
Store Recommendation and Route Planning
System for Improving Shopping Experience

of Users

Bhathiya Vandebona

Index No: 20001924

Harsha Gunawardana

Index No: 20000669

Pubudu Satharasinghe

Index No: 20001665

Supervisor: Prof. K.P. Hewagamage

Co-Supervisor: Mrs. S.S. Thrimahavithana

April 2025

Submitted in partial fulfillment of the requirements of the

B.Sc in Software Engineering Final Year Project (SCS4223)

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously published

or written by another person or myself except where due reference is made in the text.

I also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Candidate Name: Bhathiya Vandebona

Signature of Candidate: Date:

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously published

or written by another person or myself except where due reference is made in the text.

I also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Candidate Name: Harsha Gunawardana

Signature of Candidate: Date:

i

30/06/2025

30/06/2025

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously published

or written by another person or myself except where due reference is made in the text.

I also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Candidate Name: Pubudu Satharasinghe

Signature of Candidate: Date:

ii

30/06/2025

This is to certify that this dissertation is based on the work of:

Mr. Bhathiya Vandebona

Mr. Harsha Gunawardana

Mr. Pubudu Satharasinghe

The thesis has been prepared according to the format stipulated and is of acceptable

standard.

Principal Supervisor’s Name: Prof. K.P. Hewagamage

Signature of Supervisor: Date:

Co-Supervisor’s Name: Mrs. S.S. Thrimahavithana

Signature of Supervisor: Date:

iii

30/06/2025

30/06/2025

Abstract

Grocery shopping often presents a frustrating experience for customers due to factors

such as price discrepancies, inventory inaccuracies, and the lack of personalized assis-

tance. Existing methods, such as store subscriptions and advertisements, are limited in

their ability to deliver tailored, timely information. Furthermore, current applications

require users to manually browse multiple marketplaces to locate desired products,

lacking automated recommendations based on shopping lists. Addressing this gap, this

undergraduate project proposes a store recommendation system designed to enhance

the shopping experience. The system targets four main objectives: (1) recommending

the most cost-effective stores with efficient routes for purchasing a full shopping list,

(2) identifying purchase patterns and predicting future shopping needs, (3) optimizing

travel paths considering dynamic conditions, and (4) proposing standardized methods

for store data collection. To achieve these goals, several algorithms were implemented:

greedy heuristics, branch and bound, beam search, and exact optimization methods

for store selection; an adaptive genetic algorithm combined with A* search for route

planning; and a Singular Value Decomposition (SVD)-based model for personalized

item recommendations. Experimental results demonstrated that optimized store sug-

gestion algorithms delivered near-optimal results within acceptable time constraints,

and that route planning methods effectively reduced travel time. Challenges related

to real-time inventory data acquisition are also discussed, alongside proposals for fu-

ture refinements to improve data accuracy and recommendation quality. This work

highlights the potential of integrated recommendation and optimization systems to sig-

nificantly streamline the grocery shopping experience and sets a foundation for future

real-world deployments

iv

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Scope . 4

1.3 Problem Statement . 4

1.4 Proposed Solution . 4

1.4.1 Included in Scope . 4

1.4.2 Excluded from Scope . 7

1.5 Aims and objectives of the project . 9

2 Literature Review 10

2.1 The Rise of M-Commerce and Location-Based Services 10

2.2 Recommendation Systems . 11

2.3 Route Planning Algorithms . 13

2.4 Data Collection Methods and Data Standardization 14

2.5 Existing Solutions . 17

2.6 Research gap and research questions 20

3 Methodology 22

3.1 Software Development Perspective . 22

3.1.1 System Overview . 22

3.1.2 Technologies . 25

3.1.3 User Interface Designs . 28

3.2 Research Perspective . 33

4 Implementation 36

4.1 Store Recommendation System Overview 36

4.1.1 Problem Definition . 36

4.1.2 Single-Store Mode . 37

4.1.3 Multi-Store Mode . 38

4.1.4 NP-Hardness of Multi-Store Mode 38

4.1.5 General Algorithmic Approaches 39

4.1.6 Impact of Influence Parameters 40

v

4.2 Single-Store Mode Implementation . 41

4.3 Multi-Store Mode Implementation . 43

4.4 Naive Algorithm . 43

4.4.1 Time Complexity Analysis . 43

4.4.2 Space Complexity Analysis . 44

4.4.3 Pros and Cons . 45

4.5 Memory-Optimized Algorithm . 46

4.5.1 Time Complexity Analysis . 47

4.5.2 Space Complexity Analysis . 47

4.5.3 Pros and Cons . 47

4.6 Filtered Greedy Algorithm . 49

4.6.1 Time Complexity Analysis . 49

4.6.2 Space Complexity Analysis . 50

4.6.3 Pros and Cons . 50

4.7 Branch and Bound Algorithm . 53

4.7.1 Pipeline . 54

4.7.2 Optimization Steps . 56

4.7.3 Pros and Cons . 57

4.7.4 Limitations and Future Improvements 58

4.8 Beam Search Algorithm . 59

4.8.1 Algorithm Description . 60

4.8.2 Pipeline . 61

4.8.3 Optimization Steps . 62

4.8.4 Pros and Cons . 63

4.8.5 Limitations and Future Improvements 64

4.9 Integer Linear Programming . 66

4.9.1 Algorithm Description . 67

4.9.2 Pipeline . 68

4.9.3 Optimization Steps . 70

4.9.4 Pros and Cons . 70

4.9.5 Limitations and Future Improvements 71

4.10 Store Route Planning . 73

vi

4.10.1 Problem Definition . 73

4.10.2 Methodology . 73

4.10.3 A* algorithm . 74

4.10.4 Genetic Algorithm . 74

4.10.5 Complexity Analysis . 75

4.10.6 Pros and Cons . 76

4.11 Shopping list recommendation algorithm 78

4.11.1 Data Generation . 78

4.11.2 Recommendation Model Training and Evaluation 79

4.11.3 Parameter Exploration . 81

4.12 Discount Engine . 81

4.13 Best Practices for Standardisation . 84

5 Results and Analysis 88

5.1 Evaluation of Route Planning Algorithm 88

5.1.1 Evaluation Methodology . 88

5.1.2 Performance Metrics . 88

5.1.3 Dataset Generation . 89

5.1.4 Parameter Configurations . 90

5.1.5 Result and Analysis . 90

5.2 Evaluation of Optimisation Algorithms 94

5.2.1 Algorithm Descriptions . 94

5.2.2 Comparison . 96

5.2.3 Summary of Optimisation algorithms 101

5.3 Evaluation of Recommendation Model 101

5.3.1 Model Performance Hierarchy: 102

5.3.2 Impact of Recommendation Count (N): 105

5.3.3 Influence of Simulation Parameters: 106

5.4 Qualitative Survey Results . 110

6 Discussion and Conclusion 112

6.1 Discussion . 112

6.2 Conclusion . 114

vii

7 Future Directions 117

A Pseudocodes for Store Recommendation Algorithms 120

A.1 Naive Algorithm . 120

A.2 Memory-Optimized Algorithm . 124

A.3 Filtered Greedy Algorithm . 131

A.4 Branch and Bound Algorithm . 136

A.5 Beam Search Algorithm . 139

A.6 Integer Linear Programming Algorithm 142

A.6.1 Attempted Implementation . 144

B Psuedocodes for Route Planning Algorithms 147

B.1 A* Algorithm . 147

B.2 Genetic Algorithm . 150

C Discount Engine 154

C.1 CFG of Rule Language(DCDQL) . 154

C.2 Discount Engine . 155

D Psuedocodes of Data Generation Scripts 164

D.1 Route Planning Algorithm Dataset Generation 164

References 166

viii

List of Figures

3.1 Initial Software Architecture . 23

3.2 Overall Scaled Software Architecture 24

3.3 Request and data flow for the main use case through the scaled archi-

tecture . 26

3.4 Landing Screen . 29

3.5 User creating a new cart . 29

3.6 User adding a product item to a cart 30

3.7 User selecting a point on the map . 30

3.8 User selecting a route on the map to search using a path 31

3.9 User searching for recommendations . 31

3.10 User clicking on a store marker . 32

4.1 Vertical waterfall diagram of the algorithm for single-store mode rec-

ommendation. 42

4.2 Vertical waterfall diagram of the Parallel Branch and Bound algorithm. 56

4.3 Vertical waterfall diagram of the Beam Search algorithm. 63

4.4 Vertical waterfall diagram of the optimized Branch and Bound algorithm. 66

4.5 Vertical waterfall diagram of the Integer Linear Programming algorithm. 69

4.6 Main Flow Chart of the Route Planning Algorithm 77

4.7 Selected Screenshots of the discount definition interface - set 1 83

4.8 Selected Screenshots of the discount definition interface - set 2 83

4.9 Selected Screenshots of the discount definition interface - set 3 84

5.1 Total distance vs. generations across different datasets 91

5.2 Execution time vs. dataset size . 92

5.3 Execution time vs. Generations . 92

5.4 Execution time vs. Population . 92

5.5 Execution time vs. Crossover . 92

5.6 Convergence vs. dataset size . 93

5.7 Convergence vs. Population size . 93

5.8 Convergence vs. Generation . 93

5.9 Convergence vs. Crossover . 93

5.10 Recommendation Algorithm Average Durations 98

ix

5.11 Recommendation Algorithm Average Best Scores 99

5.12 Recommendation Algorithm Average Success Rates 99

5.13 Distribution of average f1 score by model 102

5.14 Scores for a normal scenario by SVD 104

5.15 Scores for a normal scenario by SVD++ 104

5.16 Impact of number of recommendations (n) on average scores 105

5.17 Average F1-score vs Items per List vs Relevancy Threshold 106

5.18 Average F1-score vs Items per List vs Transactions per User 107

5.19 Average F1-score vs Relevancy Threshold vs List Persistence Threshold 108

5.20 Average F1-score vs Lists per User vs List Persistence Threshold 109

x

List of Tables

2.1 Comparison of Applications: Inventory and Locator Features 18

2.2 Comparison of Applications: Scalability, Integration, and User Base . . 19

4.1 Store Locator API and data collection Guidelines 87

5.1 Best Route Optimization Results by Dataset (TD - Total Distance, CG

- Convergence Generation) . 90

5.2 Average Execution Time by Dataset and Configuration 91

5.3 Comparison of Branch & Bound Variants 96

5.4 Comparison of ILP and Beam Search 97

5.5 Performance Timing Metrics for Each Algorithm 98

5.6 Performance Quality Metrics for Each Algorithm 98

5.7 Detailed Statistics for Branch and Bound 99

5.8 Branch and Bound Performance by Number of Items 100

5.9 Evaluation Results of Recommendation Algorithms 100

5.10 Comparison of Data Collection Methods for Inventory Updates 112

xi

1 Introduction

The modern grocery shopping experience presents a significant challenge for many

consumers. Busy lifestyles and an abundance of stores and online providers contribute

to a time-consuming and often frustrating process. Consider this common scenario:

you’re rushing home from work when a family member calls requesting groceries. Faced

with limited time and information, you choose a random store, potentially missing out

on better deals or higher-quality products available elsewhere within a few meters

of you or on the same route. This issue arises from the inability to make informed

decisions due to lack of relevant information (e.g. product availability and prices).

To tackle this problem vendors often rely on email marketing, subscription-based mar-

keting, and website updates to communicate offers and promotions. However, many

customers struggle to keep up with this information overload, leading to missed op-

portunities. Additionally, these broadcast messages may not be relevant to individual

needs and preferences.

This research project proposes to develop a novel software solution designed to improve

the overall shopping experience of a user. Imagine being able to query for stores within

a particular radius or range to buy a list of products and finding the most cost-efficient

(travel distance costs and preferences) stores to buy the items from a list of items. The

project aims to provide the necessary information that consumers can use to make

informed decisions when it comes to purchasing daily essentials. Most of the existing

solutions in modern days would require the user to log in to an application and peruse

through their marketplaces to find the products that the user wants. This is time-

consuming. Some domain-specific or purpose-specific applications can be found in the

real world that would let users enter what they want, along with their quantities,

and find the nearby stores, but these are either specific to mall centres, shopping

complexes, or specific to particular store chains for the user, which would require the

user to be on the same network or a member of a store chain. This research aims to

prove, this concept need not be specific to a store chain or be restricted to a shopping

mall complex.

Many e-commerce applications related to location-based systems are gaining more and

more attention. This project is set to explore more into the location-based systems

and location-based services, in this domain to accomplish the location-based filter-

1

ing of stores, distance calculations, nearby store suggestions, and as an influencing

factor of recommendations. This project also explores recommendation systems with

multi-dimensional considerations, along with route recommendation and planning al-

gorithms.

