
Improving the Isolation in Unikernels by
Leveraging Microkernel Design

D.A. Amarasinghe
Index number: 20000103

Supervisor: Dr. C.I. Keppitiyagama
Co-supervisor: Mr. Tharindu Wijethilake

June 30, 2025

Submitted in partial fulfillment of the requirements of the
B.Sc. (Honours) in Computer Science Final Year Project





Abstract

Modern systems demand strong isolation guarantees to protect against software
vulnerabilities and maintain robust security boundaries. Traditional operating
systems often fall short due to their large trusted computing bases and reliance on
discretionary access control mechanisms. The seL4 microkernel, with its formally
verified design and capability-based access control, presents a compelling founda-
tion for building highly secure, isolated systems. This study explores the feasi-
bility of running unikernel applications such as Rumprun, on top of seL4, aiming
to combine the minimalism and efficiency of unikernels with the strong isolation
guarantees of seL4. Two different integration approaches were attempted by di-
rectly running a Rumprun binary in a minimal seL4 environment and embedding
a Rumprun application within a CAmkES component. Both efforts encountered
technical obstacles. Despite these practical limitations, the theoretical underpin-
nings of seL4’s capability system suggest that high isolation levels are achievable
if integration complexity can be addressed. Initial experiments highlight that a
hybrid architecture, combining minimal seL4 or CAmkES components with stan-
dalone unikernels might strike a balance between performance and isolation. Fu-
ture directions include debugging existing integration challenges, evaluating the
performance implications of different architectural decisions, and exploring alter-
native unikernel frameworks for better alignment with seL4’s static and modular
design principles. The findings support that seL4 is well-suited for hosting uniker-
nels in security-critical environments, provided that toolchain and architectural
hurdles are resolved.
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1 Introduction

In cloud computing and virtualization, the need for secure and efficient isolation
has become important. Isolation refers to the ability to separate computing envi-
ronments to ensure they do not interfere with each other (Khajehei 2014). This
improves the security, stability, and resource utilization between isolated environ-
ments. Isolation can be done in various forms including process isolation, memory
isolation, file system isolation, network isolation, etc (Khajehei 2014).

Virtualization technologies are crucial in effectively achieving such forms of iso-
lation in cloud environments. Virtualization allows multiple isolated environments
to coexist on the same physical hardware by abstracting computing resources.
Two main technologies to achieve virtualization are Virtual Machines (VMs) and
Containers. VMs provide strong isolation through a software layer known as a
hypervisor. It introduces a dedicated Operating System (OS) and a kernel for the
applications. Hence, VMs are heavier in terms of performance and resource usage.
Contrary to VMs, containers are lightweight in terms of performance and resource
usage but provide less isolation compared to VMs as the shared kernel can be a
single point of failure (Barik et al. 2016).

As the limitations of both VMs and containers became more apparent, re-
searchers and practitioners began exploring alternative solutions that could com-
bine the performance benefits of containers with improved security guarantees.
One such emerging technology is the unikernel. In the past few years, unikernels
became a popular alternative to costly VMs because of their lightweight nature.
Even though the performance drawbacks in VMs can easily be solved using uniker-
nels the lack of isolation stays as it is (Sung et al. 2020). This is because unikernels
only have a kernel space and the assumption is that all the components within a
single unikernel must trust each other. However, there can be situations where an
application has untrusted components as well. Therefore it is not safe to include
them all together in the same kernel space (Sung et al. 2020).

1.1 Motivation

While unikernels have demonstrated significant performance advantages over VMs,
they often lack in providing robust isolation necessary for multi-tenant environ-
ments. Containers, on the other hand, offer lightweight and fast deployments but
often fall short of providing strong isolation, making them more vulnerable to se-
curity threats (Sultan et al. 2019). Most research has been conducted to improve
the performance of unikernels by emphasizing their efficiency and lightweight na-
ture. However, it is essential not to discard the importance of isolation when
making improvements to the performance. Microkernels can be considered as a
better way of providing isolation as it has a minimum Trusted Code Base (TCB)
that runs in the privileged mode with lower-level services such as IPCs, memory
management, thread management, etc. Improving the isolation of unikernels by
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implementing them on top of the microkernel architecture could be a turning point
toward balancing performance and isolation in a virtual environment.

1.2 Background

Over the years virtualization has transformed the face of modern computing, par-
ticularly with the rise of cloud computing. Initially, it was implemented for mono-
lithic kernels such as Linux (Kolyshkin 2006). As Figure 1.1 shows, monolithic
kernels are efficient in terms of performance because they allow direct access to
hardware resources and system services by bringing user processes into kernel
space. However, the integration of numerous services within the kernel space also
indicates that any fault or vulnerability can potentially affect the entire system,
posing significant risks to security and stability (Drebes & Nanya 2010).

Figure 1.1: File system benchmarks (Miao 2011)

1.2.1 Hypervisor

Since virtualization was primarily based on monolithic architecture, to manage
multiple VMs, a layer named hypervisor was introduced. There are two types of
hypervisors, referred to as bare-metal (Type 1) and hosted (Type 2) (Rodŕıguez-
Haro et al. 2012). The difference between type 1 and type 2 is that, the type
1 hypervisors run directly on the host machine’s hardware as a lightweight OS,
while type 2 hypervisors run as a software layer on top of the OS. See Figure 1.2.
In the case of type 2 hypervisors, from the host machine point of view, each VM
is another process(Rodŕıguez-Haro et al. 2012).

1.2.2 Microkernel

Microkernel architectures such as seL4 recently became popular as they came up
with security and isolation from the low-level design (Matos & Ahvenjärvi 2022).
seL4 has two distinct use cases as it can operate as an OS as well as a type 1
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Figure 1.2: Two types of hypervisors (Alnaim et al. 2019)

hypervisor. Because of that, it can directly allocate hardware resources (such as
Central Processing Unit (CPU), memory, and storage) to VMs or guest operat-
ing systems. This mitigates the risks associated with larger hypervisor attack
surfaces, as the hypervisor functionality remains tightly integrated and isolated
within seL4’s minimal trusted computing base.

Furthermore, seL4’s formal verification ensures that critical properties, such as
code-level functional correctness and scheduling policies, are rigorously verified, of-
fering a robust foundation for virtualization (Klein et al. 2009). This direction not
only enhances the trustworthiness of virtualized environments but also underscores
the growing interest in leveraging microkernel architectures for secure and efficient
virtualization solutions.

1.2.3 Unikernels

Unikernels represent a specialized form of lightweight virtualization, where an ap-
plication is compiled with only the necessary components of an operating system,
tailored to run as efficiently as possible on a specific hardware platform. Unlike
traditional VMs, unikernels lack the general-purpose nature of typical OSes, re-
sulting in extremely small footprints and optimized performance (Madhavapeddy
et al. 2013).

However, this minimalism comes with trade-offs, such as reduced isolation
compared to full-fledged VMs, because of the single kernel space. To address this
challenge, a promising direction is integrating unikernels with microkernel archi-
tectures such as seL4, which can work as a bare-metal hypervisor. Microkernels
are designed to provide minimal core functionality, enhancing security by isolat-

3



ing components in separate address spaces. Implementing unikernels as minimal
VMs atop a microkernel like seL4 will become a turning point towards a balanced
environment of both performance and isolation.

1.3 Gap and Research Questions

While significant advancements have been made in optimizing the performance
aspect of virtualized components, for example, following a single kernel space
approach like unikernels has demonstrated significant performance improvements
compared to traditional VMs, there remains a notable gap in research address-
ing the isolation aspects of these lightweight virtualized components. Enhancing
the isolation capabilities of unikernels when deployed on microkernel architectures
like seL4 could potentially bridge this gap by offering improved security guaran-
tees without compromising on the performance benefits that unikernels provide.

Moreover, as seL4 gains traction for its ability to act as a type 1 hypervisor
without requiring a full-fledged operating system, there emerges a compelling case
for exploring its role in supporting multiple isolated applications running as seL4-
based unikernels on a shared server. This aligns with trends in cloud computing
where efficiency and security are important, suggesting a future direction where
seL4-based unikernels could serve as lightweight, highly isolated deployment units.
However, the specific mechanisms and optimizations required to achieve this dual
goal of performance and isolation within seL4-based unikernels remain underex-
plored, constituting another significant avenue for future research. While current
research has demonstrated the potential of unikernels and microkernels like seL4
individually, there exists a clear research gap in integrating these technologies to
enhance isolation capabilities while preserving their performance advantages.

A key feature of seL4 that distinguishes it from other microkernel architec-
tures is its rigorous capability-based access control model. This model enforces
strict access permissions through capabilities, which are unforgeable tokens repre-
senting access rights to system resources. Unlike traditional discretionary access
control systems, seL4’s capability model ensures that components cannot access
or interfere with resources unless explicitly granted permissions via capabilities.
This mechanism is critical for building highly secure and isolated execution envi-
ronments, which is particularly beneficial when running multiple unikernels that
should remain isolated from each other, even in the presence of potentially com-
promised components.

In addition, seL4 promotes a component-based approach to application devel-
opment, where software systems are decomposed into small, isolated components
that communicate only through explicitly defined interfaces. This architectural
principle naturally aligns with the minimalist and specialized nature of uniker-
nels, enabling the development of systems with a strong separation of concerns
and a minimal trusted computing base. However, the integration of this design
philosophy with unikernel execution models remains largely theoretical, with little
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empirical research investigating its effectiveness in real-world scenarios involving
performance-sensitive and security-critical workloads. Therefore, despite the rec-
ognized strengths of seL4 in providing formal verification, strong isolation guaran-
tees, and a secure execution environment, there is a lack of comprehensive studies
exploring how these features can be leveraged in the context of unikernel-based de-
ployments (Klein et al. 2009). Bridging this gap requires a detailed examination of
the interaction between seL4’s security mechanisms and the operational behavior
of unikernels, particularly in managing inter-process communication, capability
distribution, and resource allocation. Addressing these questions can significantly
contribute to the body of knowledge in secure systems design, especially in envi-
ronments that demand both high assurance and high performance.

The research primarily revolves around exploring the following research ques-
tions.

1. How can integrating the seL4 microkernel with unikernels improve the iso-
lation of virtual components by leveraging the inherent isolation from the
microkernel design and the higher level of abstraction, such as file system
isolation, provided by unikernels?

This research explores integrating the seL4 microkernel with unikernels to
enhance isolation capabilities without compromising performance. The ap-
proach leverages seL4’s inherent strengths in enforcing strict isolation through
formal verification and capability-based access control, combined with the
lightweight, single-purpose design of unikernels. The focus is on identify-
ing architectural modifications and design strategies that enable improved
separation between components and controlled resource access within the
unikernel environment. The overarching objective is to achieve robust iso-
lation at both the microkernel and application levels while preserving the
efficiency and minimalism that make unikernels attractive for modern cloud
and edge deployments.

2. What are the performance trade-offs when using microkernel-based isolation
in unikernel environments compared to traditional approaches?

This focuses on evaluating the outcomes of integrating microkernels with
unikernels in terms of both performance and security. It aims to quantify
the improvements in isolation and understand any potential performance
impacts, comparing these results to traditional operating systems. This will
help in assessing the practicality and benefits of this approach in real-world
applications.

