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Abstract

Federated Learning (FL) enables multiple clients to collaboratively train deep models
without sharing their raw data, yet model updates can still leak sensitive information
through inference attacks. Differential Privacy (DP) offers formal privacy guarantees by
perturbing updates with noise, but naively adding noise at each client often degrades
model utility and rapidly consumes the privacy budget. Adaptive DP‑FL developed by
Fu et al. (2022) mitigates this by using per‑client adaptive clipping and validation‑driven
noise decay, but still relies on each client injecting noise locally, increasing variance and
requiring trust in the aggregation server. Secure Multi‑Party Computation (SMPC) via
Shamir’s secret sharing ensures that individual updates remain hidden during aggrega-
tion, but has not been combined with adaptive DP in FL.

In this research, we propose a novel hybrid FL framework that integrates adaptive
DP‑FL with SMPC. Each client adaptively clips its gradients and secret‑shares them
across multiple non‑colluding aggregation servers. The servers securely aggregate the
shares, reconstruct only the global sum, and inject a single, globally calibrated Gaussian
noise term to satisfy (ε,δ )‑DP under Rényi DP accounting of Mironov (2017). This
design reduces the effective sensitivity by a factor of 1/K (with K clients), lowers total
noise variance by O(K2), and simplifies privacy bookkeeping.

We implement both the baseline adaptive DP‑FL and our hybrid scheme in PyTorch
using Opacus, and evaluate them on MNIST and Fashion‑MNIST under privacy budgets
ε = 0.5 and ε = 0.3. The hybrid method achieves up to 96.45% and 94.32% test accuracy
on MNIST versus 95.89% and 94.27% for the baseline, and 79.27% and 78.42% on Fash-
ion‑MNIST versus 79.00% and 76.21%, respectively. Accuracy and loss curves against
ε demonstrate tighter privacy‑utility trade‑offs. Our results show that combining adap-
tive DP with SMPC offers a practical path to stronger privacy guarantees and improved
model performance, making FL more viable for sensitive domains such as healthcare and
finance.
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1 Introduction

1.1 Background to the Research
Federated Learning (FL) is a decentralized approach to machine learning that enables
multiple parties to collaboratively train a model while keeping their data stored locally
(McMahan, Moore, Ramage, Hampson & Arcas (2017a)). This methodology is par-
ticularly valuable in scenarios where data privacy and security are paramount, such as
in healthcare and finance sectors (Sheller et al. (2020)). Unlike traditional centralized
machine learning, where data is aggregated into a central repository for training, FL dis-
tributes the learning process across multiple devices or nodes. Each participant in the FL
process trains a model locally on their dataset and then shares only the model updates
(e.g., gradients) with a central server. This server aggregates the updates to improve the
global model, which is then redistributed to participants for further training.

Google first introduced the idea of federated learning in 2016 (McMahan, Moore,
Ramage, Hampson & Arcas (2017a)), primarily to allow Android smartphone users to
update models locally without disclosing sensitive personal information. Federated learn-
ing was initially applied, to enhance the quality of the language model and safeguard
users’ private information on the Google Keyboard. After then, Google implemented an
application-oriented FL system. Federated learning relies on parameter sharing instead
than collecting raw user input, which is the fundamental idea that makes distributed
learning possible. Federated Learning offers sensitive data privacy by storing data on
users’ devices. Because of this unique feature that sets it different from conventional
deep learning methods, it has attracted a lot of attention from a variety of applications
since it can protect user privacy while promoting collaborative learning. According to
the paper Communication-Efficient Learning of Deep Networks from Decentralized Data
McMahan, Moore, Ramage, Hampson & Arcas (2017a), state their approach “We term
our approach Federated Learning, since the learning task is solved by a loose federation
of participating devices (which we refer to as clients) which are coordinated by a central
server”. As the name implies, the model is trained by clients which are in a decentralized
location. They download the initial model from a central server and train it on their own
private data. Only model updates are sent back to the central server, where they are
aggregated and averaged with those from other users to improve the shared model.

Since its inception, FL has undergone significant advancements, driven by the need to
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Figure 1.1: Basic Process of Federated Learning

enhance data privacy and security while maintaining model performance. Early develop-
ments in FL focused on basic protocols for secure model aggregation and addressing data
heterogeneity (Yang et al. (2019)). Over time, the integration of privacy-preserving tech-
niques such as Differential Privacy (DP) and Secure Multi-Party Computation (SMPC)
has become a central theme in the evolution of FL (Dwork & Roth (2013)).

While FL inherently protects data by keeping it decentralized, the model updates
shared in training can still leak sensitive information if not properly protected, as demon-
strated in studies on differential privacy and multi-party computation (Dwork & Roth
(2013)). Model updates, even without raw data, are vulnerable to privacy attacks such
as membership inference, model inversion, and property inference attacks, which can ex-
tract sensitive information about the training data (Shokri & Shmatikov (2015)). The
risk of such attacks is especially critical in privacy-sensitive fields like healthcare, where
patient data must remain confidential. For example, in a healthcare FL system, even
though patient data stays within each institution, shared gradients could inadvertently
reveal sensitive patient information if the updates are not adequately protected.

The primary challenge in FL is finding an effective balance between privacy and
performance. Current privacy-preserving techniques such as Differential Privacy (DP)
and Secure Multi-Party Computation (SMPC) address this issue but introduce their own
limitations. DP, which injects noise into model updates to obscure specific data points,
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can decrease model accuracy, while SMPC, which protects data by enabling computations
without revealing raw inputs, can significantly increase computational overhead (Geyer
et al. (2017b)).

This research proposes a novel solution integrating Adaptive Differential Privacy
(ADP) with SMPC to address these challenges. The overarching aim of this research
is to create a federated learning framework that achieves optimal privacy-performance
balance through adaptive DP and SMPC. By advancing the field of FL with these im-
provements, this study aspires to broaden FL’s applicability in privacy-sensitive domains,
making collaborative machine learning more secure and effective.

1.2 Problem Statement
Federated Learning (FL) allows many devices to jointly train a machine‑learning model
without sharing their raw data, but it still risks leaking private information through
the gradients that clients send. Differentially Private FL (DP‑FL) adds noise to those
gradients to protect privacy, yet this often comes at the cost of lower model accuracy
and rapid consumption of the privacy budget. The recent Adap DP‑FL approach—using
adaptive clipping and gradually decreasing noise—improves accuracy, but it still relies
on each client injecting noise locally. This local noise both limits the utility of individual
updates and requires trusting the server to correctly aggregate noisy gradients.

At the same time, Secure Multi‑Party Computation (SMPC) techniques, such as
Shamir’s secret sharing, can ensure that the server only ever sees encrypted gradient
shares, but SMPC has not been combined with adaptive DP‑FL. As a result, current
DP‑FL methods either sacrifice too much accuracy or depend on a semi‑trusted server,
and they do not take full advantage of SMPC’s strong confidentiality guarantees.

Thus, there is a clear gap: no existing solution integrates adaptive differential privacy
with SMPC to shift noise injection to the secure aggregation step. Addressing this gap is
essential to achieve a better balance between privacy protection (low (ε,δ )) and model
performance in real‑world federated learning applications.

1.3 Research aim, questions and objectives

1.3.1 Research aim
The primary objective of this research is to design, implement, and evaluate a federated
learning framework that seamlessly integrates adaptive differential privacy with secure
multi‑party computation. By accomplishing these goals, this work seeks to demonstrate
a practical pathway to stronger privacy guarantees without sacrificing the utility of fed-
erated models in real‑world distributed learning scenarios.
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1.3.2 Research questions
1. How can Secure Multi‑Party Computation (SMPC) be used to improve

privacy in Adaptive Differentially Private Federated Learning (Adap
DP‑FL)?

This research question explores how Secure Multi-Party Computation (SMPC) can
be integrated into Adaptive Differentially Private Federated Learning (Adap DP-
FL) to better protect client privacy. Instead of sending their gradients directly,
each client securely splits and shares their adaptively clipped updates. The central
server then only sees the combined result—not any individual client’s data—before
applying differential privacy noise. Through experiments on widely used federated
learning benchmarks, we will demonstrate that this SMPC‑based aggregation pre-
serves model utility while significantly reducing the risk of per‑client data exposure
and minimizing the trust placed in the server.

2. How can we theoretically prove that the proposed hybrid approach sat-
isfies the required differential privacy guarantees?

This objective is to provide a rigorous mathematical analysis showing that our
hybrid DP‑SMPC mechanism computes its privacy loss correctly, following the for-
mal rules of differential privacy. By carrying out this theoretical validation, we will
prove that our privacy accountant accurately tracks the global (ε,δ ) budget. We
will then use these analytical results to guide and interpret our empirical evalua-
tions.

1.3.3 Research objectives
• Develop a federated learning system that integrates SMPC—via Shamir’s secret

sharing—with adaptive differential privacy techniques (adaptive gradient clipping
and noise‑scaling).

• Analyze how SMPC protects individual client updates during aggregation and re-
duces the trust assumptions placed on the central server.

• Provide a formal proof that the hybrid DP‑SMPC scheme achieves the target pri-
vacy parameters (ε,δ )

• Compare model accuracy between the SMPC‑enabled DP‑FL system and a baseline
Adap DP‑FL system without SMPC, under the same overall privacy budget.
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1.4 Significance of the Project
From a computer science point of view, this project pushes the boundaries of privacy in
federated learning by combining two powerful ideas—adaptive differential privacy and
secure multi-party computation—into one practical system. Instead of each client adding
noise individually, we shift the noise addition to the final secure aggregation step using
Shamir’s secret sharing. This reduces the amount of privacy budget each client needs to
spend and makes our overall privacy analysis tighter, all while keeping model accuracy
high, even under strict privacy limits. The prototype we’ve built, along with a formal
privacy tracker, can act as a helpful guide for future researchers working on privacy-
preserving machine learning.

