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Abstract
Cloud computing offers efficient and reliable services to millions of users worldwide, en-
suring uninterrupted service. They use virtualization to offer services by hosting multiple
virtual machines (VMs) on a single physical server. To maintain service continuity dur-
ing hardware failures or server maintenance, live virtual machine migration techniques
transfer virtual machines to different physical servers without interrupting service. It is
challenging to accurately predict the total migration time in Pre-Copy migration due to
the unpredictable nature of convergence. The iteration count required to transfer mem-
ory pages cannot be precisely estimated due to varying dirty page rates and the highly
dynamic nature of network bandwidth. In extreme cases, rapid dirty page generation
and low network bandwidth can lead to a prolonged total migration time or even failure
in migration. Therefore, rapid dirty page generation is a significant problem in Pre-Copy
migration. A key issue in this process is generating fake dirty pages, mainly caused by
silent store instructions and defects in dirty page tracking. Previous solutions, such as
SHA1-based fake dirty prevention algorithms, did not account for the overhead associ-
ated with hash computation on migration. This paper presents D-Track, an efficient
fake dirty page tracking mechanism that mitigates redundant page transfers by contin-
uously tracking dirty pages during migration. D-Track reduces the total migration time
by 20% - 40% when combined with compression techniques while maintaining acceptable
application performance degradation. Evaluations of memory-intensive, CPU-intensive,
and multiple-intensive workloads demonstrate its effectiveness in improving migration
efficiency without significant degradation in VM performance.
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1 Introduction
Live Virtual Machine (VM) Migration is the process of migrating a VM from a source
host machine to a destination host machine without stopping the VM at the start of
the migration procedure, providing uninterrupted services to end-users throughout the
migration. The efficiency and the performance of a Live VM Migration technique are
evaluated using attributes such as Total Migration Time, Downtime, Service Degradation,
Network Traffic, and Network bandwidth utilization.

When considering Pre-Copy Migration, total migration time is regarded as the primary
bottleneck due to its unpredictability (Elsaid et al. 2022). The iteration count required
to transfer memory pages cannot be precisely estimated due to varying dirty page rates
and network transmission speed. In extreme cases, rapid dirty page generation and low
network bandwidth can lead to prolonged total migration time or even migration failure.
Therefore, rapid dirty page generation is a significant problem in Pre-Copy Migration
(Shribman & Hudzia 2013).

However, most of these generated dirty pages are not dirty. They are identical to their
existing copies stored in the destination host, where transferring them wastes network
bandwidth and migration time. Exploring the root of this inefficiency, Li et al. (2019)
identified two reasons for the generation of Fake Dirty Pages. The primary reason is
the “write-not-dirty” request issued by silent store instructions. The secondary reason
is the defects in the mechanism that tracks dirty pages. Furthermore, Li et al. (2019)
conducted experiments on Pre-Copy Migration to observe Fake Dirty Page generation
when migrating VMs with memory-intensive workloads. The experiments showed that
some workloads generated high amounts of Fake Dirty Pages, while others generated sig-
nificant amounts. Therefore, by eliminating these Fake Dirty Page performance matrices,
such as total migration time, downtime and application performance degradation can be
improved.

On the other hand, if the Post-Copy Migration approach is used to migrate a VM run-
ning memory-intensive workloads, the problem of prolonged total migration time for
memory-intensive workload in Pre-Copy Migration is resolved. But Post-Copy Migration
inherently contains two weaknesses: Less robust and performance degradation of an ap-
plication running in the VM which is migrated. When considering Hybrid Migration, it
allows memory-intensive workloads to be handled without migration failures by combin-
ing Post-Copy and Pre-Copy migration techniques. However, it still inherits the problem
of missing the optimal converging point from Pre-Copy Migration (Li et al. 2019).

1.1 Background
Migrating a VM to a destination host machine from a source host machine is called VM
Migration . VM migration can be categorized mainly into two categories Non-Live Mi-
gration and Live Migration as shown in the Figure 1. When considering Non-Live
Migration (Miloj́ičić et al. 2000), the VM is stopped before starting the migration pro-
cedure and again resumes it in the destination host machine after transferring the VM
completely. Unlike Non-Live Migration, in Live Migration, before starting the migra-
tion procedure, the VM is not stopped, providing uninterrupted services to end-users
throughout the migration.
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Figure 1: Classification of VM Migration

Following are some of the benefits as stated in Jul et al. (2005),

• After migration completion, the original host machine does not have to be available
for access.

• The clients are not required to reconnect again after migration.

• The operators of the data centers can perform live migration without being con-
cerned about the operations running in the VM.

Further, Live VM Migration has adapted over time to minimize the service downtime (Zhu
et al. 2013), efficiently utilize the network bandwidth (Svärd et al. 2011), and decreasing
the performance degradation (Ibrahim et al. 2011).

1.1.1 Live VM Migration

In Live VM Migration, the main concern is to minimize both total migration time (the
duration from initiating the migration to completing the migration process) and downtime
(the period where the VM is suspended).

Generally, there are three phases when transferring the memory of a VM:

1. Push Phase

Memory pages assigned to the VM are migrated over the network to the destination
from the source. Since the VM is continuously working in the source host, some
memory content may get modified; therefore, these modified copies should be again
sent to the destination.

2. Stop-and-Copy Phase

The source stops the execution of the VM and transfers every memory content to
the destination. Upon the migration completion, the destination starts the VM

3. Pull Phase

After starting the VM in the destination, memory content is fetched from the source
upon page faults.

2



Out of the above-mentioned phases, one or two are selected in practical solutions. Sa-
puntzakis et al. (2002) and Kozuch & Satyanarayanan (2002) state a pure stop-and-copy
method that only uses the stop-and-copy phase and Zayas (1987) states a pure demand-
migration method which uses both stop-and-copy and pull phases. However, applying
them in Live Migration may lead to unacceptable results.

Based on the method of memory content transferring, there are three Live Migration
techniques. They are Pre-Copy Migration (Jul et al. 2005), Post-Copy Migration (Hines
et al. 2009a) and Hybrid Migration (Sahni & Varma 2012)

1.1.1.1 Pre-Copy Migration

Figure 2: Pre-Copy Migration Timeline (Hines et al. 2009a).

At the initial round of Pre-Copy Migration, every page assigned to the VM are migrated
into the destination host. Then, in successive rounds, the memory content modified
(dirtied) during the earlier round by the VM is sent to the destination. These rounds are
stopped when the page dirtying rate converges to a specific point. Then the remaining
dirty pages (Writable Working Set) and the CPU state are transferred to the destination
after the source stops the VM. Figure 2 graphically demonstrates the Pre-Copy Migration
procedure. Then the destination starts the VM, making it the primary host, and the
source host discards the VM from it (Jul et al. 2005).

Therefore the proposed Pre-Copy Migration by Jul et al. (2005) combines iterative push
phase with short stop-and-copy phase.

Pre-Copy Migration Stages

Figure 3: Stages in Pre-Copy VM Migration (Jul et al. 2005).

The Figure 3 shows the migration stages of Pre-Copy Migration. The functionality of
each stage are described below:
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1. Pre-Migration: The VM is active in the source host.

