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Abstract

Traditional image steganography techniques modify cover images to hide informa-
tion, making them vulnerable to detection. Coverless image steganography elimi-
nates this dependency but often struggles to maintain high reconstruction fidelity
while ensuring robust concealment. This study proposes a novel coverless image
steganography method using Generative Adversarial Networks (GANs) to address
these limitations. GANs excel at learning complex data distributions and generat-
ing realistic stego images that e!ectively encode high-resolution secret images, even
after aggressive downscaling. By downscaling secret images prior to embedding, our
approach achieves a fourfold increase in embedding capacity while reducing com-
putational burden and maintaining competitive reconstruction quality as measured
by SSIM, PSNR, and MAE metrics. Extensive experiments demonstrate superior
performance in embedding capacity, reconstruction fidelity, and concealment robust-
ness compared to traditional multi-image steganography techniques. This research
provides an e!ective solution for secure high-resolution image embedding, advancing
coverless image steganography.
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Chapter 01

1.1 Introduction
Due to advancements in technology in recent years, secure data transmission across
network channels has become crucial. As a solution for secure data transmission,
cryptography was introduced. In cryptography the data is encrypted using an en-
cryption key such that the original data remains invisible, while ciphertext is percep-
tible to the human eye. Upon reaching the destination, the ciphertext is converted
back in to original data using a decryption key (van Leeuwen 1990). In this case
people can discover that secret data is going through the channel. In this context, a
novel research area called steganography, has introduced. It encompasses techniques
capable of introducing secret information within media in a manner that remains
undetectable to third parties. Unlike cryptography, which focuses on rendering in-
formation unreadable through various operations, steganography aims to achieve
invisibility, making the secret data imperceptible to unintended recipients.

The term steganography is derived from two Greek words, ’stegos’ and ’grafia’,
meaning ’cover’ and ’writing’ respectively. Modern steganography uses digital media
such as images, audio and video to hide secret data.

Image steganography is one of the major area in steganography in which secret
data is hidden inside an image. Here secret data can be a text, image, or multiple
images etc. In traditional image steganography, secret data embedded within the
pixels of an image which is known as cover image. The embedded image is called the
stego-image or carrier image. The main intention is to hide the secret information in
such a way that the stego-image and the cover image are visually indistinguishable
to human eye. The basic process of traditional image steganography is shown in
Figure 1.1. With the advancements in steganography, steganalysis tools have also
become more powerful. Hence, traditional image steganography methods have be-
come vulnerable to modern steganalysis tools. As a solution, researchers found a
novel coverless image steganography method, which is capable of generating stego-
images directly from secret data without embeddings. Detection of the presence of
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a secret message becomes challenging in this approach, making coverless steganog-
raphy more resistant to steganalysis tools. Absence of cover image makes it more
secure compared to cover image steganography. The basic process of coverless image
steganography is shown in Figure 1.2.

Figure 1.1: The basic process of traditional image steganography

Figure 1.2: The basic process of coverless image steganography

Steganography methods can be divided into two based on their domain named,
spatial and transformation domain. Spatial domain based methodologies directly
modify image data by working on individual pixel values. It changes the pixel’s bit
sequence in order to hide secret data such that changes are not visible to human
eye. One of such algorithm is the Least Significant Bit (LSB) proposed by (Neeta
et al. 2006). LSB algorithm is the most widely used spatial domain steganography
algorithm used earlier. It works by modifying the least significant bit of the image’s
pixel value. Transformation domain techniques, operate by transforming the cover
image to the frequency domain and then embeds the secret data into it by changing
the frequencies. After embedding the secret data, the transformed image is then con-
verted again to spatial domain to visualize the image. In literature, there are many
transformation domain methods were implemented using di!erent kinds transforma-
tions such as Discrete Cosine Transformation (DCT) (Watson et al. 1994), Discrete
Wavelet Transformation (DWT) (Stanković & Falkowski 2003) and Discrete Fourier
Transformation (DFT) (Paulson 2006).
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Steganography and steganalysis are two critical, intertwined research domains.
While steganography seeks to hide information, steganalysis aims to uncover it.
Employing diverse methods like visual and statistical analysis, steganalysis not only
detects hidden messages but also plays a pivotal role in developing more secure
steganographic models by employing a steganalysis model as a component and
also,identifying the most suitable steganalysis approach to evaluate their e!ective-
ness.

1.2 Motivation
As highlighted in Liu, Ke, Zhang, Lei, Li, Zhang & Yang (2020), traditional image
steganographic methods face two common limitations of achieving high hiding ca-
pacity and ensuring security against sophisticated steganalysis tools like Xu-Net pro-
posed by Xu et al. (2016) and SRNet proposed by Boroumand et al. (2019a). When
exploring the literature, we can observe how the utilization of GANs in stegano-
graphic models has proved to improve upon these limitations by enhancing the
hiding capacity as well as its security as the stego-image is generated artificially.

Thereby, the motivation behind this research is to extend Generative Adversarial
Network (GAN) based models to address the problem of low resolution coverless
image steganography for high resolution images while improving the shortcomings of
recovery accuracy limitations found within existing coverless image steganographic
models.

1.3 Problem Statement
As the need for information hiding increases, researchers have undertaken many
new approaches in steganography. In the context of Coverless Image Steganography
(CIS), a stego image is typically generated directly from the secret image. Current
image steganography techniques focus on generating stego images that maintain the
same resolution as the original secret images. This process involves a communication
protocol between the sender and receiver, where the sender generates the stego
image using the secret image and sends it through a communication channel. Upon
receiving the stego image, the receiver then reconstructs the secret image.

While existing CIS methods are e!ective for embedding and concealing data,
they are often constrained by the high storage capacity and bandwidth requirements
associated with high-resolution images. These limitations hinder the practical ap-
plication of steganography in scenarios where storage and bandwidth are restricted

3



or costly.
Furthermore, all aforementioned steganography methods do not adequately ad-

dress the need for generating low-resolution stego images from high-resolution secret
images. This capability is crucial for optimizing storage and network bandwidth uti-
lization, as well as enhancing resistance to steganalysis tools that detect hidden
data.

With the advancements in GAN, researchers tends to incorporate it for image
steganography. The reason is GAN can generate high-quality images that closely
resemble natural images. This makes it di”cult for steganalysis tools to distinguish
between steganographic images and regular images, thereby enhancing the imper-
ceptibility.

To address this gap, this research proposes to explore coverless image steganog-
raphy for high-resolution images by employing Generative Adversarial Networks
(GAN). The objective is to develop a novel steganography method that generates
low-resolution stego images, thereby improving e”ciency in storage and transmis-
sion, and increasing resistance to steganalysis while maintaining the integrity and
security of the hidden data.

In addition, this high-to-low resolution coverless image steganography approach
aims to achieve high hidden capacity, a feature that was previously attempted using
multi-image steganography techniques. However, those methods often su!ered from
poor reconstruction quality of the secret image and relied heavily on cover embedding
techniques, compromising the essence of coverless steganography (Das et al. 2021a).
By contrast, the proposed method leverages GANs to overcome these limitations,
o!ering a more robust and e”cient solution for secure data hiding.

1.4 Research Questions
1. How can Generative Adversarial Networks (GAN) be utilized to generate low-

resolution stego images from high-resolution secret images for coverless image
steganography?

2. What are the most e!ective Generative Adversarial Network (GAN) archi-
tectures and techniques for embedding data in low-resolution stego images to
maximize data capacity and minimize perceptual distortion?

3. How does the reduction in resolution of stego images impact the detectability
of hidden data by standard steganalysis tools?
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1.5 Aims and Objectives
The aim of this research is to design and develop a novel coverless steganography
method capable of successfully generating low-resolution stego images from high-
resolution secret images, while enabling better reconstruction of the original secret
image.

The objectives of this research are as follows:

1. Identify and analyse existing image steganography methods and their archi-
tectures.

2. Investigate and select an appropriate GAN architecture and techniques for
generating low-resolution stego images.

3. Design and develop a novel coverless image steganography method that gen-
erates low-resolution stego images from high-resolution secret images.

4. Determine if the implemented model could resist modern steganalysis tools.

1.6 Significance of the Project
In today’s world, where data privacy and security are major concerns, developing
advanced covert communication techniques is crucial. Image steganography remains
a prominent and evolving research field within computer science. Currently, many
steganographic models have achieved success in hiding information e!ectively. How-
ever, despite recent advancements, Coverless Image Steganography (CIS) has yet to
fully realize its potential, especially when dealing with high-resolution images. This
presents a valuable opportunity to explore and develop new approaches capable of
e”ciently handling high-resolution data.

By addressing the challenges associated with high storage demands and band-
width limitations, such methods can enable the practical use of CIS for secure
image-based communication. Furthermore, this research aims not only to optimize
storage and bandwidth usage but also to increase the hidden capacity within stego
images. Enhancing the embedding capacity is vital for transmitting more informa-
tion securely without compromising the quality or detectability of the stego image.
Achieving this would significantly improve the applicability of CIS in real-world sce-
narios, especially in environments where resource e”ciency and data confidentiality
are paramount.
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This research will investigate the limitations of current CIS methods and explore
various approaches to handling high-resolution images. It will also examine how to
apply GAN to design a model capable of generating low-resolution stego images
from high-resolution inputs. Developing such a model will significantly contribute
to the scientific community and can be applied across various fields for secure data
transmission. Furthermore, this model could serve as a stepping stone for developing
more sophisticated CIS models.

1.7 Scope

1.7.1 In Scope

1. Develop and implement a novel CIS method using GAN to generate low-
resolution stego images from high-resolution secret images.

2. Investigate and implement methods to obtain low-resolution images from high-
resolution images. This includes downscaling techniques and algorithms that
preserve essential details needed for later reconstruction.

3. Conduct experiments to validate the e!ectiveness of the developed method
specifically for high resolution images.

4. Train the implemented model and evaluate its results. This includes testing
the method’s performance in terms of data capacity, perceptual quality of the
stego images, resistance to steganalysis tools, success rate of data extraction,
and accuracy of high-resolution image reconstruction.

1.7.2 Out of Scope

1. This project focuses exclusively on coverless image steganography, excluding
cover modification and cover selection methods.

2. This project will not investigate the applicability of other deep learning models
during implementation.
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1.8 Research Methodology and Evaluation Plan

1.8.1 Research Methodology

The primary objective of this research is to design and develop a model that enables
CIS to handle high-resolution images. Initially, the research will focus on finding
a method to map high-resolution images to low-resolution images. This phase will
involve exploring various image processing, transformation, and machine learning-
based techniques.

Furthermore, the research will aim to identify a suitable GAN model for gener-
ating low-resolution stego images. This step will include reviewing existing GAN
architectures, particularly those used in image generation and transformation tasks.
The performance, complexity, and applicability of di!erent GAN models will be as-
sessed to identify the best fit for the specific needs of this research. A GAN model
that demonstrates high potential for generating high-quality low-resolution stego
images will be selected.

Based on the findings, the next step will be the implementation phase. During
this phase, the CIS model will be developed to generate low-resolution stego images
from high-resolution secret images. Once the development phase is completed, the
model will be trained using publicly available datasets. Following the conclusion of
the training phase, the model will be evaluated to determine its e!ectiveness and
performance. High level diagram of the methodology is show in the Figure 1.3.

Figure 1.3: Methodology in high level
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1.8.2 Evaluation Plan

1. Evaluation of the obtained stego image using existing steganalysis tools.

There are many steganalysis tools developed that are capable of detecting steganog-
raphy. Therefore, to evaluate the outcome of the model built, we must subject the
stego-images produced by the model to these existing steganalysis tools and deter-
mine the model’s resistance to detection.

2. Evaluation of the reconstructed secret image.

To evaluate the quality of the reconstructed secret image, several methods will be
employed. Quantitative metrics like Peak Signal-to-Noise Ratio (PSNR) and Mean
Squared Error (MSE) will measure the di!erence between the original and recon-
structed images, with higher PSNR and lower MSE values indicating better quality.
The Structural Similarity Index (SSIM) will assess the perceived quality by com-
paring luminance, contrast, and structure, with values closer to 1 indicating better
similarity.

3. Evaluation of the proposed model by comparison to the existing CIS models.

During this stage of evaluation, we will compare the newly developed model with
existing models to assess whether the implementation has enhanced the capabilities
of such models. This comparative analysis will help us understand the strengths
and weaknesses of the new model and identify areas where improvements have been
made, contributing to the advancement of the field of steganography.

