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Abstract

Live migration of virtual machines (VMs) is critical in cloud environments for

maintaining service continuity during load balancing, fault recovery, and infras-

tructure maintenance. However, traditional techniques such as pre-copy, post-

copy, and hybrid migration often overlook the interplay between migration tra!c

and application workloads, leading to increased downtime and degraded perfor-

mance due to network contention.

This work proposes a Tra!c-Aware Live VM Migration algorithm that dynam-

ically selects the optimal migration strategy and performs adaptive bandwidth

reservation based on real-time tra!c, migration urgency, and Service Level Agree-

ment (SLA) constraints. The algorithm classifies network and workload tra!c

patterns to choose between pre-copy and post-copy techniques and prioritizes mi-

gration tasks according to SLA sensitivity and urgency level, adapting between

parallel and serial execution as needed.

Empirical evaluation shows that high-priority migrations experience a 60–65%

reduction in total migration time, medium-priority migrations improve by around

45%, and low-priority ones show minimal to no improvement, occasionally per-

forming worse due to conservative resource use. In terms of downtime, low-priority

migrations often perform best, medium-priority migrations o”er a balanced trade-

o”, and high-priority migrations do not always outperform the best traditional

methods. The approach also reduces performance degradation for co-located ap-

plications through adaptive tra!c shaping.

Overall, the results highlight the benefits of integrating tra!c awareness, SLA

compliance, and urgency-based prioritization to enable e!cient, non-disruptive

VM migration in modern data centers.
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1 Introduction

In today’s digital landscape, the need for on-demand and scalable computing re-

sources has driven the adoption of cloud computing. Virtualization enables the

creation of virtual images of physical resources, allowing multiple machines to ac-

cess them simultaneously. A Virtual Machine (VM) emulates a physical machine

with its own Operating System (OS), CPU, memory, and functions. A physical

machine serves as a server hosting one or many VMs. These VMs can be relocated,

a process known as VM migration (Bahrami, Haghighat, and Gholipoor 2023).

Migrating a VM instantaneously while it is running is called Live Migration.

Migration of multiple VMs can be done parallely, which is referred to as Gang

Live Migration (Deshpande, Wang, and Gopalan 2011), or sequentially, Serial

Live Migration. This process typically involves transferring the VM’s memory,

disk storage, and network connections from the source host to the destination (Le

2020). Within a Local Area Network (LAN), VM migrations do not require the

migration of disk storage due to the use of Network Attached Storage (NAS) (Jo et

al. 2013). However, migrations over a Wide Area Network (WAN) necessitate the

transfer of both the disk state and memory (Wood, Ramakrishnan, et al. 2014).

There are three (3) traditional live migration techniques namely pre-copy

(Clark et al. 2005; Nelson, Lim, Hutchins, et al. 2005), post-copy (Hines and

Gopalan 2009; Hines, Deshpande, and Gopalan 2009), and hybrid-copy (Sahni

and Varma 2012). These techniques are designed for single VM migrations. How-

ever, when adapting these techniques for multiple VM migrations, if all the VMs

monotonously adopt a single migration algorithm, it overlooks the tra!c con-

tention. The tra!c generated due to the VM migration adds to the existing

application tra!c sharing the same bandwidth leading to ine!ciencies.
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1.1 Background

1.1.1 Live VM Migration

Live migration involves transferring the memory pages and disk blocks associated

with a VM from a source host to a destination host while the VM continues to

operate (Clark et al. 2005). This process requires preserving the VM’s runtime

state, including CPU registers, disk I/O state, and memory contents, ensuring a

seamless transition with minimal service interruption.

1.1.1.1 Pre-copy Migration Technique

The pre-copy migration technique initiates while the VM is still executing on the

source host. During this phase, memory pages are iteratively copied to the des-

tination host. A key indicator used to determine when to halt this phase is the

identification of a Writable Working Set (WWS), pages that are frequently up-

dated during migration (Hines, Deshpande, and Gopalan 2009). Once a threshold

is reached, the stop-and-copy phase begins. At this point, the VM is momentarily

paused to transfer the remaining dirty pages and the CPU state. Following the

transfer, network connections are redirected to the destination host, completing

the migration process.

1.1.1.2 Post-copy Migration Technique

In the post-copy migration approach, the VM is first paused briefly to transfer

non-pageable memory, essential CPU state, and network configuration to the des-

tination. The VM is then resumed at the destination host. After resumption, the

remaining memory pages are demand-paged over the network from the source as

they are accessed (Bahrami, Haghighat, and Gholipoor 2023).

1.1.1.3 Hybrid-copy Migration Technique

The hybrid-copy migration technique combines elements from both pre-copy and

post-copy methods to balance performance and downtime. Initially, memory pages
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are pre-copied while the VM is active on the source host, similar to the pre-copy

strategy. The VM is then resumed on the destination host. Subsequent page

faults are resolved by fetching the corresponding pages from the source, akin to

the post-copy approach (Sahni and Varma 2012). This hybrid method aims to

reduce the downtime associated with pre-copy and mitigate the page fault latency

challenges of post-copy migration.

1.1.2 Multiple VM Migrations

Virtual machines that reside on the same physical host are referred to as co-

located VMs. These VMs often interact with one another, complementing each

other’s services. Running on the same physical machine reduces communication

costs (Huang et al. 2007) and enhances resource consolidation (Wood, Shenoy,

et al. 2007). However, there are instances where migrating multiple correlated

VMs becomes necessary for purposes such as energy e!ciency and performance

optimization (Sun, Liao, Zhao, et al. 2015). These migrations can be conducted

either serially or in parallel (Callegati and Cerroni 2013; Chang, Walters, and

Wills 2013; Sun, Liao, Anand, et al. 2016).

In the serial migration strategy, each VM is migrated sequentially using the

migration techniques designed for single VM migration. Alternatively, the gang

migration strategy enables parallel migration of VMs, where the available band-

width is shared across the multiple VMs.

Although gang migration results in a longer total migration time compared to

serial migration, it o”ers the advantage of reduced downtime, making it more suit-

able for scenarios where service availability is critical. In contrast, serial migration,

while more e!cient in terms of communication resources and transmission over-

head, may result in longer service downtimes (Callegati and Cerroni 2013). This

creates a trade-o”: gang migration prioritizes minimizing downtime to maintain

service continuity, while serial migration focuses on optimizing resource usage and

reducing transmission overhead. The choice between these strategies depends on

the specific requirements of the migration task.
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1.1.3 Migration Priority

Migration priority defines the urgency with which VMs need to be migrated.

High-priority migrations often necessitate the use of gang migration to minimize

downtime, despite its potential performance impact. In contrast, lower-priority

migrations may be better suited to the serial migration approach, which allows

for a more controlled and gradual migration process. System administrators can

specify migration priorities (Fernando, P. Yang, and H. Lu 2020), or priority may

be dynamically assigned based on factors such as Service Level Agreement (SLA)

violations and migration time constraints (Tsakalozos et al. 2017).

Di”erent migrations have varying time requirements and deadlines, particu-

larly when dealing with multiple VMs (Nadeem, Elazhary, and Fadel 2018). For

instance, some virtual network functions (VNFs) require rapid migration to pre-

serve low end-to-end latency, while web services with higher latency tolerance can

a”ord to be migrated over a longer duration. For example, in the event of a fail-

ure, the migration of a VM must occur as quickly as possible, whereas routine

maintenance can be scheduled more gradually, with a focus on minimizing service

disruption. The considerations of Service Level Agreement (SLA)s and Quality of

Service (QoS) play a critical role in determining the appropriate migration strat-

egy, serial or parallel, and in deciding the bandwidth allocation for the migration.

Depending on the specific use case, migration tasks may have strict deadlines,

requiring a balance between priority levels and performance metrics.

1.1.4 Service Level Agreements (SLAs)

Service Level Agreements (SLAs) are formal contracts established between cloud

service providers and their customers, defining the expected levels of service deliv-

ery, including performance, availability, and redundancy standards (K. Lu et al.

2013). These agreements outline the obligations of both parties and describe the

penalties for any failure to meet the agreed-upon terms (Odun-Ayo, Udemezue,

and Kilanko 2019). Adherence to metrics defined by SLAs such as response time,

availability, and reliability is critical (Gao et al. 2014). Providers must avoid SLA
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violations and ensure customer satisfaction while reducing resource usage and ser-

vice interruptions.

Quality of Service (QoS) represents the measurable performance characteristics

guaranteed by service providers to meet customer expectations (K. Lu et al. 2013).

By ensuring consistent QoS levels, service providers can meet their SLA obligations

while optimizing network and resource utilization during the migration process.

1.1.5 Performance Metrics

Performance metrics serve as an essential evaluation to assess the live VM mi-

gration methods. Among the numerous metrics identified, total migration time,

downtime, total migrated data, migration overhead, application degradation, prepa-

ration time, and resume time certain metrics stand out as most commonly used

(Voorsluys et al. 2009; Altahat et al. 2020; Soni and Kalra 2013; Hines and Gopalan

2009; Kuno, Nii, and Yamaguchi 2011). Specifically,

• Total Migration Time (TMT) - the time required to complete the entire

migration process. In gang migration, it’s the time between the beginning

of the migration process at the source to the completion of the last VM’s

migration at the destination.

• Downtime (DT) - the duration during which the services provided by the

VMs become inaccessible to users. The VM’s CPU state and the WWS

are transferred during this time and therefore the CPU execution is fully

suspended.