2. Reservation: Reserves a container on the destination host after confirming the
resource availability.

3. Iterative Pre-Copy: All the memory pages are transferred to the destination
host in the initial iteration. Then, only the modified (dirtied) pages are transferred
in the next iterations.

4. Stop-and-Copy: The CPU state and the remaining memory pages are transferred
to the destination after the source stops the Virtual Machine.

5. Commitment: The destination informs the source that the migration of the VM
is completed the destination received it, and the source sends an acknowledgment
to this message. The source discards the VM.

6. Activation: The destination host becomes the primary host and runs a post-
migration code.

Pre-Copy Migration Techniques

There are various number of Pre-Copy Migration techniques, given below are some of
those techniques:

• Dynamic Rate-Limiting : Handle the Bandwidth Utilization in the iterative
push phase and stop-and-copy phase (Jul et al. 2005).

• Data Compression : Exploits word-level duplication in data to reduce data trans-
fer (Jin, Li, Wu, Shi & Pan 2009).

• Migration Control Method : Detects memory modification patterns and ter-
minated migrations with high downtime (Ibrahim et al. 2011).

• Delta Compression : The modifications done to the data are stored without
storing the full data sets (Svärd et al. 2011).

• Memory Compaction Technique : A technique that is a combination of memory
snapshot and disk-memory deduplication cache (Piao et al. 2014).

• Adaptive VM downtime control technique (Piao et al. 2014)

• Deduplication : Transfer only one copy of duplicate pages (Wood et al. 2015).

• Three Phase Optimization : Minimizes the memory page transfer in transferring
rounds (Sharma & Chawla 2016).

• Page Content Reduction Technique : Transferring the encoded form of the
XOR differential page without transferring the whole page. (Bhardwaj & Krishna
2019)

1.1.1.2 Post-Copy Migration

Pre-Copy Migration effectively minimizes the application performance degradation and
downtime when executing CPU-intensive workloads in the VM. However, its performance
for memory-intensive workloads is less effective because of the high page dirty rates. To
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solve this problem, Hines et al. (2009a) introduces Post-Copy Migration as another Live
VM Migration technique.

Post-Copy Migration initially transfers the CPU states to the receiving host after stop-
ping the VM in the source. Then, the destination host starts the VM without memory
content. After that, the migration thread starts the active push of memory pages to the
destination from the source. Concurrently, fetching of the page-faulted memory pages
in the destination is done on-demand from the source (Hines et al. 2009a). Figure 4
graphically demonstrates the Post-Copy Migration procedure.

Figure 4: Post-Copy Migration Timeline (Hines et al. 2009a).

Post-Copy Migration Variants

There are different variants of Post-Copy Migration, pivoting on different techniques of
page retrieval from source to destination. These techniques are:

• Active Push : Proactively pushes pages from source to destination (Hines et al.
2009a).

• On-Demand Paging : Only page-faulted pages are retrieved from the source
(Hines et al. 2009a).

• Pre-Paging : Guess future page faults and adjust retrieval patterns to avoid page
faults (Hines et al. 2009a).

• Self Ballooning : Reduces the transfer of unused pages (Hines et al. 2009a).

Weaknesses in Post-Copy Migration

Although the Post-Copy Migration resolves Pre-Copy Migration’s problem with dirty
pages not converging to a minimum value to complete the migration (Li et al. 2019), it
has two inherent weaknesses:

1. Less Robust: When considering Pre-Copy Migration, the VM in the source host
will still be working, although the migration fails due to a problem in the migration
network or destination host. But in Post-Copy Migration, since both the destination
and source hosts contain a piece of the latest state of memory, it will cause the failure
of the VM.

2. Performance Degradation: In Post-Copy Migration, access latency for memory
is increased due to continuous page faults resulting in performance degradation of
applications in the VM.
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1.1.1.3 Hybrid Migration

By combining migration techniques Post-Copy and Pre-Copy, Hybrid Migration is per-
formed. The migration procedure starts with a few Pre-Copy rounds, as shown in Figure
5. Next, the CPU state is migrated to the destination host after the VM is stopped in
the source, and upon the completion of the transfer, the destination host starts the VM.
Then, the destination host retrieves the pages using one or more techniques mentioned
in the above section. Therefore, as Hybrid Migration contains combined advantages of
both Post-Copy and Pre-Copy Migrations, memory-intensive workloads can be handled
without any migration failures (Sahni & Varma 2012).

Figure 5: Hybrid Migration Timeline

When looking into the optimizations in Hybrid Migration, Li et al. (2019) introduces
an Intelligent Hybrid Migration approach. In traditional Hybrid Migration, the data-
center admin might have to switch manually to Post-Copy from Pre-Copy or set to shift
after executing fixed two or three Pre-Copy rounds. But the proposed intelligent Hybrid
Migration will minimize the number of page faults in the Post-Copy phase by shifting to
Post-Copy from Pre-Copy at a nearly ideal point.

1.2 Motivation
Cloud Computing (CC) is an essential technology in the modern world due to its efficient
and reliable services. At present, platforms like Microsoft Azure, Amazon Web Ser-
vices (AWS), Alibaba Cloud, Google Cloud Platform (GCP) are some of the CC service
providers (Rayaprolu 2024). As these services are used by millions of users worldwide,
Cloud Data Centers (CDCs) manage these resources, maintaining high-speed network
connections for uninterrupted services. However, CDCs consume a significant amount
of electricity, with over 30% of the servers using energy while being idle. As a solution,
CDCs are embracing virtualization (Jul et al. 2005), allowing OS instances to run concur-
rently on a physical machine, providing individual OS isolation, efficient resource usage,
and high performance (Barham et al. 2003).

With the use of virtualization, CDCs maintain servers, which host multiple Virtual Ma-
chines (VMs) in each server. These servers can be subjected to various hardware or
software failures. This affects the interruptions to the services provided by the VMs in
the failing server. When these failures are identified, the VMs in the server are migrated
to another physical server by using Live VM Migration techniques. However, migrating
VMs running memory-intensive workloads is an intractable problem that may increase
the total migration time and downtime or lead to migration failure.

The recent work of Nathan et al. (2016) discovered a previously unidentified phenomenon:
the presence of Fake Dirty Pages during Pre-Copy Migration. While marked as mod-
ified and sent to the destination host, these pages are identical to their existing copies,
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which are already stored in the destination. According to the observations of Li et al.
(2019), they have identified that during Pre-Copy Migration of VMs running memory-
intensive workloads, some workloads generated high amounts of Fake Dirty Pages while
others generated significant amounts. Transferring these Fake Dirty Pages wastes the
bandwidth and increases the total migration time and downtime.

1.3 Research Problem
The state-of-the-art technique for reducing redundant data transfers in Pre-Copy Migra-
tion for memory-intensive workloads proposed by Li et al. (2019) uses SHA1 secure hashes
to identify and eliminate Fake Dirty Pages, marking significant advancements in reducing
redundant data transfers. However, this approach raises questions about the efficacy and
potential benefits of alternative, more sophisticated hashing methods. While using SHA1
hashes effectively minimizes the transfer of Fake Dirty pages, exploring different hashing
techniques could further enhance this process, reducing the data transfer load even more
efficiently.

Furthermore, the existing study has not considered applying different optimization tech-
niques along with the Hash-Based Fake Dirty Prevention (HBFDP) algorithm. This
application can significantly enhance the efficiency of VM migration by minimizing total
migration time and downtime.