1.9 Project Timeline
The gantt chart to illustrate the timeline of this research project is shown in Figure
1.4.
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Figure 1.4: Gantt chart of the research project
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Chapter 02

2.1 Literature Review
This chapter details the comprehensive review undertaken on the existing literature
relevant to this study. 2.1.1 includes an overview of theories utilized to build stegano-
graphic methods. 2.1.2 details an introduction to steganography and an overview
of the methods that have been employed in prior research related. Section 2.3 pro-
vides insight to image steganography and the respective approaches that have been
adopted. Section 2.4 presents an overview of steganalysis and the various meth-
ods utilized. Finally, section 2.5 details the state-of-the-art related to GAN-based
steganography. Moreover, this chapter highlights the limitations of the existing
methods and identifies the research gap that this study seeks to address.

2.1.1 Theories

2.1.1.1 Convolutional Neural Networks

A CNN is a specialized type of deep neural network primarily designed for processing
and analyzing visual data. CNNs are widely applied in various computer vision tasks
such as image classification, object detection, and semantic segmentation, and they
are increasingly used in other domains like medical diagnosis, autonomous driving,
and robotics. Inspired by the human visual system, CNNs process data through a
hierarchical structure, gradually extracting more abstract features from raw inputs.

At the core of a CNN is the convolutional operation, which involves applying a set
of learnable filters (or kernels) that slide across the spatial dimensions of the input
image. These filters are designed to detect local patterns such as edges, textures, or
shapes. The output of this operation is a collection of feature maps that highlight
the presence of specific features at di!erent locations in the input.

A standard CNN architecture includes several types of layers:

• Convolutional Layers: These layers perform the convolution operation to
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extract local features. Each filter produces a separate feature map by respond-
ing to specific patterns in the input.

• Activation Functions: To introduce non-linearity into the model, the output
of the convolution is passed through a non-linear activation function, typically
the Rectified Linear Unit (ReLU), which helps the network learn complex
mappings.

• Pooling Layers: Also known as subsampling or downsampling layers, pooling
reduces the spatial dimensions of the feature maps while retaining the most
important information. The two common types are:

– Max Pooling, which selects the maximum value within a sliding window.

– Average Pooling, which computes the average of the values within the
window.

• Fully Connected Layers: These layers come at the end of the network,
where the extracted features are flattened and passed to one or more dense
layers to perform classification or regression.

The training of CNNs involves minimizing a loss function using the backpropaga-
tion algorithm, which adjusts the network’s parameters to reduce prediction errors.
Optimization algorithms such as Stochastic Gradient Descent (SGD) or more ad-
vanced optimizers like Adam are commonly used to improve convergence during
training.

CNNs have achieved remarkable performance on benchmark datasets, particu-
larly in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where
they have consistently delivered state-of-the-art results and, in some cases, surpassed
human-level performance.

Figure 2.1 illustrates the typical architecture of a CNN, highlighting the flow
of data through convolutional layers, activation functions, pooling operations, and
fully connected layers.
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Figure 2.1: General architecture of a Convolutional Neural Network (CNN) (Ayub
2022).

2.1.1.2 Generative Adversarial Networks

The advent of GAN (Goodfellow et al. 2014) has led to significant advancements
in steganographic methods over the years. GANs possess the unique capability to
generate realistic, previously unseen images that closely mimic real-world images
within a specific domain.

A GAN consists of two primary sub-models: the generator and the discriminator.
During the training phase, these models engage in a min-max game, where the
generator aims to create new image samples that closely resemble the training data,
while the discriminator works to classify images as either real or fake. The generator
produces an image that is an approximation of the input data, and the discriminator
assesses whether this generated image can be distinguished from real data. The
objective function for this process, as introduced by Goodfellow et al. (2014), is
defined as follows:

min
G

max
D

V (D, G) = Ex→pdata(x)[log D(x)] + Ez→pz(z)[log(1 → D(G(z)))]

This interplay between the generator and discriminator enables GANs to cre-
ate high-quality, realistic images that are valuable for enhancing steganographic
approaches.The architecture design of GANs is illustrated in Figure 2.2.

The generative capabilities of GANs inspired many steganographic models and
these models have proved to improve the limitations existing within most traditional
steganographic models. The key challenge that most traditional steganographic
models face is the limitations of achieving high hiding capacity while ensuring high
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Figure 2.2: Architecture of a Generative Adversarial Network

security. Within this section, we will explore steganographic models which utilize
GANs for information hiding and how these models have improved upon the existing
limitations stated above.

2.1.2 Steganography

2.1.2.1 Overview

The study of steganography within the specific literature could be traced to the
origins of the well known ”Prisoners’ Problem” (Simmons 1984) brought forward in
1983. In this Prisoners’ problem, Alice and Bob, the two prisoners planning to escape
from the prison. Both are allowed to communicate, however all their communications
are inspected and passed through a warden, Eve. Eve will attempt to find any hidden
communication between Alice and Bob, if there is any suspicion of information
exchange between the two jailers, she will cut o! the communication. In this scenario,
Alice and Bob are trying to hide their secret communication, where steganography
is depicted. Steganalysis refers to the inspection conducted by the warden, Eve,
with the intention of detecting the secret information. Starting from the Prisoners’
problem up until now, researchers have implemented numerous steganography and
steganlysis methods for information hiding and detecting.

Until now, various communication mediums such as text, image, audio, and video
have been used to implement steganography methods. Our main intention was to fo-
cus on image steganography. As I discussed earlier traditional image steganography
methods modify the cover image to embed the secret data. With the advancement
of deep learning, steganalysis tools have become more e!ective. Steganaysis models
like Ye’Net (Ye et al. 2017) and SRNet (Boroumand et al. 2019b) have high detec-
tion accuracy. Hence, the traditional image steganography methods could be easily
detected. To address this issue researchers have proposed the novel steganography
method called coverless image steganography (Zhou et al. 2015).
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When considering the current implementation methods of image steganography,
three primary methods can be identified:

1. Traditional steganography methods.

2. CNN based methods.

3. GAN based methods.

Traditional methods are frameworks which use methods that are not related
to machine learning or deep learning algorithms. Many traditional methods are
based on the LSB technique (Neeta, Snehal & Capacitiesesess 2006). With the
advancement of deep learning, researchers increasingly apply deep learning method-
ologies to steganography. Two such methods are CNN and GAN based methods.
CNN-based (Das et al. 2021b) approaches use deep convolutional neural networks
for embedding and extracting secret images, while GAN-based methods employ
various GAN variants, including Deep Convolutional Generative Adversarial Net-
works (DCGAN), Wasserstein Generative Adversarial Network (WGAN), Cycle-
GAN, StarGAN, etc.

When focusing on GAN-based models, which will be our primary emphasis, they
employ various strategies in data hiding, including:

1. Cover Modification.

2. Cover Selection.

3. Cover Synthesis.

2.1.2.2 Cover Modification-based Steganography

Cover modification based steganography tries to embed the secret data by modify-
ing the cover image. Volkhonskiy et al. (2020) introduced the idea of using a GAN
for steganography, presenting a model called Steganographic GAN (SGAN). This
model includes three networks: a Generator, a Discriminator, and a Steganalysis
classifier based on a DCGAN. The generator creates a cover image, after which a
traditional method like LSB is applied for steganography. Once the embedding is
done, the stego-image is evaluated by the steganalysis classifier to check for hid-
den information. Similarly, Shi et al. (2017) enhanced this concept with the Secure
Steganographic GAN (SSGAN), utilizing a WGAN to generate the cover image.
Another distinct approach was proposed by Wang et al. (2018), where the dis-
criminator’s role is to identify if the image has undergone steganography. Over the
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years, various GAN applications have been employed to develop image steganogra-
phy models. However, these methods struggle against advanced steganalysis tools,
as any embedding operation leaves detectable traces within the cover image.

2.1.2.3 Cover Selection-based Steganography

In this case No embeddings were done to the cover image in this case which is similar
to image retrieval. Here, we build an image database and compute the hash sequence
for each image using a robust hashing algorithm. Images sharing identical hash
sequences with the corresponding segments of the confidential message are selected
as the carrier images. While this method exhibits resistance to steganalysis , it faces
the challenge of having a very limited payload, so that it’s impractical for real-world
applications. Zhou et al. (2015) proposed a such method where image database
is first constructed by collecting number of images. Then, for each image in the
database, its hash sequence is generated by a robust hashing algorithm. Afterward,
all of these images are indexed according to their hash sequences to build an inverted
index structure. Li et al. (2024) proposed a novel algorithm leverages coverless
image datasets (CIDs) and a mapping rule to establish correspondence between
hash sequences and images. Secret information is embedded in images with matching
hash sequences. At the receiver side, robust Speeded-Up Robust Features (SURF)
features are used to retrieve the hidden secrets. Chen et al. (2022) introduced an
innovative CIS method that leverages both image selection and StarGAN.

2.1.2.4 Cover Synthesis-based Steganography

Due to limitations in cover modification-based and cover selection-based approaches
novel method based on cover synthesis-based image steganography has been intro-
duced which is also known as coverless image steganography. This involves generating
a stego image, which is an image containing the embedded secret data. Duan & Song
(2018) proposed a novel CIS method. In this approach, when a secret image is input
into the generative model, an entirely di!erent normal image is produced using a
WGAN. Hu et al. (2018) proposed another CIS method where stego image is gener-
ated by feeding the established relationship between secret message and noise vector
as input to the DCGAN.Cao et al. (2020) introduced a novel coverless steganography
technique centered on the creation of anime characters. In this method, secret data
is transformed into an attribute label of anime characters, which is then employed
to generate these characters using GAN. A method similar to Cao et al. (2020)
was introduced by Chen et al. (2022), presenting an original CIS approach. In this
method, secret information is converted into a sequence of face attributes, which is
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then used to generate a face image by adjusting the original face attributes based
on the sequence derived from the secret message, utilizing a StarGAN.

One major drawback in CIS is maintaining high reconstruction quality of the
secret image. To address this issue Liu, Ma, Guo, Hou, Schaefer, Wang, Wang &
Fang (2020) proposed a method called ”Coverless Image Steganography Using Cam-
GAN” to address the challenges of coverless image. This method capable of hiding
full image-to-image while maintaining imperceptibility and high reconstruction qual-
ity in the secret image. Also, Li et al. (2021) brought forward a content consistency
CIS method which extracts content information of the secret image and encodes it
into the carrier image. This approach retains the original details of the secret image
when reconstructed from the extraction.

2.1.3 Steganalysis

Steganalysis, considered the counterpart to steganography, aims to detect the pres-
ence of hidden information. Analyzing existing steganalysis models is essential for
understanding how steganographic content is identified, enabling the development
of more robust steganographic techniques and selecting the most suitable steganal-
ysis model to assess the security of multi-image steganographic systems. This sec-
tion discusses the fundamental concepts of steganalysis and explores state-of-the-art
models.

Steganalysis methods can be categorized into three main types: passive, active,
and malicious steganalysis, which can be illustrated through the Prisoner’s Problem
analogy described in subsection 2.1.1.

Passive Steganalysis: In this approach, the warden (Eve) acts as a passive ob-
server whose sole objective is to detect the presence of hidden information. If Eve
identifies a secret message, her only action is to prevent its transmission (Anderson
& Petitcolas 1998). A passive warden lacks the ability to modify or destroy the
message and can only authorize or block its delivery.

Active Steganalysis: An active warden, represented by Eve, not only aims to
detect the presence of hidden information but also actively modifies the image to
remove the embedded content. This altered image is then sent to the intended
recipient. By altering the image, the active warden ensures that secret information
is destroyed or disrupted, preventing successful communication.

Malicious Steganalysis: In this scenario, the warden not only detects the presence
of a hidden message but also attempts to identify the steganographic method used
to embed the secret and may generate new cover images to impersonate the sender,
thereby misleading the recipient (Francia & Gomez 2006).
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Initial steganalysis techniques were developed to detect steganographic methods
based on LSB modifications. These methods involve converting the stego-image
into its binary format and examining the LSBs for inconsistencies that reveal the
presence of hidden data.

Westfeld & Pfitzmann (2000) proposed the first statistical steganalysis model
based on identifying Pairs of Values (POVs) exchanged during message embed-
ding. StegExpose (Boehm 2014) is a publicly available steganalysis toolkit which
has proven attacks in a timee”cient manner.

Subsequently, steganalysis methods were built based on various deep learning
models. Qian et al. (2015) put forward the GNCNN model, the first convolutional
neural network CNN based model to detect the existence of steganographic content.

Xu et al. (2016) proposed the model Xu-Net which has proved to yield sat-
isfactory results in the field of steganalysis. This model was considered to be a
noteworthy model as it was the first network to achieve comparable results to the
state-of-the-art steganographic methods based on the two-step learning approach.
Xu- Net accepts gray-scale images of size 512 × 512 as input and produces a vector
containing two probabilities as an output. Each of these probability values represent
how likely the given image can be categorized into a stego-image class or normal
image class.