• Application performance degradation - the slowdown of the applications run-

ning on the migrating VMs during the migration.

1.1.6 Tra!c Contention Problem

In the context of migration, tra!c can be classified between workload tra!c and

migration tra!c. As for workload tra!c, it includes workloads of the migrating
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VM, other co-located VMs or business tra!c generated by applications that reside

in the VM or the host.

1.1.6.1 Migration tra!c

• Pre-copy Migration iteratively transfers the state data (CPU, memory, and

I/O state) of a VM from the source host to the destination host while the

VM continues to run on the source. The tra!c is primarily outbound, as

data flows from the source to the destination (shown in Figure 1-1a).

• In Post-copy Migration, the VM is immediately moved to the destination

host, and any missing data pages are fetched from the source as needed.

The tra!c is primarily inbound, with data being requested from the source

to the destination (shown in Figure 1-1b).

1.1.6.2 Application Tra!c

• Incoming tra!c: Refers to the data packets received by a system or net-

work interface. In the context of virtual machines (VMs) and applications,

incoming tra!c typically includes requests, data, or communications initi-

ated by external entities (Cui, Zhu, et al. 2020). This tra!c is critical for the

operation of client-server applications and services hosted within the VMs,

as it represents the demand side of the service interactions.

• Outgoing tra!c: Refers to the data packets transmitted from a system

or network interface. For VMs and applications, outgoing tra!c includes

responses, data, or communications sent from the VMs to external entities.

Outgoing tra!c is essential for delivering services and content from the VMs

to end users, forming the supply side of the service interactions (Deshpande

and Keahey 2017).

1.1.6.3 Tra!c Contention Problem

Both migration tra!c and application workload tra!c share the same network

bandwidth (illustrated in Figure 1-1). When these tra!c types occur simulta-
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(a) Pre-Copy (b) Post-Copy

Figure 1-1: Tra!c directions in Pre-Copy and Post-Copy migrations.

(a) Total migration time (b) Downtime

Figure 1-2: Total migration time and downtime with di”erent tra!c types.

neously, they compete for the limited available network resources (Deshpande

and Keahey 2017). In the pre-copy migration approach, the outbound migration

tra!c competes with the outbound application tra!c originating from VMs on

the source host (depicted in Figure 1-3a). This contention can degrade both the

migration process and the performance of the applications running on the VMs

(illustrated in Figure 1-2). In the post-copy migration method, the inbound mi-

gration tra!c at the destination host competes with incoming application tra!c

to the VMs (depicted in Figure 1-3d), leading to similar performance degradation

and an increase in migration time (Cui, Zhu, et al. 2020).

Extended migration durations due to network contention can delay the com-

pletion of the migration process, thereby postponing the release of resources on the

source host. In gang migration scenarios, where multiple VMs are migrated con-

currently, the combined migration tra!c exacerbates the issue, further stressing

the available bandwidth and worsening the contention problem.

Network-bound applications are particularly a”ected by this issue, as the re-
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(a) Outgoing tra!c at the source host (b) Incoming tra!c at the source host

(c) Outgoing tra!c at the destination host (d) Incoming tra!c at the destination host

Figure 1-3: Bandwidth fluctuations of live migration with incoming and outgoing
tra!c.

duced available bandwidth leads to slower response times and may negatively

impact the quality of service. Both client-server applications and other network-

intensive applications running on the same host can experience reduced through-

put and increased latency as a result of this directional tra!c contention.

1.1.7 Tra!c Shaping

Tra!c shaping and bandwidth reservation are critical mechanisms for optimizing

network performance. E”ective management of network tra!c can substantially

alleviate congestion and enhance overall e!ciency, particularly in environments

where multiple applications or services share limited network resources. In such

scenarios, it is essential to ensure that specific tra!c types do not exceed the

available network capacity or interfere with the proper functioning of other ongoing

processes.

One of the most widely used tools for tra!c control in Linux environments is
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tc (Tra!c Control) (Linux tc n.d.), a command-line utility that enables adminis-

trators to regulate the flow of network tra!c. tc allows for the implementation of

tra!c shaping by controlling bandwidth allocation, delay, packet loss, and prior-

ity. This ensures that di”erent tra!c streams are allocated the necessary resources

while preventing network congestion or the unfair distribution of resources. By

defining classes and queues within tc, users can employ advanced tra!c manage-

ment strategies such as rate limiting, prioritization, and tra!c classification based

on criteria such as IP addresses, ports, and protocols.

In a typical network configuration, tc can be utilized to di”erentiate tra!c

types, ensuring that high-priority tra!c, such as voice or real-time data, receives

the necessary bandwidth without negatively a”ecting the performance of other

services, such as file transfers or background tasks. For instance, network inter-

faces can be configured with tra!c shaping policies that allocate bandwidth in

accordance with the specific needs of each tra!c type, while also considering the

current network load.

Research has demonstrated that the combination of tra!c shaping and intel-

ligent bandwidth reservation techniques can significantly enhance network perfor-

mance. By dynamically adjusting available bandwidth based on tra!c character-

istics, workload urgency, and network conditions, these strategies help mitigate

network contention and improve overall e!ciency. Various studies have explored

adaptive bandwidth adjustments, highlighting the e”ectiveness of tra!c shaping

in reducing congestion and improving the quality of service across diverse network

environments.

1.2 Motivation

The live migration of VMs within a Cloud Data Center (CDC) is essential for

various operational reasons, including load balancing (Padala et al. 2007; Wood,

Shenoy, et al. 2007), hardware failure management (Nagarajan et al. 2007), neces-

sary hardware maintenance (Devi, Aruna, Priya, et al. 2011), and energy or power

savings through workload consolidation (Nathuji and Schwan 2007; Hu et al. 2008).
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In each of these scenarios, it is crucial that migrations are executed with mini-

mal delay to prevent disruptions in service availability and to avoid performance

degradation.

When VM migration shares the same Network Interface Card (NIC) interface

as the VM’s regular workload, network contention arises as migration tra!c and

workload tra!c compete for bandwidth. This contention becomes particularly

problematic in live migration techniques such as pre-copy and post-copy. In pre-

copy migration, the outgoing network tra!c from the source host competes with

the migration tra!c, while in post-copy migration, the incoming network tra!c

at the destination host contends with the migration stream (Deshpande and Kea-

hey 2017). Such contention negatively impacts the performance of applications

running on the migrating VM, slows down the migration process, and extends

downtime. The increasing volume of network tra!c within CDCs, driven by the

rapid growth and evolution of cloud services, exacerbates these challenges, further

complicating the migration process.

Furthermore, multiple VM migrations present complex trade-o”s between total

migration time and downtime, influenced by the migration strategy adopted. In

serial migration, which involves migrating VMs sequentially, the overall migration

time tends to be shorter, owing to reduced communication overhead and resource

contention. However, in parallel migration, where multiple VMs are migrated

simultaneously, downtime is minimized, leading to better service availability but

at the cost of higher resource usage and longer total migration times (Callegati

and Cerroni 2013). The choice between serial and parallel migration is therefore

critical, especially in contexts where stringent deadlines, SLA compliance, and

QoS requirements must be met (Nadeem, Elazhary, and Fadel 2018).

Addressing these challenges requires the development of a tra!c-sensitive mi-

gration strategy that accounts for the contention between workload and migration

tra!c, as well as the dynamic trade-o”s between migration time and downtime.

By incorporating tra!c shaping and prioritization mechanisms, such an approach

can optimize the selection of migration techniques, ensuring a balance between
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service availability and resource e!ciency, while also meeting diverse constraints

and deadlines.

1.3 Research Questions

1. How can tra!c-sensitive live VM migration algorithms be developed to opti-

mize migration performance by dynamically selecting the most appropriate

migration technique (pre-copy, post-copy, or hybrid-copy) based on real-time

network tra!c metrics, available bandwidth, and tra!c contention?

2. What is the impact of adaptive bandwidth reservation and prioritization

strategies on migration e!ciency, total migration time, and downtime dur-

ing both single and multiple VM migrations under varying network tra!c

conditions?

3. How can tra!c shaping and SLA compliance be integrated into live VM

migration to ensure optimal resource allocation while minimizing migration

delays and maintaining service level agreements in cloud environments?

1.4 Aims and Objectives

1.4.1 Aim

The aim of this research is to develop an adaptive, tra!c-sensitive live migra-

tion algorithm for multiple virtual machines (VMs) that is aware of migration

priorities, optimizes overall network performance, and e”ectively manages traf-

fic contention. The algorithm should minimize migration time, downtime, and

application performance degradation during the migration process.

1.4.2 Objectives

The key objectives of this research are:

• To identify and analyze the key network metrics that influence the perfor-

mance of VM migration, with a focus on minimizing network congestion and
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migration delays.

• To develop an adaptive decision-making algorithm that dynamically selects

optimal migration strategies based on real-time network metrics, workload

demands, and migration priorities.

• To investigate the impact of adaptive bandwidth reservation and tra!c pri-

oritization strategies on migration e!ciency, including total migration time,

downtime, and application performance, especially under varying network

tra!c conditions and tra!c contention.

• To examine the integration of tra!c shaping and SLA compliance in live VM

migration, ensuring optimal resource allocation while minimizing migration

delays and maintaining service level agreements (SLAs) in cloud environ-

ments.

1.5 Scope

1.5.1 In Scope

The scope of this research includes the following:

• Live Migration of Virtual Machines (VMs)

– The focus will be on live migration within a KVM/QEMU virtualization

environment.