By addressing these research gaps, this study aims to improve hash computation speed
and improve the performance of Pre-Copy Migration when migrating Virtual Machines
running memory-intensive workloads.

1.4 Research Questions
1. How to mitigate redundant data transfers by identifying fake dirty pages?

• This research question investigates how to identify fake dirty pages with min-
imal overhead on migration and Virtual Machines by solving the issues of the
dirty page tracking mechanism in Qemu

2. How to reduce the data transferring load in Pre-Copy Migration to improve the
performance of memory-intensive workloads?

• This research question investigates how to incorporate different optimization
techniques (XBZRLE, Delta compression, etc) to improve migration efficiency.

1.5 Aims and Objectives
1.5.1 Aim

Improving the performance matrices: Total Migration Time, Downtime, and Applica-
tion Performance Degradation in Live Migration by Mitigating Redundant Memory Page
Transfers in Pre-Copy Migration

1.5.2 Objectives

• To evaluate the performance improvement of fake dirty tracking mechanism to
reduce redundant memory page transfers by considering Fake Dirty Pages
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• To evaluate the performance improvement of combining different optimization tech-
niques to reduce the data transferring load in Pre-Copy Migration to improve the
performance for memory-intensive workloads?

1.6 Scope
1.6.1 In Scope

The following areas will be covered under the scope of this research.

• Develop a prototype of the proposed fake dirty tracking mechanism.

• Develop a prototype of the algorithm proposed by Li et al. (2019) using SHA1
hashes in QEMU-KVM to use a baseline technique to evaluate the proposed fake
dirty tracking mechanism.

• Evaluate the D-Track with and without incorporating different optimization tech-
niques to show that the total migration time can be reduced by comparing against
Vanilla Pre-Copy, XBZRLE, and the algorithm proposed by Li et al. (2019) (Pro-
totype developed with SHA1 hashes).

• The research focuses on running single VM migrations on Ubuntu Server as the
host OS within a LAN environment, with potential for future extension to WAN
and multiple VM migrations.

1.7 Significance of the Research
As stated in Section 2.3, the proposed solution of Li et al. (2019) avoids the transfer of
Fake Dirty Pages using SHA1 hashes. However, their study only used the SHA1 hashing
technique in the algorithm and did not explore the improvement that could be achieved
using other hashing techniques. Furthermore, the study of Li et al. (2019) hasn’t focused
on incorporating their algorithm with other optimizations for further improvements.

This study evaluates the performance improvement of various hashing techniques over
SHA1 to reduce redundant memory page transfers by considering Fake Dirty Pages. This
approach provides a method to enhance the hash computation speed, thus improving
the efficiency of Pre-Copy Migration when migrating VMs running memory-intensive
workloads.

Another significance of this research is the potential to combine different optimization
techniques with the Hash-Based Fake Dirty Prevention algorithm. This combined ap-
proach is expected to minimize total migration time and downtime more effectively than
existing methods.

This is particularly significant for ensuring uninterrupted services to end-users by improv-
ing key performance matrices such as total migration time, downtime, and Application
Performance Degradation.
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1.8 Outline of the Dissertation
The organization of the rest of this dissertation is as follows. Section 2 provides an
overview of the fake dirty problem. Section 4 provides the architecture of D-Track and
implementation details. Section 6 provides the evaluation results. Sections 8 provide the
study’s conclusions.
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2 Literature Review
The efficiency and the performance of a Live VM Migration technique is evaluated using
attributes such as Network Traffic, Downtime, Total Migration Time, Service Degrada-
tion, and Network bandwidth utilization. When considering Pre-Copy Migration, total
migration time is regarded as the primary bottleneck due to its unpredictability. Two
significant factors directly impacting the total migration time and downtime are the dirty
page generation rate and VM size. The total migration time of Pre-Copy Migration re-
lies on two distinct phases: Initial iteration that transfers whole memory and subsequent
iterations that transfer dirty pages. The time allocation between these phases depends
heavily on the VM’s memory behavior.

Problems that directly affect the time consumption in the push phase, resulting in higher
total migration time in Pre-Copy Migration, are Rapid Dirty Page Generation, Page
Level Content Redundancy, Lower Network Transferring Rates, and Fake Dirty Pages.

Additionally, Performance and energy consumption concerns also arise, including service
degradation due to resource competition and data transfer overhead and increased CPU
activity, VM size and network bandwidth, resource consumption on hosts, and state
transfer and I/O bandwidth, respectively.

2.1 Fake Dirty Problem
As mentioned in Section 2, Rapid Dirty Page Generation is one of the significant prob-
lems in Pre-Copy Migration. However, most of these generated dirty pages are actually
not dirty. These pages, marked as modified and transferred, are identical to their exist-
ing copies stored in the destination host. This unnecessary duplication wastes network
bandwidth and migration time (Li et al. 2019, Nathan et al. 2016). Li et al. (2019)
observed the Fake Dirty Page generation in Pre-Copy Migration when migrating VMs
running memory-intensive workloads.

2.2 Reasons for Fake Dirty Page Generation
There are two reasons identified by Li et al. (2019) for Fake Dirty Page generation. The
primary reason is “write-not-dirty” request issued by silent store instructions. The
secondary reason is the defects in the mechanism that tracks dirty pages.

2.2.1 “Write-not-dirty” Pages

The first reason for generating Fake Dirty Pages are “Write-not-dirty” Pages. These
Write-not-dirty pages are memory pages marked as dirty but do not have actual content
change(Li et al. 2019).

Silent store instructions are the main cause for the write-not-dirty requests (Molina et al.
1999, Lepak & Lipasti 2000a,b). These instructions write a value to a memory address
exactly like the existing value, resulting in no system state change. According to the eval-
uations done by Lepak & Lipasti (2000a), an average amount of 20% to 68% are silent
store instructions among all the store instructions executed. Also, the analysis done by
Lepak & Lipasti (2000b) identified that silent store instructions execute in compiler opti-
mizations and all levels of program executions and have an algorithmic nature. Therefore,
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in workloads wide amounts Fake Dirty Pages are generated due to write-not-dirty requests
resulting in prolonged total migration time (Li et al. 2019).

2.2.2 Defective Dirty Page Tracking

The second reason for generating Fake Dirty Pages is the method used by the migration
thread for dirty page tracking during migration. Both hypervisors, KVM(Bellard 2005)
and XEN(Barham et al. 2003) use bitmaps to keep track of these dirty pages.

2.2.2.1 KVM

The virtualization platform KVM/QEMU (QEMU 2024, KVM 2024) can be divided into
KVM (kernel module) and QEMU (userspace tool). Both these parts contain their dirty
bitmap. The dirty bitmap of the kernel traces the write request to a page and marks the
page as dirty. This process is continued throughout an iteration, marking all the dirty
pages. When the iteration ends, the kernel’s dirty bitmap is synced with userspace’s
dirty bitmap using API: ioctl, and the dirty bitmap of the kernel is reset to track the
next iteration. In the next iteration, the synced dirty bitmap of the userspace is used to
transfer modified pages. Therefore, the tracking of dirty pages is limited to one Pre-Copy
round, resulting in Fake Dirty Page generation. This will be discussed in detail in Section
3.1.

