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Abstract

Morphological analysis is vital in NLP, especially for morphologically rich languages like
Tamil, which pose challenges due to complex inflectional and derivational forms. Tradi-
tional rule-based methods struggle with scalability and unseen words, while deep learning
remains underexplored for Tamil.

This research proposes a hybrid approach combining deep learning for lemma pre-
diction and an embedding-based similarity method for grammatical feature prediction.
Various architectures—including Recurrent Neural Network (RNN), Long Short term
memory (LSTM) and Gradient recurrent unit (GRU)—are evaluated for lemma pre-
diction, while FastText embeddings enable effective feature transfer for unseen words,
addressing the out-of-vocabulary problem.

The model is trained on curated word-lemma pairs and grammatical annotations,
demonstrating high accuracy and generalization. This work offers a scalable, low-resource-
friendly solution for Tamil morphological analysis and contributes to advancing Tamil
NLP.
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Chapter 1

Introduction

1.1 Background to the Research

A morphological analyzer is a tool which breaks up a single word into its basic components
identifying its root, prefixes, suffixes and infixes. This is a very essential process in NLP
since it is used in understanding and generating language.Morphological analysis is crucial
for various applications such as text mining, search engine, personal assistants, social
media, and e-commerce platforms, to help users quickly find the necessary information.
This concept is mostly used in query-based systems, morphological analysis enhances
information retrieval by reducing the index size and grouping terms related to the same
root word.

Figure 1.1: Example for morphological analysis in the English language

In this research, the focus will be on morphological tagging and lemmatization, a key
area within morphological analysis that involves associating a given word form with its
base form (lemma) and detailed morphosyntactic features. As defined by Nicolai and
Kondrak (2017), morphological analysis often refers to the tasks of lemmatization and
tagging, collectively describing a word’s syntactic properties such as part-of-speech, tense,
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number, or case. This study aims to develop an approach that will tag each word with
these morphosyntactic descriptors, also referred to as MSD tags, while normalizing each
word to its lemma or base form.

Morphological tagging is closely aligned with part-of-speech tagging but adds layers
of morphosyntactic detail Labeau et al. (2015), Conforti et al. (2018), making it crucial
for applications in NLP where precise linguistic information is essential. The research will
therefore emphasize these tasks to enhance the understanding and computational repre-
sentation of Tamil morphology, focusing specifically on accurately predicting lemmatized
forms and detailed morphological tags for a given word.

Figure 1.2: Example where multiple suffixes attach to the root verb

Lemmatization, stemming, and morphological tagging are some of the essential meth-
ods for understanding the behavior of words in a particular language. Morphological
analysis requires examining how words are constructed from morphemes, a process that
varies widely between languages. In this research, the focus is on Tamil morphological
analysis, specifically identifying morphemes and their associated grammatical features.
For this purpose, a combined approach is proposed. It utilizes a list of Tamil words
annotated with grammatical features, and by leveraging word embedding techniques, the
model aims to assign grammatical features to unseen words based on their embedding
similarity to words in the annotated list. This allows the transfer of grammatical informa-
tion from similar words, addressing OOV issues for novel terms. While this method uses
word embedding similarity, deep learning techniques may also be explored to enhance
accuracy and model performance. By employing a flexible, data-driven approach, this
research aims to develop a robust and scalable solution for Tamil morphological analysis.

1.2 Problem Statement

Despite numerous advancements in developing morphological analyzers for Tamil—such
as rule-based methods, finite-state transducers, and machine learning techniques like
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SVM—there remains a notable lack of research using deep learning approaches. Tradi-
tional methods often require extensive, manually crafted rules, which struggle to adapt to
Tamil’s complex agglutinative morphology, including its extensive affixation and diverse
verb conjugation patterns. These methods inherently face challenges in handling Tamil’s
morphological intricacies and in achieving scalability for real-world applications.

In contrast, other Dravidian languages like Malayalam, as well as morphologically
complex languages such as Sanskrit, Nepali, Sinhala, and Finnish, have benefited from
deep learning models that automatically learn and apply complex morphological rules,
significantly outperforming traditional methods. The success of deep learning for Malay-
alam highlights the potential for similar improvements in Tamil morphological analysis.
However, no substantial work has yet explored this approach for Tamil, representing a
critical research gap.

This study seeks to address this gap by not only applying deep learning techniques
but also incorporating a similarity-based method that leverages word embeddings. By
transferring grammatical features from similar words, this approach could mitigate the
limitations of traditional data collection and rule-based methods, reducing dependency
on extensive annotated datasets. Such a hybrid approach could provide a more flexible,
data-efficient solution, advancing Tamil morphological analysis and contributing to the
field of Tamil NLP by addressing current scalability and adaptability challenges.

In this research, two types of approaches will be explored for Tamil morphological
analysis: a deep learning approach and a similarity-based approach using word embed-
dings. The deep learning approach leverages advanced models to learn complex mor-
phological patterns automatically, a method that has shown strong results in languages
like Malayalam and Sanskrit. The similarity-based approach, on the other hand, utilizes
word embeddings to find grammatical features for unseen words by identifying the closest
match in a list of annotated words and transferring its features.

By combining these two approaches, this research aims to address the limitations of
relying solely on extensive annotated data. The deep learning model will enable com-
plex morphological analysis, while the similarity-based method will improve the model’s
ability to generalize to OOV words. Together, these approaches provide a flexible and
potentially more efficient solution for Tamil morphological analysis, with applications in
practical NLP tasks.
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1.3 Research Aim, Questions and Objectives

1.3.1 Research Aim

Aim of this research is to develop an effective and scalable approach for Tamil morpho-
logical analysis, focusing specifically on tasks such as morphological tagging and lemma-
tization. This study seeks to combine deep learning techniques with a similarity-based
method using word embeddings to handle Tamil’s complex morphology, including agglu-
tinative structures and OOV words. The ultimate goal is to create a robust system that
accurately predicts grammatical features and base forms, improving both computational
efficiency and adaptability for real-world NLP applications in Tamil.

1.4 Research Questions

1. What approaches are most effective for Tamil morphological analysis in
low-resource settings?
Tamil’s morphological richness and lack of annotated corpora make analysis chal-
lenging. This study proposes a hybrid method combining deep learning for lemma
prediction and embedding-based similarity for grammatical feature prediction. It
reduces manual annotation by leveraging gold-standard datasets, offering an effi-
cient and scalable solution.

2. How effectively can word embeddings predict morphological features for
unseen Tamil words?
FastText embeddings, which use subword-level representations, enable accurate
grammatical feature prediction for OOV words by capturing morphological pat-
terns and similarities. This helps generalize beyond the training corpus and reduces
dependency on large annotated datasets.

3. What are the challenges in building a Tamil morphological corpus, and
how can they be addressed?
Tamil’s inflectional complexity and context-dependent word forms make annotation
labor-intensive and inconsistent. This research mitigates the issue by combining
manually curated lemma data with pre-annotated datasets, improving coverage

4



while limiting annotation effort.

1.4.0.1 Research Objectives

1. Develop and implement a deep learning model for Tamil morphological analysis
that can accurately perform lemmatization, addressing the language’s agglutinative
structure and morphological complexity.

2. Design and test a similarity-based approach using word embeddings to predict
grammatical features for unseen words, enabling effective handling of OOV words
in Tamil.

3. Evaluate the effectiveness of combining deep learning with similarity-based meth-
ods for improved accuracy, generalization, and adaptability of Tamil morphological
analysis.

4. Optimize data collection and annotation processes by minimizing reliance on ex-
tensive annotated datasets, while still achieving high performance through hybrid
modeling approaches.

1.5 Significance of the Project

The significance of this research lies in enhancing natural language processing (NLP)
capabilities for Tamil, a morphologically complex and under-resourced language. Exist-
ing Tamil morphological analyzers primarily rely on rule-based methods, which demand
extensive manual effort and often lack scalability, especially for Tamil’s agglutinative
structure. This study introduces a hybrid approach that combines deep learning and
similarity-based methods, providing a more adaptable and efficient solution. By devel-
oping a model that can accurately predict grammatical features and lemmas for Tamil
words, even for OOV terms, this research addresses crucial limitations of traditional
methods and contributes a valuable tool for a wide range of NLP applications, such as
machine translation, sentiment analysis, and text-to-speech systems.

Furthermore, this research has broader implications beyond Tamil. Applying ad-
vanced deep learning techniques to a language with rich morphological complexity, this
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study may offer insights into developing similar tools for other low-resource, morpholog-
ically complex languages, especially within the Dravidian language family.

1.6 Research Approach And Methodology

1. Data Collection and Annotation: The dataset for this research contains fol-
lowing category:

• Word-Lemma Pairing: Collection of Tamil words (nouns, verbs, adjectives,
adverbs, pronouns, verbal nouns) paired with their corresponding lemmas to
support lemmatization tasks.

2. Model Development and Similarity-Based Algorithm:

• Deep Learning Models: Character-level neural network models, includ-
ing Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),
and Gated Recurrent Unit (GRU), will be developed. These models will be
trained on the annotated corpus to learn morphological patterns, capturing
both syntactic and semantic structures inherent in Tamil.

• Similarity-Based Approach: In addition to deep learning, a similarity-
based approach using word embeddings will be implemented. This approach
involves calculating word embedding similarity to find grammatical features
for unseen words by identifying the closest annotated words and transferring
their features.

3. Experimentation and Evaluation:

• A series of experiments will be conducted across different deep learning archi-
tectures (RNN, LSTM, GRU) to assess model effectiveness.

• Evaluation metrics will include per-tag accuracy for grammatical features and
exact string match for lemmatization. These metrics will provide insights into
the accuracy and reliability of the models across various morphological tagging
and lemmatization tasks
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1.7 Outline of the Dissertation

Chapter 1 – Introduction
This chapter presents information about the background to the research problem and
the research questions which this study aims to find answers to. And also this chapter
presents the project scope and the aim of the study

Chapter 2 – Literature review
This chapter presents information about similar works related to this study and a review
of the existing literature. This chapter gives an idea about the way those studies related
to this research. And also this chapter gives the knowledge about theories and concepts
that have used in this study

Chapter 3 – Design
This chapter provides the design of the research observation and consists of information
about the applications examined, workloads simulated and the tools and technologies
used. And also this chapter describes the flow of this research.

Chapter 4 – Implementation
This chapter describes the implementation of the proposed hybrid model for Tamil mor-
phological analysis. Additionally, it presents the algorithms used for morphological pre-
diction, including the deep learning techniques for lemma prediction and the similarity-
based method for grammatical feature assignment.

Chapter 5 – Results and evaluation
This chapter presents the results that were obtained through the experiments conducted
with the evaluation and explanations of those results. And also, this chapter provides
explanations for each and every result.
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Chapter 6 – Conclusion
This dissertation concludes with this chapter by presenting the final outcomes of the
research and a summary of contributions made through this research.

1.8 Scope Including Delimitation

• Development of a Deep Learning Model for Tamil Morphological Anal-
ysis:

– Implementation of character-level neural network models (RNN, LSTM, GRU,
Bi-RNN, Bi-LSTM, Bi-GRU) to perform morphological tagging and lemma-
tization.

• Similarity-Based Approach:

– Design and application of a similarity-based algorithm using word embeddings
to predict grammatical features for unseen words.

• Data Collection and Annotation:

– Collection of Tamil words (nouns, verbs, adjectives, adverbs, pronouns, verbal
nouns) with lemmas for training and evaluation.

• Experimental Analysis:

– Testing of different deep learning architectures and configurations and evalu-
ation of models using metrics like per-tag accuracy for grammatical features
and exact string match for lemmas.

1.8.1 Out Scope

• Context-Aware Morphological Analysis:

– This research does not consider context-dependent morphological analysis,
focusing only on individual word forms without surrounding text context.

• Word Segmentation:
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– The study excludes word segmentation tasks and focuses solely on morpho-
logical tagging and lemmatization for complete word forms.

• Development of Morphological Analyzers for Other Languages:

– This research is limited to Tamil and does not extend to developing or evalu-
ating models for other languages.

• Human-Centered Usability Testing:

– Usability testing or evaluation from a user experience perspective is not in-
cluded, as this research is focused on model development and accuracy.

• Real-Time or Production-Ready Systems:

– The study does not aim to develop real-time or deployable systems, as the focus
is on research and experimental analysis rather than practical deployment.
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Chapter 2

Literature Review

To understand possible gaps within the previous works of morphological analyzers a
preliminary review has been conducted.

2.1 What is morphological analysis?

The process of examining a word’s internal structure and how it is put together by joining
various morphemes is known as morphological analysis. Word forms may be distinguished
and many grammatical variations can be produced by using the morphological analysis
of the words, which provides essential information about the word forms. To analyze the
development of a word, it must be broken down into its individual morphemes. A sandhi
splitter can be used to complete this work. Sandhi splitters identify morpheme borders
and morphological changes brought about by sandhi, which allows them to separate the
constituent morphemes inside a word.

Tamil classical morphology is incredibly complex. Like the other Dravidian languages,
it is an agglutinative language. The lexical roots of classical Tamil words are followed
by one or more affixes. The smallest meaningful units are referred to as morphemes
and consist of lexical roots and affixes. As a result, morphemes are joined together in a
sequence to form classical Tamil words. Lexical morphemes, also known as lexical roots,
usually appear first in a structure. Other grammatical or functional morphemes may or
may not follow this. Because it inflects to person, gender, and number markers as well
as mixes with auxiliaries that express aspect, mood, causality, attitude, and other things
in verbs, the morphological structure of classical Tamil is rather complex. One of the
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main tasks in NLP is computational morphology. In this field, many methods have been
put forth, particularly for European languages where morphological analysis is an easy
undertaking. Nevertheless, morphological analysis and sandhi splitting are challenging
tasks in agglutinative languages like Tamil, Malayalam, Telugu like Dravidian languages.
On this subject, not much research has been done.

2.1.1 Evolution of Tamil morphological analysis

Initially rule based approaches were used for this work. Later the research has moved
to the machine learning direction. The Anusaraka group started the process of build-
ing a morphological analyzer for the Tamil language. Ganesan created a morphological
analyzer to examine the CIIL corpus in Tamil. This follows phonological and morpho-
phonemic guidelines and considers Tamil’s morphotactic restrictions while constructing.
According to Menon et al. (2009) the second work has reported in 2010 which is a Rule-
Based Approach to AMRITA Morph Analyzer and Generator for Tamil (2010): AMAG,
a finite state transducer, was used by Drs. A.G. Menon, S. Saravanan, R. Loganathan,
and K. Soman of Amrita University in Coimbatore to create a rule-based morphological
analyzer and generator for Tamil. Lexicon and orthographic principles from a two level
morphological system underpin the system’s functionality. About 3,000 verbs, 50,000
nouns, and a somewhat smaller amount of adjectives make up the system. When com-
pared to the current Tamil morph analyzer and generator, known as ATCHARAM, the
suggested AMAG performed better.