1.4 Aim and Objectives

This research aims to investigate and enhance the isolation capabilities of uniker-
nels through the integration of microkernel architecture, specifically using seL4 as
the microkernel and Rumprun as the unikernel framework. This integration seeks
to leverage seL4’s formally verified isolation mechanisms and capability-based ac-
cess control alongside Rumprun’s lightweight and efficient execution model. The
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research will evaluate the security and performance characteristics of such a sys-
tem, with a particular focus on identifying and minimizing performance trade-offs
compared to traditional virtualization approaches such as virtual machines and
containers.

The research process intended to achieve the following objectives.

Research Question Objectives

How can integrating the seL4 mi-
crokernel with unikernels improve
the isolation of virtual compo-
nents by leveraging the inherent
isolation from the microkernel de-
sign and the higher level of ab-
straction, such as file system iso-
lation, provided by unikernels?

• To design and implement a prototype
unikernel system that leverages the seL4
microkernel for enhanced isolation.

• To conduct a comprehensive evaluation of
the isolation capabilities of the seL4-based
unikernel system through security testing
and analysis.

• To optimize the unikernel-microkernel in-
tegration for maintaining or improving
performance metrics such as CPU utiliza-
tion.

What are the performance trade-
offs when using microkernel-
based isolation in unikernel envi-
ronments compared to traditional
approaches?

• To establish a controlled experimental en-
vironment to benchmark the performance
of the seL4-based unikernel system.

• To measure and compare key performance
metrics between the seL4-based unikernel
system, traditional operating systems.

• To analyze the performance trade-offs as-
sociated with using microkernel-based iso-
lation in unikernel environments.

Figure 1.3: Research Objectives
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1.5 Research Scope

The following areas will be addressed under the scope of this research.

• Integration of Unikernels with seL4 Microkernel

– Exploring how microkernel architecture can enhance isolation in uniker-
nels while maintaining performance advantages.

– Focus on designing and implementing a prototype system where uniker-
nels leverage the isolation capabilities of the seL4 microkernel.

• Performance Evaluation and Comparison

– Conduct thorough performance benchmarks to measure metrics.

– Evaluate performance trade-offs between seL4-based unikernels and tra-
ditional operating systems as it is crucial to understand the practical
implications of using microkernel-based isolation.

• Security and Isolation Analysis

– Identify potential vulnerabilities and evaluate how well the isolation
mechanisms prevent unauthorized access or interference.

– Verify and validate the boundaries between the unikernel instances and
the underlying seL4 microkernel.

– Compare the isolation effectiveness of the seL4-based unikernel system
with traditional monolithic kernel-based solutions.

• Documentation and Knowledge Contribution

– Document the research methodology, findings, and conclusions compre-
hensively.

1.6 Significance of the research

Advancing research in integrating seL4-based unikernels for improved isolation
and performance optimization extends to several key beneficiaries and application
domains. First, cloud service providers stand to benefit significantly from en-
hanced security and efficiency. By deploying seL4-based unikernels, providers can
offer stronger isolation guarantees between multi-tenant applications on shared
infrastructure, thereby improving trust and compliance with data protection reg-
ulations. This capability is particularly relevant in multi-tenant environments
where isolation breaches arise significant risks.

Moreover, enterprises adopting cloud-native architectures and edge computing
scenarios would gain from the improved resource efficiency and scalability offered
by seL4-based unikernels. These lightweight units of deployment could streamline
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the deployment and management of microservices, IoT applications, and real-
time data processing tasks. By minimizing overhead and maximizing performance
through seL4’s microkernel design, organizations can achieve better utilization of
hardware resources while maintaining robust isolation. In addition to commer-
cial applications, the researchers studying the area of operating system design and
virtualization techniques would have a niche to seek for new methodologies and op-
timizations. This research will contribute new insights into how microkernels such
as seL4, can be leveraged to address the inherent security limitations of uniker-
nels. Therefore, By documenting the design, implementation, and evaluation of
a seL4-based unikernel system, this research will provide a detailed methodology
that can be replicated and extended by other researchers. Additionally, the com-
parative analysis of isolation and performance trade-offs with traditional VMs and
containers will offer a valuable reference point for future studies, enabling a deeper
understanding of the strengths and weaknesses of various virtualization technolo-
gies.

Edge computing deployments often operate in less secure environments com-
pared to centralized cloud data centers. Enhancing isolation in edge devices using
seL4-based unikernels can protect against local attacks and unauthorized access,
making edge computing more reliable for critical applications. For example, smart
city infrastructure, which relies on edge devices to process data from sensors and
cameras, can use this approach to safeguard against attacks that could disrupt
urban services or compromise privacy.

By addressing the isolation challenges of unikernels through the integration
with seL4, this research not only advances theoretical knowledge but also pro-
vides practical solutions that can be directly applied to enhance the security and
efficiency of cloud and edge computing environments.

1.7 Methodology & Evaluation Criteria

This research will follow the Design Science Research Methodology (DSRM), which
is well-suited for addressing the design and knowledge challenges associated with
enhancing isolation in unikernels through microkernel architecture, specifically
seL4. This methodology comprises three interrelated cycles: the relevance cycle;
which identifies the problems, requirements, and evaluation criteria from the envi-
ronment and feeds them into the design science research process, the design cycle;
which generates and refines artifacts that meet the identified requirements and
evaluation criteria, and finally the rigor cycle; which ensure the research process
is rigorous and contributes new knowledge to the knowledge base (Hevner 2007).
The key components of each of the cycles are listed below.

1.7.1 Research Methodology

This research adopts a structured methodology to explore the integration of the
seL4 microkernel with the Rumprun unikernel framework, to enhance isolation

8



while maintaining performance. The methodology involves identifying relevant
stakeholders, defining technical and research requirements, and producing arti-
facts that demonstrate and evaluate the integration.

Key stages include the design and development of a prototype unikernel sys-
tem utilizing seL4’s isolation features, followed by iterative refinement to address
implementation challenges and optimize performance. A controlled experimen-
tal environment will be used for rigorous performance benchmarking and security
analysis, comparing the seL4-based system against traditional unikernels.

The research also includes a thorough analysis of seL4’s capability-based iso-
lation in the context of unikernel deployment. Findings will be documented and
shared through research publications, contributing to ongoing work in operating
systems, virtualization, and secure systems design.

• Stakeholders

– Users of virtualization technologies seeking enhanced isolation and per-
formance

– Researchers in the fields of operating systems, virtualization, and secu-
rity.

– Developers and engineers working on unikernels, microkernels, and re-
lated technologies.

• Requirements

– Enhancements in low-level isolation mechanisms for unikernels closer
to the operating system kernel.

– Understanding the relationship between the inherent isolation provided
by microkernel design (seL4) and the isolation requirements of uniker-
nels.

– Discussion and validation of using microkernels to improve isolation in
unikernel-based virtualized environments.

– Performance and isolation comparison between traditional monolithic
kernels and microkernel-based implementations of unikernels.

• Artifacts

– A prototype unikernel system utilizing the isolation features of the seL4
microkernel.

– Comprehensive documentation and analysis of the relationship between
seL4 microkernels and unikernel isolation.

• Design and Development

– Select a suitable unikernel framework and integrate it with the seL4
microkernel.

– Design a unikernel-based system architecture leveraging the isolation
capabilities of seL4.
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– Develop and implement the prototype, ensuring effective interaction
between the unikernel and the seL4 microkernel.

• Iterative Refinement

– Conduct iterative development cycles to refine the prototype based on
feedback and initial testing results.

– Address technical challenges and optimize the system for enhanced per-
formance and isolation.

• Performance Evaluation

– Set up a controlled experimental environment to test the seL4-based
unikernel prototype and traditional unikernel.

– Conduct performance benchmarks to measure metrics such as CPU
utilization, and network throughput.

• Security and Isolation Analysis

– Perform security testing, including penetration tests and vulnerability
assessments, to evaluate isolation strength.

– Compare the isolation effectiveness of the seL4-based system with tra-
ditional operating systems.

• Knowledge Contribution

– Document the methods, findings, and conclusions in detail.

– Prepare research papers and presentations to disseminate the results to
the academic and professional community.

– Update the knowledge base with newly discovered insights and artifacts.

1.7.2 Evaluation Methods

Previous studies have proposed various methods for evaluating isolation in virtu-
alization environments, especially under conditions involving potential malicious
attacks. A notable work in this area addresses virtualization security and isolation
from the perspective of resilience to attacks (Hakamian & Rahmani 2015). The
study focuses on identifying where security policies should be applied within the
system to maximize isolation and reduce the risk of isolation failure.

The authors utilized a semi-Markov model to evaluate security measures in
different layers of the virtual machine environment, such as the application layer
and guest operating system memory. Their findings indicate that, on average, an
attacker could cause an isolation failure within 190 hours with an 89% probabil-
ity if left unchecked. The semi-Markov model enabled a sensitivity analysis that
highlighted critical areas for improving isolation, particularly the application layer
and memory-related defenses, which were shown to have a significant impact on
increasing the system’s mean time to isolation failure.
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While this probabilistic approach effectively identifies areas for implementing
security measures, it does not fully align with the goals of this research. Rather
than determining where security policies should be applied, the aim of this research
is to evaluate whether running unikernels on seL4 microkernel improves isolation
itself. Focus is on measuring the direct effectiveness of seL4 in enforcing memory,
fault, and file systems across and within unikernel instances rather than identifying
specific layers for implementing defensive measures.

1. Memory Isolation - To assess memory isolation, experiments will be con-
ducted where each unikernel attempts to access memory beyond its allo-
cated boundaries. These tests involve read and write operations targeting
memory regions assigned to other unikernels. Observing seL4’s response to
such access attempts will provide insights into its effectiveness in enforcing
memory boundaries and preventing unauthorized access.

2. Fault Isolation - This will be evaluated by intentionally triggering faults in
a controlled unikernel environment. This includes introducing crashes or
exhausting specific resources within one unikernel, followed by monitoring
the stability and responsiveness of other unikernels. By isolating these faults
within a single unikernel, seL4’s ability to contain errors and prevent their
propagation across unikernels can be verified, highlighting its role in fault
resilience.

3. File System Isolation - this can be evaluated by attempting to access or
modify files and directories assigned to other unikernels. Each unikernel will
perform file operations such as writing and reading files within its designated
storage area while testing for unauthorized access attempts by other uniker-
nels. This includes verifying that each unikernel’s file descriptors remain
isolated, without leakage or cross-access vulnerabilities. Successful contain-
ment of each unikernel’s file operations will demonstrate seL4’s ability to
restrict access, ensuring that each instance operates within its defined stor-
age boundaries.

To assess the effectiveness of isolation when running unikernels on seL4, it is
crucial to define specific evaluation criteria. Each criterion addresses a particular
aspect of isolation necessary for secure, reliable operation in multi-component sys-
tems. The primary evaluation criteria include Memory Isolation, Fault Isolation,
and File System Isolation.

1. Memory Isolation
Memory isolation ensures that each unikernel instance operates within a sep-
arate memory space, preventing unauthorized access to the memory of other
instances. We need to consider whether one unikernel can access or modify
the memory allocated to another unikernel and the effectiveness of seL4’s
memory management in maintaining strict boundaries between unikernel
memory spaces.

2. Fault Isolation
The primary focus of this is to contain errors within the unikernel in which
they occur, preventing faults from propagating and affecting other unikernels
or the broader system.
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3. File System Isolation
It is essential to prevent unikernels from accessing or modifying each other’s
files and directories. Evaluation points for file system isolation include,
Whether unikernels are restricted to specific sections in the file system, pre-
venting cross-access to the files of other unikernels.
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2 Literature Review & RelatedWork

A preliminary literature review was conducted to explore the broader context
of isolation in virtualized environments, with a particular focus on comparing
key aspects such as inter-process communication and isolation mechanisms be-
tween monolithic and microkernel-based architectures. The review also exam-
ined hardware-assisted isolation techniques and component-based system designs
within single-address spaces. Although the survey emphasized microkernel-based
systems, the insights gained, particularly about low-level isolation and system
modularity, are highly relevant and form a solid foundation for understanding the
isolation capabilities of unikernel-based architectures in the later stages of this
research.

