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Abstract

This thesis proposes a novel framework for coverless multi-image steganography

that leverages the complementary strengths of Generative Adversarial Networks

and diffusion models. Traditional steganographic systems often depend on explicit

cover modification, suffer from low capacity, or lack robustness against detection.

Diffusion models excel in image synthesis but remain underexplored for multi-

image steganography

The proposed system successfully reconstructs two RGB secret images from

generated container images with minimal perceptual loss, achieving PSNR values

of up to 17 dB and SSIM scores of exceeding 0.6 even under standard Gaussian

noise and JPEG compression. The hiding capacity reached 48 bits per pixel while

maintaining resistance to steganalysis. This demonstrates the practical viability

of the hybrid approach for secure, scalable, and robust coverless steganography.

Limitations of prompt sensitivity, domain dependency, and recovery failure un-

der high image similarity are identified, and future work explores flow-based con-

ditioning to enhance recovery consistency. The findings demonstrate the viability

of combining GAN and diffusion paradigms in scalable, multi-image, coverless

steganographic systems.
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Chapter 1

Introduction

1.1 Background

1.1.1 Steganography

Steganography is the practice of concealing messages within other non-secret text

or data, ensuring that the presence of the message remains undetectable to unin-

tended recipients. Unlike cryptography, which obscures the content of a message,

steganography hides the existence of the message itself. Historically, methods of

steganography have included techniques such as writing with invisible ink.

In the digital realm, steganography often involves embedding information within

digital media files, such as images, audio, or video. Techniques include modifying

the least significant bits (LSBs) of pixel values in images or altering audio samples

in a way that is imperceptible to human senses. The goal is to ensure that the

presence of hidden information is undetectable to unintended recipients.

Advanced steganographic techniques can be categorized into three primary

strategies: (J. Liu et al. 2020)

• Cover Modification: Involves embedding data within a cover medium

(e.g., an image) in such a way that minimizes distortion and preserves the

statistical properties of the original cover. This approach aims to conceal

the modifications effectively, making detection by steganalysis tools more
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challenging.

• Cover Selection: Entails establishing a mapping between specific features

of the cover medium and the secret message. By selecting cover mediums

based on these mappings, this method aims to enhance security and reduce

the likelihood of detection.

• Cover Synthesis: Involves generating new cover mediums specifically de-

signed to hide information. Techniques such as Generative Adversarial Net-

works (GANs) have been employed to synthesize cover images that effec-

tively conceal secret data, thereby improving the security and robustness of

steganographic systems.

Coverless Steganography refers to methods that do not modify a carrier

medium to embed information. Instead, these techniques exploit inherent features

of the medium, such as pixel brightness, color, texture, or high-level semantics, to

directly represent secret data. The advantage of this approach is that conventional

steganalysis tools cannot detect the presence of hidden information, as there is no

altered cover medium to analyze. Cover synthesis and cover selection methods are

considered coverless, as they generate or select cover mediums specifically designed

to conceal data without modification.

1.1.2 Steganalysis

Steganalysis is the process of detecting hidden information within digital media. It

serves as the counterpart to steganography, aiming to identify, extract, or destroy

concealed messages. Unlike cryptanalysis, which deals with deciphering encrypted

messages, steganalysis focuses on detecting the very existence of hidden informa-

tion.

Techniques in steganalysis can be broadly categorized into signature-based and

statistical methods. Signature-based steganalysis searches for known patterns or

anomalies introduced by specific steganographic tools. Statistical steganalysis, on

2



the other hand, involves analyzing the statistical properties of media files to detect

deviations from expected norms, which may indicate the presence of hidden data.

Advanced steganalysis methods employ machine learning algorithms, including

deep learning, to improve detection accuracy. These approaches train models on

large datasets of clean and steganographically altered media to identify subtle

differences that may not be apparent through traditional analysis.

1.2 Motivation

Traditional steganographic techniques, especially those relying on explicit cover

modification, are becoming increasingly susceptible to detection by modern ste-

ganalysis tools. Furthermore, existing deep learning-based methods often focus

on hiding a single image and frequently require a host image as a carrier. These

constraints limit both the security and scalability of current systems.

At the same time, the advent of powerful generative models—particularly

GANs and diffusion models—has revolutionized image synthesis, enabling the

generation of high-quality, photorealistic content without reliance on a predefined

cover. Despite their success in image generation tasks, their potential for secure,

scalable steganography remains underexplored.

This research is motivated by the gap between these two domains: the stagna-

tion of multi-image steganography and the underutilization of generative models

in constructing robust, coverless steganographic systems. By combining GANs for

structural fidelity with diffusion models for semantic guidance and key-conditioned

synthesis, this work aims to design a next-generation steganographic pipeline ca-

pable of hiding multiple images without relying on any explicit carrier, while

remaining resistant to standard detection methods.

1.3 Research Gap

While diffusion models have demonstrated state-of-the-art performance in image

synthesis tasks due to their iterative denoising process and high fidelity outputs,
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their application in digital image steganography, especially when fused with GAN-

based architectures remains underdeveloped. Recent work such as S. Xu et al.

(2024) has shown that diffusion models can perform image-to-image translation

while maintaining cycle consistency. However, this capability has not been ex-

ploited in the context of multi-image steganographic encoding.

Existing steganographic approaches, including the Cam-GAN framework pro-

posed by Lakshan (2024), typically rely on CycleGANs to embed secret images

into stego outputs. These GAN-only methods often suffer from limited visual re-

alism and susceptibility to artifacts due to training instability and mode collapse.

Enhancements via ESRGAN or Pix2Pix can improve output fidelity, but remain

isolated techniques rather than components of an integrated system.

Moreover, there is currently no unified generative framework that com-

bines the strengths of diffusion models and GANs for multi-image coverless

steganography. Existing methods either rely on single-image payloads, explicit

cover modification, or do not scale to multi-image scenarios without degradation.

Prior diffusion-based techniques such as Y. Xu, X. Zhang, et al. (2024) still de-

pend on embedding strategies rather than full synthesis, thus failing to meet the

definition of coverless steganography.

This research addresses the above limitations by developing a hybrid architec-

ture that leverages both GANs and diffusion models to generate visually realistic

container images capable of embedding and recovering multiple secret images,

without using an explicit cover. This novel combination aims to improve imper-

ceptibility, increase steganographic capacity, and resist detection.

1.4 Research Questions

1. How can a hybrid generative architecture combining GANs and diffusion

models be used to construct a multi-image coverless steganographic pipeline?

2. How does the use of diffusion-enhanced image synthesis affect the visual

quality and imperceptibility of stego images compared to GAN-only meth-
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ods?

1.5 Aims and Objectives

1.5.1 Aim

To design, implement, and evaluate a hybrid generative framework that combines

GANs and diffusion models for multi-image coverless steganography, with the goal

of improving visual realism, steganographic capacity, and resistance to detection.

1.5.2 Objectives

• To design a steganographic pipeline that integrates GAN-based modules

with diffusion models for image synthesis and refinement.

• To evaluate the visual quality of stego images using standard image quality

metrics such as PSNR, SSIM.

• To assess the accuracy of secret image reconstruction under varying experi-

mental conditions and noise levels.

• To compare the hybrid model’s performance against GAN-only baselines in

terms of steganographic imperceptibility and resistance to steganalysis.

• To analyze architectural and optimization challenges in integrating GAN

and diffusion models into a unified pipeline.

1.6 Scope

• The study focuses on digital image steganography, specifically the develop-

ment of multi-image coverless methods.

• The system synthesizes stego images without requiring an explicit cover

image.
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• The research evaluates both image quality and steganographic robustness

using quantitative metrics.

• Comparative evaluation will be performed against other steganographic schemes.

1.7 Research Methodology

This research adopts a design–implement–evaluate methodology, grounded in em-

pirical experimentation. The study was structured into the following key phases:

1.7.1 Model Design and Hypothesis Formulation

Several architectural designs were conceptualized to investigate multi-image cov-

erless steganography. The central hypothesis posited that a hybrid framework in-

tegrating diffusion models and GANs could outperform conventional GAN-based

approaches in terms of imperceptibility, hiding capacity, and reconstruction fi-

delity. Four primary architectural variants were developed and explored:

• A Convolutional Variational Autoencoder (VAE)

• A ResNet-based GAN

• A modified ESRGAN

• A Pix2PixGAN (final model)

1.7.2 Dataset Preparation

Custom datasets were generated by blending image pairs utilizing the addWeighted()

function in OpenCV. Additional datasets tailored for ESRGAN training incorpo-

rated Gaussian noise and blur to simulate diffusion-induced distortions. A subset

of each dataset was excluded from the training process and reserved for evaluation

purposes.
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1.7.3 Model Training and Implementation

Model training was conducted using the ANT PC, Google Colab and Kaggle

platforms. For the diffusion process we utilize the CompVis/stable-diffusion-v1-4

pre-trained diffusion model (Rombach et al. 2022) and to guide the diffusion model

in image generation and noising tasks we use choose to use prompts (descriptions

of secret and cover images) as the public and private keys.

