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Abstract

In recent years, Coverless Image Steganography (CIS) has emerged as a promis-
ing alternative to traditional steganographic techniques by eliminating the need
for explicit data embedding and instead utilizing naturally occurring or generated
images as carriers. However, current CIS methods often suffer from low hiding
capacity, limited to concealing a single image, and offer insufficient robustness and
security when handling multiple secret images simultaneously.

To address these limitations, we present a novel multi-image coverless stegano-
graphic framework tailored for RGB images, capable of securely transmitting and
reconstructing up to four secret images using a single fused carrier image. Un-
like conventional methods that depend on pre-existing cover images, our model
generates an intermediate carrier image through a sophisticated pixel-level fusion
technique that merges visual information from multiple RGB secret images while
ensuring complete perceptual invisibility of the original content. This fusion pro-
cess guarantees that the carrier image contains no visually identifiable traces of
the concealed images, offering an inherently secure and stealthy representation.
To further strengthen concealment, the fused carrier undergoes multiple rounds of
image scrambling transformations, making unauthorized decoding virtually diffi-
cult. We also integrate a robust steganographic key mechanism, restricting access
and decoding capabilities exclusively to authorized receivers equipped with the
correct key. This ensures that even if the carrier is intercepted, the hidden content
remains secure and unrecoverable without the proper decryption context.

In the decoding phase, we propose a refinement algorithm designed to restore
fine-grained details lost during the fusion and scrambling processes. This algo-
rithm significantly enhances reconstruction fidelity and visual quality, even in the
presence of adversarial conditions such as noise, tampering, or geometric transfor-
mations.

Comprehensive experiments on benchmark RGB image datasets validate the ef-
fectiveness of our proposed model, demonstrating substantially higher hiding ca-
pacity, minimal visual distortion, and resilience against statistical and perceptual
steganalysis attacks. Compared to existing CIS approaches, our method offers
a more secure, high-capacity, and visually imperceptible solution for multi-image
coverless steganography, laying the foundation for next-generation covert commu-
nication systems.

Keywords : Multi-image Steganography, Coverless Image Steganogra-
phy, Steganographic Key.
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Preface

This document has been produced for the partial fulfilment of the requirements
of the B.Sc. in Computer Science (Hons) Final Year Project in Computer Science
(SCS4224). It presents a dissertation that introduces a novel technique built upon
advanced pixel-level manipulation, structural transformations and steganographic
key-based strategies to address the challenges of coverless multi-image steganog-
raphy involving RGB secret images. The proposed method focuses on concealing
multiple secret images within a single carrier image without the need for a prede-
fined cover, ensuring high hiding capacity, visual feature concealment, and accurate
reconstruction, thereby contributing a secure and efficient approach to the field of
steganography.

The dissertation is structured to include the problem definition, literature review,
methodological design, implementation details, experimental evaluation, critical
analysis of results, limitations, future research directions, and a concluding sum-
mary of findings.

This dissertation represents original work carried out by myself under the guidance
of my supervisor and co-supervisor. All content presented herein, unless explicitly
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Any material not specifically credited to external sources is considered to be our
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1 Introduction

1.1 Background

Advancements in technology have facilitated the sharing of multimedia data such
as images, audio, and video. As digital media is increasingly used to transmit confi-
dential and sensitive information, the need for highly secure data transmission has
become an essential for the sectors which handles critical information. However,
threats like criminal wiretapping, interception, data modification, or data deletion
during the transmission present significant risks to data security.

To protect such data, several information-hiding techniques have been developed,
including cryptography, watermarking, obfuscation, and steganography. Cryptog-
raphy employs mathematical methods and cryptographic keys to prevent unautho-
rized access by encrypting data. While this limits access to the data, it does not
hide the presence of encrypted content. As a result, unauthorized parties may still
detect its existence, potentially leading to attempts at data alteration, deletion or
decoding.

Steganography, on the other hand, conceals secret information within another ob-
ject, making both the content and the existence of the hidden data difficult to
detect. Unlike cryptography, where the main goal is to obscure the content of
secret data, objective of steganography is to conceal the presence of the hidden
information entirely. This technique can be applied across various media, includ-
ing text, images, audio, video, and network data, providing an additional layer of
confidentiality (Duan et al.|2020).

The term “Steganography” originates from the Greek words ” Steganos” and ” Graph,”
which mean ”hidden writing” or "secret writing” (Semilof & Clark|[2023)). It is a
method that embeds secret data within another object in a way that is unde-
tectable to those unaware of its presence (Tidmarsh||2023). Steganography began
in ancient times as a method of hiding secret information in a way that made its
very existence hard to detect, and over time, it has evolved into more advanced
and sophisticated techniques. In ancient times, people used clever methods to hide
secret messages. One such method was to make a person’s head bald, tattoo the
message on their scalp, and wait for the hair to grow back, hiding the tattooed in-
formation. The recipient would then make the head bald again to reveal the hidden
message. Another technique involved using invisible ink that would only appear
when the paper was heated with a flame. Some also carved messages onto wooden
tablets and then covered them with wax, making the writing invisible. To read
the message, the wax would be scraped off. These early steganographic techniques
show how people have long found creative ways to communicate in secret. This is
done by placing the hidden information inside natural looking object, which can
be shared openly between people without raising suspicion.

A typical steganographic system includes two primary components: the ” Encoder,”



which hides the secret data, and the ”Decoder,” which retrieves the hidden infor-

mation.

| CoverObject(C) |\
Embedding Algo
F(C, S,K)
| SecretData (S) /

Key (K) | Stego Object (C)
RecoveredSecret Extraction Algo
Data (S’) F’(C’, K)

Figure 1: The basic steganographic model (Choudary||2023)

Steganography has significantly advanced from its origins, evolving alongside the
development of digital technology. What once was a simple method of concealing
information has grown into a sophisticated field capable of hiding data across var-
ious types of digital media. With the increasing need for secure and undetectable
communication, modern steganography now includes techniques for embedding
information in text, images, audio, video, and even network traffic. These ad-
vancements have made steganography an essential part of digital security, allowing

information to be shared secretly and safely in today’s interconnected world.

e Text Steganography (Tidmarsh2023)
Text steganography is the idea of hiding a secret message inside another
text message. A simple form of text steganography is using the first letter
of each word to recover the secret message (Tidmarsh|[2023). Linguistic
Method, Random and Statistical Generation, Format Based Method, are
some techniques used for text steganography (Choudary|2023).

e Image Steganography (Tidmarsh|2023)
Image steganography hides secret information inside a digital image. This
approach is based on the fact the small modifications to image features or
noise that are very difficult to detect with human observation. The simplest
method of image steganography is hiding a low-resolution image inside a high-
resolution image by altering the of the original image (Tidmarsh(2023).
Redundant Pattern Encoding, Coding and Cosine Transformation, Encrypt
and Scatter, Masking and Filtering are some other common approaches which

are used in image stegnography (Choudary|[2023).

e Video Steganography (Tidmarsh}2023)

Video steganography is an advanced version of image steganography that



can encrypt an entire video. As digital videos behave as a series of sequential
images, every frame of video can encode as a collection of different images
(Tidmarsh|2023). Video Steganography can be considered as a combination

of audio steganography and image steganography (Choudaryi|2023).

e Audio Steganography (Tidmarsh|2023)

Like in image steganography and video steganography, Audio files also can
be hidden using steganography. The simplest from of audio steganography
is named as ”Backmasking” which the audio information that needed to be
hide is plays backwords on a track. Similar to image steganography, more
advanced techniques use of each bite in audio steganography (Tidmarsh
2023)). Parity Encoding, Phase Coding, Spread Spectrum are some methods
used in audio steganography (Choudary|2023).

e Network Steganography (Tidmarsh/|2023)
Network steganography is a smart digital steganography technique for hiding
data inside network traffic. Data can be hidden in network packets such
as TCP/IP headers or payloads. The sender may even send information

considering the duration between delivering various packets (Tidmarsh|2023).

Steganography system can be considered as a function which takes a carrier object
and the secret information as inputs and provides an embedded carrier as the
output. In here, the embedded carrier object is revealed to the outside persons,
and they are not aware about the existence of the secret information hidden inside
the carrier object as it gives no clue. The hidden information can be recovered from
the carrier object for the respective receivers (Felix et al.[[2020). Steganography

should satisfy following constraints.

I. Both the carrier image and the carrier object which embedded with secret
information should be similar to evaluation via human vision (Felix et al.
2020).

II. The hidden information should be recoverable with the embedded carrier ob-
ject and the recovered secret information should be clear and understandable
(Felix et al.|2020)).

III. Human vision should not be able to detect the existence of the hidden infor-

mation which embedded in carrier object (Felix et al.||2020)).

Image steganography receives significant attention in the field of steganography
due to the widespread use of images in digital communication. With the internet
and social media platforms heavily relying on image sharing, images have become
an ideal carrier for embedding secret data. Their high redundancy and tolerance to
slight changes make them suitable for concealing information without noticeably

affecting visual quality. Additionally, images are easy to manipulate, transmit,



and store, which allows steganographic techniques to be applied in a seamless and
undetectable manner. As a result, image steganography offers a practical and
efficient way to protect sensitive information, making it one of the most researched
and applied forms of steganography in the digital age. Image steganography can
be understood through three main approaches.

The first is the method is cover modification, where an existing image is altered
to embed secret information. This information can be either in image or text
format, and the embedding is done by changing the pixel values of the cover image.
While this method is quite common, it is highly vulnerable to steganalysis attacks,
especially with the increasing use of deep learning techniques that can detect even
minor changes in image content. Because of this, researchers have shown growing
interest in coverless techniques that avoid the use of a traditional cover image.
The second method is known as cover selection, where a suitable image is selected
from a large database to represent the secret content in a way that causes minimal
distortion. However, this approach requires access to a vast dataset and involves
difficulties in identifying the most appropriate image.

The third method is cover synthesis, which involves generating synthetic images
from the secret information using generative models. Although this technique
reduces the chances of detection, it demands higher computational resources and
more time for both encoding and decoding. Among all these approaches, coverless
methods have proven to be more resistant to steganalysis compared to traditional
modification techniques.

With the help of generative models, coverless image steganography has shown
promising potential. Motivated by these advancements, I hope to explore new

directions and possibilities within the field of coverless multi image steganography.

1.2 Motivations

Coverless multi-image steganography is a promising field that aims to hide multiple
secret images within a synthetic image without requiring a conventional cover im-
age. This approach offers advantages over traditional steganography by reducing
reliance on a pre-existing cover and minimizing the chance of detection. Recent
work by [Dharmawimalal (2023) shows promising results in concealing grayscale se-
cret images, achieving effective visual obscurity with minimal detectable features.
However, the study also highlights a vulnerability in simpler black-and-white im-
ages, which tend to reveal more distinct features in carrier image compared to
complex images which are rich in information, where visual details are more suc-
cessfully obscured in carrier image. In both cases, reconstructed images appeared
significantly blurrier than their originals, indicating a trade-off between conceal-
ment and image clarity. Inspired by this progress, Lakshan| (2024) extended the
method to @] images, making strides toward hiding color-based secrets. How-

ever, the[RGBJadaptation reveals more visible features of the hidden images, leav-



ing the presence of these secret images somewhat detectable to human observers.
This limitation hinders the effectiveness of @ steganography for applications

where high security and subtlety are crucial.

The field of |[Generative Adversarial Network (GAN)| has opened up new possi-

bilities for enhancing coverless steganography, particularly by generating realistic
synthetic images that could potentially conceal secret content more effectively.
based methods have shown promise in concealing grayscale secret images by
significantly reducing visible features and concealing the existence of the hidden
content. Yet, applying [GAN}based coverless steganography to [RGB| images re-
mains an unsolved challenge. Current [GAN|methods struggle to achieve the same
level of concealment with color images, where color and texture make visual detec-
tion easier. This gap in the literature suggests an opportunity for further research
to explore how coverless multi image steganographic approaches can be optimized
to enhance visual and contextual concealment for RGB images, creating synthetic
images where the hidden content is both visually imperceptible and contextually
undetectable.

This research is motivated by the potential to develop a nover method to im-
prove coverless multi-image steganography for images. The aim is to achieve
enhanced concealment of the visual features of secret images and to mask the ex-
istence of these hidden images entirely. This advancement would not only make it
more difficult for observers to visually detect hidden content but also obscure the
contextual presence of concealed images. If successful, this method could pave the
way for more secure and effective steganographic applications, offering a new level
of concealment in color-based steganography that meets the rigorous demands of

confidentiality and subtlety in information security.

1.3 Research Gap

Coverless multi-image steganography has utilizes concealing multiple secret im-
ages. The method proposed by Dharmawimala has achieved coverless multi-image
steganography for Gray scale secret images revealing less visual features of se-
cret images. With the inspiration by Dharmawimala’s model, Lakshan’s method
was able to achieve multi-image steganography for RGB secret images into some
context. The major drawback is Lakshan’s method is, this method reveals a con-
siderable amount of visual features of secret images.

The utilization of GAN provides some added advantages to the improvement in
steganography. Although coverless multi-image steganography based on GANs
offers advantages such as enhanced reconstruction quality and increased hiding
capacity, it still falls short of fully achieving comprehensive visual feature conceal-
ment.

Transforming multiple secret images into a single carrier image demonstrates that

high hiding capacity rates can be achieved. Using advanced fusion, diffusion, re-



finement algorithms we aim to implement a new method to achieve more enhanced

security over coverless multi-image steganography for RGB images.

1.4 Problem Statement

Since Lakshan’s proposed model was unable to achieve a better concealing of visual
features of the secret images, we intend to achieve better hiding performance over
the carrier image. Though the proposed model was successfully able to transform
multiple images into a single image, human eye could easily detect the features of
secret information. So that, it creates the necessity of implementing an enhanced
method for achieving more security performance and hiding capability to address
this drawbacks. The objective of this research is to develop a novel coverless multi-
image steganographic approach aimed at enhancing visual feature concealment

while ensuring secure and efficient image reconstruction.

1.5 Research Questions

Through the proposed study, we aim to provide solutions to the following research
questions in order to accomplish the requirements of designing an efficient coverless

multi-image steganography method, as stated above.

e How can coverless multi-image steganography methods be improved
to achieve higher hiding capacity and visual feature concealment
while preserving reconstruction quality and security?

This research aims to enhance coverless multi-image steganography by us-
ing pixel-level manipulations and structural transformations to fuse multiple
RGB secret images into a single intermediate image. The method aims to
enhance hiding capacity while enabling accurate reconstruction of the origi-
nal images with minimal visual degradation, all while preserving high visual

quality and robustness against detection.

¢ How can coverless multi image steganography methods be im-
proved to reconstruct the original secret images with minimal loss
of visual features?

The research focuses on developing techniques to hide the visual features
of multiple secret images while embedding them into a single intermediate
image. A critical aspect of this approach is ensuring that the embedded infor-
mation can later be accurately reconstructed, enabling the recovery of each
original secret image with minimal data loss. The research focuses on main-
taining the integrity of visual features in the reconstructed images, preserving

essential details as closely as possible to the original content.

e How|[GAN]|based coverless multi image steganography methods can
be improved to enhance the visual feature concealment and secu-

rity performance in [GAN]based multi-image steganography?
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It emerges that [GAN]have been improving various steganographic techniques
while optimizing visual feature concealment capabilities. So that, our objec-
tive is to achieve hiding multiple secret images concealing the features of

secret images via based coverless image steganography.

1.6 Project Scope

This proposed research will investigate on implementing a novel steganographic
approach to enhance the hiding capabilities on [RGB] multi-image steganography.
During this study, a new m based model will be designed and implemented
which ensures visual feature concealment of the secret images in the coverless
multi image steganographic context. The based model implementation will
be limited only for two@secret images in this study as the primary purpose of
this study is to achieve enhanced concealment of secret images. Due to the limi-
tations in hardware resources and computational power the images will be limited
for low resolution images of 256%256.

In addition to enhancing visual concealment, this research will also explore the de-
velopment and implementation of another model focused on increasing the overall
hiding capacity in the coverless RGB multi-image steganographic context based
on advanced and novel fusion, diffusion and refinement techniques. This newly
designed model will aim to embed a greater volume of secret data while continuing
to maintain the concealment of visual features of the secret images. The objective
is to investigate how advanced fusion and scrambling techniques can be utilized
to support higher embedding capacity without compromising the ability to recon-
struct the original secret images.

As the goals of this research are to achieve increased hiding capacity and advanced
visual feature concealment, transmission losses during communication through ex-
ternal channels will not be addressed. The study assumes a lossless channel and
concentrates solely on embedding the visual features of the secret images into the

carrier image and accurately reconstructing the original images.

1.7 Aims and Objectives

This project aims to design a new coverless steganography method for @] im-
ages, including an alternative scrambler algorithm to achieve more security while

transferring secret images. In order to do so we achieve the following objectives.

I. To study existing multi-image steganographic models and analyze their strate-

gies for visual feature concealment.

II. To explore alternative techniques, including image scrambling methods, to

improve visual feature concealment.



ITI. To investigate embedding techniques for compressing multiple images into
a single representation and examine refinement methods for reconstructing

original images while preserving missing or degraded data.

IV. To design and implement a novel steganographic model that achieves en-
hanced visual feature concealment, higher hiding capacity, and accurate re-

construction.

V. To evaluate the performance of the implemented model in terms of conceal-

ment effectiveness, reconstruction quality, and overall robustness.

1.8 Significance Of The Project

While various steganographic models have been developed to hide information ef-
fectively, multi-image steganography continues to face challenges in achieving high
accuracy in concealment as well as reconstruction. In particular, existing GAN-
based coverless image steganography methods have yet to fully conceal the visual
features of multiple RGB secret images. There is a clear need to enhance current
techniques to ensure stronger visual feature concealment and more accurate recon-
struction of the original images. This research aims to address these limitations
by exploring suitable embedding techniques, an optimal scrambling algorithm and
selecting a suitable GAN model for both image transformation and recovery.

A significant breakthrough in this area would offer considerable benefits to domains
that require robust data security and effective information hiding. Furthermore,
improvements based on the proposed method could lay the groundwork for more
advanced coverless multi-image steganography models specifically tailored for RGB
images.

Furthermore, this study assumes that no data loss or modifications occur during
the communication process due to technical or network-related issues. By focus-
ing on multi-image steganography, we aim to reduce potential errors per image,
ensuring a more robust and reliable method for secure data embedding and re-
trieval. Since traditional steganographic approaches often suffer from distortions
introduced by compression, transmission noise, or lossy channels, our proposed
method seeks to mitigate such vulnerabilities.

By designing a model that inherently resists such distortions, we aim to enhance
the reliability of steganographic communication. This is particularly crucial in ap-
plications requiring high precision, such as confidential data transfer, secure com-
munications, and digital forensics. Future extensions of this research could explore
adaptive error correction mechanisms to further strengthen the resilience of cover-
less multi-image steganographic techniques, ensuring seamless data reconstruction

under real-world constraints.



1.9 Research Methodology

The primary goal of this research is to enhance both hiding capacity and security in
multi-image steganography using two distinct methodologies: a traditional image
fusion-based steganographic approach and a GAN-based coverless steganographic
model. The first methodology focuses on compressing multiple secret images into a
single intermediate image through pixel-wise fusion, LSB manipulation, and scram-
bling techniques. This approach achieves high hiding capacity without relying on
a predefined cover image, ensuring minimal visual and reconstruction loss while
concealing visual features effectively and achieves higher security by using stegano-
graphic key approach. The second methodology emphasizes improving security by
leveraging advanced GAN-based steganography techniques to enhance concealment
and resistance against detection.

The literature review played a crucial role in identifying existing image manipula-
tion techniques and GAN-based image steganographic architectures, highlighting
their strengths and limitations. This analysis provided a strong foundation for
designing a suitable architecture that effectively supports multi-image steganogra-
phy.

Following the architecture design phase, the data collection process was carried
out, focusing on gathering a dataset comprising secret images and paint art im-
ages. The data preprocessing stage involved resizing images, generating fused im-
ages, and creating scrambled images to construct two entirely new datasets which
is used for the training purposes.

The model implementation was then initiated, followed by setting up an appro-
priate training environment to ensure optimal performance. Experiments were
conducted on existing techniques to benchmark their effectiveness before training
the proposed model. The implemented model was tested under diverse conditions
during training and evaluation to assess its hiding capacity and security perfor-
mance.

To further enhance the model, iterative updates were applied based on evalua-
tion results. The improved version of the model was retrained and re-evaluated
to ensure better performance. The final results include a complete architectural
overview, along with test visualizations and statistical evaluations demonstrating

the model’s effectiveness in securely concealing multiple secret images.