– The research will primarily address a single server with a single shared

NIC port for both migration and application tra!c. While some servers

may employ separate NIC interfaces for application and migration traf-

fic, which avoids tra!c contention (Fernando, Terner, et al. 2019), such

setups are less common and will not be the primary focus of this study.

– The host operating system used for the servers will be Linux.

– The study will cover the migration of a single VM from one host to

another, as well as live migration of multiple co-located VMs.
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– The tests will be conducted within local area network (LAN) environ-

ments, although the techniques developed may be adapted for wide-

area network (WAN) scenarios, considering the additional complexities

of disk migrations.

• Analysis of Tra!c E”ects on Live VM Migration

– The research will focus on analyzing the e”ects of various tra!c types

(workload and migration tra!c) on live VM migration, particularly

network contention and its impact on migration e!ciency.

• Development of an Optimized Algorithm

– The research will develop an optimized algorithm for tra!c-sensitive

live migration of multiple co-located VMs, considering migration pri-

orities, minimizing downtime, and reducing application performance

degradation.

• Performance Evaluation

– The algorithm will be evaluated based on industry-standard bench-

marks, focusing on migration time, downtime, and application per-

formance degradation, with a particular emphasis on tra!c-sensitive

scenarios.

1.6 Outline

The remainder of the thesis is structured as follows. Section 2 reviews the exist-

ing literature on live VM migration techniques, performance metrics, and tra!c

management strategies. Section 3 describes the preliminary study, detailing the

methodology used for data collection and presenting the initial findings. Section

4 outlines the design and implementation of the proposed tra!c-aware migration

algorithm, emphasizing how migration strategies are adapted based on network

metrics and priorities. Section 5 evaluates the performance of the developed algo-

rithm under varying tra!c conditions, comparing its performance with traditional
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migration strategies using defined metrics. Section 6 discusses the behaviour of the

algorithm in di”erent scenarios, analyzes its performance, and explores potential

improvements and directions for future research. Finally, Section 7 summarizes

the findings of the thesis and proposes future research opportunities.
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2 Literature Review

2.1 Tra!c-Aware Migration

Shrivastava et al. 2011 introduced AppAware, a live migration approach that

optimizes migration destinations by considering network topology, communica-

tion patterns of VMs, and physical server limitations, focusing on application-

specific communication needs. Similarly, Cui, Z. Yang, et al. 2017 proposed a

topology-adaptive Data Center Network (DCN) that constructs and adjusts net-

work topologies dynamically based on VM demands and tra!c patterns. Tso et

al. 2014 developed SCORE, an approach designed to minimize overall inter-VM

communication by treating communication as an optimization problem, using a

distributed migration technique that adapts to tra!c fluctuations. Collectively,

these approaches aim to optimize network topology and communication patterns

to reduce network tra!c during migration.

Other strategies extend tra!c-awareness to load balancing and resource mon-

itoring. For example, Kanniga Devi, Murugaboopathi, and Muthukannan 2018

proposed the System and Tra!c-Aware Live VM Migration for Load Balancing

(ST-LVM-LB), a graph-based approach that monitors resources and balances load

by migrating the least-loaded VMs while accounting for network bandwidth and

active tra!c flows. Fu et al. 2019 introduced NTVMM, which reduces tra!c and

network load through algorithms that prioritize high-tra!c-generating VMs dur-

ing selection and placement. Addressing network congestion, Liu et al. 2015 formu-

lated cross-site live migration of multiple VMs as a Mixed-Integer Linear Program-

ming (MILP) problem, factoring in migration tra!c and inter-VM communica-

tion, and developed theMinUti-O algorithm to mitigate complexity. Furthermore,

Nasim and Kassler 2015 proposed using multipath-TCP and queue management

strategies to enhance tra!c-aware live migration, reducing both downtime and

migration duration. These approaches emphasize load balancing, resource man-

agement, and congestion mitigation through various optimization methods.

Additional tra!c-aware solutions have targeted container and VM migration
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optimization. Maheshwari et al. 2018 introduced ShareOn, a tra!c-aware con-

tainer migration algorithm that selects target hosts based on real-time tra!c con-

ditions to minimize network impact. Deshpande and Keahey 2017 proposed a

tra!c-aware VM live migration algorithm that monitors both application and mi-

gration tra!c to determine the optimal use of pre-copy or post-copy techniques.

Cui, Zhu, et al. 2020 developed an adaptive migration algorithm selection frame-

work using fuzzy clustering to categorize VMs by business tra!c, enabling dy-

namic selection of the most suitable migration approach. These methodologies

adapt migration strategies based on current tra!c conditions, optimizing migra-

tion performance through adaptive mechanisms.

2.2 Priority-Aware Migration

There exists research that focus on migration priority as well. Fernando, P. Yang,

and H. Lu 2020 introduced a live migration approach that reserves bandwidth

according to the urgency of migration. Nadeem, Elazhary, and Fadel 2018 pro-

posed a prioritization-based approach where only low-priority tasks are selected

for migration, retaining high-priority ones at the host. Dalvandi, Gurusamy, and

Chua 2015 presented an algorithm that considers the requested migration time of

VMs for optimal placement and routing. Haidri et al. 2022 explored migration

strategies that consider request deadlines to balance load and meet specific timing

requirements, while Son and Buyya 2018 focused on VM/flow placement based on

migration deadlines.

2.3 Tra!c Shaping

The use of tra!c shaping to optimize VM migrations has been well-documented.

The mVM Scheduler, for instance, uses a network model that continuously mon-

itors tra!c patterns and network capacity to determine optimal migration start

times and bandwidth allocation, dynamically adjusting between parallel and serial

migrations based on real-time conditions (Kherbache, Madelaine, and Hermenier

2017). Similarly, Software-Defined Networking (SDN) controllers o”er real-time
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tra!c flow management, bandwidth allocation, and route adjustments to prevent

link congestion. Network Function Virtualization (NFV) further enhances tra!c

optimization by prioritizing critical migration flows with virtualized middleboxes

(Manzalini et al. 2013).

The Geometric Programming Model o”ers another perspective by adapting

bandwidth to di”erent phases of migration, using a cost function to balance down-

time and resource usage, ultimately minimizing network strain and migration time.

This model’s rapid convergence to optimal values makes it suitable for real-time,

multiple VM migration scenarios (Cerroni and Esposito 2016). Pre-copy migration

techniques, which progressively increase transfer rates across rounds to minimize

residual data, exemplify adaptive bandwidth adjustments that enhance migration

e!ciency (Choudhary et al. 2017).

Ongoing research in tra!c-sensitive live VM migration emphasizes a range

of approaches, from selecting migration techniques based on tra!c patterns to

reducing overall tra!c and optimizing migration sequences. Tra!c-aware solu-

tions, adaptive topologies, and urgency-based strategies highlight advancements

in enhancing migration e!ciency. Despite these approaches, integrating tra!c

and urgency considerations to maximize network performance remains an area for

exploration and further improvement.

2.4 Research Gap

Currently, existing algorithms either focus on tra!c contention or prioritize mi-

gration urgency, but there is a lack of algorithms that e”ectively integrate both

factors. A dynamic approach that considers both tra!c contention and priority

levels could greatly enhance migration performance by selecting the most appro-

priate migration technique, whether pre-copy, post-copy, or hybrid-copy, based

on real-time network conditions and the urgency of the migration. This would

enable the handling of di”erent tasks with varying requirements, such as those

needing minimal migration time, those focused on reducing downtime, and those

willing to trade o” between migration time and downtime to optimize application

17



performance.

Moreover, there is a gap in comprehensive studies that explore the decision-

making process of selecting serial versus parallel migrations. Although both strate-

gies o”er distinct advantages, such as reduced migration time in serial migration

and minimized downtime in parallel migration, there is limited research on how

to choose between them based on real-time conditions. This research aims to fill

these gaps by developing algorithms that take into account both network traf-

fic and urgency, enabling more e!cient and adaptive migration strategies that

optimize migration time, downtime, and application performance.
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3 Preliminary Study

3.1 Data Collection

This section discusses how the data were collected for the preliminary study, test-

ing and evaluation purposes.

Figure 3-4: Testbed architecture.

We conducted experiments using two (2) machines configured as source and

destination hosts (as shown in Figure 3-4), with the following specifications:

• Product - HP Z620 Workstation

• CPU - Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz (12 Cores)

• Memory - 16GB

• Network - Gigabit Ethernet Switch

An Network File System (NFS) server was employed, sharing a directory between

the source and destination servers. The VM hard disks were stored on this NFS

server, meaning they were not migrated during the LAN migrations. The baseline

models were implemented using QEMU Emulator version 8.1.2 installed on both

the source and destination servers.

Single VM migrations were carried out using pre-copy, post-copy, and

hybrid-copy techniques under a range of tra!c conditions to validate the pres-

ence of tra!c contention issues. Each migration involved an idle VM configured
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with 8GB of RAM. Various combinations of outgoing and incoming tra!c were

generated at both the source and destination hosts to simulate realistic network

scenarios. For each configuration, the migration was repeated ten (10) times, and

the average values were computed to ensure consistency, excluding any anomalies.

As shown in Figure 1-2, higher migration times were observed, particularly when

outgoing tra!c was present at the source and incoming tra!c at the destination.

These increases are attributed to contention between the migration tra!c and the

background network tra!c, which adversely a”ects the e!ciency of data transfer

during migration.

