Enhancing Convergence of Live VM
Migration with Dynamic Workloads

Nadeesha Nethmini Epa
Index number: 20000499

Supervisor: Dr. Dinuni Fernando
Co-Supervisor: Dr. Jerome Dinal Herath

June 2025

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4224)

Declaration

I certify that this dissertation does not incorporate, without acknowledgement,
any material previously submitted for a degree or diploma in any university and
to the best of my knowledge and belief, it does not contain any material previously
published or written by another person or myself except where due reference is
made in the text. I also hereby give consent for my dissertation, if accepted, be
made available for photocopying and for interlibrary loans, and for the title and
abstract to be made available to outside organizations.

Candidate Name : D. N. N. Epa

Signature of Candidate Date : 23/06/2025

This is to certify that this dissertation is based on the work of Ms. D. N. N.
Epa under my supervision. The thesis has been prepared according to the format
stipulated and is of acceptable standard.

Supervisor’s Name : Dr. Dinuni K. Fernando

Signature of Supervisor Date : 24-06-2025
Co-Supervisor’s Name : Dr. Jerome Dinal Herath
Co-Signature of Supervisor Date : 23/06/2025

Dinal
23/06/2025

Abstract

Live Virtual Machine (VM) migration is a critical process in cloud computing, en-
abling workload balancing, resource optimization, and fault tolerance. However,
selecting the most suitable migration technique is challenging due to the dynamic
nature of workloads. Traditional migration methods—pre-copy, post-copy, and
hybrid approaches—often struggle with increased Total Migration Time (TMT),
downtime, and performance degradation, especially under varying workload con-
ditions.

This research proposes ProMig, a novel migration decision framework that lever-
ages Markov models to predict future workload behavior and select the optimal
migration technique while adapting to the dynamic nature of workloads. CPU
usage, memory usage, and network usage are used as key resource indicators to
define system states and anticipate workload transitions. The evaluation reveals
that ProMig consistently minimizes TMT by adapting to both stable and fluctuat-
ing workload patterns. It has 87% accuracy for the total migration time reduction.
Furthermore, certain workloads, such as those with high dirty page rates but low
memory usage, present additional migration challenges. Future work will explore
integrating dirty page rate as a resource metric and extending the model to multi-
VM migration scenarios for enhanced scalability and efficiency.

Through intelligent prediction and adaptive decision-making, ProMig improves
migration efficiency, reduces downtime, and ensures optimal resource utilization
in cloud environments.

Acknowledgment

First and foremost, I would like to express my heartfelt gratitude to my supervi-
sors, Dr. Dinuni Fernando and Dr. Dinal Herath, for their invaluable guidance,
unwavering support, continuous encouragement, and motivation throughout this
research project. Their insightful feedback and expertise were instrumental in
shaping the direction of this project and ensuring its successful completion.

I am also deeply grateful to WSO2 for providing the servers and to Dr. Dinuni
Fernando for facilitating their collaboration, without which this project would not
have been possible.

My sincere appreciation goes to the staff at Network Operating Center (NOC)
for their dedication in setting up the servers and granting us access to the server
room. [would also like to acknowledge all the servers I used for this project for
their reliability, despite being pushed to their limits.

Finally, I am profoundly thankful to my parents, siblings, and colleagues for their
unwavering support, encouragement, and understanding throughout this challeng-
ing journey. Their presence and belief in me served as a constant source of moti-
vation throughout the project.

Contents

1 Introduction

1.1 Introduction
1.2 Background
1.2.1 Workload Categorization
1.2.2 Live VM Migration
1.3 Motivation
1.4 Research Questions
1.5 Aims and Objectives
1.1 Aim
1.5.2 Objectives
1.6 Scope
1.7 Dissertation Outline

2 Background

2.1 Dynamic workload
2.2 Profiling
2.3 Workload Prediction
2.4 Existing Dynamic Workload Migration Strategies
25 Research Gap

3 Challenges in Time Series Forecasting

4 Design and Methodology

4.1 Experimental Testbed
4.2 Main Components of ProMig
5 Implementation
5.1 Periodic Resource Tracker
5.2 State Controller
5.2.1 State Definition L.
5.2.2 Implementation of the transition matrix and count matrix
5.2.3 Update the count and transition matrices.
5.3 Migration Controller
5.3.1 Future State Predictor
5.3.2 Migration Decision Module
6 Testing and Evaluation
6.1 Reaserch Tools Used
6.2 Evaluation Metrics oL
6.3 Evaluation Criteria
6.4 Stress Workloads Evaluation
6.4.1 Total Migration Time
6.4.2 Donwtime
6.5 Synthetic Workloads

ii

17

20
20
20

22
22
24
24
24
25
26
26
26

6.5.1 Total Migration Time 38

6.5.2 Donwtime 41

6.6 YCSB Workloads 43
6.6.1 Total Migration Time 44

6.6.2 Donwtime 47

6.7 Prediction Time e 50
6.8 Threshold for State Definitions 51
6.9 Look Ahead State 53
6.10 Performance Degradation. 54

7 Discussion and Conclusion 55
8 Limitations and Future Directions 56

iii

List of Figures

O 1 O O W N

W W W WWWWWWWRNNoNDNDDDNDNDDDNDN = = = = = = O
O O 00 IO UL WNDHFEF OO IDSD ULk WNDEHE OO Utk WwWwhh —=O

I
—_

Univariate Forecasting Vs Multivariate Forecating 18
Forecasting Results for YCSB Workloads 19
ProMig Architecture L 20
Components and Decision Flow of ProMig 28
Total Migration Time for Stress Workloads- 1GB 31
Total Migration Time for Stress Workloads- 2GB 32
Total Migration Time for Stress Workloads- 4GB 32
Total Migration Time for Stress Workloads- 8GB 33
Total Migration Time for Stress Workloads- 12GB 33
Downtime for Stress Workloads- 1IGB 34
Downtime for Stress Workloads- 2GB 34
Downtime for Stress Workloads- 4GB 35
Downtime for Stress Workloads- 8GB 35
Downtime for Stress Workloads- 12GB 36
Total Migration Time for Synthetic Workloads- 1GB 38
Total Migration Time for Synthetic Workloads- 2GB 38
Total Migration Time for Synthetic Workloads- 4GB 39
Total Migration Time for Synthetic Workloads- 8GB 39
Total Migration Time for Synthetic Workloads- 12GB 40
Downtime for Synthetic Workloads- 1GB 41
Downtime for Synthetic Workloads- 2GB 41
Downtime for Synthetic Workloads- 4GB 42
Downtime for Synthetic Workloads- 8GB 42
Downtime for Synthetic Workloads- 12GB 43
Total Migration Time for YCSB Workloads- 1GB 44
Total Migration Time for YCSB Workloads- 2GB 44
Total Migration Time for YCSB Workloads- 4GB 45
Total Migration Time for YCSB Workloads- 8GB 45
Total Migration Time for YCSB Workloads- 12GB 46
Downtime for YCSB Workloads- 1GB 47
Downtime for YCSB Workloads- 2GB 47
Downtime for YCSB Workloads- 4GB 48
Downtime for YCSB Workloads- 8GB 48
Downtime for YCSB Workloads- 12GB 49
Total Migration Time Variation with VM Size 50
Prediction Time Variation 51
Threshold Selection - 4GB VM 52
Threshold Selection - 8GB VM 52
Impact of Prediction Steps on Total Migration Time 53
Comparison of Performance Degradation: ProMig vs. Vanilla Pre-

COoPY -« o o e 54
Comparison of Performance Degradation: ProMig vs. Vanilla Post-

Copy . . o o o4

iv

List of Tables

1 Comparison of dynamic workload migration techniques

2 Benchmarks and their Generated Behavior

3 Synthetic Workloads Description

Acronyms

CC Cloud Computing. 1
CRM C(Cloud Resource Manager. 14
CUA Capacity and Utility Agent. 11

TaaS Infrastructure as a service. 11

MAP Markovian Arrival Process. 13
ML Machine Learning. 3, 11

OS Operating Systems. 8, 20

ProMig Predictive Live Migration Algorithm. ii, 20, 30, 33, 36, 43, 46, 49, 54-56
RTM Real Time Monitoring. 11

SaaS Software as a service. 11

VM Virtual Machine. ii, 1, 4-7, 14, 20, 24, 29, 50
VMs Virtual Machines. 1, 2, 14, 16

vi

1 Introduction

1.1 Introduction

As the technology grows cloud computing(CC) has become essential for develop-
ing reliable and efficient applications. One of the foundational concepts in cloud
computing is virtualization. Through virtualization, users can access and utilize
multiple hardware resources from a single physical machine, maximizing the ma-
chine’s capability and efficiency. As the name suggests, Virtualization (Xing &
Zhan 2012, Malhotra et al. 2014) defines the process of generating a virtual repre-
sentation of actual hardware, allowing users to place multiple hardware resources
inside one physical machine. This virtual representation is a Virtual Machine

(VM).

Containerization(Watada et al. 2019) is another key technology that enhances
resource utilization in cloud computing. Unlike VMs, which include a full oper-
ating system (OS) and virtualized hardware, containers share the host OS kernel
while isolating applications and their dependencies. This lightweight architecture
makes containers faster to deploy and more efficient for managing microservices
and stateless applications. However, for workloads that require strong isolation,
dedicated resources, and compatibility with legacy systems, VMs remain the pre-
ferred choice.

In cloud data centers, a single server can host multiple VMs. However, a failure in
that server would render all VMs on it unavailable, leading to significant service
disruptions. VM migration has been introduced as a solution to this problem.
It defines the idea of transferring a VM running on one server(source host) to
another server (destination host). Since the failures of a server can happen at any
time migration is essential for low-level system maintenance, load balancing, and
fault management (Choudhary et al. 2017).

A crucial factor in VM migration is identifying the convergence point, the stage
where migration can be completed without ongoing changes disrupting the pro-
cess. Convergence ensures that the source and destination VMs are synchronized,
enabling a seamless switchover with minimal downtime and no data inconsisten-
cies. Failure to achieve proper convergence may lead to service interruptions, data
loss, or degraded application performance.

During migration, certain memory pages may be modified repeatedly over mul-
tiple iterations. The point at which the same set of pages continues to change
is identified as the convergence point. Determining this point allows for predict-
ing migration duration after a triggering event. This prediction helps in planning
and optimizing migration processes, ensuring efficient resource allocation and re-
duced downtime. However, the workload’s nature plays a significant role in how
the convergence point is determined, influencing migration efficiency and overall
performance.

Workloads are generally classified into two main categories: static and dynamic

Calzarossa et al. (1986). A static workload maintains a consistent demand for
computing resources over an extended period while dynamic workloads frequently
change their behavior, leading to varying demands on computing resources. This
variability makes dynamic workloads more complex to predict and manage, as it
becomes challenging to determine the workload’s next state accurately.

For static workloads, identifying the convergence point is relatively straightfor-
ward. During migration, there comes a point where the same set of memory pages
(known as the working set) stabilizes and no longer changes. This stable state
marks the convergence point, allowing the migration to complete smoothly.

In contrast, dynamic workloads require additional effort due to their unpredictable
natureZhang & Boutaba (2014). The working set in dynamic workloads can change
at any time, making it challenging to identify a stable convergence point. To
address this, machine learning and statistical techniques are commonly employed.
These methods help predict and manage the variability of dynamic workloads,
providing more reliable solutions for achieving a stable convergence point during
migration.

1.2 Background

1.2.1 Workload Categorization

VMs need to be migrated to prevent interruptions caused by server node failures.
However, the methods used for migration depend heavily on the workload type.
Workloads are generally classified into two main categories: static and dynamic.