The work ATCHARAM deals with the inflections and derivations those are not the
same for all the nouns and verbs. The biggest challenge is the grouping of nouns and
verbs in such a way that the members of the same group have similar inflections and
derivations. Otherwise one has to make rules for each noun and verb, which is not fea-
sible. This system, as mentioned earlier, works on rules and these rules are capable of
solving this clumsiness. The system design involves building an exhaustive lexicon for
noun, verb and other categories. The performance is directly related to this exhaustive-
ness. It is a laborious task.

According to Anand Kumar et al. (2010a) in 2010 An Ad Hoc Morphological Gener-
ator for Tamil The improvised database for morphological analysis and creation imple-
mented on Apertium is the subject of this study, which is proposed by Parameswari K. of
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CALTS, University of Hyderabad. The Word and Paradigm based database, along with
the Finite State Transducers method for one-pass analysis and generation, are used by
the makeshift MAG. The system’s speed and accuracy are assessed and contrasted with
those of the other Tamil morphological analyzers on the market, which were created at
Anna University’s AU-KBC Research Center and CALTS. The outcome of the experi-
ment demonstrated that the suggested MAG outperforms the alternative.

A morphological analyzer for Tamil language based sequence labeling approach has
been introduced which uses the first machine learning approach by Anand Kumar M,
Dhanalakshmi V, Soman K.P and Rajendran S of AMRITA Vishwa Vidyapeetham,
Coimbatore according to Anand Kumar et al. (2010b) The suggested work reframes the
morphological analyzer problem as a classification problem, which is then solved through
the application of machine learning techniques. This is a corpus-based method that uses
support vector machine techniques for both testing and training. There are 130,000 verb
words and 70,000 noun terms in the training corpus, respectively. Using 30,000 nouns
and 40,000 verbs from the Amrita POS Tagged corpus, the method is tested. When
the system’s performance was compared to that of other systems created using the same
corpus, it was found that the SVM-based technique performed better. They reported
92.95% accuracy in the analysis. The approach used the SVM for morphological analysis
of Tamil words.

Lushanthan et al. (2014) have proposed a morphological analyser and generator for
Tamil, which has been implemented using XFST. The authors have used transliteration
to handle the Tamil script, given that the current version of XFST has rendering issues,
although it supports Unicode internally. The authors have considered 2,000 noun and 96
verb stems as part of their analysis and generation. They have tested the system using
their own data set consisting of 3,500 nouns and 500 verbs with a success rate of 78%.
However, the data sets and XFST rules have not been made available.

There has also been an attempt to develop a Morphological analyser for Tamil using a
support vector machine Mokanarangan et al. (2016). Although the writers have reported
an accuracy of 98.73%, their system is not available, and it is not clear what data sets
or analyses have been used for training and testing, as there is no data available in the
paper, or online.

Sarveswaran et al. (2021) This paper presents an open source and extendable Morpho-
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logical Analyser Generator (MAG) for Tamil named ThamizhiMorph which is considered
as the recent development in Tamil morphological analysis. This paper describes how
ThamizhiMorph is designed using a Finite-State Transducer (FST) and implemented us-
ing Foma. Although no benchmark resources exist for an evaluation of NLP applications
developed for Tamil, they designed two evaluation experiments to test the coverage and
accuracy of ThamizhiMorph. The results are very good in that identifed errors are ei-
ther due to out-of-vocabulary items or derivational formations that have not as yet been
implemented.

In spite of this topics greater significance in the computational processing in Tamil,
no research has been reported using deep learning approaches.dataset gathered from the
UD Tamil treebank

2.2 Recent advancement in morphological analysis

Recent advancements in deep learning have begun to address the limitations of rule-
based and traditional machine learning approaches in Tamil morphological analysis. In
other Dravidian languages, deep learning models have demonstrated promising results.
The work reported in Malayalam language which introduces a deep learning approach
for learning the rules for identifying the morphemes automatically and segmenting them
from the original word. Then individual morphemes can be further analyzed to iden-
tify the grammatical structure of the word. Three different systems were developed for
this analysis using RNN, LSTM and GRU and obtained accuracies 98.08%, 97.88% and
98.16% respectively according to Premjith et al. (2018).

Similarly, a bidirectional LSTM-based morphological analyzer for Gujarati has achieved
high accuracy by predicting root words and morphological features without relying on
language-specific rules according to Baxi and Bhatt. This approach also experimented
with monolithic and individual label representations, which significantly improved the
baseline accuracy. Figure 2.1 shows the architecture of the system for grammatical fea-
ture prediction task used in the study.These successes suggest that deep learning can
offer more robust morphological analyzers for Tamil.

In addition, morphologically-guided embeddings represent a novel way to encode lin-
guistic relationships. Traditional word embeddings typically capture semantic similarity
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Figure 2.1: System architecture for the grammatical feature prediction task

but often ignore morphological structure. Cotterell and Schütze (2019) addressed this
by using morphologically annotated data to guide embeddings, ensuring that morpho-
logically similar words remain close in the embedding space. This approach is especially
advantageous for morphologically rich languages like Tamil, where capturing internal
word structure enhances the quality of language models.

To further address out-of-vocabulary (OOV) issues common in morphologically rich
languages, FastText embeddings utilize character-level n-grams, representing words by a
combination of subword units. This method not only handles OOV words more effec-
tively but also enables the model to generalize morphological variations based on subword
structures. Given Tamil’s extensive morphological inflection, integrating subword embed-
dings like FastText could be particularly beneficial.

These advances in deep learning and morphology-aware embeddings offer new path-
ways for Tamil morphological analysis, enabling future models to achieve greater accuracy
and better handle the complexity of Tamil’s agglutinative morphology. By leveraging
these modern techniques, Tamil NLP can move closer to the high-performance standards
already observed in other languages, enhancing applications in text processing, machine
translation, and beyond.

Tamil and Malayalam, both Dravidian languages, share an agglutinative structure
and complex morphological systems, though they differ in aspects such as verb conjuga-
tion complexity, noun inflection patterns, and the influence of Sanskrit. While the deep
learning approaches that have been effective for Malayalam can be adapted for Tamil,
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significant adjustments are necessary. These include tailoring preprocessing steps for the
Tamil script, annotating a substantial Tamil corpus, and incorporating Tamil-specific
morphological rules. Additionally, a similarity-based approach using word embeddings
could enhance the model’s ability to handle OOV words by leveraging similarities to ex-
isting annotated words. By combining deep learning techniques with embedding-based
similarity methods, a robust and efficient morphological analyzer for Tamil can be ef-
fectively developed, addressing both the challenges of resource limitations and Tamil’s
unique morphological characteristics.

Time period Dominating approaches Notable work

1980 - 1990 Two level morphology, Stemmer
based approaches

Koskenniemi (1996), Karttunen
and Wittenburg (1983), Lun
(1983), Porter (1980)

1990 - 2000 Two level morphology, Finite state
transducer

Oflazer (1994), Beesley (1998),
Koskenniemi (1996)

2000 - 2010 Suffix Stripping approach,
Paradigm based approach, Un-
supervised morphology

Eryiğit and Adalı (2004), Batsuren
et al. (2021), Jena et al. (2011),
Goldsmith (2001), Hammarström
and Borin (2011)

2010 - 2018 Supervised machine learning, Sta-
tistical methods

Kumar et al. (2009), Abeera
et al. (2012), Malladi and Mannem
(2013), Mokanarangan et al. (2016)

2018 on-
wards

Deep learning based methods Cotterell and Heigold (2017), Ade-
lani et al. (2021), Malaviya et al.
(2018), Kondratyuk (2019)

Table 2.1: Overview of the approaches used during differ-
ent time periods for developing computational morphol-
ogy tools for various languages (Baxi and Bhatt (2024))
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2.3 Theories and Concepts

RNN, LSTM, and GRU have been the methods employed in the majority of studies for
morphological analysis in other languages. The majority of the investigations have pro-
duced outcomes that are extremely high. Taking those results into account, it suggests
that deep learning techniques might also work better for Tamil language morphological
analysis. Recurrent neural networks rely on previous factors in the sequence to determine
their outcomes.

An artificial neural network class called RNN is frequently applied to sequential data.
A directed graph with a data sequence is represented by the connections between nodes.
As a result, it can exhibit considerable temporal behavior. Feedforward neural networks
are the source of these networks. RNN generates future calculations and outcomes based
on previous information.

Figure 2.2 illustrates how recurrent neural networks leverage prior information to

Figure 2.2: Structure of RNN

produce future outcomes. For supervised learning, RNNs are employed. This makes it
simple to determine the relationship between the input data set and the labels that go
with it.

Hochreiter proposed the LSTM (Hochreiter and Schmidhuber (1997)). An input gate,
an output gate, a forget gate, and a cell make up an LSTM. The values are occasionally
remembered by the cell. Information entering and leaving the cell is managed by three
gates. The vanishing gradient issue that might arise during the training of conventional
RNNs has been addressed by LSTMs. What information should be discarded or kept
private is determined by the forget gate. The gate takes into account both information

16



about the current input and information from the prior concealed state for this. The
cell state is updated from the input gate. The output gate determines the next hidden
state, which holds the data from the previous input. Predictions are also made using the
hidden state.

GRU (Cho et al. (2014)), proposed by Cho and B. Merrienboer. This is a gating
mechanism in recurrent neural networks. This is also similar to the LSTMs and it has
fewer parameters than the LSTMs. GRUs use a hidden state to transfer information
and it has two gates (reset gate and update gate). Update gate acts similar to the for-
get in input gate of LSTMs. It decides what is the information that needs to keep and
the information that can throw away. The reset gate is a gate that decides how much
pass information to forget. Some studies have shown that GRU is faster than LSTM for
processing the same dataset. Usually, researchers have used both of LSTMs and GRUs
to determine which one works better for their use case. In this research also, all these
architectures will be considered and the most suitable one will be selected. A graphical
representation of LSTM and GRU has shown in Figure 2.3.

Bidirectional RNNs are also taken into consideration in this study. Rather than

Figure 2.3: LSTM and GRU(Kostas (2023))

training a single model, these models train two models. The input sequence is read by
the first model, and the opposite sequence is read by the second model. Bidirectional
models have been employed in research such as Prasad et al. (2019), Prabha et al. (2018),
Gilmullin et al. (2018), and Kim and Kim (2020).
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In terms of deep learning in morphological analysis, the majority of comparable lan-
guages have similarly demonstrated excellent performance. A study on this subject is
preferable because no research has utilized deep learning for morphological analysis in
the Sinhala language.

As in the work Sarveswaran et al. (2021) has stated there is a problem in where few
errors that did occur were mostly because of: Out-of-vocabulary (OOV) items – words
that weren’t in the system’s dictionary, Unseen derivational forms – new or rare word
formations not covered by the existing rules. Word representation is fundamental for
NLP. Recently, continuous word-embeddings have gained traction as a general-purpose
representation framework. While such embeddings have proven themselves useful, they
typically treat words holistically, ignoring their internal structure. For morphologically
impoverished languages, i.e., languages with a low morpheme-per-word ratio such as En-
glish, this is often not a problem. However, for the processing of morphologically-rich
languages exploiting word internal structure is necessary.

Word-embeddings are typically trained to produce representations that capture lin-
guistic similarity. The general idea is that words that are close in the embedding space
should be close in meaning. A key issue, however, is that meaning is a multifaceted
concept and thus there are multiple axes, along which two words can be similar. For
example, ice and cold are topically related, ice and fire are syntactically related as they
are both nouns, and ice and icy are morphologically related as they are both derived from
the same root.

As discussed above the comparison between words can be used to morphologically
analyses the Tamil words. But the problem we face is OOV words where every word
couldn’t be represented in a unique way. The work Bojanowski et al. (2017) introduces
a solution for this. Continuous word representations, trained on large unlabeled corpora
are useful for many natural language processing tasks. Popular models that learn such
representations ignore the morphology of words, by assigning a distinct vector to each
word. This is a limitation, especially for languages with large vocabularies and many
rare words. In this paper, they propose a new approach based on the skipgram model,
where each word is represented as a bag of character n-grams. A vector representation
is associated to each character n-gram; words being represented as the sum of these rep-
resentations. This method is fast, allowing to train models on large corpora quickly and
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allows us to compute word representations for words that did not appear in the training
data.

The embedding based method could be employed for the grammatical feature pre-
diction since the embeddings of the words themselves represents morphological features
where it could open a novel room for exploration in Morphological analysis using embed-
ding based similarity method.

2.4 Summary

In terms of these deep learning architectures, RNN is a stage of input networks created
when node connections quickly build a desired graph. RNNs may process long equivalent
inputs by using their internal state, or memory. The gradient descent and momentum
techniques are used to construct LSTMs. The GRU and LSTM are comparable as well.
However, compared to LSTM, it contains fewer parameters. Employing this deep learn-
ing technique could help in the process of lemmatization task for Tamil words.

A similarity-based approach using word embeddings could enhance the model’s ability
to handle OOV words by leveraging similarities to existing annotated words. By com-
bining deep learning techniques with embedding-based similarity methods, a robust and
efficient morphological analyzer for Tamil can be effectively developed, addressing both
the challenges of resource limitations and Tamil’s unique morphological characteristics.
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Chapter 3

Design

This research involves developing a morphological analyzer for Tamil using a combination
of deep learning for lemma prediction and similarity-based approach with word embed-
dings for grammatical feature prediction. The approach is structured in the following
steps in figure 3.1 where it will explained step by step in the latter sections.

Figure 3.1: Research Design for Tamil Morphological Analysis Using Deep Learning and
Similarity-Based Approaches
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3.1 Define research problem

As mentioned in the section 1.2, initially, the problem is defined that is going to address
in this research. We also came up with three major research questions to address in
this research. Since this is an hybrid approach the research problem is splitted into two
designs

1. Lemma prediction

2. Grammatical feature prediction

3.2 Lemma prediction

3.2.1 Data collection

The dataset is gathered from the UD Tamil treebank(Kengatharaiyer et al. (2020), Ra-
masamy and Žabokrtský (2012)) and simple verbs and nouns are collected from kaggle
by K. Sarveswaran according to Sarveswaran. The words collected additionally after UD
Tamil treebank are annotated manually. This dataset consists the Tamil words and their
corresponding lemmas in Tamil script. This dataset contains 70,007 total number of
words. Figure 3.2 shows some sample data in the Tamil script.

Considering this dataset, it contains different types of Tamil words. Considering

Figure 3.2: Structure of the dataset (Tamil script)

the different part of speech it is possible to identify different types of root forms in this
dataset (Nouns, Verbs, Adverbs, Adjectives, Adpositions, Pronouns, Determiners, Part,
Propernouns etc). Table 3.1 shows the number of words available in the total dataset
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with the part-of-speech types.
Even though the dataset contains a large number of words, some word forms are not

Values Number of Words %
Verb 48,112 68.72 %

Noun 20,787 29.69 %

Proper noun 505 0.72 %

Adjective 225 0.32 %

Adverb 111 0.15 %

Auxiliary 111 0.15 %

Pronoun 55 0.078 %

Adposition 53 0.075 %

Determiner 24 0.034 %

Part 24 0.034 %

Table 3.1: Different POS types with available number of words

covered in the dataset. In this study, we are considering to develop a deep learning model
which is suitable to predict the lemma(root morpheme / base root) of any kind of word.
To check this ability, need to find a set of words that is not available in this dataset. For
that, a set of Tamil words extracted from UD Tamil tree bank considered as test data
which are unseen since that is the dataset considered as the gold standard.