1.10 Outline of the Dissertation

This dissertation presents a novel approaches to coverless multi-image steganog-
raphy, leveraging Generative Adversarial Networks (GANs) alongside advanced
image manipulation techniques and a key-based steganographic framework. The
proposed methods are designed to address key challenges such as visual feature
concealment, high embedding capacity, and robust reconstruction, without relying

on predefined cover images.



The structure of the dissertation is organized as follows:

e Chapter 1 provides an introduction and background to the study, including
the problem statement, research questions, project scope, and the aims and

objectives of the research.

e Chapter 2 presents a comprehensive literature review, covering existing
steganographic techniques and related work that form the foundation of this

study.

e Chapter 3 outlines the design of the proposed methodologies and architec-

tural approaches used in the research.

e Chapter 4 details the implementation process, highlighting key components

and system integration.

e Chapter 5 discusses the experiments conducted, along with the results and

analysis of the model’s performance.

e Chapter 6 offers a critical evaluation of the results, discussing strengths,

weaknesses, and practical implications.

e Chapter 7 presents the conclusion with limitations and future possibilities.

1.11 Project Timeline

The gantt chart to illustrate in figure, indicates the timeline of this research project.

2023 2024 2025
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr’

Testing And Evaluation The Model
Final Thesis
Research Paper

Figure 2: Gantt Chart of the Research Project

1.12 Chapter Summary

This chapter laid out the foundational elements of the dissertation by providing the
necessary background knowledge and motivation in sections 1.1 and 1.2. Research
Gap and the Problem State is highlighted in sections 1.3 and 1.4. Section 1.5
presents the research questions. Section 1.6 presents the scope of the project. Aims
and Objectives are highlighted in Section 1.7. Section 1.8 presents significance of
the project. Methodology is presented in section 1.9. Furthermore in next sections,

dissertation outline and project timeline are presented.
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2 Literature Review

Steganography has roots that trace back to ancient times. Early examples include
writing secret messages on wooden tablets and covering them with wax, using
invisible ink for hidden communication, employing letter substitution techniques,
and reading letters or words at fixed intervals. These methods all illustrate early
forms of steganography (Dickson/[2020).

As technology has advanced, the applications of steganography have broadened
significantly across various fields, especially in image steganography due to the
widespread use of digital images in communication, the high redundancy and ca-
pacity of image files, and the ease with which subtle modifications can be made

without affecting visual quality.

2.1 TImage Steganography

In image steganography, a cover image serves as the carrier for hidden information.
The goal is to embed secret data within another image, known as the stego image,
providing minimal indication to steganalysis tools about the presence of hidden
information (Liu, Ke, Zhang, Lei, Li, Zhang & Yang2020)).

Image steganography is classified into three categories.

I. Cover Modification.
Cover Modification is a technique of altering the cover image in order to hide

secret image. substitution method is a more popular method for Cover
Modification (Liu, Ke, Zhang, Lei, Li, Zhang & Yang)|2020).

IT. Cover Selection.
By mapping cover images and secret images, a cover image is chosen from
a pool based on pre-defined criteria such as similarity to the original secret
image. This technique minimizes perceptual changes and avoids suspicion
while embedding the secret image into the cover image (Liu, Ke, Zhang, Lei,
Li, Zhang & Yang)|2020).

ITI. Cover Synthesis.
In cover synthesis image steganography, an entirely new image is generated
which looks normal and statically similar to the expected cover image to
embed the secret image (Liu, Ke, Zhang, Lei, Li, Zhang & Yang}[2020)).

2.1.1 Cover Modification based Image Steganography

Traditional image steganography primarily relies on cover modification techniques,

where the original cover object is slightly altered to embed secret information. One

of the most common methods involves modifying the|Least Significant Bit (LSB)|of

the cover image, as these subtle changes are generally imperceptible to the human

eye. This technique is based on the principle that small alterations to low-impact
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image features are difficult to detect through visual observation. A simple example
of this approach is embedding a low-resolution secret image into a high-resolution
cover image by manipulating its LSBs (Tidmarsh|2023).

These methods emerged alongside advancements in digital technology, with the
LSB substitution algorithm becoming one of the most widely adopted techniques.
In the LSB substitution approach, the least significant bits in each byte of an image
are modified to hide secret data, causing minimal visual distortion. Inspired by

this concept, Balujal (2017) introduced a novel technique capable of hiding a full

image inside a single cover image. While modifications to the|[Most Significant Bit|
(MSB)|can significantly alter an image’s appearance, changes to the LSBs have a
much subtler effect. As a result, LSB substitution enables the embedding of se-

cret information with minimal disruption to the visual quality of the cover image,
making it difficult for unintended observers to detect the presence of hidden data.
The success of LSB substitution based methods in steganography lies in their
ability to conceal information through minor, nearly undetectable modifications,
offering a simple yet effective way to secure visual data.

However, while these traditional techniques were effective at obscuring hidden im-
ages from human detection, they are more susceptible to exposure by modern
steganalysis tools. Advanced analytical methods, including statistical analysis and
deep learning-based detection models, can now identify patterns and anomalies
introduced by LSB embedding, compromising the secrecy of the hidden content.
Additionally, traditional methods often lack robustness against common image pro-
cessing operations such as compression, resizing, or format conversion, which can
distort or destroy the hidden data (Tidmarsh|2023).

These limitations have led to the growing interest in more advanced and secure
alternatives, such as coverless steganography and generative approaches using deep
learning models. These newer techniques aim to overcome the vulnerabilities of
traditional methods by generating carrier image in a way that inherently integrates
the secret information, making detection significantly more difficult. As a result,
the focus of modern research is shifting towards improving resilience, increasing

capacity, and reducing detectability in steganographic systems.
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Figure 3: Baluja’s Image to Image Hiding

2.1.2 Coverless Image Steganography

In modern steganography, more sophisticated techniques and algorithms are em-
ployed to ensure secure and reliable communication of confidential data. Stegano-
graphic models generally consist of two main components: the embedding algo-
rithm, which hides the secret information, and the extracting algorithm, which
retrieves it. During data transmission, attackers may attempt to use steganalysis
tools to intercept, modify, or delete hidden data. This risk highlights the critical
need for secure data transfer that provides no indication of the secret data’s pres-
ence (Liu, Ke, Zhang, Lei, Li, Zhang & Yang|2020).

In response, coverless image steganography was developed, allowing new images to

be generated directly from secret data without embedding it into a cover image,
thereby reducing the risk of detection.

Coverless image steganography can be broadly classified into two approaches which
are cover selection and cover synthesis.

Cover selection involves selecting a suitable image from a predefined database that
represents the secret data. Since the chosen image is not altered in any way, this
approach offers strong resistance to steganalysis attacks. However, it requires ac-
cess to a large and diverse image database and selecting the most appropriate
image to match the secret data can be difficult. This limitation makes the method

less practical in situations where a perfect match is not available.
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Cover synthesis uses generative models to create entirely new synthetic images
based on the secret data. This technique offers a high level of flexibility and can
provide better concealment of visual features since the image is generated specifi-
cally to carry the secret information. A major advantage of this method is that it
does not depend on an external image database. However, it demands considerable
computational resources and time, and the quality of the generative model directly
affects the accuracy and reliability of both the concealment and reconstruction pro-
cesses.

Both cover selection and cover synthesis are important directions in coverless im-
age steganography. They contribute to strengthening data security and minimizing
the chances of detection, though each comes with its own set of advantages and

limitations.

2.2 |Generative Adversarial Network (GAN)|

A is a technique that produces high-quality synthetic data that is chal-
lenging to distinguish from real data (Goodfellow et al.[[2014). With its strong

generative capabilities, natural-looking modification abilities, and high recovery
accuracy, have been introduced in the field of steganography. This ap-
proach has demonstrated improvements in achieving a higher hiding capacity, se-
cure transmission, and accurate recovery of secret data. represent a novel
framework for evaluating generative models through computational means, allow-
ing them to generate synthetic data that closely resembles real data, making it
nearly indistinguishable (Goodfellow et al.|2014).

Real
Real
World bata
Images
Discriminator —>-
©
Latent .

Random Generator Sygt:tzt'c
Variable (G)

Figure 4: Structure of GAN (]Goodfellow et al.||2014[)

Figure {4] presented above illustrates the basic structure of a |[Generative Ad-|

versarial Network (GAN)| showcasing the adversarial training process between

the generator and the discriminator. This architecture represents a breakthrough
in generative modeling, where two neural networks are engaged in a competitive
framework to iteratively improve one another’s performance.

GANSs have gained significant traction in recent years, particularly in areas such as
image synthesis, super-resolution, image-to-image translation, and data augmenta-
tion. In this model, the generator G attempts to generate data samples that mimic

the distribution of real-world data, while the discriminator D aims to accurately
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classify inputs as real or generated (fake). The success of this adversarial setup
lies in its ability to force the generator to produce increasingly realistic outputs by
continuously learning from the discriminator’s feedback.

The core idea behind GANs can be mathematically formulated as a minimax op-

timization problem, represented by the following equation:
mgn max L(D,G) = Ex ~ pdata(x)[log D(z)] + E.p. -y log(1 — D(G(2)))] (1)

Where:

e (G is the Generator, which learns to generate data samples that resemble

real data.

e D is the Discriminator, which learns to distinguish between real and gen-

erated (fake) samples.

® I ~ paata() denotes that x is a real data sample drawn from the true data

distribution pgata.

e 2z ~ p,(2) denotes that z is a random noise vector sampled from a prior

distribution p,, typically a uniform or Gaussian distribution.
e D(x) is the probability that the discriminator assigns to input x being real.

e D(G(z)) is the probability that the discriminator assigns to the generated
sample G(z) being real.

In this formulation, the discriminator seeks to maximize the probability of correctly
identifying real and fake data, while the generator seeks to minimize this ability
by generating increasingly realistic samples. This creates a dynamic equilibrium
where both networks compete to outsmart each other.

The loss function of the discriminator is defined as:

Lo = == (log(D@?)) +log(1 = DG())) 2)

Where:

e [p is the loss of the discriminator, measuring how well it distinguishes

real from generated data.
e m is the batch size, i.e., the number of samples used in one training iteration.
e z() is the i*" real data sample drawn from the true data distribution.

e 20 is the i noise vector sampled from a prior distribution (e.g., uniform or

Gaussian).

o (& (z(i)) is the generated sample produced by the generator from noise 2.
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e D(x(™) is the discriminator’s estimated probability that z(*) is real.

e D(G(2")) is the discriminator’s estimated probability that the generated

sample G(z(?) is real.

This loss encourages the discriminator to assign high probabilities to real samples
and low probabilities to fake ones. It plays a crucial role in evaluating the quality
of the samples generated by the generator.

The generator, on the other hand, attempts to maximize the probability that its
outputs are classified as real by the discriminator. The generator loss function is

given by: -
Lo === 3 log(D(G()) <3>

Where:

e L is the loss of the generator, which measures how well the generator is

able to fool the discriminator.

e m is the batch size, i.e., the number of noise samples used in one training

iteration.
e 20 is the i*" noise vector sampled from the prior noise distribution.

e G(2") is the synthetic data (fake sample) generated by the generator using
(4)
FACH

e D(G(2")) is the discriminator’s estimated probability that the generated

sample G/(2() is real.

This loss ensures that the generator learns to produce outputs that are difficult for
the discriminator to distinguish from real data.

Despite their powerful capabilities, GANs also come with several training chal-
lenges. These include maintaining a balance between the generator and the dis-
criminator to avoid mode collapse or vanishing gradients. Synchronizing both
components effectively is crucial for stable training. For instance, overtraining the
generator without updating the discriminator can destabilize the entire training
process.

Nevertheless, the ability to learn high-dimensional and complex distributions from
random noise makes GANs a highly valuable tool in modern Al systems. With ad-
vancements in training techniques and architectural improvements, GANs continue

to push the boundaries of what is achievable in generative modeling.

2.2.1 CycleGAN

CycleGan (Chu et al.|[2017) is a ring network which has two symmetrical
models. In CycleGAN, the models have two shared generators and one dis-
criminator for each[GAN|model in a way that the CycleGAN model has total of two
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generators and two discriminators. The goal of CycleGAN is to transform images
from one domain to another, with the ability to reconstruct the original images
when transformed back. This model is particularly useful when paired datasets
are not available, as it uses a cycle consistency loss to enforce the reversibility of

the transformation.

Discriminator G:A->B Discriminator
A B
Generator \ 7
Imagesin Imagesin
Domain A Domain B
Generator’
F:B>A

Figure 5: CycleGAN

P

e

(a) Aerial photograph: . (b) Generated map: Fux. (c) Aerial reconstruction: G Fx.

Figure 6: CycleGAN Transformation on different domains

CycleGAN’s architecture offers significant benefits to image steganography by en-
abling reversible, unsupervised image transformations without requiring paired
datasets. Its cycle consistency loss ensures that an image can be transformed
into a different style (e.g., painting, map) and then accurately restored, which is
ideal for securely embedding and later retrieving hidden information. The complex
transformations generated by CycleGAN provide a more secure form of conceal-
ment than traditional pixel-based methods, as the hidden data becomes less de-
tectable through basic steganalysis. Furthermore, CycleGAN’s flexibility to adapt
to diverse visual styles enables dynamic, multi-layered steganographic methods, al-
lowing sensitive information to be embedded in ways that resemble various visual
domains, such as artworks or satellite maps, effectively enhancing the security and

versatility of data concealment.
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2.2.2 Coverless Image Steganography using

In traditional image steganography, cover images are modified during the embed-
ding of secret data, which often results in distortions that make it possible for
steganalysis tools to detect discrepancies. To address these limitations,

have brought significant advancements to coverless image steganography.

The CycleGAN model (Chu et al.[2017) is a technique designed for image-to-image

transformations, and its reversible properties allow for the recovery of the original
image.

The Cam-GAN model, introduced by |[Liu, Ma, Guo, Hou, Schaefer, Wang, Wang &/
, is capable of hiding a full-sized image in a coverless manner, achieving
notable improvements in both concealment capacity and security.

2.2.3 Coverless Multi Image Steganography using

Inspired by CycleGAN, [Dharmawimalal (2023) developed a novel steganographic

method for grayscale images, achieving coverless multi-image steganography. With
her approach, she successfully generated a carrier image that minimizes evidence

of the presence of secret images and reveals fewer visual features of the hidden

content (Dharmawimala][2023). Figure [7] illustrates the experimental results of

Dharmawimala’s method.

Lakshan| (2024) expanded on Dharmawimala’s grayscale model by adapting it for

images in coverless multi-image steganography. In his architecture, he suc-
cessfully fused multiple@images and used the I™2I model to recover the secret
images from the fused output. However, the extracted features of the secret im-
ages were still visible in the stego image to a significant extent, revealing traces of
the hidden content . Figurevisualizes the experimental results
from Lakshan’s work. Given these advancements, the need for enhanced security
in coverless multi-image steganography for images has become evident. It
is essential to transfer secret images using more secure methods that not
only ensure the concealment of the secret data but also effectively hide the visual

features of the hidden images.
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Figure 8: Lakshan’s Experiment Results l] 2024

2.3 Steganalysis

With the arrival of steganography to the information hiding domain, steganog-

raphy detection technologies also have been emerged as well (Tidmarsh|2023).

Steganalysis is the technique which is used to identify the existence of secret data
hidden inside the carrier images. There are three types of steganalysis methods
(Duan et al.|[2020).

e Active Warden (Duan et al.|2020))

The main goal is to discover the existence of the secret information and alter

or erase the secret information.

e Passive Warden (Duan et al.|2020)

The delivery of the data is authorized or prevented when the existence of the

secret information is discovered. Data can not be destroyed or altered.

e Malicious Steganalysis (Duan et al.|2020)

When the existence of the secret information is discovered, attempts are done
to understand the steganographic method which is used to hide the secret
information. Sometimes completely different cover images are generated to

deceive both sender and the receiver.
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As steganographic methods become more sophisticated, steganalysis has similarly
evolved, particularly with the integration of deep learning techniques that offer
improved detection capabilities.

Among the state-of-the-art steganalysis models, deep convolutional neural net-
works have shown promising results. GNCNN, proposed by (Qian et al.||[2015) in
2015, was one of the earliest neural network-based models developed specifically
for steganalysis. Following that, Xu-Net and Ye-Net introduced more advanced
architectures with improved feature extraction layers to enhance classification per-
formance. These models are typically trained on large-scale image datasets and
are capable of identifying subtle statistical deviations that may result from data
embedding, which are generally invisible to the human eye.

Grayscale images are frequently used during the training and evaluation of ste-
ganalysis models to simplify the analysis process by reducing computational com-
plexity and removing the influence of color channels. Once trained, these models
output probability vectors indicating whether an image is likely to be a stego image
or a clean one.

Modern steganographic models are commonly evaluated using these deep learning-
based steganalysis tools to measure their resilience against detection. Tools such
as StegExpose, GNCNN, and Xu-Net are often employed to test and validate the

robustness of newly proposed models.

2.4 Chapter Summary

This chapter presents a comprehensive Literature Review on Steganography. This
provides an overview of the Image Steganography domain, outlining its fundamen-
tal requirements and categorizing different approaches to image steganography.
This also discusses about the traditional approaches with potential advantages
and vulnerabilities. Furthermore, it delves into Coverless Image Steganography,
emphasizing its significance in eliminating the dependency on a cover image. The
section also explores Coverless Image Steganography using Generative Adversarial
Networks (GANs), discussing advancements in leveraging GAN-based models for
secure data concealment. Finally, it examines Coverless Multi-Image Steganogra-
phy using GANs, highlighting its potential in enhancing security and embedding
capacity through multiple secret images.
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3 Research Approach/ Methodology

The research mainly proposes two distinct methodologies, each highlighting its ad-
vantages and disadvantages. The first methodology focuses on increasing the hiding
capacity of multi-image steganography by embedding multiple secret images into
a single intermediate image, without relying on a predefined cover image, while
also preserving the original quality during reconstruction. The second methodol-
ogy aims to enhance the concealment of visual features and improve the security
of hidden content using GAN-based techniques. By addressing both capacity and
concealment, the study seeks to build robust and secure coverless steganographic
frameworks and open new avenues for future research in GAN-based coverless
multi-image steganography for RGB images. Each methodology is carefully de-
signed and evaluated to assess its effectiveness in terms of visual imperceptibility,
reconstruction accuracy, and resistance to steganalysis.

This research places a strong emphasis on increasing the hiding capacity of steganog-
raphy in RGB images by embedding multiple secret images into a single interme-
diate image without altering a predefined cover. This is accomplished through
advanced pixel-level manipulations and structural transformations that fuse in-
formation from the RGB channels of each secret image. A critical objective is
to ensure the intermediate image retains sufficient data to enable accurate re-
construction and refinement of all original secret images. The study also focuses
on improving structural encoding techniques to enhance reconstruction accuracy,
increase data concealment, and boost resistance against steganalysis—ultimately
contributing to the overall security and effectiveness of coverless steganographic
systems.

In parallel with improving capacity and reconstruction, this research also priori-
tizes the concealment of visual features and the hiding of secret image presence by
developing a GAN-based coverless multi-image steganography model specifically
tailored for RGB images. Advanced generative techniques such as CycleGAN are
explored to improve the model’s transformation and concealment capabilities. To
further enhance visual obfuscation, scrambling algorithms such as Arnold Scram-
bling and Reverse Arnold Scrambling are applied strategically. These techniques
ensure that embedded features remain visually imperceptible, making it difficult

for unauthorized observers to detect the presence of hidden content.

3.1 Proposed Methodology - 1 (Steganographic Key based
coverless multi image steganography)

The literature review explores traditional cover modification techniques that ma-

nipulate pixel values, particularly the least significant bits of a cover image, to

embed secret image information. Inspired by these techniques, this study proposes

a novel LSB manipulation method to fuse two secret images into a single inter-
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mediate image without relying on a predefined cover. This approach removes the
dependency on an external cover while preserving crucial information needed for
accurate recovery and refinement of the original secret images. In addition, other
compatible techniques are integrated with this method, enabling the full architec-
ture to effectively compress four images into a single intermediate image. This
intermediate image reveals no visual clues about the secret images and allows for

their reconstruction with minimal visual distortion and low reconstruction loss.