Multiple VM migration experiments were conducted to evaluate the per-

formance di”erences between serial and parallel migration approaches under vary-

ing tra!c conditions. Two (2) VMs were deployed on the source host. A separate

server was configured to operate as the iperf server and/or client, depending on

the specific tra!c scenario being tested. Tra!c was generated between this third

server and the source, destination, and the VMs. Following tra!c generation,

the VMs were migrated to the destination host, during which the total migration

time and downtime were measured. Results were averaged over five (5) runs, with

outliers excluded from the analysis.

In parallel migration, where multiple VMs are migrated concurrently, the total

migration time is determined by the longest individual migration time among

all migrating VMs. Conversely, in serial migration, where VMs are migrated

sequentially, the total migration time corresponds to the cumulative sum of each

individual migration time.

Downtime is similarly a”ected by the migration approach. In serial migration,

total downtime is the sum of the individual downtimes of all VMs, whereas in

parallel migration, it is defined by the maximum downtime observed among the

concurrently migrating VMs.

Figure 3-5 illustrates the results of the experiments. It was observed that in

most cases, both total migration time and downtime were consistently lower in

parallel migration compared to serial migration, for both pre-copy and post-copy
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techniques.

(a) Incoming source, incoming destina-
tion. (b) Incoming source, outgoing destination.

(c) Outgoing source, incoming destination. (d) Outgoing source, outgoing destination.

Figure 3-5: Total migration time of serial and parallel migrations using traditional
migration techniques.

3.2 Migration Bandwidth Reservation

To identify the correct interface handling migration tra!c, the command ip route

get <DEST_IP> was used. This revealed that tra!c destined for the migration

target (DEST_IP) is routed through the br0 bridge interface, with the IP address

of the source server (SRC_IP). To confirm this, tcpdump was used to monitor the

interface with the command tcpdump -i br0 host <DEST_IP> and <DEST_PORT>,

which verified that the migration data was indeed being transmitted over br0

using the destination port (DEST_PORT). This port number is configured when

starting the VM using QEMU. It is important to note that the source port of the

migration tra!c is an ephemeral port, which can vary between migration sessions

and therefore cannot be reliably used to filter or limit tra!c.

Once the migration path was confirmed, the Linux tc (Tra!c Control) tool

(Linux tc n.d.) was used to shape tra!c. Migration tra!c was identified based
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on the combination of source IP, destination IP, and the fixed destination port

(DEST_PORT). Using tc, packets matching these parameters were marked and as-

signed to a dedicated class with a predefined bandwidth limit, e”ectively isolating

migration tra!c from other application tra!c. This setup ensured that bandwidth

could be reserved specifically for migration without a”ecting the performance of

concurrent workloads on the system. After reserving the required bandwidth for

migration, the remaining available bandwidth on the interface could be assigned

to handle all other tra!c.

3.3 Empirical Bandwidth Models

To understand the e”ect of background tra!c on migration bandwidth, we con-

ducted controlled experiments using the three traditional migration techniques,

pre-copy, post-copy, and hybrid-copy. In each case, the migration was performed

while varying background tra!c in one of three ways. Only outgoing tra!c (from

the VM), only incoming tra!c (to the VM) and mixed tra!c (both incoming and

outgoing).

Each model (depicted in Figure 3-6) fits the form y = mx+ c, where x is back-

ground tra!c (in Mbps), and y is the estimated bandwidth required for migration.

Pre-copy Migration

• Incoming Tra!c: y = 903.47 + 0.0002x

• Outgoing Tra!c (Breakpoints: 0, 35, 472, 1000)

S1: y = →0.27x+ 905.00 S2: y = →0.98x+ 930.00 S3: y = →0.001x+ 467.52

• Mixed Tra!c (Outgoing Varied, Incoming = 500 Mbps, Breakpoints: 0, 481,

1000)

S1: y = →0.91x+ 906.80 S2: y = →0.001x+ 467.90

Post-copy Migration

• Incoming Tra!c (Breakpoints: 0, 510, 1000)

S1: y = →1.02x+ 861.00 S2: y = →0.12x+ 399.00
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• Outgoing Tra!c: y = 848.10 + 0.0010x

• Mixed Tra!c (Incoming Varied, Outgoing = 500 Mbps, Breakpoints: 0, 528,

1000)

S1: y = →0.98x+ 857.90 S2: y = →0.09x+ 386.40

Hybrid-copy Migration

• Incoming Tra!c: y = 896.82 + 0.0016x

• Outgoing Tra!c (Breakpoints: 0, 476, 1000)

S1: y = →0.90x+ 897.66 S2: y = →0.01x+ 478.38

• Mixed Tra!c (Outgoing Varied, Incoming = 500 Mbps, Breakpoints: 0, 485,

1000)

S1: y = →0.90x+ 898.40 S2: y = 0.003x+ 462.86

These models provide valuable insight into how network tra!c influences band-

width demand for di”erent techniques. They serve as a foundation for predicting

migration feasibility in real time and ensuring SLA-compliant decisions.
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(a) Pre-copy (In) (b) Pre-copy (Out) (c) Pre-copy (Mixed)

(d) Post-copy (In) (e) Post-copy (Out) (f) Post-copy (Mixed)

(g) Hybrid (In) (h) Hybrid (Out) (i) Hybrid (Mixed)

Figure 3-6: Ideal tra!c patterns for Pre-copy, Post-copy, and Hybrid under dif-
ferent tra!c directions.
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4 Design and Implementation

The proposed architecture for tra!c-aware live VM migration, illustrated in Fig-

ure 4-7, is composed of three core modules that collectively aim to optimize the

migration process by adapting to real-time network conditions. These modules

are the Network Tracker, the Bandwidth Reservation module, and the Migration

Controller.

Figure 4-7: High-level architecture.

4.1 Network Tracker

This module is responsible for continuously monitoring network activity at both

the source and destination servers. It tracks total tra!c over the physical Ethernet

interfaces, as well as per-VM tra!c using tap interfaces. The data is periodically

logged and stored on shared log files. Monitoring is conducted from both the

source and destination ends. The implementation relies on the ifstat Linux

command (Linux ifstat n.d.) for capturing tra!c statistics.
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4.2 Bandwidth Reservation

This module handles tra!c shaping. It identifies migration tra!c based on the

migration port, source IP, and destination IP of the VM. A dedicated portion

of bandwidth is allocated to migration tra!c, depending on the selected migra-

tion technique and workload type. The remaining bandwidth is reserved for non-

migration tra!c to prevent interference. This module resides on the NFS server

and is implemented using the tc utility as explained in the Migration Bandwidth

Reservation section (Section 3.2).

4.3 Migration Controller

The migration controller is responsible for making real-time migration decisions.

Using network profiles from the source and destination servers, along with tra!c

characteristics of the involved VMs and their urgency levels, it selects an appropri-

ate migration technique (pre-copy, post-copy, or hybrid). It also determines how

bandwidth should be allocated. Once a decision is made, it triggers the bandwidth

reservation module and initiates the migration process accordingly.

4.4 Tra!c-Aware Migration Algorithm

Based on the preliminary study and its observations, the following algorithms were

developed, initially for single VM migrations and later for multiple VM migrations.

4.4.1 Single VM Migrations

The proposed Algorithm 1 is designed to dynamically select the most suitable live

migration technique for a single VM based on real-time network tra!c conditions,

while ensuring SLA compliance. It considers both the tra!c characteristics of the

source and destination hosts, as well as the workload behaviour of the migrating

virtual machine.

Monitoring Network Parameters - The process begins by continuously mon-

itoring key tra!c parameters at the source, destination, and VM. These include
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Algorithm 1 Tra!c-Sensitive Single VM Migration Algorithm

1: Monitor Network Parameters: src out, src in, dest out, dest in, vm out, vm in
2: Compute available bandwidth at source: src avail bw = tot bw → src out
3: Compute available bandwidth at destination: dest avail bw = tot bw→dest in
4: Classify source and destination tra!c types: inbound, outbound,mixed, idle
5: Classify workload type based on vm out, vm in
6: Retrieve SLA bounds: sla upper, sla lower
7: Determine migration technique:
8: if Source is outbound then
9: Technique = Post-copy
10: else if Source is inbound then
11: Technique = Pre-copy
12: else if Destination is idle then
13: Technique = Post-copy
14: else if Source is idle then
15: Technique = Pre-copy
16: else
17: Technique = Post-copy
18: end if
19: Compute ideal bw based on vm out, vm in and technique
20: if avail bw ↑ ideal bw then
21: Migrate with available bandwidth
22: else
23: Perform bandwidth reservation based on migration priority
24: end if
25: Perform migration
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both incoming and outgoing bandwidth, which help capture the current load and

potential contention on each network interface. The available bandwidth is then

computed for the source and destination by subtracting observed tra!c from the

total available bandwidth, giving a realistic view of how much bandwidth can be

safely allocated for migration.

Classification of Tra!c Type and Workload Types - Next, the algorithm

classifies the nature of network tra!c on the source and destination into one of

four types: idle, inbound, outbound, or mixed. The classification is based on the

relative magnitudes of incoming and outgoing tra!c rates.

1. Idle Tra!c

• Both incoming and outgoing tra!c rate are less than 10.0 Mbps.

2. Inbound Tra!c

• The incoming rate is significantly greater than the outgoing rate, ex-

ceeding it by a factor defined by the threshold factor.