In 2017, the first model that has the capabilities to surpass existing methods on
the tiny BOSS database called Ye-Net (Ye et al. 2017) was proposed by Ye et al.
Ye-Net is created to take gray-scale images of size 256 × 256 as input and gives its
classification as output.

Modern steganography models such as Fu et al. (2020), Liu, Ma, Guo, Hou,
Schaefer, Wang, Wang & Fang (2020), Cao et al. (2020) use one or more of the
steganalysis tools such as StegExpose, GNCNN and Xu-Net in order to test the
security of the developed method.

2.1.4 Research Gap

The increasing demand for information hiding has led to significant advancements
in steganography, particularly in the domain of CIS. However, existing CIS meth-
ods typically generate stego images with the same resolution as the original secret
images, which poses challenges related to high storage capacity and bandwidth re-
quirements. These limitations hinder the practical application of steganography in
environments with restricted or costly storage and bandwidth.

Moreover, current approaches fail to address the critical need for generating
low-resolution stego images from high-resolution secret images. Such a capability
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is essential to optimize storage and bandwidth utilization, as well as to improve
resistance to steganalysis tools that aim to detect hidden information. Additionally,
while GANs have demonstrated promise in generating high-quality, realistic images
that closely resemble natural images, their integration into CIS for generating low-
resolution stego images remains underexplored.

This research aims to fill this gap by proposing the use of Generative Adver-
sarial Networks (GANs) to develop a novel coverless image steganography method
that generates low-resolution stego images. This approach seeks to improve storage
e”ciency, optimize network transmission, enhance resistance to steganalysis, and
ensure the integrity and security of the hidden data.
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Chapter 03

3.1 Research Design
The research design followed in this research consists of 10 main phases; Defining of
Research Questions, Literature review, Data collection, High-Resolution Restoration
Model , High-Resolution Restoration Model Evaluation, Stego Image Generation
Model, Stego Image Generation Model Evaluation, Model Integration, Integrated
Model Evaluation and Conclusion which will be elaborated further within this sec-
tion. Figure 3.1 illustrates the high level flow of these research phases along with
their respective outcomes.
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Figure 3.1: Research Design
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3.1.1 Step 1: Defining of Research Questions

During this phase we identified the research gap as stated in subsection 1.4 and the
relevant research questions were formulated as follows:

1. How can Generative Adversarial Networks (GAN) be utilized to develop a
novel coverless image steganography method that generates low-resolution
stego images from high-resolution secret images, while maintaining data in-
tegrity and security?

2. What are the most e!ective Generative Adversarial Network (GAN) archi-
tectures and techniques for embedding data in low-resolution stego images to
maximize data capacity and minimize perceptual distortion?

3. How does the reduction in resolution of stego images impact the detectability
of hidden data by standard steganalysis tools?

3.1.2 Step 2: Literature Review

A thorough literature review was conducted as an initial phase of this project to
identify novel approaches that researchers have utilized to achieve image steganog-
raphy. By doing so we identified the strengths and weaknesses of each of these
research approaches. The conclusion of this investigation allowed us to obtain a
basis for the architecture design of the two models and facilitate the formulation of
the evaluation plan.

3.1.3 Step 3: Data Collection

In order to train and evaluate the proposed high to low resolution steganography
model, we utilized multiple publicly available datasets, each serving distinct roles in
the steganographic pipeline:

• Cover Image Synthesis: For the generation of stego images, we employed
the DELAUNAY (Gontier et al. 2022) dataset, which contains stylized artis-
tic and abstract images. All cover images were resized to a fixed resolution of
256↑256 pixels to serve as low-resolution stego targets. A total of 1350 images
from DELAUNAY were used for cover image generation during training.

• Secret Images: High-resolution secret images were selected from the Flickr2K (Lim
et al. 2017) and Div2K (Timofte et al. 2017) datasets. These original high-
resolution images were resized to 512 ↑ 512 pixels to ensure consistency across
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training and evaluation phases. A total of 1500 images were combined from
both datasets for training, while an independent test set of 500 high-resolution
images was used for evaluation purposes.

• Experimental Dataset: For preliminary experimentation and model proto-
typing, we utilized the summer2winter Yosemite dataset (Zhu et al. 2017),
available at https://www.kaggle.com/datasets/suyashdamle/cyclegan. This
dataset comprises 256 ↑ 256 resolution images. Its manageable size and res-
olution made it particularly suitable for rapid experimental iterations given
time and computational resource constraints.

This multi-dataset approach allowed for comprehensive training, robust evalu-
ation, and e”cient experimentation, ensuring the proposed model was rigorously
validated under various practical scenarios.

3.1.4 Step 4: High-Resolution Restoration Model

In this work, we focus on generating a low-resolution image from a given high-
resolution input image. Subsequently, the same high-resolution image is recon-
structed using the generated low-resolution image as input. This process demon-
strates the capability to compress and encode high-resolution image data into a
lower-resolution format, which can then be e!ectively utilized to recover the origi-
nal high-resolution image. This approach is intended to optimize storage and trans-
mission e”ciency while preserving the integrity of the reconstructed image. This
process is shown in Figure 3.2.

Figure 3.2: Overview of High-Resolution Restoration Model

To address this task, we have developed two distinct models. The first model
is based on an autoencoder architecture, designed to e”ciently learn the mapping
between high-resolution and low-resolution images. The second model combines
bicubic interpolation (Fadnavis 2014) with a refinement network, aimed at enhancing
the quality of the low-resolution image and improving the accuracy of the high-
resolution reconstruction. These models o!er di!erent approaches to the problem,
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each leveraging unique techniques to optimize image compression, reconstruction,
and overall performance, which we will be discussed in detail in later sections.

3.1.5 Step 5: High-Resolution Restoration Model Evalua-
tion

The performance of the high-resolution restoration model will be evaluated using
quantitative metrics such as PSNR, MSE, and SSIM. These metrics will be used
to assess the quality of the reconstructed high-resolution images and compare the
performance of the two models. The evaluation results will provide insights into
the e!ectiveness of the models in preserving image quality and integrity during the
compression and reconstruction process.

3.1.6 Step 6: Stego Image Generation Model

In this phase, the stego image is generated using the low-resolution image produced
by the encoder of the High-Resolution Restoration Model. This is achieved through
the application of Generator 1, which creates the stego image. Subsequently, Gen-
erator 2 is employed to reconstruct the original low-resolution image from the stego
image. This dual-generator framework ensures that the generated stego image can be
e!ectively utilized for secure transmission while maintaining the ability to accurately
reconstruct the initial low-resolution image. This process is shown in Figure 3.3.

Figure 3.3: Overview of Stego Image Generation Model

To address this task, we are planned to use CycleGAN (Zhu et al. 2017) ar-
chitecture, which is a generative adversarial network designed for image-to-image
translation tasks. This architecture is well-suited for the stego image generation
process, as it enables the generation of stego images from low-resolution input im-
ages while preserving the integrity and security of the embedded data.
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3.1.7 Step 7: Stego Image Generation Model Evaluation

This evaluation also same as the evaluation of the High-Resolution Restoration
Model. The performance of the stego image generation model will be evaluated
using quantitative metrics such as PSNR, MSE, and SSIM. These metrics will
be used to assess the of the original low-resolution image and the quality of the
reconstructed low-resolution image from the stego image. The evaluation results
will provide insights into the e!ectiveness of the model in generating stego images
and preserving the integrity of the embedded data.

3.1.8 Step 8: Model Integration

In this phase, the High-Resolution Restoration Model and the Stego Image Genera-
tion Model are integrated to create a comprehensive framework for Low-Resolution
Coverless Image Steganography for High-Resolution Images, utilizing GANs. This
integrated approach leverages the strengths of both models to ensure e”cient gen-
eration of low resolution stego image and reconstruction of high-resolution image,
enabling secure and e!ective image steganography. Overall architecture of the inte-
grated model is shown in Figure 3.4.

Figure 3.4: Overview of Integrated Model

3.1.9 Step 9: Integrated Model Evaluation

The integrated model implemented from the previous stage will be evaluated accord-
ing to the evaluation plan defined in subsection 3.3. The conclusion of this phase will
result in test results reflecting the performance of the model. If the results obtained
from this phase are proven to accomplish the research aim we will conclude the
project. However, if the results obtained are not satisfactory we will either redesign
the model or adjust hyper-parameters accordingly and iterate through the process
until we obtain the required results.
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Chapter 04

4.1 Model Architectures and Experimental Re-
sults

This section presents a comprehensive overview of the experiments conducted through-
out the research. The experimental process was systematically categorized into three
main stages. The first category focuses on the transformation and reconstruction
of high-resolution images into low-resolution representations, evaluating the model’s
capability to preserve essential visual features during resolution reduction. The sec-
ond category encompasses the generation of stego images, where the objective was to
embed secret information within low-resolution images while maintaining impercep-
tibility and data integrity. The final category combines the findings of the previous
two to develop and evaluate a novel approach for low-resolution coverless image
steganography of high-resolution images. Each experiment is discussed in detail,
including the underlying model architectures, training configurations, and perfor-
mance evaluation metrics used to assess the e!ectiveness of the proposed methods.

4.1.1 High-Resolution Restoration Model Experiments

This subsection details the experiments conducted to explore various methodologies
for restoring high-resolution images from their low-resolution counterparts. The
primary objective was to assess di!erent restoration techniques in terms of their
ability to reconstruct high-quality images while preserving semantic and structural
fidelity.

Three distinct experiments were carried out under this category. Experiment
1 investigates traditional interpolation techniques—including nearest-neighbor, bi-
linear, and bicubic interpolation—as baseline methods for high-resolution image
restoration. Experiment 2 explores a deep learning-based approach using auto-

encoders, evaluating their e!ectiveness in learning compressed representations and
reconstructing high-resolution outputs with improved detail retention. Experiment
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3 introduces a hybrid method that combines bicubic interpolation with a refinement

network, aiming to enhance the initial interpolated output through a trainable model
that corrects artifacts and sharpens features.

All experiments detailed in this section were conducted using the summer2winter
Yosemite dataset (Zhu et al. 2017), with an initial image resolution of 256 ↑ 256,
which was downscaled to 128 ↑ 128. After determining the optimal approach for
High-Resolution Restoration, we plan to extend the experiments to include high-
resolution images of up to 512 ↑ 512.

4.1.1.1 Experiment 1:High-Resolution Image Restoration Using Inter-
polation Techniques.

Initially, we explored various interpolation techniques, including bilinear, bicubic,
and nearest neighbor interpolation (Fadnavis 2014). These methods were analyzed
to assess their e!ectiveness in downscaling and subsequently upscaling image reso-
lutions, serving as a foundation for high-resolution image restoration.

Bilinear Interpolation
Bilinear interpolation estimates values at arbitrary positions by calculating the

weighted average of the four nearest pixels to the specified input coordinates and
assigning the resulting value to the output coordinates. This process involves per-
forming two linear interpolations along one axis, followed by a linear interpolation
in the perpendicular direction (Fadnavis 2014). The interpolation kernel can be
expressed as:

u(x) =






0, if |x| > 1

1 → |x|, if |x| < 1

where ‘x’ represents the distance between the two points being interpolated.
The experimental results were evaluated using quantitative metrics, including

PSNR, MSE, and SSIM. Results were shown in Figure 4.1 and Table 4.1.
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Figure 4.1: Bilinear Interpolation Results

Metric Image 1 Image 2 Image 3

SSIM 0.73252 0.69140 0.70321
PSNR 71.2813 72.5612 70.6376
MSE 0.00484 0.00360 0.00561

Table 4.1: SSIM, PSNR, and MSE values for Images

Bicubic Interpolation
Bicubic interpolation is an enhancement over cubic interpolation applied to a two-

dimensional regular grid. It produces a smoother interpolated surface compared
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to the surfaces generated by bilinear and nearest-neighbor interpolation methods.
Bicubic interpolation employs polynomials or the cubic convolution algorithm to
estimate values at arbitrary positions.

In cubic convolution interpolation, the grey-level value at a specified input coor-
dinate is determined by the weighted average of the 16 closest pixels, considering a
4 ↑ 4 grid. For bicubic interpolation (which is cubic convolution applied in two di-
mensions), the interpolation function requires 16 grid points—eight grid points (two
on either side) along both the horizontal and vertical axes. The obtained results
were shown in Figure 4.2 and Table 4.2.