The training strategies implemented were:

• Standard adversarial training for GAN architectures, employing PatchGAN

discriminators

• Reconstruction and Kullback–Leibler (KL) divergence loss for the VAE

• A combined loss comprising L1 loss, adversarial loss, and perceptual loss for

ESRGAN and Pix2Pix

Hyperparameters were empirically optimized based on loss and qualitative out-

put assessment. However, fine tuning was limited due to resource constraints

(timing and GPU usage) on Kaggle and Google Colab.

1.7.4 Evaluation Procedure

Model evaluation encompassed both qualitative and quantitative metrics, includ-

ing:

• Steganographic Imperceptibility: Natural Image Quality Evaluator (NIQE)

and visual evaluation

• Hiding Capacity: Measured in bits per pixel (BPP)

• Reconstruction Accuracy: Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity Index (SSIM), Mean Squared Error (MSE) and Semantic

Accuracy (via visual inspection)
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• Robustness: Evaluated under Gaussian noise and JPEG compression using

Learned Perceptual Image Patch Similarity (LPIPS) and other degradation

metrics

The proposed models were then benchmarked against existing methods.
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Chapter 2

Literature Review

2.1 Foundations of Image Steganography

Classical methodologies generally fall under three paradigms: cover modification,

cover selection and cover synthesis (J. Liu et al. 2020). Techniques based on

cover modification typically use pixel-level adjustments such as LSB substitution

or distortion minimization (Holub, Fridrich, and Denemark 2014), but they often

introduce statistical anomalies detectable by steganalysis tools. Cover selection

strategies tend to be low-capacity, while early cover synthesis approaches were

limited by the lack of photorealistic image generators.

2.2 Generative Adversarial Networks and Their

Role

The emergence of GANs (Goodfellow et al. 2014) introduced a new class of data-

driven models capable of learning to generate images indistinguishable from real

data. This adversarial training framework consisting of a generator and a dis-

criminator enabled significant progress in producing realistic images, which was

quickly adopted by the steganography community to address limitations in tradi-

tional systems.

GANs have since been used in three primary ways within steganography:
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• GAN-based Cover Modification: GANs assist in generating more se-

cure cover images or learning adaptive embedding strategies (Volkhonskiy,

Borisenko, and Burnaev 2016).

• GAN-based Cover Selection: This strategy uses GANs to map informa-

tion to pre-existing natural images, avoiding direct image modification (Ke

et al. 2019).

• GAN-based Cover Synthesis: Information is embedded directly in syn-

thetic images generated from noise or latent variables (Z. Zhang et al. 2019;

D. Hu et al. 2018).

2.2.1 Advancements and Applications

A variety of architectures have emerged. SGAN and SSGAN employ adversar-

ial learning to generate cover images less susceptible to detection (Volkhonskiy,

Borisenko, and Burnaev 2016; Shi et al. 2018). Other frameworks, such as ASDL-

GAN and UT-SCA-GAN, aim to learn embedding cost functions, making message

insertion more secure (Yang, Ruan, et al. 2019; Yang, K. Liu, et al. 2018).

End-to-end systems like SteganoGAN integrate encoder-decoder architectures

with critic networks to jointly optimize message recovery and visual fidelity (K. A.

Zhang et al. 2019). Unsupervised and semi-supervised variants such as SWE (D.

Hu et al. 2018) and ACGAN-based schemes (M.-m. Liu et al. 2017) leverage label

control or noise-to-image mapping to synthesize stego images without relying on

specific covers.

2.2.2 Limitations of GANs

While GANs have demonstrated significant potential in synthesizing visually plau-

sible stego-images, a few limitations hinder their effectiveness in steganographic

applications.

One of the primary challenges is mode collapse, wherein the generator con-

verges to producing a limited subset of outputs regardless of the input noise vec-
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tor. This reduction in generative diversity can diminish the variability among

stego-images, thereby increasing the risk of detection by steganalysis algorithms

(Mode collapse — Wikipedia, The Free Encyclopedia 2024).

Furthermore, GAN-generated container images do not consistently achieve

high perceptual realism. Especially in the current day where the usage of dif-

fusion models are becoming prevalent.

Such limitations undermine the imperceptibility of GAN-based steganographic

schemes, as visually anomalous or structurally inconsistent images are more sus-

ceptible to detection by both automated and manual inspection.

2.3 Use of Diffusion Models

Historically, image generation for steganographic applications has predominantly

relied on GANs. However, recent advancements in diffusion models have led to

their adoption in the domain of steganography due to their improved generative

quality and controllability.

Jois, Beck, and Kaptchuk (2023) introduced a novel approach wherein the

variance noise inherent in the diffusion process was utilized as a medium for em-

bedding hidden information. This method demonstrated the feasibility of using

the noise space of diffusion models as an effective steganographic channel.

Yu et al. (2024) further advanced this paradigm by incorporating Low-Rank

Adaptation (LoRA) and ControlNet mechanisms in conjunction with diffusion

models. Their approach enabled the controlled generation of stego-images through

Denoising Diffusion Implicit Models (DDIM) inversion, facilitating invertible im-

age translation.

Inspired by this, Y. Xu, X. Zhang, et al. (2024) proposed a hierarchical, multi-

image steganographic framework based on diffusion models. Similar to Yu et al.

(2024), their method employed public and private keys to guide the embedding

and extraction processes, thereby enhancing the security and robustness of the

steganographic system.
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2.4 Related Work

Early approaches to deep learning-based steganography primarily focused on em-

bedding a single image within another of equal dimensions. Baluja (2017) pi-

oneered this direction by proposing a convolutional neural network capable of

hiding a full-color image within another image of the same size, establishing the

feasibility of end-to-end learned steganographic frameworks. However, this ap-

proach was quite vulnerable to steganalysis.

Subsequent research extended this concept toward more challenging configu-

rations. L. Liu et al. (2022) explored the inverse scenario by attempting to embed

a larger color image within a smaller host image, pushing the boundaries of infor-

mation density in steganographic embedding.

In parallel, the concept of coverless steganography gained traction. X. Liu

et al. (2020) introduced Cam-GAN, a GAN-based framework capable of generat-

ing full-sized stego-images without the need for a pre-existing cover image. This

approach was further extended by Dharmawimala (2023), who demonstrated the

embedding of two grayscale images into a single stego-image using a refined ver-

sion of Cam-GAN. Finally Lakshan (2024) built upon this work by enhancing

the model’s capacity to embed two colored images. While more embedding ca-

pacity was achieved, the model did not prove to be robust, and was incapable of

generating realistic cover images.

Figure 2.1: Coverless image steganography framework used in Yu et al. (2024)

The introduction of diffusion models into image steganography enabled new

capabilities in security, robustness, and controllability. One notable example is the

CRoSS framework proposed by Yu et al. (2024), which uses pretrained conditional
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diffusion models to implement a fully coverless steganographic pipeline without

requiring any additional training or modification to the diffusion backbone. At

the core of CRoSS is the use of deterministic Denoising Diffusion Implicit Models

(DDIM), which enable an invertible mapping between image space and latent noise

through an ODE-based formulation. This property allows for encoding a secret

image into latent space using DDIM inversion and reconstructing it with high

fidelity, assuming the correct conditions (i.e., textual prompts) are provided.

CRoSS exploits this mechanism by introducing a dual-key system, where prompts

serve as public and private keys. During the hide process, a secret image is first

transformed into a latent representation using a private key prompt, then decoded

into a visually plausible container image using a public key prompt. The reveal

process reverses this operation: the container is re-encoded with the public key

and decoded back to the secret using the private key. Importantly, this archi-

tecture ensures that the container image does not explicitly embed or alter any

low-level information from the secret image, making it resistant to statistical or

perceptual steganalysis.

In addition to the invertibility advantage, CRoSS leverages community tools

such as ControlNets and LoRAs to enhance the controllability of the container

image generation process, supporting diverse use cases without retraining. How-

ever, CRoSS is designed for single-image hiding and relies solely on pre-existing

diffusion checkpoints. It does not address the problem of multi-image embedding.

Y. Xu, X. Zhang, et al. (2024) build upon the approach proposed by Yu et al.

(2024) by extending the CRoSS diffusion scheme to support the hierarchical em-

bedding of two secret images. In their method, the first secret image is transformed

into a container image using the original CRoSS diffusion process. Subsequently,

the second secret image is embedded within the resulting container image, thereby

achieving a two-tiered steganographic structure.

Compared to earlier methods that focused on either enhancing embedding

capacity (L. Liu et al. 2022; Lakshan 2024) or eliminating the need for cover images

(X. Liu et al. 2020; Yu et al. 2024), recent approaches like CRoSS and its extensions
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(Y. Xu, X. Zhang, et al. 2024) emphasize robustness, invertibility, and semantic

controllability. However, these diffusion-based models are often constrained to

single-image hiding or require sequential embeddings with limited scalability. Our

method bridges this gap by combining the generative strength of GANs with the

precision of diffusion-based reconstruction, enabling efficient and robust multi-

image embedding without relying on sequential processing or pre-trained diffusion

checkpoints alone.
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Chapter 3

Design and Implementation

3.1 Preliminary Studies with Diffusion Steganog-

raphy

3.1.1 Single-Image Steganography

The objective of this preliminary study was to assess the effectiveness of a pre-

trained diffusion model for single image steganography in the absence of additional

postprocessing layers. Specifically, the investigation focused on evaluating the

model’s robustness across diverse image characteristics, including variations in

subject distinctiveness, stylistic similarity, semantic domains and the fidelity of

the reconstructed secret image. For this we follow the approach used by Yu et al.

