiple different pri-
mary languages and compare different languages was also a target. However, this
objectives were excluded due to time constraints.

5.2 Methodology
5.2.1 Datasets

The first dataset evaluated was VGT (2022), which contained signs in Flemish
Sign Language (FSL). This dataset included longer video sequences captured from
various angles with multiple signers in the same video, as shown in Figure 5.2.
Despite its large size, the dataset’s raw nature required extensive preprocessing,
including manual video inspection. Challenges included the presence of multiple

11



Figure 5.1: High-level research approach

individuals in videos, inconsistent skeleton point extraction due to varying camera
angles, and difficulties in extracting individual words for an ISL dataset due to
complex annotations. Consequently, this dataset was deemed unsuitable for the
study.

The second dataset evaluated was Microsoft (2018), an ASL dataset created
by Microsoft, containing metadata for sign videos sourced from the internet. Ac-
quiring this dataset required writing a script to collect videos from URLs, and
several GitHub repositories provided solutions for this task. However, most video
URLs were expired, rendering the results unsatisfactory. Therefore, this dataset
was not used.

The third dataset evaluated was WLASL (World Level American Sign Lan-
guage) Video (2020), which also comprised videos from various sources and in-
cluded 2000 isolated signs in ASL. Unlike the Microsoft (2018) dataset, a consid-
erable amount of data was acquired using an initial script. However, similar issues
with video accessibility persisted, and after conducting preliminary experiments,
this dataset was also excluded.

The fourth dataset selected was Sridhar et al. (2020), an ISL dataset for Indian

12



Figure 5.2: Skeleton extraction was challenging with multiple people in videos

Sign Language (ISL), containing 263 classes categorized under 15 sections, such
as adjectives, colors, and people. This dataset was collected using actual Indian
signers, with videos properly edited to include only the signing portion from a
frontal view. Additionally, the dataset was directly downloadable, avoiding issues
like expired URLs. The signs corresponded to the English meanings of the Indian
words, making it suitable for cross-lingual transfer learning. Consequently, this
dataset was chosen as the primary large dataset for the study.

For SSL, representing a low-resourced language, several datasets provided by
UCSC were available, including both isolated signs and sentence-level signs. From
these, a 64-word video dataset, originally constructed in a previous study (Alwis
(2023)), was selected as the primary SSL dataset for model training. However,
imperfections were identified, leading to the removal of the word ඔව‍් (meaning
”yes” in Sinhala) from the dataset. Additionally, the meaning of the word ”w064”
could not be determined but later identified as no sign video as a fallback option.
Although the study aimed to train models with minimal data, a sufficient number
of samples was still required for effective model validation. A summary of this
dataset is provided in Table 5.1.

Code Sinhala Word English Meaning
w001 ඔයාට To_You
w002 ඔයා You
w003 මම Me
w004 අɀමා Mother
w005 ඔෙබ‍් Your
w007 එය It
w008 නංගී Sister
w009 විශ‍්වවිද්‍යාලය University
w010 ෙලාකුයි Big
w011 ෙහාඳයි Good
w012 ටිකක‍් Little
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Code Sinhala Word English Meaning
w013 අද Today
w014 දැන‍් Now
w015 ෙහට Tomorrow
w016 පාසැල School
w017 ලමය Children
w018 සිංහල Sinhala
w019 පංති Class
w020 දහෙදෙනක‍් Ten_People
w021 වාɃතාවක‍් Report
w022 වීඩිෙයෝව Video
w023 සම‍්බන‍්දතාව Relationship
w024 සන‍්වාදෙකාටුව Dialog box
w025 ඉංගී�සි English
w026 විභාගය Exam
w027 අඟහරැවාදා Tuesday
w028 වයස Age
w029 ෙගදර House
w030 මෙග‍් My
w031 නැවත Again
w032 ඉන‍්ෙන‍් Staying
w033 උගන‍්වනවා Teach
w034 ඉෙගනගන‍්නවා Learn
w035 කතාකරනවා Talk
w036 යනවා Go
w037 කරන‍්න Do
w038 හදනවා Make
w039 ආයුෙබෝවන‍් Hello
w040 ෙප‍්නවා See
w041 සමාෙවන‍්න Sorry
w042 නැහැ No
w043 කියන‍්න Tell
w044 ලියන‍්න Write
w045 පටන‍්ගන‍්නවා Start
w046 කියවන‍්න Read
w047 ස‍්තුතියි Thank_You
w048 ෙකාෙහාමද How
w049 ෙකාෙහ‍්ද Where
w050 ෙමාකද‍්ද What
w051 කියක‍්ද How_many
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Code Sinhala Word English Meaning
w052 ඉෙගනගන‍්නවද Learn?
w053 පුලුවන‍්ද Can?
w054 ඉන‍්නවද Stay?
w055 ෙප‍්නවද See?
w056 කවදද When
w057 කතාකරනවාද Talk?
w058 විස‍්ස Twenty
w059 තිෙයනවා There
w060 කරැණාකර Please
w061 ෙත‍්රැෙන‍් Understand
w062 නිවාඩු Holiday
w063 ඔව‍් Yes
w064 - Still
Table 5.1: SSL dataset and english meanings

5.2.2 Data Preprocessing

Data cleaning and preprocessing were critical steps in this study. For both the
INCLUDE dataset (ISL) and the SSL dataset, similar preprocessing techniques
were applied, as both datasets contained comparable video formats. The steps
were as follows:

Google’s MediaPipe library MediaPipe Solutions guide (2024) was used to ex-
tract landmarks from the video files. This library, developed over several years,
provided reliable output for the datasets. Specifically, the MediaPipe holistic
model was employed, generating 543 landmarks for pose, face, and hands. These
included 33 points for the full-body pose (covering the torso, arms, and legs), 21
points each for the left and right hands, and the remaining points for the face
mesh. The output consisted of (x, y, z) coordinates. However, the z-axis values
were discarded due to the absence of depth data in the video files. The x and y
coordinates were used to represent the points extracted by the holistic model, as
illustrated in Figure 5.3.

Although skeleton-drawn videos could have been used for model training, only
the (x, y) coordinates were utilized for all downstream tasks due to several ad-
vantages. First, this approach mitigated biases from background variations, the
signer’s skin tone, and facial features, effectively eliminating person-dependent fea-
tures. Second, it required significantly less computational power, which was bene-
ficial given the numerous training experiments conducted. However, this method
resulted in a slight reduction in model accuracy, a trade-off accepted based on
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Figure 5.3: Skeleton extraction from videos

studies like Sridhar et al. (2020), which reported a 4–6% accuracy decrease for
larger datasets.

Despite the frontal view of signers in the videos, slight variations in positioning
along the x and y axes meant that signers were not always centered. To address
this, the coordinate points were standardized to reposition the signer’s skeleton
to the center of the frame, regardless of their original position. This process is
shown in Figure 5.4. The hand and pose skeletons were centered, but the face
mesh remained in its original position, as it was not used for sign recognition.
This decision simplified the model input by reducing the number of features.