3.2.2 Construct a deep learning model

Morphological analysis in the Tamil language can be formulated as a sequence labeling
problem, particularly for lemma prediction. Since a single word may have multiple mor-
phemes, the model must learn to map the inflected form to its corresponding base form
(lemma). Each input word is embedded into a fixed-length vector representation, as de-
scribed in Chapter 4, allowing the model to process and predict lemmas efficiently.

For lemma prediction, a deep learning-based approach is used, inspired by prior re-
search that has shown promising results in morphological analysis (Premjith et al. (2018),
Prasad et al. (2019), Ekanayaka et al. (2023)). This research explores different neural
architectures, including Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM), and Gated Recurrent Units (GRU), as well as bidirectional variations of these
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models. Bidirectional architectures enhance the model’s ability to capture morphological
dependencies by processing the input sequence in both forward and backward direc-
tions. Previous studies (Silfverberg and Hulden (2018), Silfverberg and Tyers (2019))
have demonstrated varying performance across these architectures, making it essential
to experiment with multiple models to determine the most effective approach for Tamil
lemma prediction.

The deep learning model is trained using a manually annotated word-lemma dataset,
ensuring that it learns robust morphological patterns. Initially, the same hyperparam-
eters used in Premjith et al. (2018) are applied, followed by hyperparameter tuning to
optimize performance. The effectiveness of the model is evaluated based on exact string
match accuracy, ensuring that the predicted lemmas align with ground truth annota-
tions. This approach aims to improve Tamil lemma prediction accuracy, contributing to
the development of more scalable and data-efficient morphological analysis systems.

3.2.3 Train the dataset with deep learning model

Since this research explores multiple deep learning architectures for lemma prediction, the
dataset is trained using different approaches to analyze the model’s performance. From
the total dataset, 80% is used for training, while the remaining 20% is reserved for test-
ing. In the deep learning model, character-level Tamil words are used as input, following
successful approaches from studies like Premjith et al. (2018), Prasad et al. (2019) and
Ekanayaka et al. (2023). As this research employs a supervised learning approach, proper
label representation is necessary. For this purpose, the dataset consists of word-lemma
pairs, where each input word is mapped to its corresponding lemma label before being
fed into the deep learning model.

To train the model, server named as ”ANTPC” server is used (4 x GeForce RTX 2080
Ti 11GB of GDDR6 memory with 128GB RAM) to get more processing power. To mon-
itor and improve model performance, learning curves are plotted for each experiment,
helping identify overfitting or underfitting. If the model exhibits signs of overfitting, reg-
ularization techniques and hyperparameter tuning are applied to optimize training. The
computational complexity of training increases with the number of unique word-lemma
pairs, as each word is represented as a vector. Previous studies, such as Silfverberg and
Hulden (2018), have addressed similar issues by refining label definitions to reduce com-
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putational costs.
After training, the predicted lemmas are evaluated based on exact string match accu-

racy, ensuring that the deep learning model produces accurate lemma outputs for input
words. This methodology ensures that the Tamil morphological analyzer achieves a bal-
ance between efficiency, scalability, and accuracy, making it suitable for real-world NLP
applications. Table 3.2 presents examples of input words and corresponding lemma labels
used in training.

Input Label
[’ஈ', 'ட', '◌ு', 'ப', 'ட', '◌்,'ட'] [’ஈ', 'ட', '◌ு', 'ப', 'ட', '◌ு']

Table 3.2: Labels used for training

3.2.4 Hyper-parameter tuning

Building a deep learning model is an iterative process, starting with an initial architec-
ture and refining it through multiple configurations to achieve optimal performance in
terms of accuracy, computational efficiency, and training stability. This process, known
as hyperparameter tuning, involves selecting the best values for various model parameters
to improve learning efficiency and generalization.

In this research, hyperparameter tuning is applied to optimize the deep learning model
for lemma prediction. Several key hyperparameters are considered, including the number
of neurons, activation function, optimizer, batch size, embedding size, and number of
epochs. To identify the most effective combination, an exhaustive search method is used,
where a predefined set of possible values is assigned to each hyperparameter. All possible
combinations of these values are systematically tested to determine which configuration
yields the highest lemma prediction accuracy. Table 3.3 shows the values considered for
all combinations.

For each experiment, a combination of hyperparameters is selected (e.g., [’relu’,
’Adam’, 32, 64, 64 ]), and the deep learning model is trained with these settings. The ac-
curacy of lemma prediction is evaluated, and the best-performing combination is selected
as the final hyperparameter configuration. This ensures that the deep learning model is
well-optimized for Tamil lemma prediction, balancing both computational efficiency and
accuracy for real-world applications.
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Hyper-parameter Selected values
Activation function relu, sigmoid, softmax, tanh

Optimizer Adam, SGD, RMSprop

Number of neurons 32, 64, 128, 256, 512

Batch size 32, 64, 128, 256, 512

Embedding size 32, 64, 128, 256, 512

Table 3.3: Hyper-parameter selection

3.2.5 Find best performing model

This step focuses on identifying the most suitable input data representation, deep learn-
ing architecture, and model configuration for lemma prediction in Tamil morphological
analysis. To determine the best-performing model, multiple deep learning architectures
are evaluated through systematic experiments, as outlined in Section 3.2.3.

Since lemma prediction is formulated as a sequence labeling task, various deep learn-
ing architectures are tested, including Simple RNN, LSTM, GRU, and their bidirectional
variants. The performance of these architectures is compared, and the model that achieves
the highest lemma prediction accuracy is selected as the most effective approach.

Additionally, to ensure optimal performance, hyperparameter tuning is conducted (as
described in Section 3.2.4), refining key parameters such as number of neurons, activation
function, optimizer, batch size, embedding size, and epochs. The best-performing model
is identified based on exact string match accuracy, ensuring that the predicted lemmas
closely align with ground truth annotations. The final model configuration is proposed as
the most efficient deep learning solution for Tamil lemma prediction, balancing accuracy,
computational efficiency, and generalization.

3.2.6 Provide most suitable deep learning algorithm

After completing the model evaluation and selection process, the most suitable deep
learning algorithm for lemma prediction in Tamil morphological analysis is identified.
This section presents a step-by-step breakdown of the method used to implement the
best-performing deep learning model, ensuring clarity and reproducibility.

By leveraging the insights gained from experiments and hyperparameter tuning, the
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proposed model is optimized for accuracy, efficiency, and generalization. This structured
approach provides a well-defined methodology for future research and practical applica-
tions in Tamil NLP, serving as a foundation for further advancements in morphological
analysis.

3.3 Grammatical Feature Prediction

3.3.1 Data Collection

The primary dataset used for grammatical feature prediction in this research is the Uni-
versal Dependencies (UD) Tamil Treebanks, specifically UD_Tamil-TTB (which is Ra-
masamy and Žabokrtský (2012)) and UD_Tamil-MWTT(which is Kengatharaiyer et al.
(2020)). These treebanks serve as the only publicly available gold-standard dataset for
Tamil, providing pre-annotated morphological and syntactic information. Since the ob-
jective of this component is to predict grammatical features for unseen words, using an
already annotated dataset ensures a reliable benchmark for training and evaluation.

While the UD Tamil Treebanks cover a wide range of part-of-speech (POS) categories,
this research focuses on Nouns, Verbs, Proper Nouns, Pronouns, and Auxiliary Verbs.
The analysis had to be limited to these categories because other parts of speech, such
as Adjectives (ADJ), Numerals (NUM), Determiners (DET), Coordinating Conjunctions
(CCONJ), Punctuation (PUNCT), and Adverbs (ADV), have little or no morphological
tags with grammatical features. This lack of comprehensive morphological annotations
and the variability in data quality restrict the study to only a subset of word categories,
ensuring a more reliable and meaningful analysis.

The dataset contains 5290 unique words, covering train, test, dev dataset of UD_Tamil-
TTB and test dataset of UD_Tamil-MWTT (Only one file available which is named as
test dataset). Table 3.4 shows the count of each word category specific to the dataset
files of UD_Tamil-TTB and UD_Tamil-MWTT.
Each word entry is annotated with morphosyntactic features, providing rich linguistic

information that can be leveraged for feature prediction. Following shows an sample
entry from the dataset.

வந்தான் வா VERB Gender=Masc|Number=Sing|Person=3|Tense=Past|VerbForm=Fin
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Dataset Sentences Words Verb Noun Pron Propn Aux

ta_mwtt-test 536 914 283 316 68 34 41

ta_ttb-train 400 2684 483 1022 55 505 111

ta_ttb-test 120 988 227 333 26 154 50

ta_ttb-dev 80 704 155 275 16 155 31

Table 3.4: Word category distribution in UD_Tamil-TTB and UD_Tamil-MWTT
datasets

Each entry in the UD Tamil Treebanks follows the above CoNLL-U format, where each
word is annotated with:

1. Word

2. Lemma – The base form of the word.

3. UPOS (Universal POS Tag) – The general part-of-speech category (e.g., NOUN,
VERB).

4. XPOS (Language-Specific POS Tag) – Tamil-specific POS tagging conven-
tions.

The dataset annotates words with a variety of grammatical features, depending on their
word category. Table 3.5 shows the features represented by each word category.

Word Category Grammatical Features
Verbs Tense, Person, Gender, Number, Mood, Voice, Form,

Animacy, Polarity, VerbForm, Polite, Case

Nouns Case, Gender, Number, Person, Animacy, Polite, Polar-
ity, Tense, VerbForm

Pronouns Case, Gender, Number, Person, Animacy, Polite, Pron-
Type, Reflex

Proper Nouns Case, Gender, Number, Person, Animacy, Polite

Auxiliary Verbs Case, Gender, Number, Person, Animacy, Polite, Polar-
ity, Voice, VerbForm, Tense, Mood

Table 3.5: Grammatical Features for Different Word Categories
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3.3.2 Word Embedding Generation

Word embeddings are essential in natural language processing (NLP), representing words
as continuous vectors in a high-dimensional space. Traditional word embedding models,
such as Word2Vec and GloVe, assign a unique vector to each word, failing to capture
morphological variations. This is particularly problematic for morphologically rich and
agglutinative languages like Tamil, where words can have multiple inflections and deriva-
tions.

To address this limitation, this research utilizes FastText, a subword-based embed-
ding model that represents words as a bag of character n-grams. Instead of treating each
word as an atomic unit, FastText breaks words down into smaller overlapping character
sequences (n-grams) and generates a vector representation for each n-gram. The final
word embedding is computed as the sum of these subword vectors.

Example of Subword-Based Representation in Tamil
Consider the Tamil word வந்தார்கள்(vandārkaḷ), which means ”they came”. In a tra-
ditional word embedding model, if this exact word form is not seen during training, it
would be treated as an out-of-vocabulary (OOV) word and have no meaningful vector
representation.

However, FastText breaks this word into character n-grams, such as:

<வ>, <வந>, <வந்த>, <ந்தா>, <ந்தார்>, <தார்க>, <ர்கள்>, <◌்கள்>

Each of these n-grams has an associated vector, and the final word representation is the
sum of all these vectors.
This subword-level modeling provides several advantages:

• Handles OOV Words: If a new word shares common morphemes with known
words, it can still get a meaningful representation. For example, the unseen
word ”வந்தாயா” (vandāyā – ”Did you come?”) will have overlapping n-grams with
”வந்தார்கள்”, allowing the model to generate a relevant embedding.

• Captures Morphological Information: Since Tamil words undergo inflectional
changes based on tense, gender, and number, FastText preserves morphological
patterns through n-gram similarity.
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• Enhances Similarity-Based Feature Prediction: Words with similar gram-
matical structures are mapped closer in the embedding space, improving the accu-
racy of grammatical feature transfer for unseen words.

To evaluate the quality of these embeddings, cosine similarity is used to check how well
n-grams from unseen words match known words. For instance, the word ”சிறியதாய்”
(siṟiyatāy – ”small in size”) is expected to align with ”சிறிய” (siṟiya – ”small”) in the
vector space due to overlapping n-grams, despite their different suffixes.

By leveraging FastText’s subword-based embeddings, this research enhances gram-
matical feature prediction by enabling efficient feature transfer for unseen words, reducing
dependence on large annotated datasets.

3.3.3 Similarity-Based Feature Prediction Algorithm

A similarity-based approach is employed to compare the embedding of an input word with
embeddings of words in a pre-annotated word list. This method enables the transfer of
grammatical features from known words to unseen or out-of-vocabulary (OOV) words,
improving the system’s ability to generalize without requiring extensive manually labeled
data.

As we discussed in the section 3.3.1 the data extracted from the Universal Dependen-
cies (UD) Tamil Treebank serves as the primary gold-standard dataset for this approach.

Methodology

• The annotated word list consists of words that have pre-labeled grammatical fea-
tures (e.g., tense, gender, number, case).

• By finding the closest word in this list, we can transfer its grammatical features to
the input word.

• This enables feature prediction for unseen words using embedding-based similarity
rather than requiring large annotated corpora.

Algorithm for Similarity-Based Feature Prediction

1. Train a word embedding model using FastText with the annotated word list as the
corpus (gensim.models.FastText(corpus, vector_size=50, min_count=1, sg=1)).
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2. Generate an embedding (vector representation) for the input word using the trained
FastText model.

3. Compare the input word’s embedding with embeddings of all words in the annotated
word list using cosine similarity.

4. Identify the most similar word in the annotated dataset based on the similarity score.

5. Transfer grammatical features (such as tense, gender, number, case) from the closest
matching word to the input word.

6. Output the predicted grammatical features for the input word.

This approach allows for efficient feature prediction while addressing the challenge of
handling OOV words, making it an effective solution for Tamil morphological analysis in
low-resource NLP settings. We attempt to intrinsically determine whether it is indeed
true that words similar in the embedding space are morphologically related. Qualitative
evaluation, shown in figure 3.3, indicates that this is the case.

Figure 3.3: Projections of our 50 dimensional embeddings onto R3

Key observations from the figure 3.3

1. Words with common stems vs. different stems:
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• catching and catch appear close together, indicating that their embeddings
capture their root word similarity despite the suffix difference.

• cutting and catching are also relatively near, suggesting some similarity in how
their embeddings capture morphological relationships.

2. Effect of suffixes in standard embeddings:

• turned and climbed (both past tense verbs) are positioned separately, likely
because their base forms are different.

• waiting is slightly distant from other words, possibly because ”wait” has a
different semantic or contextual usage in the corpus.

3. Lack of explicit morphological grouping:

• Without suffix weighting, words are grouped based on their overall semantic
and contextual usage rather than their morphological similarities.

• Words with different base forms (e.g., catch vs. turned) are not necessarily
close together, even if they share tense or suffix patterns.

3.3.4 Optimizing Similarity-Based Approach

In our similarity-based feature prediction approach, we compare the embedding of an
unseen word with a list of pre-annotated words and transfer grammatical features from
the closest match. However, using standard word embeddings like FastText introduces
two key challenges:

1. Semantic Dominance Over Morphology

• FastText embeddings capture semantic and contextual similarities well but do
not explicitly prioritize morphological relationships.