(2024) in their steganographic scheme

When applied to single-image steganography tasks, the diffusion model was

able to generate plausible container images that retained sufficient information

to allow for the extraction of the secret image. However, performance varied

across different images and conditions. Notably, the model exhibited improved

effectiveness when the secret images contained distinct and well-defined subjects

as can be seen in Figure 3.1. This suggests that the diffusion model benefited

from salient structural features, which were easier to embed and retrieve during

the generation and reconstruction processes.
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Figure 3.1: Comparison of secret, container, and recovered images under different

conditions

Additionally, the diffusion model showed stronger performance when there was

a high degree of stylistic or domain similarity between the secret image and the

target container image. For instance, hiding an oil painting-style secret image

within a container image of a similar artistic style yielded superior results, both in

terms of visual quality and reconstruction fidelity. A particularly illustrative case

was when the model was tasked with converting a secret image of a puppy into a

container image of a wolf, both belonging to the same semantic domain.

3.1.2 Multi-Image Steganography

S1 S2 S ′
1 S ′

2

Figure 3.2: Results obtained by concatenating secret images

We then extended our experiments to multi-image steganography, where we

tested a concatenation approach wherein two images were joined side by side and
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treated as a single composite input for the diffusion-based steganographic model.

However, this method proved ineffective due to the lack of independent guidance

for the diffusion model during the reconstruction process of each image.

We utilized a combined textual description of both images as the private key,

but this led to suboptimal results in secret image recovery. The features of the

individual secret images were not fully reconstructed, and often the image with a

more salient or easily describable subject dominated the reconstruction. Further-

more, when a more complex key was used in an attempt to describe both images

in detail, the resulting output often exhibited blending artifacts between the two

images. This blending severely hindered our ability to accurately extract the em-

bedded secret information from either image. An illustration of these results is

shown in Figure 3.2 where S1, S2 refer to the two secret images being hid, and S ′
1,

S ′
2 refer to the recovered secret images.

3.2 Approach 1 - Utilizing a Variational Autoen-

coder

3.2.1 Rationale

The design of the proposed steganographic framework was guided by the need to

balance image concealment, latent representation fidelity, and reconstructability.

Several considerations informed each stage of the pipeline:

Latent Fusion via Convolutional VAE. The decision to use a convolutional

VAE stems from the need to jointly encode two image representations into a com-

pact latent space. The VAE provides a structured probabilistic framework that

naturally supports latent fusion and disentanglement. Additionally, convolutional

layers were introduced to exploit the spatial structure of image data, improving

feature extraction and leading to better generalization and reconstruction perfor-

mance. The ability of VAEs to learn smooth and continuous latent representations

was critical for maintaining useful encodings that could be passed through subse-
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quent stages.

Our model architecture was partially inspired by the work of Baluja (2017),

who proposed an encoder-decoder network to perform image-in-image steganog-

raphy. In Baluja’s method, a host image and a secret image were passed through

a deep convolutional encoder-decoder pipeline that allowed the hidden content to

be reconstructed with high fidelity. Motivated by this approach, we adopted a

similar architecture to support the joint encoding and later separation of multiple

secret images.

Channel-Wise Concatenation and Shared Encoding. Concatenating the

transformed inputs along the channel dimension allowed the encoder to treat both

images as part of a single input structure, enabling the network to learn correlated

features. This design encourages the VAE to preserve information relevant to

both images while enabling individual recovery in the decoding stage. The shared

latent space representation im serves as a flexible medium for both fusion and

downstream transformation.

3.2.2 Proposed Steganographic Method

This method involves a two-stage transformation and combination scheme de-

signed to obscure the original images while enabling their seamless extraction.

The process is as follows:

In the first stage, each secret image, denoted as S1 and S2, undergoes a par-

tial transformation (noising) using a pre-trained diffusion model (DM). The key

modulates the noising process, effectively acting as a reversible transformation

key.

Sp1 = D
K

(1)
priv

S1, Sp2 = D
K

(2)
priv

S2.

This transformation obscures the original visual features of the image while pre-

serving an encoded representation. The transformed images and S1 and S2 are

combined using a dual-input convolutional VAE. The encoder concatenates the

inputs along the channel axis and maps them into a shared latent representation
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im. This design ensures that both image features are jointly encoded while still

allowing separable decoding.

im = Encoder(Sp1, Sp2)

In the second stage, the fused latent representation im is further processed

using a separate public key Kpub. This processed latent representation is then

passed through the diffusion model D to generate the final container image C:

C = DKpub
(im).

For retrieval, the container image C undergoes inverse processing using the

public key Kpub to reconstruct the latent representation im′ of the two original

images:

im′ = D−1
Kpub

(C).

The latent representation is then decoded using the Decoder to obtain the two

latent representations of the individual secret images.

S ′
p1, S

′
p2 = Decoder(im′)

The reconstructed latent tensors are then individually processed using the same

diffusion model D, each guided by its respective private key K
(1)
priv and K

(2)
priv. This

step enables the full restoration of the original secret images S ′
1 and S ′

2:

S ′
1 = D−1

K
(1)
priv

(S ′
p1), S ′

2 = D−1

K
(2)
priv

(S ′
p2).

In this approach, we attempted to leverage a Convolutional Variational Au-

toencoder to combine two latent image representations into one tensor and then

decode them individually. The VAE was expected to enable the transformation

of images into a compact latent space representation, allowing for efficient fusion

and separation of multiple images.

3.2.3 Model Architecture

The overall architecture consists of an encoder and a decoder network, both based

on convolutional layers. The encoder maps the input image to a latent space,
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Figure 3.3: Steganographic scheme with VAE

while the decoder reconstructs the original image from the latent representation.

Encoder Architecture

The encoder processes the input image by passing it through a series of con-

volutional layers, progressively reducing spatial dimensions while increasing the

number of feature channels. The encoder architecture is as follows:

• The input image, with three color channels, is passed through three convolu-

tional layers. These layers use increasing filter sizes (16, 32, and 64 channels,

respectively). The kernel size is set to 4, the stride to 2, and padding to 1

for each layer.

• After each convolutional layer, a ReLU activation function is applied, intro-

ducing non-linearity to the learned features.

• Following the convolutional layers, the feature map is flattened and passed

through two fully connected layers to produce two outputs: the mean vector

and the log-variance vector. This step ensures that the latent space follows a

Gaussian distribution, which is critical for the reparameterization trick used

in VAEs.
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Decoder Architecture

The decoder reconstructs the image from the latent space representation using

transposed convolutional layers. The decoding process follows these steps:

• The latent vector is passed through a fully connected layer to reshape it into

the appropriate spatial dimensions.

• Three transposed convolutional layers are then used to progressively upsam-

ple the feature map back to the original image dimensions (128 × 64).

• The final layer applies a sigmoid activation function to ensure the pixel values

of the reconstructed image lie within the range [0, 1].

3.2.4 Data Preparation

For this experiment, we used the Animals10 dataset, which consists of approxi-

mately 28,000 images. These images were categorized into several classes, includ-

ing dog, horse, elephant, butterfly, chicken, cat, cow, sheep, and squirrel. The

labels associated with each class were used as the private key for processing each

image. A dataset of processed images, transformed using these private keys, was

created for training and experimentation.

3.2.5 Experiment 1

Training Procedure

The model is optimized using a loss function that consists of two components:

• Reconstruction Loss (Lreconstruction): This term measures the difference be-

tween the original and reconstructed image, computed using Mean Squared

Error. The L2 loss for an image at the pixel level is given by:

Lpixel =
1

N

N∑
i=1

(Îi − Ii)
2 (3.1)
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where: Îi is the predicted pixel value at position i, Ii is the original pixel

value (ground truth) at position i, N is the total number of pixels in the

image.

• Kullback-Leibler (KL) Divergence: This regularization term ensures the

learned latent distribution is close to a standard normal distribution, N(0, I),

preventing overfitting and encouraging a smooth latent space.

The total loss is defined as:

L = Lreconstruction + β ·KL

where β is a weighting factor (set to 1 in this experiment). This combined loss

function allows the model to learn both to reconstruct the input images accurately

and to maintain a well-behaved latent space representation.

In this experiment, the VAE is trained for 100 epochs with a batch size of

32. We use the ANT PC for this training, utilizing the GeForce RTX 2080 Ti

GPU with 11GB VRAM, and the process took approximately two days. In each

iteration, two images are randomly selected from the dataset, one from each class

(e.g., cat and dog). These images are passed through the encoder to obtain their

latent representations, which are then decoded back into image space using the

decoder. The gradients are computed with respect to the loss, and the model

parameters are updated using the Adam optimizer.

The key training parameters are summarized in Table 3.1.