• incoming rate > THRESHOLD ↓ outgoing rate

3. Outbound Tra!c

• The outgoing tra!c rate is significantly greater than the incoming rate,

exceeding it by the same threshold factor.

• outgoing rate > THRESHOLD ↓ incoming rate

4. Mixed Tra!c

• Neither incoming nor outgoing tra!c rate exceeds the other by the

threshold factor.

• The rates are within a range of approximately THRESHOLD factor

The threshold factor of 1.2 (representing a 20% di”erence between incoming

and outgoing tra!c rates) is chosen to meaningfully classify VM network tra!c

as inbound, outbound, or mixed. Research has shown that when bandwidth usage
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reaches just 20%–30% of the available capacity, migration time can increase by

nearly 49% highlighting how even moderate directional tra!c can significantly

degrade migration performance. By using this 20% margin, the algorithm can

proactively identify when a VM exhibits directionally dominant behaviour. The

threshold is also tuned to avoid false positives from natural tra!c fluctuations

while ensuring that genuine imbalances are not overlooked, thereby improving

classification accuracy and enabling more e!cient handling of network-intensive

workloads during live migration.

Simultaneously, the workload type of the migrating VM is identified based on

its tra!c behaviour. This classification helps estimate how sensitive the VM is

to bandwidth fluctuations and which migration technique will result in the least

performance impact. The classification logic is derived from both internet sources

and empirical analysis of workload behaviour. In our case, we rely on concrete

tra!c data that uniquely classifies VMs based on their inbound and outbound

rates, allowing for a more precise mapping between observed tra!c patterns and

workload types.

Selection of Migration Technique - A rule-based decision system was imple-

mented to determine the most appropriate migration technique based on network

tra!c conditions at the source and destination hosts.

• If the source is outbound or the destination is idle, the algorithm selects

post-copy.

• If the source is inbound or idle, pre-copy is chosen.

• In all other cases, post-copy is used as the default due to its resilience to

moderate tra!c contention.

The hybrid technique was not considered in this decision process, as both pre-

copy and post-copy consistently outperformed it when migrating network-intensive

VMs.

Bandwidth Reservation - Once a migration technique is selected, the algorithm

estimates the ideal bandwidth required for optimal migration (explained in Section
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3.3). This estimation is based on empirical models developed through controlled

experiments, which capture how migration bandwidth varies under di”erent tra!c

scenarios for each migration technique.

Once the ideal bandwidth is estimated, the bandwidth reservation algorithm

(presented in Algorithm 2) dynamically allocates bandwidth. The migration ur-

gency levels determine how much bandwidth is reserved for the migration. In

addition to the urgency level, the algorithm takes into account the available band-

width and the VM’s SLA requirements, which set upper and lower bounds for the

migration bandwidth.

High Priority Migration - The full required bandwidth is reserved for the mi-

gration. This ensures that the migration process occurs as quickly as possible,

without any delay, since high-priority migrations are critical and need to be com-

pleted with minimal interruption.

Medium Priority Migration - The bandwidth reserved is set to 75% of the ideal

bandwidth. This allows for more flexibility in bandwidth allocation compared to

high-priority migrations, as medium-priority migrations are less time-sensitive.

The algorithm ensures that the bandwidth reserved does not exceed the available

capacity, while also accounting for the lower bound of the VM’s SLA.

Low Priority Migration - The ideal bandwidth is reduced to 50% of the re-

quired bandwidth. Low-priority migrations are less critical and can tolerate longer

migration times. The algorithm adjusts the reserved bandwidth if the required

bandwidth exceeds the available capacity, ensuring that the migration does not

disrupt other network activities. If the available bandwidth is su!cient, the mi-

gration proceeds with available bandwidth; otherwise, the required bandwidth is

reserved.

Finally, the migration is performed with the chosen migration technique utiliz-

ing the allocated bandwidth. Once the migration is complete, all tra!c reservation

rules are lifted on both the source and the destination servers.
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Algorithm 2 Migration Bandwidth Reservation for Single VM Migration

if Urgency = High then
mig bw = ideal bw
Reserve mig bw for migration

else if Urgency = Medium then
medium ideal bw = ideal bw ↔ 0.75
if medium ideal bw > tot bw → sla lower then

mig bw = tot bw → sla lower
else

mig bw = medium ideal bw
end if
if mig bw ↗ avail bw then

Skip bandwidth reservation
else

Reserve mig bw for migration
end if

else if Urgency = Low then
low ideal bw = ideal bw ↔ 0.5
if low ideal bw > tot bw → sla upper then

mig bw = tot bw → sla upper
else

mig bw = low ideal bw
end if
if mig bw ↗ avail bw then

Migrate with avail bw
else

Reserve mig bw for migration
end if

end if
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Algorithm 3 Tra!c-Sensitive Multiple VM Migration Algorithm

1: Monitor network parameters:
2: src out, src in, dest out, dest in
3: Monitor VM tra!c:
4: vm1 out, vm1 in, . . . , vmN out, vmN in
5: Compute available bandwidths:
6: src avail bw = tot bw → src out
7: dest avail bw = tot bw → dest in
8: Classify tra!c types at source, destination and each VM:

inbound, outbound,mixed, idle
9: Classify workload type of each VM based on vm out, vm in
10: Retrieve SLA bounds: sla upperi, sla loweri for each VM
11: Determine migration urgency level for each VM: High,Medium,Low
12: if Urgency = High then
13: Strategy ↘ Parallel
14: else if Urgency is Medium and src avail bw, dest avail bw are su!cient then
15: Strategy ↘ Parallel
16: else if Urgency is Medium and bandwidth is limited then
17: Strategy ↘ Serial
18: else if Urgency = Low then
19: Strategy ↘ Serial
20: end if
21: if Strategy = Serial then
22: Order VMs for migration (e.g., outbound tra!c first)
23: for each VM in sorted order do
24: Decide technique (Pre-copy/Post-copy/Hybrid) based on server tra!c
25: Compute ideal bwi for the VM
26: if avail bw ↑ ideal bwi then
27: Migrate VM with available bandwidth
28: else
29: Perform bandwidth reservation using priority and sla loweri
30: end if
31: Perform migration
32: Update tra!c profile of source and destination
33: end for
34: else
35: Decide technique based on current and post-migration source-destination

tra!c profiles
36: Reserve bandwidth proportionally based on sla loweri and urgency
37: Migrate VMs
38: end if
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4.4.2 Multiple VM Migrations

Next, the algorithm was developed for the migration of multiple VM migrations

as shown in Algorithm 3.

Monitoring Network Parameters - Inbound and outbound tra!c rates at the

source, destination, and each virtual machine (VM) are continuously monitored.

Additionally, the available bandwidth at both the source and destination, poten-

tially usable for migration, is calculated. This real-time monitoring ensures that

the migration process is e!cient and does not exceed the available bandwidth.

Classification of Tra!c and Workload Type - Each VM is classified based

on its tra!c characteristics and workload type. This classification is similar to

single VM migrations. The key classifications include inbound, outbound, idle and

mixed. Each VM is associated with upper and lower SLA bounds corresponding

to its workload type and urgency level.

Assignment of Migration Strategy (Serial or Parallel) - Each VM is as-

signed a migration strategy based on its priority and the level of tra!c contention.

The migration strategies are as follows.

• High Priority VMs - Assigned to Parallel Migration to minimize migration

time.

• Medium Priority VMs with Low Contention - Assigned to Parallel Migration.

• Medium Priority VMs with High Contention - Assigned to Serial Migration

to reduce contention.

• Low Priority VMs - Assigned to Serial Migration, as they have the least

urgency.

Performing Serial Migrations - The VMs are sorted for migration in the order,

with outbound and idle VMs first, and inbound VMs last. This sequence is based

on the findings of Fernando, Terner, et al. 2019. Then, for each VM in the sorted

list, the migration technique (Pre-copy or Post-copy) is selected based on the server

tra!c profiles at the time, bandwidth is reserved based on the VM’s priority and
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SLA bounds and the migration is performed similar to the single VM migration

process (1). After each migration completes, the source and destination server

tra!c profiles are updated, and any tra!c shaping rules are lifted. This process

continues until all VMs are successfully migrated.

Performing Parallel Migrations - The migration strategy for each VM is

determined based on the server tra!c profiles and the available bandwidth.

• Post-copy is used if the source is outbound.

• Pre-copy is used if the destination is inbound.

• Pre-copy is used if the source is inbound or mixed and the VMs are inbound.

• Pre-copy is used if the destination is outbound or mixed and the VMs are

inbound.

• Post-copy is used if the destination is idle.

• Pre-copy is used if the source is idle.

• If none of the above conditions apply, Post-copy is used by default.

Next, bandwidth is allocated based on the migration priority of the VMs and

the sum of the SLA bounds of all VMs being migrated simultaneously. After the

migration of all the VMs complete, any tra!c shaping rules are lifted.
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5 Evaluation

This section presents the performance evaluation of the proposed tra!c-aware live

VM migration algorithm. The evaluation focuses on two primary metrics: total

migration time, downtime, and the application performance degradation.

5.1 Experimental Setup

The experiments were conducted on two (2) HP Z620 Workstation servers, each

equipped with an Intel(R) Xeon(R) E5-1650 v2 CPU (12 cores, 3.50GHz) and

16 GB of memory. The servers were interconnected using a Gigabit Ethernet

switch (1 Gbps full-duplex). A shared NFS server hosted the virtual disk images,

eliminating the need for disk migration in LAN-based scenarios. The experimental

environment used QEMU Emulator version 8.1.2, installed on both the source and

destination hosts. Both migration and application tra!c utilized the same network

interface, inducing realistic contention scenarios.