2.2.2.2 XEN

XEN (XEN 2024) maintains three bitmaps in the migration thread to mark the pages
that must be transferred.

Below are the functionalities of the three bitmaps maintained by XEN:

1. to_send: Pages dirtied during an iteration are marked in this bitmap. Therefore,
this bitmap is referred to by the migration thread to transfer pages in the next
iteration. The to_send bitmap is updated at the end of every iteration by referring
to the kernel bitmap and then resetting it.

2. to_skip: Pages that should not transfer in the current iteration but are transferred
in the next iteration are marked in this bitmap. This bitmap is updated by the
migration thread from the kernel bitmap in a random iteration without resetting
the kernel bitmap.

3. to_fix: Pages that are transferred in the stop-and-copy phase are marked in this
bitmap.

Compared with KVM, XEN’s tracking mechanism works well to minimize Fake Dirty
Page generation with the use of to_skip bitmap as it avoids written dirty pages to be
transferred in the current iteration. But if a page is dirtied before being transferred
and after the to_skip bitmap is updated, it is the same problem as the KVM’s tracking
mechanism, making the page fake dirty (Li et al. 2019).

In this next section 2.3, let’s explore the proposed solutions to avoid the transmission of
Fake Dirty Pages (FDPS) during migration.
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2.3 Related Work
Various optimizations have been proposed over the years to accelerate live virtual ma-
chine (VM) migration. Many of these techniques focus on reducing the amount of data
transferred, which directly impacts the overall migration time.

Content-based optimizations, such as deduplication (Deshpande et al. 2011a, 2013, Kiswany
et al. 2011, Riteau et al. 2011, Wood et al. 2011, Zhang et al. 2010, Svärd et al. 2011)
and compression(Jin, Deng, Wu, Shi & Pan 2009, Deshpande et al. 2011a, Svard et al.
2011, Nathan et al. 2016), are commonly used to reduce the data volume. However, while
these techniques are effective in minimizing data transfer, they still inherit the drawback
of transmitting fake dirty pages, which contributes to redundancy.

Post-copy migration(Hines et al. 2009b, T. Hirofuchi and I. Yamahata n.d.) offers an
alternative to the traditional pre-copy approach. In post-copy, each memory page is
transferred only once, reducing unnecessary retransmissions. This method is particularly
effective for memory write-intensive workloads, offering lower total migration time and
typically smaller downtime compared to pre-copy. For example, Reactive Cloud(Hirofuchi
et al. 2012) leverages post-copy to handle sudden overloads with rapid VM relocation.
Similarly, Scatter-Gather VM migration (Deshpande et al. 2015) enables fast VM eviction
when destination resources are constrained.

Other approaches attempt to avoid the transfer of unnecessary memory pages. For in-
stance, VMware introduces a per-VM swap device(Banerjee et al. 2014), shared between
source and destination, to skip the migration of swapped-out pages. Jo et al.(Jo et al.
2013) propose bypassing cached pages at the source, fetching them directly from network-
attached storage instead. Jettison(Bila et al. 2012) presents the idea of partial VM mi-
gration, where only the active working set of an idle VM is initially transferred, with
the remainder paged on demand. Agile migration(Deshpande et al. 2016) takes a hybrid
pre-/post-copy approach, where non-working set pages are swapped to a per-VM swap
device, allowing only the working set to be migrated upfront.

Vecycle (Knauth & Fetzer 2015) explores checkpoint reuse, where a VM’s previous state is
stored on machines it has visited before. When the VM returns, that checkpoint is reused,
reducing both traffic and migration time. However, due to the lack of regular snapshot
updates, the memory state can diverge significantly, potentially increasing migration
overhead.

While all the above techniques aim to reduce migration time primarily by minimizing
transferred data, none leverage eliminating redundant fake dirty pages to reduce the
total migration time, which could further optimize live migration efficiency.

In parallel, a set of techniques has been proposed to detect resource pressures and al-
leviate them via VM migration. Solutions such as VMware DRS(Scheduler n.d.) and
SandPiper(Wood et al. 2009) monitor host-level resource usage to detect hotspots that
trigger migration. Zhang et al.(Zhang et al. 2011) use access-bit scanning to estimate a
VM’s working set, while Chiang et al.(Chiang et al. 2013) propose resizing VMs based
on working set size to enhance consolidation. Overdriver (Williams et al. 2011) tackles
transient hotspots with network memory swapping and sustained hotspots via migration.

An enhancement of pre-copy, known as SDPS(VMWare Inc. n.d.), reduces the migration
time for write-intensive VMs by throttling vCPUs during migration. However, this comes
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at the cost of degrading application performance(VMWare Knowledge Base n.d.).

In addition to the aforementioned optimizations, Nathan et al. (Nathan et al. 2016) state
that delta compression, as proposed by Zhang et al. and Svärd et al. (Zhang et al. 2010,
Svärd et al. 2011), and deduplication techniques, as presented by Deshpande et al. and
Wood et al. (Deshpande et al. 2011b, Wood et al. 2015), inherently help prevent the
transfer of fake dirty pages, thereby reducing total migration time.

Furthermore, Li et al. (Li et al. 2019) proposed a solution to eliminate the transfer of
fake dirty pages using secure hashing. Their approach stores the secure hashes of all
pages transferred during the initial iteration. In subsequent iterations, each page marked
as dirty is compared against its previously stored hash. If the new hash differs from the
stored one, the page is treated as genuinely dirty, transferred to the destination, and its
hash is updated. If the hashes match, the page is identified as a fake dirty page and is
not transferred. In their implementation, Li et al. use SHA1 (SHA1 2024) to compute
the hashes and consider identical hashes to indicate unchanged pages, as the probability
of an SHA1 collision is less than 10−31—effectively negligible.

3 Research Methodology
This research adopts the Design Science Research (DSR) methodology, a well-established
approach for developing and evaluating artifacts aimed at solving real-world problems.
DSR is particularly suitable for technical projects where both innovation and evaluation
are integral to the research process. In this study, DSR guided the design, implemen-
tation, and evaluation of D-Track, a fake dirty page tracking mechanism designed to
improve live virtual machine (VM) migration performance.

3.1 Justification for Using Design Science
Design Science Research focuses on creating and evaluating artifacts that offer solutions
to identified problems. The primary goal of this study was to solve inefficiencies in
QEMU/KVM’s dirty page tracking mechanism, specifically the issue of fake dirty page
generation. Since the solution required both a novel mechanism (the artifact) and em-
pirical validation, DSR was chosen as the most appropriate methodology.

The research followed the three core cycles of DSR:

• Relevance Cycle: The problem of fake dirty pages during Pre-Copy live migration
was identified from existing literature and practical challenges faced in data center
virtualization. This established the need for a more efficient mechanism for tracking
dirty pages.

• Design Cycle: The D-Track mechanism was iteratively designed and implemented,
with refinements based on technical feasibility and experimental results.

• Rigor Cycle: Existing knowledge from prior research on hash-based tracking,
silent store instructions, and compression techniques informed the artifact design
and evaluation.
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4 Design
This section provides the design and implementation details of D-Track, a fake dirty page
tracking mechanism to mitigate redundant memory page transfer when live migrating
VMs executing memory-intensive workloads.

Figure 6: Tracking Mechanism of Dirty Pages in KVM Li et al. (2019).