Secret Images

Encoder

l

Intermediate
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Steganographic Key

i

Decoder

Refined Secret
Images

Figure 9: Proposed Methodology of Steganographic key based coverless multi im-
age steganography

The proposed methodology consists of two key phases: Image Fusion and Image
Scrambling. Image Fusion plays a crucial role in compressing multiple secret images
into a single intermediate representation while preserving essential details required
for accurate reconstruction. On the other hand, Image Scrambling enhances se-
curity by effectively concealing the visual features of the fused image, making it
difficult to interpret or detect hidden content through visual inspection. Figure@

illustrates the overall architecture.
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3.1.1 Image Fusion

Image Fusion is the initial and fundamental phase of the proposed methodology,
responsible for compressing multiple secret images into a single intermediate im-
age. This process is designed to retain essential visual and structural information
from all input images, enabling accurate and high-quality reconstruction later.
By applying specialized fusion algorithms, the method ensures that key features
from each secret image are integrated meaningfully into one unified representation.
The fusion technique not only maximizes the hiding capacity by encoding multi-
ple images into one but also lays the groundwork for further processing without

compromising the integrity of the original data.

3.1.2 Image Scrambling

Image Scrambling aims at enhancing the security of the steganographic system.
This phase involves transforming the fused image in a way that conceals its visual
content, making it unintelligible to both human observers and automated analysis
tools. By applying multiple rounds of scrambling using steganographic keys, the
method ensures that the embedded information is not easily traceable or recon-
structable without the proper decoding mechanisms. This significantly increases
the robustness of the system against steganalysis and unauthorized access, con-
tributing to the stealth and security of the hidden communication process.

To transform multiple images into a single image while preserving the essential
details required for accurate reconstruction and achieving effective visual feature
concealment, the proposed methodology applies multiple fusion and scrambling
phases simultaneously. This integrated approach ensures that the critical visual
features from each secret image are meaningfully embedded into a unified interme-
diate representation, while the scrambling phases obfuscate the visual patterns to
enhance security. By combining these processes in parallel, the method achieves
high hiding capacity, maintains reconstruction fidelity, and significantly reduces
the visibility of embedded features, thereby strengthening the stego image against
unauthorized interpretation and detection.

To further strengthen the security of the proposed system, a steganographic key is
introduced as an integral part of the scrambling process. This security key governs
the behavior and sequence of multiple scrambling operations applied to the fused
image. By utilizing the key to dynamically control scrambling parameters, such as
the number of iterations and the scrambling pattern at each phase, the process in-
troduces a high level of complexity and unpredictability. As a result, the scrambled
image becomes significantly more resistant to visual analysis or reverse engineering
attempts. Without access to the correct security key, it becomes nearly impossible
to accurately decode or regenerate the original secret images, thereby enhancing
the robustness of the steganographic method against unauthorized access and en-

suring secure transmission of hidden content.
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3.2 Proposed Methodology - 2 (GAN based coverless multi
image steganography)

Hense, the research focuses on improving the concealment of visual features and
hide the presence of secret images using[GAN]based coverless multi-image steganog-
raphy for[RGB]images, this study aims to leverage advanced[GAN}based techniques
to develop an innovative coverless multi-image steganographic model tailored for
@secret images. To achieve multi-image steganography, several techniques are
examined and selected suitable techniques to fuse multiple images into a single
image, while recovering the original images from the compressed image with mini-
mum visual loss. In order to ensure further concealment of visual features of secret
images, I explore the applicability of more advancedtechniques such as Cy-
cleGAN. And additional algorthms such as Arnold Scrambling and Reverse Arnold
Scrambling are explored and applied in a suitable way to achieve enhanced feature
concealment.
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Figure 10: Proposed Methodology of GAN based coverless multi image steganog-
raphy

The literature review explores current [GAN}based coverless image steganographic
architectures, highlighting their strengths and limitations. This review will estab-
lish a solid foundation for designing an effective architecture to implementm
based coverless multi-image steganography.

The proposed methodology consists of three key phases: Image Fusion, Image
Scrambling, and Image Transformation. Each phase plays a crucial role in com-
pressing multiple images into a single representation, concealing visual features,
and generating synthetic images while maintaining the ability to reconstruct the

original inputs with minimal information loss. The overall architecture is illus-
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trated in Figure

3.2.1 Image Fusion

The first phase involves compressing multiple secret images into a single intermedi-
ate image. The objective of this step is to effectively merge the visual information
while preserving essential details for later recovery. The compressed image should
allow the retrieval of the original secret images with minimal feature loss. To fur-
ther enhance the reconstructed images, a refinement process is applied, improving

their visual quality and ensuring a high level of similarity to the original inputs.

3.2.2 Image Scrambling

Once the intermediate image is obtained, a scrambling algorithm is applied to
obscure visual features and enhance security. This scrambling step ensures that
unauthorized access to the compressed image does not reveal the underlying secret
images. The scrambling process is designed to be reversible, allowing the recov-
ery of the original intermediate image through a corresponding reverse scrambling
transformation. This phase enhances feature concealment, making it more chal-

lenging for adversaries to interpret the content.

3.2.3 Image Transformation

In the final phase, a Generative Adversarial Network (GAN) is employed to trans-
form the scrambled image into a synthetic representation, referred to as the stego
image. This transformation further obfuscates the original visual features while
ensuring the image remains visually realistic. Additionally, another GAN-based
generator is utilized to reconstruct the scrambled intermediate image, reversing
the transformation and facilitating the recovery of the original compressed repre-

sentation.

The proposed methodology provides a structured approach to secure multi-image
steganography by integrating image fusion, scrambling, and transformation. By
leveraging deep learning and scrambling techniques, the approach ensures high

security, and effective concealment of secret images.

3.3 Training Architecture in GAN based coverless multi
image steganography

The training process for the proposed multi-image steganography model integrates
three primary phases: Image Fusion, Image Scrambling, and Image Transforma-

tion.
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Figure 11: Training Architecture of GAN based coverless multi image steganogra-
phy

Initially, multiple secret images are fused into a single fused representation using a
pixel-wise fusion technique as described in Chapter [4.4.1] This fusion ensures that
essential visual features from all input images are retained while forming an inter-
mediate compressed image, reducing distortions and preserving important details
necessary for later recovery.

Once the fusion is complete, the resulting intermediate image undergoes Arnold
transformation as described in Chapter m a widely used scrambling technique
that alters the spatial arrangement of pixels in a chaotic yet reversible manner. This
step enhances security by obscuring the visual content, ensuring that unauthorized
access to the scrambled image does not reveal the underlying secret information.
The scrambling process is carefully designed to be reversible, enabling the retrieval
of the fused image in subsequent steps.

Following the scrambling phase, a CycleGAN-based transformation as presented
in Chapter is employed to convert the scrambled image into a synthetic
artistic representation, such as a painted artwork. The CycleGAN model plays
a crucial role in learning the bidirectional transformation between the scrambled
fused images and their corresponding paint-art representations. During training,
the generator learns to create visually plausible paint-style transformations while
another generator reconstructs the scrambled fused image from the paint-art do-
main. This transformation not only enhances concealment but also provides an
additional layer of security by disguising the true nature of the embedded infor-
mation.

After the transformation, the reconstructed scrambled fused image is processed
through a Reverse Arnold transformation to recover the original interme-
diate representation. This recovered image is then diffused back into two separate
secret images, ensuring that the original information is fully restored. To refine the
reconstructed images further, the four-nearest neighbor refinement tech-
nique is applied, helping to correct any minor distortions that may have arisen

during the transformation process.
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To optimize this entire training framework, the model employs two generators
as described in Chapter and three discriminators as described in Chapter
4.4.5] The generators focus on learning the transformation between different do-
mains, while the discriminators work to distinguish between real and generated
images, ensuring high-quality outputs. By iteratively refining these transforma-
tions through adversarial training, the model tries to achieve a balance between
secured feature concealment and reconstruction accuracy, making it highly effective

for multi-image steganography applications.

3.4 Loss Functions Defined in Training Network in GAN

based coverless multi image steganography

The training of the proposed multi-image steganographic model is guided by mul-
tiple loss functions, ensuring that the model can effectively encode secret images
into target images while preserving reconstruction quality. The key loss functions
include the Adversarial Loss, Cycle Consistency Loss, Identity Loss and Interme-

diate Loss which are described below.

3.4.1 Adversarial Loss

Adversarial loss is a fundamental component of the Generative Adversarial Net-
work (GAN) framework. It helps in optimizing the encoder to generate realistic
target images that are indistinguishable from real target images. The adversarial

training consists of two discriminators:

e Source Discriminator (Dg): Evaluates whether the reconstructed secret

images are authentic or synthesized.

e Target Discriminator (Dr): Distinguishes between the generated target

images and real target images.
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Figure 12: Adversarial Loss

This loss ensures that the generated target images are realistic and visually consis-
tent with real target images. The encoder is optimized to produce images that can
successfully fool the target discriminator, improving the quality of the generated

outputs.

3.4.2 Cycle Consistency Loss

Cycle consistency loss ensures that the transformations between the secret and
target images are reversible, preserving the structural integrity of both the secret

and target images. It consists of two components:

e Cycle Source Loss: Ensures that the secret images can be accurately re-

constructed after encoding and decoding.

e Cycle Target Loss: Ensures that the target images maintain consistency

when transformed and then reconstructed.
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Figure 13: Cycle Consistency Loss

By minimizing the total loss, the model is optimized to generate realistic target

images while ensuring accurate reconstruction of the original secret images.

3.4.3 Identity Loss

Identity loss is used to enforce that the generator preserves certain image char-
acteristics when translating images that belong to the target domain. It ensures
that if a target image is passed through the generator, it should remain unchanged,

thereby improving stability in training.
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Figure 14: Identity Loss
This loss ensures that the encoder does not alter target images significantly, main-
taining their original content. It helps the model learn a mapping that retains the

structural and perceptual integrity of target images while preventing unnecessary

transformations.
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3.4.4 Intermediate Loss

Intermediate loss is introduced to regulate the encoding process and improve the
robustness of the model in preserving key features of the secret images. It en-
forces consistency in the intermediate representations produced by the fusion and

scrambling algorithms, before generating the final output.
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Figure 15: Intermediate Loss

This loss ensures that the fused and scrambled representations of secret images and
target images are structurally aligned, improving the model’s ability to reconstruct

secret images while maintaining the quality of generated target images.

3.4.5 Cumulative Loss

The cumulative generator loss is a composite of all individual loss functions intro-
duced in the model, ensuring the generator learns to produce high-quality, realistic,
and structurally consistent outputs. This combined loss guides the model to strike
a balance between adversarial realism, reconstruction fidelity, and feature preser-
vation during training.

It incorporates the adversarial losses from both the source and target discrimina-
tors, encouraging the generator to produce visually convincing target images that
can successfully fool both discriminators. To maintain content consistency, the cy-
cle consistency losses for both the secret and target domains are included, ensuring
that transformations are reversible and that original inputs can be accurately re-
constructed.

The identity loss helps preserve features when images from the target domain
are passed through the generator, promoting stability and reducing unnecessary
changes. The intermediate loss enforces alignment between intermediate represen-
tations derived during the encoding and decoding processes, improving the model’s
ability to preserve important structural information from secret images. Addition-

ally, the refine loss contributes by encouraging the generator to produce more
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detailed and perceptually coherent outputs.

Each of these losses is scaled by a corresponding lambda value—hyperparameters
that control the importance of each component during training. These lambda
weights allow for prioritizing certain aspects of the learning process, such as plac-
ing more emphasis on reconstruction quality or adversarial realism, depending on
the optimization goals. By integrating these components, the cumulative generator
loss enables robust training of the model, improving its ability to encode multiple

secret images effectively while maintaining visual quality and recoverability.
Generator Loss is defined as follows.

Egen = Egen,source + Egen,target
+ )\cycle(ﬁcycle,source + Ecycle,target)
+ )\identity (ﬁidentity,source + Eidentity,target)

+ )\intermediate£intermediate

+ )\Tefineﬁrefine (4)

Discriminator Loss is defined as follows.

1

Edisc = é(ﬁdisc,source + Edisc,target) (5)

Variable Definitions are as follows.
o L, Total generator loss used to optimize the generator network.

® Lyen source: Adversarial loss from the source discriminator evaluating the

quality of the reconstructed secret image.

® Lyen target: Adversarial loss from the target discriminator assessing the real-

ism of the generated target image.

® Leycle source: Cycle consistency loss ensuring accurate reconstruction of secret

images after transformation and inverse transformation.

® Leycietarget: Cycle consistency loss ensuring the generated target images re-

tain their original content after round-trip translation.

® Lidentity source: 1dentity loss encouraging the generator to preserve structural

features of secret images when passed directly.

® Lidentity target: 1dentity loss ensuring that target images remain visually con-

sistent when processed by the generator.

o Lintermediate: Intermediate loss enforcing alignment of intermediate feature

representations between secret and target domains.
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® L,cfine: Refine loss focusing on enhancing fine-grained image details and

improving perceptual quality in reconstructions.

® Ayae: Weighting coefficient for the cycle consistency loss, controlling its

impact on generator optimization.
® Nidentity: Weighting coefficient for the identity loss.
® \intermediate: Weighting coefficient for the intermediate loss.
® \.crine: Weighting coefficient for the refine loss.

o Lys.: Total discriminator loss used to train both the source and target dis-

criminators.

® Liisesource: Loss from the source discriminator that distinguishes real vs.

reconstructed secret images.

® Lagisctarger: Loss from the target discriminator that distinguishes real vs.

generated target images.

By aggregating these complementary objectives into a unified loss function, the
model is trained to encode multiple secret images within target images while main-
taining high visual fidelity and reliable reconstruction. This holistic loss formula-

tion fosters robust steganographic encoding and decoding capabilities.

3.5 Evaluation Plan

The proposed model will be evaluated based on several key performance aspects,
including its ability to conceal the visual features of secret images effectively, the
perceptual quality of the reconstructed images, and the degree of difference between
the original and reconstructed images. Additionally, the security and impercepti-
bility of the carrier images will be assessed, along with the overall hiding capacity
of the method. The robustness of the model under various transformations or pro-
cessing conditions will also be examined to ensure its reliability and effectiveness

in practical applications.

3.5.1 Image Quality Evaluation

The reconstruction quality of images is a critical aspect in multi-image steganogra-
phy, as it directly influences the effectiveness of the hiding technique. High-quality
reconstruction ensures that the original secret images can be accurately retrieved
without significant visual loss or distortion. Any degradation in reconstruction
can result in incorrect or blurred outputs, compromising the overall objective of
secure and reliable steganography. In this study, the evaluation begins with a
subjective comparison of the original and reconstructed secret images through vi-

sual inspection. To further support this assessment quantitatively, metrics such as
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[Mean Square Errorf [Mean Square Error] [Peak Signal-to-Noise Ratiojand [Absulute]

[Mean Pixel Error|are employed to measure the accuracy of the reconstruction pro-

cess. These metrics help determine the most effective fusion and reconstruction

strategies for achieving optimal visual fidelity.

e Mean Squared Error (MSE)
[MSE] calculates the average of the squared differences between corresponding
pixel values in two images. It penalizes larger errors more heavily than AMPE

and is sensitive to outliers.

1 N

MSE = — ; (I (i) — I(2))?

Where:

— I,(i) and I5(i) are the pixel values at position ¢ in the first and second

images respectively.

— N is the total number of pixels in the image.

e RMSE (Root Mean Squared Error)
[RMSE]is the square root of [MSE]and provides error in the same unit as the

image pixels, making it more interpretable.

N

1 . .
RMSE = | % >_(h(i) = Lx(1))

i=1
Where:
— I1(7) and I5(i) are the pixel values at position ¢ in the first and second
images respectively.
— N is the total number of pixels in the image.

— (I1(7) — I(i))?* is the squared difference between corresponding pixel

values.

e PSNR (Peak Signal-to-Noise Ratio)
is used to measure the quality of the reconstructed image compared
to the original, especially in lossy compression. A higher PSNR generally

indicates better reconstruction quality.

MSE

Where:
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— MAX; is the maximum possible pixel value of the image (e.g., 1.0 for

normalized images or 255 for 8-bit images).

e Absolute Mean Pixel Error (AMPE)
AMPE measures the average of the absolute differences between correspond-
ing pixel values in two images. It gives an intuitive sense of how much, on
average, the pixel values differ, regardless of the direction of the difference

(positive or negative).

Where:

— I,(i) and I5(i) are the pixel values at position ¢ in the first and second

images respectively.

— N is the total number of pixels in the image.

3.5.2 Steganalysis Evaluation

The proposed models offer a significant advantage in terms of security, primarily
because the intermediate image is generated without the use of any predefined
cover image. This coverless nature of the steganographic approach reduces the
risk of detection through traditional steganalysis tools, which are typically de-
signed to analyze modifications in known cover images. As a result, the employed
methodologies inherently enhance the stealth of the communication by making it
more resistant to common steganographic attacks and analysis techniques. This
design choice supports a more secure and undetectable method for embedding and

transmitting secret information.

3.5.3 Hiding Capacity

In image steganographic models, embedding capacity refers to the maximum amount
of secret data that can be concealed within an image without noticeably degrading
its quality or attracting attention. Traditionally, this is measured in bits or bytes
per cover image and is a key metric for evaluating the effectiveness of stegano-
graphic techniques. A higher embedding capacity indicates a greater ability to
embed secret content while preserving visual integrity

However, in coverless image steganography, where no predefined cover image is
used, the concept of embedding capacity is adapted to reflect how much infor-
mation can be concealed within the generated intermediate image itself. Rather
than embedding into an existing cover, secret data is fused and manipulated to

produce an entirely new image that inherently carries the hidden content. In this
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context, embedding capacity is measured as bits or bytes per intermediate image,
emphasizing the model’s capability to hide multiple images or a large amount of

data while maintaining the security and quality of the output.

3.5.4 Robustness

In steganography, the integrity of the intermediate image is critical to the accurate
reconstruction of hidden information. However, during transmission, the interme-
diate image may be subject to various distortions caused by malicious attacks,
communication channel issues, or environmental noise. These distortions can sig-
nificantly degrade the quality of the reconstructed images and compromise the
embedded secret information. To evaluate the robustness of the proposed stegano-
graphic method, a series of common attacks are applied to the intermediate image.
These attacks simulate real-world conditions and test the model’s resilience in

preserving and recovering the secret content. The evaluation includes:

e Scaling Attack — Resizing the image to a different resolution and then

restoring it, which may distort pixel-level data.

e Rotational Attack — Rotating the image at various angles to assess recovery

consistency after geometric transformations.

e Cropping and Padding Attack - Cropping portions of the image and
padding them back to original dimensions, leading to spatial content loss or

misalignment.

¢ Flipping Attack - Horizontally or vertically flipping the image to simulate

basic transformations.

e Gaussian Noise Attack — Introducing normally distributed noise to simu-

late natural channel disturbances.

e Salt and Pepper Noise Attack — Randomly replacing pixel values with

extreme black or white, mimicking sudden data loss or interference.

e Speckle Noise Attack — Applying multiplicative noise that simulates gran-

ular distortions often seen in electronic transmission.

e Median Filtering Attack — Applying non-linear filtering to reduce noise,

which may alter important pixel patterns used in reconstruction.

e Mean Filtering Attack — Using averaging filters to smooth the image,

which can blur critical details necessary for accurate recovery.

e Motion Blur Attack - Simulating camera or object movement to create

streaking artifacts that obscure fine image details.
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e Color Jitter Attack - Randomly altering brightness, contrast, saturation,

and hue to simulate variations in lighting conditions.

e Channel Shuffle Attack - Randomly permuting the RGB channels to chal-

lenge the model’s ability to recover based on disrupted color semantics.

e Random Deletion Attack - Randomly deleting image patches or pixel

groups, imitating partial data loss scenarios.

e Random Alteration Attack - Applying arbitrary changes to pixel values

to simulate unpredictable tampering or corruption.

By testing the model under these adverse conditions, the robustness and relia-
bility of the proposed method in extracting and reconstructing secret images are

rigorously assessed.

3.6 Chapter Summary

This section outlines the proposed methodologies in detail, including the archi-
tectural components, algorithmic procedures, and loss functions utilized during
experimentation. Additionally, it presents the evaluation strategy adopted to val-

idate the effectiveness and applicability of the proposed approaches.
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4 Implementation Details

4.1 Language and Implementation Tools

We selected Python 3 as the programming language for our project due to its exten-
sive ecosystem of libraries tailored for deep learning and computer vision applica-
tions. Our study leveraged popular open-source machine learning frameworks, in-
cluding PyTorch for deep learning, OpenCV for computer vision tasks, and NumPy
for numerical computations. Additionally, we utilized ‘tqdm* for progress tracking,
along with ‘Dataset’, ‘Dataloader‘, and ‘transforms‘ to streamline data handling.
The ‘torch‘ library was also incorporated to enhance deep learning capabilities.