Figure 5.4: Skeleton point standardization

Once extracted, the skeletons were saved in a Python pickle file for future use.
This was a one-time process and the most CPU-intensive task in the study.

5.2.3 Preliminary Experiments

Initial experiments were conducted to gain a better understanding of the datasets.
After extracting all key points, 33 key points were selected to create an intermedi-
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ate representation. In the early stages, these points were chosen based on intuitive
understand, that’s we selected points that looked most active. Those point indices
are 0, 1, 3, 4, 6, 8, 10, 12, 14, 16, 18, and 20 from each hand, and indices 0, 11,
12, 13, 14, 15, 16, 23, and 24 from the pose model (body skeleton). Figure 5.5
illustrates the selected key points.

Figure 5.5: Selected skeleton points, marked in green

During the initial stages, the WLASL (World Level American Sign Language)
Video (2020) dataset was used for preliminary experiments. A simple classification
model was trained on a portion of the WLASL dataset. A script identified classes
overlapping with the SSL dataset, and 20 classes (15 overlapping and 5 random)
with the highest number of video samples were selected, resulting in a dataset of
approximately 137 video samples.

The model trained was a sequence classification network using an LSTM, as
shown in Figure 5.6a. Despite testing multiple configurations, the model’s accu-
racy remained low, primarily due to the limited dataset size, which was insufficient
for effective training of deep neural networks. The resulting accuracy is shown in
Figure 5.6.

The next preliminary experiment involved selecting a subset of the SSL dataset
and training the same classification model exclusively on this subset. The sub-
set comprised approximately 450 video samples across 15 classes, including a ”No
Sign” class with no signing gestures. These 15 classes included some words from
the main SSL dataset plus a few additional words, as access to the full SSL dataset
was initially limited due to technical issues. These issues were later resolved, en-
abling access to the complete SSL dataset with 64 classes. In this experiment,
reasonably high accuracy was achieved without applying transfer learning, rely-
ing solely on the SSL dataset. The accuracy metrics and confusion matrix are
presented in Figure 5.7.

These two preliminary experiments provided valuable insights into the strengths
and limitations of the datasets, informing the design of subsequent experiments.
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(a) Model architecture

(b) Training and validation accuracies

Figure 5.6: Sequence classification network used for initial experiments.
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(a) Training and validation accuracies

(b) Confusion matrix

Figure 5.7: Classification model on SSL dataset
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5.2.4 Data Analysis

Comprehensive data analysis was conducted on the selected 64-class SSL dataset
and the ISL dataset. This analysis enhanced understanding of the datasets and
informed the design of subsequent experiments.

Overlapping Glosses Between Datasets by Meaning

To initiate the analysis, similarities between the datasets were investigated.
As noted by Holmes et al. (2023), transfer learning is more effective when source
and target datasets share similar vocabulary. Based on this insight, the study
examined the extent of common words between the ISL (INCLUDE) and SSL
datasets.

A challenge arose due to differences in word semantics. The SSL dataset
originally contained words in Sinhala, which were translated into English to sim-
plify processing. However, this introduced ambiguity, as the ISL dataset used
slightly different English wordings for similar meanings. Consequently, simple
string matching was insufficient.

To address this, a semantic similarity check was applied between the trans-
lated Sinhala words and the English words in the ISL dataset. Since the IN-
CLUDE dataset contained English meanings, only the Sinhala words required
translation. By setting a similarity threshold of 0.80, 20 out of the 64 words in the
SSL dataset were identified as having semantically similar counterparts in the ISL
dataset. These results are shown in Table 5.2 and these words were designated as
Overlapping Words because they are in the intersection of both datasets. Fig-
ure 5.8 shows this concept visually. Additionally, to understand the distribution
of the ISL dataset, a plot was created, as shown in Figure 5.9. It indicated that
approximately 100 classes contained more than 15 instances, while a portion of
classes had fewer than 10 instances per class among the top 240 classes.
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Figure 5.8: Overlapping words between two datasets

SSL Word INCLUDE Word Instance Count Similarity Score
To_You you 21 0.924
To_You How_are_you 21 0.857
You you 21 1.000
Mother Mother 20 1.000
It it 21 1.000
Sister Sister 20 1.000
University University 21 1.000
Big big_large 21 0.909
Good good 21 1.000
Little small_little 22 0.919
Today Today 14 1.000
Tomorrow Tomorrow 14 1.000
School School 20 1.000
Children Child 20 0.833
Tuesday Tuesday 14 1.000
House House 21 1.000
Hello Hello 21 1.000
Thank_You Thank_you 21 1.000
How How_are_you 21 0.855
What How_are_you 21 0.827
How_many How_are_you 21 0.872

Table 5.2: Semantically similar words between SSL and INCLUDE datasets. In-
stance count refers number of instance in INCLUDE dataset

Most Important Points
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Figure 5.9: 240 words and their frequency distribution. HQ Image

As previously noted, skeleton points were initially selected for preliminary
experiments based on the intuitive understanding of the researchers. At this stage,
it was necessary to identify the specific skeleton points based on proper analysis.

To determine which skeleton points exhibited the greatest overall movement
in sign language gestures within the SSL dataset, a comprehensive movement
analysis of skeletal landmarks extracted from video data was conducted. This
analysis quantified the motion of key body parts—specifically the full-body pose,
left hand, and right hand—across video frames, providing insights into gesture
characteristics and informing the design of subsequent experiments.

The analysis focused on computing the movement of landmarks between con-
secutive frames to quantify gesture dynamics. For each video, the Euclidean dis-
tance traveled by each landmark across all frame pairs was calculated, and these
distances were accumulated to represent total movement. To account for varia-
tions in video length, the total movement was normalized by the number of frame
intervals (i.e., the number of frames minus one), yielding an average movement
per frame interval for each landmark.

For the full-body pose, movement was calculated as the displacement of each
landmark between frames. For the hands, a normalization step was introduced to
isolate finger and knuckle movements relative to the wrist. Specifically, the wrist’s
displacement was subtracted from each hand landmark’s movement to focus on lo-
cal hand gestures, which are critical in sign language. This approach ensured that
global arm movements did not overshadow the finer articulations of the fingers.

The analysis was applied to all videos within each class (representing a specific
sign or word) in the SSL dataset. For each class, the average movement of pose,
left hand, and right hand landmarks was computed across all videos, providing
a class-level summary of gesture dynamics. These averages were also aggregated
across all classes to obtain an overall movement profile for the dataset, highlighting
the most active landmarks across all signs.

To interpret the movement data, the results were visualized in a structured
format. For each class and the overall dataset, plots were generated, comprising:
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• Bar Charts: These depicted the average movement per frame interval for
each landmark (33 for pose, 21 for each hand), using a unified scale to
facilitate comparison across body parts. Figure 5.10 shows this for the word
”English” in the SSL dataset, and Figure 5.12 presents this for the overall
dataset.