A static workload maintains a consistent demand for computing resources over an
extended period. Due to its stable nature, the behavior of a static workload is rel-
atively easy to predict based on the current usage patterns, making the migration
process more straightforward.

Within the category of dynamic workloads, there are several specific types, each
with unique characteristics:

1. Persistent Workloads: These workloads are continuous and stable in re-
source demand, though they can experience occasional spikes. Applications
with long-running tasks, such as databases, often generate persistent work-
loads (YCSB 2024). Database Management Systems (DBMS) like
MySQL, PostgreSQL, or MongoDB can be given as examples of per-
sistent workloads.

2. Real-Time Workloads: Real-time workloads require immediate process-
ing with minimal latency, often found in applications like video streaming or
[oT sensors. These workloads are highly sensitive to delays, making migra-
tion techniques for real-time workloads particularly complex, as they must
minimize any disruption during the migration process. Video Streaming
Platforms like YouTube and Augmented Reality (AR) Applications
are few examples of real-time workloads.

3. Serverless Workloads: Serverless workloads(AWS 2024, Oracle 2024) are
characterized by rapid, unpredictable demand changes, as they only consume
resources when triggered by specific events. Serverless applications, such
as cloud-based functions, make workload prediction challenging since they
can vary significantly over short periods. AWS Lambda, Google Cloud
Functions, and Oracle can be given as examples of serverless workloads.

4. Interactive Workloads: These workloads involve direct user interactions,
such as online gaming, virtual desktops, and collaborative applications. In-
teractive workloads require low latency and high responsiveness to ensure a
seamless user experience. Google Docs, Microsoft Teams, and Slack
are some of the interactive workloads.

5. Burstable Workloads: Burstable workloads experience sudden and in-
tense spikes in resource demand for short durations, followed by periods of
low or no activity. Examples include web servers handling unexpected traffic
surges or financial trading platforms during market opens. Social Media
Platforms and Websites like Twitter or Instagram are a few examples
of burstable workloads.

Understanding these dynamic workload categories is essential for designing ef-
fective migration strategies that can maintain performance and availability across
diverse application types. By tailoring migration techniques to the specific charac-
teristics of each workload type, cloud data centers can enhance reliability, optimize
resource usage, and ensure seamless application performance even in the face of
varying demands.

Handling the dynamic nature is a challenging task because the frequently changing
behavior of dynamic workloads doesn’t lead to straightway convergence or smooth
transitions during the migration. Because of that dynamic workloads require
specialized techniques to handle their variability, including Profiling (Ye et al.
2014, Wu & Wolf 2008, Han et al. 2020) which involves recording past behaviors
to help predict future workload patterns. In addition, statistical and machine
learning (ML) methods (Wei et al. 2018, Naik 2022) are commonly used to handle
the unpredictable nature of dynamic workloads. These techniques contribute to
more accurate forecasting of workload changes, thereby optimizing the migration
process. Further details on these methods are discussed in Section 2.1.

1.2.2 Live VM Migration

Live VM Migration is a process designed to maintain application continuity when
failures occur mid-execution. During Live VM Migration, the Virtual Machine
(VM) is transferred from a failing server (source) to another server (destination)
without interrupting the applications running inside the VM. This ensures min-
imal downtime and preserves the seamless operation of applications despite the
underlying server issues. Christopher (2005) has shown several advantages of live
migration as

o In live migration the entire operation system and all of its applications are
moved at once. This will avoid many challenges encountered by process-level
migration methodologies(Christopher 2005).

o After the migration the host machine does not depend on the source and
this solves the problem of residual dependencies.

o Live VM migration has the ability to complete the migration process without
providing an interruption to the users.

Live VM migration can be categorized broadly into three(3) main techniques as
Pre-Copy migration, Post-Copy migration, and Hybrid migration(He
2021, Christopher 2005, Fernando et al. 2020, Hines et al. 2009).

1. Pre Copy Migration
In Pre-Copy(Christopher 2005, Fernando et al. 2020)migration, the memory
transferring will happen via two(2) main steps as push phase and stop
and copy phase.

(a)

Push phase

Memory pages are iteratively sent from the source to the destination
while the source VM continues to run. In the first iteration, all pages
are transferred, and in subsequent iterations, only modified pages (dirty
pages) are sent. For static workloads, the dirty page count eventually
stabilizes, marking a convergence point. However, for dynamic work-
loads, the dirty pages may change continuously, making it hard to find
a convergence point.

Stop and copy phase

After identifying the convergence point the source VM holds its ex-
ecution and quickly sends the remaining pages, CPU state, and the
/O state to the destination VM. From this point onwards the destina-
tion VM starts to be executed. The duration that source VM paused
its execution and started resuming in the destination is known as the
downtime of the VM migration.

2. Post-Copy Migration
The execution nature of the Pre-Copy technique is used to send the dirty
pages to the destination through multiple iterations. But in Post-Copy
(Hines et al. 2009, Fernando et al. 2020) migration it uses a mechanism
that ensures no duplicates of the same page will be sent to the destination.
The steps of this technique are as follows.

(a) First, the VM at the source server paused its execution. Then, a minimal
set of memory pages required for execution of the destination VM will
be moved to the destination server.

(b) Then the destination VM starts its execution and the source quickly
starts sending the remaining memory pages to the destination. This
process is known as pre-paging.

(c) If the destination VM may notice that some pages have not been suc-
cessfully sent to the destination, a page fault will occur and the source
quickly starts sending the missing pages to the destination. This is
known as the Demand paging

3. Hybrid Migration
Hybrid migration(Sahni & Varma 2012, Altahat et al. 2020) can be known
as a combination of both Pre-Copy and Post-Copy techniques. Hybrid mi-
gration aims to increase the performance for both read-intensive and write-
intensive workloads by minimizing downtime and avoiding redundant data
transfers. Hybrid algorithm stages can be described as given below.

(a) Migration begins with Pre-Copy, where memory pages are sent from
the source to the destination VM while the source VM remains ac-
tive. Unlike traditional Pre-Copy, Hybrid Migration does not wait for
a convergence point.

(b) After a short Pre-Copy period, the source VM is paused, and its CPU
and I/O states are transferred to the destination. The VM resumes on
the destination immediately, without waiting for all pages to transfer.

(c) As the final step the Post-Copy algorithm starts the execution and the
remaining dirty pages will copy from the source to the destination.

1.3 Motivation

With advancements in technology, cloud computing has become essential for users
globally. It offers the ability to create and customize applications via the Internet,
providing cost-effectiveness and flexibility in accessing resources. Leading cloud
service providers, such as Cloud(GCP 2024), Amazon Web Services (AWS)(AWS
2024), Microsoft Azure(Microsoft 2024), and Oracle(Oracle 2024) utilize virtual
machines (VMs) to deliver scalable, on-demand computing resources.

Given the potential for server failures at any moment, it is vital to implement
effective strategies for managing these disruptions. VM migration has emerged as
a critical solution to ensure continuous application availability. Over the years,
various optimizations have been developed to reduce the total migration time and
minimize the downtime of the migration process.

However, many applications today operate under dynamic workloads, character-
ized by variability and complexity. These dynamic environments present several
challenges (Zhang & Boutaba 2014, Hossain & Song 2016, Cerotti et al. 2012)
that complicate the migration process. A significant challenge is the difficulty
in predicting future workload behavior, which hinders the selection of the most
suitable migration strategy. Not selecting the best migration technique may lead
to a longer Total Migration Time (TMT), increasing the risk that a server may
fail before the migration process is completed. Additionally, once migration has
started, determining the convergence point, when the process should ideally be
completed, becomes challenging due to fluctuating workload conditions. This un-
predictability can lead to resource inefficiencies, highlighting the need to improve
the performance of live migration techniques tailored for dynamic workloads.

1.4 Research Questions

1. How can future workload behavior prediction be used to select the most op-
timal VM migration technique for dynamic workloads?
The main idea is to select the best migration technique by considering the
future behavior of a dynamic workload. This focuses on improving the per-
formance of the applications by reducing the total migration time, and down-
time with minimal impact on the performance.

2. How to identify the convergence point of dynamic workloads in live migra-
tion with workload-specific behavior?
This question examines using Markov Chains to detect the convergence
point, considering how workloads like persistent, real-time, and serverless
uniquely impact convergence.

1.5

Aims and Objectives

To effectively address the aforementioned research questions, a novel framework,
termed ProMig, was developed.

1.5.1 Aim

The primary goal of this research (ProMig) is to develop a method for selecting the
optimal migration strategy for dynamic workloads and determining the optimal
convergence point during migration based on the chosen technique. ProMig aims
to enhance migration efficiency while reducing total migration time and downtime
compared to traditional approaches. Instead of making decisions solely based on
current workload behavior, ProMig predicts future workload trends, analyzes these
predictions, and selects the most suitable migration strategy accordingly.

1.5.2 Objectives

The main objectives of the research are as follows:

1.

1.6

Design and develop a method to predict the future behavior of a dynamic
workload.

Design and develop an algorithm to select the best migration strategy to
migrate a dynamic workload.

Identify the convergence point of a dynamic workload based on the selected
migration strategy.

Evaluate the performance of migration using total migration time, down-
time, and application performance metrics by incorporating industrial ac-
cepted benchmarks such as Sysbench (Kuznetsov 2023), YCSB (Yahoo cloud
serving benchmark)(YCSB 2024), Stress(Stress - tool to impose load on and
stress test systems n.d.), Memcached(Memcached: Free € open source, high-
performance, distributed memory object caching system. n.d.), etc. These
benchmarks support generating workloads of different natures such as per-
sistent workloads, real-time workloads, CPU-intensive workloads,
and memory-intensive workloads.

Scope

Live VM migration with dynamic workloads: The research will focus
on developing a strategy to migrate a dynamic workload using Live VM mi-
gration.

Single VM migration: The research focused on migrating a dynamic
workload in a single VM.

o Implementing a working prototype: At the end of the research, a work-
ing prototype will be developed to find the convergence point and migrate a
dynamic workload with minimal total migration time and downtime.

« QEMU-KVM Hypervisor: The research uses QEMU-KVM as the hy-

pervisor for implementing and evaluating the working prototype.

e Ubuntu Host OS: The research will focus on Ubuntu Servers as the host
OS.

e Linux guest OS: Linux will be considered as the guest OS for this research.

1.7 Dissertation Outline

The rest of this dissertation is organized as follows: Section 2 reviews the related
work for this research. Section 3 discusses the challenges that occurred when time
series forecasting was used for future workload prediction. Section 4 presents the
design and methodology details of ProMig. Section 5 provides the implementation
details of ProMig, and section 6 evaluates the performance of ProMig using various
metrics and compares it with the traditional migration techniques. Finally section
7 provides a discussion and conclusion of the results and the section 8 provides
the limitations and future works.

2 Background

A literature review was conducted for the topic Live VM Migration Conver-
gences in a Dynamic Workload and the report consists of a detailed explana-
tion of live migration techniques, an explanation about the dynamic workload, and
the different types of dynamic workload handling methods with their advantages
and limitations.

2.1 Dynamic workload

A dynamic workload (Hossain & Song 2016, Cerotti et al. 2012) consists of sev-
eral computational tasks that change the behavior of tasks very frequently over
time. Because of its changing behavior, it is hard to predict workload patterns
for dynamic workloads. This makes dynamic workload handling a challenging and
complex task. Some of the key challenges of dynamic workloads are given below.