In real-world terms, our method makes federated learning safer and more trustworthy
by reducing how much we need to rely on central servers or secure communication net-
works. This is especially useful for sensitive areas like healthcare, finance, or IoT systems,
where keeping personal data private is really important. Our approach helps organiza-
tions meet privacy laws like GDPR and HIPAA, while still building models that actually
work well. By showing that strong privacy doesn’t have to mean poor performance, this
research opens the door for wider use of federated learning in everyday, privacy-sensitive
applications.

1.5 Research Approach and Methodology
This research adopts a structured and iterative methodology to design, implement, and
evaluate a privacy-preserving federated learning system that integrates Adaptive Dif-
ferential Privacy (Adap DP-FL) with Secure Multi-Party Computation (SMPC). The
methodology comprises the following key stages:

1. Recreation of Baseline Models

To establish a benchmark for performance and privacy comparison, the first step
involves recreating relevant baseline model:

• An Adaptive Differentially Private Federated Learning (Adap DP-FL) model,
implemented based on the approach proposed by Fu et al. (2022) incorporating
adaptive clipping and noise scaling.

This baseline model serve as references to evaluate the effectiveness of the proposed
hybrid method.

2. Architectural Design of the Hybrid DP-SMPC Model

Following the baselines, the research focuses on designing the architecture of the
proposed hybrid approach that combines adaptive differential privacy with secure
aggregation through SMPC. This involves:

• Defining the secure gradient sharing mechanism (e.g., Shamir’s secret sharing).
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• Identifying optimal points for noise injection.

• Ensuring compatibility with existing adaptive clipping and privacy accounting
techniques.

3. Theoretical Validation of Privacy Guarantees

A critical part of the methodology involves analyzing and validating the privacy
accounting of the hybrid model. This includes:

• Reviewing literature and mathematical frameworks for differential privacy in
secure aggregation settings.

• Demonstrating that the hybrid model satisfies differential privacy guarantees
across multiple training rounds.

• Ensuring noise calibration and sensitivity analysis are theoretically sound.

4. Implementation of the Proposed Hybrid Model

The designed hybrid architecture is implemented in a simulated federated learning
environment. Core components include:

• Local training with adaptive clipping.

• Secret-sharing of gradients.

• Secure aggregation at the server followed by global noise addition.

• Differential privacy tracking using composition theorems.

5. Experimental Evaluation and Benchmarking

The final stage involves experimental validation of the proposed system using bench-
mark datasets such as MNIST and Fashion-MNIST.The results are compared across
all models to assess the effectiveness of the hybrid approach in balancing privacy
and performance in federated learning.

1.6 Outline of the Dissertation
This dissertation is organized into six chapters, each building upon the previous to pro-
vide a comprehensive investigation into privacy-preserving federated learning using a
hybrid approach that integrates Adaptive Differential Privacy and Secure Multi‑Party
Computation.

• Chapter 1: Introduction provides the background and motivation for the study,
defines the problem statement, outlines the research questions, objectives, and sig-
nificance of the project, and briefly introduces the methodology and scope of the
work.
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• Chapter 2: Background and Literature Review offers foundational knowl-
edge on federated learning and its key challenges, with a particular focus on privacy
threats and preservation mechanisms. It introduces core concepts such as Differen-
tial Privacy and Secure Multi‑Party Computation (SMPC), surveys existing meth-
ods that balance privacy and utility, and identifies the research gap that this thesis
aims to address.

• Chapter 3: Design details the high-level architectural design of the proposed
system. It contrasts the baseline Adaptive DP‑FL framework with the proposed
hybrid approach, illustrating component interactions, data flows, and the overall
privacy accounting mechanisms involved.

• Chapter 4: Implementation documents the technical setup and development
workflow. It describes the datasets, model architectures, local training process
using Opacus, and key privacy-preserving components including adaptive gradient
clipping, adaptive noise scaling, SMPC-based secure aggregation using Shamir’s
Secret Sharing, and logging and checkpointing mechanisms.

• Chapter 5: Results and Analysis presents the experimental outcomes on
MNIST and Fashion‑MNIST datasets. It evaluates both the baseline and hybrid
methods using metrics such as test accuracy, test loss, and global privacy budget
(ε). It also provides a comparative analysis to highlight trade-offs between utility
and privacy under varying noise settings.

• Chapter 6: Conclusion summarizes the major findings, answers the research
questions based on empirical evidence, discusses the limitations of the study, and
proposes several directions for future research in privacy-preserving federated learn-
ing.
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1.7 Delimitation of Scope

1.7.1 In Scope
The following aspects will be covered under the research project.

• Development of a federated learning setup using standard datasets (e.g., MNIST,
Fashion-MNIST) in a simulated environment.

• Design and implementation of the hybrid approach, integrating SMPC with Adap
DP-FL.

• Privacy accounting and theoretical validation of differential privacy guarantees in
the hybrid system.

• Empirical evaluation of model utility and privacy loss (ε,δ )

1.7.2 Out Of Scope
The following aspects will be out of the project scope

• Real-world deployment on mobile devices or production federated learning plat-
forms

• Comparison with other advanced privacy-preserving techniques, such as homomor-
phic encryption etc.

• Formal cryptographic security proofs of the SMPC protocol (focus is on practical
implementation and privacy gain).
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2 Background & Literature review

Federated learning is a machine learning setting which encompasses multiple clients work-
ing together to solve a machine learning problem, with a central server or service provider
coordinating the effort where each clients’ raw data is stored locally, with model updates
are transferred for immediate aggregation to achieve the learning objectives.

2.1 Training Process
The following steps will explain the model training process of a typical federated learn-
ing system which encompasses the FedAverage algorithm of McMahan, Moore, Ramage,
Hampson & Arcas (2017a). There can be many variations of this, but this can be con-
sidered as a common template. The training procedure will be coordinated by a central
server, which will keep repeating the same steps until the training is stopped (Liu et al.
(2022)).

1. Client selection - The server takes samples from a group of clients.

2. Broadcast - The chosen clients download a training program along with the current
model weights.

3. Client computation - Using the training program, which may, for example, run
Stochastic gradient descent on the local data (as in Federated Averaging), each
chosen device locally computes an update to the model.

4. Aggregation - An aggregate of the device updates is gathered by the server. Addi-
tionally, this process makes use of a variety of techniques, including secure aggrega-
tion, noise addition, to maintain privacy, and techniques to improve communication
efficiency.

5. Model update - The shared model is updated locally by the server using the aggre-
gated updates that was calculated from the clients that took part in the current
round.

2.2 Key Challenges
Federated learning (FL) must overcome several interconnected challenges to be practical
and effective in real‐world deployments:
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• Statistical Heterogeneity. In FL, each client’s local data often follow different
distributions (so‐called non‐IIDness), which can slow convergence and degrade the
accuracy of the global model. Standard aggregation methods such as FedAvg as-
sume homogeneous data and may perform poorly under high heterogeneity (Zhao
et al. 2018, McMahan, Moore, Ramage, Hampson & y Arcas 2017).

• Communication Overhead. FL requires frequent transmission of model param-
eters between the central server and potentially thousands of edge devices. Limited
bandwidth, high latency, or intermittent connectivity make such synchronization
costly. Techniques like increasing local computation (multiple epochs) (McMa-
han, Moore, Ramage, Hampson & y Arcas 2017), structured updates (Konečný
et al. 2016), and client subsampling are commonly used to reduce communication
rounds.

• Privacy Preservation. Although raw data never leave client devices, exchanged
model updates can still leak sensitive information via model‐inversion or member-
ship‐inference attacks (Melis et al. 2019, Shokri et al. 2017). Consequently, FL
must integrate formal privacy measures such as differential privacy (Abadi et al.
2016) and cryptographic protocols like secure aggregation (Bonawitz et al. 2017) to
provide provable confidentiality.

Together, these challenges—statistical heterogeneity, communication constraints, and rig-
orous privacy requirements—define the core research questions addressed throughout this
thesis.

2.2.1 Privacy Challenges in Federated Learning
Although federated learning (FL) never shares raw data, recent studies have demon-
strated that exchanging model updates still exposes sensitive information (Melis et al.
2019, Shokri et al. 2017). In particular, most privacy breaches occur during the infer-
ence phase, when the collaboratively trained model is deployed to make predictions on
new inputs (Rafi et al. 2024). Adversaries exploit released model parameters or queried
outputs to mount a variety of attacks:

1. Membership Inference Attacks (Shokri et al. 2017): Determine whether a spe-
cific record was part of a client’s training set by observing the model’s confidence
or loss on that example.

2. Model Inversion Attacks (Fredrikson et al. 2015): Reconstruct approximate
input features (e.g. images or attributes) from the model’s outputs or gradients,
effectively “inverting” the model to reveal private training data.

3. Property Inference Attacks (Ateniese et al. 2015): Infer global or client‐specific
attributes (e.g. demographic statistics) that are correlated with the training data
but not intended for disclosure.

10



4. Model Poisoning Attacks (Bagdasaryan et al. 2020): Malicious clients craft and
submit carefully designed updates to introduce backdoors or degrade the overall
performance of the global model.

5. Data Poisoning Attacks (Muñoz-González et al. 2017): Adversaries contaminate
the training data—either by injection or modification—to bias the learned model
or cause it to fail on particular inputs.

Addressing these threats requires integrating rigorous privacy‐preserving techniques (e.g.
differential privacy (Abadi et al. 2016), secure aggregation (Bonawitz et al. 2017)) as well
as robust anomaly detection to guard against malicious participants.

2.3 Privacy Preservation in Federated Learning
The federated framework presents unique challenges for current privacy-preserving algo-
rithms. It is critical to develop strategies that are not only efficient in computation and
communication, but also adaptable to decentralized participants, all while maintaining
high model accuracy. To address the above-mentioned challenges and privacy attacks
federated learning has utilized following privacy preserving mechanisms.