2.1 Evolution of Microkernels

The debate between monolithic and microkernels has been a major topic in op-
erating system design, each with its advantages and disadvantages. Monolithic
kernels prioritize performance whereas microkernels prioritize modularity and iso-
lation (Tanenbaum & Woodhull 2005, Torvalds 1997). Most of the exploration of
different operating systems started with well-known UNiplexed Information Com-
puting System (UNIX) system.

UNIX is one of the earliest OSs and has influenced the development of most
modern operating systems. Development of UNIX started in the early 1960s at
AT&T’s Bell Telephone Laboratories (Tanenbaum & Woodhull 2005). The source
code of UNIX was open to study until the UNIX version 7 came. After UNIX
version 6 was released AT&T realized its commercial value and licensed version
6 for both education and commercial use. According to Tanenbaum & Wood-
hull (2005), the previous versions were only licenses for educational institutions.
However, license of the version 7 specifically excluded the usage of source code for
educational purposes. The source code was being studied by many universities.
Most developments after Version 7 focused primarily on conceptual advancements,
with minimal emphasis on practical implementation. In response to this, Professor
Andrew S. Tanenbaum decided to develop his operating system from scratch called
Mini-UNIX (MINIX) which is compatible with UNIX v7, and let the universities
study the source code (Tanenbaum & Woodhull 2005).

2.1.1 MINIX: As an Educational Microkernel

MINIX is considered to be the root of many operating systems. According to
Tanenbaum if MINIX was not there then there was no Linux, no Linux means
no Android, because Android runs on Linux. MINIX have two advantages over
UNIX. The source code of MINIX was available to study and MINIX was devel-
oped in a more modular manner than UNIX (Tanenbaum & Woodhull 2005). For
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example, the memory manager, file system, and device drivers are independent
of the kernel and can operate independently. Hence, the MINIX kernel is much
smaller than UNIX which is around 4000 lines of code (Tanenbaum & Woodhull
2005). Smaller kernel code implies a smaller number of faults in the kernel. Ball
et al. (2006) and Albinet et al. (2004) found that most of the kernel error occurs
due to device drivers that are embedded into the kernel. It also implies the fact
that microkernels have a much smaller number of errors.

Because of MINIX kernel being much smaller it did not require much of a
memory space. According to Tanenbaum & Woodhull (2005), in the beginning,
it did not even require a hard disk. At the time the cost of hardware was much
higher, and being able to run without a hard disk was a huge advantage. One
of the main differences between UNIX and MINIX is that they are designed for
different purposes. UNIX was focused on efficiency while MINIX was focused on
readability (Tanenbaum & Woodhull 2005).

2.1.2 Portability of Kernel Design

Tanenbaum believed that the emergence of Reduced Instruction Set Architec-
ture (RISC) architectures will gradually take over the Intel line of 80x86. Thus
developing an operating system that is more coupled with the architecture is not
aligned with the timeline (DiBona & Ockman 1999). At the same time, Linus
Torvalds began the development of a new operating system, Linux; which was
tightly coupled with Intel’s 80x86 architecture (Torvalds 1997). This set the stage
for the well-known debate between Linus and Tanenbaum about the portability
of each of their operating system kernels.

Torvalds (1997) states that even though ‘simplicity’ is said to be one of the
key things in microkernels, it’s doubtful because of the complexity of its imple-
mentation. Linux kernel is organized around its main services which are process
handling, memory management, file system, network management, and drivers for
the hardware. When designing the kernel there are architecture-specific modules
(headers) and a common module that can be used through Application Program-
ming Interfaces (APIs) (Torvalds 1997). The abstraction layer between the kernel
and user applications is also important because there are several standards that
the designer should adhere to. The standard should also be binary compatible
with any legacy application to be able to run on the new operating system (Tor-
valds 1997).

There can be several problems associated with these standards as well. For ex-
ample, for some architectures, there might be no standards defined, in such cases
the architecture is free to define a standard but it’s also limited to the capabilities
of the architect and there can be several standards defined for the same architec-
ture. According to (Torvalds 1997), the issues of multiple interfaces to the same
OS are handled by a concept called ‘personality’. Micro kernel-based operating
systems have a personality server for each personality so that the operating system
is independent of the personality of the interface (Torvalds 1997). Even though
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this is the case, most operating systems have a single primary personality, and
other personalities are used for things such as backward compatibility. Because of
multiple personalities, Linux is said to be reasonably portable.

Indeed, Linux was tightly coupled with x86 architecture, especially with 80386
which Linux was originally written for (Torvalds 1997). Because of that reason, it
was not considered as a portable operating system. Even though that was iden-
tified as a weakness in the operating system implementation Linus didn’t try to
avoid using x86-specific features. Linux was started as a project to identify what
exactly can be done with the CPU, aiming to get the maximum usage of the CPU.
According to Torvalds (1997) the portability issue was related to the implemen-
tation not to the design.

‘Portability’ and ‘Ability to run on different architectures’ are two different
concepts. ‘Portability’ refers to running the same program in different systems or
architectures while ‘Ability to run on different architectures’ refers to developing
some program in a way that runs on a different system but the implementation
can be different from system to system. According to Torvalds (1997), the first
project in which Linux was involved in portability was Alpha RISC instruction
set architecture by Digital. After that several ports were developed for other ar-
chitectures such as Scalable Processor ARChitecture (SPARC), MIPS, PowerPC,
and Advanced RISC Machines (ARM) (Torvalds 1997). Apart from these archi-
tectures, the Linux kernel had been ported to virtual environments such as Mach
and L4 microkernels (Torvalds 1997).

For better portability, the architecture-specific code should be simple and min-
imal. The architecture independence code should be shared across different plat-
forms. That concept is called a ‘Virtual machine’ (Torvalds 1997). If the virtual
machine specifies too much it may not efficiently map onto some hardware. Ac-
cording to Torvalds (1997), a virtual machine has two layers of abstraction.

1. The layer between kernel to user application

2. The layer between the hardware to the kernel

Many strategies have been adopted to allow portability in Operating Systems.
One is defining system call interface standards such as Portable Operating System
Interface (POSIX). Adhering to POSIX is important in designing and imple-
menting operating systems in which the underlying hardware infrastructure may
change over the operating system’s life cycle. For example POSIX 1003.1b pro-
vides the standards for fixed-priority preemptive scheduling (Obenland 2000). The
operating system has to have 32 priority levels to be compatible with POSIX. It
defines three types of scheduling policies for processes that are on the same pri-
ority level; SCHED_FIFO, SCHED_RR, and SCHED_OTHER. SCHED_FIFO implements
first come first serve base scheduling while SCHED_RR implements the round robin
and SCHED_OTHER for architecture dependent scheduling policies. To be able to
be portable across different platforms, usage of SCHED_OTHER should be limited
(Obenland 2000).
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2.1.3 POSIX Standards

As different CPU architectures emerged, a proper standard between OS and CPU
as well as OS and user applications was needed. Thus, POSIX was introduced
by IEEE as a series of standards in the early 1980s (Tanenbaum & Woodhull
2005). Even though the applications and platforms have evolved dramatically
over time, the standards have not changed much (Atlidakis et al. 2016). There-
fore it is required to analyze whether adhering to POSIX is efficient in modern
computing systems. A study by Atlidakis et al. (2016) has given insights on which
abstractions provided by POSIX worked well with current computing systems and
whether it was missing any abstractions needed by modern systems by doing a
static and dynamic analysis on usage of POSIX in Ubuntu, Android, and OS X.

However modern user applications tend to rely on high-level frameworks and
libraries for IPC and thread management (Atlidakis et al. 2016). Those high-
level frameworks may have been implemented using POSIX standard APIs but
it is abstracted from the user applications by providing a more layered inter-
face. Later several extensions APIs were written to address missing interfaces
of POSIX for several functionalities such as IPC, graphics, and sound like ’ioctl’
for device-specific input/output operations (Tanenbaum & Woodhull 2005). The
study showed that Android and Ubuntu were not implementing all the POSIX
interfaces but OS X has implemented all according to the POSIX standards 2013.

2.1.4 First Generation Microkernels

The idea of the earliest microkernels was born at Carnegie Mellon University
(CMU) by Richard Rashid and Avie Tevanian; The Mach (Rashid et al. 1989).
However, not all the versions of Mach are microkernels. An early version of Mach
was not a success because it was originally developed as a replacement for the
monolithic UNIX, which inherited some UNIX like ideas. However, according to
Miao (2011) Mach’s external pager is considered a significant breakthrough in the
conceptual development of microkernel architecture. According to Miao (2011),
due to the high overhead in IPC, the first generation of microkernels was not very
successful; however, it concluded with promising ideas for true microkernels.

2.1.5 Second Generation Microkernels

In 1995 Liedtke (1995) showed that the inefficiency and inflexibility of microkernels
are not because of the design but because of its inefficient implementation. To en-
able security measures, it is crucial to provide an abstraction to physical address
space, otherwise, one user process could result in using memory addresses that
belong to another process. Liedtke (1995) suggested leaving the memory man-
agement and paging outside the kernel by recursively constructing address spaces
outside the kernel. The microkernel could provide three operations MAP, GRANT,
and FLUSH. Pages that are accessible within an address space can be granted by the
owner of that particular address space to another address space (Liedtke 1995).
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After the grant, the granter can no longer access that page, only the grantee can.
The MAP is also similar to GRANT however, after mapping, both the mapper and
recipient can access the page. FLUSH refers to removing access to mapped pages of
address space. After flushing, the flusher and its successors can access that page.
According to Liedtke (1995) this was completely safe because when the mapping
happens the recipient agrees on such access removal. This further extended to
remove only a subset of rights to the page when flushing.

However, according to the theory out of three operations, GRANT and MAP should
need the support of IPC to get the agreement between the granter/mapper and the
recipient. In that case, the memory management and paging also should contribute
to the performance bottleneck of microkernel which is IPC. However Liedtke
(1995)’s L3 kernel allowed passing messages directly between processes without
considering the authentication and security. Thus, it has to be implemented in
the servers on user space. It showed a significant improvement compared to first-
generation Mach with 10 times performance improvement in system calls (Miao
2011).

2.1.6 Current Generation Microkernels

Lessons learned from the implementation of L3 microkernels contributed valuable
insights towards the development of L4 microkernels. According to Elphinstone &
Heiser (2013), Liedtke has demonstrated that L4’s IPC could be implemented in
a way that it performs 10-20 times faster than other existing microkernels. Tra-
ditionally, when a message or data needs to be exchanged between two processes
it copies the data from the address space of the sender into a temporary buffer in
the kernel and then copies it again from the buffer in the kernel to the address
space of the receiver (Miao 2011). Later, this was further improved by simplifying
message structures in IPC and focusing on synchronous IPC which reduces the
buffering and copying cost in the kernel (Mutia 2010).