2

1.1 Motivation

The challenges outlined previously resonate with many grocery shoppers. Finding

accurate product and inventory information for specific stores, let alone identifying the

cost-effective store for a shopping list, remains a persistent barrier. These difficulties

arise due to the lack of a centralized platform.

As mentioned, this research aims to expand the concept of search rather than looking

or perusing. This research seeks to alleviate the burden of looking for products on their

own and spending a lot of time. Due to this, the amount of unnecessary expenditures

can also be reduced significantly due to the omission of clickbait. How many times

have customers bought some product items that they never intended to buy while

searching for some products? Very often. Users can search for what they want without

unnecessary distractions.

Furthermore, the past few years has witnessed significant price fluctuations in Sri

Lanka, particularly for essential grocery items. These fluctuations created confusion

and frustration for customers, sometimes leading to disputes with store owners. Even

existing online platforms and data sources often suffer from infrequent updates, making

them unreliable and frequently leading to customer dissatisfaction.

These issues – the inconvenience of information gathering and the overwhelming, im-

personal nature of store subscriptions – inspired our desire to develop a solution. Cus-

tomers are overwhelmed with irrelevant promotional emails, leading to subscription

fatigue and missed opportunities for valuable savings on everyday purchases. Their

busy lifestyles often prevent them from actively seeking out the best deals on individual

store websites.

The current landscape lacks a comprehensive solution that streamlines the grocery

shopping experience for both consumers and stores. This research project aims to

bridge this gap by proposing a novel solution that addresses these needs.

3

1.2 Scope

This research project proposes the development of an application designed to pro-

vide accurate and helpful information when purchasing groceries to make informed

decisions. The scope of this project is oriented around three broad areas: recommen-

dations and combinatorial optimization problems for time-sensitive systems and data

aggregation methods, which will be narrowed down to three sub-tasks to achieve the

research aim within the duration of this research project.

1.3 Problem Statement

Grocery shopping can be a time-consuming and often frustrating task. Consumers

frequently face challenges such as inefficient information on prices and offers, price

discrepancies across stores, limited information on product availability, and a lack of

insightful personal guidance to guide purchasing decisions.

1.4 Proposed Solution

The proposed solution revolves around three main items. Getting the data to the

system in a reliable, timely manner. Providing recommendations by solving a combi-

natorial problem (users will enter a list of items system will fetch the nearby stores

and their product information, and will tell the customer the most cost-effective store

or stores to purchase the list of items from) , and personalization (giving notifications

and recommendations on frequently purchased items). The final outcome of this would

be a user-centric mobile application that offers the following key functionalities.

1.4.1 Included in Scope

Main functions associated with the user-side (customers) are,

• Registering to our services (which will create a profile for the user).

• Login to the platform.

• Adding user preferences (which will be helpful in the recommendation stage).

The following are some of the preferences users can preset to guide the recom-

mendation process:

4

– Search radius.

– Payment method preferences (cash or digital payment methods) and pre-

ferred digital payment type.

• Input a list of grocery items to start the search.

• Save prior inputs (save the lists of grocery items) and the ability to view them

at any time as needed, and search for them.

• Update any of the existing lists, save the list as a new list or save the updated

version of the grocery list.

• Start searching for stores using a new input or an existing grocery list.

• View previous recommendations for a grocery list.

– Users can search for recommendations for two different geographical prop-

erties.

∗ Point - a single location.

∗ Path - a line-string with a starting location and a destination.

– Users can search for store recommendations using two different modes.

∗ Buy all the products mentioned in the list at a single store.

∗ Buy all the products collectively from different/multiple stores.

Note: Either way user can request several recommendations, from

which the user can select a recommendation.

Main system responsibilities associated with the user inputs are,

• Creating the user profiles.

• Generate store recommendations.

• Display overall cost calculations of the recommended stores for a given list of

items.

• After selecting a recommendation, give clear directions using integrated mapping

functionalities to the store(s).

5

• Save previous recommendations, save user shopping lists.

Main functions associated with store-side are,

• Registering to the platform.

• Login to the platform.

• Managing (editing different aspects of the profile such as username, and etc.)

the store profile (which was created when the store was registered).

• Registering a data provider to the platform (Note: providing accurate data re-

garding products, prices, and discounts is the responsibility of the store owners.).

Main system outputs related to store-side inputs are,

• Creating the store profiles.

• Aggregating the necessary data from the registered data providers for recom-

mendations.

• Maintain store-product information.

Responsibilities of the system,

• User data and privacy protection through robust storage practices and a com-

prehensive privacy policy.

• Unbiased store recommendations - recommendations must be purely based on

cost and distance metrics; store-related data should not be used as influential

factors.

• Providing accurate recommendations promptly (within a reasonable time; cur-

rently the metric is set to 4 seconds for very high data volumes).

6

The project scope encompasses two primary categories:

• Core Functionalities:

– User profile management.

– Grocery list creation, editing, deletion, and storage.

– Store locator with map integration and directions

– Price comparison engine for nearby stores.

– Secure data storage and privacy policy adherence.

• Functionalities Requiring Further Research:

– Developing a recommendation algorithm to analyze different metrics be-

tween stores to recommend cost-effective recommendations and solve com-

binatorial set cover problems for high data volumes.

– Establishing a standardized methodology for grocery stores to publish in-

ventory information through API integration.

– Utilizing content-based and collaborative filtering techniques to personal-

ize recommendations and forecasting of possible purchases based on user

profiles and vendor-provided details.

– Route and trajectory planning component for intelligent route recommen-

dations and picking the stores with the least travel distance to minimize

traveling costs.

1.4.2 Excluded from Scope

The following are the components that are not included in the scope for the duration

of this research project.

• Application will not provide users with chat-bot recommendations based on a

list of items that users want to purchase.

• Integrations with other platforms that provide online purchases and other ser-

vices that are related to online purchases will not be done.

7

• Product management functionalities or applications to stores (Inventory man-

agement) will not be provided.

• Even though there are multiple methods discussed throughout out the document,

about data extraction, only the API based method will be encouraged.

• Personalized Recommendation system will not use contextual hints, thus will

have no understanding of contextual information.

• System will not consider factors that contribute to latency, such as queues and

waiting times, as the primary focus is on recommendations, while leaving room

for more influential factors as such.

The application will not provide any functionalities related to social media or integra-

tion with social media platforms. The initial outcome of this research will only focus

on store recommendations, route and trajectory management and planning.

In the initial increment of the solution, data collection from stores will happen through

APIs provided by the vendors and it is decided that the vendors must provide accurate

information related to the prices and quantities of the products, and it is also the

responsibility of the vendors to update the information periodically based on the rate

of their sales as inventory management is beyond the scope of our application.

The final outcome of this research will be tailored to fit the requirements of consumers,

retail application guidelines, and the route system of Sri Lanka while emphasizing the

possibility of adaptation to other regions. The main focus will be in the context of Sri

Lanka.

8

1.5 Aims and objectives of the project

The aim of this project is to successfully cover the previously agreed scope and pro-

vide answers using existing technologies through software engineering principles in the

domain that was discussed thus far. The aim is to provide a software solution that can

optimize the overall grocery shopping experience. The following can be mentioned as

the object of our project:

• Develop and test a recommender system that can recommend the most suitable

stores for an individual to buy grocery products (multi-store recommendations

or single-store recommendations).

• Develop and test a route and trajectory recommender system to reach the stores

efficiently and cost-effectively.

• Develop and test a recommender system that can deliver recommendations about

the grocery products that a particular individual might be interested in based

on user data and prior interactions.

• Develop a methodology to get inventory data from the stores promptly, which

will provide the blueprint for getting information from stores.

– Note: Due to timeline considerations, data-related limitations and hardware

limitations, and survey results, the research deviated from the original plan

for achieving this particular research aim (more information will be provided

in later sections).

9

2 Literature Review

The evolution of m-commerce and the crucial role of recommendation systems are

explored in this literature review, with a particular focus on how location-based ser-

vices enhance personalized user experiences. Various recommendation techniques are

explored, and existing gaps in time-sensitive, location-aware applications, especially

within the context of grocery shopping, are addressed.

2.1 The Rise of M-Commerce and Location-Based Services

Since the inception of smartphones, e-commerce has entered a new trajectory, which

has rise of m-commerce and various innovations in the m-commerce domain. M-

commerce has enabled the opportunity to incorporate new dimensions of information

about a user, such as their geographical location, context capturing (understanding

the environment of the user), and many other attributes to provide more sophisti-

cated services and personalised services to the users more conveniently (Safavi, Jalali,

and Houshmand 2022). Modern day, recommendation systems are used by almost

all digital service providers to improve the user experience through personalised rec-

ommendations, which will further contribute to the retention of customers. When it

comes to time-sensitive systems, however, there is a lack of software that uses such

technologies to improve customer experience.

When it comes to the m-commerce domain, with the technological advances, it’s easy

to acquire the user’s geographical location, which is very important in the domain

of discourse. A common example of some systems that take advantage of such smart

devices would be Uber and PickMe taxi services. And also, when you visit one of those

applications, you will often see that they are not limited to a single discipline. For

example, Uber Eats, and PickMe Foods, provide services other than transportation

services through those applications. Thus, the extent to which such location-based

applications(including point-of-interest applications) can be used is large and compli-

cated services can be built around such technologies.

10

2.2 Recommendation Systems

Recommendation systems have a famous reputation in many domains, especially in

the mobile-based marketing domain(m-commerce). As many people have smartphones

with them, it’s easy to reach a wider audience. Vendors can use different types of

recommendation systems to provide recommendations for their clients. For example, a

vendor can use an email system to send product information. However, the preferences

of each customer will vary. Due to this, most of the information that people are getting

is overwhelming. Since the introduction of more intelligent recommendation systems,

people have tried to provide more personalised recommendations for their audience

(Safavi, Jalali, and Houshmand 2022). Through data analysis techniques, vendors

might want to find out which products the user will likely buy based on the user’s

previous interactions. Such recommendation systems consider many disciplines and

dimensions when it comes to recommendations. Incorporation of such information

varies based on the techniques used to design such recommendation systems.

Despite the widespread adoption of recommendation systems, most do not incorpo-

rate location as a variable in content-based or collaborative filtering techniques. The

emergence of social media platforms, such as Facebook, has highlighted the demand

for "point-of-interest" (POI) systems. A prominent example is hotel recommendation

systems, which suggest accommodations for travelers. System designers have access

to a variety of recommendation algorithms to develop such systems. One effective

approach involves the integration of two distinct components tailored to different rec-

ommendation types. For instance, an online recommender system can be implemented

to provide real-time suggestions, such as identifying the most suitable location for a

user to purchase a beverage while traveling. Additionally, users may seek recommen-

dations informed by their prior interactions and usage patterns. However, conducting

extensive data analysis on large datasets to deliver such insights in a timely manner

poses challenges, potentially resulting in suboptimal user experiences. To address this,

an offline recommender system can be introduced to process substantial data volumes

and generate user profiles based on their interactions. This dual-system architecture

enhances overall performance by enabling the online recommender to deliver prompt

responses while the offline system provides in-depth analysis. The subsequent section

will examine the techniques utilized in various recommender systems in greater detail.

11

Several types of recommendation systems have been studied and the main types are

identified as: Content-based recommendation systems, Collaborative filtering-based

recommendation systems, Hybrid recommendation systems, Context-aware recom-

mendation systems and Knowledge-based recommendation systems. Content-based

recommendation systems use a user’s given set of preferences and the properties exist-

ing on an item to check whether it is suitable to be recommended to a user. This can

be achieved in a number of methods such as the nearest neighbour method, decision

trees, relevance feedback calculation and more, as explained by Pazzani and Billsus

2007. Collaborative filtering is a concept based on how users’ behaviour repeats and

derives recommendations from that. They are classified into model-based collabora-

tive filtering (Using various machine learning models to predict recommendations) and

memory-based collaborative filtering (Using collected previous user behavior data to

generate recommendations). Hybrid recommendation systems combine more than one

recommendation system to refine recommendation output by reducing drawbacks of

each recommendation system with the help of other recommendation systems. They

can be combined in a few ways like weighted hybridization, switching hybridization,

feature combination and more hybridizing techniques as explained by Burke 2002.

Context aware recommendation systems have information about the context (infor-

mation describing the environment the system is deployed in) which is obtained by

the system via explicit inputs, implicit automatic capture and inference as explained

by Verbert et al. 2012. The contextual information can be used to filter recommen-

dations from another recommendation technique before or after it is applied and the

recommendation technique can use the data directly in it. These approaches are called

contextual pre-filtering, contextual post-filtering and contextual modeling (Verbert et

al. 2012). As described by Burke 2002, Knowledge based recommendation systems are

based more on expert knowledge related to the domain the recommendation system is

being made for rather than a huge pool of data that is used to derive recommendations

from. These systems consist of two core components which are the knowledge base and

the inference engine. The knowledge base stores the domain specific knowledge and

the inference engine uses that knowledge to generate recommendations (Burke 2000).