1. Dynamic workloads consist of different types of applications that consist of
their own and different kinds of resource requirements, which is known as
the Heterogeneity (Zhang & Boutaba 2014).

2. Dynamic workloads have the problem of over-provisioning and under provi-
sioning. Because of the dynamic nature, it is hard to predict the resource
demand hence, most of the applications provide resources more than enough
to execute the operations. This may lead to a waste of resources. In sim-
ilar cases, the resources provided may not be enough for the applications
to execute, which leads to under-provisioning and failures in the application
process. This is known as the applications do not meet their peak de-
mands. In both cases, part of or the whole cost used for the application
process has become a waste (Hossain & Song 2016).

Dynamic workloads can be handled based on the following approaches:
« Mathematical/Machine Learning Techniques
o Statistical Techniques

To deal with dynamic workloads, these techniques require capturing and collecting
records of the current behavior of the workload to predict future behaviors. For

that process, a well-known technique called profiling has been used by several
researchers(Wu & Wolf 2008, Ye et al. 2014, Han et al. 2020).

2.2 Profiling

Profiling is a concept used to capture the behavior of workloads based on their
characteristics. There are two profiling techniques runtime profiling and offline
profiling (Wu & Wolf 2008). Runtime profiling tries to capture the characteristics
of an application when the application starts its execution. Because of that,
runtime profiling (Wu & Wolf 2008) is used to deal with dynamic workloads. The
captured data will be used to increase application efficiency. CPU usage, memory
usage, and network consumption are some of the runtime profiling information.

The studies conducted by Wu & Wolf (2008),Ye et al. (2014), and Han et al.
(2020) have used profiling techniques to identify the behavior of a workload. The
main idea behind the concept used by these research works is to gather runtime
profiling information such as CPU time, memory usage, and service time and
understand the workload behavior using the collected information. The study
followed by Wu & Wolf (2008) collects real-time information such as task service
times, edge utilizations, and task utilizations and then uses a duplication and
mapping algorithm that can capture the changes in the workload by using the
collected profiling information. So the tasks with high computational demands will
be duplicated across multiple cores by the task duplication algorithm. The task
mapping algorithm will assign tasks to the processors to minimize the overhead.
Also, the study of Ye et al. (2014) collects profile information for various types of
workloads such as CPU-intensive, memory-intensive, and network-intensive. Then
by analyzing these details, the characteristics and resource demands of different
types of workloads will be identified. Finally, with the use of these details, they
implemented two(2) models as a consolidation planning module and a migration
planning module to complete the migration process with minimal effect on the
performance. Han et al. (2020) has introduced a combination of profiling systems
and refinement frameworks to identify micro-services placement with dynamic
workloads.

One of the most important points highlighted by the above studies (Wu & Wolf
2008, Ye et al. 2014, Han et al. 2020) is profiling techniques has the ability to
measure the system performance for various workload conditions(CPU intensive,
memory intensive, network intensive, etc). So the workload changes can be identi-
fied in real time. Also profiling incurs low overhead because profiling can directly
monitor specific metrics and uses simple analytical techniques which do not require
high computational power.

2.3 Workload Prediction

1. Mathematical/Machine Learning Techniques
Various research efforts have addressed the challenges of managing dynamic
workloads, utilizing methods such as dynamic thresholds (Lin et al. 2011),
reinforcement learning (Wei et al. 2018), use of autonomic computing (Sah
& Joshi 2014), etc.

A study conducted by Lin et al. (2011) proposed a dynamic resource alloca-

10

tion schema that adjusts resources according to the application’s changing
workload. Given that dynamic workloads can fluctuate throughout the ap-
plication’s lifecycle, this schema uses a threshold value to determine optimal
instances for resource allocation. Based on this threshold, resources are
allocated dynamically, adapting to the application’s immediate needs.

Similar systems can be found in the solution provided by Sah & Joshi (2014),
a solution based on autonomic computing. Autonomic computing refers to
the term that applications can change themselves according to the changes
of the application environment without any external help(Without notifying
the user). The algorithm created using autonomic computing, consists of a
capacity and utility agent (CUA) and a resource controller. CUA is used to
collect data about the resources and the capacity of the VMs. According to
the collected data, an initial schedule was implemented, and if the workload
changes then the resource controller will change the schedule to allocate
resources in a better way.

Enhanced Dynamic Johnson Sequencing is another technique proposed by
Banerjee et al. (2023), that uses a combination of ML and RTM to handle
the nature of a dynamic workload. It is also known as OptiDJS+. The
algorithm provides a schedule based on the dynamic quantum value,

Minimum Execution Time + Maximum Execution Time
2

of the tasks.

Also the framework proposed by Wei et al. (2018) claims a workflow schedul-
ing algorithm using a sequential decision-making approach based on rein-
forcement learning. The ML approach used in this proposed algorithm is
called the Q-learning. This algorithm aims to identify suitable Infrastruc-
ture as a Service (IaaS) providers for Software as a Service (SaaS) applica-
tions, optimizing resource allocation and minimizing costs. The Q-learning
approach continually learns and adapts based on workload changes, making
it particularly suited to dynamic environments.

As explained, several instances of using machine learning to handle dynamic
workloads exist. However, there are a few important points to be considered
when using ML techniques. To provide an accurate prediction, ML models
need to be trained properly (Wei et al. 2018). This required extensive and
accurate training data to make reliable predictions. But in this instance ac-
quiring data from a dynamic workload can be challenging since its workload
behavior will change frequently(Khelghatdoust et al. 2016). Additionally,
dynamic environments increase the risk of overfitting, where a model be-
comes too specialized to the training data, resulting in reduced effectiveness
for real-world applications(Wei et al. 2018). Also implementing a proper
model can be resource-intensive because it requires a high computational
power to train and run complex models.

11

2. Statistical Techniques Statistical techniques have gained popularity for
predicting future workloads due to their simplicity, lower data requirements,
and transparency in operations (Devi & Valli 2023, Calheiros et al. 2014).
Many studies in this area focus on time series forecasting, which leverages
historical data to identify patterns over time, providing insights into future
workload trends. Another common approach is the use of Markov chains,
which model workload transitions between states, allowing predictions based
on probable sequences. These statistical methods are especially valuable
for dynamic workloads, offering an accessible and computationally efficient
alternative to more complex machine learning models.

(a) Time Series Forecasting

Calheiros et al. (2014) has conducted a study about workload predic-
tion using ARIMA model. ARIMA stands for the Auto-Regressive
Integrated Moving Average and it is used to predict the future work-
load. This paper has introduced an analyzer implemented using the
ARIMA model. First, the data that needs to predict the future work-
load such as CPU usage, memory usage, etc will be fed into the ARIMA
model. An important point considered here is these data must be sta-
tionary. For that process, a transformation method called differencing
has been used. ARIMA model needs three(3) parameters to be fed the
number of differences used, the auto-correlation value, and the partial
auto-correlation value. The analyzer used in this paper will be respon-
sible for updating the model with new data to increase the prediction
accuracy of future workload behaviors. These predicted results have
been used to ensure that enough resources are available for users to
complete their tasks. With that Calheiros et al. (2014) has been able
to increase the quality of service(QOS) by predicting future behavior
using the ARIMA model.

The study conducted by Devi & Valli (2023) has used a combination of
the ARIMA model and ANN(Artificial Neural Network) to predict the
behavior of future workloads. So this hybrid model can be introduced as
an enhanced version of Calheiros et al. (2014). ARIMA model was used
to deal with the linear components and ANN was used to model the
non-linear components. With that, the accuracy of the future workload
prediction has been increased. Finally, the study has evaluated the
performance of the new method using metrics such as mean absolute
error and root mean squared error and the results have proven that the
proposed solution works efficiently in a dynamic cloud environment to
predict future workloads.

Ganapathi et al. (2010) has proposed a statistic-driven working model
that can be used to predict the future behavior of a workload. Mainly
the paper tries to predict the resource demands for applications that use
MapReduce(Hashem et al. 2016). Mapreduce tasks consist of several

12

jobs which are known as Hadoop jobs. The proposed solution named as
Kernel Canonical Correlation Analysis (KCCA) will predict the
execution times, and resource demands for the Handoop jobs. KCCA
consists of a special feature called Feature Vectors which are con-
structed using job configuration parameters and input data character-
istics. With the use of feature vectors, KCCA was able to provide
accurate predictions about the future workloads.

Markov Chains

The research conducted by Kim et al. (2018) introduced a predictive
framework called CloudInsight that addresses the limitations of re-
active autoscaling by adapting to both regular and irregular workload
patterns. A key component of this framework is the use of Markov
chains, which model the transitions between different workload states
to capture short-term, bursty fluctuations. This allows the system
to react quickly to sudden changes in workload behavior—something
traditional predictors often struggle with. In combination with Fast
Fourier Transform (FFT), which identifies periodic workload trends,
the Markov model enhances CloudInsight’s ability to make accurate and
timely predictions.These predictors are integrated into an ensemble-
based approach, where each model acts as an expert in a "council of
predictors.” The ensemble weights are updated in real time using multi-
class regression based on the predictors’ accuracy under current condi-
tions. The use of Markov chains thus plays a central role in improving
responsiveness and accuracy in dynamic cloud environments.

Pacheco-Sanchez et al. (2011) uses Markovian Arrival Processes (MAP)
to model and predict the time-varying characteristics of cloud work-
loads, specifically for web traffic. This approach allows for performance
prediction, including metrics such as server utilization, queue length,
and response times. MAPs capture not only the distribution of work-
load arrival rates but also the temporal dependencies in these rates,
accommodating heavy-tail distributions common in HT'TP traffic. By
fitting MAP parameters to real HT'TP log data, the framework enables
efficient, queueing-based performance analysis without needing exten-
sive simulation. This model is then used to predict Quality of Service
(QoS) metrics, supporting resource allocation decisions in cloud envi-
ronments by ensuring the provision of sufficient resources for varying
workload intensities

Also, the research conducted by Gambs et al. (2012) uses a n-Mobility
Markov Chain (n-MMC) to predict future locations by modeling an
individual’s movement patterns based on the last n locations visited.
Each location or "point of interest” (POI) represents a state, with tran-
sitions indicating the probability of moving from one POI to another.
By considering sequences of locations rather than just the current loca-

13

tion, the n-MMC model improves prediction accuracy, capturing more
complex mobility patterns.

In recent years, application providers have increasingly favored statistical ap-
proaches to predict future workload behaviors due to their simplicity and ease
of interpretation. Unlike machine learning techniques, statistical methods require
smaller datasets to produce effective models (Calheiros et al. 2014, Devi & Valli
2023), making them more accessible and efficient for real-time predictions. Addi-
tionally, statistical models demand less computational power (Hashem et al. 2016)
during both training and execution, making them a practical choice for environ-
ments with limited resources or tight processing requirements. This combination
of advantages makes statistical approaches highly suitable for many predictive
applications in workload management.

2.4 Existing Dynamic Workload Migration Strategies

Naik (2022) has claimed a solution for dynamic workload migration using a tech-
nique called Adaptive Push-Pull. This algorithm consists of a combination of a
push function and a pull function. In the concept of Adaptive Push-Pull the push
function is used to distribute the workload among the resources, and when a VM
is overloaded . The pull function is invoked when the VM is underloaded . For this
process, a VM manager and the CRM are used. VM manager will be responsible
for managing local workload distribution, while a CRM (Cloud Resource Man-
ager) manages global resource balancing. This adaptive approach ensures efficient
load sharing, reducing migration overhead and improving resource utilization.