The D-Track mechanism is introduced as the solution to the defective dirty page tracking
mechanism of the hypervisor, as mentioned in Section 3.A.2.

The virtualization platform KVM/QEMU QEMU (2024), KVM (2024) can be divided
into KVM (kernel module) and QEMU (userspace tool). Both parts contain their dirty
bitmap. The dirty bitmap of the kernel traces the write request to a page and marks the
page as dirty. This process is continued throughout an iteration, marking all the dirty
pages. When the iteration ends, the kernel’s dirty bitmap is synced with userspace’s
dirty bitmap using API: ioctl, and the dirty bitmap of the kernel is reset to track the
next iteration. In the next iteration, the synced dirty bitmap of the userspace is used to
transfer modified pages. Therefore, the tracking of dirty pages is limited to one Pre-Copy
round, resulting in fake dirty page generation.

Li et al. Li et al. (2019) used Figure 6 to explain how fake dirty pages are generated due
to the tracking mechanism. During the first iteration of Pre-Copy Migration, the pages
in the memory region allocated to the VM are transferred by the migration thread to the
destination, starting from a low address in a sequential order. Let’s assume that during
the transfer of pages to the destinations from address A to address B, four pages, P, Q,
R, and S, are modified and marked as dirty in the kernel dirty bitmap. At that moment,
since P and Q are already transferred in the ongoing iteration, the modifications done to
them are not sent to the destination, making them dirty pages in the second iteration.
However, pages R and S are dirtied before they are transferred, as a result, the modified
versions of R and S are transferred in this current iteration, although pages R and S
are marked as dirty in the kernel’s dirty bitmap. When the kernel’s dirty bitmap syncs
with the userspace’s dirty bitmap, pages R and S are selected to resend it in the second
iteration. Therefore, in the second iteration, when pages R and S are resent, they already
exist in the destination, making pages R and S fake dirty pages.

D-Track is designed to identify pages like R and S and avoid transferring them in the
current iteration. Figure 7 provides the D-Track architecture. D-Track’s main component
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Figure 7: The architecture of D-Track

is keeping track of pages that become dirty during an iteration.

4.1 Why D-Track?
When considering the proposed algorithm of Li et al. Li et al. (2019), it uses secure hashes
to avoid transferring fake dirty pages. As mentioned in Section 3.B., the hash value of the
4KB pages selected to send must be calculated to identify the fake dirty pages. Since this
is done within the migration thread, it puts an overhead on the migration thread. Li et al.
have implemented their solution in QEMU 2.5.1 Li et al. (2019), but with modifications
made to the QEMU code, this overhead significantly impacts the Total Migration Time.
As shown in Figure 8, the total migration time taken when migrating using Li’s algorithm
(HBFDP SHA1) is higher than the total migration time taken by Vanilla Pre-Copy.

D-Track provides a mechanism to avoid transferring fake dirty pages without placing an
overhead on the migration thread.
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Figure 8: Variation of Total Migration Time with Ram sizes in Vanilla Pre-Copy,
XBZRLE, Compression and Li’s Algorithm

4.2 Exploration of Optimizations to Dirty Page Tracking Mech-
anism

Due to the computational overhead placed by the hashing mechanism to identify the fake
dirty pages, optimizing the dirty page tracking mechanism in Qemu to prevent Fake Dirty
Page transfers as it is one of the reasons for generating fake dirty pages which will be the
ideal way to prevent the transferring Fake Dirty Pages without computational overhead
on the migration thread.

Initial approach was to find function(s) in QEMU that handles write requests issued by
the Virtual Machine. After some extensive searching, it was found that there is no single
function that all guest writes go through. As a primary developer confirmed in cases
where a guest write is directed to host RAM, an optimization is employed within the
Just-In-Time (JIT) compilation process. Therefore the writes happen directly from the
host code that the JIT generates, without going out to any C code in QEMU itself.

Due to the limitations identified in the initial approach, the next approach was to im-
plement a memory listener method to capture write requests using the SIGSEGV signal
issued by the operating system’s kernel. The idea was to lock the memory allocated to
the Virtual Machine and capture segfault signals issued when Virtual Machine tries to
write to the memory. This approach was also ineffective since the signals the Virtual
Machine issued can not be captured as a SIGSEGV signal in the QEMU source code.

Following the limitations observed in the first (no single function handling all guest writes
due to JIT optimization) and second (inability to capture SIGSEGV signals from VM
writes), the D-Track mechanism was identified.
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4.3 D-Track’s Fake Dirty Tracking
The logic behind D-Track is as follows: at the start of the migration, the D-Track’s
page tracking mechanism is enabled, but the tracking of dirty pages is not started. This
mechanism keeps track of the dirty pages using a bitmap. The initial value of this bitmap
is zero, indicating there are no modifications to pages. At the start of an iteration, D-
Track starts tracking dirty pages by continuously syncing with the kernel’s dirty bitmap.
During the iteration, when a page is selected to transfer, the corresponding bit in the
D-Track’s bitmap is checked. If that bit is one, it means the page is transferring in the
next iteration, making it a fake dirty page. And that page is not transferred. Else if
that bit is zero, it means the page is not transferred in the next iteration, and the page
is approved to transfer in the current iteration.

Figure 9: Migration Bitmap and Dtrack Bitmap at moment of transferring Page 9

Lets consider the example shown in Figure 9: when page 9 is selected to transfer in the
iteration, the bit value of page 9 has to be selected from the D-Track’s bitmap. At that
instance, the 9th bit (marked in red) of the D-Track bitmap is one indicating it is a fake
dirty page. Hence, page 9 is not transferred.
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5 Implementation
KVM/QEMU QEMU (2024), KVM (2024) virtualization platform is used to implement
D-Track. KVM is a kernel module that coordinates with QEMU to execute the VM in
guest mode (ring 3) using hardware virtualization features. And QEMU manages the
userspace associated with each VM, performing device emulation and various manage-
ment functions like live migration. The QEMU code is modified to implement the D-Track
algorithm. The guest OS and applications have not been modified in the implementation.

5.1 Implementation of Li’s Algorithm and Its Variations
The algorithm proposed by Li et al. (2019) is taken as a baseline technique to evaluate
D-Track along with Vanilla Pre-Copy, XBZRLE, and Compression. This theoretical algo-
rithm will be referred to as the Hash-Based Fake Dirty Prevention (HBFDP) algorithm
for the rest of this dissertation. The initial implementation steps were to implement
HBFDP in the QEMU code base.

5.1.1 Primary HBFDP Prototype

According to the algorithm given by Li et al. (2019), at the start of the migration, an
array to store the hash values of memory pages for each RAMBlock is created with the
size of the total number of pages in the RAMBlock. Then, in the initial iteration, the
hash of each page is computed before transferring and store it in the specific index (page
address) of the corresponding array (created for the RAM block the page belongs to). In
subsequent iterations, the hash of each selected dirty page is computed, and the computed
hash is compared with the stored previous hash. If the hashes are similar, we mark the
page as a fake dirty page and skip the page from transferring. Otherwise, replace the
previous hash stored in the array with the current hash and transfer the page to the
destination. SHA1 hashing mechanism is used in this primary prototype for the hash
computation of the pages.