• Skeletal Representations: These illustrated the spatial arrangement of land-
marks in a selected frame, with points colored according to their movement
magnitude. For the pose, the first frame was used for consistency, while
for the hands, frames containing valid hand data were prioritized to capture
meaningful gesture configurations. This visualization is shown in Figure 5.11
for the word ”English” in the SSL dataset, and Figure 5.13 presents this for
the overall dataset.

The skeletal visualizations employed a heatmap color scheme to highlight ar-
eas of high movement, with connections drawn between landmarks (e.g., between
joints in the pose or fingers in the hands) to illustrate the skeletal structure.
This dual representation—quantitative bar charts and qualitative skeletal plots—
provided a comprehensive view of gesture dynamics, identifying the most active
body parts during signing.

Purpose and Insights

The movement analysis helped quantify the relative importance of different
body parts in sign language gestures, identifying landmarks with the highest mo-
tion (e.g., specific fingers or joints). Based on this analysis, the 10 most important
key point indices were identified: (18, 20, 22, 16, 19, 17, 21, 15, 30, 32) for the
pose, (8, 12, 16, 7, 11, 20, 15, 4, 19, 10) for the left hand, and (8, 12, 16, 7, 11, 20, 4,
15, 19, 6) for the right hand. These are shown in Figure 5.14. Unexpectedly, this
indicated that two points in the right foot were among the most important. This
was not anticipated, prompting multiple reviews of the code and methodology,
which consistently produced the same results. Further investigation revealed that
this could have occurred due to occlusion handling in the MediaPipe pose model
Bazarevsky et al. (2020). This issue could have been mitigated by excluding leg
and foot landmarks earlier, but at this stage, these landmarks were excluded from
further consideration. Consequently, the following points were selected for contin-
ued use: (0, 15, 16, 17, 18, 19, 20) for the pose and (0, 4, 7, 8, 11, 12, 15, 16, 19,
20) for both the left and right hands. Point 0 was specifically included to capture
the relative motion of the palm and body, enhancing the model’s understanding
of gesture dynamics.

To further validate this analysis, two transformer models (discussed in later
sections) were trained: one using all 61 points and another using the selected 27
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Figure 5.10: Skeleton movement bar chart analysis for w025 - English

Figure 5.11: Skeleton movement skeleton representations for w025 - English
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Figure 5.12: Overall skeleton movement bar chart analysis for all words

Figure 5.13: Overall skeleton movement skeleton representations for all words
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Figure 5.14: Points identified as most important

points. This experiment was conducted on the 64-class SSL dataset, with each
class having varying numbers of instances to strengthen the study. The results
are presented in Table 5.3 and visualized in Figure 5.15. Notably, the selected
27 points did not yield significant improvements in model accuracy. However,
these points were retained for subsequent experiments, as they reduced training
complexity without compromising model performance.

Number of Points Instances Accuracy F1 Score
61 7 0.5385 0.5283
27 7 0.5425 0.5283
61 12 0.7385 0.7312
27 21 0.7126 0.7047
61 17 0.7693 0.7672
27 17 0.7591 0.7531

Table 5.3: Performance results across different configurations of skeleton points
and instance counts. Accuracy and F1 Score values show model performance under
each configuration.

5.2.5 Pre-training using INCLUDE Dataset

Once the analysis phase was completed, the next step was to train base models
using the primary dataset, INCLUDE (ISL). The initial plan was to develop and
test various model architectures to determine the most effective for sign language
knowledge transfer tasks. However, this objective was later abandoned to reduce
the scope to a more feasible level.

Model Architecture

After identifying the most relevant landmarks and cleaning the dataset ac-
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Figure 5.15: Accuracy of models trained on different skeleton points under different
training sizes

cordingly, a more expressive model was trained to capture temporal dependencies
and complex relationships in sign language sequences. While initial experiments
utilized simple architectures like LSTM, a transition was made to a Transformer-
based model Vaswani et al. (2017) due to its strong performance on sequential
tasks and its ability to model long-range dependencies efficiently.

The Transformer architecture was inspired by the source code of Sridhar et al.
(2020) but was rebuilt entirely using TensorFlow tensorflow (2025) to align with
the study’s preprocessing and integration requirements. The complete architecture
is shown in Figure 5.16.

The model processed input sequences of shape (batch_size, seq_length,
num_features), where each frame contained concatenated landmark coordinates
from the pose, left hand, and right hand. A dense layer projected these input
features to a fixed hidden dimension of 128, followed by a learnable positional
embedding layer that encoded the temporal order of frames.

The core of the model consists of 4 stacked Transformer encoder layers, each
containing 8 multi-head self-attention heads. These layers help the model focus
on the most relevant parts of the sequence and learn context-aware representa-
tions of gestures. Each Transformer encoder includes two sublayers: a multi-head
attention mechanism followed by a feedforward dense block, and each of these is
followed by layer normalization to ensure training stability and improve conver-
gence.

Once the sequence is encoded, a Global Max Pooling layer is applied across
the time dimension to summarize the sequence into a single vector representation.
This is followed by a Dropout layer with a dropout rate of 0.3 to prevent overfit-
ting, and finally, a dense output layer projects the pooled features to class logits
corresponding to the number of sign language gesture classes in the dataset.
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This architecture was compact yet expressive enough to model subtle differ-
ences in gesture trajectories, and its modular nature allowed us to easily test
different configurations during ablation studies.

Figure 5.16: Transformer model architecture diagram

Data Loading and Preparation

The INCLUDE dataset’s landmark data was loaded from preprocessed files.
Each video was processed to a fixed length of 30 frames, using only the previously
selected landmark points. For sequences exceeding 30 frames, frames were sampled
to represent the entire gesture, avoiding overfitting as noted by Haputhanthri et al.
(2022). However, the model’s reliance on a fixed 30-frame input limits its ability
to handle variable-length sequences.

The dataset was filtered to focus on top classes by instance count. We tested
configurations with 80, 120, 160, 200, and 240 classes to evaluate model scalability
and fine-tuning performance. Separately, we prepared a distinct 80-class dataset
that prioritized a predefined set of overlapping words found previously in table
5.2. If any overlapping word was not among the top 80 classes, it was included
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regardless (This was not needed for other model size like 120 and 160 because
these classes were in those by default). Labels for all configurations were encoded
in one-hot format. The data was split into training (60%), validation (16%), and
test (24%) sets using a 60-40 split, followed by a 40-60 split of the remaining data.
To enhance robustness, we applied small data augmentation to the training set by
adding random noise (standard deviation 0.01). This simulated minor variations
in landmark positions, such as slight hand or body shifts, while keeping validation
and test sets unchanged.