Parameter Value

Optimizer Adam

Learning Rate 1× 10−4

KL Divergence Weighting (β) 1.0

Table 3.1: Experiment 1 parameters
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3.2.6 Results and Analysis

During the first training process, we observed that the loss function did not de-

crease beyond a certain point, and the VAE was unable to adequately reconstruct

the latent representations of the input images at various stages. This suggested

that the model was not learning sufficiently from the data.

In response, we enhanced the architecture by introducing convolutional layers

to the VAE (resulting in the model described above), expecting it to better capture

spatial hierarchies and improve reconstruction. Upon retraining the model, we saw

an improvement in performance as the loss continued to decrease more effectively.

However, despite the improvements, we encountered another issue when we

attempted to reconstruct the images using a diffusion model. Specifically, when

the latent representations decoded through the VAE were passed into the diffusion

model, it failed to accurately reconstruct the two secret images. Figure 3.4 shows

two secret images and their recovered counterparts respectively. This indicated

that while the convolutional VAE was able to learn better representations, the

integration with the diffusion model did not yield the expected results.

We hypothesize that this failure is due to the diffusion noising process destruc-

tively altering the essential features encoded in the VAE latent space. This likely

limited the number of features the VAE could encode and thereby preventing

faithful recovery.

While VAE provided a clean latent fusion method, its Gaussian prior bottle-

necked fine detail recovery. We discarded it in favor of ResNet-based GANs due

to their stronger spatial feature retention,

Figure 3.4: Images processed via the trained VAE
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3.3 Approach 2 - Utilizing a ResNet Generator

3.3.1 Rationale

The design of this steganographic method was informed by several motivations

and previous advancements in the field. The primary challenge addressed is the

extraction of two secret images from a single fused image, while maintaining both

high image quality and effective separation of the individual components. To

meet this challenge, the architecture and training strategy were developed with

the following considerations:

Use of a Generator with ResNet Blocks: The generator architecture incor-

porates residual blocks, chosen for their established ability to preserve high-level

features and facilitate deep network training. Residual connections help alleviate

the vanishing gradient problem and support the retention of spatial detail—critical

for tasks requiring image decomposition or separation.

This architectural choice builds on the work of X. Liu et al. (2020), who ap-

plied a similar structure in a steganographic context to extract a single hidden

image. Subsequently, Lakshan (2024) extended this concept to recover two full-

resolution RGB images from a single composite image. Drawing inspiration from

these approaches, we adopted and modified a comparable generator design to ex-

tract two secret images. We hypothesised that the residual learning mechanism

would support better disentanglement of overlapping visual features, thus enhanc-

ing recovery performance. This rationale guided the network architecture and the

loss function design within this experimental framework.

Use of the PatchGAN discriminator: The choice of the PatchGAN archi-

tecture for the discriminator is motivated by its efficacy in enforcing high-frequency

local realism in generated images. Unlike traditional discriminators that evaluate

entire images, PatchGAN assesses overlapping N×N patches, focusing on local

features and textures. This localized evaluation compels the generator to pro-

duce outputs with authentic local details, resulting in sharper and more convinc-
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ing images (Isola et al. 2017). Furthermore, Lakshan (2024) employed the same

PatchGAN architecture in his steganographic scheme with success.

3.3.2 Proposed Steganographic Method

Figure 3.5: Steganographic scheme with ResNet Generator

The scheme begins with the fusion (linear blend) of two secret images, denoted

as S1 and S2 into a single image F(S1, S2) = Fs, which forms the initial entity for

further processing.

Next, the fused image Fs is processed using a diffusion model D, guided by the

private key Kpriv. This step obfuscates the underlying features of the fused image,

producing an intermediate image. The output of this diffusion process is further

processed using the public key Kpub, resulting in the generation of the container

image C:

C = DKpub,Kpriv
(Fs).
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In the retrieval phase, the container image C is first processed using the public

key Kpub, and the resulting image is then subjected to further processing using

the private key Kpriv. This step retrieves the fused image F ′
s:

F ′
s = D−1

Kpriv
(D−1

Kpub
(C)).

Finally, the fused image F ′
s is separated using the Generator G, which extracts

and outputs the two original secret images S ′
1 and S ′

2:

S ′
1, S

′
2 = G(F ′

s).

3.3.3 Model Architecture

ResNet Generator Architecture

The model architecture is designed to take an input image and generate two sep-

arate images. This is achieved through the use of convolutional, residual, and

transposed convolutional layers. Below, we describe the architecture in detail:

The model is structured in the following stages:

1. Preprocessing and Downsampling: The input image, which has dimen-

sions (Cin, H,W ) (where Cin is the number of input channels, andH andW are the

height and width of the image), first undergoes padding with a 3-pixel reflection

padding. Then, it is passed through a 7x7 convolution layer with filters, followed

by batch normalization and a ReLU activation. The image is downsampled us-

ing two layers of 3x3 convolutions with stride 2 and padding 1, each followed by

batch normalization and a ReLU activation. This results in a reduction in spatial

resolution.

2. Residual Blocks: The model utilizes residual blocks, which help to preserve

features across multiple layers. These blocks consist of two 3x3 convolutions with

batch normalization and ReLU activations, with a skip connection between the

input and output.
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3. Further Downsampling: After the residual blocks, the image undergoes

additional downsampling through a few layers, each consisting of a 3x3 convolution

followed by batch normalization and ReLU activation. This further reduces the

spatial resolution of the feature map.

4. Bottleneck and Feature Fusion: The resulting feature map is passed

through another network, which consists of more residual blocks and convolutions.

This bottleneck stage captures high-level features and fuses them into a latent

representation, which is used to generate two distinct output images.

5. Upsampling: The feature map is then passed through an upsampling process

using transposed convolution layers. These layers gradually increase the spatial

resolution of the feature map, returning it to the original input resolution. Each

transposed convolution is followed by batch normalization and ReLU activation.

6. Postprocessing and Output Generation: Finally, the upsampled feature

maps are passed through two different postprocessing streams, which produce

the final two output images. Both streams consist of reflection padding, a 7x7

convolution, and a Tanh activation function to ensure the outputs are in the

range [−1, 1].

This architecture allows the model to extract and separate two distinct images

from a single input image, capturing different aspects of the input through the use

of residual learning and feature fusion.

Discriminator Network

The Discriminator network is a convolutional neural network designed to distin-

guish between real and generated (fake) images, providing feedback to the gen-

erator to help improve the realism of generated images. It follows a PatchGAN

architecture, classifying overlapping image patches as real or fake. The architec-

ture consists of four convolutional blocks, each incorporating batch normalization

and Leaky ReLU activation. The network starts with 64 channels and gradually
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increases to 512 channels in the final convolutional layer, which produces a single

output channel using a Sigmoid activation function to yield the probability of a

patch being real.

Key Components of the Discriminator

• Convolutional Layers: The discriminator consists of several convolutional

layers with LeakyReLU activations. These layers progressively reduce the

spatial dimensions of the input image while increasing the number of feature

maps.

• Final Output: The final output of the discriminator is a single scalar value

representing the probability that the input image is real (close to 1) or fake

(close to 0).

Loss functions

Discriminator Loss The discriminator’s loss consists of two parts:

• Real Loss (Lreal): This term encourages the discriminator to classify real

images as real. It is calculated as:

Lreal = log(D(Ireal))

where D(Ireal) is the discriminator’s output for a real image.

• Fake Loss (Lfake): This term encourages the discriminator to classify gen-

erated images as fake. It is calculated as:

Lfake = log(1−D(Îfake))

where D(Îfake) is the discriminator’s output for a generated image.

The total discriminator loss is the average of the real and fake losses:

LD =
1

2
(Lreal + Lfake) (3.2)
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Generator Loss The Generator’s loss function is a weighted sum of two com-

ponents:

• Reconstruction Loss (Lreconstruction): This term measures the difference

between the original and reconstructed image, computed using Mean Abso-

lute Error. The L1 loss for an image at the pixel level is given by:

Lpixel =
1

N

N∑
i=1

|Îi − Ii| (3.3)

where: Îi is the predicted pixel value at position i, Ii is the original pixel

value (ground truth) at position i, N is the total number of pixels in the

image.

• Adversarial Loss (Ladversarial) : as calculated in 3.2

The reconstruction loss is weighted by a factor α, and the Discriminator loss is

weighted by a factor β. Therefore, the total Generator loss is given by:

LGenerator = αLreconstruction + βLD (3.4)

3.3.4 Data preparation

The vehicles and landscapes datasets were employed. The addWeighted() func-

tion from the OpenCV library was utilized to create a dataset of linearly blended

images, with an alpha value of 0.5. This process resulted in a paired dataset com-

prising three distinct components: a vehicle image, a landscape image, and the

corresponding blended image. In total, approximately 5,000 blended images were

generated for subsequent analysis.

3.3.5 Experiment 2

Training Process

The model training process employed a GAN architecture, with the ResNet Gen-

erator and the Discriminator. The Generator takes a blended image as its input
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and produces two distinct output images. These generated images are then evalu-

ated by the same Discriminator, which classifies each image as either real or fake,

based on its realism. Both the Generator and the Discriminator were trained

concurrently, at the same rate.