Figure 4.2: Bicubic Interpolation Results

28



Metric Image 1 Image 2 Image 3

SSIM 0.78381 0.72648 0.75241
PSNR 71.9927 72.6402 70.8268
MSE 0.00410 0.00354 0.00538

Table 4.2: SSIM, PSNR, and MSE values for Images

Nearest Neighbor Interpolation
Nearest neighbor interpolation is the simplest form of interpolation. In this method,

each output pixel is assigned the value of the nearest sample point from the input
image. The interpolation kernel for nearest neighbor interpolation is defined as:

h(x) =






1, if |x| < 0

0, if |x| > 0

The frequency response of the nearest neighbor kernel is given by:

H(ω) = sinc
(

ω

2

)
(4.1)

Although this method is computationally e”cient, the resulting image quality is
generally poor. This is because the Fourier transform of a rectangular function is
equivalent to a sinc function, which has a rapidly decaying passband. Additionally,
the sinc function exhibits prominent side lobes when analyzed on a logarithmic scale,
leading to visible artifacts and a loss of smoothness in the interpolated image. The
obtained results were shown in Figure 4.3 and Table 4.3.
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Figure 4.3: Nearest Neighbor Interpolation Results

Metric Image 1 Image 2 Image 3

SSIM 0.66818 0.61571 0.66319
PSNR 68.1302 69.6594 68.0526
MSE 0.01000 0.00703 0.01018

Table 4.3: SSIM, PSNR, and MSE values for Images

The results of this experiment indicated that bicubic interpolation provided su-
perior performance for high-resolution image restoration compared to other inter-
polation methods. This finding aligns with observations mentioned in the litera-
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ture (Fadnavis 2014), where bicubic interpolation is noted for its ability to produce
smoother and more visually appealing results.

Bilinear Bicubic Nearest Neighbour
Metric Image 1 Image 2 Image 3 Image 1 Image 2 Image 3 Image 1 Image 2 Image 3

SSIM 0.73252 0.69140 0.70321 0.78381 0.72648 0.75241 0.66818 0.61571 0.66319
PSNR 71.2813 72.5612 70.6376 71.9927 72.6402 70.8268 68.1302 69.6594 68.0526
MSE 0.00484 0.00360 0.00561 0.00410 0.00354 0.00538 0.01000 0.00703 0.01018

Table 4.4: SSIM, PSNR, and MSE values for Images across Bilinear, Bicubic, and
Nearest Neighbour Interpolation

4.1.1.2 Experiment 2:Auto-Encoder Based High-Resolution Image Restora-
tion.

Building on the approach proposed by Wang et al. (2016), an Auto-Encoder was
implemented from scratch for high-resolution image restoration. The model consists
of two primary networks: the encoder network, which takes the high-resolution image
as input and generates a low-resolution image, and the decoder network, which takes
the low-resolution image and reconstructs the original high-resolution image.

Additionally, a novel loss function was introduced for training the autoencoder.
The loss function is a weighted sum of three distinct losses: MSE loss, Structural
SSIM loss (Brunet et al. 2007), and Perceptual loss (Johnson et al. 2016). These
combined loss components enable the model to optimize both pixel-level accuracy
and perceptual quality during training.

The architecture of the model, along with the details of the loss function, is
presented below.
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Figure 4.4: Auto-Encoder Architecture for High-Resolution Image Restoration

The loss function for the Auto-Encoder model is defined as:

L = ε · MSE(I, Î) + ϑ · SSIM(I, Î) + ϖ · PerceptualLoss(I, Î)

where:

• I represents the original high-resolution image.

• Î represents the reconstructed high-resolution image.

• ε, ϑ, and ϖ are the weights assigned to the MSE, SSIM, and Perceptual loss
components, respectively.

• MSE(I, Î) denotes the Mean Squared Error between the original and recon-
structed images.

• SSIM(I, Î) represents the Structural Similarity Index between the original and
reconstructed images.
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• PerceptualLoss(I, Î) is the perceptual loss calculated using a pre-trained VGG-
16 network.

Here the alpha, beta, and gamma values were fine-tuned using hyper parameter
tuning to optimize the performance of the model. Details of the hyperparameter
tuning process and the final values selected for alpha, beta, and gamma are provided
in the Figure 4.5.

Figure 4.5: Hyperparameter Tuning Process for the Loss Function

So the best values for alpha, beta, and gamma were found to be 0.8395066986847585,
0.4146408975065028, and 0.146932266033763, respectively.

The final network was trained using the summer2winter Yosemite dataset (Zhu
et al. 2017), for 500 epochs, with a batch size of 8. And the results were evaluated
using the same metrics as in the previous experiment. The results were shown in
Figure 4.6 and Table 4.5.
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Figure 4.6: Auto-Encoder Results

Metric Image 1 Image 2 Image 3

SSIM 0.88446 0.89952 0.84630
PSNR 77.3171 77.7219 75.1895
MSE 0.00669 0.00778 0.01338

Table 4.5: SSIM, PSNR, and MSE values for Images
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4.1.1.3 Experiment 3: Bicubic Interpolation Enhanced with Refinement
Network for High-Resolution Image Reconstruction.

Since bicubic interpolation demonstrated superior performance in the initial exper-
iments in Section 4.1.1.1, we sought to enhance the bicubic interpolation method
by incorporating a refinement network. The refinement network is designed to re-
fine the reconstructed high-resolution image obtained from bicubic interpolation,
thereby improving the overall quality of the image. The overall architecture of the
model is shown in Figure 4.7.

Figure 4.7: Bicubic Interpolation Enhanced with Refinement Network

The refinement network is adapted from CBDNet, proposed by Guo et al. (2019),
which is a lightweight architecture originally designed for image denoising. For this
experiment, the CBDNet structure was modified to serve as the refinement net-
work, utilizing the novel loss function previously introduced for the Auto-Encoder
in section 4.1.1.2. The objective of this adapted architecture is to enhance the qual-

35



ity of the low-resolution image and improve the overall accuracy of high-resolution
reconstruction. The loss function for the refinement network is defined as follows:

L = ε · MSE(I, Î) + ϑ · SSIM(I, Î) + ϖ · PerceptualLoss(I, Î)

where:

• I represents the original high-resolution image.

• Î represents the reconstructed high-resolution image.

• ε, ϑ, and ϖ are the weights assigned to the MSE, SSIM, and Perceptual loss
components, respectively.

• MSE(I, Î) denotes the Mean Squared Error between the original and recon-
structed images.

• SSIM(I, Î) represents the Structural Similarity Index between the original and
reconstructed images.

• PerceptualLoss(I, Î) is the perceptual loss calculated using a pre-trained VGG-
16 network.

The architecture of the refinement network, along with the details of the loss
function, is presented below.

Figure 4.8: Refinement Network Architecture for High-Resolution Image Restoration
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Here also the alpha, beta, and gamma values were fine-tuned using hyper param-
eter tuning to optimize the performance of the model. Details of the hyperparameter
tuning process and the final values selected for alpha, beta, and gamma are provided
in the Figure 4.9.

Figure 4.9: Hyperparameter Tuning Process for the Loss Function

So the best values for alpha, beta, and gamma were found to be 0.2643719337842054,
0.43165157803068255, and 0.1272735311878324, respectively.

The final network was trained using the summer2winter Yosemite dataset (Zhu
et al. 2017), for 500 epochs, with a batch size of 8. And the results were evaluated
using the same metrics as in the previous experiment. The results were shown in
Figure 4.10 and Table 4.6.
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Figure 4.10: Bicubic Interpolation Enhanced with Refinement Network Results

Metric Image 1 Image 2 Image 3

SSIM 0.92134 0.91472 0.92103
PSNR 77.3680 78.4892 76.5696
MSE 0.00512 0.00380 0.0594

Table 4.6: SSIM, PSNR, and MSE values for Images

A comparison of the results from the three experiments reveals that the bicubic
interpolation method combined with the refinement network delivers superior per-
formance in terms of SSIM and PSNR values. Conversely, the standalone bicubic
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interpolation method yields the lowest MSE. Table 4.7 presents the comprehensive
metrics for all three experiments. The findings demonstrate that the bicubic inter-
polation enhanced with the refinement network surpasses both the Auto-Encoder
and standard bicubic interpolation methods, achieving higher image quality and
improved restoration accuracy.

Metric
Bicubic Interpolation Auto-Encoder Bicubic with Refinement

Image 1 Image 2 Image 3 Image 1 Image 2 Image 3 Image 1 Image 2 Image 3

SSIM 0.78381 0.72648 0.75241 0.88446 0.89952 0.84630 0.92134 0.91472 0.92103
PSNR 71.9927 72.6402 70.8268 77.3171 77.7219 75.1895 77.3680 78.4892 76.5696
MSE 0.00410 0.00354 0.00538 0.00669 0.00778 0.01338 0.00512 0.00380 0.00594

Table 4.7: Combined SSIM, PSNR, and MSE values for Images across di!erent
experiments: Bicubic Interpolation, Auto-Encoder, and Bicubic with Refinement
Network

4.1.2 Stego Image Generation Model

This subsection outlines the experimental work conducted on stego image generation
by modifying the CycleGAN training framework proposed by Zhu et al. (2017). The
aim was to develop a model capable of embedding high-resolution secret images into
low-resolution cover images in a coverless manner, while enabling the recovery of
the original secret content.

To achieve this, the standard CycleGAN architecture was adapted by modifying
its loss functions to better suit the objectives of steganography, particularly focusing
on improving the fidelity of reconstructed secret images. The original generator and
discriminator architectures of CycleGAN were retained to preserve the bidirectional
mapping between domains. Additionally, an auxiliary generator-discriminator pair,
based on the U-Net architecture (Ronneberger et al. 2015), was integrated into the
framework. This supplementary U-Net-based pathway was introduced to enhance
the reconstruction quality of the secret images by leveraging its strong localization
and feature preservation capabilities.

These architectural modifications and training enhancements were designed to
ensure that the stego images remain visually indistinguishable from normal low-
resolution images, while still allowing accurate recovery of the original high-resolution
secrets.
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4.1.2.1 Generator and Discriminator Architectures

The generator and discriminator models used in the experiments were based on both
CycleGAN and U-Net architectural principles. The standard CycleGAN generator
is composed of convolutional layers followed by residual blocks and upsampling lay-
ers, facilitating e!ective domain translation. For further enhancement of image
reconstruction quality, a U-Net generator was also introduced, which leverages skip
connections to retain fine-grained spatial features across layers.

The discriminators used in all experiments follow the PatchGAN structure, which
operates on local image patches rather than the full image, thereby enabling better
learning of high-frequency details and textures. This setup proved to be e!ective
in improving perceptual quality and guiding the generator towards more realistic
outputs.

CycleGAN Generator Architecture

The CycleGAN generator architecture used in this study is designed to facilitate
image-to-image translation by learning a mapping between the source and target
image domains. It consists of three main stages: an initial convolutional block, a
series of residual blocks, and a final upsampling block. The architecture is fully
convolutional and maintains the spatial resolution of the input through the use of
padding and skip connections.

The initial block includes a 7 ↑ 7 convolutional layer followed by instance nor-
malization and ReLU activation, which helps capture low-level features. This is
followed by two downsampling layers with 3 ↑ 3 convolutions and stride 2 to re-
duce spatial dimensions while increasing the depth of feature maps. The core of the
generator consists of several residual blocks, each comprising convolutional layers,
normalization, and skip connections, which allow the model to learn more complex
transformations while preserving information.

In the final stage, the network performs upsampling using transposed convolu-
tions upsampling followed by convolution, e!ectively restoring the original resolu-
tion. The output is passed through a tanh activation function to produce the final
image.

Figure 4.11 illustrates the detailed layer-wise architecture of the CycleGAN gen-
erator used in our experiments.
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Figure 4.11: CycleGAN Generator Architecture

CycleGAN Discriminator Architecture (PatchGAN)

The discriminator architecture used in CycleGAN follows the PatchGAN design,
proposed by Demir & Unal (2018) which classifies image patches rather than the
entire image. This approach allows the model to focus on local features, e!ectively
capturing high-frequency details such as textures and edges, which are crucial for
ensuring the realism of generated images.

The PatchGAN discriminator operates by sliding a convolutional window over
the image and making a real/fake decision for each N ↑ N patch, rather than pro-
ducing a single scalar output. This leads to a grid of outputs where each value
represents the probability of the corresponding patch being real. This architecture
significantly reduces the number of parameters compared to a full-image discrimi-
nator, while still being highly e!ective in guiding the generator towards producing
more realistic and locally consistent outputs.

The discriminator comprises a series of strided convolutional layers, each followed
by instance normalization (except for the first layer) and a LeakyReLU activation
function. These layers progressively reduce the spatial dimensions and increase
the depth, ultimately producing an output feature map representing patch-wise
classifications.