2.3.1 Differential Privacy
Differential Privacy (DP) is a rigorous mathematical framework for protecting individ-
ual data points in statistical computations. It was introduced by Dwork et al. (Dwork
et al. 2006) and has since become one of the most widely used techniques for privacy
preservation in machine learning.

What is Differential Privacy?

Intuitively, a mechanism is differentially private if its output does not change significantly
when a single individual’s data is added or removed. This ensures that no attacker
can confidently determine whether a particular person’s data was used in the training
process—thereby preserving privacy.

Formally, a randomized algorithm M is said to satisfy (ε,δ )-differential privacy if for
any two datasets D and D′ that differ by a single record, and for any possible output S,

Pr[M (D) ∈ S]≤ eε ·Pr[M (D′) ∈ S]+δ .

Here:

• ε (epsilon) measures the privacy loss—a smaller ε implies stronger privacy.

• δ is a small probability that the guarantee may not hold.

This definition ensures that individual data points have minimal influence on the final
output of the model (Dwork et al. 2006, Abadi et al. 2016).
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Use of Differential Privacy in Federated Learning

In Federated Learning (FL), model training is distributed across clients, and only model
updates are shared. However, even model updates can leak private information through
various inference attacks (Zhu et al. 2019, Melis et al. 2019). DP helps mitigate this risk
by introducing controlled noise during training.

There are two main ways to apply differential privacy in FL:

1. Client-level DP (Local Noise): Each client clips its model update and adds
noise before sending it to the server. This ensures that the update alone does not
leak information about the client’s data.

2. Server-level DP (Global Noise): The server aggregates all client updates and
adds noise to the aggregated result. This can provide the same privacy guarantee
with less overall noise if secure aggregation (e.g., SMPC) is used (McMahan, Moore,
Ramage, Hampson & Arcas 2017b, Truex et al. 2019).

Limitations of Differential Privacy

Despite its strong theoretical guarantees, DP comes with practical challenges:

• Utility–Privacy Tradeoff: Adding noise to ensure privacy often reduces model
accuracy. Striking the right balance between utility and privacy requires careful
tuning.

• Complex Accounting: In real-world training scenarios (e.g., many epochs, non-
IID data), tracking the cumulative privacy loss over time can be challenging. Frame-
works like Rényi Differential Privacy (RDP) (Mironov 2017) help address this.

• Noise Sensitivity: Models trained on small datasets or with high learning variance
may be more sensitive to DP noise, resulting in unstable convergence.

Despite these limitations, differential privacy remains a cornerstone of privacy-preserving
federated learning due to its formal guarantees and general applicability.

2.3.2 Secure Multi-Party Computation (SMPC) and Secret Shar-
ing

Secure Multi-Party Computation (SMPC) is a class of cryptographic protocols that allows
multiple parties to jointly compute a function over their inputs while keeping those inputs
private (Yao 1982). This means that no individual party learns anything about the others’
data beyond what can be inferred from the final output.
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What is Secret Sharing?

Secret sharing is a foundational building block of SMPC. It allows a secret (e.g., a private
value) to be split into multiple parts, called shares, and distributed to different parties.
No single share reveals any information about the secret. The original secret can only be
reconstructed when a certain number of shares are combined. This enables collaborative
computations where privacy is preserved unless a threshold number of parties collude.

Types of Secret Sharing

There are two primary types of secret sharing schemes:

• Additive Secret Sharing: The secret is split by generating random values that
sum up to the original value. For example, to share s, generate s1,s2 randomly such
that s3 = s− (s1 + s2), and distribute (s1,s2,s3) to three parties.

• Shamir’s Secret Sharing (SSS): Introduced by Shamir (Shamir 1979), this
scheme uses polynomial interpolation. The secret is the constant term of a random
polynomial, and each share is a point on that polynomial. Only a threshold number
of shares are needed to reconstruct the original value using Lagrange interpolation.

How Shamir’s Secret Sharing Works

In Shamir’s Secret Sharing, to share a secret s, a random polynomial f (x) = s+ a1x+
a2x2 + · · ·+at−1xt−1 of degree t−1 is constructed. Then:

• Each participant receives a share f (i), where i is the participant’s identifier.

• Any group of t or more participants can reconstruct s using polynomial interpolation
(e.g., Lagrange interpolation).

• Fewer than t participants learn nothing about the secret, ensuring perfect privacy.

This method is fault-tolerant and collusion-resistant, making it well-suited for secure
aggregation in federated learning.

Use of SMPC in Federated Learning

In Federated Learning (FL), SMPC helps protect model updates from individual clients.
Instead of sending raw gradients, each client secret-shares its update and sends encrypted
shares to multiple servers. The server-side aggregation is then performed on these shares:

• Input Secrecy: No single server has access to the original update.

• Robust Aggregation: Aggregated model updates can be reconstructed only if a
threshold number of shares are available.
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• Privacy Boost: When combined with Differential Privacy, SMPC ensures that
sensitive information is protected both during transmission and after aggrega-
tion (Bonawitz et al. 2017, Truex et al. 2019).

This enables FL systems to inject DP noise after aggregation, reducing the amount
of noise required and preserving model utility.

Limitations of SMPC

While SMPC provides strong privacy guarantees, it has some challenges:

• Increased Communication: Clients must send multiple shares (e.g., one per
server), increasing bandwidth usage.

• Server Trust Model: Correct reconstruction assumes that not all aggregation
servers are colluding.

• Computational Overhead: Interpolation and share aggregation introduce extra
computation.

• Scalability: SMPC protocols may become complex in large-scale deployments with
many clients and servers.

Despite these limitations, SMPC is a powerful method to strengthen privacy in fed-
erated settings when used in conjunction with other mechanisms like DP.

2.4 Balancing Privacy and Utility in Federated Learn-
ing

In Federated Learning (FL), there is an inherent trade-off between maintaining user pri-
vacy and ensuring high model utility. Various studies have aimed to strike this balance
through mechanisms such as Differential Privacy (DP), Secure Multi-Party Computa-
tion (SMPC), homomorphic encryption, and hybrid techniques. However, each approach
presents its own set of limitations in either privacy protection, model accuracy, or system
scalability.

Differential Privacy-Based Approaches
The most commonly adopted method for privacy preservation in FL is client-side DP,
where noise is added directly to each client’s model update before aggregation (Geyer
et al. 2017a, McMahan et al. 2018). This ensures that each client’s contribution remains
indistinguishable. However, the local application of noise increases overall variance and
often results in substantial accuracy degradation—especially in high-dimensional models
or when the number of clients is small.
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SMPC and Cryptographic Aggregation
Another set of approaches relies on cryptographic techniques like SMPC and homomor-
phic encryption to perform secure aggregation (Bonawitz et al. 2017). These methods
protect updates during transmission but do not inherently guarantee differential privacy.
Therefore, they must often be combined with DP for full privacy guarantees. While
SMPC provides strong input secrecy, it adds communication and computation overhead,
and usually requires coordination among a fixed number of trusted aggregation servers.

Hybrid Methods and Adaptive Mechanisms
To improve the privacy–utility trade-off, several recent works propose hybrid methods.
These combine DP and SMPC by delaying the addition of noise until after secure aggrega-
tion (Truex et al. 2019). This reduces the amount of noise needed for privacy guarantees,
as the sensitivity of the aggregated update is much lower than individual updates. How-
ever, most hybrid systems still use fixed clipping thresholds and static noise levels, which
are suboptimal as training progresses.

Adaptive DP-FL Framework
One notable solution that addresses these limitations is the Adaptive Differentially Private
Federated Learning (Adap DP-FL) framework (Fu et al. 2022). This method introduces:

• Adaptive Clipping: Each client’s gradient clipping threshold is adjusted dynam-
ically based on the previous round’s average gradient norm.

• Noise Decay: The Gaussian noise multiplier is gradually decreased when valida-
tion loss improves, allowing the model to fine-tune more precisely in later rounds.

While Adap DP-FL significantly improves model utility under tight privacy budgets,
it still applies noise locally at each client. This increases overall noise variance and
leads to unnecessary degradation in utility, especially when many clients are involved.
Additionally, since clipping and noise are client-specific, the system must track privacy
budgets individually, making coordination more complex.

2.5 Research Gap
Despite these advancements, there remains a need for a framework that:

• Dynamically adapts both clipping and noise in response to training feedback,

• Avoids per-client noise variance by using centralized noise addition,

• Preserves privacy with provable guarantees using RDP analysis,

• Maintains input secrecy using secure aggregation protocols.
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This research addresses this gap by proposing a hybrid Adap DP-FL + SMPC frame-
work. The system combines adaptive clipping and adaptive noise decay mechanisms with
post-aggregation Gaussian perturbation enabled by Shamir’s secret sharing. By securely
aggregating updates and adding a single global noise term at the server, the approach re-
duces noise variance, simplifies privacy tracking, and enhances model performance while
respecting strict privacy budgets.
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3 Design

3.1 High‑Level Framework Overview
This chapter presents the design of our hybrid federated learning framework that combines
Adaptive Differential Privacy (Adap DP) with Secret‑Sharing‑based Secure Multi‑Party
Computation (SMPC). The goal is to retain the strong utility of the baseline Adap DP‑FL
method while further reducing trust in the central server by never revealing individual
client updates in the clear. In each training round, clients locally compute and adaptively
clip their gradients, then secret‑share those clipped gradients across multiple aggregation
servers. Only the aggregate gradient is ever reconstructed, to which differential privacy
noise is then added before updating the global model. Validation‑driven noise scaling
ensures we maintain a target (ε,δ ) budget while preserving accuracy.