The Discriminator, in turn, is trained to minimize the binary cross-entropy

loss, which measures its ability to correctly classify real and fake images. This

adversarial training procedure encourages the Generator to produce more realistic

images, while the Discriminator becomes more adept at distinguishing between

the two.

The model was trained over 100 epochs, with both the Generator and the

Discriminator being updated at each epoch. The training was conducted on Kaggle

with an NVIDIA Tesla P100 GPU with 16GB VRAM and the training process

took approximately 12 hours.

Parameter Value

α 10

β 100

Table 3.2: Experiment 2 parameters

3.3.6 Experiment 3

Training Process

In this experiment, we employed a similar GAN architecture as in Experiment 2

but modified the training schedule for the Generator and Discriminator by training

the Generator twice as often as the Discriminator. Specifically, the Generator

weights were updated every epoch, while the Discriminator weights were only

updated every odd epoch. The goal of this modification was to evaluate the effect

of more frequent updates to the Generator on the quality of the generated images.

The remaining parameters were left unchanged from Experiment 2. The training

was conducted on Kaggle with an NVIDIA Tesla P100 GPU with 16GB VRAM.

The final training process took approximately 11 hours.
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3.3.7 Experiment 4

Training Process

In this experiment, we modified the architecture further by introducing two sepa-

rate Discriminators (with the same architecture as before), one for each of the two

output images generated by the Generator. Each Discriminator was tasked with

evaluating the realism of its corresponding generated image. This setup aimed to

explore the effect of having specialized Discriminators for each output, with the

hypothesis that it could improve the quality of the generated images.

The Generator was trained to minimize the weighted sum of two loss compo-

nents similar to Experiment 2. The reconstruction loss (equation 3.3) and the

sum of the Adversarial losses from both Discriminators where each Discrimina-

tor’s loss function was calculated as per equation 3.2. The total Generator loss

was therefore modified as follows:

LGenerator = αLreconstruction + β1Ladversarial1 + β2Ladversarial2

where Ladversarial1 and Ladversarial2 are the binary cross-entropy losses computed

by the first and second Discriminators, respectively, and β1 and β2 are the weights

for each Discriminator’s contribution to the total loss.

The Discriminators were trained similarly to Experiment 2, with each aiming

to minimize its own binary cross-entropy loss.

The model was trained for 100 epochs, with both the Generator and the Dis-

criminators being updated according to their respective schedules. The training

was conducted on Kaggle with an NVIDIA Tesla P100 GPU with 16GB VRAM

and the training process took approximately 13 hours.

Parameter Value

α 10

β1 50

β2 50

Table 3.3: Experiment 4 parameters
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3.3.8 Results and Analysis

S1 S2 S ′
1 S ′

2

Figure 3.6: Images recovered using the ResNet generator

During the training process of Experiment 2, the Generator’s loss did not de-

crease significantly beyond a certain point, and the intermediate images generated

at regular intervals during the training process lacked realism. To address this, we

adjusted the weight of the reconstruction loss (α) by reducing it in comparison to

the adversarial loss (β), as initially, the reconstruction loss had a greater weight.

After applying the parameters outlined in Table 3.3.5, we observed a slight im-

provement in the realism of the generated images, although the reconstruction

accuracy remained suboptimal.

We hypothesized that the insufficient weight assigned to the reconstruction

loss, coupled with the continuous decrease in the Discriminator’s loss, contributed

to this issue. In Experiment 2, the Generator’s loss plateaued and then remained

erratic within a given range, while the Discriminator’s loss continued to decrease.

This suggested that the Discriminator was becoming too proficient, learning too

rapidly, which might have hindered the Generator’s progress. To mitigate this, we

modified the training schedule in Experiment 3 by updating the Generator twice as

often as the Discriminator. Even with the adjusted schedule, the Generator’s loss

remained stagnant, suggesting limited learning progression. This could have been

due to the Generator not receiving sufficient feedback from the Discriminator.
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Additionally, when evaluating the Generator, we noted that the two generated

images appeared too similar, and the Generator failed to properly separate the

fused image into two distinct outputs.

In an attempt to address these issues in Experiment 4, we introduced two

separate Discriminators, each tasked with evaluating the realism of one of the two

generated images. This modification was made with the assumption that having

specialized Discriminators would improve performance by providing more specific

feedback for each image domain. The Generator was trained to minimize a loss

function that included both reconstruction loss and the individual losses from

each Discriminator. Although the issue of the Generator’s erratic loss persisted,

the results in Experiment 4 showed some improvement (determined by visual

inspection) over Experiment 2 and Experiment 3 in terms of separating the fused

image into two distinct outputs.

The results of extracting the two secret images can be seen in Figure 3.6,

where the model trained in Experiment 4 was used. S1 and S2 represent the

secret images, and S ′
1 and S ′

2 represent the recovered secrets.

Given that this approach was unable to reconstruct the secret images convinc-

ingly, we decided to explore a different steganographic approach for recovery.

3.4 Approach 3 - Utilizing a ESRGAN

3.4.1 Rationale

The rationale for utilizing an Enhanced Super-Resolution Generative Adversar-

ial Network (ESRGAN) in the proposed steganographic method is grounded in

its demonstrated ability to enhance perceptual image quality and remove visual

artifacts, both of which are critical for recovering intelligible secret images after

diffusion-based transformations.

Handling Residual Artifacts: The fusion and diffusion steps in our stegano-

graphic scheme introduce spatially distributed artifacts that degrade the quality

33



of the recovered images. Traditional models often struggle with perceptual qual-

ity, especially in recovering fine texture and details. ESRGAN, as proposed by

X. Wang et al. (2018), addresses this issue by integrating a Residual-in-Residual

Dense Block generator architecture, which has shown superior performance in re-

fining degraded images while maintaining structural coherence and sharpness. Its

residual learning capacity makes it suitable for filtering out noise introduced by

fusion and denoising steps in diffusion.

Perceptual Fidelity: Unlike pixel-wise loss-based methods that often result

in blurry outputs, ESRGAN incorporates a perceptual loss that operates in a

feature space derived from pretrained CNNs. In our setup, MobileNetV3 was

selected over more conventional backbones like VGG or ResNet due to resource

constraints. Despite its lightweight design, MobileNetV3 retains the ability to

extract semantically rich features from images, enabling perceptual comparisons

that guide the generator to prioritize human-recognizable fidelity. This design

choice was motivated by findings from Howard et al. (2019) which highlight its

efficiency in mobile and constrained compute environments.

3.4.2 Proposed Steganographic Method

The scheme begins with the fusion of two secret images, denoted as S1 and S2

into a single fused entity, F(S1, S2) = Fs. Next, the fused image Fs is processed

using a diffusion model D, which is guided by two distinct keys: the public key

Kpub and the private key Kpriv. The private key should be a combination of the

individual private keys of each secret image. This guidance transforms the fused

image into the container image C, which is defined as:

C = DKpub,Kpriv
(Fs)

In the retrieval phase, the container image C is passed through the diffusion

model D, guided by the public key Kpub. This step produces a partially recovered

fused image R:

R = D−1
Kpub

(C)
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Then, the partially recovered image R is processed again using two separate pri-

vate keys, K
(1)
priv and K

(2)
priv, corresponding to the two secret images S1 and S2,

respectively. This final diffusion step yields the partially recovered secret images:

S ′
p1 = D−1

K
(1)
priv

(R), S ′
p2 = D−1

K
(2)
priv

(R)

Afterwards, the partially recovered images must undergo a further refinement

process using an ESRGAN. The ESRGAN step is performed as follows:

S ′
1 = ESRGAN(S ′

p1), S ′
2 = ESRGAN(S ′

p2)

After this step, the ESRGAN outputs S ′
1 and S ′

2, which are the extracted se-

cret images that were initially fused together. This step is necessary to preserve

the quality of the secret images after the diffusion-based transformations and to

remove residual artifact.

Figure 3.7: Steganographic scheme with ESRGAN
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3.4.3 Model Architecture

ESRGAN Generator Architecture

The architecture presented in this work based off of a deep learning-based model

for image super-resolution using GANs. The model aims to remove distortions and

restore images by employing a Generator network, a Discriminator network, and

perceptual and adversarial losses. We used the same Discriminator architecture

as the previous experiments.

The Generator is the core component of the architecture, responsible for gen-

erating high-resolution images from low-resolution inputs. The generator utilizes

a Residual in Residual Dense Block Network (RRDBNet). RRDBNet is designed

for image super-resolution tasks, specifically for enhancing image details while

removing artifacts during upscaling.

Key Components of the Generator

Residual Dense Blocks (RDBs): The generator consists of multiple Residual

Dense Blocks stacked together. Each RDB operates in a hierarchical fashion,

where each layer receives input from the previous layer, and each intermediate

output is densely connected to the next. The output of each RDB is used as input

for subsequent RDBs, allowing the network to progressively capture more complex

image features. The RDB structure is as follows:

• Each RDB contains Convolutional Layers with a kernel size of 3×3 followed

by LeakyReLU activations.

• Each intermediate output is concatenated with the next layer’s input, which

allows the network to capture dense feature representations.

• The final output of the RDB is passed through a convolutional layer that

refines the features.