• For example, in standard embeddings, ”running” may be closer to ”walking”
(due to similar meaning) rather than ”run”.

• This affects grammatical feature prediction because our method should prior-
itize words with similar suffix patterns rather than just semantic neighbors.

2. Inconsistent Handling of Inflections
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• Words with the same suffix (e.g., -ing, -ed, -s) may end up far apart in em-
bedding space because FastText does not explicitly weight suffix information.

• Example: jumping (from jump) might be closer to walking rather than jump.

• This causes incorrect predictions since the most morphologically relevant match
might not always be the closest in standard embedding space.

To overcome these challenges, we introduce suffix-weighted embeddings, where we modify
the standard word embeddings by:

1. Assigning Higher Weight to the Suffix in Word Representation

• Instead of treating the whole word uniformly, we apply a higher weight to the
suffix, ensuring that morphological similarity is emphasized.

• Example: In ”waiting”, the suffix ”-ing” should contribute more to the simi-
larity score when comparing it to other ”-ing” words.

2. Considering Suffix Length

• Longer suffixes usually indicate more complex morphological transformations
(e.g., ”-ation” vs. ”-s”).

• Short suffixes (like ”-s”) should not dominate similarity scores, as they are
more general.

• Example: ”writes” (from ”write”) and ”jumps” (from ”jump”) share ”-s”, but
the base form similarity should still matter.

By incorporating suffix-weighted embeddings, we ensure that morphological transforma-
tions (like tense, aspect, and derivation) are better represented in the embedding space.
This significantly improves our ability to predict the correct grammatical features for
unseen words, making our similarity-based approach more robust and reliable.

The Figure 3.4 shows how the same words plotted in Figure 3.3 has plotted after the
suffix weighted embedding.

Key observations from the figure 3.4

1. Clustering of Morphologically Similar Words
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Figure 3.4: Projections of our 50 dimensional embeddings after suffix-embedding modifi-
cation onto R3

(a) ”cutting”, ”catching”, and ”waiting” are grouped closely together in the 3D
space.

(b) These words share the common ”-ing” suffix, which influences their embed-
dings and brings them closer.

(c) This is a direct result of applying suffix-weighting, which ensures that words
with similar suffixes get more similar embeddings.

2. Separation of Words with Different Suffixes

(a) ”climbed” and ”turned” are positioned farther apart from the ”-ing” words but
closer to each other.

(b) This suggests that past-tense suffixes (”-ed”) contribute to a different cluster.

(c) ”catch” remains somewhat distant, indicating that it does not share the same
morphological structure.

3. Effectiveness of Suffix-Weighting in Morphological Representation

(a) The clustering of ”cutting”, ”catching”, and ”waiting” highlights that suffixes
play a significant role in word relationships.

(b) Without suffix-weighting, embeddings would focus only on semantic similarity,
ignoring morphology.
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(c) By incorporating suffix length and weight into the embeddings, we ensure that
words with similar inflections are grouped together.

3.3.5 Hyper-parameter tuning

Building an effective model for grammatical feature prediction involves iterative refine-
ment through hyperparameter tuning. This process optimizes model performance by
selecting the best suffix length and suffix weight configurations, ensuring high accuracy
in predicting morphological features while maintaining computational efficiency.

In this research, suffix-based hyperparameter tuning is performed to enhance gram-
matical feature prediction. Two key hyperparameters are explored:

• Suffix Length (SL): The number of characters from the end of the word used for
feature encoding. Values considered: 4,6,8,10.

• Suffix Weight (SW): The relative importance assigned to suffixes in the embed-
ding space. Values considered: 0.5, 0.6, 0.7, 0.8

To determine the optimal configuration, an exhaustive search method is employed, where
each combination of SL and SW is systematically tested on a dataset containing gram-
matical features of noun words. The evaluation is based on prediction accuracy.

For each experiment, a specific pair (SL,SW) (e.g., (6,0.7)) is selected, and the model
is trained with these settings. The accuracy of grammatical feature prediction is then
assessed. The combination yielding the highest accuracy is chosen as the final suffix con-
figuration for feature prediction.

This approach ensures that the model effectively captures morphological variations
in Tamil nouns, leading to improved generalization and robust predictions in real-world
applications.
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Chapter 4

Implementation

4.1 Deep Learning Model for Lemma Prediction

In Premjith et al. (2018), have proposed an algorithm to do the morphological analysis in
the Malayalam language. Using that algorithm they have gathered high results for their
experiments. In Prasad et al. (2019), Ekanayaka et al. (2023) also have used similar kind
or approach to do morphological inflection generation in the Sanskrit language. Because
of these reasons, this algorithm is used to create a deep learning model in this study
and did some changes according to the experiments of this research. In this research
several deep learning architectures have considered. Simple RNN, LSTM, GRU and their
bi-directional models. To build the deep learning model, Python Keras (version 3.8.0)
library is used in this research. All the deep neural networks can be built with ‘model’
package in the Keras library. The models are defined as a sequence of layers. The
sequential model is created using the ‘Sequential()’ function and each layer is added to
the model one at a time as necessary.

The input layer of this model is the word embedding layer. The input dimension of the
embedding layer is the vocabulary size which is the number of unique characters (48) and
the output dimension of the embedding layer is set to 32 (from hyper parameter tuning).
The next layer of the model is the layer that consist the deep learning architecture (RNN,
LSTM, GRU). Keras provides the ability to apply all these deep learning architectures
to a deep learning model. To apply bidirectional architecture a bidirectional wrapper is
used which is available in keras for these deep learning architectures.

The final layer of this model is a fully connected (Dense) layer. The output dimension
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of this layer is the number of possible class labels (max_label). The ‘softmax’ activation
function is used in this output layer for multi-class classification, converting the output
logits into probability distributions. The model is trained with the ’adam’ optimizer
(from hyper parameter tuning) and uses categorical cross-entropy loss, which is suitable
for handling multi-class classification problems.

Steps to build the deep leaning model,

• Define the first layer of the network as a fully connected layer

• Define an LSTM/RNN/GRU network (network is dense)

• Define the network as bidirectional or not

• Set the activation function to Softmax

• Assign necessary parameters (Loss function, Optimizer, Batch size)

Several experiments have been conducted in this study, and the outcomes are compared
with one another. It is feasible to offer an algorithm based on the procedure for using
deep learning for Lemma prediction.

As mentioned in the algorithm 1, it is possible to apply deep learning for lemma
prediction and obtain predictions for a given Tamil word. This model can be trained
to generate different types of predictions based on the input representation and target
labels.

For example, characterized words can be used as input, while their corresponding
lemmas serve as the labels. This allows the model to predict the lemma for any given
word. Depending on the target prediction, necessary modifications can be made to the
algorithm. By simply adjusting the input representation and output labels, this deep
learning model can be adapted for different morphological analysis tasks while maintain-
ing its core structure.

Python code 1 shows the implementation of the deep learning model for lemma pre-
diction.

4.1.1 Data Preprocessing

Data should have corresponding labels since supervised learning is being employed. Char-
acterized words are used as input data in this study. Characterized words cannot be used
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Algorithm 1 Lemma Prediction Using Deep Learning
Require: Characterized words with corresponding lemma labels
Ensure: Predicted lemma for each input word

Step 01: Obtain characterized words with their corresponding lemma labels.

Step 02: Create a unique list of characters from input words.

Step 03: Encode both input words and their lemma labels using character embeddings.

Step 04: Pad the encoded values to a common length to ensure uniform input and
output sizes.

Step 05: Build the deep learning model:

Set embedding size to 32 and hidden size to 256.(from hyper-parameter tuning)
Define the first layer as an embedding layer.

Use a GRU network with a hidden size of 32 and a dense output layer.

Set the activation function to Softmax.

Train the model with:

- Loss function: categorical crossentropy

- Optimizer: Adam

- Batch size: 256

Step 06: Predict the lemma for each input word.
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directly as inputs into a deep learning model. All input and output variables for deep
learning models must be numerical. As a result, utilizing numbers to represent the in-
puts and labels is crucial. Encoded described words and the labels that go with them are
employed for that.

The process of converting meaningful linguistic data into numerical or vector represen-
tations, known as word encoding, is essential for preserving the contextual and relational
properties of words. This transformation enables a deep learning model to identify rele-
vant patterns in textual data and accurately capture word relationships.

In this research, character-based word representations are used as input to the deep
learning model. The model learns to associate these encoded word representations with
their corresponding lemma forms through a structured learning process. By leveraging
deep learning, the system effectively generalizes across various word forms, enabling ac-
curate lemma prediction even for previously unseen words.

As we discussed in the Section 3.2.1 the word-lemma pair dataset is used for the
lemma prediction task. In the process of encoding the inputs, first, a list of unique words
from the dataset is taken. Then characterize those words and create a list of characterized
words. From that it is possible create a list of unique characters. Then it is possible to
provide a unique value for each character available in that unique character list. After
that we encode the characterized words using these values according to the each character
value. From these steps it is possible to obtain set of encoded unique word list. Since
these encoded characterized words are in different lengths, need to pad these inputs to
get same length (maximum word length is the padding length) inputs.

As shown in the Figure 4.1, input data is converted into set of vectors. A similar
approach is used to encode the labels as well. In Figure 4.2 have shown the encoding
process of the labels.

Similar to encoding character-based words, each character in this unique list is as-
signed a distinct numerical value. Using these values, the labels (lemmas) are encoded
accordingly. Each label is then converted into a 2D vector representation (similar to a
one-hot matrix), ensuring a uniform label size for all input words. The maximum unique
value serves as the matrix width, while the maximum label length determines the matrix
height.

Since both input words and labels use character embeddings, a predefined list of all

38



Figure 4.1: Encoding process of input data

possible Tamil characters (consonants, vowels, and modifiers) is used to ensure that the
model can represent any character encountered during lemma prediction. The Tamil char-
acter vocabulary in this research consists of 48 unique characters, effectively capturing
the linguistic diversity required for accurate lemma prediction.(Figure 4.3)

4.1.2 Hyperparameter Tuning

As mentioned in the section 3.2.4, a hyper-parameter tuning is used to improve the
performance of the deep learning model. Since a single dense layer is considered in the
deep learning model as shown in the study of Premjith et al. (2018), didn’t consider the
number of layers parameter for the tuning. As mentioned in the Table 3.3 initially, defined
set of values for each parameter. Considering the all possible parameter combinations, is
created a python list with all the results. Following algorithm 2 shows the implementation
of the hyper-parameter tuning.
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Figure 4.2: Encoding process of labels

Figure 4.3: Python list created using all the possible characters (consonants and modi-
fiers) in the Tamil language

Algorithm 2 Hyperparameter Tuning for GRU Model
Require: Set of hyperparameter combinations
Ensure: Optimal set of hyperparameters based on validation accuracy

1: Initialize empty results list
2: for each combination in hyperparameter set do
3: Define and compile the GRU-based deep learning model
4: Train the model with early stopping to prevent overfitting
5: Evaluate the model on test data
6: Store the accuracy and corresponding hyperparameters
7: end for
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Python code 2 shows the implementation of hyper-parameter tuning..

4.1.3 Extracting the Predicted Lemma

Once the deep learning model is trained and optimized through hyperparameter tuning,
the next crucial step is extracting the predicted lemma for given input words. This step is
essential for evaluating the model’s performance in morphological analysis, particularly in
identifying the base form (lemma) of inflected words in Tamil. The model, once trained,
takes an input word in its encoded representation and processes it through the trained
neural network layers. The output is a sequence that represents the predicted lemma.
The figure 4.4 shows the process of lemma prediction.

Figure 4.4: Encoding process of input data

Following Algorithm 3 shows the lemma extraction process.
Python code 3 shows the implementation of the Lemma prediction process.
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Algorithm 3 Lemma Extraction Process
Require: Encoded lemma predictions from the model, character mapping dictionaries
Ensure: Decoded lemma as a readable Tamil word

1: function decode_lemma(encoded_lemma, ind2char)
2: Initialize empty character list
3: for each index in encoded_lemma do
4: if index > 0 and index exists in ind2char then
5: Append corresponding character from ind2char
6: end if
7: end for
8: return Concatenated characters as the predicted lemma
9: end function

4.2 Embedding-Based Approach for Grammatical Fea-

ture Prediction

The embedding-based approach for grammatical feature prediction leverages word em-
beddings to infer the grammatical properties of unseen Tamil words. Unlike rule-based or
purely deep learning models, this method relies on pre-trained word embeddings(Bojanowski
et al. (2016)) and similarity-based feature transfer to predict grammatical attributes ef-
fectively.

Word representation is a fundamental aspect of natural language processing (NLP),
with continuous word embeddings emerging as a powerful framework for capturing se-
mantic relationships between words. While these embeddings have demonstrated their
effectiveness in various applications, they typically treat words as atomic units, disre-
garding their internal morphological structure. This limitation is particularly evident in
morphologically rich languages, where words consist of multiple morphemes that con-
tribute to their meaning and grammatical role. Unlike morphologically impoverished
languages such as English, where a low morpheme-per-word ratio makes holistic word
representations sufficient, languages like Tamil require embeddings that account for in-
ternal word structure to accurately capture linguistic properties.

Traditional word embeddings are trained to position words close to each other in
a high-dimensional space based on their semantic and contextual similarity. However,
similarity in language is a multi-faceted concept, encompassing not only semantic re-
lationships but also syntactic and morphological connections. For instance, words like
”ice” and ”cold” are semantically related, ”ice” and ”fire” share a syntactic relationship
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as nouns, while ”ice” and ”icy” exhibit morphological similarity due to their shared root.
In morphologically rich languages, capturing this morphological dimension is essential
for effective word representation. To address this, the proposed approach enhances tra-
ditional word embeddings by integrating morphological awareness, ensuring that words
with similar inflectional and derivational patterns are meaningfully clustered in the em-
bedding space. This refinement is particularly crucial for Tamil morphological analysis,
where suffixation and word-internal variations play a key role in determining grammatical
features.

4.2.1 Generating Word Embeddings

As discussed in Section 3.3.2, FastText, a subword-based embedding model, is used to
generate vector representations for Tamil words. Unlike traditional word embedding
models such as Word2Vec, which treat words as atomic units, FastText decomposes
words into character n-grams, enabling it to capture morphological variations effectively.
This is particularly beneficial for agglutinative languages like Tamil, where words undergo
complex inflections, derivations, and compounding.

Although pre-trained FastText embeddings for Tamil are available, they are not used
in this research due to several reasons:

1. Domain-Specificity

• Pre-trained embeddings are often trained on general-purpose corpora such
as Wikipedia or Common Crawl, which may not contain rich morphological
variations relevant to Tamil grammar and NLP tasks.

• The dataset used in this research contains annotated words with detailed
grammatical features, which are not captured in pre-trained models.

2. Out-of-Vocabulary (OOV) Words

• Pre-trained embeddings may not include rare or specialized words present
in Universal Dependencies(UD) Tamil Treebank (UD-Tamil-TTB UD-Tamil-
MWTT).