However, in a multitasking environment, this can lead to significant inefficiency
as other processes are idle while one process is waiting for a response. According
to Heiser & Elphinstone (2016), even though to overcome this, multiple threads
can be employed, it still adds unnecessary complexity in terms of resource sharing
and race conditions for systems that run single-threaded tasks. This issue was ad-
dressed by adding asynchronous support in the seL4 microkernel. seL4 introduced
basic form of asynchronous IPC known as asynchronous notification (Heiser & El-
phinstone 2016). This was further refined into Asynchronous Endpoints (AEPs).
AEP allowed non-blocking messages to the receiver and the receiver has the flex-
ibility to wait or poll (Mutia 2010). This involved having a virtual register mech-
anism and mapping those virtual registers into physical registers. Over time, the
benefit of in-register message passing faded away and legacy POSIX read write
were replaced by pass-by-reference using shared memory (Elphinstone & Heiser
2013). This is also called ’zero-copy’ message transferring because messages can
be passed from one address space to another without physically copying them
(Heiser & Elphinstone 2016).
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2.1.7 seL4 Microkernel

The seL4 microkernel represents a significant advancement in operating system de-
sign, prioritizing security, reliability, and formal correctness. As a high-assurance
microkernel, seL4 provides a minimal set of abstractions such as threads, vir-
tual address spaces, and inter-process communication (IPC) upon which higher-
level system components can be built. Its minimalistic design, comprising around
10,000 lines of C code depending on the architecture and configuration, contributes
directly to its suitability and verifiability. This makes seL4 a strong candidate for
systems where correctness and security are paramount.

A defining characteristic of seL4 is its formal verification, which ensures that
the implementation conforms to its high-level specification with mathematical cer-
tainty. As stated by Klein et al. (2009), seL4 is the first general-purpose operating
system kernel to undergo complete formal verification, meaning that it is provably
free of implementation bugs within the verified scope. This level of assurance is
particularly important in safety-critical domains such as aerospace, automotive,
and medical systems, where unintended behaviors can have severe consequences.
Formal verification also guarantees critical security properties such as integrity
and confidentiality, making seL4 well-suited for use in trusted computing bases
and isolation-enforced system architectures.

Another key feature of seL4 is its capability-based access control model. In
contrast to traditional access control mechanisms that are often discretionary or
role-based, seL4 employs a strict, fine-grained approach using unforgeable tokens
known as capabilities (The seL4 Authors and Contributors 2024). These capa-
bilities are the sole means by which threads can access kernel-managed resources,
ensuring that access rights are explicitly granted and strictly enforced. Capabil-
ities are stored in a hierarchical structure known as a capability space (CSpace),
allowing for efficient delegation, revocation, and control of authority. This model
provides strong guarantees of resource encapsulation and isolation, which is essen-
tial for building secure systems composed of mutually distrusting components.

In addition to these architectural and security strengths, seL4 is capable of
functioning as a type-1 hypervisor, running directly on hardware without the
need for a host operating system. This bare-metal operation mode allows seL4
to manage hardware resources directly, enabling the deployment of isolated user-
level systems or virtualized environments with minimal overhead. Its support
for virtualization, particularly on ARM and x86 platforms, makes it suitable for
scenarios where lightweight yet secure partitioning of execution environments is
needed such as in embedded systems or edge computing infrastructures.

2.2 Evolution of Unikernels

Unikernels represent a paradigm shift in operating system architecture, emphasiz-
ing minimalism, security, and performance. They are specialized, single-address-
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space machine images constructed by compiling application code alongside only
the necessary operating system components. This approach results in lightweight,
efficient, and secure execution environments tailored for specific applications.

The concept of unikernels emerged as a response to the increasing complex-
ity and overhead associated with traditional operating systems and virtualization
technologies. Early efforts aimed to streamline application deployment by elimi-
nating unnecessary OS components, leading to faster boot times, reduced attack
surfaces, and improved resource utilization. Over time, unikernels have evolved to
support a variety of use cases, from cloud computing to edge and IoT deployments.

Unikernels can be broadly categorized into two types based on their develop-
ment approach.

2.2.1 Minimized Monolithic Kernels

One category of unikernels is derived by minimizing existing monolithic kernels,
reducing them to include only the components necessary for running a specific
application. This approach allows developers to reuse mature, well-supported ker-
nel code while eliminating the complexity and overhead typically associated with
general-purpose operating systems. Two prominent examples of this category are
OSv and Unikernel Linux (UKL) (Raza et al. 2023). OSv is designed to support
single-application workloads in cloud environments and is based on the Linux
kernel. It aims to provide near-native performance while retaining compatibility
with standard POSIX interfaces and existing Linux-based applications. Similarly,
Unikernel Linux (UKL) transforms the traditional Linux kernel into a unikernel
environment without forking the kernel itself. This ensures that UKL maintains
compatibility with the broader Linux ecosystem, making it possible to leverage
existing tools, drivers, and development workflows in a unikernel context.

A particularly significant unikernel framework within this category is Rumprun,
which plays a central role in this research. Rumprun is based on the rump kernel
components of NetBSD and enables the construction of POSIX-compliant uniker-
nels by isolating and reusing specific kernel subsystems as modular, library-like
components. One of the core strengths of Rumprun lies in its ability to run unmod-
ified or minimally modified existing applications as unikernels. This is achieved by
linking the application with the necessary rump kernel libraries at compile time,
resulting in a self-contained and single-purpose unikernel binary. The modular
design of rump kernels allows developers to include only what is required by the
application, reducing the attack surface and resource usage. Rumprun supports
a wide range of features including networking, file systems, and threading, which
further facilitates the development of practical unikernel systems. Its emphasis
on portability and standards compliance makes it an ideal choice for research into
combining lightweight virtualization with secure isolation.

By building upon an existing and reliable operating system like NetBSD,
Rumprun strikes a balance between legacy compatibility and the unikernel phi-
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losophy of minimalism and performance. It abstracts the complexities of kernel
development away from the application developer, enabling them to focus on the
application logic while still benefiting from the performance and isolation ad-
vantages of unikernels. These features make Rumprun particularly attractive in
research scenarios that explore hybrid designs such as the integration of uniker-
nels with microkernels like seL4 to enhance system isolation without incurring
traditional virtualization overheads.

2.2.2 Clean-Slate Unikernels

A distinct category of unikernels comprises those designed and implemented from
the ground up, specifically tailored for certain programming languages or appli-
cation domains. Unlike approaches that minimize existing kernels, these systems
are built with unikernel principles at their core, allowing developers to tightly
couple application logic with only the essential operating system functionality.
This clean-slate design enables precise control over performance, resource usage,
and security, and often leads to highly optimized systems with minimal attack
surfaces. A notable example is MirageOS, a library operating system written en-
tirely in OCaml. It compiles applications into unikernel images, offering strong
static type safety and eliminating many common classes of runtime errors. By
leveraging OCaml’s advanced type system and modularity, MirageOS enables the
development of secure, high-assurance applications suited for deployment in both
cloud and embedded environments.

Other examples include HaLVM and IncludeOS, which each target specific
language ecosystems and deployment goals. HaLVM (Haskell Lightweight Vir-
tual Machine) facilitates the creation of unikernels written in Haskell, a functional
programming language known for its emphasis on purity and formal reasoning.
HaLVM builds upon the Xen hypervisor to execute Haskell-based applications as
isolated unikernel instances, making it a valuable platform for research in veri-
fied systems and high-assurance computing. In contrast, IncludeOS is a minimal
unikernel built in C++ with a focus on ease of use and cloud-native workloads. It
allows developers to compile services directly into self-contained binaries that can
boot on virtual hardware without a traditional operating system. IncludeOS offers
support for common runtime features such as networking and system calls, while
maintaining a compact and efficient footprint. Together, these clean-slate uniker-
nels highlight the flexibility of the unikernel model and its applicability across
diverse programming paradigms and use cases.

2.3 IPC

Since in microkernels, most of the services moved to the user space from kernel
space, the context has to be switched from user mode to kernel mode to perform
privileged tasks on behalf of the service (Tanenbaum &Woodhull 2005). Therefore
the communication between processes cannot be done directly unlike in monolithic
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kernels. Thus, message-passing mechanisms were introduced (Mutia 2010). IPC
was implemented in both monolithic and microkernels in many different ways.

2.3.1 Inter Process Communication in Monolithic Kernels

Monolithic kernels mainly use signals, named pipes, sockets, and UNIX V IPC to
communicate between processes.

i signals

According to Mutia (2010), this is considered as an earlier mechanism used in
IPC. The number of signals allowed was limited and was around 30 (Mutia
2010). Even though the execution time is minimal introducing new signals is
not straightforward. The logic to handle the signal can be defined in each pro-
cess accordingly except for SIGSTOP and SIGKILL. When handling the signals
it follows a self-first approach. First, it will look for any logic within the pro-
cess if no logic is defined within the process the kernel takes a default action
for the signal (Mutia 2010).

ii pipes

Pipes are implemented using two file structures. Each structure contains two
vectors. One for reading and one for writing (Mutia 2010). If a process wants
to write some data it first checks whether the space is enough and it was not
locked by another write or read process. Same thing applies when reading
from a pipe as well. Reading additionally allows non-blocking reads as part
of asynchronous IPC (Mutia 2010). If the pipe is locked or does not contain
any data, an error will be returned immediately to the caller process. There
is a special version of pipe called named-pipes which follows First In First
Out (FIFO) principle. Unlike in traditional pipes ’named-pipes’ uses entities
defined in the file system.

iii sockets

While FIFO pipes can only be created as byte streams, sockets allow a sequence
of data-grams to be created (Mutia 2010). The advantage of this is it enhances
independence and error detection at the packet level. A corruption in one data-
gram does not affect other data-grams.

iv UNIX V IPC

UNIX uses three mechanisms in IPC which are shared memory, semaphores
and message queues (Mutia 2010). Common authentication mechanisms have
been implemented in all three of them in which a process can use system calls
to pass a reference to the kernel to access the resources. Linux as a monolithic
kernel based OS uses a vector of message queues (Mutia 2010). Each entry
points to a data structure that describes the relevant message queue. See Fig-
ure 2.1. This message queue data structure consists of a permission structure
that contains the metadata relevant to permission, a pointer that points to the
actual message, and two queues; one as the writer’s queue and another one as
the reader’s queue.
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Figure 2.1: Message queue basic structure

The length of the message can be restricted to a certain limit, and by that,
the processes that perform write operations have to wait in the writer’s queue
until a read process reads at least one message from the queue. As mentioned
by Mutia (2010) Readers can read messages in FIFO manner or apply filters
in which the reader is interested in a particular topic.

Semaphores, on the other hand, works similarly but uses two atomic instruc-
tions called ’test’ and ’set’ (Mutia 2010). This is mainly used in accessing
resources. Once a process finishes using a resource it releases it by increment-
ing the semaphore so that another waiting process gets the signal that the
resource is available.

Shared memory can be used when processes need to quickly share a large
number of data. The same physical address gets mapped into different or the
same virtual addresses in each process’s address spaces.

2.3.2 Inter Process Communication in Microkernels

Because of having many unprivileged services in user space, microkernels have to
use IPC each time two processes need to communicate with each other (Tanen-
baum & Woodhull 2005). The kernel handles the bare minimum possible in IPC
such as message passing. These messages are exchanged through message registers
and each such message consists of a message tag (Mutia 2010). First-generation
microkernels used buffered message passing while later microkernels such as L3
and L4 allowed unbuffered message passing through pass-by-reference mechanism
(Elphinstone & Heiser 2013). OKL4 which is a variant of the L4 microkernel fam-
ily uses two operations ’send’ and ’receive’ both of them are synchronous (Mutia
2010). Later asynchronous notification was allowed in the ’send’ operation but its
usage was limited.