Training Configuration

Transformer models were trained for each class configuration (80, 120, 160,
200, 240, and the separate 80-class overlapping set). Each model had a hidden
size of 128, four encoder layers, and eight attention heads, as described previously.
The models were compiled with the Adam optimizer (learning rate 10−4), cate-
gorical cross-entropy loss with label smoothing (0.1) for improved generalization,
and accuracy as the primary metric. To address class imbalance, balanced class
weights were applied to prioritize underrepresented gestures. Early stopping was
implemented, monitoring validation loss with a patience of 10 epochs, to prevent
overfitting and restore the best weights. The data augmentation supported these
settings, enabling the models to learn patterns robust to minor gesture variations.
As for the training hardware, laptop computer with Intel Core i7 10870H and a
GTX 1660Ti was used.

Training accuracies and training history were shown in Figures 5.17 and 5.18
, while testing accuracies were included in Table 5.4. Notably, F1 values could not
be recorded for these models, as these experiments were conducted during initial
phases.

Model Configuration Test Accuracy
80-Class ISL Base Model 0.6468
80-Class ISL Base Model (Meaning Overlapping with SSL) 0.6206
80-Class ISL Base Model (Movement Overlapping with SSL) 0.6905
120-Class ISL Base Model 0.6173
160-Class ISL Base Model 0.6478
200-Class ISL Base Model 0.6247
240-Class ISL Base Model 0.6079

Table 5.4: Test accuracies for Transformer models trained on different class con-
figurations of the INCLUDE dataset.

Overlapping Models
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(a) 240-class (b) 200-class

(c) 160-class (d) 120-class

Figure 5.17: Training and validation performance of Base models for the 240, 200,
160, and 120-class configurations. HQ images can be accessed here

In addition to the six models described previously, an additional model, re-
ferred to as the ”80-Class ISL Base Model (Movement Overlapping with SSL)”
was included in Figure 5.18c and Table 5.4. This model was trained after the other
six models. Initially, the ”80-Class ISL Base Model (Meaning Overlapping with
SSL)” was developed, incorporating glosses from the INCLUDE dataset that were
also present in the SSL dataset, as identified in the semantic similarity analysis.
Subsequently, it was determined that comparing sign movements between the two
datasets could identify similar gestures. However, this proved challenging due to
the need for 240 * 64 comparisons between ISL and SSL words.

To address this, an attempt was made to compare signs based on their land-
mark trajectories using the Dynamic Time Warping (DTW) algorithm DWT
(2025). This algorithm was capable of comparing time-series data (skeleton points
per frame, treated as a time-series dataset) and outputting a similarity score. The
plan was to select ISL-SSL word pairs with the highest similarity scores to train
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(a) 80-class (b) 80-class with overlapping meaning

(c) 80-class with movement overlapping

Figure 5.18: Training and validation performance of Base models for the 80-class
variants. HQ images can be accessed here

a movement-overlapping model. However, this approach yielded insufficiently re-
liable results because even the different instances of the same sign word were
having the different attributes and not the exactly the same (so it was difficult to
compare).

Instead, the pre-trained models were leveraged. The six models, trained on
the 240-gloss INCLUDE dataset as described previously, achieved approximately
60% accuracy on test data, classifying any sign language sequence into one of
240 ISL words. By inputting SSL data into these models, each SSL sequence was
matched to the most similar ISL word based on movement patterns. This approach
was precisely what was required for identifying movement-based overlaps. Con-
sequently, each SSL datapoint was processed to determine its closest ISL match.
However, the results were inconsistent. For example, 20 instances of the word
”Good” (ෙහාඳයි) in SSL were tested, and 10 instances were matched to the ISL
word ”Chair,” with the remaining instances receiving other matches. To address
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this, all 64 SSL words were sorted by the frequency of consistent ISL matches,
and the top 20 words with the highest consistency were selected as movement-
overlapping words, regardless of their semantic equivalence. Using these words,
the ”80-Class ISL Base Model (Movement Overlapping with SSL)” was trained,
achieving a training accuracy of 0.6905. Table 5.5 presents the matched words
in both datasets based on this criterion, while the process’s flow was shown in
Figure 5.19.

SSL Word INCLUDE Word Instance Count Number of Matches
Thank_You T-Shirt 20 19
Go War 14 18
Talk? Train 21 17
Can? Afternoon 14 15
Little Chair 14 14
Read Bird 25 13
English Animal 20 12
Good wide 21 12
Still new 21 12
Sinhala Science 14 11
Start Fish 20 8
Dialog box healthy 21 9
Children Newspaper 14 8
Video Year 15 8
Hello I 21 7
Children God 14 7
House old 21 7
See Pleased 21 7
It Bathroom 14 7
No fast 21 5

Table 5.5: Words in SSL that have similar movement pattern to a some word in IN-
CLUDE dataset. Instance count refers number of instances in INCLUDE dataset
for. Number of Matches shows how many instances in SSL dataset matched with
corresponding word in INCLUDE. Ex: Word ”Thank You” in SSL dataset has
somewhat similar sign movement to words ”T-shirt” in INCLUDE dataset. And
there are 20 instances from this word ”T-shirt” in the INCLUDE dataset. When
20 instances from word ”Thank you” are fed into the model, out of that 20, 19 of
them were recognized as ”T-shirt” by this model.

32



Figure 5.19: Flow chart of development process of movement overlapping model

5.2.6 Fine-tunning with SSL Dataset

Once all seven base models were trained for ISL, the next step was to investigate
fine-tuning for SSL. Prior to fine-tuning, a baseline accuracy for SSL was estab-
lished to evaluate the potential benefits of transfer learning for low-resourced sign
languages. The selected low-resourced sign language was SSL, with a dataset
comprising 64 words, each with approximately 50 instances, as described previ-
ously. However, 50 instances per word indicated that this dataset was not truly
low-resourced, as training a word classification model with acceptable accuracy
using such a large number of examples was straightforward. Figure 5.20 presents
the training history for a model trained on this dataset, utilizing the same Trans-
former architecture described earlier. Validation accuracy exceeded 80% with
relative ease. For the testing set (unseen data), the model achieved an accuracy
of 81.15% and an average F1 score of 0.81 across three separate training sessions.

In the true low-resourced language, researchers do not have access to to this
kind of large number of instances per class in datasets. Even this dataset, Alwis
(2023) was not able to collect all these instance using real signers. Instead they
have collected about half of the instance in each word using real signers and filled
the rest by performing signs by researchers who did that study. Now let us say
there was a requirement to collect another 100 SSL words. Now this would again a
really complicated task to do. However, it is still possible to collect small number
of instance from each class using 1 or 2 signers. Therefore to continue this study
with more realistic scenario it was decided to only select a subset of instance from
each word to train models. Therefore 2, 3, 4 or 6 were used as the number of
instances from each class to train models to simulate low resource scenarios while
testing and validation sets had 7 instance per class.