Initially, we trained our model using Google Colab, but later transitioned to AntPC
for improved computational resources. To facilitate remote access to AntPC, we
employed OpenVPN, which enabled a secure SSH connection to the server. This
comprehensive set of tools and libraries provided a robust foundation for the effi-

cient development and implementation of our proposed model.

4.2 Experimental Setup

We used Python 3.6.9 for all our experiments, including model creation and eval-
uation. These tasks were conducted on the ‘AntPC’ server, equipped with four
NVIDIA GeForce RTX 2080 GPUs. The server runs Ubuntu 18.04.1 LTS and
is powered by an Intel E5-2620 v4 CPU clocked at 2.10GHz, with 125.65GB of
RAM. This system setup provided a robust and reliable foundation for our study,

ensuring high computational power and stable, continuous training.

4.3 Data Collection and Preprocessing

The dataset for secret images was sourced from the ImageNet dataset, a large-
scale collection widely used in computer vision research. Similarly, the dataset for
carrier images was obtained from the Delaunay dataset, which provides diverse
natural and synthetic images suitable for use as carrier images in steganography.
For consistency, all images were resized to a uniform dimension of 256 x 256 pixels.
This step was essential to standardize the input format, preventing variations in
resolution from affecting model performance. Furthermore, preprocessing involved
vertically fusing two secret images to form a single input representation. This
method allowed the model to process multiple secret images simultaneously while
maintaining a structured input format for batch processing.

To enhance the training process, two additional datasets were created: one con-
taining fused images and another consisting of fused scrambled images. These
datasets were generated using specialized fusion algorithm as described in Chapter
4. 4T]and scrambling algorithms as described in Chapter [£.4.3] designed to manip-

ulate and preprocess images in a controlled manner. The fusion algorithm was
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applied to fuse multiple images into a single composite image, ensuring that the
secret information was effectively embedded. Meanwhile, the scrambling algorithm
introduced pixel-wise transformations to obscure identifiable patterns in the secret

images.

4.4 Component Implementations, Model Development and
Training

The implementation details of the different components of the proposed models

are discussed in this section.

4.4.1 Pixel Wise Manipulation

e Fusion Algorithm
In previous studies, generative models based on deep learning networks were
often employed for fusing images. However, in this study, a novel fusion
technique grounded in image manipulation principles was developed, incor-
porating tailored enhancements to achieve effective image fusion. The specific
technique used for fusing two images follows a pixel-wise alternating pattern.
Both images, sized at 3x256x256 (representing the RGB color channels), are
fused in a novel way. In the fused image, the first row alternates pixels be-
tween the two images: the first pixel is taken from the first image, the second
from the second image, and this alternating pattern continues across the en-
tire row. In the second row, the pattern is reversed: the first pixel comes
from the second image, the second from the first, and so on. This alternating
pixel-wise pattern is maintained across all rows of the image, resulting in a
delicate and evenly distributed interleaving of pixel data from both images.
This method does lead to a certain loss of information, as each image con-
tributes only half of its original pixel data. However, it creates a finer, more
intricate blending of the two images, giving rise to a mosaic-like effect where
details from both images intermingle at the pixel level. The technique’s flex-
ibility allows it to be extended to various patterns and resolutions, providing
an effective solution for artistic or technical applications that require a subtle
yet dynamic fusion of image data. It strikes a balance between preserving
visual details from both images while enabling a seamless and highly granular
blend, making it suitable for scenarios where precise control over information

sharing between the images is desired.
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Figure 16: Pixel Wise Fusing Architecture

Left Column — Pixel value representation of Secret Images, Middle Column — Se-
lected Pixels from Each Secret Image Used for Fusion, Right Column — Fused
Image Constructed from the Selected Pixels of Multiple Secret Images.

Pixel-wise fusion offers several key advantages, including a finer granularity
of blending, which creates a smoother and more cohesive transition between
images. This approach interweaves individual pixels, resulting in a more
intricate and seamless mix. It ensures a more balanced distribution of infor-
mation, preserving critical details from both images across the entire image.
Additionally, pixel-wise fusion enhances perceptual quality by reducing no-
ticeable boundaries between images, making the final fused image appear
more natural and continuous. Furthermore, it improves data recovery, as
it retains more detailed pixel information, minimizing data loss and making
it ideal for scenarios that require preserving original details and ensuring

uniform representation.

e Diffusion and Refinement Algorithms

To reverse the fusion process and recover the original images from the fused
one, I employed a method that essentially follows the inverse of the pixel-
wise alternating pattern used during fusion. In this approach, the pixels are
redistributed back to their original positions in the two images, but due to
the nature of pixel interleaving, only half of the data can be recovered. The
alternating pixel-wise fusion results in a situation where every other pixel
belongs to one image or the other, and hence, reconstructing the original im-
age directly from the fused version leaves some data missing. This recovery
is possible but limited by the alternating structure, and only approximately
half of the original information can be retrieved using this approach.

While the basic reversal method can recover half of the image’s original data,
it doesn’t fully restore the details lost during fusion. To address this limita-
tion, a refinement technique was applied to recover the missing data. Specifi-

cally, a neighbor-based technique using four nearest neighbors was developed.
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In this process, missing pixel values were estimated by calculating the aver-
age of the four nearest neighbors of each missing pixel. This method works
by relying on the assumption that neighboring pixels have similar values,
a reasonable assumption in many images where smooth transitions between
neighboring pixels are common. By averaging the values of the four nearest
neighbors, the missing data could be approximated more accurately, leading

to a significant reduction in the loss of information.

Diffused Image 1 Refined Image 1
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Diffused Image 2 Refined Image 2

Figure 17: Pixel Wise Diffuse and Refine Architecture
Left Column — Fused Image, Middle Column — Diffused Images with recovered pixel
values, Right Column — Refined Secret Images with Four Nearest Neighbours. The

refinement step enhances pixel accuracy by averaging neighboring values
(e.g., R1 = Average of V1, V2, V3, V4).

This refinement technique offers several key benefits. First, it allows for a
more accurate recovery of missing pixel data compared to simple interpola-
tion methods. Since the missing pixels are estimated based on the average
of neighboring pixels, the values are distributed more evenly and naturally.
This results in a finer restoration of image details, making the recovered
image appear much closer to the original than it would with simple inter-
polation. Moreover, the use of four nearest neighbors provides a better dis-
tribution of data, especially in areas where pixels are highly interdependent,
such as smooth textures or color gradients. This leads to a more coherent
and visually consistent image, which is essential for applications requiring
high-quality image reconstruction.

In summary, the reverse of the fusion method recovers approximately half of
the original data, but this is complemented by a refinement technique that
uses the average of the four nearest neighbors to restore the missing pixels.
This technique not only fills in the missing information effectively but also en-
hances the overall visual quality of the recovered image by providing a better

distribution of pixel values. As a result, the recovery process becomes more
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accurate and faithful to the original images, making it suitable for situations

where precise image reconstruction is necessary.

4.4.2 LSB Manipulation

e Fusion Algorithm
The figure illustrates a customized image fusion methodology designed
to fuse two RGB secret images (each sized 3x256x256) into a single fused
image using a pixel-wise alternating pattern. This novel fusing approach
is inspired by the traditional image-to-image hiding technique proposed by
Baluja, (2017), but with significant adaptations. In this method, only the
[Most Significant Bit (MSB)| values of the secret images are utilized, while
the|Least Significant Bit (LSB)|are entirely discarded. This selective bit-level

handling ensures the preservation of perceptually dominant visual features

while maximizing concealment.

The fusion process begins by extracting the MSB values from correspond-
ing pixels in both secret images. These extracted bits are then strategically
placed into both the MSB and LSB positions of the resulting fused image
using an alternating pixel-wise pattern. Specifically, for each pixel location,
the MSB of one secret image is assigned to the MSB position in the fused
image, while the MSB of the second secret image is mapped to the LSB posi-
tion—thereby creating a novel combination that encodes two sets of dominant
visual features into a single image.

In the fused image, the placement of MSB values from the two secret im-
ages follows a carefully structured interleaving strategy. For each pixel in
the fused image, both the MSB and LSB positions are populated using MSB
values derived from the corresponding pixels of the two input secret images,
rather than true high- and low-significance data. This is done to maximize

visual fidelity while ensuring a secure blend of both inputs.
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Figure 18: LSB Fuse Architecture

Left Column — Pixel value representation of Secret Images (MSBs: Blue in Image
1 and Green in Image 2; LSBs: Red in both images), Middle Column — Selected
MSB values from Each Secret Image Used for Fusion, Right Column — Fused Image
Constructed from the Selected MSBs of Multiple Secret Images.

The placement follows an alternating row-wise logic. In the first row, the
MSB of the first image is inserted into the MSB position of the fused pixel,
while the MSB of the second image is placed into the LSB position. For the
next pixel in the same row, this assignment is reversed: the MSB from the
second image goes into the MSB position, and the MSB from the first image
goes into the LSB position. This alternating MSB-LSB mapping continues
across the entire row.

In the second row, the pattern is flipped to maintain balance and distribution:
the first pixel takes the MSB from the second image for the MSB position
and the MSB from the first image for the LSB position, and this alternation
continues across the row.

This interleaved MSB-to-MSB/LSB mapping is maintained across all rows
of the fused image, creating a uniform and visually imperceptible blend of
both secret images. Although only MSB data is used and LSB information
is discarded, the use of interleaved placement within both bit planes (MSB
and LSB) retains enough visual structure to reconstruct or analyze the fused
content, while keeping the loss undetectable to human vision due to minimal
perceptual difference across similar color codes.

Despite this fusion, half of the original information from the secret images
is lost due to the absence of LSB data. However, since human perception is
primarily sensitive to MSB-level visual information, the resulting fused image
appears visually rich and natural. Furthermore, the loss of 16 consecutive
color codes during the LSB discarding phase is imperceptible to the human
eye, offering no distinguishable clue that any data has been removed—thus

enhancing the concealment quality and making detection by unintended ob-
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servers significantly more difficult.

e Diffusion Algorithm
The image diffusion phase serves as the inverse operation of the image fusion
stage, aiming to recover the original secret images from the fused image.
This step relies on the same alternating pixel-wise pattern established during
fusion to accurately separate the interleaved pixel data. For every row in the
fused image, pixel values are selectively extracted in an alternating sequence

and assigned back to their respective secret images.

Diffused Image 1

- - -

Image 3
Diffused Refined
Fused Image Secret Secret
Images Images

Diffused Image 2

Figure 19: LSB Diffuse Architecture
Left Column — Fused Image, Right Column — Diffused Images with recovered MSB
values

During diffusion, only the most significant bits (MSBs) of each pixel are re-
covered, while the least significant bits (LSBs) are entirely discarded. This
selective recovery is intentional and fundamental to the methodology. Al-
though this results in a loss of half of the original data, the MSBs carry
the most visually impactful information. As a result, the reconstructed se-
cret images preserve the core structure, dominant colors, and essential visual
features of the original images. The human eye, being less sensitive to the
absence of fine-grained details carried by LSBs, perceives the reconstructed
images as nearly identical to the originals.

In the visual representation of reconstructed images, the areas where LSBs
were discarded appear as blank regions. These missing bits, however, do not
significantly impact human visual perception, as the preserved
retain the dominant visual features of the image. Additionally,
the reconstruction produces a low error value when compared to the original
image, indicating minimal loss of perceptual quality. This unique character-
istic allows the system to omit any post-recovery refinement or enhancement
processes, reducing computational complexity while maintaining high visual
fidelity.
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The methodology not only simplifies the recovery pipeline but also ensures
that the reconstructed images are visually convincing without requiring the
full bit-depth information. This approach strikes a practical balance be-
tween data compression, concealment, and perceptual accuracy, making it
a lightweight and secure solution for coverless multi-image steganography.
The ability to achieve strong visual results with partial data showcases the

robustness and efficiency of the proposed diffusion technique.

4.4.3 Arnold Scrambling

e Arnold Transformation
Arnold scrambling is a technique used to alter the pixel positions of an image
in a manner that makes the image appear scrambled. It is widely used
in image steganography to conceal information within an image, making it
difficult to interpret without the proper transformation parameters. The
scrambling process involves changing the coordinates of each pixel in the
image based on mathematical equations. The pixel coordinates are mapped

to new positions using the following transformation formulas:
Tnew — (-T + y) mod N

Ynew = ( +2y) mod N

In this method,  and y represent the original pixel coordinates, while ey
and Y,ew are the new coordinates after scrambling. The term N denotes the
size of the image, typically used in square images (e.g., 256x256). The mod-
ulo operation ensures that the coordinates stay within the image boundaries,
creating a "wrapped” effect when the calculation exceeds the image dimen-
sions.

In this method, the transformation equations mix both the z and y coor-
dinates of each pixel, leading to a seemingly random arrangement of pixels.
As a result, the image becomes unreadable or encrypted without knowing
the specific transformation parameters. This scrambled image can be used
in various applications, including hiding secret images or data (Min et al.
2013).

e Reverse Arnold Transformation
To recover the original image from the scrambled image, the Reverse Arnold
transformation is applied. This reverse transformation undoes the effects of
the scrambling algorithm by applying the inverse of the original transforma-

tion. The reverse equations are as follows:

Tpew = (22 —y) mod N
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Ynew = (—x +y) mod N

In this case, z and y represent the scrambled pixel coordinates, while x e and
Unew are the original pixel coordinates prior to the scrambling. The modulo
operation ensures the recovery of the pixel positions within the bounds of
the image size, just as it did during the scrambling process.

By applying the Reverse Arnold transformation to the scrambled image, the
original image is restored, allowing the hidden information to be revealed.
The ability to reverse the scrambling process is crucial in steganographic
systems, where the aim is to securely embed information within an image
and later recover it without revealing the hidden content to unauthorized
users (Min et al.|2013).

4.4.4 Generator

The proposedbased coverless multi image steganographic strategy uses two
generator networks to perform transformations between scrambled images and ab-
stract paint art representations. The Target Generator as illustrated in Figure
converts the scrambled image into an abstract paint art image. This generated
abstract image functions as the carrier image (stego image) in the based
steganographic model. The carrier image is the one that is transmitted from the
sender to the receiver and plays a key role in concealing the presence of hidden
content because it shows no direct visual similarity to the original secret images.

The Source Generator as illustrated in Figure is used to convert an abstract
paint art image into a scrambled image. It takes the carrier image which is the
abstract paint art and reconstructs the original scrambled image. This step ensures
that the hidden information can be retrieved by the receiver. To make this bidirec-
tional transformation effective the model is trained using CycleGAN. CycleGAN is
capable of learning unsupervised image to image translation by training both the
Target Generator and the Source Generator together with consistency constraints
which helps to maximize the generator performance as much as possible. The

complete network architecture used in this approach is shown in Figure
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Figure 20: Generator Network

4.4.5 Discriminator

The discriminator networks play a vital role in enhancing the quality and real-
ism of the generated images during the training process. Source Discriminators
as illustrated in Figure [[0] are designed to differentiate between the original secret
images and the reconstructed secret images that are recovered from the scrambled
intermediate representations.

In parallel, the Target Discriminator as illustrated in Figure focuses on distin-
guishing between the original abstract paint art images and those generated by the
Target Generator from scrambled inputs. This ensures that the generated abstract
images possess the natural characteristics of real abstract artwork, making them
suitable to act as inconspicuous carrier images in the steganographic process.
Their primary function of two discriminators is to guide the Source Generator to
produce reconstructed outputs that closely resemble the original secret inputs in
both structure and visual appearance, while simultaneously directing the Target
Generator to generate transformed outputs that effectively emulate the abstract
paint art style, preserving structural and visual coherence.

To achieve more localized and detailed feedback during training, the PatchGAN
architecture is employed for both the Source and Target Discriminators. Rather
than making a single real-or-fake decision for the entire image, PatchGAN classifies
each local patch within an image, allowing the network to focus on fine-grained
texture and structure. This approach improves the discriminative power of the
model and promotes the generation of more realistic and detailed outputs. The

full network architecture of the discriminators is depicted in Figure 21}
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Figure 21: Discriminator Network

4.5 Chapter Summary

This section provides the implementation details of the proposed methodologies,
focusing on the architecture of its components and the algorithms employed at
various phases to achieve coverless multi-image steganography. It includes a de-
scription of the language and implementation tools used, the experimental setup
established for evaluation, and the procedures followed for data collection and pre-
processing. These implementation details collectively ensure the practicality, effi-
ciency, and reliability of the proposed approaches in concealing and reconstructing

multiple RGB secret images without relying on a predefined cover.
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5 Experiments, Preliminary Results and Analy-
sis

5.1 Investigate on compressing multiple images into a sin-
gle intermediate image with higher reconstruction ac-
curacy with minimum data loss and minimum visual

loss

The initial phase of the full steganographic architectures, as illustrated in Figure[J)
and Figure involves compressing multiple secret images into a single interme-
diate image through an image fusion process.

In this phase, two secret images are fused to produce an intermediate image that
retains balanced data from both original images. This intermediate image displays
visible features from both source images, making it unsuitable as a carrier for se-
cure transmission between two parties, as it reveals substantial information about
the secret images. The purpose of this fusion is not to conceal visual features but
rather to maximize the information captured from each image within a single in-
termediate representation. This intermediate image can then be used to facilitate
the reconstruction and refinement of the original images.

Once the intermediate image is obtained, it undergoes a reconstruction process to
retrieve the original secret images. Each reconstructed image is then refined to
minimize data loss and visual feature loss, thereby enhancing the fidelity of the
recovered images. For this process, JPEG images with a resolution of 256x256
were used, chosen to balance image quality with computational efficiency due to
the high processing power required. This stage sets the foundation for a robust
steganographic system that prioritizes image embedding capacity and high-quality
reconstruction.

Figure [22] illustrates the Image Fusion, Diffusion and Refinement phases.
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Figure 22: Image Fusion Phase

5.1.1 Pixel Wise Image Fusion

The technique used to fuse two images follows a pixel-wise alternating pattern as
described in Chapter Both images are of size 3x256 X256, representing three
color channels (RGB). This alternating pixel-wise approach is applied for each
pixel across all rows of the image, resulting in an evenly distributed interleaving
of pixel data from both input images. Although this method inherently leads
to partial data loss—since each image contributes only half of its original pixel
information—it enables a fine-grained blending that intermixes visual details from
both images at the pixel level. The resulting mosaic-like effect provides a balanced
and detailed representation of the source images. This strategy is particularly
advantageous in scenarios where it is essential to preserve perceptual features from

multiple inputs within a single fused image.
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Figure 23: Pixel Wise Manipulated Image Fusion

While pixel-wise fusion may result in some degree of data loss due to the inter-
leaving of two images, it is highly effective in terms of blending quality, perceptual
smoothness, and balanced distribution of information. This technique enables finer
detail preservation, making it especially suitable for scenarios where content from

both images must be merged seamlessly with minimal visual disruption.

e Granularity of Blending
Pixel-wise fusion enhances the granularity of image blending by operating
at the level of individual pixels. By alternating pixels within each row and
column between the two images, the transition between them becomes subtle
and continuous. This fine-grained interleaving results in a more fluid and
cohesive visual mix, where both images contribute evenly to the final result.
The detailed distribution of pixel information ensures that features from
both images are seamlessly integrated, making this approach effective for

applications requiring a smooth and balanced fusion of visual data.

e Perceptual Quality
Another major improvement offered by pixel-wise fusion lies in its superior
perceptual quality. By interweaving pixels from both images in an alter-
nating pattern, this method produces a smoother and more natural visual
appearance. The fine-grained blending minimizes noticeable boundaries and
reduces visual distractions, resulting in a cohesive and harmonious fused im-
age. This refined integration is particularly beneficial in applications where

seamless visual merging of multiple images is essential.

e Information Distribution
Pixel-wise fusion ensures a balanced and uniform distribution of information
across the entire image. By alternating pixel values from both images at

a fine-grained level, this technique guarantees that each region of the fused
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image contains contributions from both sources. As a result, important vi-
sual features from both images are consistently preserved throughout the
image, minimizing the risk of dominance or loss of detail from either input.
This uniform representation makes pixel-wise fusion particularly effective for

applications requiring equal emphasis on multiple source images.

e Data Recovery

Pixel-wise fusion enhances the ability to recover data from the fused image by
evenly interleaving pixels from both input images. This fine-grained blending
retains a higher level of detail from each image, as no large sections are
omitted. The alternating pixel pattern distributes information across the
entire image, reducing the impact of localized data loss and enabling more
effective reconstruction of the original images. Although the recovery process
is slightly more complex due to the interleaving, the overall preservation of
detail makes pixel-wise fusion a reliable and effective approach when accurate
reconstruction is a priority.