3.1.1 Interaction of Components
The three main components—Federated Learning, Adaptive Differential Privacy, and
SMPC—interlock as follows:

• Federated Learning (FL):

– Orchestrates rounds of local training on each client.

– Aggregates client updates to produce a new global model.

• Adaptive Differential Privacy (Adap DP):

– Applies per‑client, per‑round clipping thresholds Ct
k based on previous gradient

norms.

– Injects decreasing Gaussian noise N (0,(σt ·C)2) into the aggregated gradient,
with σt decayed when validation loss has fallen for several rounds.

– Keeps a full RDP accounting to ensure the desired (ε,δ ) over all T rounds.

• Secure Multi‑Party Computation (SMPC):

– Each client secret‑shares its clipped gradient across three or more non‑colluding
servers.

– Servers sum their shares locally; only the combined sum is ever reconstructed.
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– No individual server ever sees a raw client update, drastically reducing trust
requirements.

Together, these produce a pipeline in which no raw gradient leaves a client, yet a
differentially private and accurate global model is still learned.

3.1.2 Pipeline Flowchart
Figure 3.1 shows the end‑to‑end flow of a single training round in our hybrid system:

Figure 3.1: End‑to‑end training pipeline for the hybrid Adap DP‑FL + SMPC
framework.

This pipeline ensures that:

1. Clients never expose raw gradients.

2. Aggregation servers only handle secret shares.

3. Differential privacy noise is injected exactly once, on the global sum.
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4. Full privacy accounting via RDP tracks cumulative ε .

3.2 Baseline System Architecture
Federated Learning (FL) enables decentralized training across multiple client devices,
each holding local data, without transferring raw data to a central server. However, this
decentralized setup still poses privacy risks since model updates can unintentionally leak
information about individual data points (Melis et al. 2019, Nasr et al. 2019). To mitigate
such threats, Differential Privacy (DP) is often employed to ensure that the inclusion or
exclusion of a single data point has a limited effect on the output (Dwork et al. 2006).

A notable advancement in this area is the Adaptive Differentially Private Federated
Learning (Adap DP-FL) framework proposed by Fu et al. (Fu et al. 2022). This approach
enhances standard DP-FL by introducing two key techniques:

(a) Adaptive Gradient Clipping, where each client’s clipping threshold is adjusted
dynamically using differentially private estimates of the previous gradient norms.

(b) Adaptive Noise Scaling, where the amount of noise added to each client’s update
is proportional to its clipping threshold, ensuring better utility without sacrificing
privacy.

In Adap DP-FL, each client clips its gradients based on a noisy version of the previous
round’s average gradient norm and adds calibrated Gaussian noise to satisfy (ε,δ )-DP.
The central server performs weighted aggregation of these noised gradients to update
the global model. Privacy loss is tracked across training rounds using Rényi Differential
Privacy (RDP) accounting (Mironov 2017), which allows tighter analysis compared to
traditional composition theorems.

By adapting both the clipping threshold and noise scale, Adap DP-FL achieves a
better balance between model performance and privacy, especially under heterogeneous
data distributions and non-IID client scenarios (Fu et al. 2022).

3.2.1 Workflow
In Adaptive Differentially Private Federated Learning (Adap DP-FL), each client per-
forms local training and ensures that its model updates satisfy differential privacy before
sending them to the central server. The client-side mechanism incorporates adaptive
clipping and adaptive noise addition, both of which are designed to balance privacy and
model utility.

1. Step 1: Local Gradient Computation

Each client k computes its gradient gt
k at round t based on its local dataset Dk and

the current global model parameters θ t :

gt
k = ∇L (θ t ;Dk) (3.1)
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where L denotes the local loss function (e.g., cross-entropy), and ∇L is the gra-
dient with respect to the global model (McMahan, Moore, Ramage, Hampson &
Arcas 2017a).

2. Step 2: Gradient Clipping with Adaptive Threshold

To prevent large gradients from dominating the training and to bound sensitivity
for differential privacy, each client clips its gradient based on a clipping norm Ct

k,
which is computed adaptively:

ḡt
k =

gt
k

max
(

1, ∥g
t
k∥2

Ct
k

) (3.2)

Here, ḡt
k is the clipped gradient, ∥gt

k∥2 is the L2 norm of the gradient, and Ct
k is the

clipping threshold that changes over time depending on previous gradients (Andrew
et al. 2019).

3. Step 3: Adaptive Estimation of Clipping Threshold

The clipping threshold Ct
k is estimated based on the previous round’s gradient norms

with Gaussian noise added for privacy:

C̃t
k = α · n̂t−1

k +N (0,σ2
c ) (3.3)

where:

• n̂t−1
k is the average L2 norm of previous clipped gradients.

• α is a scaling factor.

• σc is the noise standard deviation added for privacy (Fu et al. 2022).

4. Step 4: Adding Gaussian Noise (Per-Client)

After clipping, Gaussian noise is added to the gradient to ensure differential privacy:

g̃t
k = ḡt

k +N (0,σ2
k C2

k ) (3.4)

where:

• σk is the client-specific noise multiplier.

• Ck is the clipping threshold.

The amount of noise scales proportionally with the clipping threshold, allowing
clients with larger updates to contribute more, while still maintaining privacy
(Abadi et al. 2016).
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5. Step 5: Gradient Descent Update

θ t+1
k = θ t

k−η g̃t
k (3.5)

where:

• θ t
k is the local model of client k at round t,

• η is the learning rate,

• g̃t
k is the differentially private gradient after clipping and noise addition.

This step updates the client’s local model before potential aggregation at the server.

6. Step 6: Privacy Budget Computation

Each client maintains a local privacy budget, which accumulates over rounds. Using
Rényi Differential Privacy (RDP), the cumulative privacy loss ε t

k at round t is
estimated:

ε t
k = RDP2DP(∑t

τ=1 RDPτ ,δ ) (3.6)

This step uses standard composition theorems under the RDP framework to track
how much privacy has been spent over time (Mironov 2017, Wang et al. 2019).

7. Step 7: Privacy Budget Check and Early Termination

To prevent over-spending the client’s privacy budget, the system checks if the pri-
vacy loss has exceeded a threshold:

if ε t
k > εmax, then stop participation (3.7)

where εmax is the maximum allowable privacy loss per client (Abadi et al. 2016).

8. Step 8: Upload Noised Update to Server

If the privacy budget has not been exhausted, the client uploads its noised update
g̃t

k (or the updated model parameters θ t+1
k , depending on protocol) to the server

for aggregation:

Client k −→ Server : g̃t
k or θ t+1

k (3.8)

This ensures that only privacy-preserving updates are shared, reducing the risk of
information leakage while enabling collaborative model training.

9. Step 9: Server-side Aggregation

Once the clients have uploaded their noised and clipped gradients g̃t
k, the server

performs weighted model aggregation. This step combines the client updates to
form the next global model:
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wt+1 = ∑
k∈K

pk ·wt+1
k (3.9)

where:

• wt+1 is the updated global model,

• wt+1
k is the model from client k,

• pk =
|Dk|

∑ j∈K |D j| is the aggregation weight based on the relative size of client k’s
dataset,

• K is the set of participating clients in the current round.

This federated averaging step ensures that clients with more data have a proportion-
ally larger influence on the updated model (McMahan, Moore, Ramage, Hampson
& Arcas 2017a).

10. Step 10: Adaptive Noise Control

To enhance utility without compromising privacy, the server monitors model per-
formance trends. If the validation loss does not improve over several rounds, the
global noise multiplier σt may be decayed using a decay factor β :

if J(wt−2)> J(wt−1)> J(wt) ⇒ σt+1 = β ·σt (3.10)

where:

• J(wt) is the validation loss for the global model after round t,

• β ∈ (0,1) is the noise decay factor (Fu et al. 2022).

This adaptive control helps improve convergence while still maintaining the privacy
constraints.

11. Step 11: Global Update Broadcast

After completing the aggregation and (optional) noise adjustment, the server broad-
casts the updated global model wt+1 and current noise multiplier σt+1 to all clients.
These values are then used as the starting point for the next training round:

Server → Clients : wt+1, σt+1 (3.11)

This broadcast ensures synchronization across all participating clients and marks
the beginning of the next federated round.
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3.3 Proposed Hybrid Architecture (Adap DP-FL +
SMPC)

3.3.1 Client-Side Process
In the proposed hybrid system, the client is responsible for performing local model train-
ing, applying adaptive gradient clipping, and secret-sharing the model updates with the
server. Unlike the baseline Adap DP-FL, the client does not add noise locally; instead,
secure aggregation and noise addition are handled centrally. The steps performed at each
client during a federated round are described below.

1. Local Model Training
Each client downloads the global model wt and performs one epoch of training using
its local dataset Dk. The gradient g(i)k for a mini-batch sample xi is computed using:

g(i)k = ∇L (wt ;xi) (3.12)

where L is the local loss function (e.g., cross-entropy), and wt is the global model at
round t (McMahan, Moore, Ramage, Hampson & Arcas 2017a).

2. Adaptive Gradient Clipping
To bound sensitivity for differential privacy, clients clip gradients using a threshold Ct

k

that adapts over time:

ḡ(i)k =
g(i)k

max
(

1, ∥g
(i)
k ∥2
Ct

k

) (3.13)

where ∥g(i)k ∥2 is the L2 norm of the gradient. This ensures all gradients are bounded
by Ct

k (Andrew et al. 2019).

3. Adaptive Clipping Threshold Estimation
The threshold Ct

k is updated at each round based on the previous clipped gradient
norms. A Gaussian noise term is included to obscure the exact norm:

Ct
k = α · n̂t−1

k +N (0,σ2
c ) (3.14)

where:

• n̂t−1
k : average L2 norm of clipped gradients from previous round.

• α : adaptive scaling factor.

• σc: noise standard deviation for clipping estimation.