Up-sampling Layers: After the feature maps are processed through the stacked

RDBs, the spatial resolution of the output is increased using two convolutional

36



layers, followed by interpolation layers. The interpolation layer helps upscale the

feature map by a factor of either 2x or 4x, depending on the configuration.

Final Output: The final output of the generator is a high-resolution image

produced by a convolutional layer that ensures the output has the same number

of channels as the ground truth (typically 3 channels for RGB images).

Feature Extractor (MobileNetV3)

A Feature Extractor based on MobileNetV3 is used to compute the perceptual

loss. MobileNetV3 is a lightweight deep learning model pretrained on large-scale

image datasets. It is used to extract high-level features that help compare the

perceptual quality of generated and target images.

The features extracted by MobileNetV3 are used to compute the perceptual

loss, ensuring that the generated images not only match the ground truth pixel-

wise but also in terms of higher-level feature representations.

Loss Functions

Generator Loss The total loss for the generator is a weighted combination of

the following components:

• Reconstruction Loss : L1 Loss (equation 3.3)

• Perceptual Loss: This loss is computed by comparing high-level feature

representations extracted from a pretrained MobileNetV3 model. The per-

ceptual loss ensures that the generated images have similar high-level fea-

tures to the ground truth. The loss is defined as:

Lperceptual =
1

M

M∑
i=1

||Φ(Îi)− Φ(Ii)||2

where:

– M : The total number of images in the batch.

– Îi: The i-th generated image from the model.
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– Ii: The i-th ground truth image.

– Φ: The feature extraction process (using the pretrained MobileNetV3)

that maps the images to their high-level feature representations.

• Adversarial Loss (Ladversarial) : equation 3.2

The total generator loss is the weighted sum of these losses:

LG = λpixelLpixel + λperceptualLperceptual + λadversarialLadversarial

where λpixel, λperceptual, and λadversarial are the hyperparameters controlling the

relative importance of each loss term.

Parameter Value

λpixel 1

λperceptual 1

λD 1× 10−3

Table 3.4: Experiment 5 parameters

3.4.4 Data Preparation

The following process was carried out to create a dataset for training the ESRGAN

to remove residual artifacts from the extracted secret images.

An image is randomly selected from either the CelebHQ dataset, which consists

of high-resolution facial images, or the Vehicles dataset, which contains vehicle im-

ages. The selection determines which image is the dominating image (Imagestrong)

and weaker image (Imageweak). One image from the chosen dataset is then paired

with a corresponding image from the other dataset, ensuring that each pair consists

of one facial image and one vehicle image. Gaussian noise is added to Imagestrong

to simulate the noise typically encountered in a diffusion process. Additionally,

slight blurring is also applied.

Finally, the transformed Imagestrong is blended with Imageweak. A linear

blending operation is used where Imagestrong is weighted by a scalar parameter α
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and Imageweakis weighted by 1−α, such that the blended image Iblend is expressed

as:

Iblend = αImagestrong + (1− α)Imageweak

The parameter α was set to 0.8 to ensure that the weaker image does not com-

pletely overshadow the stronger image features in the final blended image.

The resulting dataset simulates the image corruption process that occurs when

the image is processed by the diffusion model in the proposed steganographic

method.

3.4.5 Experiment 5

Training Process

Training was conducted on Kaggle using a NVIDIA Tesla P100 GPU with 16GB

VRAM. The final training process, after experimentation, took approximately 13

hours.

During training, we experimented with different pre-trained models for feature

extraction in the perceptual loss calculation. Initially, we tested VGG-19 and

ResNet-50 due to their strong feature extraction capabilities. However, the high

memory consumption of these models led to out-of-memory errors, which severely

restricted the batch size that could be used. This resulted in excessively long

training times per epoch, making it impractical to train the model given the

limited resources.

After multiple trials, we settled on MobileNetV3, a lightweight feature ex-

tractor that provided a good balance between efficiency and performance. Mo-

bileNetV3 significantly reduced training time per epoch while maintaining reason-

able perceptual quality in the reconstructed images.

The training was performed by feeding a corrupted image from the CelebHQ

dataset and the corresponding original image into the Generator. The objective

was to train the Generator to reconstruct the original image from the corrupted

input. This process was repeated over 100 epochs, allowing the model to pro-

gressively learn to remove artifacts introduced by the diffusion process. For this
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the Adam optimizer was used with a learning rate schedule controlled by Cosine

Annealing.

3.4.6 Results and Analysis

S1 S2
S ′
1 S ′

2

Figure 3.8: Images recovered using the ESRGAN

Despite the theoretical capability of the ESRGAN to remove distortions and

create high resolution images, the method did not fully succeed. While the re-

covered secret images retained better color fidelity than previous ResNet-based

outputs (Figure 3.6), they still contained leftover artifacts as seen in Figure 3.8.

The ESRGAN was designed to address this issue by refining the recovered images,

but it fell short in handling the kinds of distortions introduced by the fusion and

diffusion recovery process.

We believe the residual artifacts in the recovered images can were too com-

plex while the ESRGAN’s design is primarily aimed at pixel-level enhancement

and perceptual features, which may not have been suitable for handling complex

distortions.

However, one positive development from this experiment is that the recovery

pathway in the steganographic method used to extract two secrets from the con-

tainer image is a novel approach. This method demonstrated a better preservation

of extraction quality than other approaches, offering a promising direction for fu-

ture improvements in steganographic recovery processes. The method, although

not perfect, exhibited robust extraction quality in comparison to the previous ex-

periments, which could be vital for improving overall recovery accuracy in complex

steganographic systems
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Although ESRGAN improved perceptual quality, it likely failed to correct se-

mantic drift in high-entropy domains such as CelebHQ. This suggests that GAN-

based refinement alone is insufficient for content-aware recovery

3.5 Approach 4 - Utilizing a Pix2Pix GAN

3.5.1 Rationale

The decision to adopt a Pix2Pix GAN for this steganographic method is based

on a combination of practical needs and architectural strengths of the framework.

Pix2Pix is a conditional GAN architecture introduced by Isola et al. (2017) and

is widely known for its performance in image-to-image translation tasks. This is

directly aligned with the goal of mapping an intermediate stego image back to its

original form, making it a natural fit for our problem.

Firstly, the Pix2Pix architecture employs a U-Net generator with skip con-

nections that enable the preservation of low-level spatial features. This is critical

in our use case, where maintaining fine details and structural consistency in the

image is essential to accurately recover hidden information without introducing

detectable distortions.

Secondly, the loss function design used in Pix2Pix, combining L1 reconstruction

loss with adversarial loss, provides a strong inductive bias toward both realism and

fidelity. This balance helps to ensure that reconstructed images do not just look

plausible, but also remain close to the original secret image in terms of pixel-wise

accuracy.

Min-ha-zul Abedin and Yousuf (2023) introduced StegoPix2Pix, a stegano-

graphic technique built on the Pix2Pix architecture. Their results demonstrated

that the method can achieve high accuracy in secret message recovery, while also

providing resilience against detection by steganalysis tools. Their approach in-

spired the architecture shown in Figure 3.9, which integrates these strengths into

the framework for our steganographic task.

Overall, Pix2Pix offers a compelling trade-off between architectural complex-
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ity, training efficiency, and empirical effectiveness. Its proven success in structured

image translation and its demonstrated utility in related steganographic applica-

tions form the basis for its selection in this work.

3.5.2 Proposed Steganographic Method

We reuse the steganographic scheme from section 3.4.2 which previously showed

strong performance. The only difference being the final step is performed as follows

S ′
1 = Pix2Pix1(S

′
p1), S ′

2 = Pix2Pix2(S
′
p2)

Figure 3.9: Steganographic scheme with Pix2Pix GAN

3.5.3 Model Architecture

The Pix2Pix model consists of two primary components: the generator and the

discriminator, designed for image-to-image translation tasks. We used the same

Discriminator architecture as the previous experiments.
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Input Image

Down 1 (C64)

Down 2 (C128)

Down 3 (C256)

Down 4 (C512)

Down 5 (C512)

Down 6 (C512)

Down 7 (C512)

Down 8 (C512) Up 1 (CD512)

Up 2 (CD1024)

Up 3 (CD1024)

Up 4 (C1024)

Up 5 (C1024)

Up 6 (C512)

Up 7 (C256)

Final (Tanh) Generated Image

Figure 3.10: Pix2Pix Generator Architecture

Concat(X, G(X))

C64

C128

C256

C512 (stride 1)

Output Patch (Sigmoid)

Figure 3.11: PatchGAN Discriminator Architecture
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Generator

The generator employs a U-Net architecture, featuring an encoder-decoder struc-

ture with skip connections. The encoder is composed of eight downsampling layers,

where each layer performs a convolutional operation followed by optional batch

normalization and Leaky ReLU activation. The number of output channels pro-

gressively increases from 64 to 512 across the first seven layers, with the eighth

layer maintaining 512 channels to capture the complex features of the input image.

Conversely, the decoder consists of seven upsampling layers that utilize trans-

posed convolutions. Each upsampling layer concatenates features from the corre-

sponding encoder layer through skip connections, preserving spatial information.

The output channels decrease from 512 to 64, ultimately producing the output im-

age in the final layer, which applies a transposed convolution followed by a Tanh

activation function to achieve the desired output range.