5.1.2 HBFDP Variations

Next, the two variations of the HBFDP was created by replacing SHA1 hashing with
MD5 and Murmur3 hashing. A separate hash type selection API was implemented using
QAPI provided by KVM/QEMU; the default hashing was set to SHA1 and enabled to
set MD5 and Murmur3 using the API. Therefore, the user has to set the hashing type by
sending the request to QMP (QEMU Monitor Protocol) for controlling qemu.

5.2 Implementation of D-Track
D-Track contains two main components: a Dirty page tracking component and a Fake
Dirty Identification component. The dirty page tracking component handles the con-
current tracking of dirty pages without placing overhead on the migration thread. The
fake dirty identification component identifies the fake dirty pages and avoids transferring
them to the destination.
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5.2.1 Dirty Page Tracking

D-Track is implemented as a separate thread from the migration thread, which concur-
rently tracks dirty pages without placing an overhead on the migration thread.

Initially, the D-Track thread is created and put on hold to track dirty pages until an
iteration is started. After the initial setup in the migration thread, it starts migrating
pages in iterations. When an iteration is started, a signal is sent from the migration thread
to the D-Track thread to concurrently track dirty pages while the pages are transferred
from the source host to the destination host. D-Track uses a separate dirty bitmap,
called dtrack bmap. The tracking is done by continuously syncing the dtrack bmap with
the kernel’s dirty bitmap using an ioctl() call. After the final page is sent in the iteration,
the synchronization process of dtrack bmap is stopped, and the dtrack bmap is cleaned to
use in the next iteration. This process happens in all the iterations, excluding the last
iteration where the synchronization of dtrack bmap is disabled.

5.2.2 Selection of Pages to Send

Algorithm 1 Identifying Fake Dirty Pages in Migration Thread
Input: last_stage // Flag to indicate last iteration

page // Page Selected to Transfer
Output: The page sending status.
1: procedure Selection(last_stage, page)
2: if last_stage is false then
3: bit← dtrack_dirty_page_state(page)
4: if bit == 1 then
5: skip page transfer
6: end if
7: end if
8: end procedure

As mentioned in Section 3.B.1, the D-Track thread continuously keeps track of the pages
that are dirtied during the migration. While the page tracking mechanism runs separately,
when a page is selected to transfer, the corresponding bit in the dtrack bmap is checked
to identify whether the page is a fake dirty page in the next iteration, as shown in the
algorithm 1. If the corresponding bit has a value of 1, that means the page is modified
and is a fake dirty page in the next iteration, hence skipping the page from transferring.
Else if the corresponding bit is 0, the page is transferred in the current iteration.
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6 Evaluation

6.1 Evaluation Metrics
This section provides the D-Track’s experimental results evaluated on the following met-
rics:

• Total Migration Time: Total time to migrate a VM from the source host to the
destination host.

• Downtime: Time Duration where the VM is Suspended to transfer CPU/IO
states.

• Application performance: Performance of the applications running in the VM
during migration.

D-Track is evaluated with and without incorporating different optimization techniques
(Compression and XBZRLE) against Vanilla Pre-Copy, XBZRLE enabled Pre-Copy,
Compression enabled Pre-Copy, and algorithm proposed by Li et al. Li et al. (2019).
Each data point is an average of three rounds of experiment.

6.2 Testbed Setup
The setup testbed contains two physical servers and an NFS server. The two physical
servers act as source and destination servers, each equipped with a 48-core Intel Xeon
E5-2697 v2 @ 3.500GHz processor with 314.8 GiB of RAM. The two servers and the NFS
server are interconnected with Gigabit Ethernet. The host OS is Ubuntu 22.04.3 LTS
x86_64 Server, and the chosen hypervisor is QEMU-KVM v8.1.2, running various VMs
utilizing Linux-based OSs (guest OS). Figure 10 presents the high-level architecture of
the testbed used for data collection.

Figure 10: High-level architecture of the Testbed

6.3 Evaluation on Variations of HBFDP Algorithm
The initial evaluation was carried out on the prototypes implemented for variations of the
HBFDP algorithm. The Figure 11 shows the total time migration of Vanilla Pre-Copy,
XBZRLE, Compression, HBFDP with SHA1 (Li’s algorithm Li et al. (2019)), HBFDP
with MD5 and HBFDP with Murmur3. When considering the graph, it can be seen
that, as mentioned in Section 3.1, the total migration time taken when migrating using
HBFDP with SHA1 (Li’s algorithm Li et al. (2019)) is higher than the total migration
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time taken by Vanilla Pre-Copy. The variations of HBFDP algorithm with MD5 and
Murmur3 hashing instead of SHA1 also has higher total migration time than Vanilla
Pre-Copy. Hence, it can be deduced that the computational overhead placed by the
HBFDP algorithm on the migration thread is irrespective of the hashing technique.

Figure 11: Total Migration Time for HBFDP Variations

Next the HBFDP algorithm was combined with XBZRLE and compression optimizations
and then evaluated. The Figure 12 shows the total time migration of Vanilla Pre-Copy,
XBZRLE, Compression, HBFDP with SHA1 combined with Compression, HBFDP with
MD5 combined with Compression and HBFDP with Murmur3 combined with Compres-
sion. When considering the HBFDP variations combined with compression optimization,
they all have a higher total migration than the Vanilla Pre-Copy.

Figure 12: Migration Performance for various techniques

21



The Figure 13 shows the total time migration of Vanilla Pre-Copy, XBZRLE, Compres-
sion, HBFDP with SHA1 combined with XBZRLE, HBFDP with MD5 combined with
XBZRLE and HBFDP with Murmur3 XBZRLE with Compression. Similarly, when con-
sidering the HBFDP variations combined with XBZRLE optimization, they all have a
higher total migration than the Vanilla Pre-Copy. Hence, the computational overhead
placed by the HBFDP algorithm on the migration thread is still not reduced by incorpo-
rating different optimizations to HBFDP.

Figure 13: Migration Performance for various techniques

6.4 Impact on Memory-Intensive Workload
The performance of D-Track for memory-intensive workloads was captured using Mem-
cached Memcached (2024). The Memcached workload was configured by allocating 4
threads to handle requests, and 90% of the VM memory size was allocated as Memcached
cache. The Memaslap benchmark was configured in a client server to send requests to
the Memcached in the VM with set and get the ratio of 1:0.

Figure 14 shows the total time migration of Vanilla Pre-Copy, XBZRLE, Compression,
HBFDP with SHA1 (Li’s algorithm Li et al. (2019)), D-Track, D-Track combined with
Compression and D-Track combined with XBZRLE. As the graph depicts, D-Track and
D-Track combined with Compression perform better than Vanilla Pre-Copy, XBZRLE,
HBFDP with SHA1 and both techniques has more than 10% improvement in total migra-
tion time when compared to Vanilla Pre-Copy when migrating VM executing memory-
intensive workload. When considering D-Track combined with XBZRLE, it performs
better than Vanilla Pre-Copy, XBZRLE, and HBFDP with SHA1 for VM RAM sizes
1GB, 2GB, 4GB, and 8GB, but there is no improvement in total migration time for VM
RAM sizes more than 8GB when compared with Vanilla Pre-Copy and XBZRLE.