Also similar systems can be found in Lu et al. (2015), an optimal scheduling
algorithm called VHaul to solve the problem of migrating multi-tier applications.
These multi-tier applications consist of a group of co-related VMs that makes the
application inherently dynamic. So to create the scheduling algorithm the VMs
will be categorized according to their relationships. VMs belonging to the same
application will be assigned to the same group. Then the production of resource
utilization and migration time are used to decide the impact from the current VM
to the next VM to be migrated. Then the migration schedule will be created as
the smaller value for the production of resource utilization and migration time
means less impact for the next VM to be migrated.

Khelghatdoust et al. (2016) came up with a solution GLAP, which is a combina-
tion of a gossip-based learning algorithm and Q-learning. GLAP uses continuous
monitoring of the resource demands of the VMs to predict the behavior of future
workloads. The Table 1 shows the comparison of the existing methods.

14

Pros

Cons

Adaptive Push-
Pull

Provides an adaptive
push-pull system to
dynamically switch
between push and
pull functions to react
to the changes in the
workload.

Solves the problem
of overloading and
underloading in the
VMs.

With a highly dy-
namic workload CRM
and VMM will not
be able to handle the
problem of overload-
ing.

vHaul e Provide an efficient e Have to calculate
scheduling algorithm the resource utiliza-
by considering the re- tion and migration
source utilization and time whenever the
the migration time. workload changes.
GLAP

Provides a threshold-
free approach to
detect future behav-
iors and migrate a
workload without
overloading.

Have to use a lot
of computation power
and resources to train
an accurate model

Table 1: Comparison of dynamic workload migration techniques

Among the existing approaches, Adaptive Push-Pull handles overloading and un-
derloading using the VM Manager and Cloud Resource Manager, but lacks predic-
tive capabilities. VHaul focuses on multi-tier application migration by estimating
resource utilization and migration time, but does not directly address dynamic
workload migration. GLAP applies machine learning for VM placement but intro-
duces high computational overhead. Compared with these techniques, the solution
of this research aims to offer a novel and lightweight solution for dynamic work-
load migration. By anticipating future workload states, it enables smarter and
more efficient migration decisions, making it a more adaptive and resource-aware

alternative to the above methods.

15

2.5 Research Gap

Migration operations are often triggered by sudden resource or power failures,
maintenance needs, or load-balancing requirements. However, deciding the fu-
ture behavior of a workload for migration is challenging, especially with dynamic
workloads where CPU, memory, and storage demands fluctuate rapidly. This un-
predictability complicates decisions on identifying the convergence point. Addi-
tionally, the variable behavior of workloads, whether they become CPU-intensive,
memory-intensive, or network-intensive, can influence the success of the migration
process. Selecting an incorrect migration strategy can further increase the total
migration time (TMT) and elevate the risk of server failure during migration. This
highlights the importance of making timely and accurate predictions.

Existing research on dynamic workload migration (Section 2.3) has primarily fo-
cused on developing complex mechanisms to adapt migration schedules based on
workload changes. Many of these solutions rely on data such as resource uti-
lization metrics, migration durations, and the load status of VMs (whether they
are overloaded or underloaded). This information, however, requires significant
processing time to analyze and interpret, which can delay response to real-time
changes in workload demands.

Machine learning and statistical techniques provide potential solutions for fore-
casting workload behavior before migration. Machine learning methods, while
effective, require extensive training periods, large datasets, and considerable com-
putational resources (Khelghatdoust et al. 2016, Wei et al. 2018). By contrast,
statistical approaches demand smaller datasets (Calheiros et al. 2014, Devi & Valli
2023) and lower computational power (Hashem et al. 2016) for both training and
execution. Studies by Calheiros et al. (2014), Hashem et al. (2016), and Devi &
Valli (2023) demonstrate that even with limited computational resources, statis-
tical techniques can reliably predict future workload behaviors.

In VM migration, the full state of the VM must be transferred to the target
machine, which demands substantial bandwidth and is recognized as a resource-
intensive process. Employing techniques with high computational overhead to
handle workload dynamics can further strain the system, negatively impacting
applications running on the VMs. Therefore, this research seeks to bridge the gap
by developing a lightweight, performance-efficient solution for dynamic workload
migration. By using profiling information (e.g., CPU, memory usage, and network
usage), this solution(ProMig) will employ statistical models to predict future
workload behaviors and schedule migrations accordingly. The research aims to
minimize both the total migration time and downtime, reducing the performance
impact on applications during migration and mitigating the risk of server failure
before completing the migration process.

16

3 Challenges in Time Series Forecasting

Time series forecasting was explored as a starting point to predict future workload
behavior. There are two(2) main categories to be considered as univariate and
multivariate time series models.

o Univariate Models: Models such as ARIMA, ETS, and FB Prophet can
predict a single variable at a time. For this research, using univariate models
would require four separate models, one each for CPU, memory, incoming
network, and outgoing network.

o Multivariate Models: VAR (Vector AutoRegression) is a multivariate
model capable of predicting multiple variables simultaneously, making it
potentially more suitable for predicting all four resources together.

To determine the most resource-efficient approach, experiments were conducted
to compare the resource usage of these models during predictions. These tests
provided insights into the computational demands of each model type, guiding
the selection of an optimal prediction method for dynamic workloads in cloud
environments. Based on the results, multivariate forecasting was identified as the
less resource-intensive prediction model. Results will be shown in figure 1.

However, several challenges arise when using time series forecasting. A significant
issue was that even within the same workload type, different workloads required
distinct parameter settings for the models. Consequently, the algorithm needed
extra time to analyze past data and adjust parameters to fit each workload
accurately, making it difficult to develop a generalizable solution.

Additionally, prediction accuracy varied across resources. Some resources were
accurately forecasted, while others showed substantial prediction errors. For
instance, as shown in figure 2, the model accurately predicted memory usage but
struggled to forecast incoming network usage for the same workload.

To address these limitations and to develop a more generalized solution, the ap-
proach was shifted to using Markov chains(Kim et al. 2018, Pacheco-Sanchez
et al. 2011). Unlike time series models, which require tuning specific parameters
for each workload, Markov chains offer a state-based approach that can adapt more
easily to varying workload patterns without extensive reconfiguration. By mod-
eling resource usage levels as states with probabilistic transitions, Markov chains
enable a more flexible and scalable framework for predicting dynamic workloads
across multiple resources, mitigating the need for constant parameter adjustments.
This approach simplifies workload prediction and enhances consistency across dif-
ferent types of resources.

17

CPU Usage

— ARIMA CPU Usage
— VAR CPU Usage
—— ETS CPU Usage

100 1

80

CPU Usage

Timestamp
Memory Usage

1.40 1 T ‘ — ARIMA Memory Usage

[—— VAR Memory Usage
—— ETS Memory Usage

L

w

[
L

Memory Usage
=
w
o
!

=

N

w
L

1.20 4

T T T A T T e T T T oo

Timestamp
KB/s_in

—— ARIMA KB/s_in
—— VAR KB/s_in
—— ETS KB/s_in

0.6 1

KB/s_in

|

Timestamp

KB/s_out

—— ARIMA KB/s_out
0.4 —— VAR KB/s_out
—— ETS KB/s_out

0.1 M

I\

T T T A T T T T T oo

Timestamp

Figure 1: Univariate Forecasting Vs Multivariate Forecating

18

Memory Usage Forecast

0.95 4 /Fv
0.90 4
—— Train Memory
0.85 1 —— Test Memory
—— Forecasted Memory

1210:24 1210:25 12 10:26 12 10:27 12 10:28 12 10:29
In Network Usage Forecast

60000
40000 A
—— Train In Network
20000 —— Test In Network
0 —— Forecasted In Network

12 10:24 1210:25 12 10:26 12 10:27 12 10:28 12 10:29

Figure 2: Forecasting Results for YCSB Workloads

19

4 Design and Methodology

4.1 Experimental Testbed

1.

Test-bed setup: The test-bed setup consists of two physical servers

that are interconnected using a Gigabit Ethernet. QEMU/KVM is chosen as
the hypervisor and a Ubuntu Server is used as the host OS. The VMs consist
of a Linux-based OS. The Figure 3 provides a high-level view of the test-bed setup.

QEMIUI QEMU

Source

VM Destination

VM
ProMig
Periodic
Resource
Tracker
Migration Manager Migration Manager
i i Migration
State Future‘ State Mfgratlon g £l Future State
Controller ‘ Predictor | [Decision Module Decision .
Predictor
Module
Source Host Destination Host
Source Server Destination Server

Figure 3: ProMig Architecture

4.2 Main Components of ProMig

To solve the two(2) main research questions, ProMig is implemented with three
main components. As shown in the figure 3, there is a Resource Tracker, a
State Controller, and a Migration Manager. All three(3) components will be
implemented inside the source host. The use case of each of these components is
as follows.

» Periodic Resource Tracker- Captures the resource usage of the source

VM. So it captures the CPU, memory, and incoming and outgoing network
usage. For that it uses profiling tools such as mpstat(The Linux Foun-
dation n.d.b), free -m(The Linux Foundation n.d.a), and Ifstat(Debian
Developers n.d.). For each second(1s) the resource tracker captures the
resource usage of the source VM, converts it to a percentage, and then feeds
the results to the state controller.This profiling helps ProMig understand
the current workload behavior, which is essential for answering the second
research question related to workload prediction.

State Controller - State Controller consists of two(2) main components
the count matrix and the transition matrix. For each second it takes input
from the resource tracker and based on that the count matrix and the
probabilities in the transition matrix will be updated.

20

« Migration Manager- Once a migration is triggered the control goes to
the Migration Manager. It consists of a Future State Predictor and a
Migration Decision Module. The Future State Predictor predicts the future
behavior of the workload with the help of the probability matrix. Then,
the Migration Manager analyzes these results and makes the best migration
decision by considering current and future behaviors.

Through the integration of these components, ProMig not only models workload
dynamics in real time but also adapts the migration process to minimize perfor-
mance degradation. Implementation details of these components will be discussed
in the Section 5.

21

5 Implementation

In this section, the implementation details of the Resource Tracker, State Con-
troller, and Migration Manager will be discussed.

5.1 Periodic Resource Tracker

Resource Tracker captures the CPU, memory, and incoming and outgoing network
of the source VM. The commands and the profiling tools used to capture the
resource usages are as follows.

o CPU Usage : To capture the CPU usage the mpstat profiling tool is used.
The command that captures and returns the CPU percentage is as follows.
mpstat 1 1 | awk ’/Average/ {print 100 - $NF}’

In the mpstat command, the last column contains the idle CPU usage
as a percentage. So to take the used CPU percentage that value will be
deducted from 100.

o Memory Usage: To capture the memory usage the free profiling tool is

used. The command that captures and returns the memory percentage is
as follows.
free | awk ’/"Mem:/ {print $3 / $2}’
Here in the result, 3rd column contains the used memory and the second
column contains the total memory usage. So to calculate the percentage
value the result of the 3rd column is divided by the result if the second
column.

o Network Usage: To capture the network usage the ifstat profiling tool is

used. The command that captures and returns the incoming and outgoing
network percentage is as follows.
ifstat -i ethO 1 1 | awk ’NR==3 {print $1, $2}’
This gives both incoming and outgoing network usage for that second. For
the experiments, a 1000Mbps Erthenet was used. The result of the ifstat
command comes in KBps. So to calculate the network usage as a percentage
the result from the ifstat command will be divided with the 125000KBps(
1000 MBps converted to KBps).

The Pseudo code for this is shown in algorithm 1.