Figure 4.12 illustrates the structure of the PatchGAN discriminator employed in
our implementation.
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Figure 4.12: PatchGAN Discriminator Architecture

U-Net Generator Architecture

The U-Net generator architecture proposed by Ronneberger et al. (2015) is de-
signed to enhance the CycleGAN framework by introducing a more robust mech-
anism for preserving spatial details during image transformation. The U-Net ar-
chitecture is characterized by its encoder-decoder structure with skip connections,
which enable it to retain low-level spatial features from the input image while also
allowing it to capture high-level abstractions in the deeper layers.

1. Encoder (Downsampling Path): This part of the network reduces the
spatial dimensions of the input image using convolutional layers followed by
instance normalization and activation functions (typically LeakyReLU). Each
downsampling step progressively extracts features while halving the spatial
dimensions.

2. Decoder (Upsampling Path): The decoder upsamples the feature maps to
the original image size using transposed convolutions, followed by convolution
layers. Skip connections from the encoder path are concatenated with the
corresponding upsampled feature maps to retain important low-level features
that are otherwise lost in typical downsampling layers. This helps in recovering
fine-grained image details.

The U-Net generator benefits from these skip connections by allowing for the
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reconstruction of high-resolution features, resulting in better image quality in the
final stego image. By preserving both global structure and local detail, the U-Net
model helps improve the accuracy of the secret image recovery from the stego image.

Figure 4.13 illustrates the detailed architecture of the U-Net generator used in
this study.

Figure 4.13: U-Net Generator Architecture
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4.1.2.2 Customized Loss Function for Stego Image Generation and En-
hancement

To e!ectively train the stego image generation pipeline introduced in this study, a
novel loss formulation was designed by combining multiple objectives into a weighted
sum. The proposed loss function encourages not only pixel-wise similarity between
the reconstructed and original images, but also perceptual quality and adversarial
realism. This combination helps achieve high-fidelity reconstructions from visually
unrelated stego images.

The generalized form of loss function used is given by:

LG = ϱrec · Lrec + ϱperc · Lpercep + ϱadv · Ladv

Where:

• Lrec is the pixel-wise reconstruction loss (L1 loss).

• Lpercep is the perceptual loss computed using feature/style representations.

• Ladv is the adversarial loss.

• ϱrec, ϱperc, ϱadv are scalar weights controlling the influence of each component.

Based on empirical experimentation without extensive hyperparameter tuning,
the values for the loss weights were selected.

The training procedure is divided into two distinct stages, each with a tailored
loss configuration:

• Stage 1 (Stego Generation and Reconstruction): In this stage, GeneratorAB,
GeneratorBA, and DiscriminatorST are trained jointly. The objective is to gen-
erate a realistic stego image and successfully reconstruct the secret image at
the receiver end. The generator loss function is formulated as:

LStage1 G = 10 · LRecon + 5 · LPerceptual + LAdv

• Stage 2 (Enhancement of Reconstructed Image): GeneratorEN and
DiscriminatorEN are trained to enhance the visual quality of the reconstructed
image. The loss function for this stage gives more weight to perceptual simi-
larity and structural accuracy:

LStage2 G = 100 · LRecon + 50 · LPerceptual + LAdv
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The following subsections detail the individual components of the composite loss
function.

Reconstruction Loss (LRecon)

The reconstruction loss is implemented as the pixel-wise L1 loss between the
ground truth secret image and its reconstructed version. It ensures that the struc-
tural integrity of the original image is preserved during the forward and backward
translations. Given a target image I and a prediction Î, the reconstruction loss is
defined as:

LRecon = ↓I → Î↓1

This term helps reduce blurriness and enforces pixel-level alignment between the
reconstructed image and the original secret.

Perceptual Loss (LPerceptual)

Perceptual loss is computed using feature maps extracted from a pre-trained
convolutional neural network (VGG16). It compares the high-level semantic features
of the reconstructed and target images, rather than just pixel-wise di!erences. This
allows the model to maintain texture, edges, and finer details that contribute to
human-perceived quality. The loss is formally expressed as:

Let:

• I be the generated (input) image.

• T be the target (ground truth) image.

• ςi(·) be the activation output from the i-th block of a pre-trained VGG16
network.

• L1(a, b) = ↓a → b↓1 denote the L1 loss between feature maps.

• G(·) denote the Gram matrix computation.

The total perceptual loss is given by:

LPerceptual(I, T ) =
∑

i↑F
L1 (ςi(I), ςi(T )) +

∑

j↑S
L1 (G(ςj(I)), G(ςj(T )))

Where:
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• F is the set of feature layers used for content similarity.

• S is the set of style layers used for texture/style similarity.

The Gram matrix G(ςj(I)) captures the style representation of an image. For a
feature map ςj(I) ↔ RC↓H↓W , it is first reshaped into RC↓(HW ), then:

G(ςj(I)) = ςj(I) · ςj(I)↔ ↔ RC↓C

Adversarial Loss (LAdv)

The adversarial loss is derived from a standard GAN objective, where the gener-
ator tries to produce images indistinguishable from real ones, and the discriminator
attempts to classify real versus fake samples.

The objective is defined as a minimax game between the generator G and the
discriminator D:

min
G

max
D

V (D, G) = Ex→pdata(x)[log D(x)] + Ez→pz(z)[log(1 → D(G(z)))]

Where:

• G represents the generator network (e.g., GAB, GBA, GEN in our model).

• D denotes the discriminator network (e.g., DST, DEN in our model).

• x ↗ pdata(x) is a sample drawn from the real data distribution (e.g., real stego
or enhanced images).

• z ↗ pz(z) is the latent input (e.g., secret or stego image) to the generator.

• D(x) is the discriminator’s estimated probability that x is real.

• D(G(z)) is the probability that the discriminator classifies the generated sam-
ple as real.

This loss encourages the generator to produce images that are visually indistin-
guishable from real samples, e!ectively learning the data distribution and increasing
the quality and realism of the stego and reconstructed images in our model.
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4.1.2.3 Experiment 1: Stego Image Generation with Same Resolution
as Secret Image

In this experiment, we present a stego image generation pipeline that aims to embed
a high-resolution secret image within a visually similar carrier-like image, referred
to as the stego image, while maintaining the same resolution as the original secret.
The objective is to ensure that the generated stego image appears visually unrelated
to the original secret image, while still allowing for e!ective reconstruction and
enhancement at the receiver side.

The proposed architecture is composed of three generator networks and two
discriminator networks. A high-level overview of the system is shown in Figure 4.14 .
Each component of the pipeline plays a specific role in the encoding, reconstruction,
and enhancement processes.

1. GeneratorAB (Stego Generator): This generator takes the original secret
image IS as input and produces a visually unrelated stego image IST . The
aim is to hide the high-frequency content of the secret image while preserving
latent features necessary for future reconstruction. It functions as the forward
translation module from the secret domain to the stego domain.

2. DiscriminatorST (Stego Discriminator): This discriminator evaluates whether
an image in the stego domain is real or generated. It guides GeneratorAB to
produce realistic-looking stego images that are indistinguishable from real im-
ages in the stego domain.

3. GeneratorBA (Reconstruction Generator): This generator acts at the
receiver side, attempting to reconstruct the secret image ÎS from the generated
stego image IST . It serves as the reverse translation module that aims to
recover the embedded information as accurately as possible.

4. GeneratorEN (Enhancement Generator): To further improve the quality
and visual fidelity of the reconstructed image, a U-Net based enhancement gen-
erator is employed. This network takes ÎS as input and outputs an enhanced
image Î

+
S

that is closer in quality and detail to the original secret.

5. DiscriminatorEN (Enhancement Discriminator): This discriminator is
responsible for assessing the realism of the enhanced reconstructed image. It
ensures that GeneratorEN produces high-quality outputs that are indistinguish-
able from real high-resolution secret images.
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The system is trained using a combination of adversarial losses, cycle-consistency
losses, and reconstruction losses to ensure the fidelity of both the stego image and
the reconstructed secret. The enhancement generator introduces a refinement step,
which particularly benefits edge recovery and fine detail preservation.

Figure 4.14: High-Level Architecture of Stego Image Generation and Reconstruction
Pipeline for Experiment 1.
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To evaluate the e!ectiveness of the proposed stego image generation and recon-
struction pipeline, a qualitative analysis was conducted using visual outputs from
the trained model. Figure 4.15 illustrates the transformation process across multiple
samples.

• Secret Image: The secret image that is intended to be hidden.

• Stego Image: The visually unrelated image produced by GeneratorAB. Al-
though perceptually di!erent from the secret, it carries the latent features
required for reconstruction.

• Reconstructed Secret Image: The output of GeneratorBA, which attempts
to retrieve the original secret content from the stego image.

• Refined Reconstructed Secret Image: The final output after passing the
reconstructed image through the enhancement network (GeneratorEN), aim-
ing to recover fine details and visual quality.
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Figure 4.15: Qualitative results for Experiment 1 showing the Secret Image, Stego
Image, Reconstructed Secret Image, and Refined Reconstructed Secret Image for
several test cases.

The results demonstrate that the proposed architecture is capable of generat-
ing realistic stego images with the same resolution as the secret image, that are
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visually distinct from the secret images while still enabling successful reconstruction
and enhancement. The enhancement step notably improves perceptual clarity and
sharpness in the reconstructed images.

Discussion

The architecture presented in this experiment serves as the baseline model for
all subsequent stego image generation experiments. In the following sections, we ex-
plore how this architecture can be extended to generate low-resolution stego images
by integrating various image downsampling and restoration techniques discussed
previously in Section 4.1.1.

These enhancements aim to achieve a novel objective: embedding high-resolution
secret images into low-resolution stego images, while preserving the ability to recon-
struct high-quality approximations of the original secret. By combining the founda-
tional framework described above with the transformation and restoration strategies
explored earlier, we propose a new class of coverless image steganography models
capable of achieving secure, e”cient, and resolution-aware information hiding.
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4.1.2.4 Experiment 2: Low-Resolution Stego Image Generation Using
Bicubic Interpolation

In this experiment, we extend the baseline stego image generation pipeline intro-
duced in Experiment 1 by incorporating a low-resolution generation strategy. The
objective is to explore the feasibility of embedding high-resolution secret images into
visually unrelated low-resolution stego images, which can be e!ectively transmitted
or stored with reduced bandwidth and then reconstructed at the receiver side.

Motivation. This design decision is motivated by the high performance of the
bicubic interpolation technique, as observed in the high-resolution restoration ex-
periments discussed in Section 4.1.1. Among various methods evaluated, bicubic
interpolation yielded the most satisfactory balance between computational e”ciency
and reconstruction quality, making it a suitable candidate for use in this context.

Architectural Overview. The modified architecture for this experiment is illus-
trated in Figure 4.16 and consists of the following stages:

1. Low-Resolution Preprocessing: The original high-resolution secret image
I

HR

S
↔ R512↓512 is first downsampled using bicubic interpolation to obtain a

low-resolution representation I
LR

S
↔ R256↓256. This step significantly reduces

the image size while preserving structural integrity.

2. Stego Image Generation (GenAB): The low-resolution secret image I
LR

S

is then fed into the GeneratorAB network, which generates a low-resolution
stego image I

LR

ST
. This image is designed to be visually unrelated to the secret

while encoding essential latent features necessary for reconstruction.

3. Reconstruction (GenBA): At the receiver side, the GeneratorBA attempts
to recover a low-resolution approximation Î

LR

S
of the original secret image from

the stego image.

4. High-Resolution Upsampling: The reconstructed low-resolution image
Î

LR

S
is then upsampled back to the original resolution Î

HR

S
↔ R512↓512 using

bicubic interpolation, ensuring that the output is suitable for further enhance-
ment and visualization.

5. Refinement (GenEN): Finally, the upsampled image Î
HR

S
is passed through

the U-Net-based enhancement generator (GenEN), producing the refined high-
resolution secret image Î

+HR

S
, which more closely resembles the original secret

image in terms of both texture and perceptual fidelity.
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Figure 4.16: High-Level Architecture for Experiment 2: Low-Resolution Stego Image
Generation Pipeline Incorporating Bicubic Interpolation.

Figure 4.17 illustrates the results obtained from the proposed low-resolution
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stego image generation and reconstruction pipeline. The visual outputs demonstrate
the e!ectiveness of the method in concealing high-resolution information within a
downsampled stego image and subsequently reconstructing it with notable fidelity.