• Training on the dataset ensures coverage of all words relevant to morphological
analysis.
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Since no pre-trained Tamil embeddings are used, a FastText model is trained on the
dataset using the annotated corpus. The model is initialized as follows:

1 import gensim

2

3 model = gensim.models.FastText(corpus, vector_size=50, min_count=1, sg=1)

Listing 4.1: Training the Fasttext model on Universal dependancies annotated word list

• corpus: The collection of Tamil words from the dataset.

• vector_size=50: Each word is represented as a 50-dimensional vector.

• min_count=1: Ensures even rare words are included in the training.

• sg=1: Uses the Skip-gram model for better representation of rare words.

Skip-gram Predicts surrounding words for a given target word and it is suitable for Low-
resource languages, rare words, morphologically rich languages (Tamil, Finnish, etc.).
Since Tamil has complex word formations, Skip-gram (sg=1) is preferred for Tamil mor-
phological analysis as it helps learn embeddings for infrequent and out-of-vocabulary
(OOV) words more effectively.

4.2.2 Generating suffix-weighted Word Embeddings

In order to enhance the representation of Tamil words for grammatical feature predic-
tion, a suffix-weighted embedding approach is employed. Unlike traditional word embed-
dings that treat words as atomic units, this method considers both the root and suffix
components of a word, capturing the morphological structure more effectively. This is
particularly crucial for Tamil, an agglutinative language, where suffixes play a key role
in defining grammatical properties such as tense, case, number, gender, and mood.

The suffix-weighted embedding is computed by decomposing a word into two parts:
the root (initial segment) and the suffix (final segment). Each of these segments is as-
signed an individual embedding using a FastText model trained on the annotated dataset.
The final word embedding is then derived as a weighted sum of the root and suffix embed-
dings, where a predefined suffix weight hyperparameter determines the contribution of
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the suffix. The formula for computing the suffix-weighted embedding is given as follows:

Eword = (1− w).Eroot + w.Esuffix

where Eword represents the final word embedding, Eroot is the embedding of the root,
Esuffix is the embedding of the suffix, and w is the suffix weight hyperparameter that
controls the influence of the suffix.

To determine the optimal values for suffix length and suffix weight, hyperparameter
tuning(Section 4.2.3) is conducted by testing different combinations of these parameters
and evaluating their impact on grammatical feature prediction accuracy. This ensures
that the model effectively captures both the semantic meaning and morphological proper-
ties of Tamil words, leading to improved performance in predicting grammatical features,
especially for unseen words.

Following code segment 4.2 in python show the implementation of suffix weighted
embedding return function.

1 def suffix_weighted_embedding(word, model, suffix_length , suffix_weight):

2 if len(word) > suffix_length:

3 root_part = word[:-suffix_length]

4 suffix_part = word[-suffix_length:]

5 else:

6 root_part = word

7 suffix_part = word

8

9 root_vec = model.wv[root_part]

10 suffix_vec = model.wv[suffix_part]

11

12 combined_vec = (1 - suffix_weight) * root_vec + suffix_weight *

suffix_vec

13 return combined_vec

Listing 4.2: Suffix-Weighted Embedding generation

4.2.3 Hyperparameter Tuning

As mentioned in the section 3.3.5, a hyper-parameter tuning is used to improve the
performance of the grammatical feature prediction model. As mentioned two key hyper-
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parameters are explored:

• Suffix Length (SL): The number of characters from the end of the word used for
feature encoding. Values considered: 4,6,8,10.

• Suffix Weight (SW): The relative importance assigned to suffixes in the embed-
ding space. Values considered: 0.5, 0.6, 0.7, 0.8

. Considering the all possible parameter combinations, is created a python list with all
the results. Following algorithm 4 shows the implementation of the hyper parameter
tuning process of .
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Algorithm 4 Optimizing Suffix-Weighted Embeddings for Grammatical Feature Predic-
tion
Require: Annotated corpus, trained FastText model, suffix lengths SL, suffix weights

SW , test words
Ensure: Best suffix length and suffix weight for highest accuracy

1: best_params← None
2: best_accuracy ← 0
3: for each suffix_length in SL do
4: for each suffix_weight in SW do
5: Initialize word_embeddings as an empty dictionary
6: for each word in corpus do
7: Compute suffix-weighted embedding:
8: embedding ← SuffixWeightedEmbedding(word,model, suffix_length, suffix_weight)
9: Store (word, embedding) in word_embeddings

10: end for
11: total_accuracy ← 0, total_words← 0
12: for each word in test words do
13: true_features← actual grammatical features
14: Predict features using similarity-based method
15: predicted_features← PredictGrammaticalFeatures(word, suffix_length, suffix_weight, word_embeddings)

16: if predicted_features is not None then
17: Compute accuracy:
18: accuracy ← CalculateAccuracy(predicted_features, true_features)
19: Update total_accuracy and total_words
20: end if
21: end for
22: Compute average accuracy:
23: avg_accuracy ← total_accuracy/total_words
24: if avg_accuracy > best_accuracy then
25: best_accuracy ← avg_accuracy
26: best_params← (suffix_length, suffix_weight)
27: end if
28: end for
29: end for
30: return best_params, best_accuracy
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Python code 4 shows the implementation of the hyper parameter tuning process.
The arguments passed to the tune_parameters function are,

1. corpus :- The list of words in training dataset of UD-Tamil-TTB(Only test dataset
is available on UD-Tamil-MWTT dataset so ignored).
Ex. [’தண்டைன’, ’குைற’, ’முஸ்லீம்’, ’நீட்டிப்பு’, ’அெமரிக்கர்’, ’அதிகாைல, ... ]

2. morph_analysis :- The dictionary contains key-value pairs where each word in
the corpus are keys and their corresponding morphological tags are values.
Ex. {’தண்டைன’: ’Case’: ’Nom’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’Person’: ’3’, ’Animacy’:

None, ’Polite’: None, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

’குைற’: ’Case’: ’Nom’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’Person’: ’3’, ’Animacy’: None, ’Polite’:

None, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

’முஸ்லீம்’: ’Case’: ’Nom’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’Person’: ’3’, ’Animacy’: None,

’Polite’: None, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

’நீட்டிப்பு’: ’Case’: ’Nom’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’Person’: ’3’, ’Animacy’: None,

’Polite’: None, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

’அெமரிக்கர்’: ’Case’: ’Nom’, ’Gender’: ’Com’, ’Number’: ’Sing’, ’Person’: ’3’, ’Animacy’: None,

’Polite’: ’Form’, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

.... }

3. test_words :- The dictionary contains key-value pairs where each word in the test
dataset of UD-Tamil-TTB and UD-Tamil-MWTT are keys and their corresponding
morphological tags are values. (Used as ground truth component to calculate the
accuracy of predicted features)
Ex. {’மக்கள்’: ’Case’: ’Nom’, ’Gender’: ’Com’, ’Number’: ’Plur’, ’Person’: ’3’, ’Animacy’:

’Anim’, ’Polite’: None, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

’உடல்நிைல’: ’Case’: ’Nom’, ’Gender’: ’Neut’, ’Number’: ’Sing’, ’Person’: ’3’, ’Animacy’: None,

’Polite’: None, ’Polarity’: None, ’Tense’: None, ’VerbForm’: None,

... }

4. suffix_lengths: The number of characters from the end of the word used for
feature encoding. Values considered: 4,6,8,10.

• Tamil suffixes typically range from 3–10 characters.
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• Multiples of 2 allow systematic coverage of short to long morphological pat-
terns while keeping the model efficient and the feature space manageable.

5. suffix_weights: The relative importance assigned to suffixes in the embedding
space. Values considered: 0.5, 0.6, 0.7, 0.8

• All the values more than or equal to 0.5 has been considered in order to
increase the weight of the suffix embedding.

4.2.4 Predicting grammatical feature

The prediction process relies on a pre-annotated corpus, specifically the Universal De-
pendencies Tamil Treebank (UD-Tamil-TTB UD-Tamil-MWTT), which serves as a gold
standard dataset containing words with predefined grammatical features. The FastText
model is trained on this dataset to generate embeddings that preserve morphological re-
lationships between words. Given an unseen word, its embedding vector is computed and
compared against words in the annotated dataset using cosine similarity. The word with
the highest similarity score is identified, and its grammatical features are transferred to
the input word.
Following algorithm 5 shows the implementation of the grammatical feature prediction.
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Algorithm 5 Suffix-Weighted Embedding for Grammatical Feature Prediction
Require: Annotated corpus, trained FastText model, suffix length SL, suffix weight SW
Ensure: Predicted grammatical features for unseen words

1: function SuffixWeightedEmbedding(word,model, SL, SW )
2: if length of word > SL then
3: root_part← word[: −SL]
4: suffix_part← word[−SL :]
5: else
6: root_part, suffix_part← word
7: end if
8: Compute word vector:
9: root_vec← model.wv[root_part]

10: suffix_vec← model.wv[suffix_part]
11: Compute final weighted vector:
12: embedding ← (1− SW )× root_vec+ SW × suffix_vec
13: return embedding
14: end function
15: function PredictGrammaticalFeatures(new_word, SL, SW,word_embeddings)
16: new_word_embedding ← SuffixWeightedEmbedding(new_word,model, SL, SW )
17: if new_word_embedding is None then
18: return None, None
19: end if
20: for each word in corpus do
21: embedding, feature_vector ← word_embeddings[word]
22: Compute similarity:
23: similarity ← CosineSimilarity(new_word_embedding, embedding)
24: Store (word, similarity)
25: end for
26: most_similar_word← word with highest similarity
27: predicted_features← morph_analysis[most_similar_word]
28: return predicted_features,most_similar_word
29: end function
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Python code 5 shows the implementation of the grammatical feature prediction.

Figure 4.5: Creation process of feature vectors

The arguments passed to the predict_grammatical_features function are,

1. Word :- The input word

2. suffix_length :- The number of characters from the end of the word used for
feature encoding in order to pass to the suffix_weighted_embedding function.

3. suffix_weight :- The relative importance assigned to suffixes in the embedding
space in order to pass to the suffix_weighted_embedding function.

4. word_embeddings :- Word_embeddings is a contains key-value pairs where each
word in the training dataset is a key. Value contains a tuple with corresponding
(suffix weighted embedding of the word, feature vector which represents the mor-
phological features)

(a) Suffix weighted embedding (Section 4.2.2)

(b) Feature vector :- The feature vector is created as explained in the figure 4.5.
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Chapter 5

Results and Evaluation

This section presents the experiments conducted in this research and the corresponding
results obtained. The study focuses on Tamil morphological analysis, specifically address-
ing lemma prediction using deep learning and grammatical feature prediction using an
embedding-based similarity approach. The evaluation measures the effectiveness of these
approaches in accurately predicting word lemmas and morphological attributes such as
tense, gender, number, case, mood etc.

To achieve this, different deep learning architectures were explored for lemma predic-
tion, including RNN, LSTM, GRU and bidirectional variants of them. The performance
of these models was assessed using exact-string match accuracy, ensuring that the pre-
dicted lemma aligns with the actual root form. Additionally, a suffix-weighted embedding
approach was employed for grammatical feature prediction, leveraging word embeddings
trained on the Universal Dependencies Tamil Treebank (UD-Tamil-TTB UD-Tamil-
MWTT). The evaluation involved testing different suffix lengths and suffix weights to
optimize the performance of the similarity-based approach.

The evaluation metrics include exact-string match accuracy, per-tag accuracy for
grammatical features, overall classification accuracy, exact grammatical feature match
performance etc will be more deeply explained in latter section. By analyzing these
results, this study provides insights into the strengths and limitations of each method,
contributing to the advancement of Tamil NLP and computational morphology.
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5.1 Lemma Prediction Evaluation

5.1.1 Experimental Setup

The evaluation of lemma prediction was conducted using a dataset of word-lemma pairs
which is discussed in section 3.2.1, where each word was mapped to its corresponding
root form. The dataset was carefully curated to include various verb conjugations, noun
inflections, and derived forms to ensure a diverse and representative evaluation.

5.1.1.1 Dataset Preparation

The dataset was divided into training (80%) and testing (20%) splits to train and evaluate
the deep learning model effectively. Each word in the dataset was represented using
character-level encoding as discussed in 4.1, allowing the model to learn morphological
transformations without relying on large annotated corpora as lookup table.

5.1.1.2 Model Architecture and Training

For lemma prediction, character-based deep learning models were implemented, including
RNN, LSTM, and GRU architectures. Each model was trained on the encoded dataset
using an embedding layer followed by bidirectional recurrent layers to capture both for-
ward and backward dependencies in word structures. The final model was optimized
based on categorical cross-entropy loss and trained using the Adam optimizer. The table
5.1 shows the training configuration used to train the model.

Parameter Value
Embedding size 32 (from Section 5.1.2)

Hidden size 256 (from Section 5.1.2)

Batch size 256 (from Section 5.1.2)

Optimizer Adam (from Section 5.1.2)

Activation Softmax (from Section 5.1.2)

Loss function Categorical Cross-Entropy

Epochs 30 (with early stopping)

Table 5.1: Training configuration
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5.1.2 Hyperparameter Tuning

Since a set of parameter combinations are considered to identify the most suitable values
for the each hyper-parameter (Section 3.2.4), the performance of the each combinations
provided in the predictions should be analyzed.

Embedding size Hidden size Activation Optimizer Batch size Score
32 32 relu SGD 512 0.8648

32 32 relu SGD 256 0.8648

32 32 relu SGD 128 0.8648

32 32 relu SGD 64 0.8648

32 32 relu SGD 32 0.8769

32 32 relu Adam 256 0.8816

32 32 relu Adam 64 0.8950

32 32 relu Adam 512 0.8905

32 32 relu Adam 32 0.8976

32 32 relu Adam 128 0.9081

256 512 softmax Adam 32 0.9887

32 256 softmax Adam 32 0.9886

32 256 softmax Adam 512 0.9883

32 256 softmax Adam 64 0.9890

256 512 softmax Adam 64 0.9898

32 128 softmax Adam 32 0.9891

32 256 softmax Adam 128 0.9897

256 512 softmax Adam 128 0.9900

32 128 softmax Adam 64 0.9896

32 128 softmax Adam 128 0.9902

32 128 softmax Adam 512 0.9904

32 128 softmax Adam 256 0.9909

32 256 softmax Adam 256 0.9912

Table 5.2: Sample results of hyper-parameter tuning

In the Table 5.2 the score means the results provided by the ”keras.model”. From this
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value, it is possible to get an idea about the accuracy of each result. Considering the
results of hyper-parameter tuning the highest accuracy was obtained, when the morpho-
logical analyzer used embedding_size = 32, units = 256 activation = softmax, optimizer
= Adam and batch_size = 256 as the hyper-parameters. Using these hyper-parameters
the model was trained and analyzed the predictions.

5.1.3 Evaluation Metrics

5.1.3.1 Exact-String Match

Exact-String Match is one of the primary evaluation metrics used for lemma prediction.
It measures how often the predicted lemma exactly matches the actual lemma in the
test dataset. This metric is particularly important because in morphological analysis,
small variations in predictions (such as missing or extra characters) can lead to incorrect
interpretations of the word’s meaning and structure.