After applying pixel-wise fusion to create fused images, several refinement meth-
ods were utilized to recover missing pixel values and enhance the visual quality
of the reconstructed secret images. These included Gaussian smoothing, bicubic
interpolation, bilinear interpolation, and brightness adjustments. Although these
refinements could not fully restore the original visual quality, pixel-wise fusion
demonstrated strong effectiveness in preserving visual features, resulting in recon-
structions that closely resemble the original images.

To improve the reconstruction of the original secret images and fill in the missing
pixel values, I experimented with several image enhancement techniques, including
Gaussian smoothing, Bicubic Interpolation and Bilinear Interpolation. Gaussian
smoothing, which applies to a Gaussian kernel to reduce noise and blur the image,
was intended to refine pixel transitions. Bicubic Interpolation, a more advanced
resampling method, estimates new pixel values using a weighted average of the
closest 16 pixels, while Bilinear Interpolation considers the nearest 4 pixels for a
smoother but less detailed reconstruction. However, despite these efforts, none of
these techniques proved effective in accurately recovering and refining the missing
pixel values in the original secret images, indicating the need for a more sophisti-

cated approach.

5.1.2 Refine the reconstructed images with Four Nearest Neighbor

smoothing

This refinement technique as described in Chapter fills in missing pixels in
a recovered image by selectively processing specific pixels based on secret images
and then using the values of the four nearest neighbors to adjust the missing pixel
values. For each missing pixel that meets the pattern criteria, the function gathers

valid neighboring pixels that have non-zero values and calculates their average.
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This average value is then used to replace the missing pixel, smoothing transitions
and improving visual coherence.

The 4-nearest neighbor approach is particularly beneficial as it leverages immediate
surrounding pixels, allowing the missing pixel to inherit contextual information
while preserving local textures and minimizing abrupt transitions. By selectively
filling only certain pixels, this approach allows for more controlled and pattern-
specific reconstruction, maintaining visual consistency and detail in the refined

image.

Original Image 1 Original Image 2 Combined Image

Reconstructed Image 1 Reconstructed Image 2

Refined Image 1 Refined Image 2

Figure 24: Refine the reconstructed images with Four Nearest Neighbor smoothing

5.1.3 @] Manipulation Image Fusion

[Least Significant Bitfmanipulation technique constructs a fused image by utilizing

the [Most Significant Bit| from two secret images while entirely disregarding their

@ content. In this approach, each pixel in the fused image is composed by
interleaving the of corresponding pixels from both input images. As a result,
each secret image contributes only half of its original bit-level information to the

fused output.

53



Original Image 1 Original Image 2 Fused Image

Reconstructed Image 1 Reconstructed Image 2

Figure 25: [LSB| Manipulation Image Fusion

Despite the fact that half the data from each image (namely, the original )
is lost in this process, the technique ensures that the @ carrying the most
critical visual information are preserved. This results in fused images that, when
reconstructed, exhibit minimal to no perceptual difference from the originals when
viewed by the human eye. The loss of the[LSBf does not significantly impact visual
quality, as they are the least noticeable part of a pixel. This method effectively bal-
ances data fusion with high visual fidelity, making it a suitable technique for cases
where reduced data size or hidden information is necessary, without a noticeable

decrease in image clarity.

e Data Preservation

The|Least Significant Bit (LSB)|manipulation technique excels in data preser-

vation by retaining the [Most Significant Bit (MSB)|of each image, which are

crucial for visual representation. While pixel-wise fusion retains detailed in-
formation from both images, it effectively discards half of the original pixel
data, leading to a significant loss of information. This can result in impor-
tant features being underrepresented in certain areas, depending on the pixel
interleaving pattern. In contrast, @] manipulation minimizes data loss by
preserving essential details while only discarding the least significant bits,

which have a minimal impact on the overall visual quality.

e Visual Quality
In terms of visual quality, |[LSB| manipulation offers a clear advantage by
ensuring that the resulting image retains high fidelity and appears seamless
and coherent. Although pixel-wise fusion provides a more granular blending

of images, it can introduce noticeable transitions or artifacts, particularly
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when the two images exhibit distinct features or colors. The interleaving of
pixels in pixel-wise fusion may create a mosaic effect, which can detract from
the intended visual impact. By focusing on the , manipulation
minimizes visual artifacts, resulting in a fused image that closely resembles

the originals and maintains a polished appearance.

e Perceptual Impact
The perceptual impact of manipulation is significantly more favorable
than that of pixel-wise fusion. The human eye is less sensitive to changes in
the least significant bits, meaning that the loss of@ typically does not
create a noticeable difference in perceived quality. In contrast, pixel-wise
fusion can lead to visible discontinuities between blended pixels, especially
in areas with sharp contrasts. By maintaining the essential visual cues in-
tact, m manipulation ensures a high level of aesthetic quality in the fused
image, making it a superior choice for applications where visual harmony is

important.

While both techniques of Pixel wise fusion and LSB manipulation fusion, serve the
purpose of image fusion, @ manipulation offers distinct advantages, especially
in contexts where maintaining visual integrity and preserving essential details is
crucial. Its simplicity, effectiveness in hiding data, and minimal perceptual impact
make it a superior choice for many applications, particularly in secure image pro-
cessing and scenarios requiring high-quality visual output. In contrast, pixel-wise
fusion, despite its granular blending capabilities, can lead to significant data loss
and visible artifacts, limiting its effectiveness in certain contexts. Though pixel-
wise fusion leads to a data loss, by applying Four Nearest Neighbor Smoothing
technique as the refinement technique in reconstruction process, the above men-

tioned problems will be able to overcome.

5.1.4 Comparison of the statical differences between original images

and reconstructed images via different techniques

This subsection presents an analysis of the statistical differences between original
and reconstructed images using various refinement techniques, including Bilin-
ear Interpolation, Bicubic Interpolation, Gaussian Smoothing, and Four Nearest
Neighbor. Each method aims to refine the reconstructed images to closely match

the original images in terms of visual and data integrity.

e Bilinear Interpolation - Bilinear interpolation is a simple and efficient
technique used to estimate pixel values in an image by averaging the values
of the four nearest neighboring pixels. It smooths image transitions and

reduces artifacts when resizing or refining low-resolution images.
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e Bicubic Interpolation - Bicubic interpolation offers higher-quality results
than bilinear by considering the closest 16 pixels (a 4x4 grid) around a target
pixel. It applies cubic functions to generate smoother and more visually
accurate transitions, making it ideal for enhancing image sharpness during

upscaling or refinement.

e Gaussian Smoothing - Gaussian smoothing reduces noise and softens im-
ages by applying a Gaussian filter that weights neighboring pixel values ac-
cording to a bell-shaped curve. This technique preserves edges better than
basic averaging and is widely used to eliminate minor distortions or prepare

images for further processing.

The evaluation is conducted using Mean Squared Difference and Mean Absolute
Difference metrics, which quantify the pixel-wise discrepancies between the origi-
nal and reconstructed images. For each technique, the pixel difference tensors and
absolute pixel differences are recorded for both images involved in the fusion.

These comparisons highlight the effectiveness of each refinement technique, pro-
viding insights into their suitability for minimizing data and visual feature loss in

reconstructed images.

Image 1 Image 2
Image Error Mean | Absolute | Mean | Absolute
4NN Refinement 0.000179 | 0.004301 | 0.000319 | 0.005932
LSB Manipulation | 0.000774 | 0.019443 | 0.000973 | 0.024711
Bilinear Refinement | 0.048442 | 0.135292 | 0.044686 | 0.138644
Bicubic Refinement | 0.078573 | 0.135267 | 0.071472 | 0.138567
Gaussian Refinement | 0.042738 | 0.135785 | 0.038983 | 0.139164

Table 1: Mean Squared Error and Absolute Mean Pixel Error with Refinement
Techniques

Table |1 provides a comparative analysis of five different refinement techniques of
Four Nearest Neighbor (4NN), Manipulation, Bilinear Interpolation, Bicubic
Interpolation, and Gaussian Smoothing, based on their ability to preserve pixel
similarity between original and reconstructed images which are performed on the
same secret images. Among these methods, Four Nearest Neighbor demonstrates
the lowest mean and absolute pixel differences for both images, indicating its effec-
tiveness in achieving a close approximation to the originals with minimal deviation.
[LSB] Manipulation, on the other hand, shows little bit higher mean and absolute
pixel differences than the Four Nearest Neighbor technique. This result is largely
due to its approach of embedding information within the least significant bits,
which, while visually indistinguishable to the human eye, but leads to compara-
tively higher numerical differences since this technique has no ability in preserving
the [LSB] values of original images. Bilinear and Bicubic Interpolation offer mod-

erate pixel difference values, with bicubic slightly outperforming bilinear in terms
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of accuracy. Gaussian Smoothing yields relatively low Mean Squared differences
and is effective in reducing high-frequency noise, though at the expense of some
fine details. Overall, each method exhibits unique strengths: 4NN excels in pre-
cision, @main‘cains visual fidelity while embedding, and the interpolation and

smoothing methods balance accuracy with computational efficiency.

4NN Refinement | LSB Manipulation | Gaussian Refinement

Image 1 0.011525 0.028773 0.235576

Image 2 0.011369 0.030166 0.249380

Table 2: Average Comparison on an image dataset

The data presents a comparison of Mean Squared differences across a dataset of 50
image fusions and reconstructions, using three refinement techniques: Four Near-
est Neighbor, Gaussian Smoothing, and [LSB| Manipulation. Each technique was
evaluated based on the average pixel differences between the original and recon-
structed images over the dataset.

Four Nearest Neighbor exhibits the smallest Mean Squared differences for both
images, with values of 0.0115 for Image 1 and 0.0114 for Image 2. This indicates a
high level of precision in preserving the original image details, suggesting that this
technique is particularly effective at maintaining pixel fidelity.

Gaussian Smoothing shows slightly higher Mean Squared differences, with 0.2356
for Image 1 and 0.2494 for Image 2. This technique focuses on reducing noise and
achieving smoother reconstructions, but it introduces moderate pixel discrepan-
cies, likely due to the smoothing effect that sacrifices some sharpness in favor of
reducing high-frequency variations

[LSB]Manipulation, on the other hand, yields significantly larger Mean Squared dif-
ferences, with values of 0.0288 for Image 1 and 0.0302 for Image 2. This approach,
while effective for embedding data, introduces substantial pixel-level alterations
in numeric terms. However, these differences are generally not perceptible to the
human eye, as @ manipulation targets manipulating the least significant bits,
making it suitable for applications prioritizing data concealment over pixel-level
accuracy.

Overall, Four Nearest Neighbor and and@ Manipulation are the most accurate
in preserving pixel values, which offer different benefits in data embedding and

data preserving while the reconstruction process respectively.

5.1.5 Combination of Pixel wise manipulation, LSB manipulation and

Four Nearest Neighbor Refinement

Throughout the previous explorations, pixel-wise manipulation combined with 4-
Nearest Neighbor (4NN) refinement and Least Significant Bit (LSB) manipulation
demonstrated strong fusion capabilities and high accuracy in recovering the orig-

inal images. Since both techniques individually exhibited promising performance,
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they are integrated into a unified framework to maximize the advantages of each.
This combination allows for increased hiding capacity by embedding more image
information into a single representation, while still maintaining the high visual

quality and recovery accuracy required for effective image steganography.

Secret Images

Pixel Wise Fused
Images

LSB Manipulated
Fused Images

LSB Diffused
Images

Pixel Wise
Diffused Images

Refined Secret
Images

Figure 26: Multi-Image Fusion with LSB manipulation and Pixel wise manipula-
tion

e Fusion Phase

— Pixel-wise Fusion of Secret Images
Two RGB secret images are fused at the pixel level. For example, se-
lected channels or pixel values from each image are interleaved or aver-
aged to create a fused image that conceals both sources while maintain-

ing visual coherence.

— LSB Manipulation of Fused Images

The fused images are further compressed by embedding them into one

o8



another using Least Significant Bit (LSB) techniques. This subtle em-

bedding hides essential details without causing noticeable distortion.
e Diffusion Phase

— Reverse LSB Manipulation (Defusion Step 1)
The LSB layers are extracted to retrieve the fused images initially com-
bined in Step 2.

— Reverse Pixel-wise Defusion (Defusion Step 2)
The original secret images are separated from the fused images using

the reverse of the pixel-wise fusion algorithm applied in Step 1.

— 4NN Refinement for Image Recovery
The separated images are refined using the 4-Nearest Neighbor (4NN)
technique, which smooths pixel-level inconsistencies and restores sharp-
ness, resulting in clearer and more accurate reconstructions of the orig-

inal secret images.

The separated images are refined using the 4-Nearest Neighbor (4NN) technique,
which smooths pixel-level inconsistencies and restores sharpness, resulting in clearer
and more accurate reconstructions of the original secret images.

The proposed methodology of Security Key based coverless multi image steganog-
raphy, involves a multi-phase fusion and diffusion process designed to securely
embed and retrieve multiple RGB secret images into a single intermediate image,
without relying on a predefined cover image. During the fusion phase, Phase 1
begins with the pixel-wise fusion of two secret images to form a fused representa-
tion. In Phase 2, the resulting fused images undergo LSB (Least Significant Bit)
manipulation, enabling further embedding while preserving visual fidelity as well
as preserving necessary information from all the secret images.

In the diffusion phase, the process is reversed to accurately recover the original
secret images. Phase 3 performs reverse LSB manipulation to intermediate image
in order to separate the previously fused images. Phase 4 diffuses the pixel-wise
fused images back into the individual secret images. Finally, in Phase 5, a 4-
Nearest Neighbor (4NN) refinement technique is used to enhance the quality and
restore the fine details of the recovered images. This methodology ensures high hid-
ing capacity, secure embedding, and successful reconstruction with minimal visual

distortion.

5.2 Explore Scrambling Algorithms

Scrambling algorithms play a vital role in image steganography by disguising or
hiding information within an image, making it difficult for unintended viewers

to detect or decode. In the context of CycleGAN, scrambling techniques can be
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applied to alter the pixel arrangement in the input images before they are fed into

the network, making the data obfuscation process more secure.

Scrambling

) PTR —

Reverse
2 N Scrambling K]

Fused Image Algorithm Scrambled Image

Figure 27: Image Scrambling Phase

5.2.1 Arnold Transformation

Arnold transformation, known for its chaotic nature, is particularly effective for
image scrambling as it rearranges pixel positions in a deterministic yet complex
manner. In image steganography, applying Arnold transformation to hide mes-
sages or patterns within images allows the data to be securely concealed. When
used with proposed methodologies, the transformation ensures that even during
transformations, hidden content remains obfuscated. This makes Arnold transfor-
mation a powerful tool in the field of image steganography, as it enhances both

security and recoverability of hidden data.
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Figure 28: Arnold Transformation
Row 1 - Scramble for 1 iteration, Row 2 - Scramble for 2 iteration, Row 3 - Scramble
for 8 iteration

5.3 Combination Image Fusion techniques with Scrambling

algorithms

Since both the image fusion phase and the image scrambling phase independently
demonstrate a nearly complete strategy for fusing multiple images into a single
image and concealing visual features, integrating these two phases into a unified
framework can significantly enhance the concealment of secret images. The fu-
sion phase ensures that multiple images are blended at the pixel level, distributing
information, while the scrambling phase introduces an additional layer of trans-
formation, making it even more challenging to reveal the original images. By
combining these two techniques, the resulting stego image achieves a higher level
of visual feature concealment for the hidden images. This integrated approach en-
sures that secret images remain imperceptible to unauthorized viewers while still
allowing precise reconstruction when processed through the appropriate decoding

mechanisms.
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5.3.1 Image Fusion using Pixel Wise Fusion and Four Nearest Neighbor

combination with Scrambling

Since pixel-wise fusion in image fusion enhances granularity of blending, perceptual
quality, information distribution, and data recovery ability, while Arnold scram-
bling effectively conceals visual features, these two techniques were integrated into
a single encoder to generate a stego image devoid of any recognizable traces of
the original images. On the decoding side, Reverse Arnold Scrambling successfully
reconstructs the fused image, while four-nearest-neighbor refinement minimizes vi-
sual feature loss during reconstruction. By combining these two techniques into a
single decoder, the process ensures accurate recovery of the original images with

minimal loss of visual fidelity.

Original Image 1 Original Image 2 Intermediate Image Reconstructed Image 1 Reconstructed Image 2

Intermediate Image Reconstructed Image 2

Original Image 1 Intermediate Image Reconstructed Image 1
1 7 : 5

Figure 29: Pixel Wise Fusion with Arnold Scrambling

5.3.2 Image Fusion using [LSB| Manipulation combination with Scram-
bling

LSB manipulation was utilized in the encoding process to embed secret image in-
formation while ensuring minimal visual distortion in the stego image. Arnold
scrambling was still applied to enhance feature concealment, making the hidden
content more secure against unauthorized access. On the decoding side, Reverse

Arnold Scrambling was used to recover the scrambled stego image, followed by LSB
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extraction to retrieve the original images. This approach aimed to balance imper-
ceptibility and recoverability, ensuring that the reconstructed images maintained

structural integrity while remaining securely hidden within the stego image.

Original Image 1 Original Image 2 Intermediate Image Reconstructed Image 1 Reconstructed Image 2

Original Image 1 Intermediate Image

Original Image 1 Reconstructed Image 1 Reconstructed Image 2

Intermediate Image

Figure 30: LSB Manipulation Fusion with Arnold Scrambling

5.3.3 Image Fusion using Pixel Wise Fusion, @] manipulation and

Four Nearest Neighbor combination with Scrambling

To enhance the effectiveness of coverless multi-image steganography, both pixel-
wise manipulation and Least Significant Bit (LSB) manipulation techniques are
utilized due to their strong fusion capabilities and high accuracy in image recovery.
Since each method independently demonstrates effective results in compressing and
reconstructing two secret images into a single intermediate representation, combin-
ing these techniques offers an opportunity to further increase the hiding capacity.
This integrated approach enables the embedding of multiple images without the
need for a predefined cover image, while still ensuring the quality and recoverability

of the original content.
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Figure 31: LSB Manipulation and Pixel wise Manipulation with Arnold Scrambling

As illustrated in the figure the system consists of two major stages: the En-
coding Phase and the Decoding Phase.

e Encoding Phase
Initially, pairs of secret images are merged through pixel-wise fusion, where
corresponding pixel values from two images are interleaved to generate a
visually meaningful fused image. This fused output is then further processed
using the LSB technique, embedding another fused image within it at the bit
level, increasing the capacity to store information. The result is a visually
complex intermediate image. To conceal patterns and prevent detection, a
scrambling algorithm is applied, producing a scrambled intermediate image

that hides visual features of the original secret inputs.

e Decoding Phase

64



The decoding process begins by descrambling the intermediate image, revers-
ing the applied scrambling pattern. The reverse LSB manipulation is then
used to separate the two fused images originally embedded. Following this,
pixel-wise diffusion techniques are employed to recover the original secret
images from the fused pairs. Lastly, 4-Nearest Neighbor (4NN) refinement
is used to address minor inconsistencies and improve the clarity of the re-
constructed images, restoring them to a visually high-quality form without

noticeable loss.

Scrambled Refined 3 Refined 4

Scrambled

Figure 32: Combination of Pixel wise manipulation, LSB manipulation and Four
Nearest Neighbor Refinement Experimental Results

Set | Image 1 | Image 2 | Image 3 | Image 4
Set 1| 0.038089 | 0.028266 | 0.054370 | 0.037963
Set 2 | 0.032272 | 0.035413 | 0.032377 | 0.014077
Set 3 | 0.031593 | 0.030789 | 0.033720 | 0.035847
Set 4 | 0.037244 | 0.030585 | 0.033351 | 0.029530
Set 5 | 0.026088 | 0.033396 | 0.038054 | 0.030229

Table 3: Mean Squared Differences for 5 Image Sets

The integration of pixel-wise fusion, LSB embedding, and scrambling achieves a
balance between security, high embedding capacity, and reconstruction accuracy.
By eliminating the need for a cover image and relying solely on fusion and manip-
ulation techniques, this approach enhances the practicality and stealth of multi-
image steganography. The use of 4NN refinement ensures that despite partial data

recovery, the reconstructed images remain perceptually similar to the originals.
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This pipeline effectively enables the secure embedding and accurate recovery of

multiple secret images through a lightweight and coverless design.