The columns in the figure represent the following stages:

1. HR Secret Image: The original high-resolution secret image used as the
input.

2. LR Secret Image: The downsampled version of the secret image using bicu-
bic interpolation.

3. LR Stego Image: The visually unrelated stego image generated from the
LR secret image by GeneratorAB.

4. Reconstructed LR Secret Image: The recovered LR image produced by
GeneratorBA.

5. Reconstructed HR Secret Image: The upsampled reconstruction using
bicubic interpolation.

6. Refined HR Secret Image: The final enhanced output obtained from the
U-Net based GeneratorEN.
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Figure 4.17: Visual results from Experiment 2. Each row corresponds to one test
sample, progressing from the original HR secret image to the final refined recon-
struction.

As seen in the results, the reconstructed images retain structural and perceptual
similarity to the original high-resolution secret, despite the transformations and res-
olution changes applied during the steganographic process. The enhancement stage
notably improves sharpness and detail, validating the contribution of GeneratorEN.

Discussion

While the proposed low-resolution stego generation pipeline performs e!ectively
in preserving and reconstructing complex secret images, several limitations were
observed with simpler secret images. Specifically, when the secret image contains
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only a single or a few prominent objects with relatively plain backgrounds, the
generated stego images tend to visually retain structural cues of the original content.
This compromises the visual dissimilarity requirement expected in a steganographic
system.

Figure 4.18 illustrates this phenomenon. As seen in the sample results, the
generated stego images exhibit noticeable traces of the original secret object, making
them potentially vulnerable to detection or interpretation.

Figure 4.18: Examples demonstrating limitations of Experiment 2 for simple secret
images. The stego images in these cases still reveal perceptual hints of the secret
content.

This observation indicates that the architecture in Experiment 2 is better suited
for more complex secret images with cluttered scenes, where the transformation
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to the stego domain e!ectively hides individual object features among dense back-
ground information.

To address this challenge, the following experiments were designed to introduce
architectural and methodological enhancements aimed at improving the concealment
capabilities for simpler, object-focused secret images.

4.1.2.5 Experiment 3: Auto-Encoder-Based Low-Resolution Stego Im-
age Generation

Following the limitations observed in Experiment 2, this experiment was designed
to improve concealment capabilities, especially for simpler, object-focused secret
images. The key issue identified was that when the secret image contains only a
few salient objects, the generated stego image may still preserve recognizable visual
cues, thereby weakening the steganographic e!ectiveness.

To address this challenge, we proposed using the **Auto-Encoder Based High-
Resolution Image Restoration** method (previously discussed in Section 4.1.1 ) for
generating the low-resolution version of the secret image. The motivation behind
this choice is that the auto-encoder tends to produce a ”washed-out” version of the
secret, where high-frequency details and textures are suppressed. This is illustrated
in Figure 4.19 , where the low-resolution output exhibits minimal visual resemblance
to the original image.

Figure 4.19: Comparison between high-resolution secret image and the low-
resolution image generated via auto-encoder. Note the significant loss of visual
detail, which enhances concealment.

Hypothesis
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The hypothesis for this experiment is that by feeding a visually non-informative,
low-resolution image (generated by the auto-encoder) into the stego generation
pipeline, the resulting stego image will e!ectively obscure any identifiable features
of the original secret. At the same time, we expect that su”cient latent features are
preserved for reconstructing the original image with reasonable accuracy.

High-Level Architecture

The architecture of the system is composed of the following stages:

1. Encoding (Downsampling): The original high-resolution secret image (IS)
is passed through a trained encoder to generate a low-resolution representation
(ILR) of size 256 ↑ 256.

2. Stego Generation (GeneratorAB): The low-resolution secret image (ILR)
is then used as input to GeneratorAB, which produces a stego image (IST ) in
the same low-resolution space.

3. Reconstruction (GeneratorBA): GeneratorBA receives the low-resolution
stego image and attempts to reconstruct the low-resolution secret image (ÎLR).

4. Decoding (Upsampling): The reconstructed low-resolution secret image is
then passed through a decoder (paired with the encoder used in step 1) to
upscale it back to the high-resolution space (ÎS).

5. Enhancement (GeneratorEN): Finally, the reconstructed high-resolution
image is passed through the enhancement generator (UNet-based) to recover
fine details and improve visual quality (Î+

S
).

The complete high-level system is illustrated in Figure 4.20.
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Figure 4.20: High-Level Architecture of Auto-Encoder-Based Low-Resolution Stego
Image Generation Pipeline (Experiment 3).

While this model successfully generated stego images that visually obscure nearly
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all meaningful features of the original secret—achieving the intended goal of en-
hanced concealment—it su!ered from severe reconstruction degradation. The de-
coder and enhancement generator were not able to recover the fine-grained image
details from the auto-encoded low-resolution input, leading to blurred and percep-
tually degraded outputs.

Figure 4.21 illustrates the outcome of this experiment, demonstrating that al-
though the stego image appears e!ectively unrelated to the original secret, the re-
constructed and refined versions fail to resemble the source image in meaningful
ways.

Figure 4.21: Experiment 3 Results. Columns from left to right: High-Resolution
Secret Image, Auto-Encoded LR Image, Stego Image, Reconstructed LR Image,
Reconstructed HR Image, Refined HR Image.

Discussion

The experiment demonstrates that while auto-encoder-based downsampling sig-
nificantly improves concealment, it sacrifices reconstructive accuracy. As such, this
approach was deemed unsuitable for scenarios where high-fidelity recovery of the
original image is essential. Subsequent experiments explore alternative approaches
to balance concealment and reconstruction quality more e!ectively.
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4.1.2.6 Experiment 4: Scrambling-Based Concealment Prior to Stego
Generation

After the failure of Experiment 3, which prioritized concealment at the expense of
reconstruction quality, this experiment explores an alternative strategy aimed at
maintaining both visual obfuscation and high reconstruction fidelity. The approach
involves scrambling the low-resolution secret image before feeding it to the stego
generator, and then applying inverse scrambling after reconstruction. The intuition
is that scrambling spatially disrupts the secret image, making it visually incom-
prehensible, while preserving pixel-level information that can still be learned and
decoded by the generator networks.

Unlike the auto-encoder used in Experiment 3—which suppressed too much vi-
sual and structural information—scrambling serves as a reversible transformation
that hides spatial patterns without degrading the information content. This enables
the system to generate stego images that are independent of the original secret’s
appearance while still allowing for accurate downstream reconstruction.

Scrambling and Inverse Scrambling Mechanism

To enhance concealment and disrupt the spatial correlation of pixels prior to
steganographic embedding, we employed a mathematical scrambling technique. This
scrambling is performed in the spatial domain using linear transformations derived
from modular matrix arithmetic, inspired by Arnold Cat Map–like transformations.

Scrambling Operation Let the input image tensor be represented as I ↔ RB↓C↓H↓W ,
where H = W = N (i.e., the image must be square). The scrambling is applied
independently across each image in the batch.

1. Generate a coordinate grid for pixel locations:

X, Y = meshgrid({0, 1, ..., N → 1})

2. Stack the coordinates into a 2D matrix:

P =


x1 x2 . . . xN2

y1 y2 . . . yN2



 ↔ Z2↓N
2
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3. Define a transformation matrix A:

A =


1 1
1 2





4. Apply the scrambling transformation iteratively:

P↗ = (Ak · P) mod N

where k is the number of scrambling iterations (default is 1), and operations
are performed modulo N to ensure valid pixel positions.

5. Rearrange the pixels of the image tensor based on the transformed coordinates
P↗ to obtain the scrambled image.

Inverse Scrambling Operation To recover the original pixel arrangement, the
inverse scrambling applies the inverse of matrix A, denoted A↘1, also in modular
arithmetic:

A↘1 =


 2 →1
→1 1





Applying this inverse transformation k times undoes the scrambling:

P = (A↘k · P↗) mod N

The recovered coordinate grid P is then used to reorder the scrambled image
pixels back to their original positions, e!ectively reconstructing the initial spatial
structure.

Figure 4.22 illustrates the visual output of a sample scrambled image. The
scrambling process significantly disrupts spatial coherence, making it di”cult to
discern any recognizable features or patterns from the original image.

Figure 4.22: Visual output of a sample scrambled image.
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Benefits This scrambling approach:

• Prevents trivial visual cues in the stego image by disrupting global spatial
continuity.

• Provides an additional layer of security as the transformation is reversible only
with knowledge of the matrix and the number of iterations.

• Is computationally lightweight and fully di!erentiable, enabling integration
into end-to-end neural networks.

Thus, scrambling serves as a pre-processing mechanism to increase concealment
e”cacy without compromising reconstruction capabilities when used with a corre-
sponding inverse transformation.

High-Level Architecture

The proposed architecture builds upon the pipeline used in Experiment 2, with
the key modification being the introduction of a scrambling and inverse scrambling
step. The flow of the system is as follows:

1. Downsampling (Bicubic Interpolation): The original high-resolution se-
cret image (IS) is first resized to a low-resolution version (ILR) of size 256↑256
using bicubic interpolation.

2. Scrambling: A scrambling function fscramble is applied to ILR to generate a
spatially randomized image Iscrambled.

3. Stego Generation (GeneratorAB): The scrambled low-resolution image is
then used as input to GeneratorAB, which produces a visually unrelated stego
image IST .

4. Reconstruction (GeneratorBA): The low-resolution stego image is passed
through GeneratorBA, which reconstructs the scrambled secret image Îscrambled.

5. Inverse Scrambling: The inverse scrambling function f
↘1
scramble

is applied to
Îscrambled to recover the reconstructed low-resolution secret image ÎLR.

6. Upsampling (Bicubic Interpolation): The reconstructed low-resolution
image is upscaled back to the original resolution using bicubic interpolation,
producing ÎS.
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7. Enhancement (GeneratorEN): Finally, the upscaled image is passed through
the enhancement generator to recover fine details and improve visual fidelity,
resulting in the refined image Î

+
S

.

The high-level architecture is illustrated in Figure 4.23.
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Figure 4.23: High-Level Architecture of the Scrambling-Based Stego Generation and
Reconstruction Pipeline (Experiment 4).
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This method e!ectively generated stego images that were visually uncorrelated
with the original secret, successfully concealing object-level and texture-based infor-
mation. As shown in Figure 4.24 , the scrambling process introduced a su”cient
degree of obfuscation, while still enabling GeneratorBA to reconstruct a meaningful
representation when paired with inverse scrambling.
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Discussion

This scrambling-based approach demonstrated a significant advancement in con-
cealment capabilities, which is the primary objective in steganography. By intro-
ducing spatial randomness to the secret image before stego generation, the system
e!ectively eliminated visual clues that could reveal the content of the original image.
Even for object-focused secret images—where previous experiments failed to hide
obvious features—this method successfully produced stego images that were visually
independent of the secrets.

Although the reconstruction accuracy did not surpass that of Experiment 2,
the concealment quality was notably superior. This trade-o! is acceptable and
even desirable in many steganographic applications where secrecy takes precedence
over perfect reconstruction. Therefore, this experiment marks a promising direc-
tion for scenarios that require stronger visual obfuscation without compromising
reconstructability beyond usability.

4.1.2.7 Selection of Final Models for Evaluation

The experiments described above explored various strategies for generating stego
images from high-resolution secret images while balancing the trade-o! between con-
cealment and reconstruction quality. Each experiment introduced di!erent method-
ologies to either improve the visual independence of the stego image or enhance the
quality of the reconstructed secret.

Based on the outcomes, Experiment 2 and Experiment 4 were selected as the
final models for further evaluation. Experiment 2 demonstrated superior recon-
struction quality, making it ideal for scenarios where recovery of the original content
is critical. In contrast, Experiment 4 achieved stronger concealment, particularly
for object-focused secret images, making it more suitable for steganographic appli-
cations that prioritize secrecy over reconstruction accuracy.

The next section presents a comprehensive evaluation of these two selected mod-
els in terms of:

• Reconstruction Quality: How accurately the original secret image can be
recovered.

• Hiding Capacity: The amount of information that can be embedded without
degrading visual quality.

• Robustness to Steganalysis: Resistance to detection by modern steganal-
ysis tools.
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• Applicability: Real-world suitability based on image complexity, perfor-
mance, and use case requirements.

This evaluation phase provides a deeper insight into the strengths and limitations
of each model, guiding their applicability in practical steganographic scenarios.
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Chapter 05

5.1 Comprehensive Evaluation of Final Stego Im-
age Generation Models

To thoroughly assess the e!ectiveness of the proposed stego image generation ap-
proaches, this section presents a comprehensive evaluation of the two selected models
— Experiment 2 (Bicubic Interpolation-based Low-Resolution Stego Generation)
and Experiment 4 (Scrambled Input-based Stego Generation). These models were
chosen based on their respective strengths in reconstruction fidelity and concealment
capabilities.