Baseline: Low Resource without Fine-tuning

To establish a reference for fine-tuning experiments, performance metrics were
collected for Transformer models trained directly on the SSL dataset without pre-
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Figure 5.20: Transformer network trained with full SSL dataset

trained weights, termed Direct Models. These models utilized the same architec-
ture and training configurations described in the pre-training section. Experiments
varied the number of training instances per class (2, 3, 4, or 6) and the number of
classes (48 or 64) to assess their impact on performance. Due to high variability
with low instance counts, each configuration was executed five times, with aver-
ages and standard deviations reported for accuracy, F1 score, precision, recall,
and training epochs.

The SSL dataset comprised video sequences with landmark data capturing
key points on the body and hands. Sequences were standardized to 30 frames
by evenly sampling available frames or using all frames if fewer than 30 existed,
with missing landmarks assigned (0,0) coordinates. The 27 pose and hand indices
selected previously (0, 15–20 for pose; 0, 4, 7, 8, 11, 12, 15, 16, 19, 20 for each
hand) were used to focus on relevant features, ensuring a consistent input format
across experiments. TensorFlow’s default splitting apportioned data proportion-
ally across the entire dataset, not per class. For example, a 0.5 training and 0.5
validation split on a dataset with 64 classes and 20 instances each did not guaran-
tee 10 instances per class in the training set, only that the training set contained
(64 × 20) × 0.5 total data points. total data points. To address this, a custom
function ensured each class in the SSL dataset had exactly 2, 3, 4, or 6 training
instances, based on the experiment configuration. For fairness, the testing dataset
included 7 instances per class, regardless of other parameters. This data prepa-
ration and splitting approach was replicated in fine-tuning experiments to ensure
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comparability.
For the run with median performance in each configuration, training and val-

idation accuracy plots and confusion matrices were generated to analyze model
behavior. Performance metrics across all configurations are presented in Table 5.6,
which highlights the challenges of training with limited data and provides a bench-
mark for comparing Direct and fine-tuned models.

Classes IPC Accuracy F1 Score Epochs (± std)
64 6 0.7679 ± 0.0156 0.7634 ± 0.0148 152.60 ± 17.59
64 4 0.6687 ± 0.0239 0.6636 ± 0.0241 174.20 ± 15.04
64 3 0.5277 ± 0.0238 0.5237 ± 0.0213 185.80 ± 11.11
64 2 0.3241 ± 0.0405 0.3166 ± 0.0405 168.20 ± 21.82
48 6 0.7970 ± 0.0167 0.7897 ± 0.0166 155.60 ± 16.74
48 4 0.6369 ± 0.0178 0.6322 ± 0.0199 165.20 ± 16.23
48 3 0.5375 ± 0.0229 0.5397 ± 0.0207 177.60 ± 18.86
48 2 0.2577 ± 0.1129 0.2353 ± 0.1218 110.80 ± 60.99

Table 5.6: Performance metrics (accuracy, F1 score, and training epochs before
early stopping kicked in) of SSL models with varying class and instance config-
urations. Values are averaged over 5 runs with standard deviation shown. IPC
represents number of training instances per class.
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(a) 64-class, 6-instance (b) 64-class, 4-instance

(c) 64-class, 3-instance (d) 64-class, 2-instance

Figure 5.21: Training and validation performance of SSL models for 64-class with
varying instance configurations. HQ images can be accessed here
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(a) 48-class, 6-instance (b) 48-class, 4-instance

(c) 48-class, 3-instance (d) 48-class, 2-instance

Figure 5.22: Training and validation performance of SSL models for 48-class with
varying instance configurations. HQ images can be accessed here

Training plots for all eight Direct Models are presented in Figure 5.21 and 5.22
. It was observed that accuracy decreased as the number of instances per class
reduced. Despite techniques to mitigate overfitting (e.g., dropout, data augmenta-
tion, early stopping), considerable overfitting was evident in all models. A clearer
understanding of model performance on the training set was obtained through
confusion matrices. However, including readable 48x48 and 64x64 confusion ma-
trices in this document was impractical. These matrices were therefore provided
in a separate Google Drive folder, accessible via links in Appendix A.

Fine-tuning the Base Models

To adapt pre-trained Transformer models for the SSL dataset, a fine-tuning
approach was employed, leveraging features learned from the larger ISL dataset.
These base models, pre-trained on ISL with varying class counts (e.g., 80, 120),
had captured robust temporal and spatial features from sign language data. The
objective was to investigate how transfer learning could improve performance in
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low-resource settings, such as SSL, where training data per class was limited.
The fine-tuning process mirrored that used for training the Direct Models to

ensure fairness. New Transformer model instances were initialized, and pre-trained
ISL weights were loaded, maintaining compatibility with the original architecture.
To adapt to SSL, the final dense layer was replaced with a new layer matching the
SSL class count (48 or 64), initialized with He normalization and L2 regularization
to reduce overfitting. All layers, including those from the pre-trained base, were
set to trainable, enabling the model to adjust ISL-learned features to SSL-specific
patterns.

Training settings from the pre-training and Direct Model phases were reused
for consistency. The Adam optimizer was employed with a learning rate of 1×10−4

for stable convergence, and categorical cross-entropy with label smoothing (0.1)
was used as the loss function to reduce overconfidence. Random noise with a
standard deviation of 0.01 was applied to training sequences to curb overfitting.
Early stopping was configured to halt training if validation loss did not improve
for 10 epochs, restoring the best weights. Models were trained for up to 250 epochs
with a batch size of 32, though early stopping often intervened earlier.

The experimental design involved fine-tuning seven base models under con-
trolled conditions, testing with 2, 3, 4, or 6 training instances per class to evaluate
performance in low-data scenarios. The number of classes was varied, using SSL
datasets with 48 and 64 classes to assess the impact of class size. Each configura-
tion was executed five times to account for variability, with performance metrics—
accuracy, F1 score, precision, and recall—averaged across runs. For the run with
median performance in each configuration, training and validation accuracy plots
and confusion matrices were generated to analyze model behavior.