A combination of features from the above mentioned recommendation systems should

aid in creating a recommendation system that fits any general use case.

12

2.3 Route Planning Algorithms

Finding the most optimal route based on several criteria is quite a challenging prob-

lem. This algorithm addresses the challenge of selecting the optimal combination from

pre-generated store combinations by the store recommendation system while account-

ing for the travel cost (total distance and traveling time) in a traffic-aware context.

The algorithm incorporates real-time traffic data to ensure accurate traveling time

estimations.

The A* algorithm which is heuristic-based pathfinding algorithm was introduced by

Hart, Nilsson, and Raphael 1968, It is most suitable for grid-based environments.

Its application for Automated Guided Vehicle, as demonstrated by Tang et al. 2021.

Because this is mainly designed for static environments, does not primarily support

dynamic conditions such as traffic conditions.

The Genetic algorithm approach is a bio-inspired technique that evolves the genera-

tion based on multiple objectives. Using evolutionary processes including selection,

crossover, mutation, and elitism, the Genetic Algorithm (GA) looks through the set

of store combinations and their potential visiting orders to find the combination and

sequence that minimizes travel costs (distance and time) (Srinivas and Patnaik 1994).

The adaptive genetic algorithm with the A* algorithm was developed to address the

problem of finding optimal store combinations and the optimal store sequence based

on several factors. The algorithm has two main components.

• Global optimization with Genetic Algorithm

Starting with pre-generated store combinations, it operates the evolutionary pro-

cess through selection, fitness, crossover, mutation, and elitism steps to evolve

the solutions.

• Local pathfinding with A* Algorithm

This algorithm computes the optimal route for the given store order using a

heuristic approach that leverages distance and real-time traffic information.

Future enhancements to the Adaptive Genetic Algorithm with A* Algorithm will focus

on incorporating additional factors.

13

2.4 Data Collection Methods and Data Standardization

Every recommendation system requires data. In the context of the proposed systems,

it is imperative to acquire knowledge about the inventory data of stores within a range

specified by user preferences. This necessitates a method for retrieving data from

stores both promptly and with high accuracy. Currently, the predominant method for

obtaining such data is through Application Programming Interfaces (APIs) (Murphy

et al. 2018). However, this approach demands predefined data formats. The system

must be capable of interpreting and utilizing the data received effectively. A predefined

data mapping is essential to process the incoming data accurately. Furthermore, the

real-time aspect of the system, including the frequency of data updates, constitutes

a critical factor that must be considered. This element is of significant importance

in the design process. The provision of standardized Application Programming In-

terfaces (APIs) offers an accessible and efficient solution for application designers in

this field, ultimately fostering greater innovation (Data Exchange Mechanisms and

Considerations 2020).

Enterprise applications can use different methods to feed data to receivers. The meth-

ods used depend on different aspects of the organisation. Some of the common criteria

are as follows,

• Data Characteristics

• Data Environment Characteristics:

– Data Security

– Frequency of Usage

– Data Versioning

• Organisational Considerations

• Scope Constraints: Budget and time constraints

• Consumer Characteristics

Data exchange patterns are usually constructed based on three main aspects as men-

tioned by Data Exchange Mechanisms and Considerations 2020.

14

• An Architectural Pattern

• A Data Format

• A Communication Protocol

Based on the requirements of the projects, such aspects can be determined. Sys-

tems with a higher frequency of changes and requests should be able to scale without

much effort and should have near-zero downtime. Another aspect to consider is the

timeliness of the data, whether synchronous or asynchronous methods should be pre-

ferred to maintain consistency. Research suggests efficient product data collection uses

standardised identifiers like GTINs (Global Trade Item Numbers) (Global Trade Item

Number 2025a) and supplier APIs for accuracy. It seems likely real-time stock up-

dates rely on POS (Point of Sales) integration, barcode/RFID scanning, and cloud

systems for speed and precision through periodical updates. (ST and Perishable 2025)

Datascan provides tools specialised in inventory tracking scanners, inventory tracking

system (software), and RFID based method with enhanced data analytics, to care-

fully manage and track inventory information. These platforms can be coupled with a

store locator application to keep inventory information updated. Any of these systems

require hardware support, such as RFID (barcode) scanners or sensors, to make the

process much quicker. Implementing these barcode or RFID based methods have its

own advantages, leading to smart IDS and increasing traceability (GS1 2025). Forbes

has provided some guidelines on retail inventory management best practices as well

(Baluch 2022). One of the main highlights can be found in reducing dead stock, which

leads to cost savings and increased profits by re-stocking what’s relevant and is crucial

in understanding the trends in the market.

To collect product information efficiently with high accuracy, use standardised identi-

fiers like GTINs, which ensure unique product identification and high quality. Retrieve

data from suppliers via APIs or data feeds, such as those supported by GS1’s (Global

Trade Item Number 2025b) Global Data Synchronisation Network (GS1 Standards).

For retail chains, maintaining a central database to ensure consistency and integrating

with POS and barcode systems for tracking can be found as widely used and famous

methods. Even though data collection methods are a possibility, defining standards

(consistent data formats) is a very time-consuming process and takes a lot of effort

15

to adapt. Most of these projects are led by the government sector as a part of their

initiative to improve data governance and standardisation. As mentioned, these solu-

tions are used by large-scale operations, but the core idea seems to remain adaptable

even for small-scale projects with proper devices and software tools.

Further more research provides valuable insights into the standardization process, par-

ticularly for large-scale applications, from a theoretical perspective, In the paper (Gal

and Rubinfeld 2018), “Data Standardization,” Michal Gal and Daniel L. Rubinfeld

argue that standardization enhances data portability and interoperability, improving

machine learning and data-driven decisions (Data Standardization). However, they

highlight costs like privacy risks and cybersecurity concerns. They suggest govern-

mental facilitation is necessary for cross-industry or inter-temporal data synergies,

using regulatory methods like mandates or incentives. This is relevant for statewide

store locators, where diverse stakeholders require coordinated standards. These stud-

ies suggest that standardization requires balancing benefits (e.g., interoperability) with

challenges (e.g., privacy), and a collaborative, governed approach is critical for success.

Some real-world examples can be mentioned as follows,

• National Information Exchange Model (NIEMOpen For Government | An OASIS

Open Project 2025):

– NIEM is a community-driven framework led by the United States govern-

ment for standardizing information exchange across federal, state, and local

agencies, used in areas like public safety and child welfare.

– Their standardisation process uses a common vocabulary with reusable data

components (e.g., person, address) defined in XML schemas.

– NIEM supports standardized XML-based APIs, with conformance rules en-

suring consistency.

– NIEM provides guidelines for data collection, ensuring semantic consistency

across organizations. It uses a standardized lifecycle for developing ex-

changes.

• General Transit Feed Specification (GTFS)(General Transit Feed Specification

2025):

16

– GTFS is an open standard for public transportation schedules, used by

thousands of transit agencies worldwide, including integration with Google

Maps.

– GTFS defines a set of CSV files (e.g., agency.txt, routes.txt) with specific

fields, packaged in a ZIP file. The format is simple yet comprehensive,

covering routes, stops, and schedules.

– GTFS focuses on data files; its real-time extension (GTFS Realtime) uses

Protocol Buffers (Protocol Buffers 2025) for API-based updates, ensuring

standardised real-time data feeds.

– Information collection is handled through transit agencies, which collect

data in the GTFS format, often using software tools to generate compliant

feeds. The standard’s simplicity encourages adoption.

– GTFS’s straightforward format and community support make it a model

for standardising product and inventory data in a store locator, especially

for smaller retailers.

By looking at these two cases, it is understood that the process of standardisation and

the data formats being used differ from process to process and ease of use influences

the use of these methodologies as they are easier to adapt and get used to.

2.5 Existing Solutions

Several existing systems exhibit similarities to the functionalities targeted by the pro-

posed grocery shopping recommendation system. For instance, Target (Target 2025)

offers a store locator service to identify stores within its chain that stock specific items,

and Walmart provides a comparable feature (Walmart 2025). However, these applica-

tions are limited to their respective store chains, restricting their scope. The following

applications, summarized below, offer related functionalities but with distinct objec-

tives.

• Locally (Locally 2025): Collects real-time inventory from over 55,000 stores glob-

ally, guiding shoppers to nearby purchase locations.

17

• NewStore (NewStore - A Unified Commerce Platform for Global Brands 2025):

Offers a comprehensive real-time inventory management system integrated with

retail operations.

• Lightspeed Retail (Lightspeed 2023): A POS system with inventory management

software that syncs accurate inventory data in real-time.

• Storemapper (Storemapper: Customizable Store Locator App and Software 2025):

Provides a store locator app that helps connect customers to stores, potentially

including inventory checks.

The following tables (2.1 and 2.2) compare these applications based on key features

and attributes.

Table 2.1: Comparison of Applications: Inventory and Locator Features

Application Real-Time Inventory Store Locator

Locally Yes, from 55,000+ stores Yes, guides to buy locations
NewStore Yes, with ATP and RFID Indirect, via retail ops
Storemapper Possible, not explicit Yes, customizable
Lightspeed Retail Yes, real-time sync Indirect, via POS

The applications under consideration—Locally, NewStore, Storemapper, and Light-

speed Retail—each offer unique solutions in the realm of retail technology, partic-

ularly focusing on inventory management and store location services. Locally is a

platform that connects shoppers with over 55,000 stores globally, providing real-time

inventory data and guiding users to nearby purchase locations (Locally 2025). New-

Store offers a comprehensive real-time inventory management system integrated with

retail operations, utilizing advanced technologies such as Available to Promise (ATP)

and Radio-Frequency Identification (RFID) (NewStore - A Unified Commerce Plat-

form for Global Brands 2025). Storemapper provides a customizable store locator app

that helps businesses connect customers to their physical stores, with potential inven-

tory check capabilities (Storemapper: Customizable Store Locator App and Software

2025). Lightspeed Retail is a point-of-sale (POS) system that includes inventory man-

agement software, ensuring accurate and real-time synchronization of inventory data

across multiple locations (Lightspeed 2023).

18

Table 2.1 compares the applications based on their real-time inventory management

and store locator features. For real-time inventory, Locally and Lightspeed Retail

explicitly provide this functionality, with Locally sourcing data from a vast network of

stores and Lightspeed Retail offering seamless synchronization through its POS system.

NewStore also supports real-time inventory but emphasizes integration with retail

operations using ATP and RFID technologies. Storemapper’s capability in this area is

less explicit, suggesting that while it may offer some form of inventory checking, it is not

a primary feature. Regarding store locators, both Locally and Storemapper directly

provide this service, with Locally guiding shoppers to buy locations and Storemapper

offering customizable maps for businesses. NewStore and Lightspeed Retail, on the

other hand, provide store locator functionalities indirectly through their broader retail

and POS systems, respectively.

Table 2.2: Comparison of Applications: Scalability, Integration, and User Base

Application Scalability Integration User Base

Locally High, global reach Dashboards, API/BI
tools

60M+ shoppers,
1,000+ brands

NewStore High, multi-channel ERP, Ecomm, POS Not specified
Storemapper Medium, business-

focused
WooCommerce, etc. Thousands of busi-

nesses
Lightspeed Retail High, multi-location POS, e-commerce Small to medium

businesses

Table 2.2 evaluates the applications on scalability, integration capabilities, and user

base. Locally demonstrates high scalability with a global reach, integrating with dash-

boards and API/BI tools, and boasts a user base of over 60 million shoppers and

1,000+ brands. NewStore also exhibits high scalability, particularly in multi-channel

retail environments, with integrations into Enterprise Resource Planning (ERP), e-

commerce, and POS systems; however, its user base is not specified. Storemapper is

characterized by medium scalability, focusing on individual businesses and integrating

with platforms like WooCommerce, serving thousands of businesses. Lightspeed Retail

is highly scalable for multi-location operations, integrating with POS and e-commerce

systems, and is tailored for small to medium-sized businesses.