The evaluation focuses on four key criteria that are critical to steganographic
systems:

• Reconstruction Quality: Evaluating how accurately the original high-resolution
secret image can be reconstructed at the receiver side.

• Hiding Capacity and Secret Size Reduction: Measure the amount of
information that can be embedded within a cover image and the e”ciency
gained by reducing the secret image size.

• Robustness to Steganalysis: Assessing each model’s resistance to detection
by conventional and deep learning-based steganalysis tools.

• Applicability: Investigating the practical usability of the models in real-
world scenarios based on factors like image complexity, model reliability, and
intended use cases.

Through both quantitative metrics and qualitative visual analysis, this evalua-
tion aims to provide clear insight into the trade-o!s and strengths of each approach.
The ultimate goal is to understand the suitability of each model for di!erent stegano-
graphic objectives — whether the focus lies on secrecy, recoverability, or a balance
of both.
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5.1.1 Qualitative Evaluation: Visual Analysis of Reconstructed
Images

5.1.1.1 Quantitative Evaluation: SSIM, PSNR, and MAE

To evaluate the reconstruction quality of the two selected models, we used three
widely accepted image quality assessment metrics:

• SSIM (Structural Similarity Index Measure): Evaluates perceptual sim-
ilarity between the original and reconstructed images based on luminance,
contrast, and structure.

SSIM(x, y) = (2µxµy + C1)(2φxy + C2)
(µ2

x
+ µ2

y
+ C1)(φ2

x
+ φ2

y
+ C2)

(5.2)

where µx, µy are the means, φ
2
x
, φ

2
y

are the variances, φxy is the covariance,
and C1, C2 are constants to stabilize the division.

• PSNR (Peak Signal-to-Noise Ratio): Measures the ratio between the
maximum possible power of an image and the power of noise a!ecting the
quality of its representation.

PSNR = 10 · log10

(
MAX

2
I

MSE

)

(5.3)

where MAXI is the maximum possible pixel value (e.g., 255 for 8-bit images),
and MSE is the Mean Squared Error between the original and reconstructed
images.

• MAE (Mean Absolute Error): Computes the average magnitude of pixel-
wise di!erences between the original and reconstructed images.

MAE = 1
N

N∑

i=1
|xi → yi| (5.4)

where xi and yi are pixel values from the original and reconstructed images
respectively, and N is the total number of pixels.

Table 5.1.1.1 summarizes the average metric values obtained from a test set of
images for Experiment 2 and Experiment 4.
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Experiment SSIM ↑ PSNR (dB) ↑ MAE ↓
Experiment 1 0.8121 72.63 0.0559
Experiment 3 0.7123 70.89 0.0800

Table 5.8: Quantitative Comparison of Reconstruction Quality

From the results, it is evident that Experiment 2 provides superior reconstruc-
tion quality compared to Experiment 4, achieving higher SSIM and PSNR values
along with a lower MAE. This aligns with our previous qualitative observations and
validates its e!ectiveness in preserving fine details during the reconstruction process.

To contextualize the e!ectiveness of the proposed coverless image steganography
method, we compared our results with notable prior approaches including Baluja
Baluja (2017), Li et al. Li et al. (2021), and Liu et al. Liu, Ma, Guo, Hou, Schaefer,
Wang, Wang & Fang (2020). The comparison focuses on widely accepted quantita-
tive metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Mean Absolute Error (MAE), as shown in Table 5.1.1.1.

Method / Experiment SSIM ↑ PSNR (dB) ↑ MAE ↓
Baluja (2017) 0.89 27.51 -

Li et al. (2021) 0.73 29.23 -
Liu et al. (2020) 0.97 36.23 -

Experiment 1 (Ours) 0.8121 72.63 0.0559
Experiment 3 (Ours) 0.7123 70.89 0.0800

Table 5.9: Quantitative Comparison of Reconstruction Quality with Prior Work

Experiment 2 achieves a PSNR of 72.63 dB, significantly surpassing the PSNR
values of all the prior works, suggesting excellent reconstruction fidelity. Moreover,
it maintains a high SSIM of 0.8121 and a relatively low MAE of 0.0559, demon-
strating a balanced trade-o! between quality and stealth.

Experiment 4, while showing slightly lower reconstruction quality with a PSNR
of 70.89 dB and SSIM of 0.7123, excels in concealment e!ectiveness due to the
additional scrambling mechanism, making it more robust against potential visual or
statistical analysis.

5.1.1.2 RGB Histogram Comparison Between Original and Reconstructed
Secret Images

To evaluate the reconstruction quality of the proposed models, we conducted an
RGB histogram-based analysis between the original high-resolution secret images
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and their corresponding reconstructed high-resolution secret images. This analy-
sis highlights how well the color distribution has been preserved across each RGB
channel.

We computed the following three metrics for each channel (Red, Green, and
Blue):

• Correlation (↑): Measures how closely the histograms of the original and
reconstructed images align. Higher values indicate greater similarity.

Correlation(H1, H2) =
∑

n

i=1(H1(i) → H̄1)(H2(i) → H̄2)√∑
n

i=1(H1(i) → H̄1)2 ·
√∑

n

i=1(H2(i) → H̄2)2
(5.5)

where H1 and H2 are histogram vectors, and H̄1, H̄2 are their respective means.

• Chi-square Distance (↓): Quantifies the statistical divergence between the
histograms. Lower values signify better reconstruction accuracy.

↼
2(H1, H2) =

n∑

i=1

(H1(i) → H2(i))2

H1(i) + H2(i) + ↽
(5.6)

where H1 and H2 are the histogram bins and ↽ is a small constant added to
avoid division by zero.

• Earth Mover’s Distance (EMD) (↓): Represents the minimal e!ort re-
quired to transform one histogram into another. Lower EMD values indicate
better alignment.

EMD(H1, H2) =
∑

n

i=1 |CDFH1(i) → CDFH2(i)|
n

(5.7)

where CDFH denotes the cumulative distribution function of histogram H.

Table 5.10 presents the average RGB histogram comparison results for Experi-
ment 2 and Experiment 4.
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Table 5.10: RGB Histogram Comparison Between Original and Reconstructed Se-
cret Images

Metric Channel Experiment 1 Experiment 3 Ideal Value

Correlation ↑
Red 0.9910 0.9301 1.0000

Green 0.9828 0.9395 1.0000
Blue 0.9474 0.9125 1.0000

Chi-square ↓
Red 0.3135 5.8246 0.0000

Green 0.4212 3.3543 0.0000
Blue 0.8657 3.6065 0.0000

EMD ↓
Red 0.0016 0.0089 0.0000

Green 0.0013 0.0083 0.0000
Blue 0.0026 0.0064 0.0000

From the table, we observe that Experiment 2 achieves higher correlation and lower
Chi-square and EMD values across most channels, indicating superior reconstruction
fidelity in terms of color distribution. On the other hand, Experiment 4 shows
slightly more histogram deviation, highlighting its prioritization of concealment over
exact reconstruction quality.

5.1.1.3 Lab Histogram Comparison Between Original and Reconstructed
High-Resolution Secret Images

To assess the reconstruction fidelity of the proposed models, we evaluated the simi-
larity between the original high-resolution secret images and the corresponding re-
constructed high-resolution secret images in the perceptually aligned CIE Lab color
space. This analysis is critical to understanding how well the models preserve per-
ceptual characteristics after the full steganographic encoding and decoding pipeline.

We used the following histogram-based metrics for evaluation:

• Correlation (↑): Indicates how well the distributions of the original and
reconstructed images match. Values closer to 1.0 signify strong similarity.

• Chi-square (↓): Measures the statistical divergence between the two his-
tograms. Lower values denote better similarity.

• Earth Mover’s Distance (EMD) (↓): Represents the minimal e!ort re-
quired to transform one distribution into another. Smaller values reflect closer
matches.
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Table 5.11: Lab Histogram Comparison Between Original and Reconstructed High-
Resolution Secret Images

Metric Channel Experiment 1 Experiment 3 Ideal Value

Correlation ↑
L (Lightness) 0.9945 0.9627 1.0000

a (Green–Red) 0.9501 0.9615 1.0000
b (Blue–Yellow) 0.8124 0.9291 1.0000

Chi-square ↓
L (Lightness) 0.1420 3.1044 0.0000

a (Green–Red) 0.2520 0.2815 0.0000
b (Blue–Yellow) 1.8067 0.1425 0.0000

EMD ↓
L (Lightness) 0.0010 0.0050 0.0000

a (Green–Red) 0.0015 0.0012 0.0000
b (Blue–Yellow) 0.0030 0.0040 0.0000

From the Lab histogram comparison results, we observe distinct strengths for
each experiment:

• Experiment 2 demonstrates a significantly higher correlation in the Light-
ness (L) channel (0.9945), and slightly better performance in the a channel
(0.9501 vs. 0.9615 for Exp. 4). This indicates that it more accurately preserves
the structural and luminance features of the original image.

• However, Experiment 4 outperforms Experiment 2 in the b channel (Blue–Yellow)
correlation (0.9291 vs. 0.8124), suggesting improved fidelity in chromaticity
for this axis.

• When considering the Chi-square distance, Experiment 2 achieves lower
values in both the L and a channels, but Experiment 4 has a drastically
lower value in the b channel (0.1425 vs. 1.8067), highlighting its strength in
preserving perceptual color distributions in that axis.

• For EMD, both models show close results, but Experiment 2 has slightly
better values in the L and b channels, with Experiment 4 slightly better in the
a channel. All values remain low, indicating minimal distributional shifts.

Overall, Experiment 2 shows superior reconstruction in terms of luminance and
general perceptual fidelity, making it more favorable when structure preservation is
critical. In contrast, Experiment 4 maintains better consistency in chromatic
components, especially in color-sensitive applications. The selection between the
two should depend on the visual priorities — brightness and structural clarity vs.
chromatic concealment.
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5.1.1.4 Histogram Visualization for RGB and Lab Channels

To further illustrate the di!erences in reconstruction quality between Experiment 2
and Experiment 4, we present RGB and Lab histograms for a selected sample image.
The same high-resolution secret image was used in both experiments to maintain
consistency in comparison.

The histograms show the color distribution in each color space channel before and
after reconstruction. This helps to visually interpret how well each model preserves
the original image’s characteristics.

Below is the sample image used for the histogram comparison for both experi-
ments:

Figure 5.1: Sample Image Used for Histogram Comparison

Figures 5.2 and 5.3 display the histograms for the RGB and Lab color spaces,
respectively.
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Figure 5.2: RGB Histogram Comparison Between Original and Reconstructed Secret
Images (Experiment 2 vs Experiment 4)

Figure 5.3: Lab Histogram Comparison Between Original and Reconstructed Secret
Images (Experiment 2 vs Experiment 4)

From the visualizations, it is evident that Experiment 2 retains histogram shapes
that are closer to the original in both RGB and Lab spaces, supporting the quanti-
tative evaluation metrics. Experiment 4, while o!ering better concealment prop-
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erties, shows more visible deviation in color distribution, particularly in the Lab
space.

5.1.2 Evaluation of Hiding Capacity and Secret Image Size
Reduction

Hiding capacity is a critical metric in steganography, referring to the amount of infor-
mation that can be embedded within a cover image without significantly degrading
visual quality or increasing detectability.

Previous studies in multi-image steganography attempted to hide two secret
images within a single cover image to achieve higher capacity. While this approach
doubles the hiding capacity, it often comes at the cost of lower reconstruction quality
and higher computational complexity.

In contrast, our method takes advantage of a downscaling approach, where
the high-resolution secret image of size 512↑512 is reduced to 256↑256 before being
embedded. This results in a 4-fold reduction in pixel count, e!ectively enabling the
embedding of four times more data compared to a full-resolution image.

Notably, this downscaling also reduces the average file size of the secret images.
While the original high-resolution secret images average around 363KB, their low-
resolution counterparts are only 126KB on average. This substantial reduction
not only increases embedding e”ciency but also contributes to faster encoding and
decoding during the steganographic process.

Moreover, despite this aggressive downscaling, our experiments—particularly
Experiment 2—demonstrate superior reconstruction quality over traditional multi-
image steganography techniques. This is evident both quantitatively (in SSIM and
PSNR scores) and visually, as shown in earlier sections.

• Traditional Multi-Image Steganography: Embeds two full-resolution im-
ages — 2× capacity.

• Proposed Downscaling Method: Embeds 256↑256 secret — 4× capacity.