This setup enabled direct comparison with models trained from scratch on SSL,
highlighting the benefits of transfer learning. It was hypothesized that fine-tuned
models, leveraging ISL’s broad feature exposure, would outperform Direct Models,
particularly with fewer training instances (e.g., 2, 3, 4, or 6 per class). Results
in Tables 5.7 and 5.8 supported this hypothesis in some cases. Initial analysis
indicated an average 8% accuracy increase across all configurations, demonstrating
that the Transformer’s ability to model temporal dependencies, refined through
ISL pre-training, enhanced generalization on SSL’s limited data. Insights into the
effects of class size (48 vs. 64 classes) and performance stability across runs will
be detailed in the Results Analysis and Critical Evaluation section.
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Model Description IPC Epochs F1 Score Accuracy Direct Acc. Diff
240 → 64 6 63.6 (±15.5) 0.7595 (±0.0216) 0.7616 (±0.0188) 0.7679 -0.63%
200 → 64 6 84.2 (±18.8) 0.7595 (±0.0207) 0.7670 (±0.0189) 0.7679 -0.09%
160 → 64 6 73.0 (±10.2) 0.7498 (±0.0215) 0.7522 (±0.0224) 0.7679 -1.57%
120 → 64 6 82.8 (±17.5) 0.7408 (±0.0292) 0.7429 (±0.0274) 0.7679 -2.5%
80 → 64 6 101.4 (±11.8) 0.7739 (±0.0172) 0.7830 (±0.0134) 0.7679 1.51%
80 (Overlap) → 64 6 103.2 (±4.8) 0.7465 (±0.0125) 0.7536 (±0.0128) 0.7679 -1.43%
80 (Movement Overlap) → 64 6 90.4 (±9.1) 0.7421 (±0.0195) 0.7455 (±0.0180) 0.7679 -2.24%
240 → 64 4 66.8 (±7.4) 0.6484 (±0.0284) 0.6612 (±0.0296) 0.6687 -0.75%
200 → 64 4 82.0 (±6.6) 0.6447 (±0.0272) 0.6536 (±0.0273) 0.6687 -1.51%
160 → 64 4 101.0 (±19.0) 0.6572 (±0.0113) 0.6674 (±0.0123) 0.6687 -0.13%
120 → 64 4 76.6 (±14.5) 0.6179 (±0.0250) 0.6196 (±0.0278) 0.6687 -4.91%
80 → 64 4 95.6 (±13.6) 0.6705 (±0.0130) 0.6786 (±0.0136) 0.6687 0.99%
80 (Overlap) → 64 4 92.4 (±6.9) 0.6246 (±0.0151) 0.6330 (±0.0133) 0.6687 -3.57%
80 (Movement Overlap) → 64 4 106.4 (±11.6) 0.6426 (±0.0269) 0.6491 (±0.0268) 0.6687 -1.96%
240 → 64 3 72.8 (±18.4) 0.5700 (±0.0216) 0.5741 (±0.0242) 0.5277 4.64%
200 → 64 3 78.8 (±13.3) 0.5683 (±0.0176) 0.5710 (±0.0182) 0.5277 4.33%
160 → 64 3 90.6 (±14.6) 0.5722 (±0.0148) 0.5790 (±0.0115) 0.5277 5.13%
120 → 64 3 72.8 (±8.4) 0.5316 (±0.0228) 0.5393 (±0.0221) 0.5277 1.16%
80 → 64 3 81.0 (±11.6) 0.5562 (±0.0151) 0.5616 (±0.0162) 0.5277 3.39%
80 (Overlap) → 64 3 96.0 (±13.3) 0.5563 (±0.0179) 0.5732 (±0.0187) 0.5277 4.55%
80 (Movement Overlap) → 64 3 99.8 (±8.1) 0.5530 (±0.0159) 0.5634 (±0.0143) 0.5277 3.57%
240 → 64 2 68.0 (±12.7) 0.4407 (±0.0284) 0.4576 (±0.0278) 0.3241 13.35%
200 → 64 2 76.8 (±9.8) 0.4291 (±0.0163) 0.4348 (±0.0186) 0.3241 11.07%
160 → 64 2 76.0 (±3.6) 0.4225 (±0.0095) 0.4290 (±0.0121) 0.3241 10.49%
120 → 64 2 71.6 (±7.2) 0.4492 (±0.0189) 0.4576 (±0.0195) 0.3241 13.35%
80 → 64 2 86.6(±14.9) 0.4793 (±0.0126) 0.4879 (±0.0178) 0.3241 16.38%
80 (Overlap) → 64 2 93.4 (±15.2) 0.4185 (±0.0410) 0.4290 (±0.0397) 0.3241 10.49%
80 (Movement Overlap) → 64 2 87.2 (±4.9) 0.3960 (±0.0116) 0.4138 (±0.0126) 0.3241 8.97%

Table 5.7: Finetuned Model Evaluation Results for 64 SSLWords with Highlighted
Accuracy Improvements

Model Description IPC Epochs F1 Score Accuracy Direct Acc. Diff
240 → 48 6 74.4 (±4.1) 0.7633 (±0.0120) 0.7750 (±0.0127) 0.7970 -2.2%
200 → 48 6 76.8 (±9.2) 0.7692 (±0.0116) 0.7720 (±0.0099) 0.7970 -2.5%
160 → 48 6 74.2 (±14.7) 0.7557 (±0.0117) 0.7601 (±0.0133) 0.7970 -3.69%
120 → 48 6 78.2 (±9.1) 0.7617 (±0.0164) 0.7673 (±0.0104) 0.7970 -2.97%
80 → 48 6 74.6 (±10.6) 0.7860 (±0.0167) 0.7923 (±0.0150) 0.7970 -0.47%
80 (Overlap) → 48 6 89.8 (±14.3) 0.7497 (±0.0137) 0.7565 (±0.0107) 0.7970 -4.05%
80 (Movement Overlap) → 48 6 90.6 (±7.0) 0.7738 (±0.0261) 0.7780 (±0.0233) 0.7970 -1.9%
240 → 48 4 61.0 (±7.0) 0.6690 (±0.0330) 0.6732 (±0.0303) 0.6369 3.63%
200 → 48 4 77.8 (±15.0) 0.6915 (±0.0221) 0.7042 (±0.0202) 0.6369 6.73%
160 → 48 4 76.0 (±8.7) 0.6575 (±0.0190) 0.6589 (±0.0181) 0.6369 2.2%
120 → 48 4 89.0 (±12.3) 0.6376 (±0.0246) 0.6524 (±0.0222) 0.6369 1.55%
80 → 48 4 81.6(±11.5) 0.6749 (±0.0138) 0.6810 (±0.0143) 0.6369 4.41%
80 (Overlap) → 48 4 103.4 (±23.5) 0.6834 (±0.0180) 0.6887 (±0.0172) 0.6369 5.18%
80 (Movement Overlap) → 48 4 105.4 (±21.1) 0.6531 (±0.0303) 0.6631 (±0.0238) 0.6369 2.62%
240 → 48 3 65.0 (±12.0) 0.5983 (±0.0255) 0.6077 (±0.0250) 0.5375 7.02%
200 → 48 3 64.6 (±12.1) 0.5979 (±0.0161) 0.5988 (±0.0191) 0.5375 6.13%
160 → 48 3 82.8 (±13.0) 0.6276 (±0.0207) 0.6387 (±0.0205) 0.5375 10.12%
120 → 48 3 74.6 (±15.6) 0.5709 (±0.0197) 0.5768 (±0.0188) 0.5375 3.39%
80 → 48 3 87.4 (±7.6) 0.6307 (±0.0107) 0.6387 (±0.0128) 0.5375 10.12%
80 (Overlap) → 48 3 81.4 (±5.2) 0.5476 (±0.0136) 0.5631 (±0.0161) 0.5375 2.56%
80 (Movement Overlap) → 48 3 96.0 (±14.1) 0.5611 (±0.0188) 0.5679 (±0.0246) 0.5375 3.04%
240 → 48 2 62.2 (±6.0) 0.5059 (±0.0207) 0.5071 (±0.0211) 0.2577 24.94%
200 → 48 2 63.2 (±17.1) 0.4800 (±0.0376) 0.4821 (±0.0381) 0.2577 22.44%
160 → 48 2 71.4 (±16.6) 0.4247 (±0.0255) 0.4310 (±0.0260) 0.2577 17.33%
120 → 48 2 63.8 (±10.3) 0.4594 (±0.0269) 0.4732 (±0.0260) 0.2577 21.55%
80 → 48 2 76.0 (±14.2) 0.5225 (±0.0250) 0.5327 (±0.0204) 0.2577 27.5%
80 (Overlap) → 48 2 90.4 (±13.6) 0.4558 (±0.0254) 0.4649 (±0.0256) 0.2577 20.72%
80 (Movement Overlap) → 48 2 87.6 (±23.0) 0.4361 (±0.0498) 0.4476 (±0.0429) 0.2577 18.99%