In summary, the literature review explores the evolution of mobile commerce (m-

commerce), driven by smartphone adoption, which has enabled location-based services

19

to enhance personalized user experiences. It highlights the pivotal role of recommenda-

tion systems—including content-based, collaborative filtering, hybrid, context-aware,

and knowledge-based approaches—in improving customer engagement, though many

systems underutilize location data. Route planning algorithms like A* and Genetic Al-

gorithms (GA) are examined for optimizing store visit sequences, with a focus on min-

imizing travel costs in traffic-aware contexts. The review also addresses data standard-

ization challenges, emphasizing the need for real-time inventory data through APIs,

standardized identifiers (e.g., GTINs), and integration with POS systems. Existing

retail solutions—such as Locally, NewStore, Storemapper, and Lightspeed Retail—are

compared, revealing their strengths in inventory management and store locators but

also gaps in unified, time-sensitive grocery shopping systems. These insights under-

score the potential for a new system that integrates real-time inventory, location-based

recommendations, and route planning, addressing the limitations of current solutions.

2.6 Research gap and research questions

While numerous recommender systems exist to personalise online shopping experi-

ences, a significant gap persists in optimising in-person grocery shopping. This re-

search project aims to address this gap by developing a mobile application that in-

tegrates real-time price comparison, route and trajectory planning, and personalised

recommendations.

The following research questions delve deeper into the core functionalities of the pro-

posed application:

• How can recommender algorithms be devised and optimized to deliver store

recommendations considering multi-dimensional data for grocery shoppers?

• What standardized data format and API integration approach can be adopted

by grocery stores to facilitate the efficient exchange of real-time inventory in-

formation with a recommendation system, ensuring data accuracy and system

scalability?

• What combination of content-based filtering and collaborative filtering tech-

niques can be most effectively utilized within a grocery shopping application’s

20

recommendation system to deliver highly personalized product suggestions that

cater to individual user preferences and evolving shopping habits?

• How can path-finding algorithms be integrated with a grocery shopping applica-

tion to suggest the most efficient route for users to navigate to the recommended

store?

21

3 Methodology

Methodology and the design of the project are divided based on two perspectives.

The software development perspective will offer insights into the development method,

technologies used to implement different components of the system, and the high-level

software architectures tried and currently in use. The research perspective will offer

insights into the research-related components, surveys, technologies used to conduct

experiments, and how progress was recorded.

3.1 Software Development Perspective

The project encompasses a defined set of high-level requirements and functionalities,

as established in the Subsection 1.4.1, to be implemented in the initial software incre-

ment. Each requirement integrates a research component. For instance, the multi-store

recommendation mode involves determining sets of stores from which a user can col-

lectively acquire a specified list of items. This process corresponds to the set cover

problem, recognized as NP-hard in computational complexity. To address this intri-

cacy, the software development process was designed and executed according to an

iterative and incremental model. Here is why,

• Incrementally build the application: Start with a simple version, then add ad-

vanced techniques (e.g., optimizations, caching, etc.) in later increments.

• Iteratively refine it: Test each version, analyze weaknesses, and improve it in the

next cycle.

• Use of experimental feedback to guide the development and give a clear idea as

to what is being implemented.

This process can also increase the modularity of the system due to the incremental

development (development of a single feature at a time). Figure (3.2) demonstrates

the high-level design of the system.

3.1.1 System Overview

Initial increments of the system adopted a monolithic architecture, Figure (3.1), and

as the system and the features grew, main services were identified and the system was

22

partitioned into the following main components: user-side functionality management

(user-service), store-side functionality management (store-service), recommendation

model, solver service, notification service, product service and the route recommend-

ing service. To increase the performance of each server, a caching service (Redis), an

OSRM (Open Street Routing Machine) service for computing real-world traveling dis-

tances, and messaging queues were used. These are implemented as separate services

and will communicate with each other using message-passing protocols such as MQTT

(Message Queuing Telemetry Transport protocol), gRPC (Google Remote Procedure

Calls) and REST (Representational State Transfer) for HTTP-based communications.

This also provides us with the capability to change the suitable communication pro-

tocols between different components with minimal effort. Figure (3.2) demonstrates

this scaled version. The internal structure of the services will be discussed in detail in

the coming sections.

Figure 3.1: Initial Software Architecture

The figure (3.3) depicts the request flow pipeline using an end-to-end request flow

through the system. The main functionality of determining which stores to buy prod-

ucts from is considered the main flow. In brief, the user will send a payload with

the items, location coordinates of the user, radius, and the recommendation mode

(single-store or multi-store recommendations). The API gateway then validates the

tokens and, if valid, forwards the request to get the user. If the user exists, the user is

23

Figure 3.2: Overall Scaled Software Architecture

24

authenticated and access is granted, and then the solver service is going to validate the

list of product items. If valid, it goes to the store service to get the nearby stores and

their store-product information, such as unit price, stock and so on. Next, the solver

fetches the user preferences as well. If there are enough stores, the solver will run the

solving algorithm on the problem at hand. While doing so, the solver service will use

the Redis cache server and the OSRM server. And after running the algorithm, it will

return the reply.

3.1.2 Technologies

In the development process, the following technologies were used. The reasoning be-

hind the design choices and reasoning will be discussed in later sections.

• Version control and collaboration: Git and GitHub.

• Project management tools: GitHub projects and Trello.

• Operating system: Windows, Debian, and Fedora.

• API request and validation tools: Postman.

• User interfaces and frontend:

– Web version: Vuejs3, React Native (compiled to web).

– Mobile: React-native.

• Map functionality: Open Street Maps services (OSM APIs for getting location

or path data as GeoJson), OSRM (Open Street Routing Machine, for calculating

travelling distances, for walking, and driving, LeafletJs, Turfjs for highlighting

the paths or ranges, Google Maps API for frontend map rendering and route

displaying.

• Data set generation: Open Street Maps location data APIs, Geofabrik geospatial

data, and open food facts for generating product data.

• Programming languages: Elixir (attempted), Golang, JavaScript, TypeScript,

Python.

25

Figure 3.3: Request and data flow for the main use case through the scaled architecture

26

• Frameworks: NestJs, React-Native, Vue, no backend framework was used other

than the Golang standard library for Go-based implementations, Flask, Phoenix

(attempted).

• API gateways, server configuration tools, reverse-proxies, live servers: Kong API

gateway, Nginx, ngrok.

• Database and memory caching servers: Postgresql, Redis.

• Messaging queues: Rabbitmq server.

The technologies selected for the store recommendation and route planning system

were strategically chosen to ensure scalability, efficiency, and a seamless user experi-

ence in a real-time, location-based application. Git and GitHub were adopted for their

robust version control and collaboration features, facilitating effective team coordina-

tion across development phases. Project management was streamlined using GitHub

Projects and Trello to organize tasks and track progress efficiently. The system was

developed to be cross-platform, supporting Windows, Debian, and Fedora, ensuring

compatibility across diverse environments. Postman was utilized for thorough API

testing and validation, critical for reliable data exchange. For user interfaces, React

Native was selected for its ability to deliver consistent experiences across web and

mobile platforms, complemented by Vuejs3 for specific web components due to its re-

active framework. Mapping functionalities leveraged Open Street Maps (OSM) and

Open Source Routing Machine (OSRM) for cost-effective, accurate location and rout-

ing data, enhanced by LeafletJs and Turfjs for interactive geospatial visualization,

and Google Maps API for advanced frontend rendering. Data generation relied on

open sources like OSM, Geofabrik, and Open Food Facts to minimize costs while ac-

cessing comprehensive datasets. Golang was chosen for its concurrency features and

extensive standard library, enabling efficient backend development without additional

frameworks, while NestJs and Flask supported scalable server-side and Python-based

services, respectively. API management was handled through Kong, Nginx, and ngrok

to ensure secure and efficient traffic routing. PostgreSQL and Redis were employed for

robust data storage and high-performance caching, respectively, while RabbitMQ fa-

cilitated asynchronous operations through message queuing, enhancing system decou-

pling and responsiveness. These technologies collectively address the system’s require-

27

ments for real-time data processing, location-based services, and high performance,

ensuring a scalable and reliable solution.

Under the Section 4, several technological concerns related to the backend services are

addressed to elucidate the design decisions undertaken. Initially, the project adopted

the Elixir programming language and the Phoenix framework as the primary language

and backend framework for implementation. However, shortly after the project com-

menced, it became evident that sufficient support for certain required tasks was lacking,

as some necessary libraries were unavailable. Consequently, a shift to the Go program-

ming language was deemed necessary. Go was selected due to its robust concurrency

features and comprehensive standard library support, which eliminated the need for an

additional backend framework. The out-of-the-box concurrency mechanisms provided

by Go facilitated the parallelization of the algorithms detailed extensively in this sec-

tion. Docker containers were utilized to ensure consistency across both development

and deployment environments. As noted in the methodology section, this approach

simplified the scaling of the algorithms. Initially, the server was designed as a mono-

lithic architecture; however, it was later restructured into a services-based framework,

allowing for the independent scalability of individual components.

3.1.3 User Interface Designs

Under this section, designs used for the mobile application interface will be included.

They are implemented as is, and most of them are taken from a hosted working system.

This will be an overview to give the reader an idea of the interface of the final outcome.

28

Figure 3.4: Landing Screen Figure 3.5: User creating a new cart

The very fist screen that the users would see upon entering the application is shown

by figure 3.4). By selecting appropriate option the user can proceed either as a "Cus-

tomer" or a "Store owner", from there on wards. Figure (3.4) shows how a customer

can create a new shopping cart.

29

Figure 3.6: User adding a product item
to a cart

Figure 3.7: User selecting a point on
the map

After creating the shopping cart the users can add products and the quantities as

shown in the figure 3.6). Then the users can explore store recommendations for the

cart. The system will then ask the user to select their location or alternatively select

a route for the search as shown by figure (3.7) and figure 3.8) respectively.

30

Figure 3.8: User selecting a route on
the map to search using a path

Figure 3.9: User searching for recom-
mendations

Afterwards, the system will give the store recommendations as shown in the figure 3.9).

The store icons are the recommendations at which the user can purchase the list of

items.

31

Figure 3.10: User clicking on a store
marker

User can then click on the store icons to get the details related to the store as well

as the products information related to the items offered by the store as shown in the

figure 3.10).

32

3.2 Research Perspective

Based on the research questions, the recommendation service, route planning and rec-

ommendation service, and data collection components for gathering vendor data were

identified as research-related components. This section outlines the research efforts,

practical considerations, and challenges associated with the methodologies employed

to develop solutions for these services.

As stated in the aims and objectives section, the primary goal is to develop a rec-

ommendation algorithm, a route planning algorithm, personalized product recommen-

dations, and an efficient data collection method. For the recommendation algorithm,

two modes were considered: single-store and multi-store recommendations. The single-

store mode involves straightforward filtering and sorting of stores to recommend the

top N results, presenting a manageable implementation challenge. Conversely, the

multi-store mode, involving subset generation, exhibits exponential time complexity,

necessitating research into set cover problem solutions and Traveling Salesman Problem

(TSP) optimization algorithms, given the inclusion of distance as a recommendation

factor. These are addressed by the solver service.

For data aggregation, the design of REST-based APIs, the potential of web scrap-

ing, and the use of IoT or embedded systems were explored. To capture real-world

retail dynamics, factors such as store busy hours, queue sizes, proximity to public

infrastructure, and discount handling were investigated. Surveys with store owners

provided critical insights into practical constraints and requirements, enhancing the

research’s applicability. Regarding discount handling, due to the complexity of dis-

count conditions, the development of a discount processing engine and a query language

for defining discounts was researched. However, as detailed in the implementation sec-

tion, integrating the discount engine was deferred, as it was deemed a secondary factor

rather than a primary driver of recommendations.

33

To inform the practical design, a survey was conducted to understand operational

aspects of grocery stores. The following questions were explored to gather relevant

data:

• Operating hours during peak periods (morning, afternoon, evening).

• Store location relative to public infrastructure, such as schools or hospitals.

• Types and applicability of discounts offered.

• Typical queue lengths during busy periods.

• Methods for maintaining sales records, whether digital or manual, and openness

to adopting new systems.

• Accepted payment methods.

• Sales trends, restocking frequency, and items requiring frequent restocking.

These survey findings, summarized in the results and analysis section, provided essen-

tial context for tailoring the system to real-world retail environments.

Next in line is the personalisation of product suggestions and recommendations, han-

dled by the recommender service. This was done through training a recommender

model, and due to the scarcity of data, training data implementation will also be an

added task. Research on training and testing recommendation models would have

to be conducted as well. Under this section, planned outcomes for this would be to

predict the product items that could be (most likely) purchased by the user the next

time. The real benefit of this would be to integrate this with the recommendation

algorithm to integrate the brand and store preferences as driving factors of recommen-

dations. Using this, the system would be able to find the stores that the user is most

likely to visit. The next component is the route planning and managing service. This

service’s main functionality is to find the most optimal method of reach or the most

optimal road system to travel to a store. This algorithm takes the generated set of

recommendations from the solver service and tries to give the best possible route to

reach the stores. This is also explained in greater detail, including the test data and

training data generation, in the coming sections.