Loss Functions

For training, the Pix2Pix model utilizes two loss functions. The generator loss

function is a combination of the reconstruction loss (L1 loss) and the adversarial

loss, similar to equation 3.4. The discriminator loss computes the average of the

real and fake losses based on the discriminator’s predictions, as per equation 3.2.

LG = λL1L1 + λadversarialLadversarial

3.5.4 Experiment 6

Training Procedure

The same datasets described in Sections 3.4.4 and 3.3.4 were used for training

the models. Each training sample consists of an intermediate image and its cor-

responding original image, which are input into the Pix2Pix GAN. The objective

of the model is to reconstruct the original image from the intermediate represen-

tation.
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Training was conducted for 100 epochs on Kaggle using an NVIDIA Tesla P100

GPU with 16 GB of VRAM. The Adam optimizer was used, with a learning rate

of 2× 10−4. Two Generators were trained following this approach.

Parameter Value

λL1 100

λadversarial 1

Table 3.5: Experiment 6 parameters

3.5.5 Results and Analysis

Compared to previous approaches, the Pix2Pix GAN demonstrated significantly

improved performance in recovering the secret images. The recovered images

exhibited accurate color representation without any notable distortions. Further-

more, the majority of the image features were preserved, maintaining a high level

of fidelity to the original input.

However, one observed limitation of the approach lies in the behavior of the

Diffusion model, which introduced some stylistic alterations to the reconstructed

images. The reconstructions were often overly smooth, losing natural texture

in certain cases. Additionally, the model exhibited some difficulty in accurately

recreating the background details, a challenge that was also highlighted in our

preliminary studies. This issue seemed more pronounced when reconstructing

complex or vast backgrounds, such as those found in landscape images, as opposed

to more structured and recognizable objects like faces or vehicles.

The improved performance when reconstructing images featuring faces or vehi-

cles can likely be attributed to the relatively uniform appearance of such objects.

In contrast, landscapes are inherently more variable and expansive, making them

more difficult for the model to capture and accurately reproduce. This discrep-

ancy underscores the challenges the model faces when attempting to reconstruct

larger and more complex visual contexts, as the model is more adept at handling

smaller, more structured objects with consistent features.
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Discussion and Justification We hypothesize that the superior performance

of the Pix2Pix + Diffusion configuration arises from the synergy between Pix2Pix’s

supervised learning and the generative capabilities of the diffusion model. Unlike

previous GAN variants (e.g., ResNet-based or ESRGAN), Pix2Pix is trained on

paired data, allowing the model to learn a direct mapping from the fused in-

put to the corresponding secret image outputs. This explicit supervision likely

improved convergence and structural fidelity. Additionally, Pix2Pix’s U-Net ar-

chitecture—with its skip connections—facilitates the retention of low-level spatial

details, which is critical in steganographic recovery. When combined with the se-

mantic realism and noise tolerance provided by diffusion models, this architecture

demonstrates both high reconstruction accuracy and robustness under pertur-

bations such as Gaussian noise and JPEG compression. This could explain its

superior PSNR and SSIM metrics observed during evaluation.

Overall, while the Pix2Pix GAN provided promising results in the context of

this steganography scheme, there remains some room for improvement, particu-

larly in handling complex background scenes and mitigating the smoothing effect

introduced by the diffusion model.

S1 S2 C R1 R2

Figure 3.12: Images recovered using the Pix2Pix GAN
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Chapter 4

Evaluation

This chapter presents the evaluation of the proposed steganographic framework

based on the Pix2Pix GAN, specifically focusing on the results obtained in Exper-

iment 6, which demonstrated the most favorable outcomes among all experimental

configurations.

It is important to note that the images displayed in Figure 3.12 were selectively

chosen to illustrate successful instances. While the method was tested across a

variety of secret images, it did not consistently achieve satisfactory performance

for all inputs. Consequently, the evaluation presented here is limited to a subset

of test cases in which the model performed as intended.

The assessment is structured around four key criteria commonly used in stegano-

graphic systems: Steganographic Security, Hiding Capacity, Reconstruction Accu-

racy, and Robustness. Additionally we also carry out a human evaluation to de-

termine the robustness of the scheme to visual inspection. Each of these aspects

is analyzed in the following sections.

4.1 Steganographic Security

Table 4.1 presents a comparative evaluation of several state-of-the-art stegano-

graphic methods using the Natural Image Quality Evaluator (NIQE) metric, which

assesses perceptual image quality without requiring reference images. Lower NIQE
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Method NIQE Score (± std)

Baluja (Baluja 2017) 3.43 ± 0.08

HiNet (Jing et al. 2021) 2.94 ± 0.02

RIS (Y. Xu, Mou, et al. 2022) 3.13 ± 0.05

CRoSS (Yu et al. 2024) 3.04

HIS (Y. Xu, X. Zhang, et al. 2024) 3.10

Pix2Pix Diffusion (Ours) 4.13

Table 4.1: Comparison of NIQE scores

scores correspond to higher visual quality and more natural image appearance.

CRoSS (Yu et al. 2024) and HIS (Y. Xu, X. Zhang, et al. 2024) demonstrate com-

petitive performance. In contrast, the proposed Pix2Pix Diffusion model yields

a higher NIQE score of 4.13, suggesting a relative degradation in image realism.

This result implies a trade-off between visual quality and embedding capacity.

4.2 Hiding Capacity

Method Absolute Cap.

(BPI)

Image Size Relative

Cap.(BPP)

CamGAN (X. Liu et al.

2020)

256×256×8×3 256×256 24

CamGAN BW (Dhar-

mawimala 2023)

256×256×8×2 256×256 16

CamGAN RGB (Lak-

shan 2024)

256×256×8×2×3 256×256 48

CRoSS (Yu et al. 2024) 512×512×8×3 512×512 24

Pix2Pix Diffusion (Ours) 512×512×8×3×2 512×512 48

Table 4.2: Comparison of hiding capacity
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Table 4.2 presents a comparison of the hiding capacities of various stegano-

graphic methods in terms of absolute capacity (Bits Per Image, BPI) and relative

capacity (Bits Per Pixel, BPP). Among the listed methods, Pix2Pix Diffusion

demonstrates the highest hiding capacity, achieving 48 BPP with an image size

of 512×512. This is on par with CamGAN RGB, which also reaches 48 BPP

but operates on smaller 256×256 images, suggesting a higher spatial information

density but limited resolution. The original CamGAN and CRoSS methods each

achieve 24 BPP, though the latter works on higher-resolution images (512×512).

CamGAN BW, using only two color channels instead of three, results in a reduced

capacity of 16 BPP. The comparison indicates that the proposed Pix2Pix Diffusion

approach significantly enhances the data embedding capability while preserving

image resolution.

4.3 Reconstruction Accuracy

We evaluate the reconstruction accuracy of our proposed steganographic scheme

in comparison to existing methods, including both closely related approaches and

those that served as inspiration.

Table 4.3: Evaluation metrics comparison between different models

Method MSE PSNR SSIM

Baluja (Baluja 2017) - 27.51 0.89

CamGAN (X. Liu et al. 2020) - 36.23 0.97

CamGAN RGB (Lakshan 2024) 546.25 21.39 0.66

CRoSS (Yu et al. 2024) 624.43 23.79 0.71

HIS (Y. Xu, X. Zhang, et al. 2024) - 28.39 -

Pix2Pix Diffusion (Ours) 1614.80 16.98 0.68

Our method, Pix2Pix Diffusion, shows a lower PSNR and higher MSE com-

pared to other approaches, which is expected due to the stochastic nature of dif-

fusion models and their emphasis on perceptual realism over pixel-perfect recon-

structions. Despite this, the SSIM score of 0.68 remains competitive, surpassing
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methods like CamGAN RGB, indicating that structural similarity is reasonably

preserved. These results suggest that while our model may not excel in traditional

distortion-based metrics, it balances reconstruction quality with robustness and

perceptual plausibility.

4.4 Robustness

To assess the robustness of the steganographic scheme, we simulated JPEG com-

pression loss and Gaussian Noise addition on a batch of container images and

evaluated its impact on the recovery of the two secret images in each container.

The two secret images were extracted from the corrupted container image, and the

quality of the recovered images was quantified using four metrics: Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Learned Perceptual

Image Patch Similarity (LPIPS) and Mean Square Error (MSE). These metrics

were averaged over all secret images for each test scenario.