22

Algorithm 1 Periodic Resource Tracker

1%

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

1
2
3
4:
5
6
7

: function GET_CPU_USAGE()
Run command to get CPU usage (e.g., from mpstat)
Parse output to calculate %CPU usage
return CPU usage percentage
: end function
: function GET_MEMORY _USAGE()
Run command to get memory usage and calculate %memory usage(e.g.,
from free -m)
Parse output to get used memory
return memory usage percentage
end function
function GET_NETWORK_USAGE()
Read current incoming and outgoing network bytes (e.g., from Ifstat)
Calculate Net_In and Net_Out percentage by dividing from the maximum
capacity of the ethernet.
return Net_In, Net_Out
end function
while True do
Get current timestamp
cpu_usage = get_cpu_usage()
memory_usage = get_memory_usage()
net_in, net_out = get_network usage()
Sleep for 1 second
end while

23

5.2 State Controller

The Resource Tracker’s output will be mapped to a state based on the captured
resources, and the count and transition matrices will be updated.

5.2.1 State Definition

To define a set of states CPU usage, memory usage, incoming network usage,
and outgoing network usage will be taken as the resources and less than X%
and greater than X% will be taken as the resource usage levels. Based on
these conditions, 16 possible states are identified, representing all combinations of
resource usage levels. Here are a few example states:
« state 0: CPU < X%, Memory < X%, Incoming Network < X%, Outgoing
Network < X%
o state 1: CPU < X%, Memory < X%, Incoming Network > X%, Outgoing
Network < X%
« state 2: CPU > X%, Memory > X%, Incoming Network < X%, Outgoing
Network > X%

5.2.2 Implementation of the transition matrix and count matrix

A transition matrix and a count matrix were created to model workload behavior
using Markov chains to define all possible state transitions.

CPU, memory, incoming network, and outgoing network usage can be monitored
and mapped into percentages by the Resource Tracker to determine the current
state of the VM accordingly.

The Count Matrix represents the number of times the VM state changes from
one state to another during the observation period. Since there are 16 possi-
ble states (based on CPU, memory, and network usage levels), this matrix will
have dimensions of 16 x 16. Each entry (7, j) in the matrix records the count of
transitions from state ¢ to state j.
Example: Suppose during the observation, the VM moves from:

« state 1 to state 2 (5 times),

« state 2 to state 3 (3 times),

o state 1 to state 3 (2 times).
In this case, the count matrix will be updated as follows.

« Count(1,2) = 5, representing 5 transitions from state 1 to state 2,

« Count(2,3) = 3, representing 3 transitions from state 2 to state 3,

o Count(1,3) = 2, representing 2 transitions from state 1 to state 3.

The Initial Transition Matrix is derived from the Count Matrix and represents
the probability of moving from one state to another. It is also a 16 x 16 matrix.
Each entry (i,) is calculated as the ratio of the number of transitions from state
1 to state j to the total number of transitions out of state i.

Example: Using the counts from above, if there were 10 total transitions from
state 1, the transition probability is updated as follows:

24

e Transition(1,2) = 2l — 5 _ (5

10 10—
e Transition(1,3) = €203 — 2. — (2,

If there were a total of 6 transitions from state 2, then:
» Transition(2,3) = %75(2’3) =32=05.

5.2.3 Update the count and transition matrices

Let’s consider a VM with three possible states based on CPU and memory usage:
o state 1: Low CPU and memory usage
« state 2: Medium CPU and memory usage
« state 3: High CPU and memory usage
Initially, the Count Matrix is set as follows, representing previously observed
transitions between states:

O =~

2 3
Count Matrix = |1 0
2 1

The Transition Matrix is calculated by dividing each element in a row of the
Count Matrix by the total number of transitions from that state. For instance:

o For state 1, there are 24+ 3 4+ 1 = 6 total transitions.

o For state 2, there are 1 + 0 + 4 = 5 total transitions.

o For state 3, there are 2 + 1 + 0 = 3 total transitions.
The resulting Transition Matrix is:

2 3 % 0.33 0.50 0.17
Transition Matrix = % 0 /=020 0 0230
10 0.67 0.33 0

In the next second, the periodic resource tracker captures the following VM re-
source usage:

e CPU Usage: 60%

e Memory Usage: 55%
Based on these percentages, the current state of the VM is classified as state 3
(High CPU and memory usage).
Assume that in the previous second, the VM was in state 1 and has now transi-
tioned to state 3. So the value of the Count(1,3) will be incremented by 1. This
transition updates the Count Matrix as follows:

2
Updated Count Matrix = |1
2

_ o W
O =N

Now, the Transition Matrix is recalculated using the updated Count Matrix:
o For state 1, there are now 2 + 3 + 2 = 7 total transitions.
e For state 2, transitions remain at 5.
o For state 3, transitions remain at 3.

25

The Updated Transition Matrix is:

2 22 0.29 0.43 0.29
Updated Transition Matrix = % 0 % = 1020 0 0.80
230 0.67 0.33 0

This updated Transition Matrix now reflects the most recent observed behavior,
providing an improved model for predicting future state transitions based on the
latest profiling data. This update process repeats for each second with the use of
the resource tracker’s output.

5.3 Migration Controller

When migration is triggered, the migration controller is activated. The implemen-
tation of the two(2) main components is as follows.

5.3.1 Future State Predictor

Future State Predictor will analyze the current state of the VM and the tran-
sition matrix to predict the VM’s next behavior over n look-ahead steps.

The steps to calculate the next state are as follows. Consider the transition matrix
created in section 5.2.3. Assume a look-ahead of n = 2 steps and an initial current
state vector where the VM starts in state 1 (represented as [1,0,0]).

1. Calculate T™, the transition matrix raised to the power of n = 2:

0.392 0.277 0.331
T? =T xT = 10536 0.099 0.365
0.467 0.578 0.0

2. Multiply 72 by the initial state vector [1,0, 0]:

0.392 0.277 0.331 1 0.392
Next state probabilities = |0.536 0.099 0.365| x |0| = [0.536
0.467 0.578 0.0 0 0.467

3. Select the Next state: Since state 2 has the highest probability (0.536), it is
chosen as the next predicted state after looking ahead two steps.

If the look-ahead of n=10, it means we have to consider the behavior of next 10
steps before taking the migration decision.

5.3.2 Migration Decision Module

After calculating the next behavior the Migration Decision Module determines the
initial migration method—pre-copy, post-copy, or hybrid. For that, the following
four(4) conditions are used.
o If a VM is memory-intensive, it is migrated using post-copy
» For a network-intensive workload with mostly outgoing packets, the VM is
migrated in post-copy

26

o If there are mostly incoming packets, they are migrated in pre-copy.
o All other VM workloads are migrated adapting the hybrid method.

If Pre-Copy or Hybrid is chosen, the algorithm monitors for high memory usage,
or if certain limits are met, switches to post-copy if necessary. It means if there is
a memory-intensive behavior in the predicted future state the migration decision
should be altered as Post-Copy. Also, the hybrid migration method evaluates
workload and iteration conditions to determine whether a switch to post-copy is
beneficial. If there is a converging behavior, it will be identified using exponential
decay, which shows that the memory dirty page rate has reduced for at least 3
consecutive intervals.

A summary of all the decision mappings is presented in the algorithm 2 clearly.
A full diagram consisting of all 3 components and the decision-making flow is in
the figure 4

Algorithm 2 Migration Decision Algorithm

1: Input:Look ahead States =n

2: Initialize: Current_Migration_Decision <— Get the migration decision based
on the current State

3: Next_behavior <— Calculate the behavior of the upcoming n States using future
state predictor

4: if Current_Migration_Decision == post_copy then

5: No switching during the migration

6: else if Current_Migration_Decision == pre_copy then
7: if Next_behavior is memory-intensive then

8: Start post_copy Migration

9: else

10: Start vanilla pre_copy

11: end if

12: else if Current_Migration_Decision == Hybrid then
13: if Next_behavior is memory-intensive then

14: Start post_copy Migration

15: else

16: if Dirty Page rate shows an exponential decay then
17: Switch to post_copy

18: else

19: Hybrid Migration

20: end if

21: end if

22: end if

27

Source

VM

Captures

Resource Usage ProMig
periodic

Resource Migration Manager
Tracker

True Migration
State Decision Module
Controller
Predicted

Memory intensive or

behavior Select Migration

Migration Triggers outgoing network intensive

. for the next
behavior

Technique
n steps

(Future State
False L Predictor

Figure 4: Components and Decision Flow of ProMig

28

6 Testing and Evaluation

6.1 Reaserch Tools Used

To conduct this research, a combination of virtualization, monitoring, and
benchmarking tools was employed to simulate and analyze workload behavior.

QEMU(QEMU Project n.d.): An open-source virtualization tool used to
create and manage virtual machines (VMs). QEMU enabled flexible testing and
migration of VMs under various workloads, which was essential for workload
prediction experiments.

RealVNC(RealVNC Limited n.d.): This remote access software facilitated
real-time monitoring and control of VM performance during testing. RealVNC
allowed for seamless interaction with VMs, enabling observation and data
collection for workload analysis.

NFS (Network File System): NFS was utilized to set up shared storage across
networked environments. This system facilitated resource sharing among VMs,
which was necessary for testing workload migration and replication scenarios.

These tools collectively supported a comprehensive research setup, allowing for
accurate workload simulation, monitoring, and analysis.

6.2 FEvaluation Metrics

For the evaluation, several key matrices were used such as the total migration
time(TMT), downtime (DT), and the application performance degradation. Ex-
planation of these terms are as below.
o Total migration time- Duration between the start and end of migration
e Downtime - The amount of time VM will be unavailable during the migration
process.
o Application performance degradation - The effect of the migration on the
performance of migrating VM.
These factors was compared with the vanilla Pre-Copy, vanilla Post-Copy, and
Hybrid approaches. For the experiments, a set of VMs with different sizes such as
1GB,2GB,4GB,8GB, and 12GB was used.

6.3 Evaluation Criteria

For the evaluation, three main categories of workloads were used: persistent
workloads, real-time workloads, and synthetic workloads. The YCSB
benchmark was used to generate persistent workloads, while the Stress bench-
mark was employed to create real-time workloads. For synthetic workloads, a
combination of Workingset, Sysbench, and iPerf3 benchmarks was utilized to

29

generate various dynamic workload scenarios, enabling the assessment of key
use cases of ProMig. Each workload category included six different workloads,
capturing diverse behavioral patterns for a comprehensive evaluation.

Each workload was migrated three to five times, and the average values were
calculated after removing outliers. The results from each workload category
were then compared against vanilla migration techniques to assess performance
differences. This section provides a detailed explanation of the workloads used
during the evaluation.

YCSB (Yahoo! Cloud Serving Benchmark): This benchmark was used
to generate persistent workloads. YCSB is a popular tool for testing storage
systems, and it provides a reliable method for creating stable, long-running
workloads to simulate database and application server tasks. It provides the
flexibility to generate workloads by changing the ratio between the read, insert,
scan, delete, update, and readModifyWrite operations. Six(6) different workloads
highlighting different behaviors were used for the evaluation

Stress: The Stress tool was employed to create real-time workloads. This
benchmark generates high CPU, memory, and I/O usage on demand, which is
ideal for simulating the resource-intensive and bursty demands characteristic of
real-time applications. By providing different parameters to change the CPU and
memory over time, 6 different workloads were generated.

Workingset: The Workingset benchmark was used to generate memory-intensive
workloads by repeatedly selecting a memory block and modifying (dirtying) it
from start to end. This process stresses memory resources, leading to high
memory bandwidth consumption and increased page dirtying rates.