This method ensures that the clipping threshold responds to training dynamics while
maintaining privacy (Fu et al. 2022).
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4. Averaging Clipped Gradients
After processing the mini-batches, the client computes the average clipped gradient:

ḡt
k =

1
|Lt

k|
∑

i∈Lt
k

ḡ(i)k (3.15)

where Lt
k is the set of sampled data points used for training at round t.

5. Model Update Computation
The local update is computed as the difference between the updated local model and
the received global model:

∆t
k = wt+1

k −wt (3.16)

This update ∆t
k is the quantity that will be secret-shared instead of sent directly.

6. Secret Sharing of Update
The computed local update ∆t

k is split into three shares using a linear Shamir’s secret
sharing scheme:

f (x) = ∆t
k +ax (3.17)

where a is a randomly sampled noise tensor, and shares are:

s1 = f (1), s2 = f (2), s3 = f (3)

These shares are sent to three servers (or parties) such that any two of them can recon-
struct the original update, while individual shares reveal nothing about the original
data (Shamir 1979).

3.3.2 Server-Side Process
The server in the proposed hybrid system plays a crucial role in securely aggregating
the client updates, injecting noise for differential privacy, and accounting for the privacy
budget. This section outlines each component of the server-side workflow in detail.

1. Receiving Secret Shares

Each client computes the local update ∆t
k as the difference between the locally

updated model and the current global model:

∆t
k = θ t

k−θ t (3.18)

where θ t
k is the local model at client k, and θ t is the global model at round t.

This update is then split into n = 3 shares using a degree-1 Shamir secret sharing
scheme:

f (x) = ∆t
k +ax (3.19)

where a is a randomly sampled tensor of the same shape as ∆t
k. The server receives

two of the shares (e.g., f (1), f (2)) from each client.
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2. Secure Aggregation of Shares

For each model parameter, the server aggregates the corresponding shares across
all participating clients:

Aggregated Share j =
K

∑
k=1

Sharek, j (3.20)

where j ∈ {1,2} represents the selected share index for reconstruction, and K is the
number of clients.

3. Reconstruction of Aggregated Update

Using Lagrange interpolation over two aggregated shares, the server reconstructs
the aggregate update:

∆t =
2
1
·Aggregated Share1−

1
1
·Aggregated Share2 (3.21)

This ensures that individual client updates are never revealed, only their aggregate.

4. Adding Global Gaussian Noise

To ensure differential privacy, the server adds Gaussian noise to the aggregated
update:

∆̃t = ∆t +N (0,σ2 · (C/K)2) (3.22)

where σ is the global noise multiplier, C is the maximum clipping norm across
clients, and K is the number of clients.

5. Updating the Global Model

The noisy aggregated update is then used to update the global model using a
learning rate η :

θ t+1 = θ t +η · ∆̃t (3.23)

6. Privacy Accounting Using RDP

The server tracks the cumulative privacy loss using the Rényi Differential Privacy
(RDP) framework. The training process terminates when ε exceeds the maximum
allowed budget.

3.3.3 Privacy Accounting
In our hybrid Adap DP‑FL + SMPC system, all private information release occurs through
the Gaussian mechanism applied after secure aggregation. Because secret‐sharing and
aggregation are post‐processing of client data, they do not affect the differential privacy
guarantee (post‐processing theorem) (Dwork et al. 2006). We therefore account privacy
loss solely based on the noise added at the server.
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How We Measure Privacy in One Round:

In each training round, the server adds Gaussian noise to the aggregated update. The
amount of privacy loss incurred from this step is measured using Rényi Differential Privacy
(RDP), which quantifies the information leakage of a randomized mechanism (like adding
noise). The privacy cost of a single round depends on:

• The sampling ratio q = B
N , which is the probability of including each data point

(where B is batch size and N is total dataset size).

• The clipping norm C, which limits how much a single client’s update can influence
the output.

• The noise multiplier σ , which controls the scale of Gaussian noise.

• The Rényi order α , which determines how sensitive the privacy bound is to tail
behavior.

How Noise Differs from Adap DP-FL:

Unlike standard Adap DP-FL (Fu et al. 2022), which adds noise individually at the
client side before uploading, our hybrid framework leverages Secure Multi-Party
Computation (SMPC) to first aggregate clipped gradients across all clients without
revealing individual updates. Gaussian noise is then added once to the aggregated result
at the server. This design improves utility for two key reasons:

a. Reduced Sensitivity of Aggregated Updates:
In Adap DP-FL, each client adds noise scaled to their local clipping threshold Ck.
The global sensitivity—defined as the maximum influence of any single client—is
thus bounded by the maximum clipping threshold Cmax = maxk Ck.

In our hybrid framework, however, the sensitivity of the aggregated update is re-
duced to:

∆ =
Cmax

K
where K is the number of clients. This is because SMPC averages the contributions
across K clients, inherently scaling each client’s influence by a factor of 1/K.

b. Lower Total Noise Variance:
In Adap DP-FL, each client injects noise N (0,(σ ·Ck)

2), leading to a total aggre-
gated noise variance of:

K

∑
k=1

(σ ·Ck)
2

In contrast, our framework adds Gaussian noise only once at the server, scaled to
the reduced sensitivity:

Noise variance =
(

σ ·Cmax
K

)2

26



For homogeneous clipping thresholds (Ck ≈Cmax), this reduces the total noise vari-
ance by a factor of K2, thereby improving the utility and accuracy of the global
model.

By centralizing noise addition after secure aggregation, our hybrid framework achieves
stronger privacy protection through SMPC’s secrecy of individual inputs and improved
model performance due to reduced noise variance. This design retains the core strengths
of Adap DP-FL, including adaptive clipping and dynamic noise decay. Additionally, by
using Rényi Differential Privacy (RDP) to track privacy costs over training rounds—and
converting the cumulative RDP to (ε,δ )-DP only at the end—we ensure a mathematically
sound and practically efficient approach to monitor and control privacy throughout the
federated learning process.

Privacy Calculation

1. Per‐Round RDP of the Subsampled Gaussian Mechanism. At each round
t, the server adds Gaussian noise with standard deviation σ scaled by the aver-
age clipping norm C and sampling ratio q = B/N, where B is the batch size and
N the total number of examples. By the RDP analysis of subsampled Gaussian
mechanisms, the privacy cost at order α > 1 is

ε(α)
t =

1
α−1

log

[
α

∑
i=0

(
α
i

)
(1−q)α−i qi exp

( i2−i
2σ2

)]
(3.24)

where

• q = B
N is the probability each example is included,

• σ is the noise multiplier,

• α is the Rényi order,

• ε(α)
t is the RDP guarantee for round t.

This follows from the analysis in (Mironov et al. 2019, Wang et al. 2019).

2. Composition Across Rounds. Because RDP composes additively, after T rounds
the total RDP at order α is simply

ε(α)
total =

T

∑
t=1

ε(α)
t . (3.25)

3. Conversion to (ε,δ )-DP. Finally, we translate the cumulative RDP into an (ε,δ )-
DP guarantee by

ε = min
α>1

[
ε(α)

total +
log(1/δ )

α−1

]
, (3.26)

where δ is the target failure probability. This conversion (RDP → DP) is standard
and yields the tightest ε for a given δ (Mironov 2017).
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4. Termination Condition. We monitor ε after each round using (3.26) and halt
training once ε exceeds the global budget εmax. This ensures the entire federated
training process remains within the desired privacy parameters.

In summary, by (1) adding noise only after SMPC aggregation, (2) using RDP to tightly
track per‐round costs, and (3) converting to (ε,δ )-DP via (3.26), our system yields a
provable differential privacy guarantee that is both correct and easy to interpret.
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3.4 Final Proposed Model’s Algorithm

Algorithm 1: Hybrid Adap DP‑FL with SMPC
Input: gradient clipping factor α , noise decay factor β (0 < β < 1), group size

L, learning rate ηt , initial noise scale σ0, global privacy budget (ε,δ ),
number of servers S

Output: final model wT , per-client privacy loss εk

1 Initialize: t← 0, w0, σ0, per-client εk

2 while t < T do
3 Broadcast wt , σt to all clients
4 foreach client k ∈ [K] do
5 Sample minibatch Lk

t with probability L/|Dk|
6 Compute gradient: gk

t (xi) = ∇ℓ(wt ,xi) for i ∈ Lk
t

7 Compute clipping threshold: Ck
t = α · n̂k

t−1

8 Clip gradients: ḡk
t (xi) = gk

t (xi)/max(1,∥gk
t (xi)∥2/Ck

t )

9 Aggregate: gk
t =

1
L ∑i∈Lk

t
ḡk

t (xi)

10 Local update: wt+1
k = wt−ηt ·gk

t

11 Secret-share gk
t →{g

k,1
t , . . . ,gk,S

t }
12 Compute privacy loss: εk

t = RDP2DP(∑t
τ=1 RDP(α,q,στ), δ )

13 if εk
t > ε then

14 break

15 Send shares {gk, j
t }S

j=1 to servers

16 Secure aggregation: G( j)
t = ∑k gk, j

t , Ĝt = Reconstruct(G( j)
t ,G( j′)

t )

17 Add noise: G̃t = Ĝt +N (0,(σtCagg)2)

18 Update global model: wt+1 = wt−ηt · G̃t

19 if J(wt−2)> J(wt−1)> J(wt)> J(wt+1) then
20 σt+1← β ·σt

21 t← t +1

29



4 Implementation

4.1 Development Setup
This section outlines the technical environment and tools used to implement both the
baseline Adaptive DP-FL model and the proposed hybrid Adap DP-FL + SMPC system.

4.1.1 Programming Languages and Libraries
The implementation was done entirely in Python, leveraging several specialized libraries
and frameworks for federated learning and differential privacy:

• PyTorch (v2.0.1) – For model definition, training, and tensor operations.