5.2 Single VM Migrations

For single VM migrations, both synthetic and real-world VM workloads were used

to test migration performance under varied conditions.

• Transactional workloads - Applications such as e-commerce and CRM re-

quire high availability, low latency, and strong data consistency (TPC-C,

HammerDB).

• Analytical workloads - Used for data lakes and business intelligence, these

workloads need high throughput for large data sets (TPC-H, BigBench

benchmarks will assess performance).

• Content Delivery Workloads - Streaming media and CDNs demand high

availability and low latency (Citron, wrk2)
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• Development and Testing Workloads - These have lower availability and

moderate latency needs, with intermittent bursts (Phoronix Test Suite, Jenk-

ins Plugins)

• Batch Processing Workloads - Focused on tasks like ETL and report genera-

tion, these require cost e!ciency and high throughput (HiBench, TPCx-BB).

• Archival/ Idle Workloads - Long-term data storage prioritizes high durability

with low bandwidth usage (SPEC SFS2014, fio).

This selection ensures diverse workload scenarios to test the e”ectiveness of the

migration algorithm under real-world conditions. Tra!c at the source and desti-

nation servers were inbound, outbound, mixed and idle at a rate of 500 Mbps in

the corresponding tra!c direction.

Figure 5-8 plots compare the total migration time of the migration of a sin-

gle VM running di”erent workloads using the tra!c-aware algorithm against the

traditional live migration techniques, pre-copy, post-copy and hybrid. The tra!c-

aware migrations were tested under all three (3) priority levels, low, medium, and

high. The figures show that, despite the background tra!c profile combination at

the source and the destination, the tra!c-aware migration time is either lower or

similar to the traditional techniques. According to the figures, the migration time

is lowest when the migration is high-priority and migrated with the tra!c-aware

algorithm, followed by tra!c-aware migrations for medium-priority migrations.

The low-low priority tra!c-aware migrations are seen to take time similar to or

slightly higher than the lowest of the three traditional techniques. This is be-

cause while tra!c-aware chooses the best algorithm based on the tra!c profile,

the bandwidth reservation is done to minimize the impact on the applications.

While tra!c-aware consistently improves total migration time, its impact on

downtime varies. In certain scenarios, downtimes are higher due to bandwidth

being reserved to maintain application performance. For example, in the out-

in (inbound VM) case, tra!c-aware records a downtime of 516.7ms compared

to 65.0ms with post-copy, a significant increase primarily due to stricter SLA

adherence.
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That said, tra!c-aware outperforms in several cases. In the in-out (mixed)

scenario, downtime drops to 27.5 ms, outperforming hybrid (31.7ms) and post-

copy (109.7ms), a 13% and 75% reduction, respectively. Likewise, in the outbound

application tra!c at source and destination case, it records 70ms versus 661ms

with hybrid, an 89% improvement.

These results suggest that although tra!c-aware may trade o” downtime in

some SLA-sensitive cases, it still o”ers competitive or better performance when

tra!c patterns are more aligned.

(a) Outgoing background tra!c at source
and destination.

(b) Incoming background tra!c at source
and destination.

(c) Outgoing source and incoming destina-
tion tra!c.

(d) Incoming source and outgoing destina-
tion tra!c.

Figure 5-8: Breakdown of background tra!c directions during single VM migra-
tion.

5.3 Multiple VM Migrations

For multiple VM migrations, network-intensive workloads on VMs were generated

using iPerf. VMs with inbound, outbound and mixed tra!c were generated, each

with incoming, outgoing network tra!c at a rate of 200 Mbps. This value was

chosen as the Ethernet bandwidth is 1000Mbps, and we wanted to have cases with
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src-dest VMs Pre Post Hybrid Tra!c-aware

idle-idle
in 32.7 33.0 30.4 21.8
out 24.9 21.1 24.3 21.1
mixed 31.0 24.0 25.7 22.2

in-in
in 25.0 48.4 26.1 23.5
out 39.9 140.5 43.8 34.4
mixed 28.5 139.3 39.2 25.9

in-out
in 19.5 88.4 25.8 17.9
out 30.6 32.4 33.3 18.4
mixed 22.1 60.5 24.4 19.7

out-in
in 29.5 71.5 32.1 27.2
out 21.2 57.4 22.3 20.4
mixed 25.9 43.6 23.0 18.5

out-out
in 20.7 104.0 24.3 20.9
out 22.9 25.8 22.0 21.3
mixed 21.1 43.5 22.2 17.9

Table 1: Total Migration Time (s) for parallel VM migrations under high-priority
settings.

outgoing tra!c at both migrating VMs, and background tra!c at the server at

300Mbps.

5.3.1 High Priority Migrations

Table 1 compares the total migration time of the traditional migration techniques

against the tra!c-aware aware approach. These experiments were performed to

assess the speed of migrations in the tra!c-aware approach under when the mi-

gration priority is high. Since tra!c-aware adapts the parallel migration strategy

in this scenario, it was compared with the parallel migration using traditional

techniques. In all combinations of source-destination and VM tra!c, tra!c-aware

gives the least migration time.

5.3.2 Low Priority Migrations

The tra!c-aware algorithm was compared against serial migration of VMs using

traditional techniques. The tra!c-aware algorithm chose the technique that yields

the least contention, resulting in the total migration time similar to the lowest of

the traditional techniques. Most cases gave a slightly higher migration time as the
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src-dest VMs Pre Post Hybrid Tra!c-aware

idle-idle

in-in 72 47 132 44
in-out 60 62 646 36
out-in 73 545 61 46
out-out 240 53 619 45

in-in

in-in 99 25 122 68
in-out 29405 34129 30378 94
out-in 131 138 139 65
out-out 228 22 233 38

in-out

in-in 266 22 709 27
in-out 39 530 183 21
out-in 100 96 180 21
out-out 95 22 171 21

out-in

in-in 98 57 140 82
in-out 60 710 189 152
out-in 74 152 128 21
out-out 208 22 403 30

out-out

in-in 266 154 363 23
in-out 46 5950 97 24
out-in 175 109 83 19
out-out 335 23 105 23

Table 2: Downtime (ms) for serial VM migrations under low-priority settings.

bandwidth reservation is done to provide maximum bandwidth for the application

tra!c.

For low-priority migrations, while the tra!c-aware approach consistently dis-

played higher migration times, it showed lower downtime (shown in Table 2) com-

pared to traditional techniques across most tra!c scenarios. This is because the

algorithm prioritizes minimal disruption to co-hosted applications by choosing se-

rial migration over parallel, resulting in significantly reduced interference. For

instance, in the in-out scenario, tra!c-aware achieves a downtime of just 21ms,

whereas hybrid reaches 183ms, and post-copy spikes to 530ms. Similarly, in the

out-in case, it brings downtime down to 21ms, compared to 128ms with hybrid.

These results reflect the algorithm’s ability to gracefully trade o” migration speed

for service continuity in low-priority contexts.
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5.3.3 Medium Priority Migrations

When comparing tra!c-aware migration of medium priority VMs to both high

and low priority scenarios, the total migration time was found to be higher than

for high-priority migrations but lower than for low-priority migrations (shown

in Figure 5-9). The tra!c-aware approach e”ectively balances migration speed

and service continuity for medium-priority migrations. In terms of downtime, the

tra!c-aware method exhibited lower downtime than high-priority migrations, but

slightly higher than for low-priority migrations. This suggests that while tra!c-

aware aims to optimize service continuity, it also ensures a more e!cient migration

process for medium-priority VMs than would typically be achieved by high-priority

or low-priority configurations.

These results highlight the algorithm’s flexibility in adapting to di”erent prior-

ity levels, aiming for an optimal balance between migration speed and application

impact.

5.4 CPU Utililzation

To evaluate the impact of di”erent migration strategies on application perfor-

mance, we analyzed the CPU utilization of a VM executing a QuickSort (Fer-

nando, Terner, et al. 2019), a CPU-intensive workload during migration. We com-

pared traditional pre-copy, post-copy, and the proposed tra!c-aware migration

strategy.

For a fair comparison with pre-copy, background tra!c was introduced at the

destination to simulate conditions under which the tra!c-aware algorithm would

also opt for pre-copy. The migrating VM generated outbound tra!c, chosen due

to the high contention this pattern introduces when using pre-copy. To balance

the tra!c and prevent the tra!c-aware strategy from defaulting to post-copy, ad-

ditional inbound background tra!c was introduced to match the VM’s outbound

tra!c.

For the post-copy comparison, a VM with primarily inbound tra!c was mi-

grated, while outbound background tra!c was generated at the source server.
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(a) Outgoing background tra!c at source
and destination

(b) Incoming background tra!c at source
and destination

(c) Outgoing source and incoming destina-
tion tra!c.

(d) Incoming source and outgoing destina-
tion tra!c.

Figure 5-9: Comparing total migration time of Tra!c-aware migration under high,
medium, low priority settings.

(a) Pre-copy vs tra!c-aware. (b) Post-copy vs tra!c-aware.

Figure 5-10: CPU usage during QuickSort execution across migration strategies.
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This setup represented a scenario where post-copy is typically favourable, but

allowed assessment of the tra!c-aware strategy’s adaptability.