Sysbench: The Sysbench benchmark was used to generate CPU-intensive
workloads by executing computationally heavy tasks, such as prime number
calculations. This allowed for the evaluation of processor performance under
varying levels of concurrency and complexity.

Iperf3: The iPerf3 benchmark was used to generate network-intensive workloads
by measuring both incoming and outgoing network usage. It creates controlled
network traffic to evaluate bandwidth, latency, and throughput under different
load conditions.

Synthetic Workloads: A combination of benchmarks was executed sequentially
to generate a synthetic workload, altering the workload behavior over time. Six(6)
different workloads were generated, and the following notations were used for the
naming.

30

Notation | Benchmark Used Generated Behavior
C Sysbench CPU intensive behavior
M Workingset Memory intensive behavior
NI iperf3 Incoming network intensive behavior
NO iperf3 Outgoing network intensive behavior

Table 2: Benchmarks and their Generated Behavior

6.4 Stress Workloads Evaluation

In the stress benchmark, CPU and memory usage can be dynamically adjusted
by modifying two key parameters, —cpu and —vm. The —cpu N option specifies
the number of worker threads that generate computational load, directly affect-
ing CPU utilization. Similarly, the —vim M —vm-bytes SIZE option controls
memory stress by defining the number of memory workers (M) and the amount
of memory allocated per worker. Six different workloads were generated using
six(6) distinct parameter sets, and their downtime and total migration time were
evaluated accordingly.

6.4.1 Total Migration Time

mEm PreCopy
300000 - EEm PostCopy
@ Hybrid
E= ProMig

250000 A
200000 A

150000 -

Total Migration Time (ms)

100000 -

50000 1

stressl stress2 stress3 stress4 stress5 stress6

Figure 5: Total Migration Time for Stress Workloads- 1GB

31

Total Migration Time (ms)

Total Migration Time (ms)

400000

350000 -

300000 -

250000 A

200000 A

150000 -

100000 A

50000 A

400000 -

350000 -

300000 A

250000 -

200000 -

150000

100000 -

50000 A

stressl stress2 stress3 stress4 stress5 stress6

Figure 6: Total Migration Time for Stress Workloads- 2GB

stressl stress2 stress3 stress4 stress5 stress6

Figure 7: Total Migration Time for Stress Workloads- 4GB

32

@ PreCopy
E=m PostCopy
@ Hybrid
=3 ProMig

@Em PreCopy
E=m PostCopy
mmm Hybrid
E= ProMig

@l PreCopy
E=m PostCopy
@ Hybrid
400000 == ProMig
g 300000 -
v
£
=
(=
S
@
o
£ 200000
I
°
100000 -
04
stress1l stress2 stress3 stress4 stress5 stress6
Figure 8: Total Migration Time for Stress Workloads- 8GB
@R PreCopy
E=m PostCopy
mmm Hybrid
== ProMig
400000
n
£ 300000 1
v
£
=
c
S
g
=
= 200000
I
°
100000 -

stressl stress2 stress3 stress4 stress5 stress6

Figure 9: Total Migration Time for Stress Workloads- 12GB

According to the graphs, it is clear that the stress workloads have the lowest
TMT with the Post-Copy migration technique, and ProMig selects Post-Copy as
the most suitable migration technique at all times.

33

6.4.2 Donwtime

Downtime (ms)

Downtime (ms)

7000 @ PreCopy
E=m PostCopy
@ Hybrid
6000 4 E= ProMig
5000 A
4000 +
3000 1
2000 +
1000 A
ol
stressl stress2 stress3 stress4 stress5 stress6
Figure 10: Downtime for Stress Workloads- 1GB
@ PreCopy
175 A
E=m PostCopy
@ Hybrid
== ProMig
150 A
125 A
100 A
75 4
50 A
25

stressl stress2 stress3 stress4 stress5 stress6

Figure 11: Downtime for Stress Workloads- 2GB

34

Downtime (ms)

Downtime (ms)

mzm PreCopy
E=m PostCopy
200 - mmm Hybrid
E= ProMig
150 A
100 A
50 A
0-
stress1 stress2 stress3 stress4 stress5 stress6
Figure 12: Downtime for Stress Workloads- 4GB
200 A
Al PreCopy
=l PostCopy
175 A oD Hybrl_d
E= ProMig
150 A
125 A
100 A
75 A
50 A
25 A

stressl stress2 stress3 stress4 stress5 stress6

Figure 13: Downtime for Stress Workloads- 8GB

200 1 @Em PreCopy

E=m PostCopy
mmm Hybrid
175 A =3 ProMig

150 A

125 A

100 A

Downtime (ms)

75 A

50

25 4

stressl stress2 stress3 stress4 stress5 stress6

Figure 14: Downtime for Stress Workloads- 12GB

According to the graphs, the downtime of ProMig is significantly lower than that
of the Pre-Copy and Hybrid techniques, making it nearly negligible in compari-
son. Across all six workloads, ProMig consistently selects the optimal migration
technique, achieving the lowest total migration time and downtime. Compared to
the Pre-Copy and Hybrid approaches, ProMig demonstrates an improvement of
over 80%.

6.5 Synthetic Workloads

Six different synthetic workloads, each highlighting a specific behavior, were gener-
ated using the Workingset, Sysbench, and iPerf3 benchmarks. The notation used
for naming follows the convention described in Table 2. The selected workloads

are as follows. Each workload is migrated at the middle of the execution of the
third benchmark.

36

Notation

Benchmark Execution
Order

Description

NO/M/NI/M

iperf3-outgoing, workingset,
iperf3-incoming, workingset

o Migration starts dur-
ing iperf3-incoming.

o Pre-Copy seems suit-
able initially, but
due to upcoming
memory-intensive
behavior, Post-Copy
is preferred.

NO/C/NI/C

iperf3-outgoing, sysbench,
iperf3-incoming, sysbench

o Migration starts dur-
ing iperf3-incoming.

e Since the upcom-
ing behavior is not
memory-intensive,
Pre-Copy gives the
best total migration
time and downtime

NI/NO/N/C

iperf3-
workingset,

iperf3-incoming,
outgoing,
sysbench

o Migration starts dur-
ing the execution of
workingset.

o This leads to a Post-
Copy decision.

NI/M/NO/C

iperf3-incoming, work-
ingset, iperf3-outgoing,
sysbench

o Migration starts dur-
ing iperf3-outgoing
execution.

e This results in Post-
Copy selection.

NO/M/C/NI

iperf3-outgoing, workingset,
sysbench, iperf3-incoming

o Migration starts dur-
ing sysbench execu-
tion.

« As Workingset causes
memory-intensive
behavior later, Post-
Copy is preferred.

NO/NI/C/NI

iperf3-outgoing, iperf3-
incoming, sysbench, iperf3-
incoming

o Migration starts dur-
ing sysbench execu-
tion.

e With no upcoming
memory-intensive be-
havior, the Hybrid ap-
proach works best.

37

Table 3: Synthetic Workloads Description

6.5.1 Total Migration Time

Total Migration Time (ms)

Total Migration Time (ms)

25000 4

20000

15000 A

10000 A

5000 4

70000 ~

60000 -

50000 -

40000 -

30000 +

20000 +

10000 A

@Em PreCopy
E=m PostCopy
mmm Hybrid
E= ProMig

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 15: Total Migration Time for Synthetic Workloads- 1GB

@Em PreCopy
E=m PostCopy
mmm Hybrid
=3 ProMig

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 16: Total Migration Time for Synthetic Workloads- 2GB

300000 A
Al PreCopy
Sl PostCopy
@I Hybrid
ProMi
250000 A SR ProMig
—~ 200000 A
(i)
E
(V]
E
£
c
.2 150000 -
g
2
=
T
(=}
F 100000 -
50000 A
NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI
Figure 17: Total Migration Time for Synthetic Workloads- 4GB
@ PreCopy
E=m PostCopy
300000 mmm Hybrid
== ProMig
250000 1
m
E
° 200000 4
E
£
c
.2
©
§‘ 150000 A
=
=
2
100000 A
50000 -+

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 18: Total Migration Time for Synthetic Workloads- 8GB

350000 @ PreCopy
E=m PostCopy
mmm Hybrid
300000 - =3 ProMig
250000
)
E
g
E 200000
c
=
=]
o
=
= 150000 +
B
e
100000 +
50000 1

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 19: Total Migration Time for Synthetic Workloads- 12GB

According to the graphs, it is evident that these six different workload behav-
iors select different migration techniques based on their nature. Some behaviors,
such as NO/M/NI/M and NO/M/C /NI, exhibit upcoming memory spikes
that cannot be predicted solely by analyzing the current behavior. Since Promig
includes a future state predictor to anticipate workload behavior, it consistently
selects the optimal migration technique by considering both the current and future
states.

40

6.5.2 Donwtime

@z PreCopy
E=m PostCopy
250 4 @ Hybrid
E= ProMig
200 A
£
~ 150 A
L
E
€
2
o
o
100 A
50 <
NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI
Figure 20: Downtime for Synthetic Workloads- 1GB
400 A
@2 PreCopy
Bl PostCopy
350 - @I Hybrid
E= ProMig
300 4
250 4
m
E
Q
£ 200 ~
€
2
o
o
150 A
100 A
50

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 21: Downtime for Synthetic Workloads- 2GB

41

Downtime (ms)

Downtime (ms)

mzm PreCopy
250 4 B PostCopy
@ Hybrid
E= ProMig
200 A
150 A
100 A
50 4
NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI
Figure 22: Downtime for Synthetic Workloads- 4GB
@Em PreCopy
175 A =W PostCopy
mmm Hybrid
== ProMig
150 A
125 A
100 A
75 1
50 4
25 A

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 23: Downtime for Synthetic Workloads- 8GB

42

@ PreCopy
E=m PostCopy
mmm Hybrid

2001 == ProMig

150 A

Downtime (ms)

NO/M/NI/M NO/C/NI/C NI/NO/M/C NI/M/NO/C NO/M/C/NI NO/NI/C/NI

Figure 24: Downtime for Synthetic Workloads- 12GB

When analyzing downtime, the post-copy technique presents a unique case. In
post-copy migration, downtime is defined as the period between stopping the
source VM, transferring a minimal number of pages to the destination, and starting
the destination VM. Since only a small number of pages are sent before resuming
execution, post-copy achieves significantly lower downtime compared to pre-copy
and hybrid approaches.

Since ProMig focuses on reducing both total migration time (TMT) and down-
time (DT), it selects the most suitable migration technique based on the workload
characteristics. In some cases, this requires choosing pre-copy or hybrid, which
involve transferring a large number of pages during the stop-and-copy phase be-
fore starting the destination VM. As a result, ProMig may sometimes experience
higher downtime compared to post-copy alone. However, when compared to other
migration techniques, its downtime remains unchanged or is even reduced. This
demonstrates that ProMig effectively balances TMT and DT, ensuring an opti-
mized migration process.

6.6 YCSB Workloads

YCSB falls under the category of persistent workloads and provides the flexibil-
ity to adjust the ratio between six different operations: read, write, scan, update,
delete, and read-modify-write. By varying these ratios, six distinct workload types
were generated: read-heavy, read-modify-write, insert-heavy, scan-heavy,
update-heavy, and delete-heavy. Total migration time and downtime evalua-
tion for YCSB workloads are as below.