Since lemma prediction involves transforming an inflected form into its root form, an
exact match ensures that the model accurately reconstructs the base form without any
errors. Higher Exact-String Match accuracy indicates that the model has learned the cor-
rect morphological transformations, making it more reliable for real-world applications
in Tamil NLP.
Let Lp be the predicted lemma and La be the actual lemma. The Exact-String Match
Accuracy (ESM) is defined as:

ESMAccuracy =
Number of Correctly Predicted Lemmas

Total Number of Words in Test Set
∗ 100

If Lp = La for a given word, it is counted as correct; otherwise, it is incorrect.

5.1.4 Results and Analysis

5.1.4.1 Different deep learning architectures

Since several deep learning architectures are considered to identify the most suitable one,
the dataset was trained using same deep learning model with different deep learning ar-
chitectures. Here, same hyper-parameters were used and the dataset size (Both training
and testing) for each experiment and calculated the accuracy of each experiment. Study
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of Morphological Inflection Generation in Sanskrit language (Prasad et al. (2019)) has
also used this approach to identify the best performing deep learning architectures for
their study. The same approach was used to identify the best performing deep learning
architecture for this study. To do this six different deep learning architectures were se-
lected. RNN, LSTM, GRU, Bi-RNN, Bi-LSTM and Bi-GRU are the six deep learning
architectures that have selected for this study. Studies like Premjith et al. (2018), Prasad
et al. (2019) and Ekanayaka et al. (2023) have used these deep learning architectures to
do the morphological analysis.

Since different deep learning architectures are considered, it helps to identify the be-
haviour of the morphological analyzer with different deep learning architectures. Then
the results of these experiments were analyzed against each other. From that, it is possible
to identify the most suitable deep learning architecture for our morphological analyzer.
Sample input: [’வ', 'ெ◌', 'ள', '◌ி', 'ய', '◌ி', 'ட', '◌்', 'ட']
Sample label: ['வ', 'ெ◌', 'ள', '◌ி', 'ய', '◌ி', 'ட', '◌ு']

Considering the results in Table 5.3, bidirectional LSTM has provided the highest

Architecture Total Train Test Correct Accuracy
RNN 70,007 56,005 14,002 12,370 88.34 %

GRU 70,007 56,005 14,002 12,688 90.61 %

LSTM 70,007 56,005 14,002 12,438 88.83 %

BI-RNN 70,007 56,005 14,002 12,306 87.88 %

BI-GRU 70,007 56,005 14,002 12,884 92.01 %

BI-LSTM 70,007 56,005 14,002 13,050 93.20 %

Table 5.3: Performance of the Lemma prediction with different deep learning architectures
for test dataset

results for the lemma prediction. Using bidirectional LSTM as the deep learning archi-
tecture has provided the accuracy around 93.20%.

Unidirectional models only stores past information because the only input the model
has seen is old information. But in the bidirectional models, it will use the input in two
ways, one from the past to the future and the other from the future to the past. What
distinguishes this method from the unintentional is that running back you to store in-
formation from the future. Using two hidden regions together you can save information
from both past and future at any time. Bidirectional models use the past and the future
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information for the predictions because of that the performance of the morphological ana-
lyzer is getting increased when we are using the bidirectional deep learning architectures.

Comparing the deep learning architecture without the bidirectional wrappers, GRU
has provided the best results. Considering the training parameters GRU uses less train-
ing parameters, because of that it uses less memory, perform faster and train faster.
Since this study is considering words, and morphological analysis of words, considering
about long sequences are not needed. Because of that using GRU as the deep learning
architecture can improve the performance. Because of that GRU architecture has pro-
vided the highest accuracy among the selected deep learning architectures in the case of
bidirectional wrapper absence.

5.1.4.2 Predictions of entire new set of data

Good morphological analyzer should be able to predict any kind of word. To check this
ability of a morphological analyzer the predictions of the model needed to be checked
with a different set of words. In this study 70,006 total number of words were used to
train and test the deep learning model. As we have discussed in the section 3.2.1 a set
of Tamil words extracted from UD Tamil tree bank considered as test data which are
unseen since that is the dataset considered as the gold standard. 4102 total number of
Tamil words has been extracted from UD Tamil tree bank which is completely unseen.
To compare the results, the BI-LSTM model with the maximum test accuracy has tested
against these words.
Sample input: [’வ', 'ெ◌', 'ள', '◌ி', 'ய', '◌ி', 'ட', '◌்', 'ட']
Sample label: ['வ', 'ெ◌', 'ள', '◌ி', 'ய', '◌ி', 'ட', '◌ு']

Upon inspecting the results in detail, several key factors contribute to the errors in

No. of words Correct Accuracy

4102 1241 30.25 %

Table 5.4: Performance of the Lemma prediction model(BI-LSTM model) with set of
unseen words

lemma prediction. Since Tamil is a morphologically rich language, the training dataset
does not cover all possible inflected and derived forms, leading to gaps in the model’s
ability to generalize to unseen words. Additionally, a significant portion of errors arises
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due to single-character or few character mispredictions, where a minor mistake in predict-
ing one or few characters alters the entire lemma, affecting the overall accuracy. Another
observation is that some of the misclassified words belong to the category of proper
nouns, which often have unique morphological patterns and may not follow the same
transformation rules as other word categories. These challenges highlight the limitations
of the current deep learning model in handling out-of-vocabulary (OOV) words and rare
morphological variations, emphasizing the need for improved generalization strategies.

5.1.5 Error analysis

The analysis of errors in lemma prediction is crucial to understanding the strengths and
limitations of our Bi-LSTM model in Tamil morphological analysis. While the model
successfully predicts lemmas for most words, it exhibits low accuracy on unseen words
due to morphological complexity and out-of-vocabulary (OOV) challenges. This section
presents a detailed error analysis, examining mispredictions and their underlying causes.

Table 5.5 presents a subset of unseen words where the model’s predictions were in-
correct compared to the ground truth.

Index Word Correct
Lemma

Predicted
Lemma

Identified Er-
ror

Reason

0 ேகாவில் ேகாவில் ேகாகில் Character-Level
Error

Incorrect charac-
ter replacement

2 கிராமத்தில் கிராமம் கிராாரம் Character-Level
Error

Incorrect char-
acter formation
ராம -> ராார

4 எப்ேபாது எப்ேபாது எப்ேபாடு Character-Level
Error

Incorrect charac-
ter substitution

8 வரவில்ைல வா வவல் lemmatization
fail

Insufficient train-
ing dataset
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31 புத்தகத்ைதக் புத்தகம் பதுதகம் Modifier Substi-
tution Error

Incorrect modi-
fier prediction ◌ஂ
-> ◌ு

34 உயரமான உயரம் யரமம் Character-Level
Error

Incorrect charac-
ter prediction உ -
> ய

48 சிறியதாக சிறியது சிறி Morphological
Truncation Error

Over-truncation
of 'சிறியது'

207 உயரமாக உயரம் உயரரம் Character-Level
Error

Incorrect charac-
ter insertion (ர)

227 இந்தத் இந்த ◌்◌ாத் Incorrect segmen-
tation of suffix

Presence of Con-
sequent modifiers

382 ெவயிலில் ெவயில் ெ◌யில் Character-Level
Error

Incorrect char-
acter formation
(Absence of
character 'வ')

388 திரும்பி திரும்பு திரும்பி Character-Level
Error

Incorrect modi-
fier prediction ◌ு
-> ◌ி

516 உடல்நிைலய் உடல்நிைல உடல்ந்ைல Character-Level
Error

Incorrect modi-
fier prediction ◌ி
-> ◌ஂ

788 துைறயாகும் துைற ◌ுுைற Character-Level
Error

Presence of Con-
sequent modifiers

1030 முடிவைடயும் முடிவைட டவைட lemmatization
fail

Loss of critical in-
flection
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1467 மேலசிய மேலசியா மமமயமி OOV Error Unseen word in
training (Proper
noun)

2003 கருணாகரனின் கருணாகரன் உக்ர்◌ாரர் OOV Error Unseen word in
training (Proper
noun)

2537 பாகிஸ்தானுக்குச்பாகிஸ்தான் ஸஆாஸமதான் OOV Error Unseen word in
training (Proper
noun)

2494 இந்தியாவுக்க் இந்தியா இநிதியாய் OOV Error Unseen word in
training (Proper
noun)

Table 5.5: Error analysis for Lemma prediction

By manually analyzing these mispredictions, we identify the following key error cat-
egories:

1. Character-Level Errors:

• The model incorrectly modifies single or multiple characters(Characters also
includes the modifiers), leading to incorrect lemmas.

• The challenging part in the lemma prediction is finding the suffix part of the
lemma correctly. In that case most of the words’ suffixes are correctly predicted
while wrongly predicting few character at the beginning of the words.

• An additional component of post-processing part could be added to only pre-
dicting the suffixes while repeating the same few characters present in the
prefix of the input word.

• Example: ேகாவில் -> ேகாகில் (Incorrect character replacement)

2. Morphological Truncation Errors:

60



• The model over-truncates or under-truncates the word, leading to an incom-
plete lemma.

• Example: சிறியதாக -> சிறி (Incorrect truncation of ’சிறியது')

3. Out-of-Vocabulary (OOV) Errors:

• Words that are not frequently present in the training data result in inaccurate
lemma predictions.

• The model poorly performs for the proper nouns where model suffers to iden-
tify similar pattern while it is not available.

• Example: பாகிஸ்தானுக்குச் -> ஸஆாஸமதான் (Completely incorrect lemma
due to lack of OOV handling)(Ground truth :- பாகிஸ்தான்)

• In the above example you can see the suffix('தான்') has been correctly pre-
dicted so if there is a post-processing component as we discussed before, which
identifies the correct prefix from the input word and joins with the predicted
suffix a correct lemma can be obtained.
Example: பாகிஸ்(Post-processed prefix) + தான்(predicted suffix)

4. Incorrect segmentation of suffix:

• Presence of consequent modifiers in the predicted word.

• Presence of consequent modifiers is not allowed in a Tamil word.

• As we have discussed the model predicts the character in the figure 4.3. Since
modifiers also considered as independent characters there are possibilities
where a predicted word can contain consequent modifiers.

• To avoid this, all possible combinations with tamil characters and modifiers
could be considered as the vocabulary but in that case even though we mini-
mize the possibility of consequent modifiers’ occurrence but in the same time,
it reduces the accuracy since number of possible characters can be predicted
are more.

• Example of the modified vocabulary is shown in the figure 5.1
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Figure 5.1: This list includes all the independent vowels and consonant modifications

5.2 Grammatical feature Prediction Evaluation

5.2.1 Experimental Setup

For the evaluation of grammatical feature prediction, we utilize the ta_ttb-train dataset
for the similarity comparison. The evaluation is performed using the ta_mwtt-test,
ta_ttb-test, and ta_ttb-dev datasets which are universal dependancies(UD) datasets.
These datasets serve as test data against our evaluation metrics to analyze the perfor-
mance of the embedding-based approach for grammatical feature prediction. The dataset
contains lack of comprehensive morphological annotations and the variability in data
quality restrict the study to only a subset of word categories which are Nouns, Verbs,
Auxiliary, Pronouns and Propernouns, ensuring a more reliable and meaningful analysis.

5.2.2 Hyperparameter Tuning

We employ hyperparameter tuning to determine the optimal values for Suffix Length
and Suffix Weight as we have discussed in Section 3.3.5, which influence feature pre-
diction accuracy. The tuning process involves selecting configurations that maximize
accuracy. The overall accuracy is calculated using the below method which is one of the
evaluation metrics we use to analyze the results of the grammatical feature prediction
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component.(Overall Accuracy (Across All Words)).

OverallAccuracy =

∑
WordAccuracies

NumberofWords

Example:

• Word 1 Accuracy: 0.67

• Word 2 Accuracy: 0.80

• Overall Accuracy: (0.67 + 0.80) / 2 = 0.735 (73.5%)

The section 5.2.3 explains more on how does the word accuracy is calculated. The table
5.6 shows the Hyperparameter tuning results of grammatical feature prediction. The

Suffix Length Suffix Weight Accuracy

4 0.5 0.89

4 0.6 0.89

4 0.7 0.89

4 0.8 0.89

6 0.5 0.86

6 0.6 0.87

6 0.7 0.88

6 0.8 0.89

8 0.5 0.85

8 0.6 0.86

8 0.7 0.87

8 0.8 0.87

10 0.5 0.86

10 0.6 0.86

10 0.7 0.86

10 0.8 0.86

Table 5.6: Hyperparameter tuning result to determine the optimal suffix length and suffix
weight to consider for maximum accuracy

hyper parameter tuning results recorded in the table 5.6 is represented in the graph 5.2
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for the convenience of easy reading. Based on the graph, the optimal suffix length and

Figure 5.2: Hyper parameter tuning results for grammatical feature prediction

suffix weight should be chosen to maximize accuracy. Here’s the analysis:

• Suffix Length = 4: Consistently achieves the highest accuracy (0.89) across all suffix
weights.

• Suffix Length = 6: Improves as the suffix weight increases and reaches 0.89 at
weight 0.8.

• Suffix Length = 8 and 10: Show lower overall accuracy (� 0.87) across all suffix
weights.

Since Suffix Length = 4 achieves the best accuracy across all suffix weights without
needing higher suffix weights, the optimal configuration is Suffix Length = 4 and Suffix
Weight = 0.8, as it ensures the highest accuracy while keeping the suffix length minimal.

5.2.3 Evaluation Metrics

To assess the performance of grammatical feature prediction, we employ the following
evaluation metrics:
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1. Word-Level Feature Prediction Accuracy
The work Pawar et al. (2023) also uses the same evaluation metric to calculate the
word level accuracy. Accuracy for a word is computed as:

Accuracy =
NumberOfCorrectlyPredictedFeatures

TotalNumberOfFeatures

Example:

• Predicted: Case: Nom, Gender: Masc, Number: Sing

• True: Case: Nom, Gender: Masc, Number: Plur

• Correct Predictions: 2/3 → 67%

2. Overall Accuracy (Across All Words)
Overall accuracy is the extended version of word-level feature prediction accuracy.
Overall accuracy of all the words are computed as:

OverallAccuracy =

∑
WordAccuracies

NumberofWords

Example:

• Word 1 Accuracy: 0.67

• Word 2 Accuracy: 0.80

• Overall Accuracy: (0.67 + 0.80) / 2 = 0.735 (73.5%)

3. Exact Match Accuracy
Measures the percentage of words where all grammatical features were correctly
predicted. This is an additional evaluation metric which is not reported in any
of the previous works. This evaluation metric shows how good the grammatical
prediction is in predicting all the grammatical features correctly.

4. Per-Tag Accuracy
As same as for the overall accuracy the work Pawar et al. (2023) uses the per-tag
accuracy for each grammatical feature (e.g., Case, Gender, Tense), the proportion of
correct predictions is calculated. The type of grammatical features varies according
to the word categories as we discussed in Table 3.5.
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5.2.4 Results and Analysis

5.2.4.1 Overall Performance Summary

This section records the overall accuracy and exact match accuracy of all word categories
we are considering. The Table 5.7 shows the overall performance of the new words that
are extracted from the test and dev dataset from the universal dependency as we discussed
before. The figure 5.3 shows a clear representation for the comparison between different
word categories.