Although D-Track performs better compared to Vanilla Pre-Copy, Compression opti-
mization performs better than D-Track, although it does not prevent the transfer of Fake
Dirty Pages. But it can be seen that, the D-Track combined with Compression performs
better than Compression Optimization when migrating VM executing memory-intensive
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Figure 14: Migration Performance for various techniques

Ram XBZRLE Compres-
sion

Li’s
Algorithm

D-Track D-Track +
XBZRLE

D-Track +
Compres-

sion

1 3.88% 31.62% 4.41% 10.92% 5.66% 40.87%
2 3.45% 34.66% 8.16% 9.74% 9.19% 42.62%
4 5.36% 29.33% -5.41% 16.16% 6.46% 33.41%
8 2.75% 17.14% -29.47% 13.33% 1.51% 27.80%
12 0.58% 15.77% -57.29% 7.98% -20.25% 25.19%
16 1.84% 15.86% -67.33% 11.65% -13.71% 22.44%

Table 1: Total Migration Time Improvement Percentage Compared to Vanilla Pre-Copy

workload. The results in the Table 1 presents the total migration time improvement per-
centage of XBZRLE, Compression, and algorithm proposed by Li et al. Li et al. (2019),
D-Track, D-Track combined with Compression and D-Track combined with XBZRLE
techniques compared to Vanilla Pre-Copy. D-Track combined with the Compression
technique shows the highest improvement percentage (over 20% upto 40%). These results
highlight that Dtrack reduces the total migration time and performs better compared to
other techniques when migrating VMs running memory-intensive workloads.
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6.5 Impact on CPU-intensive Workload
This section shows how D-Track affects the performance of CPU-intensive applications
executing in a VM using Quicksort to determine the impact of D-Track on the applications
executing on the VM. The Quicksort benchmark repeatedly allocates 512MB of memory,
writes random integers to the allocated memory, and performs quicksort on the values.
Figure 15 shows the number of sorts performed per second for Vanilla Pre-Copy and
D-Track version 2 during migration. As seen in the Figure 15 (a) to (f), the D-Track
technique reduces the Number of Sorts performed during the migration. According to
the Table 2, from 1GB to 16GB ram sizes, the percentage of reduction of the number of
sorts decreases from 30% to 15%. This degradation of application performance is due to
the continuous invoking of ioctl() call in the dtrack thread.

(a) RAM 1GB

(b) RAM 2GB
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(c) RAM 4GB

(d) RAM 8GB

(e) RAM 12GB
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(f) RAM 16GB

Figure 15: Impact of D-Track on the CPU-intensive workload (The start and the end of
the migration are denoted by the Markers)

Ram Size Reduction in Average # of Sorts per Second

1 32.29%
2 32.00%
4 25.38%
8 22.98%
12 15.34%
16 16.38%

Table 2: Reduction in Number of Sorts per Second in Quicksort Algorithm in D-Track
Compared to Vanilla Pre-Copy

To overcome this impact on application performance, a delay is introduced between ioctl()
calls in the dtrack thread. This delay reduces the number of ioctl() calls but ensures the
tracking of fake dirty pages as before. Figure 16 shows the number of sorts performed
per second for Vanilla Pre-Copy and D-Track version 2 during migration. Accordingly,
as the results in Table 3 show, it can be seen that Dtrack version 2 does not have an
observable impact on CPU-intensive workloads.
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Ram Size Reduction in Average # of Sorts per Second

1 -7.54%
2 1.93%
4 5.98%
8 -3.86%
12 1.61%
16 1.41%

Table 3: Reduction in Number of Sorts per Second in Quicksort Algorithm in D-Track
Version 2 Compared to Vanilla Pre-Copy

(a) RAM 1GB

(b) RAM 2GB
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(c) RAM 4GB

(d) RAM 8GB

(e) RAM 12GB
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(f) RAM 16GB

Figure 16: Impact of D-Track Version 2 on the CPU-intensive workload (The start and
the end of the migration are denoted by the Markers)

6.6 Impact on Multiple-Intensive Workload
The impact on application throughput and latency when using D-Track for multiple-
intensive workloads that are (network, CPU, and memory intensive) was captured using
Yahoo Cloud Serving Benchmark (YCSB) Benchbase (2024) and PostgreSQL PostgreSQL
(2025). The YCSB benchmark was executed in the VM, and PostgreSQL was hosted in
a client server. The PostgreSQL first loads its database. Then, the YCSB client queries
data using update operations (50% read & 50% update) when the VM is migrated from
the source host to the destination host.

Figure 17 shows the throughput and latency variation. When considering both through-
put and latency, the D-Track version 2 performs similarly to Vanilla Pre-Copy without
any considerable application performance degradation.

(a) Throughput - RAM 1GB

line-breaker
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(b) Latency - RAM 1GB

(c) Throughput - RAM 2GB

(d) Latency - RAM 2GB
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(e) Throughput - RAM 4GB

(f) Latency - RAM 4GB

(g) Throughput - RAM 8GB
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(h) Latency - RAM 8GB

(i) Throughput - RAM 12GB

(j) Latency - RAM 12GB
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(k) Throughput - RAM 16GB

(l) Latency - RAM 16GB

Figure 17: Impact of D-Track Version 2 on the Multiple-intensive workload
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7 Discussion
The evaluation of the HBFDP algorithm variations and the proposed D-Track mecha-
nism provides critical insights into their effectiveness in optimizing live VM migration by
mitigating fake dirty pages, particularly under different workload conditions. The results
highlight both the strengths and limitations of these techniques, offering a foundation for
further improvements in migration efficiency and application performance when migrating
VMs with memory-intensive workloads.

7.1 Computational Overhead of HBFDP and Its Variations
The initial evaluation of HBFDP with different hashing techniques (SHA1, MD5, and
Murmur3) revealed a consistent increase in total migration time compared to Vanilla
Pre-Copy. This suggests that the computational overhead introduced by the hashing
mechanism in HBFDP is significant enough to offset any potential benefits from reducing
redundant page transfers. Notably, even when combined with existing optimizations
like XBZRLE and compression, HBFDP still underperformed compared to Vanilla Pre-
Copy. This indicates that the primary bottleneck lies in the hashing and page-tracking
mechanism itself, rather than the data transfer optimizations.

A critical observation here is that the choice of hashing algorithm (SHA1 vs. MD5 vs.
Murmur3) did not significantly alter the performance, implying that the overhead is
intrinsic to the HBFDP approach rather than being hash-specific. This raises questions
about the efficiency of HBFDP algorithm, where the cost of continuous hashing outweighs
the benefits of reduced network transmission.

7.2 D-Track’s Superiority in Memory-Intensive Workloads
In contrast to HBFDP, D-Track demonstrated a substantial improvement in total migra-
tion time for memory-intensive workloads, particularly when combined with compression
optimization. The results showed up to a 40% reduction in total migration time com-
pared to Vanilla Pre-Copy, outperforming both XBZRLE and standalone compression
optimizations. This improvement can be attributed to D-Track’s ability to efficiently
track fake dirty pages, thereby reducing unnecessary data transfers without incurring the
same computational overhead as HBFDP.