Table 5.8: Finetuned Model Evaluation Results for 48 SSLWords with Highlighted
Accuracy Improvements
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6 Result Analysis and Critical Evaulation
A total of 64 models were trained to recognize words in SSL. Eight of these were
Direct Models, trained directly on SSL data, while the remaining models were
pre-trained on the larger ISL dataset and fine-tuned to recognize SSL words. This
section analyzed the results through visualizations to identify underlying patterns
derived from the extensive experiments conducted during the study.

6.0.1 Accuracy Comparison Between Direct Models and Fine-Tuned
Models

Two line plots were generated for the 64- and 48-class models to evaluate accuracy
gains from transfer learning techniques. These are presented in Figure 6.23. It was
observed that, with very low training instance counts (2 or 3), fine-tuned models
performed significantly better than Direct Models, regardless of the base model
size or the number of classes in the SSL dataset. However, this performance gap
diminished with higher instance counts, particularly for the 64-class models with 4
or 6 instances per class. These plots indicated that the hypothesis—cross-lingual
transfer learning improves performance for low-resourced languages like Sinhala—
was supported only for very low instance counts (2–3). When the number of
instances per class reached 4 or 6, transfer learning yielded minimal improvement.

This reduction in performance gap could be attributed to several factors: the
Direct Models may have sufficient data at these instance counts to learn SSL-
specific patterns effectively, reducing the reliance on pre-trained ISL features; the
Transformer architecture’s capacity to model temporal dependencies might be fully
utilized with 4 or 6 instances, minimizing the advantage of transfer learning; or the
similarity between ISL and SSL movement patterns may not provide additional
discriminative power for SSL-specific signs when more data is available.
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(a) 64 class SSL models HQ Image

(b) 48 class SSL models HQ Image

Figure 6.23: Testing accuracy comparison between direct models and fine-tuned
models for all the instance numbers and base models. Red color lines represents
the direct models

6.0.2 Effectiveness of Overlapping Models

Among the 80-class base models, one model was trained with the top ISL words by
instance count, and two models were trained with words similar to SSL in meaning
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or sign movement, overriding the instance-count rule. Figure 6.24 illustrates the
impact of overlapping models on different SSL class sizes. It was observed that, in
both graphs, the non-overlapping base model generally achieved higher accuracy
than the overlapping models in most cases. Although it appeared that overlapping
words provided limited benefits for fine-tuning, this outcome may have resulted
from the non-overlapping model being pre-trained with a slightly larger number
of training examples (because some overlapping words were not in top 80 most
frequent words in INCLUDE). Consequently, it was concluded that the impact of
training with words similar in meaning or sign movement on improving transfer
learning capabilities in SLR could not be definitively determined.

(a) 64 class SSL fine-tuning HQ Image

(b) 48 class SSL fine-tuning HQ Image

Figure 6.24: Testing accuracy comparison between overlapping models and non-
overlapping models. Shaded area shows the standard deviation of accuracy values.
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6.0.3 Impact of Base Model Size

A total of seven base models were tested during the study. Three of these had the
same size (80 classes), while the remaining four utilized different numbers of ISL
classes (120, 160, 200, 240). Figure 6.25 illustrates how base model size affected
fine-tuning performance across various instance counts (2, 3, 4, 6) and class sizes
(48, 64) in SSL. It was evident that base model size, within the tested range, had
no consistent impact on fine-tuning performance. This could mean that even with
a small number of words in primary language (ISL) can help to model to learn
good amount of features that can help to learn SSL features better later. Positive
side of this discovery is that when further studying this area, one could easily train
base models without spending much time on that.

(a) 64 class HQ Image

(b) 48 class HQ Image

Figure 6.25: Test accuracy comparison between different sized base models. Dark
line on top of each bar represents the standard deviation of multiple runs of the
same model.
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6.0.4 Comparison of Training Epochs Before Early Stopping

This study utilized varying amounts of data to simulate low-resource scenarios.
To mitigate overfitting, early stopping techniques were employed. Consequently,
the number of epochs required for model convergence was tracked. Figure 6.26
presents the average number of training epochs for each model trained. For each
instance count (2, 3, 4, 6), plots reflect the average epochs across all base models
(e.g., 80, 80 overlapping, 120, 160, 200, 240) fine-tuned with the specified instance
count. Standard deviations were included in the bar charts (indicated by black
lines) to account for variability among fine-tuned models. As only one variant of
each Direct Model was trained per instance count, standard deviations were not
included for these.

It was evident that, despite using the same number of parameters, fine-tuned
models consistently required fewer epochs to converge compared to Direct Mod-
els. This indicated that fine-tuned models had partially learned temporal and
spatial patterns during the pre-training phase, enabling faster convergence. While
early convergence was not a direct metric to confirm the efficacy of cross-lingual
fine-tuning in the SLR domain, it suggested that pre-training on a larger dataset
facilitated pattern learning. Furthermore, the 48-class, 2-instance Direct Model
exhibited an anomalously low number of epochs, as shown in Figure 6.26b. Mul-
tiple tests were conducted to verify this result, confirming its consistency. This
anomaly was likely due to the model being trained on significantly fewer instances
compared to other Direct Model (48 words, 2 instances per word), leading to faster
weight convergence but lower overall testing accuracy.
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(a) 64 class HQ Image

(b) 48 class HQ Image

Figure 6.26: Number of epochs models trained before early stopping kicked in and
stopped the training process.
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7 Discussion & Conclusion
This study aimed to investigate the efficacy of cross-lingual transfer learning in
enhancing Sign Language Recognition (SLR) for Sinhala Sign Language (SSL), a
low-resourced sign language with limited training data. The primary objectives
were to evaluate whether pre-training on a high-resource language like Indian
Sign Language (ISL) could improve SSL recognition accuracy, identify patterns
and trends in transfer learning techniques, and determine the most suitable pri-
mary languages for pre-training, though the latter was constrained to ISL due to
time limitations. Through comprehensive experiments, the research demonstrated
that Transformer-based models, pre-trained on ISL and fine-tuned on small SSL
datasets, significantly outperform models trained directly on SSL, particularly
in extreme low-data scenarios (2–3 instances per class), achieving up to an 8%
accuracy improvement.