34

In this section, the emphasis on the research requirements was discussed by looking

at the system from a very high-level viewpoint, while explaining the main flow of

the application through the elaboration of the main use case scenario. In the next

section, the discussion will be geared towards going into a much deeper level of each

of the services and understanding their methodology and implementation details step

by step.

35

4 Implementation

This section details the internal architecture and implementation of the system’s core

components, as introduced earlier. The discussion begins with the store recommen-

dation system, which includes algorithms for both single-store and multi-store recom-

mendation modes, primarily managed by the solver service. Subsequent subsections

address the route planning component, user shopping list recommendations, discount

engine, and best practices for standardizing APIs. Under the multi-store mode recom-

mendations implementation, multiple algorithms are explored, each presented in its

own subsection to accommodate detailed descriptions.

4.1 Store Recommendation System Overview

This subsection introduces the store recommendation problem, providing a formal defi-

nition of the challenges associated with each recommendation mode. It further explores

the time complexities inherent to these modes and discusses the influence of additional

parameters, such as brand and store preferences, on computational complexity.

4.1.1 Problem Definition

The store recommendation system addressed in this dissertation aims to assist users

in purchasing a set of desired items from physical stores, optimizing for cost and con-

venience (mainly traveling distance and the payment methoid). The system operates

in two different modes: single-store mode, where all items must be purchased from a

single store, and multi-store mode, where items can be purchased from multiple stores,

but each product can only be bought once and there is only binary selection (either

the product is selected from a particular store or not, no partial selections), to min-

imise total cost, including item prices and travel distance. The multi-store mode is the

primary focus due to its combinatorial complexity, which was proven to be NP-hard.

This subsection formally defines both modes, demonstrates the NP-hardness of the

multi-store problem, discusses general algorithmic approaches for solving such prob-

lems in a reasonable time, and examines the impact of additional influence parameters,

such as brand or store preferences.

36

4.1.2 Single-Store Mode

In single-store mode, the user specifies a list of items with required quantities, a lo-

cation, search radius, a preferred payment method (if the user doesn’t mention this,

it’s taken from the user preferences, otherwise left as non-configured), and the number

of desired recommendations, N . The system identifies stores within the radius that

have sufficient stock for all items and accept the user’s payment method. Each store is

evaluated based on the total item cost and the travel distance from the user’s location,

producing a score (computed using the total cost and a weighted distance). The top

N stores with the lowest scores are returned as recommendations.

Formally, let I = {i1, i2, . . . , im} be the set of items, with quantities qi for each i ∈ I.

Let S = {s1, s2, . . . , sn} be the set of stores, where each store sj has:

• Location lj = (xj, yj).

• Stock kj : I → Z≥0, where kj(i) is the available quantity of item i.

• Prices pj : I → R≥0, where pj(i) is the price of item i.

• Payment methods Mj ⊆ {credit, cash, . . . }.

The user provides input U = (I, q, lu, r,mu, N), where lu is the user’s location, r is the

radius, mu is the payment method, and N is the number of recommendations. A store

sj is feasible if:

• d(lu, lj) ≤ r, where d is the Euclidean or road distance.

• kj(i) ≥ qi for all i ∈ I.

• mu ∈ Mj.

The score for a feasible store sj is:

Score(sj) =
∑
i∈I

pj(i) · qi + w · d(lu, lj), (1)

where w ≥ 0 is a weight (e.g., w = 1). The goal is to return the top N feasible stores

with the lowest scores.

This problem is computationally straightforward, as it involves filtering stores based

on the condition that a store must provide all the product inorder for that store to be

37

considered as a possible recommendation, then afterwards the list of recommendations

are sorted by score to find the top Y number of recommendations requested by the

user, with a complexity of O(n ·m) for checking stock and O(n log n) for sorting, where

n is the number of stores and m is the number of items.

4.1.3 Multi-Store Mode

In multi-store mode, the system selects a subset of stores and assigns each item to

one store, minimizing the total score, which combines item costs and travel distance

across multiple stores. This allows for lower costs by sourcing items from different

stores but introduces significant combinatorial complexity. The algorithm can give

recommendations with a single store. This is due to the fact that a singleton set is

also a subset of all possible subsets of the stores.

Formally, given the same input U = (I, q, lu, r,mu, N) and store set S, the system

must:

• Select a subset S ′ ⊆ S such that d(lu, lj) ≤ r and mu ∈ Mj for all sj ∈ S ′.

• Assign each item i ∈ I to a store sj ∈ S ′ such that kj(i) ≥ qi.

• Compute the total cost
∑

i∈I pj(i) · qi, where sj is the assigned store for item i.

• Compute the tour distance dtour(S
′), defined as the shortest path starting at lu,

visiting each store in S ′, and returning to lu.

• Minimize the score:

Score(S ′, A) =
∑
i∈I

pj(i) · qi + w · dtour(S
′), (2)

where A : I → S ′ is the assignment function mapping items to stores in S ′.

The output is the top N solutions (S ′, A) with the lowest scores, where each solution

covers all items and satisfies constraints.

4.1.4 NP-Hardness of Multi-Store Mode

To demonstrate that the multi-store recommendation problem is NP-hard, this algo-

rithm was reduced to two known NP-hard problems: the Set Cover Problem and the

38

Traveling Salesman Problem (TSP).

Reduction from Set Cover: The Set Cover Problem involves selecting the smallest

subset (this is important as the fewer number of stores travelled, shorter the traveling

distance for each recommendation) of sets from a collection to cover all elements in a

universe (In this case, the list of items). Map the multi-store problem to Set Cover as

follows:

• Let the items I be the universe of elements.

• Let each store sj define a set Tj = {i ∈ I | kj(i) ≥ qi,mu ∈ Mj}, containing

items it can supply.

• Set the cost of selecting store sj to the sum of item prices
∑

i∈Tj
pj(i) · qi, and

assume w = 0 (no travel cost).

A solution to the multi-store problem (selecting stores S ′ and assigning items) corre-

sponds to selecting a subset of {Tj} that covers I with minimum cost. Since Set Cover

is a known NP-hard problem, and this can be classified as a special case (no travel

distance), hence the multi-store problem is NP-hard.

Reduction from TSP: If all items are available at all stores with equal prices and

quantities, the problem reduces to selecting a subset S ′ that minimizes

dtour(traveling distance)(S
′). This is equivalent to the TSP (traveling sales men problem),

where the goal is to find the shortest tour visiting a subset of nodes (stores) starting

and ending at lu. TSP is also a known NP-hard problem, and due to this reduction

of the store allocator problem to the TSP problem, this shows that the multi-store

problem’s complexity without item assignment constraints.

Since the multi-store problem combines Set Cover (for item coverage) and TSP (for

tour distance), it is NP-hard. Verifying a solution (checking stock, payment methods,

and computing the tour) can be done in polynomial time, placing the problem in the

NP category. Thus, the multi-store recommendation problem can be classified as an

NP-complete problem.

4.1.5 General Algorithmic Approaches

NP-hard problems like the multi-store recommendation problem are typically ad-

dressed using:

39

• Exact Algorithms: Integer Linear Programming (ILP) or Branch and Bound

guarantee optimal solutions but are computationally expensive, suitable for small

instances (e.g., n ≤ 20). In order to find an exact solution, all possible combi-

nations should be evaluated.

• Heuristic Algorithms: Greedy algorithms, Genetic algorithms, or Beam Search

provide fast, near-optimal solutions for larger instances, trading optimality for

scalability. These algorithms will make certain compromises between perfor-

mance and exact accuracy of the results.

• Approximation Algorithms: Algorithms with guaranteed performance ratios

(e.g., based on Set Cover or TSP approximations) balance speed and solution

quality.

In practice, heuristic and approximation algorithms are preferred for real-time appli-

cations, as exact methods become infeasible for large n (e.g., 150 stores), as can be

seen in our 4-second timeout constraint.

4.1.6 Impact of Influence Parameters

Adding influence parameters, such as brand preferences or store preferences, signif-

icantly increases complexity. Simply put, more conditions and more branches will

increase the search space of the problem. For example:

• Brand Preferences: If a user prefers specific brands for items, the system

must filter stores by brand availability, reducing the feasible store set per item.

This adds constraints to the optimisation, increasing the search space for exact

algorithms and requiring additional checks in heuristics.

• Store Preferences: If users prioritise certain stores (e.g., based on loyalty or

ratings), the objective function may include preference weights, transforming the

problem into a multi-objective optimisation. This increases runtime by requiring

re-evaluation of assignments and may necessitate larger populations in Genetic

algorithms or wider beams in Beam Search.

Formally, let Bi ⊆ {brand1, brand2, . . . } be the preferred brands for item i. The con-

straint kj(i) ≥ qi becomes kj(i) ≥ qi∧brand(i, sj) ∈ Bi, reducing feasible assignments.

40

For store preferences, introduce weights wj for each store sj, modifying the score to:

Score(S ′, A) =
∑
i∈I

pj(i) · qi · wj + w · dtour(S
′). (3)

This increases the state space in dynamic programming or Branch and Bound (e.g.,

from O(2n) to O(2n · k) for k preference levels) and memory for heuristic populations,

impacting scalability.

Next subsections are dedicated to highlighting the implementation details of each and

every algorithm explored to overcome the performance barriers explain in the previous

sections.

4.2 Single-Store Mode Implementation

The single-store mode is implemented as a pipeline, as shown in Figure 4.1. The

process is:

1. User Query: Receive U = (I, q, lu, r,mu, N).

2. Filter Nearby Stores: Identify stores S ′ ⊆ S where d(lu, lj) ≤ r.

3. Stock and Payment Check: Filter S ′ to stores with kj(i) ≥ qi for all i ∈ I

and mu ∈ Mj.

4. Initial Ranking: Sort stores by Euclidean distance d(lu, lj).

5. Pruning and Scoring: Use an OSRM backend to compute actual road dis-

tances, caching results in Redis to avoid recomputation. Calculate the score for

each store as
∑

i∈I pj(i) · qi + w · droad(lu, lj).

6. Output: Return the top N stores by score.

41

User Query
(Items, Loca-
tion, Radius,
Payment, N)

Filter Nearby
Stores

(Radius Check)

Check Stock
& Payment
(All Items,

Payment Method)

Initial Ranking
(PostGIS Di-
rect Distance
Calculation)

Prune & Score
(OSRM Road
Distance, Re-
dis Cache)

Top N Rec-
ommendations

Figure 4.1: Vertical waterfall diagram of the algorithm for single-store mode recom-
mendation.

This pipeline is efficient, with a complexity of O(n ·m+n log n), enhanced by caching

for real-time performance. Single-store mode is very straight forward and reflects the

use of classic pipe and filter design pattern where the data is filtered in each stage

to find only the stores with the product list given by the user. And at the last stage

of this pipe line ranking and sorting takes place to find the most optimal solutions.

Finally the user will have the top N recommendations required by the user, sorted in

the descending order based on the total cost (distance and the cost of product items).

42

4.3 Multi-Store Mode Implementation

From this point until Subsection 4.10, each subsection is dedicated to exploring a

distinct algorithm developed to address the challenges of multi-store recommendations.

Each algorithm is accompanied by a detailed description of its design, an analysis of

its advantages and disadvantages, a discussion of its limitations, and an overview of

the optimizations applied to enhance its performance.

4.4 Naive Algorithm

The naive algorithm was implemented as a straightforward approach that processes a

shopping list and categorizes stores based on what items they have in their inventory.

It creates a mapping of stores to the items they contain from the shopping list. Then,

it categorizes stores into three groups: those with all items, some items, or none of the

items on the list. Those categorized stores are then used to find a combination of stores

that cover all items in the shopping list. It can either be a single store with all items

or a combination of stores with some items. This was done without any optimizations

to focus on the correctness of the algorithm. Then that algorithm was used to identify

which parts of the algorithm required the most optimization via testing it with several

sets of generated data.

A detailed pseudocode for the naive algorithm is provided in Appendix A.1.

4.4.1 Time Complexity Analysis

The generate_store_recommendation_naive function iterates through all m inven-

tory items, and for each item, it potentially checks against the n items in the shopping

list. This leads to a time complexity of O(m · n) in the worst case. However, if the

shopping list items are stored in a hash set for faster look ups, this check becomes O(1)

on average, reducing the complexity to O(m + s · n), where s is the number of stores

containing at least one item from the shopping list. Subsequently, the categorization

of these s stores involves operations proportional to the number of shopping list items,

contributing O(s · n) to the overall time.