Word Category Total Words Overall Accuracy Exact Match Accuracy

Noun 838 0.90 0.50

Verb 601 0.76 0.38

Pronoun 80 0.70 0.30

Proper Noun 275 0.85 0.56

Auxiliary 97 0.78 0.45

Table 5.7: Grammatical feature prediction overall performance

Figure 5.3: Bar chart represents the overall accuracy and exact-match accuracy among
different word categories
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Based on the figure 5.3 we can conclude that the overall Accuracy is consistently higher
than Exact Match Accuracy across all categories, meaning that the model is able to assign
close but not always perfect labels. Nouns and Proper Nouns have the highest overall
accuracy (above 0.85) because of the less number of grammatical features represented by
them. Usually nouns are the word category with less inflected or derivated form in Tamil.
Verbs and Pronouns have lower accuracy, likely due to their morphological complexity.

5.2.4.2 Per-Tag Accuracy for Each Word Category

This section records the accuracy calculated for the each word category against its gram-
matical features. The Table 5.8 shows the per-tag accuracy of the new words that are
extracted from the test and dev dataset from the universal dependency as we discussed
before. The heatmap 5.4 shows a clear representation for the comparison between differ-
ent word categories.

Based on the figure 5.4 we can conclude that the component performs well on Per-

Figure 5.4: Heatmap to display feature-wise accuracy for each word category.(Missing
values are left blank for clarity)

son, Politeness, Animacy, and Tense across multiple word categories. Pronouns and Verbs
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Feature Noun Verb Pronoun Proper Noun Auxiliary

Case 0.83 0.95 0.65 0.73 0.93

Gender 0.58 0.72 0.62 0.69 0.73

Number 0.90 0.71 0.76 0.95 0.85

Person 0.98 0.74 0.69 1.00 0.81

Animacy 0.93 0.97 0.65 0.97 0.94

Politeness 0.95 0.94 0.90 0.77 0.94

Polarity 0.99 0.65 - - 0.69

Tense 0.99 0.71 - - 0.79

VerbForm 0.99 0.47 - - 0.58

Mood - 0.72 - - 0.68

Voice - 0.51 - - 0.61

PronType - - 0.42 - -

Reflex - - 0.94 - -

Table 5.8: Grammatical feature prediction per-tag accuracy

exhibit lower accuracy in specific features, like PronType and VerbForm. Gender classifi-
cation is weaker for nouns and pronouns, possibly due to data imbalance or morphological
complexity in Tamil. And it is clear that Proper nouns are easier to classify, especially for
Number and Person features because unlike common nouns and verbs, proper nouns do
not inflect for different numbers or persons in Tamil.e.g. ”ெசன்ைன” (Chennai) remains
the same regardless of singular/plural usage, ”ராமன்” (Raman) does not change based
on grammatical number or person.

5.2.5 Error analysis

Error analysis for the grammatical feature prediction is done in order to understand the
limitations and strength of the component. While overall accuracy for all the word cat-
egories achieves nearly 80% but still we have to manually inspect the predictions where
the prediction has gone wrong and the root cause for that.

Table 5.9 presents a subset of unseen words where the component’s predictions were
incorrect compared to the ground truth.
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Word Similar
Word
(based
to co-
sine
similar-
ity)

Predicted
Features

True Fea-
tures

Acc-

ura-
cy

Identified
Error

Reason

நிைலய-
ங்களுக்குத்
(Noun)

ெசயலு-
க்குத்

Case=Dat,
Gender=Neut,
Number=Sing,
Person=3

Case=Dat,
Gender=Neut,
Number=Plur,
Person=3

0.89 Number
mismatch

Failed to iden-
tify plural suf-
fix “கள்”

கட்சிக்கு
(Noun)

எதிர்க்க-
ட்சிக்கு

Case=Dat,
Gender=Neut,
Number=Sing,
Person=3

Case=Dat,
Gender=Neut,
Number=Sing,
Person=3

1.00 - Correct predic-
tion

சங்கடங்-
கள்
(Noun)

வாழ்ந்த-
வர்கள்

Case=Nom,
Gender=Com,
Number=Plur,
Person=3,
Polite=Form,
Polarity=Pos,
Tense=Past,
Verb-
Form=Part

Case=Nom,
Gender=Neut,
Number=Plur,
Person=3

0.44 Extra features
predicted
(Tense, Verb-
Form, etc.)

Misclassified
as verb-derived
noun due to
suffix “ங்கள்”
being similar
to participle
endings

ஆகியவ-
ற்றில்
(Noun)

வரலாற்-
றில்

Case=Loc,
Gender=Neut,
Number=Sing,
Person=3

Case=Loc,
Gender=Neut,
Number=Plur,
Person=3

0.89 Number
mismatch

Ignored plu-
ral indicator
“ைவகள்” from
“ைவகள் +
இல்”
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இருந்தவர்
(Noun)

ெதரிந்தவர் Case=Nom,
Gender=Com,
Number=Sing,
Person=3,
Polite=Form,
Polarity=Pos,
Tense=Past,
Verb-
Form=Part

Case=Nom,
Gender=Com,
Number=Sing,
Person=3,
Polite=Form,
Polarity=Pos,
Tense=Pres,
Verb-
Form=Part

0.89 Tense mis-
match

Confused
present par-
ticiple with
past participle
due to similar
structure

கடந்த
(Verb)

ேகட்க Tense=None,
Person=None,
Gender=None,
Num-
ber=None,
Mood=None,
Voice=Act,
Form=None,
Ani-
macy=None,
Polarity=Pos,
VerbForm=Inf

Tense=None,
Person=None,
Gender=None,
Num-
ber=None,
Mood=None,
Voice=None,
Form=None,
Ani-
macy=None,
Polar-
ity=None,
Verb-
Form=None,
Polite=None,
Case=None

0.75 VerbForm, Po-
larity, Voice

Verb was incor-
rectly tagged
as infinitive;
actual features
missing

ஒதுக்கியது
(Verb)

ெவளிப்படு-
த்தியது

Tense=Past,
Person=3,
Gender=Neut,
Number=Sing,
Mood=Ind,
Voice=Act,
Polarity=Pos,
VerbForm=Fin

Tense=Past,
Person=3,
Gender=Neut,
Number=Sing,
Mood=None,
Voice=Act, Po-
larity=Pos,
Verb-
Form=Ger,
Case=Nom

0.75 Mood, Verb-
Form, Case

Confused finite
and gerund
forms; added
mood and
omitted case
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நடத்தப்
(Verb)

உயர்த்தப் Tense=None,
Person=None,
Gender=None,
Num-
ber=None,
Mood=None,
Voice=Act,
Polarity=Pos,
VerbForm=Inf

Same as pre-
dicted

1.00 - Correct predic-
tion

ெபறும்
(Verb)

பங்கா-
ற்றும்

Tense=Fut,
Person=3,
Gender=Neut,
Number=Plur,
Mood=Ind,
Voice=Act,
Polarity=Pos,
VerbForm=Fin

Tense=Fut,
Polarity=Pos,
Verb-
Form=Part

0.50 Person, Gen-
der, Number,
VerbForm,
Mood

Misidentified
participle as
finite verb;
assumed un-
necessary
features

இருந்தது
(Verb)

நிகழ்ந்தது Tense=Past,
Per-
son=Number3,
Gender=Neut,
Number=Sing,
Mood=Ind,
Voice=Act,
Polarity=Pos,
VerbForm=Fin

Tense=Past,
Person=3,
Gender=Neut,
Number=Sing

0.67 Mood, Voice,
Polarity,
VerbForm

Overfitted
features; added
unnecessary
voice and mood

தமிழ்நா-
ட்டின்
(propn)

ெதன்-
னாப்-
பிரிக்கா-
வின்

Case=Gen,
Gender=Neut,
Number=Sing,
Person=3, An-
imacy=None,
Polite=None

Same as pre-
dicted

1.00 - Correct predic-
tion
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ரத்தன்-
குமார்
(propn)

குமார் Case=Nom,
Gender=Com,
Number=Sing,
Person=3,
Polite=Form

Case=Nom,
Gender=Neut,
Number=Sing,
Person=3,
Polite=None

0.67 Gender, Polite Assumed po-
liteness and
misgendered a
name

அவசர
(propn)

ெசன்ைன-
ய்

Case=Nom,
Gender=Neut,
Number=Sing,
Person=3

Case=None,
Gender=Neut,
Number=Sing,
Person=3

0.83 Case Erroneously as-
signed case to
a proper noun
modifier

சசி
(propn)

இட Case=None,
Gender=Neut,
Number=Sing,
Person=3

Case=Nom,
Gender=Com,
Number=Sing,
Person=3,
Polite=Form

0.50 Case, Gender,
Polite

Failed to
identify name
as common
gender; missed
politeness

பலவற்ைற
(pron)

அவற்ைற Case=Acc,
Gender=Neut,
Number=Plur,
Person=3,
PronType=Prs

Case=Acc,
Gender=None,
Number=Sing,
Person=3,
PronType=Ind

0.62 Number, Gen-
der, PronType

Plural mis-
taken for
singular; pro-
noun type
confusion

தன்னு-
ைடய
(pron)

என்னு-
ைடய

Case=Gen,
Gender=Com,
Number=Sing,
Person=1, An-
imacy=Anim,
PronType=Prs

Same as pre-
dicted

1.00 - Correct predic-
tion

தனக்கு
(pron)

அவர்க-
ளுக்கு

Case=Dat,
Gender=Com,
Number=Plur,
Person=3, An-
imacy=Anim,
Pron-
Type=Prs,
Reflex=None

Case=Dat,
Gender=Com,
Number=Sing,
Person=1, An-
imacy=Anim,
Pron-
Type=Prs,
Reflex=Yes

0.62 Number, Per-
son, Reflex

Repeated error:
plural and third
person wrongly
chosen
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முடிந்தது
(aux)

இருந்தது Tense=Past,
Person=3,
Gender=Neut,
Number=Sing,
Mood=Ind,
Voice=Act,
Polarity=Pos,
VerbForm=Fin

Tense=Past,
Person=3,
Gender=Neut,
Number=Sing

0.64 VerbForm,
Voice, Polarity,
Mood

Added
auxiliary-
specific fea-
tures not
present in gold
data

ேபாகிறது
(aux)

இருக்கிறது Tense=Pres,
Person=3,
Gender=Neut,
Number=Sing,
Mood=Ind,
Voice=Act,
Polarity=Pos,
VerbForm=Fin

Tense=Pres,
Person=3,
Gender=Neut,
Number=Sing

0.64 VerbForm,
Voice, Polarity,
Mood

Auxiliary
behavior mis-
interpreted as
full finite verb
form

ெகாள்வது
(aux)

வருவது Case=Nom,
Tense=Fut,
Person=3,
Gender=Neut,
Number=Sing,
Polarity=Pos,
Voice=Act,
VerbForm=Ger

Case=Nom,
Tense=Fut,
Person=3,
Gender=Neut,
Number=Sing,
Polarity=Pos,
Voice=Act,
VerbForm=Ger

1.00 - Correct predic-
tion

ெகாண்ட-
னர்
(aux)

பட்டனர் Tense=Past,
Person=3,
Gender=Com,
Number=Plur,
Mood=Ind,
Voice=Pass,
Polarity=Pos,
Verb-
Form=Fin,
Polite=Form

Tense=Past,
Person=3,
Gender=Com,
Number=Plur,
Mood=Ind,
Voice=Act, Po-
larity=Pos,
Verb-
Form=Fin,
Polite=Form

0.91 Voice Passive mis-
classified
instead of
active
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முயல்கி-
ன்றன
(aux)

படுகின்றனTense=Pres,
Person=3,
Gender=Neut,
Number=Plur,
Mood=Ind,
Voice=Pass,
Polarity=Pos,
VerbForm=Fin

Tense=Pres,
Person=3,
Gender=Neut,
Number=Plur,
Mood=Ind,
Voice=Act,
Polarity=Pos,
VerbForm=Fin

0.91 Voice Mistook active
voice for pas-
sive in auxiliary
context

Table 5.9: Error analysis for Grammatical feature pre-
diction

By manually analyzing these mispredictions, we identify the following key points:

1. Inconsistencies in the Gold Standard Dataset

• Some words have gold labels that appear incorrect or incomplete.

• In a few cases, the model’s predicted features actually match the expected
features better than the ground truth.

• Example: Words like முடிந்தது, ேபாகிறது — predicted features include auxil-
iary traits like VerbForm=Fin, Mood=Ind, and Voice=Act which are missing
in the gold data but should arguably be present.

2. Partial Feature Accuracy Across Predictions

• While the overall exact match is low, most individual morphological features
(like Tense, Number, Gender) are correctly predicted.

• This indicates strong generalization of core morphological traits, even if fine-
grained features (like Voice, Polarity, VerbForm) occasionally differ.

3. Confusion Between Verbal Nouns and Regular Nouns

• The model struggles to distinguish between verbal noun forms and common
nouns.

• Example:

74



– சங்கடங்கள் (difficulties) is a noun, but sometimes misclassified as a verbal
noun.

– வாழ்ந்தவர்கள் (those who lived) is a verbal noun with embedded tense
and voice, but might get treated like a regular noun.

• This is likely due to, Ambiguity in Tamil morphology, Overlapping surface
forms, Limited or inconsistent annotation in training data.

4. Auxiliary Verbs Treated as Full Verbs

• Words like இருந்தது, முடிந்தது, ேபாகிறது are often auxiliary in function but
treated as main verbs.

• This creates annotation ambiguity and prediction inconsistency.

• Fixing this would require clearer annotation guidelines for auxiliary construc-
tions.

5. High Feature-Level Match Even When Overall Match is No

• Even when the exact match = No, features like Gender, Number, and Tense
are usually correct.

6. Polarity, Voice, and VerbForm are Most Error-Prone

• These features are frequently mispredicted or missing in gold labels.
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Chapter 6

Conclusion

Considering all the experiments and knowledge that we have gathered in this research,
we can elaborate the conclusion of this study. Addressed problem of this research is to
applying deep learning and embedding based techniques for morphological analysis in the
Tamil language.

6.1 Conclusion about the research questions

We continued our research with three major research questions. During the research we
did several experiments to identify the most suitable answers for those questions. We can
summaries the answers for each and every research question.

6.1.1 What approaches are most effective for Tamil morpholog-

ical analysis in low-resource settings with limited anno-

tated corpora?

In low-resource settings, the most effective approach for Tamil morphological analysis is a
hybrid method that combines deep learning and similarity-based techniques. Deep learn-
ing models, particularly Bidirectional LSTM, showed the highest accuracy (around 93%)
according to table 5.3 for lemma prediction by leveraging context from both directions.
For grammatical feature prediction, a similarity-based approach using word embeddings
achieved over 85% according to table 5.7 accuracy across word categories like nouns, verbs,
pronouns, and auxiliaries. This method reduces reliance on large annotated datasets by

76



using a pre-existing gold-standard dataset and embedding similarity, making it highly
suitable for morphologically rich languages like Tamil with limited annotated resources.