• Opacus (v1.4.0) – A library built on top of PyTorch for implementing differen-
tially private training using the Gaussian mechanism.

• Torchvision (v0.15.2) – For accessing and transforming the MNIST and FASHION-
MNIST datasets.

• NumPy (v1.24.3) – Used for numerical operations, including RDP-based privacy
accounting.

• Matplotlib (v3.7.1) – For plotting accuracy, noise, and privacy budget trends.

• Logging and CSV – Built-in Python modules for tracking results and saving logs
and metrics to file.

4.1.2 Hardware Environment
All experiments were carried out using the Google Colab platform. The runtime envi-
ronment provided access to high performance GPUs to carry out the experiments. All
dependencies needed were installed via pip and run inside Google Colab notebooks. GPU
acceleration was enabled for training efficiency.

4.2 Dataset Preparation
This study utilizes two widely-used image classification benchmarks: MNIST (LeCun
et al. 1998) and Fashion-MNIST (Xiao et al. 2017). Both datasets contain 60,000
training and 10,000 test grayscale images of size 28×28, distributed across 10 classes.
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Preprocessing Steps
Each image is normalized to the range [0,1] by dividing by 255. The ToTensor transform
from torchvision.transforms is applied to convert each image into a PyTorch tensor
of shape (1,28,28). No additional reshaping or encoding was required, as the datasets
are already formatted for image classification tasks.

Client Partitioning (Non-IID)
To simulate federated learning in heterogeneous environments, the training data is parti-
tioned across 10 clients using an improved Non-IID scheme. This approach ensures each
client receives a disjoint, label-skewed subset of the data:

• The entire dataset is first sorted by class label.

• It is then divided into 400 equal-sized fragments.

• Each client receives 40 randomly assigned unique fragments.

This method ensures that most clients have access to only 3–5 unique labels, closely
mimicking real-world non-IID scenarios where user data distributions differ significantly.

Saving and Loading Partitions
The partitioned datasets for each client are stored as PyTorch Subset objects in a dic-
tionary format {client_id: Subset}, and saved to disk using torch.save(). This
facilitates easy reloading and reproducibility across experiments.

Code Snippet

1 def non_iid_partition(dataset, num_clients=10, num_fragments=400,
fragments_per_client=40):

2 indices = np.argsort(dataset.targets.numpy())
3 fragments = np.array_split(indices, num_fragments)
4 np.random.shuffle(fragments)
5

6 client_data = {i: [] for i in range(num_clients)}
7 available_fragments = set(range(num_fragments))
8

9 for i in range(num_clients):
10 assigned = np.random.choice(list(available_fragments),

fragments_per_client , replace=False)
11 available_fragments.difference_update(assigned)
12 for frag in assigned:
13 client_data[i].extend(fragments[frag])
14
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15 client_datasets = {i: Subset(dataset, client_data[i]) for i in
range(num_clients)}

16 return client_datasets

Listing 4.1: Non-IID client partitioning and saving

This data partitioning approach is used for both MNIST and Fashion-MNIST datasets
and enables robust evaluation under label-imbalanced federated conditions.

4.3 Model Architecture
For both the baseline and hybrid experiments, we adopt a lightweight convolutional neural
network (CNN) inspired by LeCun et al. for MNIST-style image classification (LeCun
et al. 1998). Using the same architecture ensures a fair comparison between Adaptive
DP‑FL and our hybrid DP‑SMPC approach.

Network Structure. Our SimpleCNN consists of two convolutional blocks followed by
two fully‑connected layers:

• Input: Grayscale images, size 1×28×28.

• Conv1: 3×3 convolution, 1 input channel, 32 output channels, stride=1, padding=1,
producing a feature map of size 32×28×28.

• GroupNorm1: Group Normalization with 8 groups over the 32 channels (Wu &
He 2018).

• Activation: LeakyReLU nonlinearity.

• Pool1: 2×2 max pooling, reducing to 32×14×14.

• Conv2: 3×3 convolution, 32 input channels, 64 output channels, stride=1, padding=1
→ 64×14×14.

• GroupNorm2: Group Normalization with 8 groups.

• Activation: LeakyReLU.

• Pool2: 2×2 max pooling, reducing to 64×7×7.

• Flatten: Reshape to a vector of length 64 ·7 ·7 = 3136.

• FC1: Fully‑connected layer, 3136 → 128.

• Activation: LeakyReLU.

• Dropout: Dropout with p = 0.5 to mitigate overfitting.

• FC2: Fully‑connected layer, 128 → 10 (one logit per class).
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Justification.

(a) Simplicity and Efficiency: A shallow two‑layer CNN has been shown to achieve high
accuracy on MNIST and Fashion‑MNIST with minimal computational cost (LeCun
et al. 1998).

(b) Group Normalization: Unlike BatchNorm, GroupNorm performs reliably even with
small local batch sizes, which are common in federated settings (Wu & He 2018).

(c) Fair Comparison: Using the same network for both the baseline and hybrid mod-
els ensures that any performance differences arise solely from privacy mechanisms
rather than architectural changes.

PyTorch Implementation.

1 class SimpleCNN(nn.Module):
2 def __init__(self):
3 super(SimpleCNN , self).__init__()
4 self.conv1 = nn.Conv2d(1, 32, 3, 1, 1)
5 self.gn1 = nn.GroupNorm(8, 32)
6 self.conv2 = nn.Conv2d(32, 64, 3, 1, 1)
7 self.gn2 = nn.GroupNorm(8, 64)
8 self.pool = nn.MaxPool2d(2, 2)
9 self.fc1 = nn.Linear(64 * 7 * 7, 128)

10 self.dropout = nn.Dropout(0.5)
11 self.fc2 = nn.Linear(128, 10)
12

13 def forward(self, x):
14 x = self.pool(F.leaky_relu(self.gn1(self.conv1(x))))
15 x = self.pool(F.leaky_relu(self.gn2(self.conv2(x))))
16 x = x.view(x.size(0), -1)
17 x = F.leaky_relu(self.fc1(x))
18 x = self.dropout(x)
19 return self.fc2(x)

Listing 4.2: Definition of SimpleCNN

Using this architecture, we maintain consistency across privacy experiments, isolating the
impact of DP‑FL versus DP‑SMPC on model performance.

4.4 Adaptive Clipping, Adaptive Noise, and Local
Training

In both our baseline Adap DP‑FL and hybrid Adap DP‑FL + SMPC implementations,
each client performs a local training step where its gradients are clipped and (in the
baseline) noised to satisfy differential privacy. We leverage Opacus (Contributors 2021)
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to enforce per‐sample clipping and noise injection seamlessly within the PyTorch training
loop.

4.4.1 Adaptive Gradient Clipping
At round t, client k computes its raw gradient on mini‑batch Lk

t :

gt
k(xi) = ∇ℓ

(
wt ;xi

)
∀ i ∈ Lk

t .

To limit sensitivity, we clip each per‑sample gradient to a threshold Ct
k, which itself is

adapted from the previous round’s noisy norm (Fu et al. 2022):

Ct
k = α ñ t−1

k , (4.1)

ḡt
k(xi) =

gt
k(xi)

max
(
1, ∥gt

k(xi)∥2 /Ct
k

) , (4.2)

where

• α is the clipping factor (user‑set hyperparameter),

• ñ t−1
k is the previous round’s mean gradient norm with DP noise added,

• ∥gt
k(xi)∥2 denotes the Euclidean norm of the per‑sample gradient.

4.4.2 Adaptive Noise Scaling
In both the baseline Adap DP‑FL and our hybrid Adap DP‑FL + SMPC, we adjust the
noise multiplier σt over time to balance privacy and utility. Specifically, whenever the
validation loss decreases for three rounds in a row, we scale down σt by a decay factor
β < 1 (Fu et al. 2022):

σt+1 =

β σt , if J(wt−2)> J(wt−1)> J(wt)> J(wt+1),

σt , otherwise.

Here J(wt) is the validation loss at round t.

Noise Application in Baseline vs. Hybrid

• Baseline Adap DP‑FL: Each client uses the current σt for its own local Gaussian
mechanism:

g̃t
k =

1
|Lk

t |
∑

i∈Lk
t

ḡt
k(xi) + N

(
0, (σt Ct

k)
2).

Noise is injected on each client before uploading their update.

• Hybrid Adap DP‑FL + SMPC: Clients set local noise multiplier to zero (σloc =

0) and only clip:
g̃t

k =
1
|Lk

t |
∑

i∈Lk
t

ḡt
k(xi).
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After secret‑sharing and secure aggregation on the server, a single global noise
addition uses the same σt :

G̃t = Ĝt +N
(
0, (σt Cagg)

2),
where Cagg = maxk Ct

k/K is the sensitivity of the averaged update.

By decaying σt adaptively in both settings, we allow larger noise early (when gradients
are large) and finer updates later (when the model nears convergence), improving final
accuracy under the same privacy budget.

4.4.3 Local Training with Opacus
We instantiate Opacus’s PrivacyEngine to handle per‑sample clipping (and, for the
baseline, noise injection) automatically:

1 model, optimizer , private_loader = privacy_engine.make_private(
2 module=model,
3 optimizer=optimizer ,
4 data_loader=client_data ,
5 noise_multiplier=sigma_loc , # =0 in hybrid
6 max_grad_norm=C_k_t
7 )

Here:

• noise_multiplier controls the standard deviation of local Gaussian noise,

• max_grad_norm enforces per‑sample clipping at Ct
k.

After this call, a standard training loop over private_loader automatically applies clip-
ping (and noise, if σloc > 0) at each backward pass (Contributors 2021).

4.5 Privacy Accounting
We now contrast how privacy loss is tracked in (a) the baseline Adaptive DP‑FL and
(b) our hybrid Adap DP‑FL + SMPC implementations. In both cases we use Rényi
Differential Privacy (RDP) (Mironov 2017), but the location and scale of noise differ.