Noise σ LPIPS PSNR SSIM MSE

0 0.26 16.98 0.68 1614.80

5 0.30 16.78 0.64 1639.98

10 0.35 16.45 0.55 1768.54

15 0.40 16.27 0.48 1823.32

20 0.42 16.09 0.42 1902.70

25 0.48 15.64 0.37 2026.98

35 0.52 15.13 0.29 2188.28

50 0.58 15.07 0.26 2253.49

65 0.64 14.62 0.21 2450.32

80 0.66 14.19 0.17 2793.37

100 0.69 13.95 0.16 2901.12

Table 4.4: Recoverability at Different Noise Levels

A comparative analysis between the two types of degradation indicates:
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Quality LPIPS PSNR SSIM MSE

100 0.28 17.00 0.69 1588.86

90 0.28 16.95 0.68 1628.12

80 0.27 16.99 0.68 1587.84

70 0.29 16.92 0.68 1627.55

60 0.30 16.79 0.68 1652.07

50 0.31 16.69 0.67 1690.04

40 0.32 16.44 0.67 1734.34

30 0.32 16.63 0.67 1699.41

20 0.35 16.33 0.66 1801.49

10 0.43 15.90 0.64 1923.74

5 0.46 15.28 0.62 2213.59

Table 4.5: Recoverability at Different Quality Levels

• Resilience to JPEG Compression: The scheme demonstrates stability

under compression, with moderate changes in PSNR, SSIM, LPIPS, and

MSE. The predictable impact of compression suggests that the recovery

mechanism is adept at handling artifacts introduced by JPEG compression.

• Vulnerability to Gaussian Noise: The recovery performance shows a

drastic deterioration when Gaussian noise is applied. The significant drop

in both PSNR and SSIM, along with high LPIPS and MSE values, implies

that noise introduces chaotic perturbations that the scheme is ill-equipped

to mitigate.

While the steganographic scheme maintains acceptable performance under

JPEG compression, it is notably more sensitive to Gaussian noise. For real-world

applications in noisy environments it may be necessary to integrate noise-robust

techniques or additional processing steps to enhance the quality of the recovered

images.

Compared to existing methods, Our method demonstrates consistently robust

performance under both Gaussian noise and JPEG compression, even though its
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PSNR values are not always the highest. While RIIS achieves the best abso-

lute scores, particularly under compression, our method maintains stable quality

across all distortion levels, with less performance drop as degradations increase.

Notably, unlike methods such as HiNet and Baluja, which show significant degra-

dation under higher noise or compression, our approach provides a balanced trade-

off between robustness and visual quality, making it better suited for real-world

scenarios where input degradations are unpredictable and varied.

Method Gaussian Noise (σ) JPEG Compression

10 20 30 20 40 80

Baluja (Baluja 2017) 10.30 7.54 6.92 6.59 8.33 11.92

HiNet (Jing et al. 2021) 42.98 12.91 11.54 6.87 7.03 9.78

RIIS (Y. Xu, Mou, et al. 2022) 43.78 26.03 18.89 13.92 22.03 25.41

CRoSS (Yu et al. 2024) 23.79 21.89 20.19 21.02 21.74 22.74

HIS (Y. Xu, X. Zhang, et al. 2024) 23.49 21.88 20.02 23.21 26.11 26.23

Pix2Pix Diffusion (Ours) 16.45 16.09 15.42 16.33 16.44 16.99

Table 4.6: PSNR(dB) results comparison under Gaussian noise and JPEG com-

pression

4.5 Human Evaluation

To supplement the quantitative metrics, a human evaluation study was conducted

to assess the perceptual quality of container images and the semantic fidelity of

recovered secret images along with the steganographic imperceptibility. Partic-

ipants were presented with sets comprising the original secret image pairs, its

corresponding container image, and the reconstructed outputs, and asked to pro-

vide qualitative ratings.

The evaluation was administered via a Google Form circulated through social

media platforms 1. Each question was repeated across five different sets to ensure

1https://docs.google.com/forms/d/e/1FAIpQLSdcSecARdqO6IKBZfZkZPb_
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consistency. The final scores were computed by averaging participant responses

across all instances. We were able to obtain 50 responses from participants who

were mainly university students with no prior knowledge of digital stegenography.

Participants rated each sample on the following criteria:

• Visual Realism – How suspicious does the container image appear com-

pared to others? (We provided other generated non-container images for

comparison) (0: Clearly suspicious – 5: Indistinguishable)

• Semantic Accuracy – How clearly can the main content of the recovered

secret images be identified? (0: Not identifiable – 5: Clearly identifiable)

• Steganographic Imperceptibility – Are there visible traces of the secret

images in the container image? (0: Clearly visible – 5: No perceptible traces)

For the Pix2Pix-Diffusion model, the average scores across all evaluated sam-

ples were:

• Visual Realism: 3.8

• Semantic Accuracy: 4.1

• Steganographic Imperceptibility: 4.3

These results suggest that although traditional metrics such as PSNR may

report relatively low scores, human observers consistently perceived the recon-

structed images as semantically accurate. Moreover, the concealment was largely

successful, with minimal traces of the secrets detected in the container images—even

under side-by-side comparison with the secrets.

cQUKhey9kzlZNFDSmLrCfABA3w/viewform?usp=preview
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Chapter 5

Conclusion

5.1 Conclusion to Research Questions

This research posed two primary questions regarding the feasibility and effective-

ness of a hybrid GAN-diffusion steganographic framework:

1. How can a hybrid generative architecture combining GANs and diffusion

models be used to construct a multi-image coverless steganographic pipeline?

The experiments demonstrated that a hybrid architecture integrating GAN-

based modules with pretrained diffusion models can indeed enable a cover-

less steganographic framework. The final proposed pipeline leveraged textual

prompts as keys to guide image generation and reconstruction through diffu-

sion, while downstream GANs refined the output for higher fidelity. Among

all variants, the Pix2Pix + Diffusion approach showed the most reliable re-

covery of multiple RGB secret images, substantiating the viability of this

fusion paradigm.

2. How does the use of diffusion-enhanced image synthesis affect the visual

quality and imperceptibility of stego images compared to GAN-only meth-

ods?

Empirical results showed that diffusion-enhanced synthesis improves the vi-

sual fidelity of container images over GAN-only systems. The hybrid ap-
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proach increased hiding capacity (2x) and offered a much safer stegano-

graphic system than other cover modification techniques. However, prompt

sensitivity and domain similarity remain challenges for consistent recovery.

These findings confirm that the combination of GAN and diffusion processes

offers a novel and effective direction for coverless multi-image steganography.

5.2 Contributions

This thesis makes the following key contributions to the field of image steganog-

raphy:

• A novel hybrid framework: Introduced a steganographic architecture that

integrates GANs and diffusion models, enabling coverless hiding and recovery

of multiple images—a first of its kind to explicitly fuse these paradigms in

a unified pipeline.

• Systematic evaluation of multiple architectures: Designed and implemented

four major approaches—VAE-based fusion, ResNet-based GAN, ESRGAN

refinement, and a Pix2Pix-driven method.

• Robustness and quality benchmarking: Employed a rigorous set of metrics

(NIQE, PSNR, SSIM, LPIPS) under various noise and compression scenarios

to quantitatively validate the framework’s performance.

Collectively, these contributions provide a secure foundation for future research

in multi-image, coverless steganography using generative models.

5.3 Future Work and Limitations

5.3.1 Limitations

While the proposed framework demonstrates promising results in terms of imper-

ceptibility and multi-image hiding capacity, it is not without limitations. One
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key constraint lies in the sensitivity to prompt or conditioning input selection,

particularly in generative or diffusion-based approaches. If such prompts are not

carefully chosen, the model may fail to generate container images that preserve

the steganographic integrity of the hidden information.

Another notable limitation arises when the two secret images to be hidden

belong to the same domain or exhibit substantial visual similarity. In such cases,

the reverse diffusion process encounters difficulty in maintaining distinct repre-

sentations for each image. Overlapping features can cause entanglement in the

latent space, thereby degrading the fidelity of the recovered images and limiting

the system’s effectiveness in scenarios involving semantically or visually similar

content.

Additionally, the versatility of the system is limited. The Pix2Pix GAN ar-

chitecture, while effective within a specific domain, lacks generalizability across

varied image contexts. To adapt the framework to new domains, separate models

had to be trained from scratch, increasing computational overhead and limiting

scalability. This domain dependency restricts the practicality of deploying the

system in real-world, multi-domain environments without extensive retraining.

Another limitation of our framework pertains to steganographic security in

relation to Kerckhoff’s principle. Our approach assumes the confidentiality of

model weights, which contravenes the principle’s core tenet that the security of

a system should not depend on the secrecy of its design or implementation, but

solely on the secrecy of the key. While X. Hu et al. (2024) propose a methodology

that circumvents this limitation by designing a system that remains secure even

with publicly known model parameters, we did not adopt this approach due to

the significant increase in complexity it entails and given that it was tailored for

single image diffusion steganography.

Furthermore, encryption-based concealment of secret images was not feasible

within our system architecture. Employing stream ciphers for image encryption

tends to preserve localized patterns due to similar ciphertext values for adjacent or

similar pixel groups, which can be visually perceptible. Conversely, block cipher
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encryption disrupts the statistical properties of the image to such an extent that

it becomes incompatible with the invertible nature of diffusion models. Since

our method relies on reconstructing the container image from an encoded latent

or fused representation, such statistical destruction renders the reverse diffusion

process inoperable.

5.3.2 Future Work

Building upon the current framework, an avenue for future research involves the

integration of flow models to guide the denoising process within diffusion models.

By parameterizing the forward process with normalizing flows, it could potentially

lead to better secret recovery (Fischer et al. 2023).

Exploring the integration of flow models into the noising process presents

a promising direction for enhancing the capabilities of diffusion-based stegano-

graphic frameworks.
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