43

6.6.1 Total Migration Time

Total Migration Time (ms)

Total Migration Time (ms)

8000 -

6000 -

4000 A

2000 A

10000 A

8000 1

6000

4000 A

2000 4

@Em PreCopy
E=m PostCopy
mmm Hybrid
E= ProMig

readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy

Figure 25: Total Migration Time for YCSB Workloads- 1GB

@R PreCopy
E=m PostCopy
mmm Hybrid
=3 ProMig

readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy

Figure 26: Total Migration Time for YCSB Workloads- 2GB

44

Total Migration Time (ms)

Total Migration Time (ms)

mzm PreCopy
10000 A E=m PostCopy
mm Hybrid
E= ProMig
8000 +
6000 4
4000
2000 +
readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy
Figure 27: Total Migration Time for YCSB Workloads- 4GB
@ PreCopy
12000 A E=m PostCopy
mmm Hybrid
== ProMig
10000 +
8000 1
6000
4000 -
2000 +
04

readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy

Figure 28: Total Migration Time for YCSB Workloads- 8GB

45

16000 A @ PreCopy
E=m PostCopy
@ Hybrid

14000 A == ProMig

12000 A

10000 -

8000 +

Total Migration Time (ms)

6000

4000 A

2000

readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy

Figure 29: Total Migration Time for YCSB Workloads- 12GB

Similar to previous workloads, ProMig consistently selects the optimal migration
technique, resulting in the lowest total migration time.

An important consideration is that for 1GB and 2GB VMs, post-copy per-
forms best, whereas for larger VM sizes(4GB, 8GB and 12 GB), the hy-
brid migration technique yields better results with these workloads. In
both cases, ProMig makes the correct migration decision. This is because ProMig
selects the migration technique based on resource usage percentage rather than
absolute values. As VM size increases, the same workload exhibits different char-
acteristics, for smaller VMs, it behaves as memory-intensive, while for
larger VMs, it shows lower relative memory usage. Since ProMig relies
on usage percentages, it effectively captures these variations and selects the most
suitable migration technique for both scenarios.

46

6.6.2 Donwtime

@R PreCopy
200 4 E=m PostCopy
Emm Hybrid
E= ProMig
175 A
150 A
% 125 A
E
L
E
‘€ 100 -
2
o
o
readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy
Figure 30: Downtime for YCSB Workloads- 1GB
@zm PreCopy
E=m PostCopy
200 A mmm Hybrid
=3 ProMig
175 A
150 A
m
E 125 1
L
E
€
= 100 A
o
a
75 A
50 A
25 A
04

readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy

Figure 31: Downtime for YCSB Workloads- 2GB

47

Downtime (ms)

Downtime (ms)

160 4 mzm PreCopy
E=m PostCopy
EEm Hybrid
140 1 E= ProMig
120 A
100 A
readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy
Figure 32: Downtime for YCSB Workloads- 4GB
mzm PreCopy
E=m PostCopy
140 - Emm Hybrid
== ProMig
120 A
100 A
80

readHeavy readModifyWrite insertHeavy scanHeavy

updateHeavy deleteHeavy

Figure 33: Downtime for YCSB Workloads- 8GB

48

@ PreCopy
E=m PostCopy
175 A @ Hybrid
=3 ProMig

150 A

125 A

100 A

Downtime (ms)

75 A

50 4

25 1

readHeavy readModifyWrite insertHeavy scanHeavy updateHeavy deleteHeavy

Figure 34: Downtime for YCSB Workloads- 12GB

Similar to synthetic workloads, the downtime of YCSB workloads is higher com-
pared to post-copy because post-copy resumes execution with minimal data trans-
fer before fetching the remaining pages on demand. However, when compared to
pre-copy and hybrid techniques, the downtime remains unchanged, as both pre-
copy and hybrid methods transfer a significant number of pages before starting
the destination VM, leading to similar downtime behavior.

However, in certain cases, ProMig selects the hybrid approach and achieves lower
downtime compared to standard hybrid migration. This is because ProMig detects
exponential decay behavior in workload patterns, ensuring that migration oc-
curs when the workload is approaching a convergence point with a decreasing dirty
page rate. By initiating the stop-and-copy phase at this optimal moment, ProMig
effectively reduces downtime while maintaining efficient migration performance.

Across all three workload categories—stress workloads, synthetic workloads, and
YCSB workloads—ProMig consistently selects the optimal migration technique
based on workload characteristics. For stress workloads, which generate high
memory pressure and dirty page rates, ProMig effectively balances total migra-
tion time (TMT) and downtime (DT) by adapting to the changing workload in-
tensity. For synthetic workloads, it accurately captures workload variations and
selects the best technique, ensuring minimal TMT while maintaining downtime
comparable to pre-copy and hybrid approaches. For YCSB workloads, ProMig
recognizes workload-specific behaviors and accounts for VM size variations, lead-
ing to efficient migration decisions. In all cases, ProMig demonstrates its ability
to dynamically adjust to workload demands, reducing TMT while maintaining or
even improving downtime compared to conventional migration techniques.

49

6.7 Prediction Time

The time taken for future state prediction was measured, and as a percentage,
it remains significantly lower compared to the total migration time. However, it
increases as the number of prediction steps increases.

The total migration time varies depending on the size of the VM; as the VM
size increases, the total migration time also increases. Since each prediction step
estimates the workload behavior for the next second, a larger VM requires more
prediction steps to cover the extended migration duration.

The variation in total migration time is illustrated in Graph 35, while the variation
in prediction time is shown in Graph 36. According to the graph it is clear that
the prediction time is less that 1% of the total migration time.

90000 1 —o~ Maximum Total Migration Time

—&— Minimum Total Migration Time
80000 A

70000 A
60000 A
50000 A
40000 A

30000 A

Average Total Migration Time (ms)

20000 A

10000 -

VM Size (GB)

Figure 35: Total Migration Time Variation with VM Size

30

0.040 A

0.035 A

0.030 A

0.025 A

0.020 A

0.015 A

Prediction time as a percentage of
total migration time in ms (%)

0.010 ~

T T T T

20 40 60 80
No of Steps

Figure 36: Prediction Time Variation

6.8 Threshold for State Definitions

First, a random value such as X% was used as the threshold when deciding the
state. So, workloads with CPU, memory, or network usage greater than X% were
considered a high resource usage level, while others considered them low resource
usage.

To select the actual value for X, different resource usage percentages were set as
the threshold, and the total migration time was measured. The results are as
shown in the graphs 37 and 38.

o1

Total Migration Time (ms)

Total Migration Time (ms)

As shown in Figure 37, for a 4GB VM, a threshold of 40% selects the optimal
migration technique, which is post-copy migration. All values below 40% also
lead to post-copy migration being chosen. Similarly, in Figure 38, a threshold
of 40% selects the best migration technique, which is hybrid migration, with all
values above 40% also favoring hybrid migration. This indicates that 40% serves

9800 A
@ Post-Copy Migration
@ Hybrid Migration
9600
9400
9200 A
9000 A
8800 -
8600 -
0 10 20 30 40 50 60 70 80
Threshold Percentage (%)
Figure 37: Threshold Selection - 4GB VM
12000 + @ Post-Copy Migration
@ Hybrid Migration
11500 A
o— —o
11000 A
10500 A
10000 A
9500 A
9000 A
8500 T T T T T T T T
0 10 20 30 40 50 60 70 80

Threshold Percentage (%)

Figure 38: Threshold Selection - 8GB VM

52

as a critical threshold in both cases, determining the preferred migration strategy.
Hence, 40% was used as the most suitable value for X%.

6.9 Look Ahead State

The predicted workload behavior after a certain number of steps is referred to
as the look-ahead state. The primary goal of this approach is to anticipate high
memory spikes that may occur during migration.

As discussed in Section 6.7, an increase in VM size leads to longer migration
times. Consequently, predicting more steps enhances the accuracy of selecting the
optimal migration decision.

80000 -

70000 ~

60000 1 o °

50000 -
40000 -

30000 -

Total Migration Time (ms)

20000 -

10000 -

2 4 6 8 10 12 14
Number of Steps

Figure 39: Impact of Prediction Steps on Total Migration Time

Figure 39 illustrates the relationship between the number of prediction steps and
total migration time. The graph presents migration times for the same work-
load with varying prediction steps. It is evident that the accuracy of migration
technique selection depends on the number of steps predicted. As shown, increas-
ing the number of prediction steps reduces total migration time by improving
the detection of memory-intensive behavior, thereby facilitating a more optimal
migration strategy.

23

6.10 Performance Degradation

Performance degradation was measured using the Quicksort algorithm, which runs
continuously and outputs the number of sorting operations performed per second.
Pre-copy and post-copy migrations were conducted with and without ProMig,
while Quicksort was executed before, during, and after migration.

The results, shown in the graphs below, indicate that ProMig has a minimal
impact on performance during the migration process.

30000 4

25000 A

N
o
o
o
o
!

15000 A

Sorting Operations

10000 A

5000 A

—— ProMig
0- —~== Vanilla Pre-Copy

T T T T T

0 10 20 30 40 50 60 70 80
Time (seconds)

Figure 40: Comparison of Performance Degradation: ProMig vs. Vanilla Pre-
Copy

- —— ProMig
——=- Vanilla Post-Copy

30000 A

25000

N

o

o

o

o
L

15000 A

Sorting Operations

10000 A

5000 A

0 5 10 15 20 25 30 35
Time (seconds)

Figure 41: Comparison of Performance Degradation: ProMig vs. Vanilla Post-
Copy

o4

7 Discussion and Conclusion

The evaluation results indicate that different workload categories exhibit distinct
migration behavior. Some workloads consistently lead to the selection of the same
migration technique, such as stress workloads, which always follow a predefined
migration path. However, other workloads require a more dynamic migration
approach. For example, in the YCSB category, the migration decision varied
depending on the VM size, even when running the same workload. Similarly,
in synthetic workloads, the initially selected migration technique was sometimes
adjusted due to anticipated high memory spikes in the future workload behavior.

These observations highlight the importance of selecting an adaptive migration
strategy. Unlike traditional migration approaches that follow a fixed decision-
making process, ProMig dynamically selects the most suitable migration tech-
nique based on workload characteristics, VM size, and expected future behavior.
Whether the migration decision remains consistent across executions or varies
dynamically, ProMig ensures that the best possible technique is always chosen,
resulting in the lowest total migration time across various scenarios. As a per-
centage, it has 22% to 87% improvement in total migration time compared to the
standard migration techniques.

Another critical aspect of migration performance is downtime and its impact on
application performance. ProMig effectively minimizes downtime by leveraging
the exponential decay behavior of workloads. Compared to standard hybrid mi-
gration, it achieves lower downtime while maintaining comparable performance in
other cases. As a percentage, there is an 8% to 34% improvement compared to the
standard hybrid migration. Additionally, it imposes minimal performance over-
head, which is 4.21% compared to traditional pre-copy and post-copy migration
techniques.

These findings demonstrate that ProMig is well-suited for dynamic and diverse
workload environments. Its ability to anticipate future workload behavior allows
it to handle sudden resource usage spikes efficiently. Furthermore, ProMig dy-
namically determines the convergence point based on the exponential decay trend
observed in the workload during execution. This adaptability ensures optimized
migration performance while maintaining system stability.

In conclusion, ProMig provides a robust and intelligent migration framework that
effectively adapts to different workload conditions. By incorporating predictive
capabilities and workload-aware decision-making, it enhances the efficiency of live
VM migration while reducing downtime and total migration time.

95

8 Limitations and Future Directions

ProMig considers CPU, memory, and network usage as key resources when de-
termining the system state and predicting future workload behavior. However,
some workloads exhibit a high dirty page rate despite having low overall memory
usage. This occurs when workloads frequently modify data in memory without
allocating additional memory. Incorporating dirty page rate as a resource metric
in future work could enhance the accuracy of migration decisions, particularly for
workloads that generate frequent memory modifications.