6.1.2 How effectively can word embedding techniques predict/i-

dentify morphological features for unseen Tamil words?

Word embedding techniques, particularly FastText, have proven effective in predicting
morphological features for unseen Tamil words. By leveraging subword-level representa-
tions, these embeddings capture phonetic and morphological patterns, enabling accurate
feature transfer from known to unknown words. This approach addresses the out-of-
vocabulary (OOV) challenge better than traditional rule-based or fully supervised meth-
ods, especially in low-resource settings. While some limitations remain, the majority
of grammatical features for unseen words were predicted correctly according to 5.2.4,
highlighting the potential of embedding-based methods to enhance Tamil morphological
analysis with minimal annotated data.

6.1.3 What are the challenges in building a comprehensive an-

notated corpus for Tamil morphology, and how can they

be addressed?

Building a comprehensive annotated corpus for Tamil morphology is difficult due to the
language’s morphological complexity, scarcity of data, and the need for expert manual
annotation. Tamil’s rich inflectional system means words can have multiple interpreta-
tions, often depending on context, which complicates consistent annotation. The lack
of large, publicly available datasets further limits progress. To overcome these chal-
lenges, this research manually annotated word-lemma pairs and leveraged an existing
gold-standard dataset for grammatical feature prediction. By combining human an-
notation with embedding-based similarity methods, the approach reduces the need for
large-scale manual labeling while enhancing scalability and accuracy.
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6.2 Conclusion about the research problem

The research addresses the challenge of developing an effective Tamil morphological ana-
lyzer in low-resource settings, where annotated corpora are scarce. By adopting a hybrid
approach that combines deep learning models for lemma prediction with word embedding-
based similarity methods for grammatical feature prediction, the study offers a scalable
solution that minimizes reliance on extensive manual annotation. Bidirectional LSTM
models demonstrated high accuracy in lemma prediction, while embedding-based meth-
ods effectively predicted grammatical features for unseen words. This approach not only
improves performance across various word categories but also provides a practical and
efficient framework for handling morphological complexity in Tamil, making it suitable
for real-world NLP applications.

6.3 Limitations

The limitations of this work lie primarily in the manually annotated dataset used. The
word-lemma pair corpus does not sufficiently cover all possible patterns of inflected and
derived forms, and it is somewhat imbalanced, with a majority of entries being verbs.
Additionally, the grammatical feature prediction component is limited to a subset of
word categories for which proper annotations are available. Another key limitation is the
absence of context-aware analysis—since this research focuses solely on word-level mor-
phological analysis, it does not account for context-dependent variations in grammatical
features, which may affect the accuracy of predictions in real-world scenarios.

6.4 Implications for further research

This research highlights the potential of combining deep learning and similarity-based
approaches to perform effective morphological analysis in low-resource languages like
Tamil. The success of subword-level embeddings in predicting grammatical features for
unseen words suggests that embedding-based techniques can reduce dependency on large
annotated corpora. However, the limitations identified open up several avenues for future
research.

In future work, expanding and balancing the dataset to include more diverse in-
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flectional and derivational forms across all word categories will be essential. Incorpo-
rating context-aware morphological analysis using sentence-level or sequence modeling
approaches (e.g., transformer-based models) could improve accuracy where grammatical
features depend on surrounding words. Additionally, semi-supervised or active learning
techniques could be explored to automatically annotate and correct ambiguous cases,
reducing manual effort. Finally, extending the current system into a full morphological
generator and analyzer pipeline would enhance its applicability to real-world NLP tasks
such as machine translation, speech recognition, and syntactic parsing in Tamil.
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A Implementation of the deep learning model for

lemma prediction

1 import pandas as pd

2 import matplotlib.pyplot as plt

3 from tensorflow.keras.models import Sequential

4 from tensorflow.keras.layers import Input, Embedding , Bidirectional , LSTM,

Dense, Activation

5 from tensorflow.keras import callbacks

6

7 # Define the model

8 model = Sequential()

9 model.add(Input(shape=(max_len ,)))

10 model.add(Embedding(

11 input_dim=max_label ,

12 output_dim=embedding_size ,

13 mask_zero=False

14 ))

15 model.add(Bidirectional(

16 LSTM(hidden_size , return_sequences=True)

17 ))

18 model.add(Dense(max_label))

19 model.add(Activation(activation_function))

20 model.compile(

21 loss='categorical_crossentropy',

22 optimizer=optimizer ,

23 metrics=['accuracy']

24 )

25 model.summary()

26

27 # Train the model

28 earlystopping = callbacks.EarlyStopping(monitor="val_loss",

29 mode="min",

30 patience=5,

31 restore_best_weights=True)

32

33 history = model.fit(X_train, y_train,

34 batch_size=32,
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35 epochs=30,

36 validation_data=(X_test, y_test),

37 callbacks=[earlystopping])

38

39 # Evaluate the predictions

40 score = model.evaluate(

41 X_test,

42 y_test,

43 batch_size=batch_size

44 )

45

46 history_df = pd.DataFrame(history.history)

47 history_df.loc[:, ['loss', 'val_loss']].plot()

48 history_df.loc[:, ['accuracy', 'val_accuracy']].plot()

49 plt.show()

50

51 print('Deep learning model: Bidirectional LSTM')

52 print('Test loss:', score[0])

53 print('Test accuracy:', score[1])

Listing 1: Deep Learning Model Training using Bidirectional LSTM

B Implementation of hyper parameter tuning for lemma

prediction model

1 import pandas as pd

2 import matplotlib.pyplot as plt

3 from tensorflow.keras.models import Sequential

4 from tensorflow.keras.layers import Input, Embedding , Bidirectional , GRU,

Dense, Activation

5 from tensorflow.keras import callbacks

6

7 resultsList = [] # Contains all the results

8 tempResultsList = []

9

10 # Perform hyperparameter tuning

11 for i in range(len(combinations)):

12 # Define the model
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13 model = Sequential()

14 model.add(Input(shape=(max_len ,)))

15 model.add(Embedding(

16 input_dim=max_label ,

17 output_dim=combinations[i][0],

18 mask_zero=False

19 ))

20 model.add(Bidirectional(

21 GRU(combinations[i][1], return_sequences=True)

22 ))

23 model.add(Dense(max_label))

24 model.add(Activation(combinations[i][2]))

25 model.compile(

26 loss='categorical_crossentropy',

27 optimizer=combinations[i][3],

28 metrics=['accuracy']

29 )

30 model.summary()

31

32 # Train the model

33 earlystopping = callbacks.EarlyStopping(monitor="val_loss",

34 mode="min",

35 patience=5,

36 restore_best_weights=True)

37

38 history = model.fit(X_train, y_train,

39 batch_size=combinations[i][4],

40 epochs=100,

41 validation_data=(X_test, y_test),

42 callbacks=[earlystopping])

43

44 # Evaluate the predictions

45 score = model.evaluate(

46 X_test,

47 y_test,

48 batch_size=combinations[i][4]

49 )

50

51 history_df = pd.DataFrame(history.history)
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52 history_df.loc[:, ['loss', 'val_loss']].plot()

53 history_df.loc[:, ['accuracy', 'val_accuracy']].plot()

54 plt.show()

55

56 # Store results

57 tempResultsList = [

58 combinations[i][0], # Embedding size

59 combinations[i][1], # GRU neurons

60 combinations[i][2], # Activation function

61 combinations[i][3], # Optimizer

62 combinations[i][4], # Batch size

63 score[1] # Accuracy

64 ]

65 print(tempResultsList , '\n\n')

66 resultsList.append(tempResultsList)

67

68 # Clear temporary results

69 tempResultsList = []

Listing 2: Hyperparameter Tuning for Lemma Prediction

C Implementation of the Lemma prediction process

4 import numpy as np

5 from tensorflow.keras.preprocessing.sequence import pad_sequences

6

7 def decode_lemma(encoded_lemma , ind2char):

8 decoded_chars = [ind2char[index] for index in encoded_lemma if index >

0 and index in ind2char]

9 return ''.join(decoded_chars)

10

11 def preprocess_new_word(word, char2ind, max_len):

12 sequence = [char2ind[char] for char in word if char != '\n']

13 padded_sequence = pad_sequences([sequence], maxlen=max_len, padding='

pre')

14 return padded_sequence

15

16 def predict_new_word(word, model, char2ind , ind2char , max_len):
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17 processed_word = preprocess_new_word(word, char2ind, max_len)

18 predictions = model.predict(processed_word)

19 predicted_indices = [np.argmax(char_vector) for char_vector in

predictions[0]]

20 predicted_lemma = decode_lemma(predicted_indices , ind2char)

21 return predicted_lemma

Listing 3: Lemma Prediction and Decoding

D Implementation of the hyper parameter tuning

process of grammatical prediction component

1 from collections import defaultdict

2 import gensim

3 from sklearn.metrics.pairwise import cosine_similarity

4 from sklearn.preprocessing import OneHotEncoder

5 import numpy as np

6

7 def calculate_accuracy(predicted_features , true_features):

8 correct_count = sum(1 for k, v in true_features.items() if

predicted_features.get(k) == v)

9 total_count = len(true_features)

10 return correct_count / total_count if total_count > 0 else 0

11

12 def predict_grammatical_features(new_word , suffix_length , suffix_weight ,

word_embeddings=[]):

13 new_word_embedding = suffix_weighted_embedding(new_word, model,

suffix_length , suffix_weight) if new_word in model.wv else None

14 if new_word_embedding is None:

15 return None, None

16

17 similarities = []

18 for word in corpus:

19 embedding , feature_vector = word_embeddings[word]

20 similarity = calculate_embedding_similarity(new_word_embedding ,

embedding)

21 similarities.append((word, similarity))

22
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23 most_similar_word = max(similarities , key=lambda x: x[1])[0]

24 predicted_features = morph_analysis[most_similar_word]

25 return predicted_features , most_similar_word

26

27 def suffix_weighted_embedding(word, model, suffix_length , suffix_weight):

28 if len(word) > suffix_length:

29 root_part = word[:-suffix_length]

30 suffix_part = word[-suffix_length:]

31 else:

32 root_part = word

33 suffix_part = word

34

35 root_vec = model.wv[root_part]

36 suffix_vec = model.wv[suffix_part]

37

38 combined_vec = (1 - suffix_weight) * root_vec + suffix_weight *

suffix_vec

39 return combined_vec

40

41 def tune_parameters(corpus, morph_analysis , test_words , suffix_lengths ,

suffix_weights):

42 best_params = None

43 best_accuracy = 0

44

45 for suffix_length in suffix_lengths:

46 for suffix_weight in suffix_weights:

47 word_embeddings = {}

48 for word in corpus:

49 word_embedding = suffix_weighted_embedding(word, model,

suffix_length , suffix_weight)

50 feature_vector = encoded_features[corpus.index(word)]

51 word_embeddings[word] = (word_embedding , feature_vector)

52

53 print(f"Tuning: Suffix Length={suffix_length}, Suffix Weight={

suffix_weight}")

54 total_accuracy = 0

55 total_words = 0

56

57 for word in test_words:
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58 true_features = test_words[word]

59 predicted_features , _ = predict_grammatical_features(word,

suffix_length , suffix_weight , word_embeddings)

60

61 if predicted_features:

62 accuracy = calculate_accuracy(predicted_features ,

true_features)

63 total_accuracy += accuracy

64 total_words += 1

65

66 average_accuracy = total_accuracy / total_words if total_words

> 0 else 0

67 print(f"Accuracy: {average_accuracy:.2f}\n")

68

69 if average_accuracy > best_accuracy:

70 best_accuracy = average_accuracy

71 best_params = (suffix_length , suffix_weight)

72

73 print(f"Best Parameters: Suffix Length={best_params[0]}, Suffix Weight

={best_params[1]}")

74 print(f"Best Accuracy: {best_accuracy:.2f}")

75 return best_params , best_accuracy

Listing 4: Hyperparameter Tuning for Suffix-Weighted Embeddings

E Implementation of the grammatical feature pre-

diction

1 from collections import defaultdict

2 import gensim

3 from sklearn.metrics.pairwise import cosine_similarity

4 from sklearn.preprocessing import OneHotEncoder

5 import numpy as np

6

7 feature_keys_verb = ["Tense", "Person", "Gender", "Number", "Mood", "Voice"

, "Form", "Animacy", "Polarity", "VerbForm", "Polite", "Case"]

8 feature_keys_noun = ["Case", "Gender", "Number", "Person", "Number", "

Animacy", "Polite", "Polarity", "Tense", "VerbForm"]
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9 feature_keys_pronouns = ["Case", "Gender", "Number", "Person", "Animacy", "

Polite", "PronType", "Reflex"]

10 feature_keys_proper_noun = ["Case", "Gender", "Number", "Person", "Animacy"

, "Polite"]

11 feature_keys_auxiliary = ["Case", "Gender", "Number", "Person", "Animacy",

"Polite", "Polarity", "Voice", "VerbForm", "Tense", "Mood"]

12 word_not_in_model = []

13

14 def load_morphological_data(filename):

15 corpus = []

16 morph_analysis = {}

17

18 with open(filename , 'r', encoding='utf-8') as file:

19 for line in file:

20 parts = line.strip().split()

21 word = parts[0]

22 features_str = parts[2]

23 features = {key: None for key in feature_keys}

24

25 if features_str != "_":

26 for feature_pair in features_str.split('|'):

27 key, value = feature_pair.split('=')

28 if key not in feature_keys:

29 print(key)

30

31 parsed_features = features if features_str == "_" else dict(

feature.split('=') for feature in features_str.split('|'))

32 for key, value in parsed_features.items():

33 features[key] = value

34

35 corpus.append(word)

36 morph_analysis[word] = features

37

38 return corpus, morph_analysis

39

40 def suffix_weighted_embedding(word, model, suffix_length , suffix_weight):

41 if len(word) > suffix_length:

42 root_part = word[:-suffix_length]

43 suffix_part = word[-suffix_length:]
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44 else:

45 root_part = word

46 suffix_part = word

47

48 root_vec = model.wv[root_part]

49 suffix_vec = model.wv[suffix_part]

50

51 combined_vec = (1 - suffix_weight) * root_vec + suffix_weight *

suffix_vec

52 return combined_vec

53

54 def calculate_embedding_similarity(embedding1 , embedding2):

55 embedding_similarity = cosine_similarity([embedding1], [embedding2])

[0][0]

56 return embedding_similarity

57

58 def predict_grammatical_features(new_word , suffix_length , suffix_weight ,

word_embeddings):

59 new_word_embedding = suffix_weighted_embedding(new_word, model,

suffix_length , suffix_weight) if new_word in model.wv else None

60 if new_word_embedding is None:

61 return None, None

62

63 similarities = []

64 for word in corpus:

65 embedding , feature_vector = word_embeddings[word]

66 similarity = calculate_embedding_similarity(new_word_embedding ,

embedding)

67 similarities.append((word, similarity))

68

69 most_similar_word = max(similarities , key=lambda x: x[1])[0]

70 predicted_features = morph_analysis[most_similar_word]

71 return predicted_features , most_similar_word

Listing 5: Suffix-Weighted Embedding and Grammatical Feature Prediction
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