Interestingly, while compression alone also reduces migration time, D-Track combined
with compression delivered even better results. This suggests that fake dirty page elim-
ination and compression are complementary optimizations, where D-Track reduces the
volume of data that needs to be compressed, further enhancing efficiency. However, when
D-Track was combined with XBZRLE, the benefits diminished for VM sizes beyond 8GB.
This could be due to XBZRLE’s inefficiency in handling larger memory footprints or in-
creased computational overhead when paired with D-Track’s tracking mechanism.

7.3 Mitigating Performance Degradation in CPU-Intensive Work-
loads

The initial implementation of D-Track introduced a noticeable performance degradation
(up to 30% reduction in Quicksort operations per second) for CPU-intensive workloads.
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This was primarily due to frequent ioctl() system calls, which disrupted the VM. How-
ever, by introducing a controlled delay between ioctl() calls in D-Track version 2, this
overhead was significantly reduced, bringing performance degradation down to negligible
levels.

This finding is crucial because it demonstrates that real-world VM migrations must bal-
ance tracking accuracy with computational intrusiveness. While aggressive page track-
ing improves migration efficiency, it must not come at the cost of application perfor-
mance—especially for latency-sensitive or CPU-bound workloads. The success of D-Track
version 2 in mitigating this issue highlights the importance of adaptive synchronization
mechanisms in live VM migration.

7.4 Robustness in Multiple-Intensive Workloads
For workloads that are simultaneously network, CPU, and memory-intensive (e.g., YCSB
with PostgreSQL), D-Track version 2 performed comparably to Vanilla Pre-Copy in
terms of throughput and latency. This indicates that the optimizations introduced in
D-Track do not introduce significant overhead in complex, multi-threaded environments.
Given that real-world cloud workloads often exhibit such mixed characteristics, this result
strengthens the case for D-Track’s practical applicability.

8 Conclusion
This dissertation presents D-Track, a fake dirty page tracking mechanism to mitigate re-
dundant memory page transfer when migrating VMs executing memory-intensive work-
loads. D-Track solves the inherent problem in QEMU: defects in the dirty page tracking
mechanism by introducing a dirty page tracking mechanism during Pre-Copy iterations
without placing an overhead on the migration thread. The dissertation presented the
design, implementation, and evaluation of D-Track on the KVM/QEMU platform.

8.1 Addressing Research Questions
8.1.1 Research Question 1

The first research question focused on how to mitigate redundant data transfers
by identifying fake dirty pages with minimal overhead while solving the limi-
tations of QEMU’s existing dirty page tracking mechanism.

The proposed D-Track mechanism introduces an efficient bitmap-based tracking mecha-
nism that identifies fake dirty pages. D-Track avoids fake dirty page transfers without
introducing excessive computational overhead. Key findings are as follows: HBFDP,
despite its theoretical benefits, introduced significant hashing overhead, increasing mi-
gration time compared to Vanilla Pre-Copy. D-Track, in contrast, achieved up to 40%
reduction in total migration time for memory-intensive workloads by eliminating fake
dirty pages without relying on costly hashing. Also, the performance degradation of
D-Track on CPU-intensive workloads was less than 32%, which is considerable when
compared with the Vanilla Pre-Copy. This performance degradation was reduced to 1%
by modifying the D-Track’s bitmaps synchronization by adding a delay between ioctl()
calls.
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This research demonstrates that bitmap-based tracking is more efficient than hash-based
approaches for fake dirty page detection, as it avoids computational overhead while still
mitigating redundant transmissions.

8.1.2 Research Question 2

The second research question focused on how to reduce the data transferring load in
Pre-Copy Migration to improve the performance of memory-intensive work-
loads.

Since D-Track reduces the number of pages transferred, applying compression on the
remaining data further improves efficiency. This hybrid approach achieved the best over-
all performance, outperforming standalone compression or XBZRLE. Key findings are
as follows: D-Track combined with Compression reduced migration time by 20%-40%
compared to Vanilla Pre-Copy for memory-heavy workloads like Memcached. D-Track
combined with XBZRLE was less effective than D-Track combined with compression,
particularly in larger VMs, due to its higher CPU overhead. D-Track alone still out-
performed HBFDP and Vanilla Pre-Copy, proving that fake dirty page elimination is a
fundamental optimization before applying further data reduction techniques.

These results highlight that combining optimization with D-Track improves the live VM
migration by reducing fake dirty pages and reducing the transferring load during the
migration process for memory-intensive workloads.

9 Limitations & Future Work

9.1 Limitations
While D-Track shows promising improvements in live VM migration efficiency, several
limitations must be acknowledged:

• Applying to Multiple VM Migration: The current implementation and eval-
uation of D-Track have been limited to single VM migration scenarios. Its per-
formance and effectiveness in scenarios involving concurrent migration of multiple
VMs remain untested. Shared resource contention and cumulative overheads may
impact the results.

• Static Tracking Interval: D-Track currently uses a fixed delay interval for syn-
chronizing the bitmap using ioctl() system calls. While effective in reducing per-
formance degradation, this static approach may not adapt optimally to varying
workload intensities (e.g., dynamic CPU or memory usage fluctuations).

• Applications in Post-Copy Migration: D-Track is designed specifically for
Pre-Copy migration and has not yet been extended to Post-Copy mechanisms,
specifically in Checkpointing. Thus, its applicability is limited in systems where
Post-Copy is preferred.

• No Integration with Modern Orchestration Systems: The current version
of D-Track has not been integrated with large-scale VM orchestration platforms
(e.g., OpenStack or Kubernetes-based VM managers), which limits its immediate
deployability in production-grade cloud systems.
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9.2 Future Work
To address the limitations outlined above and further improve the utility of D-Track,
several directions for future work are proposed:

• Multi-VM Migration Optimization: Future research should evaluate and en-
hance D-Track’s effectiveness when handling simultaneous migrations of multiple
VMs. This involves managing shared I/O bottlenecks, inter-VM dependencies, and
ensuring fairness in resource allocation during migration. Potential strategies in-
clude workload-aware scheduling and parallel D-Track instance coordination.

• Dynamic Synchronization Intervals: To better balance overhead and accuracy,
D-Track can be extended with adaptive bitmap synchronization mechanisms. These
would dynamically tune the delay between ioctl() calls based on runtime metrics
such as CPU usage, memory write rate, or application responsiveness, thereby
minimizing intrusion during peak activity.

• Integration with Post-Copy Migration: An important avenue for enhance-
ment is adapting D-Track to work with Post-Copy migration models. Specifically,
D-Track can assist during the checkpointing phase by identifying and excluding
fake dirty pages from initial transfer sets, reducing both downtime and total data
transferred.

• Workload-Aware Optimization: Incorporating machine learning or heuristic-
based policies to classify workload types in real time (e.g., CPU-bound, memory-
bound, or I/O-bound) can help D-Track adjust its behavior accordingly, choosing
optimal tracking and compression strategies on the fly.

• Cloud Platform Integration and Automation: Integrating D-Track into mod-
ern virtualization orchestration systems such as OpenStack, Proxmox, or VMware
vSphere will make it practically viable for enterprise use. Automation scripts, APIs,
and dashboard tools can be developed to manage D-Track settings and monitor its
performance across data center operations.

• Security and Fault Tolerance Considerations: Since D-Track interacts with
low-level memory operations, its design can be extended to detect abnormal page
dirtiness patterns, contributing to security (e.g., intrusion detection) and fault tol-
erance during migration.
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