The check_combinations function explores combinations of stores (up to 10) from

the set of stores that have some of the required items (s′). The number of such

43

combinations can grow exponentially with s′, specifically involving a summation of

binomial coefficients. For each combination, it checks if all n shopping list items are

covered, which takes time proportional to the number of items and the number of

stores in the combination. Thus, the time complexity of this function is dominated by

the combinatorial search and is approximately O(
∑min(10,s′)

k=2

(
s′

k

)
·k·n). The overall time

complexity of the naive algorithm is therefore heavily influenced by the combinatorial

nature of the store combination checking process.

4.4.2 Space Complexity Analysis

The generate_store_recommendation_naive function utilizes space to store the re-

quested item IDs (O(n)), a map of stores to their relevant inventory (O(m) in the worst

case), and lists of stores categorized by their overlap with the shopping list (O(s ·n) in

the worst case). Consequently, the space complexity of this function is O(m+ s · n).

The check_combinations function requires space to store the viable combinations of

stores found. The size of this storage depends on the number of successful combi-

nations identified before the early stopping condition is met. Additionally, for each

combination being evaluated, a set of remaining items is maintained, requiring O(n)

space. Therefore, the space complexity of check_combinations is at least O(n) and

can increase depending on the number of viable store combinations that need to be

stored. The overall space complexity of the algorithm is primarily determined by the

storage requirements of the inventory data and the categorized stores in the first func-

tion, along with the space needed to store the resulting combinations in the second.

As this has a worst case complexity of O(n!) and as was observed in testing with

thousands of generated stores with items it is not feasible to generate satisfactory

recommendations using this algorithm. Smaller combinations are cheaper to check

and would result in a simpler route so it makes sense to check them first. There are∑k
i=0

(
n
i

)
possible combinations of k stores. checking each of these combinations is not

feasible. That is why the algorithm was adjusted to stop after it finds a given number

of valid combinations. Even with that limitation, the algorithm can still take a long

time to generate recommendations.

44

4.4.3 Pros and Cons

Pros:

• Simple implementation: The algorithm was straightforward to code and

served as a quick way to establish the basic logic of matching shopping lists

to store inventories.

• Correctness verification: It allowed an initial confirmation of the fundamental

correctness of identifying stores with relevant items and exploring their combi-

nations.

• Bottleneck identification: Performance testing clearly highlighted the check_combinations

function as a major computational bottleneck due to its combinatorial nature.

• Baseline establishment: The execution time provided a concrete baseline for

evaluating the performance improvements of more advanced algorithms.

Cons:

• Computational inefficiency: The combinatorial explosion in checking store

combinations led to unacceptably long run-times, especially with a larger number

of partially matching stores.

• Scalability issues: The algorithm’s performance degrades rapidly with increas-

ing numbers of stores and potential store combinations, making it unsuitable for

large-scale applications.

• Lack of optimization: The naive approach lacks any mechanisms to intelli-

gently prune the search space or prioritize more promising store combinations.

• Redundant computations: Many redundant combinations were explored,

leading to wasted computational resources.

• Limited practical use: Poor scalability and efficiency make this naive algo-

rithm impractical for real-world recommendation systems that require timely

responses.

45

Due to the disadvantages observed in the algorithm, it was not selected to be further

iterated on in the research. The greatest challenge identified by this algorithm was the

combinatorial explosion in checking store combinations. Which led to the development

of the Memory-Optimized Algorithm and others that will follow.

4.5 Memory-Optimized Algorithm

This approach is reminiscent of the BLAST Algorithm, which is used for database

searching. The BLAST algorithm is a widely used technique for comparing sequences,

which has been found to be particularly efficient for searching large databases. The

BLAST algorithm works by comparing a query sequence to a database sequence and

identifying regions of similarity between the two sequences. It is then possible to iden-

tify the location of the similar regions in the query. Although the BLAST algorithm

is not specifically designed for recommendation systems, its approach of comparing

sequences and creating similar strings was seen as something that could be adapted

to this problem. Thus, this algorithm followed a similar methodology. A descriptive

pseudocode for the algorithm is provided in Appendix A.2.

As seen in the code, The items in the stores are stored in a hash set, which is of which

the keys are the item IDs encoded to a string and the values are the item quantities.

The algorithm then iterates through all the stores, and for each store, checks whether

it has the items present in the shopping list. If it does, it adds the shop and the item

quantities to one of the result lists flagged as hasAll, hasSome, or hasNone. It then

delegates the task of checking the combinations to the greedy_check_combinations

function. This function goes through ten iterations first to create a power map, which

is a mapping of all possible substrings of the item strings to the stores that have them.

It then iterates from the shortest substrings to the longest, and for each substring, it

finds which items are present and missing from the shopping list. It then checks if a

key in the power map exists that matches the missing items. If it does, it adds the

combination of stores that have the items to the result list. This process is repeated

until the result list is complete. An early return is used in the checking iterations to

skip checking combinations that are too long. The result lists are then returned to the

main function, which then combines them to generate the final recommendations.

46

4.5.1 Time Complexity Analysis

The to_string(array) function operates in linear time, O(l), where l represents

the length of the input array. The pre_calculate_combinations() function has

a time complexity of O(m + S · (Imax log Imax)), where m is the total number of

items, S is the number of stores, and Imax is the maximum number of unique items

in any single store; crucially, due to caching, this function executes only once. The

generate_store_recommendation_memory() function’s time complexity is O(n log n+

S · n · Ls + complexity of greedy_check_combinations), where n is the number of

items in the shopping list, and Ls is the average length of the item set string; the

greedy_check_combinations() function’s complexity is considered separately. The

non_empty_substrings(string) function has a time complexity of O(l3), where l is

the length of the input string. The greedy_check_combinations() function has a

time complexity that is potentially exponential in the number of shopping list items

due to the generation of substrings and the exploration of the power set of item com-

binations.

4.5.2 Space Complexity Analysis

The to_string(array) function uses O(l) space. The pre_calculate_combinations()

function uses O(S·Imax) space to store the mapping of item set strings to store IDs. The

generate_store_recommendation_memory() function uses, in the worst case, O(2n ·

S) space for stores_with_matching_items. The non_empty_substrings(string)

function uses O(l3) space. The greedy_check_combinations() function uses O(n2 ·S)

space for store_item_power_map.

4.5.3 Pros and Cons

Pros:

• Pre-calculation: Caching store-item combinations in

pre_calculate_combinations can save computation for repeated recommenda-

tions with static inventory.

• String-based comparison: Using string representations might offer faster item

set comparisons.

47

• Greedy combination check: greedy_check_combinations attempts to find

covering combinations without exhaustive search.

• Subset focus: Exploring item subsets in textttgreedy_check_combinations

could be more efficient than individual item combinations.

Cons:

• Limitation of string representation: The string representation of item IDs

might not be suitable for all use cases.

• High time complexity: greedy_check_combinations has a potentially expo-

nential time complexity in the number of items in the shopping list.

• High space complexity: Storage for intermediate data structures like

store_item_power_map

and stores_with_matching_items can be significant.

• Greedy optimality not guaranteed: The greedy approach in combination

checking might not find the most optimal solutions (for example, fewest stores).

• String conversion overhead: Repeated string conversion and sorting could

introduce overhead.

• Complexity of greedy check: The logic within greedy_check_combinations

is complex and contributes to the overall algorithm’s intricacy.

The text comparison approach showed some promise in the initial developments as

it calculated combinations much faster than the naive approach. However, the text

comparison approach was not suitable for the problem as the results were not so

significant compared to the other approaches that were tried. The algorithm would

end up taking a long time to generate recommendations similar to the naive approach

as the number of stores and items increased. As can be seen in the end of the pseudo

code, to get optimal results, the store item power set would need to be expanded with

pairs as the keys, then with triplets as the keys and so on. This would lead to an

exponential increase in space complexity and the implementation would be difficult in

reality to be performant. This in addition to the fact that it runs into a hard limit

48

at the character limit to the items in stores made the text comparison approach not

suitable for the problem. However the increase in efficiency given by the pre-calculation

was noted to be beneficial to the system in the long run. Instead of focusing on the

combinatorial problem, the next approaches were more focused on getting the most

optimal results via selecting the most promising store combinations and dropping any

irrelevant ones.

4.6 Filtered Greedy Algorithm

This algorithm used the greedy approach used in the previous algorithms much more

efficiently by filtering out everything unrelated to the shopping list. It showed promise

in the initial stages and was developed further to improve the efficiency of the algo-

rithm. This is the algorithm that was first implemented with a database connection to

the inventory. The previous algorithms were implemented with a static inventory that

was generated in the code. This algorithm was implemented with a database connec-

tion to a generated inventory. Even with the database connection, the algorithm was

much more efficient than the previous algorithms. So additional criteria like item quan-

tities could be added to it without compromising the efficiency. A detailed pseudocode

for the Filtered Greedy Algorithm is provided in Appendix A.3.

4.6.1 Time Complexity Analysis

Initially, filtering the store inventory based on the shopping list items requires time

proportional to the total number of items across all stores, denoted as M . For each

of the n items in the shopping list, checking its presence involves an average time

complexity of O(1) with efficient lookups, leading to a filtering step of roughly O(M).

Subsequently, adjusting the quantities and prices for each of the n shopping list items

might involve iterating through a subset of the store inventory, potentially reaching

O(n·M) in a naive scenario. However, efficient indexing of the store_inventory could

improve this. Grouping the items by store ID and calculating the total prices and item

sets involves processing the filtered inventory, which contains at most M entries. This

step can take approximately O(M logM) if sorting is used for grouping, or O(M) on

average with hash maps, followed by O(M) for the calculations. Categorizing the stores

based on whether they have all or some of the requested items takes time proportional

49

to the number of stores, S, resulting in O(S). Sorting the store_summaries by item

count requires O(S logS), and sorting the stores_with_all_items by price takes

O(S ′ logS ′), where S ′ is the number of stores with all items. The most complex part

is finding combinations of stores, which involves nested loops. The outer loop iterates

up to n − 2 times, and the inner loop iterates through the stores with some items,

potentially O(S) in the worst case. Inside these loops, finding missing items and then

searching for stores that carry these missing items in the store_inventory can lead to

a time complexity approaching O(n2 ·S ·M) in a loose upper bound without considering

data structure optimizations. However, the early exit condition with the break inner

loop makes the actual performance better in practice. Overall, the nested loops for

finding store combinations are dominant factor in the worst-case time complexity.

4.6.2 Space Complexity Analysis

The space complexity of the algorithm depends on the storage requirements of several

data structures. The requested_item_ids list requires O(n) space. The store_inventory

in the worst case can hold up to M items that are present in the shopping list. The

store_summaries structure stores information for each store having at least one item

from the shopping list, potentially requiring O(S · n) in the worst case. Similarly,

stores_with_all_items and stores_with_some_items can collectively use up to

O(S · n) space. The requested_items_set needs O(n) space. The recommendations

structure’s size is contingent on the number of combinations found, and each com-

bination might store information about multiple stores and up to n items, with the

additional_stores dictionary potentially holding up to S entries. Consequently, the

space required for recommendations can be significant. Therefore, the dominant space

complexity is determined by the size of the filtered store_inventory (O(M)) and the

potential size of the recommendations structure, leading to a rough upper bound of

O(M + S · n).

4.6.3 Pros and Cons

Pros:

• Filtering: The algorithm efficiently filters the inventory to only consider items

present in the shopping list, significantly reducing the data to process.

50

• Quantity and price adjustment: Incorporating quantity requirements and

calculating the price based on these requirements early in the process adds prac-

tical value to the recommendations.

• Greedy approach with categorization: The algorithm categorizes stores

into those with all and some items, and then greedily tries to find combinations

to fulfill the remaining items, which can be more efficient than exploring all

combinations.

• Prioritization by item count and price: Sorting stores by the number of

matching items and then by price for stores with all items helps in suggesting

more relevant and potentially cheaper options first.

• Database integration: The algorithm is designed to work with a database,

making it more practical for real-world scenarios with large inventories.

Cons:

• Greedy optimality is not guaranteed: The greedy approach to finding com-

binations of stores might not always yield the combination with the fewest num-

ber of stores or the absolute lowest total price.

• Potential inefficiency in combination search: While more efficient than

the naive approach, the nested loops for finding store combinations for missing

items could still be computationally intensive in scenarios with many stores hav-

ing subsets of the required items. The early break helps, but the worst-case

complexity could still be high.

• Complexity of logic: The logic for finding combinations and tracking addi-

tional stores can be complex to implement and debug.

• Limited exploration of combinations: The algorithm seems to stop after

finding the first set of additional stores for a given main store and item count,

which might prevent it from finding other potentially better combinations.

• Performance dependence on data distribution: The performance of the

combination finding step can heavily depend on how the required items are dis-

tributed across different stores.