As shown in Figure 5-10, the tra!c-aware approach consistently resulted in

lower CPU usage impact across both scenarios. This improvement is attributed

to more e!cient bandwidth allocation for migration tra!c, which reduces total

downtime, which is the period when the VM is halted and CPU usage drops to

0%.

In the pre-copy scenario, the total migration time was 11.4 seconds, while the

tra!c-aware strategy reduced it to 9.5 seconds. Similarly, in the post-copy sce-

nario, the migration duration decreased from 11.9 seconds to 10.9 seconds with

the tra!c-aware approach. Importantly, the tra!c-aware strategy achieves this

reduction without introducing additional overhead or disruptions. Dynamically

selecting between pre-copy and post-copy based on current system conditions ef-

fectively mitigates performance degradation compared to traditional methods.
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6 Discussion

The proposed tra!c-aware live virtual machine (VM) migration framework rep-

resents a significant step toward resolving a persistent challenge in cloud data

centers, network contention during migration. By incorporating real-time tra!c

monitoring, urgency-based prioritization, and SLA-aware bandwidth reservation,

the algorithm adapts dynamically to diverse network conditions and workload

sensitivities, resulting in improved performance across a range of operational sce-

narios. Each of the core research questions identified at the outset is addressed

through empirical evaluation and system design, as discussed below.

E”ectiveness of the Tra!c-Aware Approach - In response to Research Ques-

tion 1, the framework introduces a tra!c-sensitive migration controller capable of

dynamically selecting the most suitable migration technique, pre-copy, post-copy,

or hybrid, based on current tra!c conditions, available bandwidth, and congestion

levels. The empirical evaluation demonstrates that this adaptive selection leads

to consistently superior performance when compared to static migration strate-

gies. For high-priority migrations, the system e”ectively utilizes parallelism and

network bandwidth to minimize total migration time, whereas for low-priority mi-

grations, it shifts to a more conservative, serial strategy to preserve application

performance.

Empirical bandwidth models, another core contribution, play a key role in

enabling this dynamic adaptability. By avoiding static thresholds and instead

estimating bandwidth availability in real-time based on directional tra!c intensity,

the system achieves precise bandwidth reservations. This not only answers the

technical challenge in Research Question 1 but also lays the groundwork for more

intelligent and responsive migration planning.

Priority-Awareness and SLA Compliance - The integration of urgency-aware

prioritization and SLA-compliant bandwidth reservation directly addresses Re-

search Question 3, which focuses on how to balance migration e!ciency with SLA

guarantees. The proposed algorithm incorporates SLA bounds into its decision-
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making process, ensuring that high-priority migrations are expedited while medium-

and low-priority migrations proceed only when they do not compromise the perfor-

mance of co-located workloads. This structured prioritization introduces a prin-

cipled mechanism to achieve fairness and e!ciency in resource allocation, partic-

ularly in multi-tenant environments.

This SLA-awareness allows the system to minimize service disruption during

migration, preserve application responsiveness, and reduce the risk of SLA vio-

lations, outcomes that are critical for cloud service providers managing diverse

customer workloads.

Comparative Advantage Over Existing Techniques - With respect to Re-

search Question 2, the evaluation shows that the proposed adaptive bandwidth

reservation and prioritization strategies significantly improve both total migra-

tion time and VM downtime, across single and multi-VM scenarios. Compared to

traditional techniques, which often rely on uniform, non-adaptive strategies, the

proposed system responds dynamically to tra!c and workload variations.

• Context-Sensitive Strategy Selection: The framework monitors real-time

tra!c and selects migration techniques accordingly, avoiding the one-size-

fits-all limitation of prior methods. This enables more e!cient migrations

even in high-tra!c conditions.

• Adaptability to Multi-VM Scenarios: Unlike existing approaches that as-

sume homogeneity in VM behaviour, the tra!c-aware algorithm makes per-

VM decisions, improving scalability and handling workload diversity more

e”ectively.

These results confirm that adaptive bandwidth management not only improves

migration speed but also lowers disruption, answering Research Question 2 with

strong empirical backing.

Practical Implications and Deployment Feasibility - A major strength of

the proposed framework is its deployability using existing tools like tc and ifstat,

ensuring feasibility in production environments without requiring specialized in-
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frastructure. This practicality makes the research outcomes directly translatable

to cloud operations.

The current work focuses on LAN-based migration, and as such, wide-area

migrations, where latency and jitter are more pronounced, are not yet addressed.

Expanding the framework to handle WAN migrations, potentially using latency-

aware SLA models, represents a valuable direction for future work.

Similarly, the current model primarily addresses SLA constraints at the source

host. Future iterations could benefit from integrating destination-side consid-

erations, including post-migration contention and inter-VM dependencies. This

would allow for more holistic decision-making and further reduce the risk of SLA

degradation after migration.

Finally, introducing predictive or learning-based models could significantly en-

hance the system’s ability to anticipate tra!c patterns and make preemptive mi-

gration decisions. This forward-looking capability would help optimize resource

utilization and prevent migration bottlenecks, especially in highly dynamic envi-

ronments.
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7 Conclusion

This thesis presented a tra!c-aware, SLA and priority-sensitive approach to live

virtual machine migration, designed to mitigate network contention and enhance

service continuity in cloud data centers. Unlike traditional migration techniques

that adopt a static strategy regardless of context, the proposed algorithm dynam-

ically selects between pre-copy and post-copy methods based on real-time tra!c

conditions at the source and destination hosts. It further integrates bandwidth

reservation mechanisms that adapt to the urgency of the migration and ensure

compliance with Service Level Agreements.

The system supports both single and multiple VM migrations, employing em-

pirical bandwidth models to make accurate and e!cient decisions under vary-

ing network loads. Evaluation results demonstrate that the proposed algorithm

significantly reduces total migration time for high-priority tasks while minimiz-

ing downtime for low-priority workloads, outperforming conventional techniques

across diverse scenarios.

This work underscores the value of integrating tra!c-awareness, prioritiza-

tion, and SLA considerations into live migration systems. It provides a scalable,

deployable framework that improves the reliability and e!ciency of virtualized

infrastructure management in modern cloud environments.

Future research will extend this model to handle WAN-based migrations and

incorporate post-migration SLA monitoring at the destination host. Additionally,

integrating predictive analytics or learning-based methods may further enhance

the adaptability and performance of the migration process in highly dynamic cloud

ecosystems.

46



References

Altahat, Mohammad A. et al. (2020). “Dynamic Hybrid-copy Live Virtual Machine

Migration: Analysis and Comparison”. In: vol. 171. doi: 10.1016/j.procs.

2020.04.156.

Bahrami, Marziyeh, Abolfazl Toorooghi Haghighat, and Majid Gholipoor (2023).

A Review of Virtual Machine Migration Techniques in Data Center. url:

https://www.researchgate.net/publication/372409749.

Callegati, Franco and Walter Cerroni (2013). “Live migration of virtualized edge

networks: Analytical modeling and performance evaluation”. In: 2013 IEEE

SDN for future networks and services (SDN4FNS). IEEE, pp. 1–6.

Cerroni, Walter and Flavio Esposito (2016). “Optimizing live migration of multiple

virtual machines”. In: IEEE Transactions on Cloud Computing 6.4, pp. 1096–

1109.

Chang, Victor, Robert John Walters, and Gary Wills (2013). “Cloud Storage and

Bioinformatics in a private cloud deployment: Lessons for Data Intensive re-

search”. In: Cloud Computing and Services Science: Second International Con-

ference, CLOSER 2012, Porto, Portugal, April 18-21, 2012. Revised Selected

Papers 2. Springer, pp. 245–264.

Choudhary, Anita et al. (2017). “A critical survey of live virtual machine migration

techniques”. In: Journal of Cloud Computing 6.1, pp. 1–41.

Clark, Christopher et al. (2005). “Live migration of virtual machines”. In: Pro-

ceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2, pp. 273–286.

Cui, Yong, Zhenjie Yang, et al. (2017). “Tra!c-aware virtual machine migration

in topology-adaptive dcn”. In: IEEE/ACM Transactions on Networking 25.6,

pp. 3427–3440.

Cui, Yong, Liang Zhu, et al. (2020). “An adaptive tra!c-aware migration algo-

rithm selection framework in live migration of multiple virtual machines”. In:

https://doi.org/10.1016/j.procs.2020.04.156
https://doi.org/10.1016/j.procs.2020.04.156
https://www.researchgate.net/publication/372409749


International Journal of Performability Engineering 16 (2), pp. 314–324. issn:

09731318. doi: 10.23940/ijpe.20.02.p14.314324.

Dalvandi, Aissan, Mohan Gurusamy, and Kee Chaing Chua (2015). “Time-aware

vmflow placement, routing, and migration for power e!ciency in data centers”.

In: IEEE Transactions on Network and Service Management 12.3, pp. 349–362.

Deshpande, Umesh and Kate Keahey (July 2017). “Tra!c-sensitive Live Migration

of Virtual Machines”. In: Future Generation Computer Systems 72, pp. 118–

128. issn: 0167739X. doi: 10.1016/j.future.2016.05.003.

Deshpande, Umesh, Xiaoshuang Wang, and Kartik Gopalan (2011). “Live gang

migration of virtual machines”. In: Proceedings of the 20th international sym-

posium on High performance distributed computing, pp. 135–146.

Devi, L Yamuna, P Aruna, N Priya, et al. (2011). “Security in virtual machine

live migration for KVM”. In: 2011 International Conference on Process Au-

tomation, Control and Computing. IEEE, pp. 1–6.