5.3.4 Comparison between Fusion with Pixel Wise, Fusion With@
Manipulation and Fusion with both Pixel wise and LSB

While both pixel-wise fusion and LSB manipulation offer unique advantages in
image fusion, pixel-wise fusion proves to be more robust in scenarios involving
additional trans formations, such as CycleGAN-based image generation and re-
construction. LSB manipulation primarily focuses on preserving the MSBs of both
images while embedding them into the LSBs of the fused image. However, this
approach introduces a critical vulnerability that, any slight alteration in the recon-
structed due to transformations can significantly impact the recovery process,
potentially leading to an entirely incorrect original image. In contrast, pixel-wise
fusion interleaves pixels from both images at a fine-grained level, ensuring a more
balanced and evenly distributed representation of information across the entire im-
age. This method minimizes the risk of erroneous reconstructions caused by small
perturbations, making it more resilient to transformations and processing varia-
tions. Additionally, pixel-wise fusion ensures that features from both images are
consistently retained, improving perceptual quality and making it less susceptible
to distortions introduced during subsequent processing steps. Thus, for applica-
tions where post-processing transformations are involved, pixel-wise fusion offers

a more reliable and visually coherent approach compared to LSB manipulation.

Original Image 1 Reconstructed Image 1

Original Image 2
o |

)

Intermediate Image Reconstructed Image 2
ey g

Figure 33: Comparison between Pixel Wise Fusion and LSB Manipulation

Row 1: Pixel Wise manipulation and Four Nearest Neighbor Refinement with
Arnold Scrambling, Row 2: LSB Manipulation and Four Nearest Neighbor Refine-
ment with Arnold Scrambling
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Pixel Wise | LSB Manipulation | Pixel + LSB
Image 1 0.015325 0.028741 0.020960
Image 2 0.006600 0.031398 0.026985
Image 3 - - 0.034361
Image 4 - - 0.038224
Total Error 0.021925 0.060139 0.120530
Avg Error 0.010963 0.030070 0.030133

Table 4: Transposed comparison of pixel wise, LSB manipulation, and combined
approaches.

Furthermore, the combination of both techniques achieves higher embedding ca-
pacity while allowing scrambling algorithms to function effectively. This hybrid
approach is particularly suitable for algorithmic implementations that demand
both security and high capacity. However, when combining these two techniques,
each individual pixel value becomes more significant. As a result, applying fur-
ther generative methods, such as GAN-based transformations, can lead to in-
accurate reconstructions. Even minor changes to the intermediate image values
can compromise the entire recovery process, making the model highly sensitive to

transformation-based alterations.

5.3.5 Vulnerability of Arnold Transformation and the solution

The Arnold scrambling transformation is widely used for image encryption and
feature concealment due to its ability to reorder pixel positions in a deterministic
yet seemingly chaotic manner. When combined with an image fusion phase, it fur-
ther enhances security by obscuring the original image content, making it nearly
impossible to visually identify the embedded secret images. However, a significant
vulnerability of the Arnold transformation lies in its reversibility. Since it follows a
periodic pattern, repeated applications of the scrambling algorithm or its inverse,
the reverse Arnold transformation can eventually regenerate the original fused im-
age. This unintended periodicity weakens security, as an adversary with knowledge
of the transformation parameters could iteratively reverse the process, revealing
the visual features of both secret images.

To mitigate this vulnerability, it is crucial to integrate unique and adaptive trans-
formation mechanisms that do not exhibit predictable periodicity. One effective
solution is the introduction of dynamic key-based scrambling algorithms, where
the transformation parameters vary for each instance. This variability enhances
security by preventing attackers from identifying consistent patterns. Additionally,
the incorporation of generative models, such as CycleGAN, introduces a layer of
synthetic data generation during the transformation process. These models are
capable of learning complex mappings between image domains, ensuring that the
scrambled image retains essential information while deviating significantly from

any predictable periodic structure. By integrating such unique generators capable
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of synthesizing altered yet recoverable scrambled images, the system ensures that
visual features remain concealed while still allowing accurate reconstruction when
needed. This approach significantly strengthens the robustness of image security
systems, preventing unauthorized access to hidden information while maintaining

high fidelity in reconstruction for legitimate use cases.

5.4 Steganographic key based coverless multi image steganog-
raphy

The steganographic method begins by taking four secret images and a stegano-
graphic key phrase as input. This key phrase plays a crucial role in determining
the security and uniqueness of the transformation process. The system uses the key
to generate a unique three-digit number by converting the text into a non-reversible
numeric form using a hashing mechanism. This ensures that the transformation is
one-way consistent meaning, the same key will always produce the same number,

but the process cannot be reversed to retrieve the key, thereby enhancing security.
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Figure 34: Steganographic key based coverless multi image steganography archi-
tecture

5.4.1 Encoding Process

The encoding process is designed to securely transform four secret images into a
single scrambled intermediate image through a sequence of deterministic and key-
driven operations. It leverages pixel-wise fusion, LSB manipulation, and scram-

bling all governed by a steganographic key.
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e Phase 1 — Pixel-Wise Fusion: The first step involves fusing pairs of secret
images using a pixel-wise fusion strategy. This method fuses two images by
alternating their pixel values in a predefined interleaving pattern, resulting
in two new fused images. This fusion technique retains a balanced amount

of visual and data features from both source images.

e Phase 2 — Independent Scrambling: After fusion, each of the two fused im-
ages is scrambled independently. The number of scrambling rounds applied
to each image is determined by the unique three-digit number generated from
the steganographic key. This means that even if two images are processed
together, their scrambling paths differ, reinforcing security and making unau-

thorized reconstruction highly challenging.

e Phase 3 — LSB-Based Fusion: The scrambled fused images from Phase 2
are then fused using the Least Significant Bit (LSB) manipulation technique.
This phase embeds one image into another at the bit level, resulting in a
single intermediate image that subtly holds the information of both secret

images while appearing visually inconspicuous.

e Phase 4 — Intermediate Image Scrambling: The intermediate image is then
scrambled again, this time as a whole. The number of scrambling rounds is
again derived from the same three-digit number obtained using the stegano-
graphic key. This added layer of scrambling enhances the obfuscation of the

hidden data, making the final scrambled intermediate image highly secure.

5.4.2 Decoding Process

The decoding process aims to faithfully reconstruct the four secret images from the
scrambled intermediate image using the same steganographic key that was used
during encoding. Since the encoding process is deterministic but non-reversible in
terms of key derivation, the same key ensures consistent transformation parameters

for decoding.

e Phase 5 — Reverse Scrambling of Intermediate Image: The scrambled in-
termediate image is subjected to a reverse scrambling algorithm to retrieve
the original intermediate image. The number of reverse scrambling rounds
matches those used in Phase 4 of the encoding process and is determined
using the three-digit number derived from the steganographic key. This step
is crucial in unraveling the final layer of pixel scrambling applied during

encoding.

e Phase 6 — Reverse LSB Manipulation: Once the intermediate image is re-
covered, reverse LSB manipulation is performed to extract the two previously

fused and scrambled images. This operation separates the bit-level data that
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was embedded during the LSB-based fusion phase, revealing the two fused

components.

e Phase 7 — Independent Reverse Scrambling of Fused Images: Each of the
extracted fused images is then reverse scrambled independently. Similar to
the encoding phase, the number of rounds is determined using the unique
three-digit number generated from the key. Because each fused image was
scrambled differently during encoding, reversing the scrambling process in-

dependently for each one ensures accurate reconstruction.

e Phase 8 — Pixel-wise Defusion into Original Images: After descrambling,
the fused images still contain information from two secret images each, fused
using pixel-wise interleaving. This step diffuses (or separates) each fused im-
age back into the two original secret images by reversing the pixel-wise fusion

pattern. The output is four distinct secret images, partially reconstructed.

e Phase 9 — 4-Nearest Neighbor (4NN) Refinement: Finally, a 4-Nearest
Neighbor (4NN) refinement technique is applied to the recovered images.
This method enhances image quality by filling in gaps or smoothing incon-
sistencies based on surrounding pixel values. It helps restore finer details and
improve the perceptual quality of the images, resulting in outputs that are

visually closer to the originals.

Figure 35: Steganographic key based Image Fusion Results

The proposed steganographic framework introduces a highly secure and structured

approach to hiding multiple secret images within a single intermediate image. By
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employing a non-reversible key-based transformation mechanism, along with in-
dependent multi-round scrambling and pixel-wise fusion techniques, the process
ensures both high-level concealment and fidelity in reconstruction. The integra-
tion of LSB manipulation and 4-Nearest Neighbor refinement further enhances the
robustness and visual quality of recovered images. Most importantly, the use of
a unique steganographic key for guiding each transformation stage ensures that
only authorized parties with the correct key can accurately decode and retrieve
the hidden content. This comprehensive method not only protects sensitive visual
data during transmission or storage but also makes it a reliable solution for secure

image-based information hiding.

5.5 Explore the behavior of CycleGAN

Figure illustrates a CycleGAN framework, where two generators are used to
perform bidirectional image transformation. ”Generator 1”7 transforms source im-
ages into target images, and ”Generator 2”7 reverses this process by transforming
target images back into the original source images. This cycle ensures that the
generated target images retain the key characteristics of the source images, while

also enabling the reconstruction of the source images from the generated ones.

Generator 1

Source ) Target
Images Images

Generator 2

Figure 36: CycleGAN for Image Transformation

5.5.1 Behavior of CycleGAN according to Different Sizes of Datasets

This section explores the impact of dataset size on the performance of CycleGAN
in transforming secret images into artistic representations while keeping the same
batch size of 4 and same number of training epochs of 100 epochs. By training
the model on datasets of varying sizes, from as few as 6 images to a large set
of 6300 images, the study examines how data availability influences generaliza-
tion, overfitting, and reconstruction quality. The findings highlight the advantages
of larger datasets in improving transformation stability and visual fidelity while

demonstrating the challenges posed by limited training samples.

e Single Secret Images to Paint Arts Transformation (Dataset size
_6)
This small dataset serves as a proof-of-concept to validate the feasibility of

transforming single secret images into artistic representations. Due to the
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limited number of images, the model may overfit, leading to less generaliza-

tion.

Single Secret Images to Paint Arts Transformation (Dataset size
-250)

This dataset provides a more diverse set of images, allowing the model to
learn better feature mappings between secret images and their artistic trans-
formations. While overfitting is reduced compared to the smaller dataset, the
model may still require further optimization to generalize effectively across

various image styles.

Single Secret Images to Paint Arts Transformation (Dataset size
-500)

With 500 images, the model benefits from a broader range of training sam-
ples, leading to improved robustness in generating artistic representations.
The increased dataset size enhances the model’s ability to generalize and
capture intricate details, ensuring more stable and visually appealing trans-

formations while reducing dependency on specific patterns in the data.

Single Secret Images to Paint Arts Transformation (Dataset size
-6300)

A significantly large dataset of 6300 images allows the model to achieve high-
quality artistic transformations while maintaining the structural integrity of
the secret images. The diverse data distribution strengthens the model’s gen-
eralization ability, enabling it to produce visually coherent and stylistically
diverse outputs. Advanced training strategies such as adversarial loss and

perceptual loss can be effectively applied to further refine the results.
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Original Image Encrypted Image Reconstructed Image

Figure 37: Image Transformation over different sizes of dataset (Row 1: Dataset
size - 6, Row 2: Dataset size - 250, Row 3: Dataset size - 500, Row 4: Dataset
size - 6000 & Column 1: Original Image, Column 2: Generated Image, Column 3:
Reconstructed Image)

Figure[37]illustrates the steganographic performance of CycleGAN across different
dataset sizes, where models trained on varying amounts of data are evaluated on
unseen secret images. Each row represents a different dataset size, with the first row
showing results for a dataset of 6 images, the second row for 250 images, the third
row for 500 images, and the final row showcasing the performance on a much larger
dataset of 6300 images. This allows for a comparison of how dataset size influences

the model’s ability to transform secret images into artistic representations.

Dataset Size | Mean Squared Error | Absolute Mean Pixel Error
6 Images 0.176572 0.337011
250 Images 0.336253 0.512487
500 Images 0.061227 0.191331
6300 Images 0.012110 0.081347

Table 5: Error values on Image Transformation over different sizes of datasets

Table presents the error values when comparing the original images to the re-

covered images, providing an assessment of the model’s performance in terms of
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reconstruction accuracy. The table displays the Mean Squared Error and Absolute
Mean Pixel Error for different dataset sizes, allowing a detailed comparison of the
reconstruction quality across varying amounts of training data. The error values
highlight how the model’s ability to recover the original images improves as the
dataset size increases, with lower error values observed for larger datasets, indi-
cating better generalization and more accurate reconstructions. This table offers
insights into the relationship between dataset size and model performance in terms
of error minimization.

Through extensive experimentation, it was observed that dataset size plays a cru-
cial role in the performance of CycleGAN. Specifically, when using small datasets
with fewer than 3000 images per domain, the quality and stability of transforma-

tions were noticeably impacted.

e Challenges with Small Datasets
With limited data, CycleGAN struggled to generalize the transformation pat-
terns effectively. This often resulted in poor quality outputs with inconsistent

mappings between the source and target domains.

e Benefits of Larger Datasets
In contrast, with datasets containing over 3000 images per domain, Cycle-
GAN achieved more stable and realistic transformations. With sufficient
data, CycleGAN could retain structural details in transformations and cap-

ture domain-specific features, leading to more realistic and coherent results.

e Effect on Reversibility
In experiments with larger datasets, CycleGAN also demonstrated improved
reversibility, where transformed images could be more effectively mapped

back to their original domain compared to smaller datasets.

In summary, dataset size directly affects CycleGAN’s ability to perform effective
transformations between domains. To achieve high-quality results with Cycle-
GAN, it is recommended to have larger databases with accurate images from each
domains. This ensures that the model has sufficient data to learn the complex
mappings required for stable and consistent transformations, particularly in tasks

involving intricate or structurally diverse domains.

5.5.2 Fused Images into Paint Arts

In this experiment, CycleGAN was employed for the image transformation phase,
focusing on evaluating its effectiveness in converting fused images into paint art and
subsequently reconstructing them. Instead of incorporating a scrambling phase,
the study aimed to directly analyze CycleGAN’s ability to learn the mappings
between the fused image domain and the paint art domain. The source domain

is consisted of fused images generated through pixel-wise fusion, while the target
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domain is comprised paint art images. By training CycleGAN in this setting, the
goal was to assess its capability in preserving critical visual features while trans-
forming fused images into artistic representations and accurately recovering them
back to their original form.

The results revealed that while CycleGAN successfully mapped the fused images
into paint art, the reconstructed images suffered from significant quality degra-
dation. Despite the loss in fine details and original texture, the recovered images
retained the essential structural features of the original inputs, making them recog-
nizable. This indicates that while CycleGAN can effectively learn transformations
between these domains, additional refinements—such as improved loss functions,
perceptual loss integration, or adversarial regularization—may be required to en-
hance reconstruction quality and better preserve the integrity of the original fused

images.

Parameter Value
Dataset Size 6300 Fused Images
Batch Size 4
Learning Rate 0.0002
Lambda Value for Identity Loss 0
Lambda Value for Cycle Loss 4
Number of Epochs 100
Total Time (seconds) 35920
Total Time (approx.) 10 hours

Table 6: Training Configuration and Time
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Original Image 1 Refined Image 1 Refined Image 2

Figure 38: CycleGan on Fused Images into Paint Arts

The results shown in Figure highlight the limitations of CycleGAN in accu-
rately reconstructing the original images from their fused representations. While
the transformation into the paint art domain was successful, the recovery process
did not preserve the original colors, leading to significant color distortions in the
reconstructed images. Additionally, the separation of the two secret images was
not achieved as expected. This is primarily due to the model’s inability to recover
pixel values in a structured manner that aligns with the designated pixel positions
for each secret image. As a result, instead of accurately defusing the two images,
the reconstructed outputs exhibit overlapping structures where both secret images
share a similar visual pattern with altered color distributions. This suggests that
while CycleGAN learns meaningful transformations, it lacks the precision required
for controlled pixel-wise recovery, necessitating further improvements in the recon-
struction process, potentially through architectural modifications or loss function
refinements tailored for pixel-accurate retrieval.

Adversarial loss alone cannot handle the reconstruction of fused image pixel values
in a structured manner because it primarily focuses on making the generated image
appear visually realistic to a discriminator, rather than enforcing precise spatial or
pixel-level accuracy. In the case of fused images, where pixel positions correspond
to specific regions or patterns from multiple secret images, adversarial loss does
not provide guidance to preserve or recover these designated positions. As a result,

it fails to ensure that the reconstruction aligns with the original pixel-wise layout
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required for accurately separating and restoring each embedded image.

5.5.3 Fused and Scrambled Images into Paint Arts

In this experiment, CycleGAN was utilized for the image transformation phase,
focusing on evaluating its effectiveness in converting scrambled fused images into
paint art and subsequently reconstructing them. The source domain consisted of
fused images that underwent four iterations of Arnold scrambling, while the tar-
get domain comprised paint art images. The study aimed to analyze CycleGAN’s
capability to learn mappings between scrambled images and artistic representa-
tions without any prior knowledge of the original fused images. By training the
model in this setting, the objective was to determine whether CycleGAN could
effectively translate scrambled inputs into meaningful outputs while still retaining

the potential for reconstruction.

Parameter Value
Dataset Size 6300 Fused and Scrambled Images
Batch Size 4
Learning Rate 0.0002
Lambda Value for Identity Loss 0
Lambda Value for Cycle Loss 4
Number of Epochs 100
Total Time (seconds) 34286
Total Time (approx.) 10 hours

Table 7: Training Configuration and Time

7



Original Image 1 Original Image 2

P ‘—e",v-;’-\ ]

Encrypted Image  Refined Image 1 Refined Image 2

(S |

Figure 39: CycleGan on Fused Scrambled Images into Paint Arts with no iterations
of scrambling

The results in Figure demonstrated that while CycleGAN was capable of con-
cealing the original features of secret images when no scrambling iterations were
applied, the reconstructed outputs remained recognizable, albeit with significant
distortions. Despite the overall degradation in image quality, key structural el-
ements of the original content were still preserved, making the recovered images
partially identifiable. This suggests that CycleGAN can extract meaningful visual
features even from transformed images. However, without prior knowledge of the
original secret images, the reconstruction process does not occur as intended.

A major limitation observed was the failure to achieve the expected separation of
the two secret images. This issue arises primarily due to the model’s inability to
recover pixel values in a structured manner that aligns with the designated pixel
positions for each secret image. Consequently, instead of accurately defusing the
fused images into their respective original images, the reconstructed outputs exhibit
overlapping structures, where both secret images share similar visual patterns of a
fused image. This indicates that while CycleGAN is effective in learning complex
transformations, it lacks the precision needed for controlled pixel-wise recovery.
Addressing this challenge would require improvements in the reconstruction pro-
cess, such as refining the model’s architecture, integrating the image fusion phase
to the image transformation phase during training process, and defining new loss
functions based on original secret images and reconstructed secret images.

Originally, the model was trained using fused images followed by 4 iterations of
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scrambling rounds, and paint-art images. However, during evaluation, while the
fused images without scrambling iterations were reconstructed effectively, the per-
formance significantly deteriorated for fused images that had undergone 4 or 8
iterations of scrambling. Figure and Figure displays the model evaluation
over fused images which applied 4 iterations of scrambling and 8 iterations of

scrambling respectively.

Original Image 1 Original Image 2 Encrypted Image  Refined Image 1 Refined Image 2
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=

Figure 40: CycleGan on Fused Scrambled Images into Paint Arts with 4 iterations
of scrambling
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Figure 41: CycleGan on Fused Scrambled Images into Paint Arts with 8 iterations
of scrambling

Since the generators are trained to transform between scrambled images and paint
art representations, the generator responsible for producing the scrambled image
primarily focuses on generating outputs that appear visually realistic to the dis-
criminator. This objective, driven by adversarial loss, emphasizes overall appear-
ance rather than enforcing strict spatial or pixel-level accuracy. Consequently, the
generator fails to reconstruct the original scrambled structure with the necessary
precision, particularly when multiple secret images are fused. This highlights the
limitation of relying solely on adversarial loss and emphasizes the need for a more
advanced training architecture—one that incorporates structure-preserving con-
straints or additional loss functions tailored for pixel-wise alignment and accurate

spatial reconstruction.

5.6 Image Fusion (Pixel wise manipulation with Four Near-
est Neighbor Refinement) and Image Transformation
(CycleGAN)

The experiment was conducted using a small dataset of six secret images due to

computational performance constraints. The model was trained with a batch size

of 2, a learning rate of 0.0002, and a total of 100 epochs. Identity loss and cycle

loss were assigned weights of 4 and 2, respectively, to balance the objectives of the
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model. The entire training process took approximately 14.4 hours (51870 seconds)

to complete.