4.5.1 Baseline Adap DP‑FL (Fu et al. 2022)
Each client k clips its gradient, then injects Gaussian noise

g̃t
k =

1
|Lk

t |
∑

i∈Lk
t

ḡt
k(xi) + N

(
0, (σlocCt

k)
2),

and uploads g̃t
k. We track its privacy spend as follows:

35



1. Per‑Round RDP Cost. At round t, client k samples with ratio q = B
|Dk| and uses

noise multiplier σloc. Its RDP cost at order α > 1 is

ε(α)
t,k =

1
α−1

log

[
α

∑
i=0

(
α
i

)
(1−q)α−iqi exp

( i2−i
2σ2

loc

)]
.

2. Composition Across Rounds. After T rounds, its cumulative RDP is

ε(α)
k,total =

T

∑
t=1

ε(α)
t,k .

3. Conversion to (ε,δ )-DP. We convert via

εk = min
α>1

[
ε(α)

k,total +
ln(1/δ )
α−1

]
.

4. Stopping Criterion. Client k withdraws when εk > εmax.

Code snippet (per‐client accounting):
1 # After client k has clipped & noised its update in round t:
2 # 1. Compute sampling ratio for client k
3 q_k = batch_size / len(client_dataset[k])
4

5 # 2. Compute the RDP cost at all orders for this round
6 # (sigma_loc is the local noise multiplier used in Adap ‑DPFL)
7 rdp_step = compute_cumulative_rdp(q_k, [sigma_loc], orders)
8

9 # 3. Accumulate client k's RDP over rounds
10 cumulative_rdp_clients[k] += rdp_step
11

12 # 4. Convert cumulative RDP to �(, �)-DP
13 epsilon_k = get_epsilon_from_rdp(
14 cumulative_rdp_clients[k],
15 delta_target ,
16 orders
17 )
18

19 # 5. If client k exceeds its local budget , drop it
20 if epsilon_k > LOCAL_MAX_EPSILON:
21 active_clients[k] = False

4.5.2 Hybrid Adap DP‑FL + SMPC
Here, clients secret‐share only their clipped gradients; the server reconstructs the aggre-
gate and then injects noise:

G̃t = Ĝt +N
(
0, (σt Cagg)

2),
where Cagg =

Cmax
K is the aggregation‐level sensitivity. We track a single global budget:
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1. Per‑Round RDP Cost. At round t, sampling ratio q = B
N , noise multiplier σt .

The RDP cost is

ε(α)
t =

1
α−1

log

[
α

∑
i=0

(
α
i

)
(1−q)α−iqi exp

( i2−i
2σ2

t

)]
.

2. Composition Across Rounds. Cumulative RDP after T rounds:

ε(α)
total =

T

∑
t=1

ε(α)
t .

3. Conversion to (ε,δ )-DP. Convert via

ε = min
α>1

[
ε(α)

total +
ln(1/δ )
α−1

]
.

4. Stopping Criterion. Halt federated training when ε > εmax.

Code snippet (global accounting):

1 # At end of each federated round:
2 sigmas_history_global.append(sigma_t)
3 global_cumulative_rdp = compute_cumulative_rdp(
4 q=batch_size/total_samples ,
5 sigmas=sigmas_history_global ,
6 orders=orders
7 )
8 global_epsilon = get_epsilon_from_rdp(
9 global_cumulative_rdp ,

10 delta=delta_target ,
11 orders=orders
12 )
13 if global_epsilon > GLOBAL_MAX_EPSILON:
14 break # stop training

In essence, the baseline charges noise per client, whereas the hybrid charges once over
the aggregated update—leading to lower total noise and a unified privacy budget.

4.6 SMPC Implementation
To prevent the server from learning individual client updates, we employ Secure Multi‑Party
Computation (SMPC) via Shamir’s Secret Sharing (Shamir 1979). Each client splits its
clipped gradient vector into multiple “shares” and sends them to different aggregation
servers. Only when a threshold number of shares are combined can the aggregate be
reconstructed, preserving input secrecy.
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4.6.1 Secret Sharing Generation
Client k holds its local update gk

t ∈ Rd. To secret‑share gk
t among S servers, it picks a

random mask a ∈ Rd and defines the linear polynomial

f (x) = gk
t +ax.

The client then computes S shares

gk, j
t = f ( j) = gk

t +a · j, j = 1,2, . . . ,S.

Each server j receives only gk, j
t . By construction, any single share reveals nothing about

gk
t (the randomness a masks the secret) (Shamir 1979).

Code snippet: Share generation

1 def shamir_share(tensor):
2 # a is random mask of same shape
3 a = torch.empty_like(tensor).uniform_(-1, 1)
4 # f(1), f(2), f(3)
5 share1 = tensor + a
6 share2 = tensor + 2 * a
7 share3 = tensor + 3 * a
8 return [share1, share2, share3]

Listing 4.3: Shamir share generation

4.6.2 Secure Aggregation
Once all active clients have secret‑shared their updates, each server j computes the sum
of its received shares:

G( j)
t =

K

∑
k=1

gk, j
t .

Because addition commutes with the secret‑sharing polynomial, this yields shares of the
aggregate:

G( j)
t = ∑

k
fk( j) = fagg( j), fagg(x) = ∑

k
gk

t +
(
∑
k

ak

)
x.

No individual gk
t is revealed at any server.

Code snippet: Aggregation of shares

1 def aggregate_client_shares(client_shares_list):
2 # client_shares_list: list of dicts , one per client
3 aggregated_shares = {}
4 for name in client_shares_list[0]:
5 # sum the j-th share across all clients
6 aggregated_shares[name] = [
7 sum(client[name][j] for client in client_shares_list)
8 for j in range(3)
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9 ]
10 return aggregated_shares

Listing 4.4: Sum shares across clients

4.6.3 Reconstruction via Lagrange Interpolation

To recover the aggregate ∑k gk
t , any two servers (say j and j′) share their sums G( j)

t ,G( j′)
t

and perform:
Ĝt = fagg(0) = G( j)

t ·
j′

j′− j
+ G( j′)

t · − j
j′− j

.

This Lagrange interpolation at x = 0 yields the unmasked sum ∑k gk
t exactly (Bonawitz

et al. 2017).
Code snippet: Reconstruct aggregate

1 def reconstruct_secret(share_x, x, share_y, y):
2 # Lagrange interpolation at 0
3 return share_x * (y/(y-x)) + share_y * (-x/(y-x))
4

5 def reconstruct_aggregated_update(aggregated_shares , chosen=(0,1)):
6 x, y = chosen[0]+1, chosen[1]+1 # e.g., (1,2)
7 recon = {}
8 for name, shares in aggregated_shares.items():
9 recon[name] = reconstruct_secret(shares[chosen[0]], x,

10 shares[chosen[1]], y)
11 return recon

Listing 4.5: Reconstruction of the aggregate

4.7 Checkpointing and Logging
To ensure both fault‑tolerance and reproducibility, our implementation includes a robust
checkpointing and logging mechanism. We describe below how training progress is saved,
what data is stored in each checkpoint, and how we record per‑round metrics for later
analysis.

4.7.1 Saving Training Progress
At the end of each training round (or upon early termination), we call a ‘save_checkpoint()‘
function that serializes all necessary state to disk:

1 def save_checkpoint(round_num):
2 checkpoint = {
3 "round": round_num + 1,
4 "global_model_state": global_model.state_dict(),
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5 "client_clipping_thresholds": client_clipping_thresholds ,
6 "client_noise_scales": client_noise_scales ,
7 "cumulative_rdp_clients": cumulative_rdp_clients ,
8 "local_epsilons": local_epsilons ,
9 "active_clients": active_clients ,

10 "global_cumulative_rdp": global_cumulative_rdp.tolist(),
11 "sigmas_history_global": sigmas_history_global ,
12 "privacy_budget_history_global":

privacy_budget_history_global ,
13 "accuracy_history": accuracy_history ,
14 "loss_history": loss_history ,
15 "prev_dp_grad_norm": prev_dp_grad_norm
16 }
17 torch.save(checkpoint , CHECKPOINT_FILE)
18 print(f"Checkpoint saved at round {round_num+1}.")

Listing 4.6: Checkpoint saving logic

Each checkpoint file (‘.pt‘) includes:

• Round index — the next round to resume from.

• Global model weights — ‘state_dict()‘ of the PyTorch model.

• Adaptive parameters — per‑client clipping thresholds and noise scales.

• Privacy bookkeeping — RDP accumulators (‘cumulative_rdp_clients‘, ‘global_cumulative_rdp‘),
per‑client and global ε histories.

• Training metrics — accuracy and loss histories, previous clipped gradient norms.

• Client status — which clients remain active (have not exhausted their budget).

4.7.2 Logging Configuration
We use Python’s built‑in logging module to record detailed debug and info statements.
Logs are written to both a rotating file and standard output:

1 logging.basicConfig(
2 filename=LOG_FILE,
3 level=logging.DEBUG,
4 format="%(asctime)s - %(levelname)s - %(message)s",
5 filemode="w"
6 )
7 console_handler = logging.StreamHandler()
8 console_handler.setLevel(logging.INFO)
9 logging.getLogger().addHandler(console_handler)

Listing 4.7: Logging setup at start of script
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Throughout training, key events—such as per‑round accuracy, loss, noise decay, and
privacy‑budget warnings—are logged. This centralized logging ensures we can trace the
exact sequence of operations leading to any result.