Additionally, future research could explore extending this approach to multi-VM
migration scenarios, where multiple VMs need to be migrated simultaneously while
minimizing performance impact. Another potential direction is the integration of
advanced predictive models to further refine migration decision-making, improving
adaptability to dynamic workload patterns.

26

References

Altahat, M. A., Agarwal, A., Goel, N. & Kozlowski, J. (2020), ‘Dynamic
hybrid-copy live virtual machine migration: Analysis and comparison’, Pro-
cedia Computer Science 171, 1459-1468. Third International Conference on
Computing and Network Communications (CoCoNet’19).

URL: https://www.sciencedirect.com/science/article/pii/
S51877050920311352

AWS (2024), ‘Amazon web services’
URL: https://aws.amazon.com/

Banerjee, P., Roy, S., Modibbo, U. M., Pandey, S. K., Chaudhary, P., Sinha, A. &
Singh, N. K. (2023), ‘Optidjs+: A next-generation enhanced dynamic johnson
sequencing algorithm for efficient resource scheduling in distributed overloading
within cloud computing environment’, Electronics 12(19), 4123.

Calheiros, R. N., Masoumi, E., Ranjan, R. & Buyya, R. (2014), ‘Workload pre-
diction using arima model and its impact on cloud applications’ qos’, IFEE
transactions on cloud computing 3(4), 449-458.

Calzarossa, M., Italiani, M. & Serazzi, G. (1986), ‘A workload model representative
of static and dynamic characteristics’, Acta Informatica 23(3), 255-266.

Cerotti, D., Gribaudo, M., Piazzolla, P. & Serazzi, G. (2012), Flexible cpu pro-
visioning in clouds: A new source of performance unpredictability, in ‘2012
Ninth International Conference on Quantitative Evaluation of Systems’, IEEE,
pp- 230-237.

Choudhary, A., Govil, M. C., Singh, G., Awasthi, L. K., Pilli, E. S. & Kapil, D.
(2017), ‘A critical survey of live virtual machine migration techniques’, Journal
of Cloud Computing 6(1), 1-41.

Christopher, C. (2005), Live migration of virtual machines, in ‘NSDI, 2005’

Debian Developers (n.d.), ‘ifstat(1) - Linux manual page’, https://manpages.
debian.org/testing/ifstat/ifstat.l.en.html. Accessed: 2025-06-21.

Devi, K. L. & Valli, S. (2023), ‘Time series-based workload prediction using the
statistical hybrid model for the cloud environment’, Computing 105(2), 353~
374.

Fernando, D., Yang, P. & Lu, H. (2020), Sdn-based order-aware live migration of
virtual machines, in ‘IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications’, pp. 1818-1827.

Gambs, S., Killijian, M.-O. & del Prado Cortez, M. N. (2012), Next place pre-
diction using mobility markov chains, in ‘Proceedings of the first workshop on
measurement, privacy, and mobility’, pp. 1-6.

o7

https://www.sciencedirect.com/science/article/pii/S1877050920311352
https://www.sciencedirect.com/science/article/pii/S1877050920311352
https://aws.amazon.com/
https://manpages.debian.org/testing/ifstat/ifstat.1.en.html
https://manpages.debian.org/testing/ifstat/ifstat.1.en.html

Ganapathi, A., Chen, Y., Fox, A., Katz, R. & Patterson, D. (2010), Statistics-
driven workload modeling for the cloud, in ‘2010 IEEE 26th International Con-
ference on Data Engineering Workshops (ICDEW 2010)’, pp. 87-92.

GCP (2024), ‘Google cloud platform’.
URL: https://cloud.google.com/

Han, J., Hong, Y. & Kim, J. (2020), ‘Refining microservices placement employing
workload profiling over multiple kubernetes clusters’, IEEE access 8, 192543—
192556.

Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, 1., Xia, F. & Khan, S. U. (2016),
‘Mapreduce: Review and open challenges’, Scientometrics 109, 389-422.

He, T. (2021), ‘Migration management in software-defined networking-enabled
edge and cloud computing environments’, degree of Doctor of Philosophy,
School of Computing and Information Systems, THE UNIVERSITY OF MEL-
BOURNE, ORCID: 0000-0002-5472-7681 .

Hines, M. R., Deshpande, U. & Gopalan, K. (2009), ‘Post-copy live migration of
virtual machines’, SIGOPS Oper. Syst. Rev. 43(3), 14-26.
URL: https://doi.org/10.1145/1618525.1618528

Hossain, M. A. & Song, B. (2016), ‘Efficient resource management for cloud-
enabled video surveillance over next generation network’, Mobile Networks and
Applications 21, 806-821.

Khelghatdoust, M., Gramoli, V. & Sun, D. (2016), Glap: Distributed dynamic
workload consolidation through gossip-based learning, in ‘2016 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER)’, IEEE, pp. 80-89.

Kim, I. K., Wang, W., Qi, Y. & Humphrey, M. (2018), Cloudinsight: Utilizing a
council of experts to predict future cloud application workloads, in ‘2018 IEEE
11th international conference on cloud computing (CLOUD)’, IEEE, pp. 41-48.

Kuznetsov, A. (2023), ‘Sysbench: a scriptable multi-threaded benchmark tool
based on luajit’, https://github.com/akopytov/sysbench. Accessed: 2025-
05-13.

Lin, W., Wang, J. Z., Liang, C. & Qi, D. (2011), ‘A threshold-based dynamic
resource allocation scheme for cloud computing’, Procedia Engineering 23, 695—
703.

Lu, H., Xu, C., Cheng, C., Kompella, R. & Xu, D. (2015), vhaul: Towards optimal
scheduling of live multi-vm migration for multi-tier applications, in ‘2015 IEEE
8th International Conference on Cloud Computing’, IEEE, pp. 453-460.

Malhotra, L., Agarwal, D., Jaiswal, A. et al. (2014), ‘Virtualization in cloud com-
puting’, J. Inform. Tech. Softw. Eng 4(2), 1-3.

Memcached: Free & open source, high-performance, distributed memory object
caching system. (n.d.). https://memcached.org/.

o8

https://cloud.google.com/
https://doi.org/10.1145/1618525.1618528
https://github.com/akopytov/sysbench
https://memcached.org/

Microsoft (2024), ‘Microsoft azure’.
URL: https://azure.microsoft.com/en-us

Naik, K. J. (2022), ‘An adaptive push-pull for disseminating dynamic workload
and virtual machine live migration in cloud computing’, International Journal
of Grid and High Performance Computing (IJGHPC) 14(1), 1-25.

Oracle (2024), ‘Oracle — cloud applications and cloud platform’.
URL: https://www.oracle.com/

Pacheco-Sanchez, S., Casale, G., Scotney, B., McClean, S., Parr, G. & Dawson, S.
(2011), Markovian workload characterization for qos prediction in the cloud, in
‘2011 TEEE 4th International Conference on Cloud Computing’, IEEE, pp. 147
154.

QEMU Project (n.d.), ‘QEMU: Generic and open source machine emulator and
virtualizer’, https://www.qgemu.org. Accessed: 2025-06-21.

RealVNC Limited (n.d.), ‘RealVNC: Remote access software’, https://www.
realvnc.com. Accessed: 2025-06-21.

Sah, S. K. & Joshi, S. R. (2014), Scalability of efficient and dynamic workload
distribution in autonomic cloud computing, in ‘2014 international conference
on issues and challenges in intelligent computing techniques (ICICT)’, IEEE,
pp- 12-18.

Sahni, S. & Varma, V. (2012), A hybrid approach to live migration of virtual ma-
chines, in ‘2012 IEEE International Conference on Cloud Computing in Emerg-
ing Markets (CCEM)’, pp. 1-5.

Stress - tool to impose load on and stress test systems (n.d.), https://linux.
die.net/man/1/stress. Accessed: 2025-05-13.

The Linux Foundation (n.d.a), ‘free(1) - Linux manual page’, https://man7.org/
linux/man-pages/mani/free.1.html. Accessed: 2025-06-21.

The Linux Foundation (n.d.b), ‘mpstat(1) - Linux manual page’, https://man7.
org/linux/man-pages/mani/mpstat.1.html. Accessed: 2025-06-21.

Watada, J., Roy, A., Kadikar, R., Pham, H. & Xu, B. (2019), ‘Emerging
trends, techniques and open issues of containerization: A review’, IEFE Ac-
cess 7, 152443-152472.

Wei, Y., Kudenko, D., Liu, S., Pan, L., Wu, L. & Meng, X. (2018), A rein-
forcement learning based workflow application scheduling approach in dynamic
cloud environment, in ‘Collaborative Computing: Networking, Applications and
Worksharing: 13th International Conference, CollaborateCom 2017, Edinburgh,
UK, December 11-13, 2017, Proceedings 13’, Springer, pp. 120-131.

Wu, Q. & Wolf, T. (2008), Dynamic workload profiling and task allocation in
packet processing systems, in ‘2008 International Conference on High Perfor-
mance Switching and Routing’, IEEE, pp. 123-130.

29

https://azure.microsoft.com/en-us
https://www.oracle.com/
https://www.qemu.org
https://www.realvnc.com
https://www.realvnc.com
https://linux.die.net/man/1/stress
https://linux.die.net/man/1/stress
https://man7.org/linux/man-pages/man1/free.1.html
https://man7.org/linux/man-pages/man1/free.1.html
https://man7.org/linux/man-pages/man1/mpstat.1.html
https://man7.org/linux/man-pages/man1/mpstat.1.html

Xing, Y. & Zhan, Y. (2012), Virtualization and cloud computing, in ‘Future Wire-
less Networks and Information Systems: Volume 1’, Springer, pp. 305-312.

YCSB (2024), “Yesb: Yahoo! cloud serving benchmark’.
URL: https://github.com/brianfrankcooper/YCSB

Ye, K., Wu, Z., Wang, C., Zhou, B. B., Si, W., Jiang, X. & Zomaya, A. Y. (2014),
‘Profiling-based workload consolidation and migration in virtualized data cen-
ters’, IEEE Transactions on Parallel and Distributed Systems 26(3), 878-890.

Zhang, Q. & Boutaba, R. (2014), Dynamic workload management in heteroge-
neous cloud computing environments, in ‘2014 IEEE Network Operations and
Management Symposium (NOMS)’, IEEE, pp. 1-7.

60

https://github.com/brianfrankcooper/YCSB

	Introduction
	Introduction
	Background
	Workload Categorization
	Live vm Migration

	Motivation
	Research Questions
	Aims and Objectives
	Aim
	Objectives

	Scope
	Dissertation Outline

	Background
	Dynamic workload
	Profiling
	Workload Prediction
	Existing Dynamic Workload Migration Strategies
	Research Gap

	Challenges in Time Series Forecasting
	Design and Methodology
	Experimental Testbed
	Main Components of promig

	Implementation
	Periodic Resource Tracker
	State Controller
	State Definition
	Implementation of the transition matrix and count matrix
	Update the count and transition matrices

	Migration Controller
	Future State Predictor
	Migration Decision Module

	Testing and Evaluation
	Reaserch Tools Used
	Evaluation Metrics
	Evaluation Criteria
	Stress Workloads Evaluation
	Total Migration Time
	Donwtime

	Synthetic Workloads
	Total Migration Time
	Donwtime

	YCSB Workloads
	Total Migration Time
	Donwtime

	Prediction Time
	Threshold for State Definitions
	Look Ahead State
	Performance Degradation

	Discussion and Conclusion
	Limitations and Future Directions