Parameter Value
Dataset Size 6 Secret Images
Batch Size 2
Learning Rate 0.0002
Lambda Value for Identity Loss 4
Lambda Value for Cycle Loss 2
Number of Epochs 100
Total Time (seconds) 51870
Total Time (approx.) 14.4 hours

Table 8: Training Configuration and Time

Each training iteration begins with two source images, which are fused using pixel-
wise fusion to create a single input image during training. This fused image is then
processed by a GAN-based generator that attempts to map it into the domain of
paint arts. To ensure that the generated image resembles actual paintings, a dis-
criminator is trained in parallel to distinguish between real paint art images and
the synthetic stego images. The output of this process is the stego image, which
serves as the encoded representation of the secret images.

Following the generation of the stego image, another generator is tasked with re-
constructing the fused image from it. This stage involves an additional discrimina-
tor, which differentiates between real and reconstructed fused images. To enhance
training stability, an intermediate loss is computed between the regenerated fused
image and the initially fused image to encourage accurate reconstruction.

Once the fused image is reconstructed, the model proceeds to recover the origi-
nal secret images. This is achieved through pixel-wise diffusion followed by four-
nearest-neighbor refinement, which corrects any distortions introduced during the
transformations. The final output is compared to the original secret images using

refinement loss to measure reconstruction accuracy.

Figure 42: Image Fusion and CycleGan (Saved Images during training)

Figure [I2] demonstrates the results of image fusion and CycleGAN-based transfor-

mations during training. The stego image, intended to conceal the visual features
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of the secret images, reveals notable traces of the original content. While the
generated fake target image exhibits a transformed style, the structural details of
the source images are still distinguishable. This indicates that the model has not
fully learned to obscure the visual identity of the secret images, potentially due to
limitations in dataset size and the complexity of the generator. As a result, the
reconstructed images retain significant portions of the original features, highlight-
ing the need for further improvements in the model’s ability to fully disguise the

secret images within the stego representation.

5.7 Image Fusion (Pixel wise manipulation with Four Near-
est Neighbor Refinement), Image Scrambling (Arnold
Scrambling) and Image Transformation (CycleGAN)

The experiment was designed to evaluate the effectiveness of the proposed multi-
image steganographic model based on CycleGAN, incorporating image fusion and
scrambling techniques. Due to computational constraints, only six images per do-
main were used throughout the training process. Despite this limitation, the model
demonstrated a significant improvement in visual feature concealment within the
generated stego images.

The dataset consisted of six secret images carefully selected for training. To en-
hance security, each image underwent four Arnold transformations, ensuring that
the secret images were sufficiently distorted before being embedded. A small batch
size of 2 was used to maintain stability during training, while the learning rate was
set to 0.0002, a standard choice in CycleGAN training, ensuring smooth optimiza-
tion. The loss function weights were configured with identity loss at 4 and cycle

consistency loss at 2 to balance the learning process.

Parameter Value
Dataset Size 6 Secret Images
Scrambling Iterations 4 Arnold Iterations
Batch Size 2
Learning Rate 0.0002
Lambda Value for Identity Loss 4
Lambda Value for Cycle Loss 2
Number of Epochs 100
Total Time (seconds) 73644
Total Time (approx.) 20.5 hours

Table 9: Training Configuration and Time

Within this training architecture, each iteration begins with the selection of two
source images, which are then fused using pixel-wise fusion. The fused image un-
dergoes four iterations of Arnold scrambling to enhance security and obfuscate its

visual features. The scrambled image is then passed through a GAN generator,
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which aims to map it into the domain of paint arts, generating a synthetic image.
Simultaneously, a discriminator is trained to distinguish whether the generated im-
age is a synthetic stego image or an actual paint art. This generated image serves
as the stego image, which carries the concealed information.

Using the stego image, a second generator attempts to reconstruct the scrambled
image. Another discriminator is employed here to differentiate between real scram-
bled images and those generated by the model. At this stage, an intermediate loss
is calculated by comparing the regenerated scrambled image with the initially fused
scrambled image to ensure proper reconstruction. Once the scrambled image is re-
constructed, it undergoes four reverse Arnold scrambling iterations to regenerate
the fused image.

To retrieve the original secret images, pixel-wise diffusion is applied, followed by
four-nearest-neighbor refinement to enhance the reconstructed images’ quality. The
final refinement step ensures that the recovered secret images closely resemble the
original ones. A refinement loss is calculated by comparing the reconstructed re-
fined images with the original secret images, ensuring that the model learns to

preserve and restore the hidden information accurately.
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Figure 43: Training Architecture

Upon analyzing the generated stego images, it was observed that they exhibited
strong visual concealment, effectively hiding secret image features. No identifiable
visual details from the original secret images were present in the stego images,
making them highly secure. This level of visual obfuscation significantly improved

the ability to protect sensitive content from unauthorized detection.
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Figure 44: Pixel Wise Image Fusion, Scrambling and CycleGAN combination
(Saved Images during training)

In terms of reconstruction performance, the CycleGAN model showed improved
convergence when attempting to reconstruct secret images. However, the recon-
structed outputs were highly blurred, reducing their clarity and making precise
image retrieval challenging.

During the evaluation, the model failed to generate stego images as expected. In-
stead, it produced black-and-white distorted versions of the fused secret images.
This distortion affected the reconstruction process, making it difficult to retrieve

original images with high fidelity.

Original Image 1 Original Image 2 Refined Image 1 Refined Image 2

Encrypted Image

Figure 45: Evaluate Performance

Although the proposed model successfully achieved strong visual feature conceal-

ment, it struggled to balance steganographic security with image reconstruction
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quality. The black-and-white distortions in the generated stego images impacted
the model’s ability to reconstruct the original secret images effectively. This sug-
gests that further refinements, such as improving the loss functions, adjusting the
CycleGAN architecture, or increasing the dataset size, are necessary for better

performance.

5.8 Image Fusion (Pixel wise manipulation), Image Scram-
bling (Arnold Scrambling) and Image Transformation
(CycleGAN) with Improved Loss Functions and Com-

plex Generator Architecture

The experiment involved key parameters that influenced the model’s performance.
The dataset consisted of only 6 secret images per domain due to computational
constraints, limiting generalization. The model applied 4 Arnold scrambling iter-
ations to conceal the secret images, with a batch size of 2 for efficient training. A
learning rate of 0.0002 was chosen to allow gradual weight updates without over-
shooting, while the lambda values for identity loss and cycle loss were set to 4
and 2, respectively. The identity loss lambda value encouraged preservation of the
original images during transformations, while the cycle loss lambda value ensured
accurate reconstruction of the secret images. These parameters, while designed to
balance image transformation and feature concealment, were constrained by the

small dataset, limiting the model’s ability to generalize.

Parameter Value
Dataset Size 6 Secret Images
Scrambling Iterations 4 Arnold Iterations
Batch Size 2
Learning Rate 0.0002
Lambda Value for Identity Loss 4
Lambda Value for Cycle Loss 2
Number of Epochs 100
Total Time (seconds) 152853
Total Time (approx.) 42.46 hours

Table 10: Training Configuration and Time

Within this training architecture, each iteration begins by selecting two source
images, which are then fused using pixel-wise fusion. This fused image undergoes
four iterations of Arnold scrambling to enhance security by disrupting its pixel
arrangement. The scrambled image is then fed into a GAN generator, which at-
tempts to map it into the domain of paint arts, generating a synthetic stego image.
To ensure the quality and realism of this transformation, a discriminator is trained
simultaneously to differentiate between actual paint art images and the generated

stego images. The discriminator’s feedback helps the generator improve its ability
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to create convincing stego images.

Once the stego image is generated, a second generator attempts to reconstruct the
scrambled image from it. During this process, an intermediate loss is calculated
between the regenerated scrambled image and the original fused scrambled image
to ensure that the network learns to retain essential features. The reconstructed
scrambled image then undergoes four reverse Arnold scrambling iterations to re-
trieve the fused image, reversing the pixel displacement applied earlier.

To reconstruct the original secret images, the fused image undergoes pixel-wise
diffusion, followed by four-nearest-neighbor refinement. This refinement process
enhances the quality of the reconstructed images by correcting distortions intro-
duced during scrambling and GAN processing. A refinement loss is calculated
between the reconstructed refined images and the original secret images to mea-
sure the accuracy of recovery. Additionally, another discriminator is introduced at
this stage to distinguish between real secret images and reconstructed ones, further

improving the generator’s ability to restore the original images with high fidelity.
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Figure 46: Training Architecture with Improved Loss Functions

With the use of only 6 images per domain (due to computational limitations), the
model was able to generate a stego image with enhanced visual feature concealment.
Notably, no visual features from the original secret images were shown in the stego
image. This ensured that the secret images were effectively concealed. However,
the smaller dataset led to better convergence for reconstructing the original images,

even though the reconstructed images were completely blurred.
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Figure 47: Pixel Wise Image Fusion, Scrambling and CycleGAN combination with
Improved Loss Functions (Saved Images during training)

During evaluation, the generation of the stego image was not as expected but
showed improvements compared to previous versions. The generated images in
previous experiment, were closer to a black-and-white version of the fused and
distorted secret images. This improvement in generation helped in the subsequent
reconstruction, producing better results with a mixture of colors. However, since
the dataset size was so small, the model did not generalize well, and the evaluations

showed limitations in preserving the original image data into the target pixel values.

Encrypted Image  Refined Image 1 Refined Image 2

Original Image 1 Original Image 2

Figure 48: Evaluate Performance with Improved Loss Functions

An essential realization in this architecture is that the discriminators should fo-
cus on distinguishing between the original secret images and the reconstructed

refined images, rather than between the fused scrambled images and the regener-
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ated scrambled images. Since the ultimate goal is to recover the original images
without revealing visual features in the stego image, the discriminator’s role should
be to ensure that the refined images retain as much of the original image quality
as possible. This distinction helps the model prioritize meaningful reconstruction
rather than just learning the transformation and scrambling process. By training
the discriminator to compare real secret images with reconstructed ones, the net-
work is better guided toward generating high-fidelity recoveries, making the overall
steganographic framework more effective.

As a future direction, training the model on a more powerful machine, with a
larger dataset containing more than 10,000 images per domain, could lead to bet-
ter generalization. This larger training set would allow the model to learn more

generalized features and improve the evaluation process.

5.9 Chapter Summary

This section presents the experimental setup and results of the proposed stegano-
graphic methodology, which demonstrates enhanced hiding capacity, improved re-
construction quality, and higher reconstruction accuracy. It also explores various
techniques employed for image fusion, diffusion, and refinement, validating their

effectiveness in achieving secure and efficient coverless multi-image steganography.
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6 Critical Evaluation of Results

Since the proposed GAN-based coverless multi-image steganography methodology
has not yet been successfully implemented and requires further development, the
evaluation in this study is conducted on the Steganographic Key-based coverless

multi-image steganography methodology.

6.1 Image Quality Evaluation

The proposed model was evaluated using a test dataset comprising 50 images.
From this dataset, 100 input sets were created by randomly selecting 4 images
per set. Each set was used to generate an intermediate image based on a unique
steganographic key. The corresponding recovered images were then analyzed to
assess the quality of image recovery. To provide a comprehensive evaluation, the
MSE]was calculated separately for each of the four recovered images in every input
set.

Table 11: Mean Squared Error for Recovered Images per Set

Image 1 | Image 2 | Image 3 | Image 4
Set 1 9.181 8.758 9.006 5.312
Set 2 10.720 11.209 10.359 9.008
Set 3 9.181 5.312 9.820 6.880
Set 4 5.345 10.709 10.359 8.510
Set 5 8.746 8.931 9.006 6.880
Total Error | 43.173 44.917 48.579 36.590
Avg Error 8.635 8.983 9.716 7.318

Table 12: Evaluation Metrics for Each Recovered Image on 100 sets

Image 1 | Image 2 | Image 3 | Image 4
Average MSE 137.055 136.095 130.568 128.920
Average RMSE 11.507 11.506 11.278 11.278
Average PSNR | 27.039895 | 27.023080 | 27.191004 | 27.246834

The values obtained from this evaluation can be subjected to a comparison against

existing image steganography methods.

Table 13: Comparison against existing image steganography methods

Baluja | Dharmawimala | lakshan | Proposed Method
Average MSE - 77.87 546.25 133.3013
Average RMSE - 8.74 22.5 11.373
Average PSNR | 27.51 29.39 27.13 27.246834
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6.2 Steganalysis Evaluation

A critical aspect of evaluating the effectiveness of any steganographic system lies
in its resilience against steganalysis techniques. The proposed coverless stegano-
graphic models provide a notable advantage in this regard by eliminating the de-
pendency on predefined cover images. Traditional steganalysis algorithms often
rely on detecting statistical anomalies or pixel-level alterations in the cover-stego
image pairs. However, since the proposed methodology generates intermediate
(stego) images from scratch without modifying any known cover, these conventional
detection techniques become significantly less effective. This inherently enhances
the stealth of the communication, making it more secure and less susceptible to
automated steganalysis tools. Furthermore, by concealing visual features rather
than embedding data into existing pixel values, the system minimizes detectable
distortions, providing an advanced level of undetectability and robustness against
analysis-based attacks. This design choice marks a substantial contribution toward

developing highly secure, coverless multi-image steganographic systems.

6.3 Hiding Capacity

The embedding capacity of coverless image steganography models refers to the
number of bits a carrier image can represent, typically measured in bits per cover.
In the proposed model, the embedding capacity is calculated as 256 X 256 X 8 X 3 x4
bits per image.

When evaluating the relative capacity, which denotes the number of bits per pixel
that can be hidden, the model achieves a remarkable rate of 8 x3x4=96 bits per
pixel.

This represents a significant improvement compared to existing methods in the do-
main of coverless multi-image steganography. Notably, the proposed model main-
tains this high embedding capacity without any reduction in image size and ensures
no visual feature leakage through the intermediate image. Moreover, the model
achieves high recovery accuracy, preserving visual fidelity nearly identical to the
original images, both in terms of human visual perception and quantitative recon-

struction metrics.

Method Absolute Capacity | Image Size | Relative Capacity
(bits/image) (bits/pixel)
Dharmawimala (2023) | 256 x 256 x 8 x 1 x 2 | 256 x 256 16
Lakshan (2024) 256 x 256 x 8 x 3 x 2 | 256 x 256 48
Proposed Method 256 X 256 x 8 x 3 x4 | 256 x 256 96

Table 14: Comparison of Absolute and Relative Embedding Capacities
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6.4 Robustness

To evaluate the robustness performance of the proposed model, a series of attacks
were applied to the carrier (intermediate) image. After each perturbation, the
model was used to reconstruct the secret images, and the accuracy of recovery
was assessed. The Bit Error Rate (BER) was employed as the primary evaluation
metric, computed by comparing the recovered secret images with their original
counterparts. BER quantitatively measures the ratio of erroneous bits in the re-
constructed images, thus serving as an indicator of the model’s ability to resist
distortions and adversarial manipulations. A lower BER indicates a more robust
system capable of maintaining high fidelity under various attack scenarios. This
analysis provides valuable insight into the model’s resilience and effectiveness under

challenging conditions.
ER,

BER =
ER,

Where:
e ER,: Error rate without any attack (baseline error).
e FR,: Error rate after applying a specific attack.

A lower BER value indicates higher robustness and better preservation of the

hidden information despite distortions.

e Geometric Attacks
The proposed methodology demonstrated limited robustness against geomet-
ric transformations such as scaling, rotation, cropping, padding, and flipping.
These attacks disrupted the spatial arrangement of the fused and scrambled
images, which in turn affected the recovery process. Due to the multiple
rounds of scrambling applied at different phases, the reconstructed images
under geometric attacks were mostly distorted and appeared as scrambled
versions of the original secret images. This indicates that the methodology is
not resilient to spatial transformations that alter the geometric consistency

of the image.

— Scaling Attack: Resizing the image to a different resolution and restor-

ing it to the original size, potentially distorting pixel-level information.
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Figure 49: Scaling Attack (Down Scale) - BER RMSE 7.155403
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Figure 50: Scaling Attack (Up Scale) - BER [RMSE} 6.368462

— Rotational Attack: Rotating the image at various angles to test re-

covery consistency after geometric transformations.

Secret Image 1 Secret Image 3 Recovered Image 3

Intermediate Image Recovered Image 1

Secret Image 4 Attacked Image Recovered Image 2 Recovered Image 4

Figure 51: Rotational Attack (90 Degree) - BER [RMSE} 8.826214
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Figure 52: Rotational Attack (180 Degree) - BER 9.358952

— Cropping and Padding Attack: Cropping portions of the image and
padding them back to original dimensions, leading to spatial content loss

or misalignment.

Secret Image 1 Secret Image 3 Intermediate Image Recovered Image 1 Recovered Image 3

Secret Image 2 Secret Image 4 Attacked Image

Recovered Image 2 Recovered Image 4

Figure 53: Cropping and Padding Attack - BER [RMSE} 8.322171

— Flipping Attack: Horizontally or vertically flipping the image to sim-

ulate basic transformations.
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Figure 54: Flipping Attack (Horizontal) - BER Et 8.757904
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Figure 55: Flipping Attack (Vertical) - BER [RMSE|Error: 8.322171

e Noise-Based Attacks
In terms of noise-based attacks, the proposed methodology showed moder-
ate resilience. When Gaussian noise and speckle noise were introduced, the
reconstructed outputs became noisy; however, the core visual features of the
secret images remained recognizable to a certain extent. This suggests that
although the model cannot completely eliminate the impact of such noise,
it maintains a basic level of visual integrity in the recovered outputs. Most
notably, under Salt and Pepper noise, the methodology performed exception-
ally well, producing reconstructed images that were nearly identical to the

originals with minimal degradation.

— Gaussian Noise Attack: Introducing normally distributed noise to

simulate natural disturbances during transmission.
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Figure 56: Gaussian Attack - BER |RMSE} 5.846397

— Salt and Pepper Noise Attack: Randomly replacing pixel values
with black or white to mimic data dropouts or extreme channel inter-

ference.

Secret Image 1 Recovered Image 1

Secret Image 3 Intermediate Image Recovered Image 3

Attacked Image Recovered Image 2 Recovered Image 4

Figure 57: Salt and Pepper Noise Attack - BER|RMSE} 1.695954

— Speckle Noise Attack: Applying multiplicative noise that simulates

granular distortions commonly encountered in radar or ultrasound im-

agery.
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Figure 58: Speckle Noise Attack - BER [RMSE} 5.257035

e Filtering and Blurring Attacks
The methodology proved ineffective against filtering and blurring attacks.
When subjected to mean filtering, median filtering, and motion blur, the
reconstructed images suffered from significant quality loss. The visual clarity
and structural fidelity of the original secret images were heavily compromised,
indicating that the method does not possess sufficient robustness to defend
against such smoothing operations. These attacks likely disrupted critical

pixel-level features required for accurate reconstruction.

— Median Filtering Attack: Employing non-linear filtering to remove

noise, which may disrupt crucial pixel patterns.

Secret Image 1 Secret Image 3 Recovered Image 1

Intermediate Image
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Figure 59: Median Filtering Attack - BER 7.596181

— Mean Filtering Attack: Using averaging filters to smooth the image
can blur important details, reducing the accuracy of image recovery by

removing critical visual features.
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Figure 60: Mean Filtering Attack - BER |[RMSE} 7.400240

— Motion Blur Attack: Simulating camera or object movement to cre-

ate streaking artifacts that obscure fine image details.

Secret Image 1 Secret Image 3 Intermediate Image Recovered Image 1 Recovered Image 3

Secret Image 2 Secret Image 4 Attacked Image Recovered Image 2 Recovered Image 4

e Compression and Encoding Attacks
Under JPEG compression, the proposed methodology was partially success-
ful. Although compression artifacts introduced visible distortions, the recov-
ered images retained a basic representation of the original secret images. In
many cases, the outputs resembled black-and-white versions of the original
images, with high levels of noise. However, the fundamental visual struc-
ture was preserved, allowing the viewer to infer the original content. This
shows some degree of compression resilience but highlights a need for further

enhancement.

— JPEG Compression Attack: Reducing image quality through lossy

compression to evaluate performance under data degradation.
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Figure 62: JPEG Compression Attack - BER|RMSE} 6.173029

e Color and Channel Distortion Attacks
The proposed methodology was not resilient against color distortion attacks,
particularly color jitter. The reconstructed images were often distorted, con-
taining a mixture of visual elements from the original inputs but lacking
coherent structure. On the other hand, channel shuffle attacks were bet-
ter tolerated. Although the resulting images experienced notable changes in
color representation, their structural content and clarity were preserved. This
suggests that while the model can handle some level of channel manipulation,

it is vulnerable to complex color distortions.