51

As mentioned earlier, the Filtered Greedy Algorithm was the first approach that

was implemented with a database connection to the inventory. This algorithm also

faces a few challenges even without the database connection as can be seen in the

pseudo code. The implementation of the combinatorial problem in the algorithm was

not fit for finding the most optimal results. The algorithm, when checking for stores

to fill the missing items, would only add the store which has the item at the best

price, this does not take into account the other stores that may have more than one

item at potentially, a lower combined price. This is an inherent problem with the

greedy approach and the algorithm would not be able to find the most optimal results.

Expanding the algorithm to include the other stores that have the same item would

lead to a combinatorial explosion. The algorithm as is was already a not very well

performing one and would take a long time to generate recommendations (less than

the previous algorithms bit still slow). The database connection is a necessity in the

project as a static inventory will never exist in reality. Due to these challenges, this

algorithm was not selected to be further iterated on. Rather, the focus went to more

aggressive pruning of the search space and the use of better algorithms to find the

most optimal results. Until this point, the algorithms had not considered the fact that

more factors like distance between stores, the resulting route distance, and the user’s

preference to stick to as few stores as possible, would need to be factored into the

recommendation process. Algorithms following this section were tried out in a more

practical setting using real-world store data and generated store inventory data.

The multi-store mode, which involves selecting a subset of stores and assigning items

to minimize total cost and travel distance, is NP-hard due to its combination of Set

Cover and Traveling Salesman Problem (TSP) complexities. When looking at the

survey results, some common recurring patterns can be found in the item purchases

of customers. For example, the number of stores a customer is willing to visit at a

time and the number of items purchased, along with other metrics, provide a way to

reduce the size of the search space. In this section, some algorithms that are discussed

take advantage of these factors to provide more practical answers. Hence, most of the

algorithms guarantee optimal solutions for small to medium instances.

Under each of these algorithms, some keywords are used extensively, such as 4-seconds,

pipeline and similarities between many algorithms and their processes (pipelines) can

52

be found. These were intentionally left for the reader to properly grasp the evaluation

processes and the time constraints or boundaries the system is trying to achieve to

meet the real-time constraints to reduce the latency.

Each algorithm follows a similar structure, they all require database connection (Post-

greSQL server) (this is only valid for the real-world related implementation details,

base algorithms explained in this section are concerned with explaining the details

of the algorithms themselves rather than delving into the pipe-and-filter structure of

each of the algorithms), connection to an in-memory cache (Redis server), and Open

Street Routing Machine(OSRM) server to calculate traveling distances in real-world

road systems(more specifically road systems in Sri Lanka).

4.7 Branch and Bound Algorithm

The Branch and Bound algorithm is an exact method, based on the branch and bound

technique (Branch and bound 2025) designed to solve the multi-store recommendation

problem by exploring the solution space while pruning suboptimal branches. The goal

is to find the top N subsets of stores S ′ ⊆ S and item assignments A : I → S ′ that

minimize the score:

Score(S ′, A) =
∑
i∈I

pj(i) · qi + w · dtour(S
′), (4)

where pj(i) is the price of item i at store sj ∈ S ′, qi is the required quantity, w ≥ 0

is a distance weight (set to 1 in this work), and dtour(S
′) is the shortest tour distance

starting and ending at the user’s location lu, visiting each store in S ′. The algorithm

ensures all constraints are satisfied: stores must be within the user’s radius r, have

sufficient stock (kj(i) ≥ qi), and accept the payment method mu.

The algorithm operates by constructing a search tree where each node represents a

partial solution, defined by a subset of selected stores S ′, a set of covered items (via

a bitset), and an item-to-store assignment. The root node starts with an empty store

set and no items covered. At each level, the algorithm branches by adding a new

store to the current subset, updating the covered items and assignment. To reduce the

exponential search space (O(2n) for n stores), it employs:

• Lower Bound Pruning: For each partial solution, a lower bound on the score

53

is computed as the current total cost (items assigned so far) plus the current tour

distance (approximated via a Minimum Spanning Tree, MST) plus the minimum

cost of uncovered items (cheapest price per item across all feasible stores). If this

lower bound exceeds the best-known score, the branch is pruned.

• Bitset for Coverage: A bitset tracks covered items, enabling efficient union

operations when adding stores and checking if all items are covered (S ′ ∩ I = I).

• Duplicate Avoidance: A set of visited store combinations (as sorted tuples)

prevents redundant solutions.

The algorithm terminates when all feasible solutions are explored or a timeout (e.g.,

4 seconds) is reached, returning the top N solutions sorted by score. A detailed pseu-

docode outlining the core logic, focusing on the combinatorial structure, is provided

in Appendix A.4.

The algorithm’s complexity is exponential, O(2n ·m) in the worst case, where n is the

number of stores and m is the number of items, due to the potential exploration of all

store subsets and item assignments. However, pruning significantly reduces the search

space for practical instances (e.g., n ≤ 20). The space complexity is O(n+m) for the

recursion stack and bitsets, plus O(n2) for the distance matrix.

4.7.1 Pipeline

The Branch and Bound algorithm is integrated into a pipeline that processes user

input and delivers recommendations in real-time, adhering to the 4-second timeout

constraint. The pipeline, tailored to the multi-store mode, consists of the following

steps:

1. User Query: The system receives the user input U = (I, q, lu, r,mu, N), spec-

ifying items, quantities, location, radius, payment method, and number of rec-

ommendations.

2. Store Fetching: A PostgreSQL database is queried to retrieve stores within

radius r of lu, with sufficient stock for at least one item in I and supporting mu.

The query uses PostGIS for geospatial filtering (e.g., ST_DWithin) and aggregates

54

stock and price data, limiting results to 150 stores to ensure scalability. Unit

conversions (e.g., kg to g) are handled to compute standardized prices.

3. Distance Precomputation: Road distances between the user’s location and

stores are kept in an in-memory cache (not on Redis); later, for frequent requests,

data will be cached in Redis, and also the distance data among stores are fetched

from an OSRM (Open Street Routing Machine) backend server through the table

API and cached in Redis for efficiency. A distance matrix is constructed to

support fast lookups during algorithm execution.

4. Data Preprocessing: The algorithm initializes data structures:

• A bitset for each store, encoding available items.

• A mapping of items to feasible stores, sorted by price.

• Minimum item costs for lower bound estimation.

5. Algorithm Execution: The Branch and Bound algorithm is executed with a

timeout (4 seconds), exploring the search tree and pruning based on the lower

bound. The MST-based tour distance approximation (doubling the MST weight)

ensures efficient distance calculations.

6. Post-Processing: The top N recommendations are sorted by score and format-

ted as (S ′, A) pairs, with store IDs, item assignments, total cost, tour distance,

and score.

7. Output: Recommendations are returned to the user, with metrics (number of

stores, number of recommendations, total cost, total distance and score) logged

to a CSV file for evaluation.

The pipeline leverages caching (Redis) and efficient database queries to minimize la-

tency, ensuring the algorithm’s computational overhead is the primary bottleneck.

The vertical waterfall diagram for the single-store mode (Figure 4.1) can be adapted

for the multi-store mode by replacing the ranking and pruning steps with the Branch

and Bound execution. Pipeline of the parallelized Branch and Bound algorithm is

illustrated in the figure 4.2. In the parallelized version the pipeline enhances Branch

55

and Bound by distributing search subtrees across CPU cores, with a modified post-

processing step to merge worker results.

1. User Query
Receive U = (I, q, lu, r,mu, N)

2. Store Fetching
Query PostgreSQL with PostGIS

(limit 150 stores)

3. Distance Precomputation
Fetch road distances via OSRM

Cache in Redis

4. Data Preprocessing
Initialize bitsets, item-to-store map,

min item costs

5. Algorithm Execution
Parallel Branch and Bound

(distribute across CPU cores)

6. Post-Processing
Merge and sort top N recommendations

7. Output
Return recommendations

Figure 4.2: Vertical waterfall diagram of the Parallel Branch and Bound algorithm.

4.7.2 Optimization Steps

The base Branch and Bound algorithm, while exact, is computationally expensive for

large instances (n > 20). Several optimizations, implemented in Go variants, improve

its performance:

• Beam Search Integration: The optimized version incorporates a beam search

heuristic, maintaining only the top K = 1000 partial solutions at each level of the

search tree, sorted by lower bound. This reduces the search space to O(K ·n ·m),

trading optimality for scalability.

56

• Parallelization: The parallel version distributes the search tree across multiple

CPU cores. Initial states (single-store solutions) are partitioned among workers,

each exploring an independent subtree. A Redis pub/sub channel synchronizes

the global best score, allowing workers to prune branches dynamically. The MST

computation is also parallelized using a thread-safe priority queue, utilizing all

available cores (e.g., runtime.NumCPU()).

• Efficient Distance Caching: All versions use a precomputed distance matrix

stored in Redis, with OSRM queries batched to minimize network overhead.

The parallel version adds validation to ensure complete distance data, improving

robustness.

• Early Feasibility Checks: The algorithm checks for single-store solutions

(where one store covers all items) before branching, returning immediately if

found, reducing runtime for simple cases.

These optimizations enable the algorithm to handle larger instances (e.g., n = 150)

within the 4-second timeout, with the parallel version achieving near-linear speedup

with additional cores.

4.7.3 Pros and Cons

Pros:

• Optimality: The base algorithm guarantees the optimal solution for small in-

stances, making it ideal for processing smaller and medium-sized instances and

benchmarks of other heuristics.

• Flexibility: Easily adapts to additional constraints (e.g., brand preferences) by

modifying the lower bound or branching logic.

• Robust Pruning: The MST-based lower bound and bitset operations efficiently

prune the search space, reducing runtime for practical cases.

• Scalable Optimizations: Beam search and parallelization extend the algo-

rithm’s applicability to larger datasets, balancing speed and quality. In the

parallel version, computational tasks can be further delegated to one or more

57

machines or a cluster of machines based on the size of the search space. Due

to this, the branch and bound algorithm becomes one of the most scalable algo-

rithms.

Cons:

• Exponential Complexity: The base algorithm’s O(2n ·m) complexity limits

its use to small instances without optimizations.

• Memory Overhead: The recursion stack and candidate storage can consume

significant memory for large n, especially before pruning.

• Timeout Sensitivity: The 4-second timeout may truncate exploration, return-

ing suboptimal or no solutions for complex inputs.

• Distance Approximation: The MST-based tour distance doubles the MST

weight, potentially overestimating the true TSP distance, affecting score accu-

racy. It requires extensive analysis of travel data to find an optimal constant for

recommendation scenarios.

• Aggressive Pruning: Even though pruning is preferred to reduce the search

space, it could lead to the removal of valid recommendations. Thus, operational

constraints of these algorithms are much tighter and deviate from theoretical

constraints and shift towards practical scenarios.

4.7.4 Limitations and Future Improvements

The Branch and Bound algorithm faces several limitations, particularly in scalability

and real-time performance:

• Scalability: For n > 20, the exponential growth of the search tree overwhelms

even optimized versions, especially with many items (m). The beam search

variant sacrifices optimality, and parallelization is limited by CPU cores.

• Timeout Constraints: The 4-second timeout, critical for real-time applica-

tions, often interrupts exploration, especially for inputs with many stores or

items.

58

• Distance Estimation: The MST approximation, while efficient, may lead to

suboptimal pruning if the true TSP distance is significantly lower.

• Synchronization Overhead: In the parallel version, Redis pub/sub and mutex

locks introduce minor overhead, reducing speedup for small instances.

Future improvements could address these issues:

• Distributed Computing: Extend parallelization to a distributed system (e.g.,

using a message queue like RabbitMQ) to handle very large datasets (n = 500),

partitioning the search tree across machines.

• Hybrid Algorithms: Combine Branch and Bound with heuristics (e.g., Greedy

or Genetic algorithms) to warm-start the search with high-quality initial solu-

tions, reducing exploration time.

• Improved Distance Bounds: Replace the MST approximation with a Held-

Karp lower bound for TSP, providing tighter estimates and more effective prun-

ing.

• Dynamic Timeout Adjustment: Implement adaptive timeouts based on in-

put size (e.g., n, m) or use incremental solution output to ensure at least partial

results within 4 seconds.

• Memory Optimization: Use iterative deepening or a priority queue for state

exploration to reduce recursion stack size, enabling larger instances on limited

hardware.

These enhancements would make the algorithm more robust for real-world retail appli-

cations, balancing optimality, speed, and scalability. The Branch and Bound algorithm

serves as a strong foundation for exact solutions.