4.7.3 CSV Output for Metric Analysis
In addition to checkpoints and logs, we maintain a human‑ and machine‑readable CSV
file summarizing per‑round performance:

1 if not os.path.exists(RESULTS_FILE):
2 with open(RESULTS_FILE , "w", newline="") as f:
3 writer = csv.writer(f)
4 writer.writerow(["Round", "Test Accuracy", "Test Loss", "

Global Epsilon", "Noise Scale"])
5 with open(RESULTS_FILE , "a", newline="") as f:
6 writer = csv.writer(f)
7 writer.writerow([round_num+1, test_accuracy , validation_loss ,

global_epsilon , sigma_t])

Listing 4.8: Appending per‑round metrics to CSV

Each row contains:

• Round — federated aggregation step.

• Test Accuracy & Loss — evaluated on held‑out data.

• Global ε — current privacy budget.

• Noise Scale — σt used for that round.

Together, the checkpoint files, log records, and CSV summaries provide a complete audit
trail of the training process, enable easy resumption after interruption, and support
post‑hoc analysis of accuracy vs. privacy trade‑offs.“‘
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5 Results and Analysis

5.1 Evaluation Metrics
To assess both the utility and the privacy of our federated learning algorithms, we employ
the following metrics:

5.1.1 Model Utility: Test Accuracy and Test Loss
We measure how well the trained model generalizes to unseen data using:

• Test Accuracy (%):

Accuracy =
1

Ntest

Ntest

∑
i=1

I
(
ŷi = yi

)
×100%,

where Ntest is the number of examples in the held‐out test set, ŷi is the model’s
predicted label, yi is the true label, and I(·) is the indicator function.

• Test Loss:
Ltest =−

1
Ntest

Ntest

∑
i=1

10

∑
c=1

1{yi = c} log pθ (c | xi),

where pθ (c | xi) is the predicted probability of class c under model parameters θ .

5.1.2 Privacy Spend: Cumulative ε

We quantify the privacy leakage of our algorithms via the total (ε,δ )-DP budget con-
sumed, with δ fixed at 10−5 throughout. Using Rényi Differential Privacy (RDP) ac-
counting (Mironov 2017), the cumulative ε after T rounds is

ε = min
α>1

[
T

∑
t=1

ε(α)
t︸ ︷︷ ︸

RDP composition

+
ln(1/δ )
α−1

]
,

where ε(α)
t is given by the subsampled Gaussian mechanism at round t (see (3.24)). We

report ε as a function of the number of federated rounds to illustrate how quickly each
method approaches its privacy budget limit.
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5.2 Results

5.2.1 Baseline Adaptive DP‑FL Results
We first evaluate the baseline Adaptive DP‑FL (Fu et al. 2022) on MNIST and Fash-
ion‑MNIST. All runs use the following common hyperparameters:

• Batch size B = 200: number of examples in each local mini‐batch.

• Learning rate η = 0.002 (MNIST) or η = 0.001 (Fashion‑MNIST).

• Local epochs E = 1: number of passes over each client’s data per round.

• Clipping factor αclip = 1.0 (MNIST) or 0.01 (Fashion‑MNIST): scales the previous
DP‐noisy norm to set the new clipping threshold.

• Noise decay β = 0.998: factor by which the noise multiplier σt is reduced when
validation loss improves for three consecutive rounds.

• Target δ δ = 10−5: the failure probability in (ε,δ )‐DP.

Dataset ε σ0 σT Test Accuracy (%)

MNIST 0.50 4.00 3.6701 95.89
MNIST 0.30 6.00 5.5051 94.27
Fashion‑MNIST 0.50 4.00 3.8584 79.00
Fashion‑MNIST 0.30 6.00 5.6616 76.21

Table 5.1: Baseline Adaptive DP‑FL performance (batch size B = 200, local epochs
E = 1, β = 0.998, δ = 10−5).

In each row:

• ε is the total privacy spend after training.

• σ0 is the initial Gaussian noise multiplier.

• σT is the noise multiplier at the final round, after adaptive decay.

• Test Accuracy is measured on the held‐out test set.

5.2.2 Hybrid Adap DP‑FL + SMPC Results
We evaluate our hybrid framework (Adaptive DP‑FL + SMPC) under the same experi-
mental settings as the baseline. All runs use:

• Batch size B = 200, Local epochs E = 1.

• Learning rate η = 0.002 for MNIST, η = 0.001 for Fashion‑MNIST.
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• Clipping factor αclip = 1.0 (MNIST) or 0.01 (Fashion‑MNIST).

• Noise decay β = 0.998, Target δ = 10−5.

• Initial global noise σ0 ∈ {4,6}, adaptively decayed when validation loss improves.

Dataset ε σ0 σT Test Accuracy (%)

MNIST 0.50 4.00 3.5615 96.45
MNIST 0.30 6.00 5.4068 94.32
Fashion‑MNIST 0.50 4.00 3.5758 79.27
Fashion‑MNIST 0.30 6.00 5.2996 78.42

Table 5.2: Hybrid Adap DP‑FL + SMPC performance (batch size B = 200, local
epochs E = 1, β = 0.998, δ = 10−5).

In each entry:

• ε is the cumulative privacy cost after training.

• σ0 is the initial global noise multiplier.

• σT is the noise multiplier at the final round, after adaptive decay.

• Test Accuracy is measured on the held‑out test set.

5.3 Analysis

5.3.1 Comparison & Trade‑Offs
In this subsection we compare accuracy and loss as functions of the global privacy budget ε
for both MNIST and Fashion‑MNIST, under two noise strategies: initial σ0 = 4 targeting
ε = 0.5, and initial σ0 = 6 targeting ε = 0.3.
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Accuracy vs. Privacy Budget

(a) MNIST, σ = 4, ε ≈ 0.5 (b) MNIST, σ = 6, ε ≈ 0.3

(c) Fashion‑MNIST, σ = 4, ε ≈ 0.5 (d) Fashion‑MNIST, σ = 6, ε ≈ 0.3

Figure 5.1: Test accuracy as a function of the global privacy budget ε for two noise
settings on MNIST and Fashion‑MNIST.
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Loss vs. Privacy Budget

(a) MNIST, σ = 4, ε ≈ 0.5 (b) MNIST, σ = 6, ε ≈ 0.3

(c) Fashion‑MNIST, σ = 4, ε ≈ 0.5 (d) Fashion‑MNIST, σ = 6, ε ≈ 0.3

Figure 5.2: Test loss as a function of the global privacy budget ε for two noise settings
on MNIST and Fashion‑MNIST.
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6 Conclusion

This chapter summarizes the major findings of this research and discusses the effec-
tiveness of the evaluation framework, conclusions related to the research questions, key
limitations of the study, and potential future directions. The main objective of this study
was to propose a hybrid privacy-preserving federated learning framework that combines
Adaptive Differential Privacy with Secure Multi-Party Computation (SMPC), and em-
pirically demonstrate its benefits over the existing Adap DP-FL framework in terms of
both privacy and utility.

6.1 Effectiveness of Evaluation Metrics
The evaluation relied on three key metrics: test accuracy, test loss, and global privacy
budget ε . These metrics allowed us to analyze the privacy-utility trade-off under varying
noise settings. The test accuracy measured model utility, the loss indicated convergence
stability, and the global ε quantified cumulative privacy leakage over time. By plotting
accuracy and loss against privacy budget (Figures 5.1 and 5.2), we were able to visually
and quantitatively compare the baseline and proposed methods across multiple scenar-
ios. This dual-axis evaluation framework proved effective in revealing both the privacy
efficiency and learning quality of each model.

6.2 Conclusion about Research Questions

RQ1: How can Secure Multi‑Party Computation (SMPC) be
used to improve privacy in Adaptive DP‑FL?
The hybrid framework developed in this thesis used SMPC, specifically Shamir’s Secret
Sharing, to securely aggregate clipped model updates without exposing individual client
contributions. Unlike the baseline Adap DP-FL which applies noise locally, the hybrid
method performs secure aggregation and applies Gaussian noise globally on the aggre-
gated model. This approach significantly improves data confidentiality by removing the
need to trust the server with individual client updates. The results confirm that the
hybrid method maintains or slightly improves model accuracy while reducing privacy
leakage risk, especially in lower ε regimes.
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RQ2: How can we theoretically prove that the proposed hybrid
approach satisfies the required differential privacy guarantees?
In Section 3.3.3 we derived an RDP‐based privacy accountant for our hybrid scheme, and
in Chapter 5 we applied it to track εt per round (Equations 3.24–3.26). The close match
between our analytic budget curves and the observed empirical behavior figure 5.1 and
figure 5.2 validates that:

1. Our RDP composition correctly accumulates privacy loss across rounds.

2. The conversion to (ε,δ )-DP yields tight, interpretable budgets.

3. The stopping criterion ε ≤ εmax reliably enforces the target privacy guarantee.

6.3 Limitations
While the proposed framework achieves significant privacy and utility benefits, there are
certain limitations:

• The experiments were conducted on small-scale image datasets (MNIST and Fashion-
MNIST). More complex datasets (e.g., CIFAR-10, medical data) could reveal dif-
ferent trade-offs.

• Only Gaussian noise was considered. Exploring other DP mechanisms such as
Laplace or concentrated DP may yield better privacy-utility trade-offs.

• The SMPC implementation used 3 servers and 2-out-of-3 reconstruction. Real-
world settings may involve more complex trust assumptions and communication
overheads.

• Training time and memory overhead due to secret sharing and gradient clipping
were not considered during experimentation.

6.4 Future Directions
Future research can build on this work in several ways:

• Extending the hybrid method to larger models and more realistic datasets to better
assess generalizability.

• Adopting more robust SMPC protocols (e.g., SPDZ or homomorphic encryption)
to improve security in malicious threat settings.

• Exploring adaptive sampling or early stopping to dynamically balance privacy cost
and convergence.
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Overall, this research contributes a practical and secure hybrid privacy-preserving method
for federated learning, offering a valuable path forward in safeguarding sensitive client
data while maintaining strong model performance.
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