These findings validate the potential of transfer learning to address data scarcity
in SLR, offering a pathway for developing accessible communication systems for
underrepresented sign languages like SSL. The following discussion analyzes the
results in the context of the research questions, highlights key patterns, and evalu-
ates the implications and limitations of the study, culminating in conclusions that
underscore its contributions to the field.

Comprehensive experiments on cross-lingual transfer learning for SSL, a low-
resourced language, have yielded valuable insights into accuracy improvements and
the training dynamics of Transformer-based models. The study demonstrated sig-
nificant performance gains when training instances per class were very low (2 or 3),
with fine-tuned models achieving up to an 8% accuracy increase over Direct Mod-
els. This success highlights the potential of leveraging a high-resourced language
like ISL to bootstrap SLR systems in data-scarce scenarios, particularly when only
a few examples per class are available, as is common in real-world low-resource
settings. Futhermore, this answers the first research question: Is it possible
to improve the accuracy of Sinhala Sign Language (SSL) models using
cross-lingual transfer learning with a ”Yes”. The simulation of data scarcity
by limiting instances to 2–6 per class effectively mirrored the challenges of collect-
ing large SSL datasets, underscoring the practical utility of transfer learning for
rapid deployment of SLR systems with minimal data.

While answering the second research question: What underlying patterns
and trends can be uncovered through transfer learning techniques?, it
was possible to find that the transformer architecture’s ability to model temporal
dependencies and long-range relationships in sign language sequences was likely
a key factor in these gains, with pre-trained ISL features enabling better gener-
alization at low instance counts. However, the diminishing performance gap at
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higher instance counts (4 or 6) suggests that Direct Models can effectively learn
SSL-specific patterns with sufficient data, potentially saturating the model’s ca-
pacity and reducing the advantage of transfer learning. The use of skeleton points
extracted via MediaPipe proved computationally efficient and robust, mitigating
biases from background or signer appearance, though it incurred a reported 4–6%
accuracy trade-off compared to video-based inputs. The decision to use 27 se-
lected points, which maintained performance while reducing complexity, indicates
that careful feature selection is critical in low-resource settings, though integrating
visual features could enhance future models.

Extending the answer for second research question, the number of epochs be-
fore early stopping provided further evidence of transfer learning’s benefits, with
fine-tuned models converging faster than Direct Models, reflecting pre-learned
temporal and spatial patterns from ISL. This efficiency is particularly promis-
ing for resource-constrained environments, reducing computational demands on
modest hardware like the laptop used in this study (Intel Core i7 10870H, GTX
1660Ti). However, overfitting remained a challenge, especially for Direct Models
with low instance counts, despite techniques like dropout, data augmentation, and
early stopping. This suggests that advanced regularization or tailored augmenta-
tion strategies for skeleton data could further improve robustness.

Some findings were surprising or inconclusive. The lack of consistent impact
from varying base model sizes (80 to 240 classes) likely stems from data over-
lap in the ISL dataset, obscuring pre-training scale effects. Future work with
non-overlapping datasets could clarify this. The unexpected underperformance of
overlapping models, designed to leverage ISL-SSL similarities, suggests limitations
in the similarity methods (DTW and pre-trained classifications).

As for the third research question: What are the most suitable primary
languages for pre-training a model to recognize Sinhala Sign Language
(SSL)?, due to time limitations, it was not possible to conduct all experiments in
more than one language. Therefore, this question still remains unanswered and is
yet to be discussed in future work.

7.1 Research Contributions and Novelty
This research contributes to the growing body of knowledge in SLR by being one of
the first studies to systematically explore cross-lingual transfer learning for Sinhala
Sign Language (SSL), a low-resourced sign language with very limited available
datasets. The novelty of the work lies in demonstrating that Transformer-based
models, pre-trained on a high-resource language such as Indian Sign Language
(ISL), can significantly improve SSL recognition performance when training data
is extremely scarce. This contribution is particularly impactful in settings where
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collecting large-scale sign language datasets is impractical due to economic or
logistical constraints.

This thesis sets a foundation for developing accessible, scalable, and efficient
SLR systems for underrepresented sign languages like SSL. It not only bridges a
critical research gap but also opens new directions for multilingual sign language
recognition and inclusive communication technologies.
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8 Limitations and Future Work
This study focused solely on SSL even though the topic was low-resourced lan-
guages. Given that different sign languages exhibit distinct movements, results
may vary, and developing consistent multilingual models in this domain was chal-
lenging. The original plan included testing multiple primary languages for pre-
training, but this was abandoned due to time constraints and limited generalizabil-
ity, as evaluating only a few languages would not be comprehensive. Therefore,
during this study it was not possible to answer the 3rd research question. Sim-
ilarly, the initial proposal to assess fine-tuning performance across various deep
learning architectures and techniques was deemed overly broad and thus excluded.
Another key limitation was the focus on low-resourced methods for ISLR mode
only. In more realistic settings, evaluating these methods in CSLR mode would
be valuable.

There were unexpected results when it comes to comparison between overlap-
ping models. As explained before, this could be due the poor techniques used
to meassure similarties between two datasets. These could be replaced with ad-
vanced techniques, like deep learning-based embeddings, to better capture gesture
similarities and improve transfer learning in future. Additionally, while the use of
skeleton points was considered an advantage, it may also represent a limitation,
as fine-tuning models that support visual inputs with larger datasets could lever-
age learned features for smaller datasets. For instance, pre-trained models like
He et al. (2015) on large general datasets have been fine-tuned for specific tasks.
These approaches could be explored in SLR tasks as future work.
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A Additional Resources
All code, training logs, extended visualizations, and result plots are available at
the following links:

• GitHub repository: https://github.com/Neethamadhu-Madurasinghe/
sign_language

• Full training plots, confusion matrices and trained models (Drive):
https://drive.google.com/drive/folders/15u__Udm1fbYDjeFtY9LSoEGdUVOyDEWz?
usp=drive_link

• Google sheet containing collected experiment results: https://
docs.google.com/spreadsheets/d/1iKVuq3n6J1Jo4dJyccBP5rSivK9pVD7f1DIYQEhYpI4/
edit?usp=sharing

These resources include:

• Complete model training scripts and configuration files

• Training/validation loss and accuracy plots for all runs

• Raw evaluation metrics (accuracy, F1-score, etc.) for each experiment

• Pre-processing code and data analytics

• All the plots that included in drive link

• .h5 files for trained models
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