Upon an IPC request, the kernel first checks whether the target process or
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thread is capable of getting the message. If the target is waiting for a message
then the kernel directly sends the message (Mutia 2010). If the target is not ca-
pable of having the message then it checks whether the IPC request is blocking or
non-blocking. If the request is blocking it pushes the caller process into the IPC
queue of the receiver process. If the request is non-blocking it aborts immediately.
In asynchronous message passing, the target process does not need to invoke an
IPC receive operation (Mutia 2010). Each thread or process has its own Acceptor

register which contains the notify flags it is interested in receiving notifications for,
and a NotifyMask register which specifies what notify flags are allowed to send
notification upon receiving a message (Mutia 2010). If the notify flag of the mes-
sage is presented in the target process’ Acceptor register and NotifyMask register,
then the message is sent immediately.

As long as the IPC is involved in the switch between user mode and kernel
mode it inherits the main performance bottleneck which is context switching.
Many research studies have been done to mitigate the context-switching involve-
ment during an IPC call. However according to Mi et al. (2019), most of them are
using some specific architectures such as intel which has special instructions like
VMFUNC and Extended Page Table (EPT) features. Recent research by Mi et al.
(2019) utilized intel’s VMFUNC to directly switch to the callee’s address space in
an IPC invocation without context switching (Mi et al. 2019). This allows. How-
ever, the use of VMFUNC raises another problem of high VM exits even during the
usual execution of the operating system. This was solved by implementing another
layer beneath the microkernel not to switch between user mode and kernel mode
during an IPC invocation (Mi et al. 2019). Skybridge is a novel inter-process com-
munication (IPC) mechanism designed for efficient cross-core data sharing which
demonstrates significant performance improvements over traditional IPC meth-
ods. See Figure 2.2. The performance evaluation was done using a key-value store
with SQLite3.

Figure 2.2: Performance comparison of Skybridge (Mi et al. 2019)

Usage of EPT allowed user processes to switch the virtual address space with-
out trapping into the kernel (Mi et al. 2019). Supporting IPC at the user level
indeed has issues with security aspects. If some malicious process writes its imple-
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mentation of the VMFUNC instruction, it might give access to the receiver’s address
space. As Mi et al. (2019) mentioned, this was eliminated by scanning each pro-
cess’s binary to replace any illegal construction of VMFUNC instruction.

The main performance bottleneck of microkernels is indeed due to the huge
IPC overhead. However, it is not only because it requires context switches each
time, partially because of the implementation issues related to many modern CPUs
(Mi et al. 2019). Many processors follow multiple levels of caching as L1, L2, L3,
and so on. Not only these but also the Translation Look-aside buffer (TLB) get
poisoned by IPC related information which also invokes cache and TLB misses
each time when memory accessing. This behavior was tested by Mi et al. (2019)
by calculating the average IPC time of a null system call and interpreting it in a
function call using delay. See Figure 2.2. Each process provides an interface and
who can call through that interface using IPC during the registration (Mi et al.
2019). This helps to map the address space of the receiver into the sender’s address
space when they want to communicate. when a sender sends an IPC it first saves
its state into the stack then invokes VMFUNC instruction to use the receiver’s page
table in EPT (Mi et al. 2019). Then all the addresses that need to be translated
will be translated through the receiver’s page table instead of the sender’s page
table (Mi et al. 2019). Since this avoids using VM exits, it reduces the cost of the
guest’s physical addresses into the host’s physical addresses.

2.4 Process Isolation

Microkernels need to harmonize isolation and performance to provide efficient
functionality. Achieving only the isolation leads microkernels to inefficiencies in
performance. According to Mi et al. (2019), a single round trip of an IPC costs
around 1500 cycles in seL4. As in Figure 2.3, Gu et al. (2020) demonstrated
that seL4 consumes 44% of its time on IPC for an average task. The SkyBridge
IPC design by Mi et al. (2019) has optimized it to 400 cycles for a single round
trip. However, microkernels have significant progress yet to be achieved compared
to traditional monolithic kernels, which cost much fewer cycles for calling kernel
components.

Figure 2.3: IPC overhead in seL4 (Gu et al. 2020)
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2.4.1 Domain Isolation

UnderBridge; recent research by Gu et al. (2020) proposed a new mechanism that
reduces microkernels’ high IPC overhead. The key idea was to supply an isolated
domain environment for user space processes within the kernel itself without mov-
ing them outside it and provide efficient cross-domain interactions (Gu et al. 2020).
It used Intel’s Protection Key for Userspace (PKU) for the isolation to be efficient
even with cross-domain interactions. Even though it is architecture-specific, the
idea of isolating user processes in kernel space is brilliant for a microkernel to have
a performance boost.

Those processes that run in isolated domains can communicate with other
isolated processes and the kernel efficiently without expensive IPC. The number
of such isolated domains being limited is also considered and UnderBridge provides
server migration (Gu et al. 2020). Each process can decide whether to run in an
isolated kernel domain or user space as in traditional microkernels based on how
performance-critical it is. Use of PKU enforces having a separate page table for
the kernel otherwise unprivileged applications might directly access the memory
related to the kernel (Gu et al. 2020). PKU enabled CPUs enforces permission
checks when the U/K bit of a page entry is set to ’U’. With the help of Kernel
Page Table Isolation (KPTI), UnderBridge was able to separate pure kernel pages
from user-accessible pages of the kernel (Gu et al. 2020). However, the problem
was that Memory Protection Key (MPK) only checked permissions for read/write
operations leaving the execution (instruction fetching) permission available to any
process in the kernel address space. According to Gu et al. (2020), this was
somehow solved using a new register Protection Key Rights Register (PKRU)
and a new instruction wrpkru. Figure 2.4 shows the cost of the new instruction
compared to existing instructions.

Instruction Cost (in cycles)
Indirect Call and Return 24
syscall and sysret 150
Write CR3 (without TLB FLUSH) 226
VMFUNC (with EPT Switching) 146
wrpkru 28

Figure 2.4: Cost comparison of instructions (Gu et al. 2020)

Even though UnderBridge managed to achieve isolation through MPK, a few
security issues were still there regarding the execution instruction not being checked
for permission. Some compromised user processes could install their page table
and get full access to the kernel address space. Even though the pure kernel
address space can be separated using KPTI, it could access memory addresses
belonging to other processes.
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2.4.2 Extended Page Table Switching

Process isolation is not a characteristic only for microkernels. Monolithic kernels
also need to isolate user processes even though those reside in the kernel space
mainly due to security reasons. Since hardware did not support much for isolation
in earlier CPUs, most of the kernels implemented software solutions by minimiz-
ing the TCB (Narayanan & Burtsev 2023). Because security attacks are growing
nowadays, hardware support for handling isolation increased, resulting in special
instructions like VMFUNC which was introduced by intel on their Skylake proces-
sors (Mi et al. 2019). IPC is possible with VMFUNC without the need of the kernel
(Narayanan & Burtsev 2023). The execution flow continues in the same thread
but uses different page tables after the execution of VMFUNC instruction. Since it is
using the same thread the next immediate instruction after VMFUNC should be valid
in the address space of the target process. To ensure that it is valid a trampoline
page is mapped to both source and target processes’ address spaces (Narayanan
& Burtsev 2023).

This page table transition involved saving and restoring the state of the two
processes before and after the method invocation. An attacker could bypass this
state persistence by scanning the byte sequence to identify functionally similar
instructions for VMFUNC (Gu et al. 2020). By doing that it is possible to avoid
the VMFUNC and move to the next instruction which should be resolved using the
page table of the target process (Narayanan & Burtsev 2023). This results in
overlapping between isolated domains. Thus a proper isolation mechanism should
not allow overlapping as well as to construct functionally similar byte sequences to
VMFUNC. SkyBridge by Mi et al. (2019) has overcome the issue related to function-
ally similar byte sequence for VMFUNC by performing a binary scanning mechanism.
However, this might not work where the execution is done using just-in-time com-
pilation.

ARM also introduced memory tagging extensions. MPK by intel also follows
tagged memory mechanisms to isolation processes (Narayanan & Burtsev 2023,
Blair et al. 2023). Usage of the tagged memory concept initially had its limita-
tions due to the number of possible isolated domains being limited to 16 in most
architectures (Mi et al. 2019). Processes can be isolated in the same address space
by tagging the pages of the address space with a 4-digit code that specifies the
domain that the page belongs to (Narayanan & Burtsev 2023). See Figure 2.5
With 4 bits it had 16 possible isolated domains within a single address space. A
workaround has been done to extend the number of isolated domains by virtu-
alization (Gu et al. 2020). However, it was complex as it involved many system
calls. A process can access a page only if the protection key rights for user space
(pkru register) match the page’s tag.
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Figure 2.5: Domain isolation with tagged memory (Narayanan & Burtsev 2023)
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3 Design

This chapter presents the design considerations and methodologies adopted to in-
vestigate isolation properties, utilizing the seL4 microkernel. The focus is placed
on the setup of the test environment, the selection and configuration of support-
ing tools, and the two distinct experimental design approaches undertaken. These
design choices serve as the foundation for evaluating both intra-unikernel and inter-
unikernel isolation mechanisms, leveraging seL4’s formal guarantees and compo-
nent architecture.

The test environment was configured on a machine running a 64-bit Ubuntu
operating system, equipped with an Intel® Core™ i5-10300H CPU @ 2.50GHz (8
core) and 16GB of RAM. To emulate the deployment and execution of the designed
system, QEMU : quick emulator was used. Each emulated instance was allocated
specific amounts of memory tailored to the needs of individual experiments, which
will be detailed in the corresponding sections. The seL4 microkernel’s toolchain
was used extensively, taking advantage of its CMake-based build system with
Ninja as the generator to manage and compile build files efficiently. Additionally,
benchmarking tools, provided as a separate project by the seL4 ecosystem, were
integrated to support performance evaluations during experimentation.

Two core design strategies were explored in this work. The first focused on
examining isolation within a single unikernel instance by utilizing the CAmkES
(Component Architecture for microkernel-based Embedded Systems) framework.
This approach allowed the investigation of fine-grained, internal component sepa-
ration and communication. The second strategy addressed the broader scenario of
isolation across multiple unikernel instances, each independently hosted, with at-
tention to the seL4 mechanisms that enable strict separation between co-existing
systems. Together, these approaches provide a comprehensive examination of iso-
lation at both intra- and inter-system levels, forming the basis for the experimental
analysis presented in subsequent chapters.

3.1 Setting up the environment

The first step in the process was to set up a simple application on seL4 to confirm
that the operating environment was working correctly and that all configurations
were properly in place. With the help of the clear and detailed documentation
provided by seL4, this initial setup was relatively straightforward. This early
experiment acted as a baseline to ensure that the microkernel was running as
expected and laid the groundwork for integrating unikernel-based components in
later stages.

To maintain a consistent and hardware-independent testing environment, the
experiment was carried out using QEMU. This approach allowed for reliable exe-
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cution without being affected by hardware-specific variations. By running a basic
program on seL4, it was possible to confirm that key functionalities such as process
creation, basic input/output operations, and output handling were all working as
intended.

3.2 Selecting a Compatible Unikernel

After verifying the functionality, the next step was selecting a suitable unikernel.
This unikernel had to meet several criteria to be integrated with seL4.

• It needed to be adaptable to the seL4 microkernel environment

• Since the idea is to use seL4 as a bare metal hypervisor, the selected unikernel
should be able to run on bare metal

• Since unikernels rely on minimized OS abstractions, the unikernel should
provide sufficient library support and system call compatibility to interface
with seL4.