Fernando, Dinuni, Jonathan Terner, et al. (2019). “Live migration ate my vm: Re-

covering a virtual machine after failure of post-copy live migration”. In: IEEE

INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, pp. 343–

351.

Fernando, Dinuni, Ping Yang, and Hui Lu (2020). “SDN-based Order-aware Live

Migration of Virtual Machines”. In: IEEE INFOCOM 2020 - IEEE Conference

on Computer Communications, pp. 1818–1827. doi: 10.1109/INFOCOM41043.

2020.9155415.

Fu, Xiong et al. (2019). “Network tra!c based virtual machine migration in

cloud computing environment”. In: 2019 IEEE 3rd Information Technology,

Networking, Electronic and Automation Control Conference (ITNEC). IEEE,

pp. 818–821.

Gao, Yongqiang et al. (2014). “Service level agreement based energy-e!cient re-

source management in cloud data centers”. In: Computers & Electrical Engi-

neering 40.5, pp. 1621–1633.

https://doi.org/10.23940/ijpe.20.02.p14.314324
https://doi.org/10.1016/j.future.2016.05.003
https://doi.org/10.1109/INFOCOM41043.2020.9155415
https://doi.org/10.1109/INFOCOM41043.2020.9155415


Haidri, Raza A et al. (2022). “A deadline aware load balancing strategy for cloud

computing”. In: Concurrency and Computation: Practice and Experience 34.1,

e6496.

Hines, Michael R, Umesh Deshpande, and Kartik Gopalan (2009). Post-Copy Live

Migration of Virtual Machines.

Hines, Michael R and Kartik Gopalan (2009). “Post-copy based live virtual ma-

chine migration using adaptive pre-paging and dynamic self-ballooning”. In:

Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on

Virtual execution environments, pp. 51–60.

Hu, Liting et al. (2008). “Magnet: A novel scheduling policy for power reduction

in cluster with virtual machines”. In: 2008 IEEE International Conference on

Cluster Computing. IEEE, pp. 13–22.

Huang, Wei et al. (2007). “Virtual machine aware communication libraries for high

performance computing”. In: Proceedings of the 2007 ACM/IEEE conference

on Supercomputing, pp. 1–12.

Jo, Changyeon et al. (2013). “E!cient live migration of virtual machines using

shared storage”. In: ACM Sigplan Notices 48.7, pp. 41–50.

Kanniga Devi, R, G Murugaboopathi, and M Muthukannan (2018). “Load mon-

itoring and system-tra!c-aware live VM migration-based load balancing in

cloud data center using graph theoretic solutions”. In: Cluster Computing 21.3,

pp. 1623–1638.

Kherbache, Vincent, Eric Madelaine, and Fabien Hermenier (2017). “Scheduling

live migration of virtual machines”. In: IEEE transactions on cloud computing

8.1, pp. 282–296.

Kuno, Yosuke, Kenichi Nii, and Saneyasu Yamaguchi (2011). “A study on per-

formance of processes in migrating virtual machines”. In: 2011 Tenth Inter-

national Symposium on Autonomous Decentralized Systems. IEEE, pp. 567–

572.

Le, Tuan (Nov. 2020). A survey of live Virtual Machine migration techniques. doi:

10.1016/j.cosrev.2020.100304.

https://doi.org/10.1016/j.cosrev.2020.100304


Linux ifstat (n.d.). url: https://www.man7.org/linux/man- pages/man8/

ifstat.8.html.

Linux tc (n.d.). url: https://man7.org/linux/man-pages/man8/tc.8.html.

Liu, Jiaqiang et al. (2015). “Tra!c aware cross-site virtual machine migration

in future mobile cloud computing”. In: Mobile Networks and Applications 20,

pp. 62–71.

Lu, Kuan et al. (2013). “QoS-aware VM placement in multi-domain service level

agreements scenarios”. In: 2013 IEEE Sixth International Conference on Cloud

Computing. IEEE, pp. 661–668.

Maheshwari, Sumit et al. (2018). “Tra!c-aware dynamic container migration for

real-time support in mobile edge clouds”. In: 2018 IEEE International Confer-

ence on Advanced Networks and Telecommunications Systems (ANTS). IEEE,

pp. 1–6.

Manzalini, Antonio et al. (2013). “Clouds of virtual machines in edge networks”.

In: IEEE Communications Magazine 51.7, pp. 63–70.

Nadeem, Hanan A, Hanan Elazhary, and Mai A Fadel (2018). “Priority-aware vir-

tual machine selection algorithm in dynamic consolidation”. In: International

Journal of Advanced Computer Science and Applications 9.11.

Nagarajan, Arun Babu et al. (2007). “Proactive fault tolerance for HPC with Xen

virtualization”. In: Proceedings of the 21st annual international conference on

Supercomputing, pp. 23–32.

Nasim, Robayet and Andreas J Kassler (2015). “Network-centric performance im-

provement for live VM migration”. In: 2015 IEEE 8th International Conference

on Cloud Computing. IEEE, pp. 106–113.

Nathuji, Ripal and Karsten Schwan (2007). “Virtualpower: coordinated power

management in virtualized enterprise systems”. In: ACM SIGOPS operating

systems review 41.6, pp. 265–278.

Nelson, Michael, Beng-Hong Lim, Greg Hutchins, et al. (2005). “Fast Transparent

Migration for Virtual Machines.” In: USENIX Annual technical conference,

general track, pp. 391–394.

https://www.man7.org/linux/man-pages/man8/ifstat.8.html
https://www.man7.org/linux/man-pages/man8/ifstat.8.html
https://man7.org/linux/man-pages/man8/tc.8.html


Odun-Ayo, Isaac, Blessing Udemezue, and Abiodun Kilanko (2019). “Cloud service

level agreements and resource management”. In: Adv. Sci. Technol. Eng. Syst.

4.2, pp. 228–236.

Padala, Pradeep et al. (2007). “Adaptive control of virtualized resources in utility

computing environments”. In: Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, pp. 289–302.

Sahni, Shashank and Vasudeva Varma (2012). “A hybrid approach to live migra-

tion of virtual machines”. In: 2012 IEEE international conference on cloud

computing in emerging markets (CCEM). IEEE, pp. 1–5.

Shrivastava, Vivek et al. (2011). “Application-aware virtual machine migration in

data centers”. In: 2011 Proceedings IEEE INFOCOM. IEEE, pp. 66–70.

Son, Jungmin and Rajkumar Buyya (2018). “Priority-aware VM allocation and

network bandwidth provisioning in software-defined networking (SDN)-enabled

clouds”. In: IEEE Transactions on Sustainable Computing 4.1, pp. 17–28.

Soni, Gulshan and Mala Kalra (Dec. 2013). “Comparative Study of Live Virtual

Machine Migration Techniques in Cloud”. In: International Journal of Com-

puter Applications 84 (14), pp. 19–25. doi: 10.5120/14643-2919.

Sun, Gang, Dan Liao, Vishal Anand, et al. (2016). “A new technique for e!cient

live migration of multiple virtual machines”. In: Future Generation Computer

Systems 55, pp. 74–86.

Sun, Gang, Dan Liao, Dongcheng Zhao, et al. (2015). “Live migration for multiple

correlated virtual machines in cloud-based data centers”. In: IEEE Transac-

tions on Services Computing 11.2, pp. 279–291.

Tsakalozos, Konstantinos et al. (2017). “Live VMmigration under time-constraints

in share-nothing IaaS-clouds”. In: IEEE Transactions on Parallel and Dis-

tributed Systems 28.8, pp. 2285–2298.

Tso, Fung Po et al. (2014). “Scalable tra!c-aware virtual machine management

for cloud data centers”. In: 2014 IEEE 34th International Conference on Dis-

tributed Computing Systems. IEEE, pp. 238–247.

https://doi.org/10.5120/14643-2919


Voorsluys, William et al. (2009). Cost of Virtual Machine Live Migration in

Clouds: A Performance Evaluation. url: http://www.cloudbus.org.

Wood, Timothy, KK Ramakrishnan, et al. (2014). “CloudNet: Dynamic pooling of

cloud resources by live WAN migration of virtual machines”. In: IEEE/ACM

Transactions On Networking 23.5, pp. 1568–1583.

Wood, Timothy, Prashant J Shenoy, et al. (2007). “Black-box and Gray-box

Strategies for Virtual Machine Migration.” In: NSDI. Vol. 7, pp. 17–17.

http://www.cloudbus.org

	Introduction
	Background
	Live VM Migration
	Multiple VM Migrations
	Migration Priority
	Service Level Agreements (SLAs)
	Performance Metrics
	Traffic Contention Problem
	Traffic Shaping

	Motivation
	Research Questions
	Aims and Objectives
	Aim
	Objectives

	Scope
	In Scope

	Outline

	Literature Review
	Traffic-Aware Migration
	Priority-Aware Migration
	Traffic Shaping
	Research Gap

	Preliminary Study
	Data Collection
	Migration Bandwidth Reservation
	Empirical Bandwidth Models

	Design and Implementation
	Network Tracker
	Bandwidth Reservation
	Migration Controller
	Traffic-Aware Migration Algorithm
	Single VM Migrations
	Multiple VM Migrations


	Evaluation
	Experimental Setup
	Single VM Migrations
	Multiple VM Migrations
	High Priority Migrations
	Low Priority Migrations
	Medium Priority Migrations

	CPU Utililzation

	Discussion
	Conclusion