— Color Jitter Attack: Randomly altering brightness, contrast, satura-

tion, and hue to simulate variations in lighting conditions.

Secret Image 1 Secret Image 3 Intermediate Image Recovered Image 1 Recovered Image 3

Recovered Image 4

Figure 63: Color Jitter Attack - BER 6.121747

— Channel Shuffle Attack: Randomly permuting the RGB channels
to challenge the model’s ability to recover based on disrupted color

semantics.
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Figure 64: Channel Shuffle Attack - BER [RMSE{Error: 2.564809

e Content Alteration Attacks
The proposed methodology demonstrated strong resistance to content alter-
ation attacks. When random pixel deletion and random pixel modification
were applied, the reconstructed images remained largely intact, with only
minimal noise or visual artifacts. The ability to recover secret images un-
der these conditions indicates the model’s effectiveness in handling random,
non-structured disruptions. This resilience further supports the robustness of
the approach for real-world communication scenarios where content integrity

may be partially compromised.

— Random Deletion Attack: Randomly deleting half of the pixel values

in the intermediate image.
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Figure 65: Random Deletion Attack - BER [RMSE} 6.214473

— Random Alteration Attack: Randomly applying arbitrary changes

to half of the pixel values in the intermediate image.
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Figure 66: Random Alteration Attack - BER [RMSE} 5.689601

6.5 Security

The steganographic model is evaluated for security based on the role of the stegano-
graphic key used during encoding and decoding. The results confirm that only the
exact secret key used during the encoding process can successfully decode and
reconstruct the original images. Any attempt to decode the intermediate image
using alternative or incorrect keys results in the recovery of meaningless or visu-
ally incoherent outputs. This key-dependent decoding mechanism ensures that the
embedded content remains inaccessible to unauthorized parties.

Unlike GAN-based steganographic models, which may be vulnerable if the gener-
ator architectures or weights are exposed, this steganographic key-based method
offers an additional layer of security. Even if the underlying algorithm is known,
the absence of the correct key prevents the reconstruction of the secret images.
This property significantly enhances the security of the proposed approach, en-
suring that only authorized users with the exact steganographic key can access
the hidden content, thereby mitigating the risks associated with model reuse or

leakage.
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Figure 67: Security Evaluation with Steganographic key usage
Row 1 : Orignal images and Intermediate Image (Stego Image)
Row 2-6 : Decoding using wrong keys

Row 7 : Decoding using correct key

6.6 Overall Evaluation Summary

The proposed methodology demonstrates exceptional performance when evaluated
against existing multi-image steganographic techniques, particularly in terms of re-
construction quality. The reconstructed images closely resemble the original secret
images to the human eye, with only minimal statistical differences. This highlights
a significant improvement in the fidelity of reconstruction. The model’s ability to
preserve visual quality is largely attributed to the strategic integration of multiple
scrambling phases and effective image fusion mechanisms, which also contribute to
enhanced visual feature concealment.

In terms of hiding capacity, the methodology achieves a remarkable improvement

by embedding four secret images within a single fused image, reaching a capac-
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ity of 96 bits per pixel. This greatly surpasses the capabilities of conventional
multi-image steganographic methods, positioning the proposed approach as a high-
capacity solution in the domain. The fused image, which contains synthesized
information from all four secret images, supports secure and efficient data hiding
without compromising image integrity.

The coverless nature of the methodology further enhances its stealth and resistance
to traditional steganalysis tools, which are typically designed to detect modifica-
tions in predefined cover images. By avoiding the use of an explicit cover and
instead relying on synthesized intermediate images that conceal visual features,
the system significantly reduces detectable distortions. This design provides a
high level of undetectability and robustness against analysis-based attacks.
However, the methodology exhibits certain limitations in resilience under specific
attack scenarios. It is particularly vulnerable to geometric attacks such as scaling,
rotation, cropping, and flipping, as well as filtering and blurring attacks. These
transformations disrupt the spatial and structural consistency needed for accurate
reconstruction. On the other hand, it shows moderate resilience to noise-based
attacks (e.g., Gaussian, speckle, and salt-and-pepper), compression artifacts, and
color or channel distortion attacks, with some visual fidelity being preserved in the
outputs.

Most notably, the methodology demonstrates strong resistance against content al-
teration attacks such as random pixel deletion and modification. Even under such
disruptive conditions, the reconstructed images remain visually clear and struc-
turally accurate, showcasing the robustness of the proposed approach in maintain-
ing information integrity in real-world communication scenarios.

In addition to its technical robustness, the proposed methodology offers enhanced
security through the use of a steganographic key, which is required for both encod-
ing and decoding processes. This key-dependency ensures that even if the encoding
algorithm is publicly known, unauthorized parties cannot recover the original se-
cret images without the exact key. This mechanism adds a critical layer of access
control and significantly reduces the risk of unintended data recovery, reinforcing
the method’s suitability for secure communication. The security-centric design not
only protects against visual and statistical detection but also mitigates the threat

of reverse-engineering or model misuse.

6.7 Chapter Summary

This section provides a critical evaluation of the proposed model through com-
prehensive image quality, steganalysis, hiding capacity, security and robustness
assessments. Both qualitative and quantitative results are presented to demon-
strate the model’s effectiveness, security, and resilience under various conditions

and evaluation metrics.
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7 Conclusion

7.1 Conclusions about Research Questions

The primary objective of this research was to develop a novel coverless multi-image
steganographic method capable of transforming multiple secret images into a single
carrier image while ensuring minimal reconstruction loss and effective concealment
of visual features. To address this, the study focused on the question of 'How
can coverless multi image steganography methods be improved to reconstruct the
original secret images with minimal loss of visual features?’. Through a systematic
exploration of fusion, diffusion, and refinement techniques, the research introduced
a model that significantly improves visual feature concealment and reconstruction
accuracy.

The study further addressed the challenge of increasing hiding capacity without
compromising security or image quality. By integrating key findings from the lit-
erature, particularly building on Baluja’s image-to-image hiding approach, a new
coverless multi-image steganography method was proposed that demonstrates a
higher hiding capacity of 96 bits per pixel while maintaining high reconstruction
fidelity and undetectability, in order to address the research question 'How can
coverless multi-image steganography methods be improved to achieve higher hid-
ing capacity while preserving reconstruction quality and security?’.

Additionally, the integration of advanced GAN-based techniques was explored to
enhance the concealment of visual features and the overall security of the system,
to address the research question "How GAN based coverless multi image steganog-
raphy methods can be improved to enhance the visual feature concealment and
security performance in GAN based multi-image steganography?’. Despite hard-
ware limitations that constrained training complexity and dataset size, the results
indicate that GAN integration has the potential to further advance coverless multi-
image steganography.

In conclusion, the research successfully answers the posed questions by present-
ing a steganographic key-based methodology that significantly advances the state
of coverless multi-image steganography. The proposed method achieves high re-
construction quality, improved hiding capacity, and strong resistance to detection,

marking a valuable contribution to the field.

7.2 Conclusions about Research Problem

The research problem addressed in this study centered on improving the conceal-
ment of visual features in stego images within the domain of coverless multi-image
steganography. To effectively tackle this, the study explored a range of techniques
involving image fusion, diffusion, and transformations. By integrating a novel
fusion approach with advanced transformation methods, a new coverless stegano-

graphic framework was developed. This approach demonstrated significant im-
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provements in terms of visual feature concealment, hiding capacity, reconstruction
ability, and overall security. The experimental results confirmed that the proposed
methodology effectively addressed the research problem, surpassing the perfor-
mance of existing techniques. Consequently, this research contributes meaning-
fully to the field by offering an innovative and more secure method for multi-image

steganography.

7.3 Limitations

The proposed steganographic key-based image fusion methodology is specifically
designed to operate with exactly four secret images. While it is possible to adapt
the method for fewer inputs by duplicating images, the original design expects four
distinct images, which may limit its flexibility in certain use cases. Additionally,
the methodology is initially tailored for 256 x256 RGB images. Although alterna-
tive modifications can enable its application to images of other resolutions, such
adjustments may affect performance or require further tuning.

Furthermore, due to hardware limitations, the GAN-based model was constrained
to training on a minimal dataset of six 256 x256 images. This limitation impacted
the ability to scale the model’s complexity and fully explore its potential. A small
dataset size, coupled with limited training epochs, reduced the efficiency of the
model and led to less sharp reconstructions. Although the model successfully
demonstrated pixel-wise recovery and maintained structural integrity, the result-
ing images were comparatively more blurred. The model’s overall performance is
closely tied to the complexity of the network architecture and the size and quality
of the dataset used.

7.4 Future Directions

As future directions, the proposed GAN-based steganographic architecture can be
further explored with enhanced computational resources, allowing experimenta-
tion on larger and more diverse datasets. This would also enable the deployment
of more sophisticated generator architectures, potentially improving the quality
and fidelity of the generated and reconstructed images. Once stable performance
is achieved, additional enhancements through hyperparameter tuning could be in-
vestigated to refine the model further.

Moreover, the proposed steganographic key-based image fusion methodology holds
potential for integration with GAN techniques to improve the overall hiding capac-
ity. While this integration is likely to increase the amount of secret data that can
be embedded, it may also introduce challenges in maintaining high reconstruction
accuracy.

Future work can also focus on developing a more robust and adaptable coverless
multi-image steganography model that performs reliably under various attack sce-

narios and communication distortions. Investigating different fusion, scrambling,
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and reconstruction techniques, as well as extending the system to support variable
input sizes and formats, can significantly contribute to making the methodology

more practical and secure in real-world applications.
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8 Appendix

preprocess_images (imay
transform = trans

str, image_path: str, height_width:

-open(image_path1).convert("R
_open(image_path2).convert(
-open(image_path3).convert ("R
.open(image_path4).convert(

transform(image2
transform(image3
4

transform(image:
imagel, image2, image3, images

show_image(image: torch.Tensor) -> N
image_np = image.squeeze().detach().numpy()
image_np = image_np.transpose(1, 2, @)
plt.imshow(image_np)

plt.axis( )

plot_image(ax, image: torch.Tensor, title:
squeeze() .detach() .numpy ()
image_np.transpose(1, 2, @)

combine_images_pixel wise(imgl: torch. r, ing2

combined_image_pixel wise = torch.zeros_like(img1)

combined_image_pixel wise[: ingi[:, @

combined_image_pixel wisel[:, img2[:, 6:

combined_image_pixel : : img2[:, 1

combined_image_pix
t

img1[

reconstruct_images_pixel_wise(combined_image_pixel_wist X ) -> Tupl
imgl_reconstructed_pixel
img2_reconstructed_p
imgl_reconstruc
img2_reconstructed_pixel_wi:
img2_reconstructed_pixel wise[
imgl_reconstructed wi

.zeros_like(combined_image pixel wise

combined_image_pixel wise[
X 2, 1::2] = combined_image_pixel_wisi
eturn imgl_reconstructed_pixel wise, img2_reconstructed_pixel wise

replace_missing_pixels_with_neighbors(image_tensor:
cha , height, width = image_tensor.shape

.all(filled_image[:, i,
neighbors = []
i1 torch.any(filled_image[:, i - 1,
neighbors .append (filled_
if 141 < height torch.any(filled_image[:, i + 1,
neighbors .append (filled_i i+1,3])
j-1>-0 ch.any(filled_image[:, i,
neighbors .append(filled_image[:, i, j - 1])
j + 1 < width ch.any(filled_image]
neighbors .append(filled_image[:, i, j + 1])
if neighbors:
filled_image[:, i, j] .stack(neighbors), dim
filled_image

combine_images_pixel_wise_msb(ing
imgl = imgl.to(
ing2 = img2.to(
combined_image_pixel v
ingl_msb = imgl &
ing2 &
image_pixel

B img2_msb[ :,
combined_image_pi

img1_msb[:,

combined_image_pix:

_image_pixel_wi:

_msb(combined_image_pixel 5
combined_image_pixel wise.to(torch.uint8)
.zeros_like(combined_image_pixel wise)
img2_reconstructed_pixe torch.zeros_like(c
ructe
img2_reconstructed_pixel_wise[:, :
ructed_pixel_wise[
rise[
xel_wise[:, 1:

mbined_image_pixel wise)

] = combined_image_pixel

2] = (combined_image_pixel wise[:
combined_image_pixel wise[

Figure 70: Code Snippet for LSB Manipulation Fusion

108



arnold_tran ensor(image_tensor
image_tensor.shape[1]

transformed_image = image_tensor.clo

ge(
(x+y) %N
+2%y) XN

. x_new, y_neu] = t rmed_image
transformed_image = new_image

> % y]
transformed_image
e_arnold_transform_tensor(image
shape[1]
- image_tensor.clone()

, iterations: i

ransformed_image
transformed_image

Figure 71: Code Snippet for Arnold Transformation

string_to_number(t

@' +str (abs (hash(te: % 1_0ee)

seperate_key (key!

calculate_mean_pixel_difference(imagel:

, absolute:
if imagel.shape !- image2.shape:

-mean(torch. abs(difference))

mean_difference = torch.mean(difference ** 2)
mean_difference.i

calculate_mse(imgl, img2
1.mean((imgl - img2) ** 2).item()

calculate_rmse(imgl, img:
se(imgl, img2)

calculate_psnr(imgl, img2, max_val-1.0):
calculat (img1, img2)

at('inf')
p-logie(max_val / np.sqrt(mse))

calculate_ssim(imgl, img2):
imgl_np = TF.to_pil_image(img1.clamp(@, 1)).convert("RGB")
img2_np = TF.to_pil image(img2.clamp(e,
imgl_np = np.array(imgl_np)
img2_np = np.array(img2_np)

ssim(imgl_np, img2_np, data_| 1.0

nvert(

» multichanne:

Figure 74: Code Snippet for Calculation Difference Error 2
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encode_images(ingl, img2, img3, img4, encode_secret_key):
string_to_number (encode._

, k5, sk6, sk7 = seperate_key(generated_number)
arnold_transform_tensor(imgl,
arnold_transform_tensor (img2,
arnold_transform_tensor(img3, sl
arnold_transform_tensor(img4, ska)

scr_img 4 =
combined_image_p:
combined_image_pixel_wis:

scr_combined_image_pixel wise_1
scr_combined_image_pixel_wise_2
combined_image_1sb = combine_images_pixel wise_msb((scr_combined_image_pixel wise

arnold_transform_tensor(combined_image_pixel wise_2
5) . Y5 to(torch.uint8))

scrambled_image = arnold_transform_tes

eturn scr_img 1, scr_img 2, scr_img 3, mbined_image_p:

combined_image_lsb, scrambled_image

decode_images B
enerated_number = string_to_number|(decode
sk7 = seperate_key(generated_number)
reverse_arnold_transform_tensor (scrambled_image, sk7)

sb, img2_defused lsb = reconstruct_images_pixel wise msb(descrambled_image)
img1_defused_ls d_lsb.to(torch.float32) / 255.0

fused_lsb = img2_defused_lsb.to(torch.float32) / 255.0
reverse_arnold_transform_tensor (imgl_defused_lsb,sks)

arnold_transform_tensor(ing2_defused_1

img1_defused_

des_imgl_defused_lsb =

d_p:
ng_pixels_with_neighbors(imgl_reconstructed_pixel_wise, 1)
missing_pixels with_neighbors(img2_reconstructed pi )
reverse_arnold_transform_tensor(imgl_NN_r d_pixel
= reverse_arnold_transform_tensor(img2_NN_refined_pixel_wise,sk2)
reconstruct_images_pixel wise(des_img2
, 1)

structed_pixel i
des_img2_reconstructed_pixel_wise
img3_reconstructed_pixel_wise, img4_r _
N_s _pixel s replace_missing_pixels_with_neighbor {_pixel
img4_NN_refined_pixel wise = replace_missing_pixels with_neighbors(imga_reconstructed_pixel wise, 2)
des_img3_reconstructed_pixel i reverse_arnold_transforn_tensor (img3_NN_refined_pixel_wise,sk3)
des_imgd_reconstructed_pixel reverse_arnold_transform_tensor (imgd_NN_refined_pixel wise,ska)

eturn descrambled_image, imgl_d , img2_defused_1sb, des_imgl_defused_lsb, des_img2_defused_lsb, imgl_reconstructed pixel wise, img2_reconstructed_pixel wise,
onstructed_pixel_wise, imgl NN_refined_pixel wis

nstructed_pixel wise, des_img3_reco

Figure 75: Code Snippet for Encoder and Decoder of Steagnographic key based

coverless multi image steganography

wGenBlock(nn.Module) :

__init_ (self, in_channels:int, out_channels:ir use_act=True, **kwargs):
r()._init_ ()

self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, padding mode
nn. InstanceNorm2d(out_channels),
nn.ReLU(inplace=True) if use_act nn.Identity

**luargs .ConvTranspose2d(in_channels, out_channels, **kwargs),

)
forward(self, x):
self.conv(x)

S alBlock(n od!
__init__ (self, channels:int):
sper().__init_ ()
self.block = nn.Sequential
T ck(channels, channels, kernel_size=3, padding=1),

ck(channels, channels, use_act: > kernel_si padding=1

forward(self, x):
x + self.block(x)

entionBlock(nn.Module):
__init_ (self, in_channels):
(Att 3lock, self)._init_ ()
.Conv2d(in_channels, in_channels // 8,
in.Conv2d(in_channels, in_channels // 8, kernel si
.Conv2d(in_channels, in_channels, kernel s

self.query kernel_si
self.kes

self.value = r
self.gamma = nn.Parameter(torch.zeros(1))

forward(self, x):
batch_size, C, height, width = x. O
query = self.query(x).view(batch_size, -1, height * width).permute(®,
key = self.key(x).view(batch_si
energy ch.bmm(query, key)
attention = F.softmax(energy, dim=-1)
alue = self.value(x).view(batch_size, -1, height * width)
.bmm(value, attention.permute(®, 2, 1))
height, width)

. -1, height * width)

out rc
out - out.view(batch_size,
self.gamma * out + x

Figure 76: Code Snippet for Generator Layers
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e (nn.Mo

__init_ (self, image _channels:int, num_features:int=64, num_residuals:i

per()._init_ ()
self.initial = nn.Sequential(
nn.Conv2d(image_channels, num_features, kernel_size=7, stride=1, padding=3, padding_mode:
nn.InstanceNorm2d (num_features),
nn.ReLU(inplace=
)

self.down_blocks = nn.ModuleList(

ck(num_features, num_features*2, down=True, kernel_ , stride=2, padding=
ck(num_features*2, num_features*4, down=True, kernel_size=3, ride=2, padding=1)

ck(num_features*a)

self.residual_blocks = nn.Sequential(
*[Resid k(num_features*4) for i i num_residuals)

)

self.up_blocks = nn.ModuleList(

Block(num_features*a, num_features*2, dow _size=3, stride=2, padding=1, output_padding=1),
enBlock(num_features*2, num_features, down=False, kernel_: 3, stride=2, padding=1, output_padding=1)

self.last .Conv2d(num_features, image_channels, kernel_size=7, stride=1, padding=3, padding_mod t")
self.tanh .Tanh()

forward(self, x):

x = self.initial(x)

for layer in self.down_blocks:
x = layer(x)
self.attention(x)
self.attention(x)
self.attention(x)

self.residual_blocks(x)
layer in self.up_block

x = layer(x)

rn self.tanh(self.last(x))

Figure 77: Code Snippet for Generator

vDiscBlock(nn.Module):
__init_ (self, in_channels:int, out_channels
~().__init_ ()
.Sequential(
.Conv2d(in_channels, out_channels, kernel size=4, stride=stride, padding=1, bia
.InstanceNorm2d(out_channels),
nn.LeakyReLU(®.2, inplace=True
)
forward(self, x):
r rn self.conv(x)

n.Mod 8
nit_ (self, in_channels: features 1-[64,128,256,512]):

.Sequential(
.Conv2d(in_channels, features[@], kernel size=4, stride=2, padding=1, padding mode:
.LeakyRelU , inplace=True

layers = []
in_channels = features[@]
for feature in features[1:]:
layers.append(ConvDiscBlock(in_channels, feature, stride=1 if feature==features[-1] else 2))
in_channels = feature
layers.append(nn.Conv2d(in_channels, 1, kernel_size=4, stride=1, padding=1, padding_mod
self.model = nn.Sequential(*layers)
forward(self, x):
return h.sigmoid(self.model(self.initial(x)))

Figure 78: Code Snippet for Discriminator
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