In selecting a suitable unikernel for integration with the seL4 microkernel, sev-
eral options were initially considered, including Unikraft, MirageOS, IncludeOS,
and Rumprun. Rumprun emerged as a strong candidate due to a few key ad-
vantages. Firstly, it is developed in C, which aligns well with seL4’s C-based
implementation, making integration more straightforward at a technical level.
Additionally, Rumprun is based on a minimized version of NetBSD, offering a
broad range of driver support, a crucial factor given that seL4 itself provides lim-
ited native driver functionality. This support enables POSIX-based applications
to seamlessly leverage NetBSD libraries without requiring deep modifications to
interact with the underlying microkernel.

Another practical advantage was that preliminary work on integrating Rumprun
with seL4 had already been initiated by the community. This partial integration
provided a valuable starting point, reducing the groundwork needed for adapting
Rumprun to the seL4 environment. With Rumprun selected, the next phase in-
volved tailoring it to operate within seL4’s unique architecture. This adaptation
focused on aligning system call handling and library usage to function within a
single address space, as is typical with unikernel designs. These efforts lay the
foundation for enabling efficient and secure isolation, which is central to the ex-
periments and evaluations conducted in the later stages of this research.

3.3 Design 1 : Intra-Unikernel Isolation

The first design approach investigates the feasibility and effectiveness of intro-
ducing intra-unikernel isolation within a single Rumprun-based application by
leveraging the CAmkES component framework on top of the seL4 microkernel.
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Traditionally, Rumprun unikernels operate within a single address space, compil-
ing application code and necessary OS components into a single binary. While this
model offers performance benefits, it provides limited internal isolation between
different parts of the application, which may become a concern in systems requir-
ing strict separation of concerns or modular trust boundaries. This approach seeks
to address that limitation by decomposing a Rumprun application into multiple
isolated components, each deployed as a separate CAmkES component communi-
cating through formally defined interfaces.

Figure 3.1: The CAmkES layered architecture (Kuz et al. 2007)

Figure 3.1 illustrates the layered architecture of CAmkES. At the foundation is
the hardware layer, consisting of the CPU, memory, buses, and peripheral devices.
Directly above this is the RTOS layer, which includes the microkernel (seL4 in this
case) and an optional supervisory operating system. While components such as
device drivers or network stacks can be embedded within this layer, they can also
be implemented as isolated CAmkES components residing in higher architectural
layers.

The CAmkES core runtime forms the core of the component architecture. It
provides essential services and a static execution environment for CAmkES com-
ponents. In this static model, all component instances are created at system boot
time, and connections between components are established at compile time. This
approach eliminates runtime overheads such as dynamic binding or inter-process
communication (IPC) costs, often replacing them with efficient, direct procedure
calls between components. Above the core runtime lies the extension layer, which
includes advanced features such as support for dynamic component creation, bind-
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ing, and configuration. These features are themselves implemented as CAmkES
components and are only included when needed, allowing systems that do not
require such flexibility to remain minimal and efficient. At the top are frameworks
and user-defined components, which leverage the lower layers to form complete
applications tailored to specific domains. This layered approach ensures a clear
separation of concerns, promoting modularity and minimizing resource usage for
systems with strict performance and memory constraints.

A key objective of this design is to assess the extent to which seL4’s capability-
based access control can enforce meaningful isolation between components of a
single application. By confining capabilities and explicitly controlling communi-
cation, it becomes possible to limit the privileges of each component, thus mini-
mizing the potential impact of a compromised module. This approach allows for
the evaluation of fine-grained isolation policies within the boundaries of a single
application context and provides insights into how seL4’s security model applies
even when components share a logical application space.

3.4 Design 2 : Inter-Unikernel Isolation

The second design approach focuses on enabling true multi-unikernel isolation by
modifying the behavior of the root task within the existing rumprun-sel4-demoapps
framework. In the current implementation of this repository, the seL4 kernel is
used to boot into a single user-level Rumprun application. Upon initialization,
the kernel starts the root task, which is responsible for configuring the environ-
ment, loading capabilities, and launching the unikernel. This process is currently
designed to support only one application at a time, effectively making the system
single-tenant despite the underlying microkernel’s strong isolation capabilities.

To overcome this limitation, this approach proposes extending and restructur-
ing the root task into a lightweight cooperative scheduler capable of managing
multiple Rumprun applications concurrently. Rather than launching a single pre-
defined unikernel application immediately after system boot, the root task would
instead instantiate a rumprun application as user space processes in the same en-
vironment. Each application would be initialized with its own capability space
(CSpace), virtual address space (VSpace), and thread control block (TCB), allow-
ing them to run in isolated user-level processes, fully supported by seL4’s formally
verified isolation mechanisms.

A central element of this design is the integration of a cooperative scheduling
mechanism within the root task. Once seL4 completes its boot sequence and con-
trol is transferred to the root task, the system will no longer immediately transfer
control to a single application. Instead, the root task would first initialize a run-
time environment containing metadata about multiple runnable applications. It
would then select one of these applications to run based on a basic scheduling
policy and activate it by mapping its address space and capabilities, effectively
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switching the current execution context. When the selected application completes
or voluntarily gives control to the root task, it then selects the next application
to run. To support preemption and avoid CPU monopolization by a single appli-
cation, timer interrupts can be configured via seL4’s notification objects. These
interrupts can trigger the root task to regain control and perform a context switch,
thereby simulating time-sliced multitasking behavior.

This design leverages seL4’s robust resource isolation features to ensure that
all Rumprun processes run within the same environment, potentially sharing re-
sources like timers and serial devices, but in a controlled and restricted manner
using seL4 capabilities. The ability to isolate multiple unikernels as separate
processes not only enhances fault isolation and security but also enables more effi-
cient use of system resources in multi-tenant or edge computing scenarios. Unlike
monolithic virtualization solutions, this model avoids the overhead of full virtual
machines while still offering separation at the process level.

However, realizing this design entails several non-trivial challenges. The fore-
most among them is the need to significantly modify the default behavior of the
root task. This includes implementing a custom runtime capable of handling
process metadata, maintaining control flow, managing IPC between the sched-
uler and applications, and ensuring proper cleanup of resources upon application
termination. Moreover, care must be taken when handling timers and serial de-
vices, preventing resource contention between processes. Another complexity lies
in handling blocking system calls such as sleep(), within the applications. Since
Rumprun applications may rely on POSIX-like abstractions, the root task must be
able to distinguish between voluntary blocking behavior and preemptive schedul-
ing opportunities, all while remaining responsive to external interrupts and seL4
notifications.

Despite these challenges, this approach offers a powerful path forward for inves-
tigating secure multi-tenant execution of unikernels atop seL4. It brings together
the performance benefits of unikernels with the formal isolation guarantees of seL4
while exploring the design space between static, single-purpose systems and dy-
namic, multi-application platforms. Ultimately, this design serves as a foundation
for future systems where lightweight applications must co-exist securely within a
shared yet tightly controlled operating environment.
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4 Implementation

4.1 Test Environment

The evaluation and experimentation were carried out on a host machine running
Ubuntu 22.04, with 512MB of memory allocated to the QEMU virtual machine.
The target architecture for the experiments was x86 64, and both gcc and g++
compilers used were version 10. This work focused on the seL4 microkernel and
its supporting infrastructure, using two main repositories.

• Design 1: seL4/camkes-manifest

• Design 2: seL4/rumprun-sel4-demoapps

Implementations of both designs utilized the cmake build system and ninja gen-
erator to genrate build files and the scripts to perform the simulation on QEMU.

4.2 Implementation of design 1

The first implementation involved integrating a Rumprun application within the
CAmkES (Component Architecture for Microkernel-based Embedded Systems)
framework. This approach explores how lightweight unikernel applications can be
run atop the seL4 microkernel, utilizing the CAmkES environment for modular,
component-based systems.

4.2.1 Obtaining the Source

The process began by obtaining the necessary CAmkES source code using Google’s
repo tool, which simplifies managing multiple Git repositories. By initializing the
manifest and syncing with the remote repositories, the complete source tree was
downloaded, including the essential tools and modules.

4.2.2 Preparing Rumprun Dependencies

To enable Rumprun application support, the submodules under /tools/rumprun
needed to be correctly initialized. These submodules, buildrump.sh and src-netbsd
are crucial for building and running Rumprun-based applications. The buildrump.sh
script automates the build process for the NetBSD components required by Rumprun,
and src-netbsd contains the source code for the NetBSD userspace.
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4.2.3 Building a Rumprun Application

To verify that Rumprun applications function correctly within CAmkES, an exist-
ing application rumprun_hello was selected as a test case. A new build directory
was created to isolate the build artifacts, and the build system was initialized
using the init-build.sh script. Here the platform used was x86 64.

../init-build.sh -DPLATFORM=x86_64 -DCAMKES_APP=rumprun_hello -

DSIMULATION=1

ninja

The build process generated the necessary configuration files and a script to
simulate the application using QEMU. This step successfully produced the re-
quired binaries and execution environment.

4.2.4 Encountering Runtime Issues

However, when executing the generated simulation script, a runtime error was
encountered as shown in Figure 4.1.

Figure 4.1: Issue with TLS bound

The error pointed to a failure in allocating required kernel objects during the
startup phase of the Rumprun application. Specifically, the
simple_get_extended_bootinfo_length function, critical for obtaining extended
boot information in seL4, was reported as not implemented.

4.2.5 Diagnosing the Issue

To determine whether the problem was isolated to Rumprun applications or indica-
tive of a broader issue within the CAmkES framework, a different non-Rumprun-
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based application was compiled and executed. This application ran successfully,
ruling out a general CAmkES or seL4 malfunction and confirming that the issue
was specific to Rumprun integration.

Upon deeper inspection, it was discovered that although
simple_get_extended_bootinfo_length does have a valid implementation in the
source code, the runtime could not reach this function. This led to investigating
how the Rumprun application image was being packaged.

4.2.6 Identifying the Root Cause

The root cause appeared to lie in how the seL4 runtime calculated the TLS (Thread
Local Storage) region size. During execution, seL4 calculates the TLS bounds
using information from the ELF file headers. However, in this case, the cal-
culated size was smaller than expected. When Rumprun attempted to set the
sel4_ipc_buffer, the calculated offset exceeded the allocated TLS region. As
seL4 enforces strict memory bounds, this write operation was silently ignored,
leading to a failure in setting up critical runtime components.

As a result, the runtime failed to resolve
simple_get_extended_bootinfo_length, even though it was present in the com-
piled binary. This situation ultimately caused the Rumprun application to fail
during initialization, rendering this implementation unusable.

Due to the above limitations and misalignment in runtime memory manage-
ment, implementation 1 was unsuccessful. The issue highlights the complexity of
integrating unikernel-based applications with microkernel architectures, especially
when low-level runtime assumptions such as TLS bounds are violated. However,
this failure also demonstrates a positive aspect of the seL4 microkernel:- its strict
enforcement of memory boundaries. When the Rumprun application attempted
to access a memory region outside the calculated TLS bounds, seL4 prevented the
operation entirely and effectively and the process was unaware the region even
existed. This behavior underscores the robustness of seL4’s memory protection
mechanisms, ensuring safety and isolation by design. A more tailored packaging
strategy or runtime patching may be necessary to resolve this incompatibility in
future iterations.