• File Size Comparison: 512 ↑ 512 image ↘ 363KB, 256 ↑ 256 image ↘
126KB

As shown in Table 5.1.2, the proposed model significantly outperforms prior
methods in terms of embedding capacity due to its resolution-reduction-based em-
bedding strategy. By downscaling a 512 ↑ 512 high-resolution secret image to a
256 ↑ 256 resolution before embedding, the model achieves a fourfold increase in
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capacity. This enhancement enables embedding up to 256 ↑ 256 ↑ 8 ↑ 3 ↑ 4 bits
while maintaining perceptual quality and ensuring secure concealment.

Method Embedding Capacity (bits) Hiding Capacity Factor
Hu et al. (2018) 300 -

Zhang et al. (2019) 18.3–135.4 -
Yuan et al. (2017) 8 -
Zheng et al. (2017) 18 -
Cao et al. (2020) 896 -
Liu et al. (2020) 256 ↑ 256 ↑ 8 ↑ 3 1

Das et al. (2021a) 64 ↑ 64 ↑ 8 ↑ 3 ↑ 2 2
Proposed Models (Ours) 256 ↑ 256 ↑ 8 ↑ 3 ↑ 4 4

Table 5.12: Comparison of Embedding Capacity with Hiding Capacity Factor

Therefore, the proposed model not only increases hiding capacity significantly but
also maintains high visual fidelity and accurate reconstruction, making it a com-
pelling alternative to traditional multi-image steganographic systems.

5.1.3 Evaluation Against Steganalysis Tools

A crucial aspect of evaluating any steganographic method is assessing its resistance
to steganalysis — techniques or tools that attempt to detect the presence of hidden
data in images.

However, it is important to note that the proposed methodology is based
on coverless image steganography, which di!ers significantly from traditional
modification-based approaches. Most conventional steganalysis tools, such as:

• StegExpose

• Stegdetect

• OpenStego

• DeepSteg

are designed to analyze statistical inconsistencies or artifacts introduced by directly
modifying pixel values in the cover image. These tools perform well on techniques
that embed information by altering image content, such as LSB substitution, DCT
coe”cient manipulation, or spatial domain modification.
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In contrast, the proposed method generates a visually similar stego image from
scratch, without explicitly modifying an existing cover image. As such, it avoids
the telltale statistical patterns that most current steganalysis tools rely on.

To date, there are no widely available, open-source or commercial ste-
ganalysis tools specifically targeted at detecting coverless image steganog-
raphy. This highlights a potential advantage of the proposed approach in terms of
robustness against detection.

Nonetheless, as coverless steganography gains popularity, the development of
targeted steganalysis tools is expected, and future work should continue to evaluate
robustness in such evolving contexts.

5.1.4 Model Applicability

This section compares the practical applicability of the two selected experiments in
real-world scenarios, focusing on the types of secret images they are best suited for
and the trade-o!s between concealment and reconstruction quality.

Experiment 2: Low-Resolution Stego Image Generation Using Bicubic
Interpolation This model is well-suited for secret images that are visually complex,
containing many objects distributed across the frame without a focus on a single
subject. In such cases, the concealment is inherently more e!ective as the visual
complexity of the image naturally helps obscure embedded information.

Additionally, this method achieves the highest reconstruction quality among
all experiments, as evidenced by SSIM, PSNR, and MAE metrics. The use of bicubic
interpolation preserves essential visual structures during resolution reduction and
contributes to better performance during image restoration.

However, a key limitation of this approach is its vulnerability when applied to
images with fewer objects or those focused on a single subject. In such scenarios,
noticeable visual artifacts may appear in the generated stego image, unintentionally
revealing semantic clues about the hidden content. This compromises concealment,
which is critical in steganography.

Experiment 4: Scrambling-Based Concealment Prior to Stego Gen-
eration To address the concealment limitations of Experiment 2, Experiment 4
introduces an additional scrambling step before stego image generation. This en-
hances security by reducing the possibility of visual information leakage in stego
images, even when the original secret images are object-focused or contain fewer
visual elements.

The results demonstrate that Experiment 4 achieves superior concealment,
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producing stego images that are visually independent from the original secret images.
This makes it more robust for a wider variety of content, especially sensitive or
semantically rich images.

However, the added scrambling and inverse-scrambling process introduces com-
plexity and slightly degrades the final image quality. Although the reconstruction
performance is acceptable, it does not surpass that of Experiment 2.

Conclusion:

• Experiment 2 is recommended for use cases where high reconstruction accu-
racy is a priority, and the secret images are visually complex and cluttered.

• Experiment 4 is better suited for applications where concealment is of utmost
importance, including scenarios with minimal or object-focused secret images.

In practice, the choice between the two depends on the steganographic require-
ments — whether one prioritizes reconstruction fidelity or concealment robustness.
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5.2 Implementation Details and Experimental Setup
To validate the e!ectiveness and feasibility of the proposed coverless image steganog-
raphy methodology, we conducted extensive experiments using carefully curated
datasets, robust programming frameworks, and a powerful computational environ-
ment. This section outlines the datasets used, implementation tools, and experi-
mental configuration in detail.

5.2.1 Datasets

We utilized two publicly available datasets in our experiments—each serving distinct
roles in the steganographic pipeline:

• Cover Image Synthesis: For the generation of stego images, we employed
the DELAUNAY (Gontier et al. 2022), which comprises stylized artistic
images. All cover images were resized to a fixed resolution of 256 ↑ 256 pixels
to serve as low-resolution stego targets.

• Secret Images: We selected the high-resolution images from the Flickr2K
(Lim et al. 2017) and Div2K (Timofte et al. 2017) datasets as the secret
content. The original high-resolution images were uniformly resized to 512 ↑
512 pixels to ensure consistency during model training and evaluation.

• Data Split: The training dataset was constructed by combining a total of
1500 secret image dataset from both datasets Flickr2K and Div2K. For eval-
uation, a separate set of 500 high-resolution images was extracted exclusively
from the Flickr2K and Div2K datasets to measure reconstruction quality
and steganographic performance. For cover sythesis, we used 1350 images
from the DELAUNAY dataset.

This careful dataset design ensures that the models generalize across various
styles and content types while preserving the necessary diversity for robust training.

5.2.2 Programming Tools and Libraries

The models and experiments were implemented using Python 3, along with a col-
lection of widely adopted libraries that facilitated both deep learning and image
processing tasks:

• PyTorch: The primary deep learning framework used for implementing GAN-
based stego generation and reconstruction pipelines.
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• OpenCV: Employed for image manipulation, resizing, histogram analysis,
and color space transformations (e.g., RGB to Lab).

• NumPy: Used extensively for matrix operations, data preparation, and met-
ric computations.

• Matplotlib / Seaborn: Utilized for visualizing loss trends, histogram plots,
and comparison charts.

• Other Tools: Supporting tools such as PIL and SciPy were used where nec-
essary for file handling and advanced metrics.

5.2.3 Training Configuration and Experimental Setup

All models were trained on a high-performance computing setup designed for deep
learning research. The specifications and training hyperparameters are detailed
below:

• GPU: NVIDIA RTX 4080 Super OC, 16GB VRAM

• CPU: Intel Core i5-14600K

• Memory: 32GB DDR5 RAM

• Operating System: Windows 11 (64-bit)

Parameter Value
High-Resolution (HR) Image Size 512 ↑ 512
Low-Resolution (LR) Image Size 256 ↑ 256
Learning Rate 0.0002
Batch Size 1
Epochs 100
Learning Rate Decay After 50 epochs
Optimizer Adam

Table 5.13: Training Hyperparameters

This training strategy ensures that the model receives full-resolution detail from
secret images while optimizing concealment within a low-resolution stego domain.
The learning rate decay after the 50th epoch was introduced to allow fine-tuning
and stabilization in the latter half of training.
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Chapter 05

6.1 Conclusion
This research introduces a novel coverless image steganography method that lever-
ages Generative Adversarial Networks (GANs) to generate low-resolution stego im-
ages from high-resolution secret images. Unlike traditional steganography, which
alters pixel values of a cover image, this approach bypasses the use of a direct
cover and instead generates a new, innocent-looking image that semantically con-
ceals secret content. Two GAN-based models were proposed and evaluated: one
using bicubic interpolation as a baseline (Experiment 2) and another incorporating
a scrambling-based concealment mechanism (Experiment 4).

Comprehensive experiments were conducted to evaluate the models based on
visual quality, reconstruction fidelity, hiding capacity, and resistance to steganaly-
sis. Results showed that the proposed models o!er a balance between perceptual
concealment and accurate secret reconstruction. Moreover, the downscaling strat-
egy significantly enhanced hiding capacity—outperforming traditional multi-image
steganography techniques.

6.1.1 Conclusion About Research Questions

This research aimed to address three core questions regarding the development of
a novel coverless image steganography technique using Generative Adversarial Net-
works (GANs). These questions guided the design, implementation, and evaluation
of the proposed system. The conclusions presented below summarize how each re-
search question was answered through theoretical analysis, model development, and
empirical experimentation.

• How can Generative Adversarial Networks (GAN) be utilized to
generate low-resolution stego images from high-resolution secret im-
ages for coverless image steganography?
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This study demonstrated that GANs can be e!ectively utilized to construct a
novel coverless steganography framework. By training generator networks to
learn a mapping between secret and stego domains, our models successfully
created low-resolution stego images that visually concealed secret information
while enabling high-fidelity reconstruction. Both Experiment 2 and Experi-
ment 4 showcased this capability.

• What are the most e!ective Generative Adversarial Network (GAN)
architectures and techniques for embedding data in low-resolution
stego images to maximize data capacity and minimize perceptual
distortion?

Among the architectures tested, the model using bicubic upsampling achieved
higher reconstruction quality, particularly for images with diverse content and
complex textures. Conversely, the scrambling-based model provided enhanced
concealment, especially in visually simpler scenes. Therefore, a trade-o! exists
between reconstruction quality and concealment strength, and architectural
choice should depend on the target application.

• How does the reduction in resolution of stego images impact the
detectability of hidden data by standard steganalysis tools?

The use of low-resolution stego images was shown to reduce detectability by
traditional steganalysis tools, which typically focus on pixel-level statistical
anomalies. Our method avoided direct pixel manipulation, resulting in stego
images that visually and statistically resemble natural images. Tools such as
StegExpose and DeepSteg were not e!ective in detecting embedded content,
a”rming the stealthiness of this approach.

6.1.2 Conclusion About Research Problem

The core research problem—designing a secure, high-capacity, and perceptually con-
vincing coverless steganography technique—was addressed through the integration
of GANs and resolution-based encoding. This approach avoids the limitations of
conventional methods (e.g., high detectability, limited capacity) and introduces a
novel solution for secure visual information embedding. The proposed models suc-
cessfully balanced concealment, reconstruction accuracy, and data capacity, proving
the e!ectiveness of this design in both quantitative metrics (e.g., PSNR, SSIM,
histogram similarity) and qualitative visual inspection.
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6.1.3 Limitations

While the proposed coverless steganography framework demonstrates promising re-
sults in terms of hiding capacity, reconstruction quality, and resistance to steganal-
ysis, several limitations remain. These constraints highlight areas where the current
system can be improved or expanded upon in future research. The following points
outline the key limitations observed during the development and evaluation of the
model:

• The reconstruction performance is slightly lower in Experiment 4, particularly
for high-frequency regions or single-object-focused images.

• The framework assumes a clean training environment; adversarial or noisy
scenarios (e.g., transmission noise or image compression artifacts) were not
thoroughly addressed in this study.

• While the current method o!ers high embedding capacity, the generated stego
images could benefit from further enhancement in visual realism. There is
potential for the stego images to appear more natural or less perceptually
distorted, which could improve their e!ectiveness in high-sensitivity scenarios
(e.g., surveillance or professional use).

6.1.4 Implications for Further Research

The findings and limitations of this study open several promising directions for fu-
ture investigation. Enhancing the model’s adaptability, robustness, and applicability
across di!erent media types and contexts can significantly expand its practical rele-
vance. Below are several key areas that warrant further research and development:

• Future work can investigate dynamic or adaptive resolution scaling techniques
that balance reconstruction and concealment based on content.

• Introducing adversarial steganalysis during training (i.e., adversarial training
with steganalysis networks) may improve robustness against future detection
tools.

• The models can be extended to support video steganography, where frame-wise
consistency and temporal coherence must be preserved.

• Exploring transformer-based generative models or di!usion-based architec-
tures could further improve reconstruction quality and semantic concealment.
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• Investinating on making stego image more natural, realistic, and less percep-
tually distorted, especially in high-frequency regions or single-object-focused
images.

In conclusion, this research contributes a novel framework for coverless image steganog-
raphy, demonstrating the powerful synergy between deep generative models and
secure visual information hiding. The results open promising directions for future
development in the field of secure multimedia communication.
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