4.3 Implementation of design 2

Design 2 approached the problem differently by leveraging the rumprun-sel4-
demoapps repository. This setup eliminates the use of CAmkES and instead
treats Rumprun applications as standalone user-level processes. Isolation here
is achieved at the process level, rather than via component boundaries.

In this design, the build system generates two images: one for the seL4 kernel
and another for the user-level processes. The user image contains the root task
(analogous to the init process in UNIX), the Rumprun application binaries, and
the necessary NetBSD libraries.

Figure 4.2 shows the structure of rumprun-seL4-demoapps,
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Root task

User apps

App1

Src

App1.c

CMakeLists.txt

CMakeLists.txt

Settings.cmake

App2

Src

App2.c

CMakeLists.txt

CMakeLists.txt

Settings.cmake

Figure 4.2: Project directory structure

4.3.1 Root Task

The init function is the first step executed during the roottask’s setup. It be-
gins by retrieving the boot information provided by the seL4 microkernel using
the platsupport_get_bootinfo() call. This information contains crucial details
about the system’s initial state, such as capability slots and memory regions. The
thread running the root task is then labeled as ”roottask” for easier debugging
and visualization through the NAME THREAD macro. Finally, the system en-
vironment (env) is initialized through init_env, setting up critical subsystems
like memory allocation, capability management, virtual memory space (vspace)
management, and timers.

The init_env function is responsible for setting up the execution environ-
ment, a critical environment objects that consolidates allocators, vspace managers,
timers, and I/O subsystems. First, it statically reserves memory to manage the
musllibc heap area without risking overwrites. The allocator is initialized, with a
static pool for memory management, ensuring immediate dynamic resource alloca-
tion. The VKA (Virtual Kernel Allocator) interface is constructed next, providing
a convenient abstraction over allocation manager for kernel resource management
tasks like allocating capabilities.

The virtual memory setup begins by reserving key memory regions to prevent
accidental reuse, including space for dynamic memory allocation and a larger pool
for future system allocations. This ensures that applications like Rumprun have
a stable environment for managing memory. Following this, a notification object
is allocated to handle asynchronous events like timer and serial interrupts. Es-
sential I/O subsystems are then initialized to support memory allocation, device
mapping, and interrupt handling, providing a modular and portable interface for
interacting with hardware. These steps collectively prepare the system for running
complex unikernel-based applications within the seL4 environment.

36



Next, it creates a communication endpoint for inter-process communication
between the main thread and other system components. If the system is config-
ured in mixed-criticality mode, it also prepares a reply object for managing reply
capabilities. A serial server thread is then launched to handle asynchronous serial
I/O and an IRQ capability is allocated to handle interrupts from the serial inter-
face.

Following this, a local timer is initialized and linked to the current thread to
generate periodic interrupts. A time manager is set up to handle time allocation
for Rump processes, ensuring proper integration with the timer infrastructure.
The system then boosts the main thread’s priority to the highest level to give it
scheduling precedence. To distinguish incoming serial interrupts, a badge is ap-
plied to the notification object, which is then bound to the serial IRQ handler.

With these core components ready, the system may create an idle thread and
optionally a CPU-intensive thread to simulate system load and assess scheduler
behavior. Once all this groundwork is done, the Rump kernel user process is
loaded. The system inspects the CPIO archive that holds binary payloads, ex-
tracts metadata such as file names and sizes, and prints this information for de-
bugging. Finally, it logs the start of the application and launches the specified
Rump process, transitioning from setup to execution.

The process begins by preparing to launch a new user-level application, typ-
ically a Rumprun binary, within the seL4 microkernel environment. It first allo-
cates memory for initialization data and sets up shared memory for standard input,
output, and error streams to enable terminal communication. The new process
is assigned a high priority, just below the maximum to balance responsiveness
with fairness to other critical threads like serial I/O handlers. A notification ob-
ject is created to allow the process to receive timer events. The kernel provides
the process with a uniquely badged endpoint for handling communication, faults,
and RPCs. Capabilities granting access to key system services such as I/O, IRQ,
timers, and scheduler control are copied into the new process. In seL4, capabilities
are used to control access to kernel objects. Each capability defines a combination
of permissions, where up to four types of access rights can be assigned. These
rights are represented as a 4-bit tuple in the form (a, b, c, d). The bits correspond
to specific permissions as below.

• The first bit (a) set to 1 indicates that the capability allows grant reply,
which permits the holder to send a reply to a previously received message.

• The second bit (b) set to 1 indicates grant permission, allowing the holder
to forward capabilities to another component.

• The third bit (c) set to 1 indicates read access to the resource.

• The fourth bit (d) set to 1 indicates write access to the resource.

There are nine commonly used capability configurations available in seL4.

37



seL4_ReadWrite (0, 0, 1, 1)

seL4_AllRights (1, 1, 1, 1)

seL4_CanRead (0, 0, 1, 0)

seL4_CanWrite (0, 0, 0, 1)

seL4_CanGrant (0, 1, 0, 0)

seL4_CanGrantReply (1, 0, 0, 0)

seL4_NoWrite (1, 1, 1, 0)

seL4_NoRead (1, 1, 0, 1)

seL4_NoRights (0, 0, 0, 0)

It’s also granted access to untyped memory and device memory, which are vital
in seL4’s capability-based resource model. The standard I/O memory is mapped
into the child process, and an exclusive endpoint is created and passed to it for
initialization. Once the setup is complete, the child process is spawned, and the
initialization data is sent over.

After launching, the parent enters a loop that waits for the process to finish,
crash, or make requests via RPC. Inside this loop, it waits for messages, dis-
tinguishing between replies to previous calls, new requests, or interrupts. If the
message is an RPC reply, it processes the response. If it’s a new message, it iden-
tifies the source using the message’s badge. Timer messages are handled with a
dedicated timer function, faults trigger logging and debugging routines, and un-
known messages result in a failure flag. Interrupts are also handled: serial input is
captured and written to the process’s buffer, standard output is flushed to display
what the app printed, and timer interrupts update the time manager. This loop
continues until the process exits, either normally or due to an error. Finally, the
result is returned to indicate the outcome of the application’s execution.

By default, this setup supports running only one Rumprun application. To
enable support for multiple applications, a cooperative scheduler was introduced.
Each process is tracked in a rump env structure, which includes fields for the
process’s binary name, its execution state, and the current active process index.

env.processes[0].bin_name = "app1.bin";

env.processes[0].state = PROCESS_RUNNABLE;

env.processes[1].bin_name = "app2.bin";

env.processes[1].state = PROCESS_RUNNABLE;

env.current_process_index = 0;

The scheduler attempts to switch between applications when a timer inter-
rupt occurs. When a timer interrupt occurs, the current process is marked as
BLOCKED, and the scheduler selects the next runnable process.
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if (label == TIMER_LABEL) {

rump_process_t *current_process

= &env.processes[env.current_process_index];

current_process->state = PROCESS_BLOCKED;

info = handle_timer_rpc(rump_process, badge, info);

schedule();

}

The timer RPC handler assigns a callback function to be triggered when the
timer times out.

tm_register_cb(&env.time_manager, type, time, 0, id,

timer_callback, id);

When the callback get triggered, the waiting process become again runnable.
The scheduler uses a simple loop to find the next process marked as RUNNABLE
and invokes it.

void schedule() {

int found = 0;

while (!found) {

for (int i = 0; i < N_RUMP_PROCESSES; i++) {

rump_process_t *p = &env.processes[i];

if (p->state == PROCESS_RUNNABLE) {

env.current_process_index = i;

p->state = PROCESS_RUNNING;

found = 1;

run_app();

}

}

}

}

When a Rumprun application calls sleep(), it doesn’t just sit idle and waste
CPU cycles. Instead, the call initiates a more efficient and structured process in-
volving inter-process communication and kernel-managed timers within the seL4
microkernel environment. The sleep request triggers a system call that travels
down to the kernel-aware runtime layer, where it is handled as a Remote Proce-
dure Call (RPC) directed to the timer server. The system recognizes this as a
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timeout request, specifically identified by a designated operation code, and pro-
ceeds to extract the desired sleep duration and timeout type from the message
registers.

This information is passed to the time manager using a function that registers
a timer callback. Along with the sleep duration, the system also passes a reference
to the sleeping process and a callback function to be triggered once the timeout
expires. The time manager then schedules a timer event, linking it with the pro-
cess and callback so that when the timer goes off, the callback can resume the
process.

When the sleep duration has passed, the timer infrastructure triggers the call-
back function. This function identifies the process that initiated the sleep call
using its ID and sends a signal via a specific kernel-level endpoint. That signal
is what unblocks the process, effectively waking it up from its suspended state.
At this point, the Rumprun process resumes exactly where it left off after calling
sleep(), having efficiently paused without consuming unnecessary CPU resources.

4.3.2 User Apps

Although the current configuration supports running only a single application at
a time, it is possible to include the binary of a second application within the CPIO
archive. The root task can then read this archive and determine which applica-
tion to execute next based on predefined logic or configuration. To enable this, the
application’s CMake settings should be configured to always include its binary in
the CPIO archive, regardless of whether it is the currently selected app for execu-
tion. This approach facilitates greater flexibility and simplifies switching between
different user applications without modifying the archive generation process.

<<seL4(CPU 0) [decodeCNodeInvocation/182 T0xffffff801fe1c400

"roottask" @401bcb]: CNode Copy/Min>

Despite these modifications, this design also faced limitations. The root cause
was the inability to transfer certain capabilities such as timers across process
boundaries. These capabilities are shared resources and must be carefully man-
aged; launching a second application with access to these capabilities was not
possible under the current framework as seL4 does not allow the capabilities to
be copied or mint as shown in the above message. Furthermore, registering call-
backs and handling timeout IDs for multiple processes proved problematic, as the
underlying timeout registration mechanism does not support concurrent process
callbacks.
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5 Results Evaluation

5.1 Qualitative Analysis of Isolation Aspects

Isolation is a fundamental security requirement in microkernel-based systems, par-
ticularly in the context of executing untrusted or semi-trusted components. Both
of the designs explored in this project: Design 1 using the CAmkES component
architecture and Design 2 using multiple rumprun-based applications as user-level
processes were aimed at achieving isolation to various extents. Although both de-
signs faced practical implementation challenges that limited their success, seL4’s
capability-based architecture provides a strong theoretical foundation for isolation
that deserves discussion.

Design 1 attempted to use the CAmkES component-based architecture to iso-
late different parts of a single rumprun application. The CAmkES framework is
built on the principle of statically defined components that interact only through
explicitly declared interfaces, with all resource access controlled through capabili-
ties. This design inherently supports fine-grained isolation, as each component can
be provisioned with only the capabilities it strictly requires. Theoretically, even
within a monolithic application such as one built using rumprun, one could isolate
untrusted libraries or subsystems by wrapping them as CAmkES components and
strictly controlling inter-component communication via capabilities. However, due
to the limitations of rumprun’s linker behavior and its requirement for a unified
TLS region issues not compatible with the CAmkES build and linking strategy,
this isolation was not realized in practice. Still, the design direction demonstrates
how seL4’s capability model can enforce the Principle of Least Privilege even at
the component level.

Design 2 took a more coarse-grained approach by running multiple rumprun
applications as separate user-level processes, under a common root task. This
method aligns more closely with traditional UNIX-like process isolation, where
each process is expected to run in its own virtual address space with restricted ac-
cess to system resources. In seL4, these boundaries are even more strictly defined:
each user-level process is given a set of capabilities upon creation, and it cannot
access resources or communicate with other processes unless explicitly granted the
necessary capabilities.

As shown in Figure 5.1 each Rumprun unikernel instance, upon boot, mounts
its virtual file system as shown in the blue-colored output from the Rumprun
user-level application. This occurs after the kernel and root task complete their
bootstrapping sequence (indicated by the black-colored output). In this setup,
each Rumprun process operates with a separate file system namespace, result-
ing in effective file system isolation. Even though all processes share the same
underlying seL4 environment including shared resources like timers and serial de-
vices: seL4’s capability-based access control ensures that these shared resources
are used in a controlled and restrictive manner. As a result, multiple Rumprun
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Figure 5.1: File system mount upon bootup

instances can run concurrently with strong isolation guarantees, particularly at
the file system level. Even though the root task in this design initially lacked
the scheduling and capability-passing flexibility required to dynamically manage
multiple processes, the seL4 kernel itself guarantees that one process cannot inter-
fere with another unless capabilities have been shared. This represents a formal,
enforceable notion of isolation rarely seen in traditional microkernel systems.

In both designs, seL4’s capability-based access control serves as a theoretical
guarantee of isolation. Capabilities in seL4 are unforgeable tokens of authority
that govern access to all kernel objects, including threads, address spaces, I/O
devices, and memory regions. As such, isolation in seL4 is not merely a design-
time or policy-level concept; it is backed by the kernel’s enforcement mechanism
and has been subject to formal verification. This makes seL4 particularly well-
suited for building secure systems where isolation must be guaranteed, even in the
presence of malicious or faulty components.

5.2 Performance Benchmarking of seL4

To establish a baseline for evaluating isolation in unikernel-based systems on seL4,
we first conducted performance benchmarks on the microkernel itself. These
benchmarks aim to characterize seL4’s efficiency and responsiveness, particularly
in handling core system operations such as context switching, IPC, and memory
management. By understanding seL4’s performance in these critical areas, we can
assess its suitability as a foundation for unikernel deployments and compare it
against traditional operating systems.
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5.2.1 IPC Performance

IPC is a central component of microkernel-based systems like seL4, where the ker-
nel facilitates communication between independent processes. In our IPC bench-
marks, we measured the round-trip message-passing latency between two pro-
cesses. Figure 5.2 shows the results regarding seL4’s one-way IPC performance
was obtained as follows in terms of mean number of cycles by considering 8 rounds
of benchmarking.

Figure 5.2: Message passing latency

Given the centrality of IPC to seL4’s architecture, this efficient communication
is promising for this research, as it suggests that isolated unikernels can commu-
nicate without significant overhead, maintaining both performance and security.

5.2.2 Fault overhead

Figure 5.3 shows benchmarking results associated with faults, and measures the
time it takes for the system to handle a fault from detection to resolution, including
the necessary system overhead for fault handling and recovery. This metric is
crucial for understanding how effectively the system can isolate and contain faults
without impacting other running components, that aim to ensure the isolation of
individual instances.
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Figure 5.3: Fault overhead

5.2.3 Network throughput

Iperf was used to generate a TCP load, sending packets to the target system
while measuring CPU utilization. The results are presented in Figure 5.4. During
initial tests, it became evident that CPU utilization was sensitive to the underlying
hardware interrupt delivery mechanism. To better understand this effect, we also
measured CPU usage under different interrupt delivery models supported in seL4.

Figure 5.4: CPU utilization (platform wise)

Compared to traditional operating systems such as NetBSD, the Rumprun and
seL4 combination showed lower CPU utilization. This is expected, as Rumprun
provides a minimalistic runtime environment without features like preemption or
memory protection that would otherwise increase system overhead. For compari-
son, Linux exhibited the lowest CPU utilization overall, although it uses a different
network driver and dynamic interrupt throttling, making direct comparison chal-
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lenging. The higher variance observed in Linux data points can be attributed to
its dynamic adjustment of interrupt throttle rates, whereas NetBSD uses a fixed
rate. Within the seL4-based system, we observed a slight decrease in CPU usage
when the system avoided the use of the legacy PIC for interrupt management.

Figure 5.5: CPU utilization (method wise)

Figure 5.5 provides a detailed breakdown of the kernel overhead observed in the
seL4 environment. In configurations relying on the PIC, the most time-consuming
task was handling IO Port operations, which require privileged access through
the kernel. In our case, IO Ports were used primarily for programming periodic
timers. Beyond this, interrupt receipt, delivery to the user-level network stack, and
the subsequent acknowledgment accounted for approximately 50% of the kernel
overhead. To optimize the interrupt path, we also experimented with using HPET
timers in combination with IOAPIC and MSI-based interrupt delivery, both of
which use MMIO instead of IO Ports. These configurations significantly reduced
CPU utilization, lowering it to under 0.3% of total CPU resources. The remaining
system overhead was primarily due to sending and receiving system calls that
provide synchronization between user processes and the kernel.
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6 Conclusion & Future Work

This project explored the isolation capabilities of the seL4 microkernel in the con-
text of unikernel-based systems, with a particular focus on leveraging Rumprun
applications. The findings suggest that while seL4 offers strong theoretical guar-
antees for isolation backed by its formally verified, capability-based access control
model, the practical integration of unikernels like Rumprun into seL4’s architec-
ture remains a non-trivial challenge. Both design attempts demonstrated potential
but encountered limitations related to build tooling, runtime constraints, and ca-
pability management. Despite these setbacks, the overall isolation potential of
seL4 for running unikernels remains high, especially when compared to traditional
operating systems or microkernels lacking formal verification.

6.1 Limitations

While this research demonstrates the feasibility of running a Rumprun unikernel
on the seL4 microkernel, several significant limitations have emerged that restrict
its broader applicability and real-world deployment potential.

One of the primary limitations is that the current system design supports only
a single Rumprun application running on seL4 at any given time. This constraint
stems from the inherent architecture of Rumprun, which is designed to build the
entire application and its minimal operating environment into a single monolithic
image. When integrated with seL4, which relies on static system configuration and
compile-time resource allocation, this tight coupling becomes even more rigid. As
a result, launching multiple Rumprun-based applications within a single seL4 in-
stance is not currently feasible without substantial modifications to the build and
runtime systems of both platforms.

Because only one application is supported at a time, no traditional process
scheduling or context switching between multiple applications is implemented in
the current setup. In most general-purpose operating systems or multi-application
unikernel platforms, a scheduler is responsible for allocating CPU time between
processes or threads, providing multitasking and responsiveness. However, in this
setup, seL4 acts more like a static hypervisor, where each component is pre-defined
and launched at the system start. There is no scheduler in the user space to man-
age application switching, nor is there any such mechanism in the kernel. This
means the current system lacks dynamic process management, a core capability
required for hosting more than one active application or service concurrently.

To implement true multitasking support, core components of a process sched-
uler would need to be introduced at the kernel level, including context-switch
mechanisms and scheduling hooks. Meanwhile, the scheduling policies should ide-
ally be implemented in user space as a separate scheduling service. This would
preserve the microkernel principle of moving policy out of the kernel, maintain-
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ing seL4’s formal verification guarantees. However, implementing such a design
introduces considerable complexity. It requires a redesign of application lifecycle
management, inter-process communication, and the capability distribution model,
all of which are statically defined in the current seL4 system.

This single-application limitation also affects scalability and deployment mod-
els. In scenarios where multiple isolated services or microservices need to coexist
presents a major bottleneck. The only current workaround is to deploy each
Rumprun application on a separate instance of the seL4 microkernel, essentially
creating multiple isolated microkernel environments. While this may be acceptable
in some virtualized contexts, it leads to increased memory overhead, redundant
kernel instances, and duplication of system services, which negates many of the
benefits of using a lightweight microkernel and unikernel approach in the first
place.

Furthermore, the tightly integrated nature of Rumprun and its reliance on its
build system limits the modularity and composability of components. Unlike tra-
ditional CAmkES components, which can be instantiated and connected flexibly
through Interface Definition Language and system description files, Rumprun ap-
plications must be compiled and linked as a whole. This hampers the ability to
treat them as reusable or independently schedulable units within a larger system
architecture.

6.2 Future Directions

A promising direction moving forward is the exploration of hybrid approaches.
Specifically, combining minimal CAmkES components to manage critical services
or security boundaries, while deploying Rumprun applications as standalone com-
ponents within those boundaries, could provide a more modular and manageable
architecture. Such an approach may better align with seL4’s strengths, such as
static resource allocation and strict capability separation while avoiding the pit-
falls of trying to shoehorn existing monolithic unikernel toolchains directly into a
CAmkES workflow.

Future work should begin by addressing the integration and debugging chal-
lenges between CAmkES and Rumprun. Understanding and resolving issues re-
lated to linking TLS management, and component startup logic will be critical
to making this architecture viable. In parallel, a systematic benchmarking of
isolation versus performance trade-offs is essential to evaluate the practicality of
deploying such systems in real-world scenarios. Finally, the exploration of al-
ternative unikernel frameworks such as Solo5, which offers a more modular and
minimalist approach to unikernel development could reveal better compatibility
with seL4’s design principles and may serve as a better fit for secure, isolated
execution in microkernel environments.
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of virtualization techniques’, Procedia Technology 3, 267–272.

Sultan, S., Ahmad, I. & Dimitriou, T. (2019), ‘Containers’ security: Issues, chal-
lenges, and road ahead’, IEEE Access PP, 1–1.

Sung, M., Olivier, P., Lankes, S. & Ravindran, B. (2020), Intra-unikernel iso-
lation with intel memory protection keys, in ‘Proceedings of the 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments’, VEE ’20, Association for Computing Machinery, New York, NY, USA,
p. 143–156.

Tanenbaum, A. S. & Woodhull, A. S. (2005), Operating Systems Design and Im-
plementation, Pearson Prentice Hall, Division of Simon and Schuster One Lake
Street Upper Saddle River, NJ, United States.

The seL4 Authors and Contributors (2024), seL4 Reference Manual, seL4 Foun-
dation. Version 13.0.0.

Torvalds, L. (1997), ‘Linux : a portable operating system’.

50


	Introduction
	Motivation
	Background
	Hypervisor
	Microkernel
	Unikernels

	Gap and Research Questions
	Aim and Objectives
	Research Scope
	Significance of the research
	Methodology & Evaluation Criteria
	Research Methodology
	Evaluation Methods


	Literature Review & Related Work
	Evolution of Microkernels
	MINIX: As an Educational Microkernel
	Portability of Kernel Design
	POSIX Standards
	First Generation Microkernels
	Second Generation Microkernels
	Current Generation Microkernels
	seL4 Microkernel

	Evolution of Unikernels
	Minimized Monolithic Kernels
	Clean-Slate Unikernels

	ipc
	Inter Process Communication in Monolithic Kernels
	Inter Process Communication in Microkernels

	Process Isolation
	Domain Isolation
	Extended Page Table Switching


	Design
	Setting up the environment
	Selecting a Compatible Unikernel
	Design 1 : Intra-Unikernel Isolation
	Design 2 : Inter-Unikernel Isolation

	Implementation
	Test Environment
	Implementation of design 1
	Obtaining the Source
	Preparing Rumprun Dependencies
	Building a Rumprun Application
	Encountering Runtime Issues
	Diagnosing the Issue
	Identifying the Root Cause

	Implementation of design 2
	Root Task
	User Apps


	Results  Evaluation
	Qualitative Analysis of Isolation Aspects
	Performance Benchmarking of seL4
	ipc Performance
	Fault overhead
	Network throughput


	Conclusion & Future Work
	Limitations
	Future Directions

	List of References