4.8 Beam Search Algorithm

The Beam Search algorithm is a heuristic approach designed to address the scalability

limitations of the Branch and Bound algorithm (Subsection 4.7) for the multi-store

recommendation problem, as defined in Subsection 4.1.1. By maintaining a fixed-size

59

beam of promising partial solutions, it efficiently explores the solution space, trading

optimality for speed. This subsection describes the algorithm theoretically, outlines

its pipeline, discusses optimization steps, evaluates its pros and cons, and identifies

limitations with future improvements.

4.8.1 Algorithm Description

The Beam Search algorithm tackles the NP-hard multi-store recommendation problem

by selecting a subset of stores S ′ ⊆ S and assigning items A : I → S ′ to minimize the

score:

Score(S ′, A) =
∑
i∈I

pj(i) · qi + w · dtour(S
′), (5)

where pj(i) is the price of item i at store sj ∈ S ′, qi is the quantity, w = 1 is the

distance weight, and dtour(S
′) is the shortest tour distance starting and ending at the

user’s location lu, visiting each store in S ′. Constraints include store proximity (within

radius r), sufficient stock (kj(i) ≥ qi), and payment method compatibility (mu).

Unlike Branch and Bound’s exhaustive search, Beam Search maintains a beam of at

most K = 100 partial solutions at each level of the search tree. Each node represents

a partial solution: a subset of stores S ′, a bitset of covered items, an item-to-store

assignment, and the current cost. The algorithm starts with an empty store set and

iteratively expands the beam by adding one store per branch, updating covered items

and assignments. Key features include:

• Beam Pruning: After expanding all nodes in the current beam, only the top

K new states (sorted by estimated score = current cost + tour distance) are

retained, reducing the search space to O(K · n ·m).

• Lower Bound Estimation: For each partial solution, a lower bound is com-

puted as the current cost plus the current tour distance (approximated via a

Minimum Spanning Tree, MST) plus the minimum cost of uncovered items. In-

feasible branches (items with no feasible stores) are pruned.

• Bitset Operations: A bitset tracks covered items, enabling efficient union and

difference operations.

60

• Duplicate Avoidance: A set of visited store combinations (sorted tuples) pre-

vents redundant solutions.

The algorithm terminates when all items are covered in a solution or a timeout (4

seconds) is reached, returning the top N recommendations sorted by score. A detailed

pseudocode outlining the core logic is provided in Appendix A.5.

The time complexity is O(K · n · m), where K is the beam width, n is the number

of stores, and m is the number of items, as each level processes up to K states, each

branching to n stores and updating m items. The space complexity is O(K · (n+m))

for the beam (storing store IDs, bitsets, and assignments) plus O(n2) for the distance

matrix.

4.8.2 Pipeline

The Beam Search algorithm is integrated into a pipeline that processes user input and

delivers recommendations in real-time, adhering to the 4-second timeout constraint.

The pipeline, tailored to the multi-store mode, is similar to that of Branch and Bound

(Subsection 4.7.1) but uses Beam Search for the execution step. The steps are:

1. User Query: Receive the user input U = (I, q, lu, r,mu, N), specifying items,

quantities, location, radius, payment method, and number of recommendations.

2. Store Fetching: Query a PostgreSQL database with PostGIS to retrieve stores

within radius r of lu, with sufficient stock for at least one item in I and supporting

mu. Limit to 150 stores for scalability, handling unit conversions for standardized

prices.

3. Distance Precomputation: Fetch road distances from an OSRM (Open Street

Routing Machine) backend server through the table API and cache in Redis.

Construct a distance matrix for fast lookups.

4. Data Preprocessing: Initialize bitsets for store items, a sorted item-to-store

mapping, and minimum item costs for lower bound estimation.

5. Algorithm Execution: Execute Beam Search with a beam width of K = 100,

exploring the search tree and retaining the top K states per level within the

4-second timeout.

61

6. Post-Processing: Sort the top N recommendations by score and format as

(S ′, A) pairs, including store IDs, item assignments, total cost, tour distance,

and score.

7. Output: Return recommendations to the user, logging runtime and solution

metrics for evaluation.

The pipeline is visualized in Figure 4.4, a vertical waterfall diagram illustrating the

flow from user input to recommendations. Caching (Redis) and efficient queries ensure

low latency, with the Beam Search execution being the primary computational bottle-

neck. The pipeline processes user input through database queries, distance caching,

and heuristic search with a beam width of K = 100 to deliver near-optimal recom-

mendations within a 4-second timeout.

4.8.3 Optimization Steps

The base Beam Search algorithm (implemented in Python) is optimized for efficiency

but faces scalability challenges for large instances (n > 100). The following optimiza-

tions, including those from a Go implementation, enhance performance:

• Efficient Data Structures: The Python version uses bitsets for item coverage

and sorted item-to-store mappings, reducing the cost of checking coverage and

selecting the cheapest stores. This minimizes redundant computations during

beam expansion.

• Parallel Beam Exploration: A Go implementation parallelizes beam expan-

sion by distributing the beam across CPU cores. Each worker processes a subset

of the current beam’s states, generating new states and synchronizing the global

best score via a Redis pub/sub channel. The MST computation is also paral-

lelized using a thread-safe priority queue, leveraging all available cores.

• Distance Caching: Both implementations use a precomputed distance matrix

stored in Redis, with batched OSRM queries to minimize network overhead. The

Go version validates distance data completeness for robustness.

62

• Early Feasibility Checks: The algorithm checks for single-store solutions be-

fore expanding the beam, returning immediately if a store covers all items, re-

ducing runtime for simple cases.

These optimizations enable the algorithm to handle larger instances (e.g., n = 150)

within the 4-second timeout, with the parallel Go version achieving significant speedup

on multi-core systems.

1. User Query
Receive U = (I, q, lu, r,mu, N)

2. Store Fetching
Query PostgreSQL with PostGIS

(limit 150 stores)

3. Distance Precomputation
Fetch road distances via OSRM

Cache in Redis

4. Data Preprocessing
Initialize bitsets, item-to-store map,

min item costs

5. Algorithm Execution
Beam Search (K = 100)

6. Post-Processing
Sort top N recommendations by score

7. Output
Return recommendations

Log metrics to CSV

Figure 4.3: Vertical waterfall diagram of the Beam Search algorithm.

4.8.4 Pros and Cons

Pros:

• Scalability: The fixed beam width (K = 100) reduces the search space to

O(K · n ·m), enabling faster execution than Branch and Bound for large n.

63

• Near-Optimal Solutions: Beam Search often finds high-quality solutions close

to the optimal, suitable for real-time applications.

• Flexibility: Easily incorporates additional constraints (e.g., brand preferences)

by adjusting the lower bound or beam sorting criteria.

• Parallelization Potential: The Go implementation’s parallel exploration lever-

ages multi-core systems, improving runtime for complex inputs.

Cons:

• Sub-optimality: The heuristic nature of Beam Search may miss the optimal

solution, especially with a small beam width.

• Beam Width Sensitivity: The quality of solutions depends heavily on K,

with small K leading to poorer solutions and large K increasing memory and

runtime.

• Memory Usage: Storing K states, each with store IDs, bitsets, and assign-

ments, can be memory-intensive for large K or m.

• Distance Approximation: The MST-based tour distance overestimates the

true TSP distance, potentially skewing the lower bound and solution ranking.

• Limits Possibility of Multi-Store Recommendations: This algorithm is

always trying to find and recommend users sets of stores containing a single

store. This behavior (Note: not the results) is identical to the number of recom-

mendations given by the branch and bound algorithm optimized using beamer

search.

4.8.5 Limitations and Future Improvements

The Beam Search algorithm, while scalable, has limitations that impact its perfor-

mance in certain scenarios:

• Suboptimality: The fixed beam width sacrifices optimality, particularly for

complex inputs with many stores or items, where the optimal solution may be

pruned early.

64

• Timeout Sensitivity: The 4-second timeout may interrupt exploration, espe-

cially for large n or m, returning incomplete or suboptimal solutions.

• Distance Estimation: Similar to the branch and bound algorithm, the MST

approximation overestimates the TSP distance, leading to suboptimal pruning

or ranking of solutions.

Future improvements could enhance the algorithm’s effectiveness:

• Dynamic Beam Width: Adjust K dynamically based on input size or runtime,

increasing K for small instances to improve solution quality and decreasing it

for large instances to ensure completion.

• Distributed Computing: Extend parallelization to a distributed system (e.g.,

using RabbitMQ) to handle very large datasets (n = 500), partitioning the beam

across machines.

• Hybrid Algorithms: Combine Beam Search with local search (e.g., 2-opt for

TSP) or Genetic algorithms to refine solutions post-beam exploration, improving

score quality.

• Improved Distance Bounds: Use a Held-Karp lower bound for TSP to provide

tighter distance estimates, enhancing pruning accuracy.

• Incremental Output: Implement progressive solution output to return par-

tial results within the 4-second timeout, ensuring usability for time-constrained

scenarios.

These enhancements would make Beam Search more robust for real-time retail ap-

plications, building on its scalability to address the multi-store problem effectively.

This algorithm serves as a practical alternative to exact methods. Further more Beam

Search can be used with Branch and Bound technique by changing the pipeline of

the Branch and Bound algorithm to incorporate Beam Search for reducing the search

space. This is illustrated in the figure 4.4. The pipeline is identical to Branch and

Bound, except for the algorithm execution step, which uses a beam width of K = 1000

to limit exploration for scalability.

65

1. User Query
Receive U = (I, q, lu, r,mu, N)

2. Store Fetching
Query PostgreSQL with PostGIS

(limit 150 stores)

3. Distance Pre-computation
Fetch road distances via OSRM

Cache in Redis

4. Data Pre-processing
Initialize bitsets, item-to-store map,

min item costs

5. Algorithm Execution
Branch and Bound with
Beam Search (K = 1000)

6. Post-Processing
Sort top N recommendations by score

7. Output
Return recommendations

Figure 4.4: Vertical waterfall diagram of the optimized Branch and Bound algorithm.

4.9 Integer Linear Programming

Integer Linear Programming (ILP) provides an exact solution to the multi-store recom-

mendation problem, as defined in Subsection 4.1.1, by formulating it as a constrained

optimization problem solved using the Gurobi solver. Unlike the Beam Search (Subsec-

tion 4.8), ILP guarantees optimality but at a higher computational cost. Compared to

Branch and Bound (Subsection 4.7), ILP uses a mathematical programming approach

rather than explicit tree search. Implemented in Python, it leverages PostgreSQL for

store data, Redis for distance caching, and OSRM for tour distances. This subsec-

tion describes the ILP formulation, outlines its pipeline, discusses optimization steps,

evaluates its pros and cons, and identifies limitations with future improvements.

66

4.9.1 Algorithm Description

The ILP selects a subset of stores S ′ ⊆ S and assigns items A : I → S ′ to minimize

the score:

Score(S ′, A) =
∑
i∈I

pj(i) · qi + w · dtour(S
′), (6)

where pj(i) is the price of item i at store sj ∈ S ′, qi is the quantity, w = 0.5 is the

distance weight, and dtour(S
′) is the tour distance starting and ending at the user’s

location lu, visiting each store in S ′. Constraints include store proximity (within radius

r), sufficient stock (kj(i) ≥ qi), and payment method compatibility (mu).

The ILP formulates the problem using binary variables:

• xs ∈ {0, 1}: Indicates whether store s ∈ S is selected (xs = 1).

• yi,s ∈ {0, 1}: Indicates whether item i ∈ I is assigned to store s ∈ S (yi,s = 1).

The objective minimizes the total cost (tour distance is approximated post-solution

due to TSP complexity):

min
∑
i∈I

∑
s∈S

ps(i) · qi · yi,s (7)

Subject to:

• Item Assignment: Each item is assigned to exactly one store:

∑
s∈S:ks(i)≥qi,mu∈Ms

yi,s = 1 ∀i ∈ I

• Store Selection: Items can only be assigned to selected stores:

yi,s ≤ xs ∀i ∈ I, s ∈ S : ks(i) ≥ qi,mu ∈ Ms

• Minimum Stores: At least one store is selected:

∑
s∈S

xs ≥ 1

The ILP is solved using Gurobi with a 4-second timeout, producing the optimal store

set and item assignments. To generate up to N = 20 recommendations, the solver

67

iterates, adding constraints to exclude previous store combinations (e.g.,
∑

s∈S′ xs ≤

|S ′| − 1). Post-solution, the tour distance is computed using a greedy TSP heuristic

(nearest-neighbor from lu to stores and back), and the score is calculated as s =

c+0.5 ·dtour. The algorithm ensures feasibility by checking stock and payment method

constraints during variable definition. Complete psuedocode can be found under the

Appendix A.6 listing.

The time complexity depends on Gurobi’s branch-and-cut algorithm, typically expo-

nential in the worst case (O(2n+m) for n stores and m items) but efficient for small

instances due to solver optimizations. The space complexity is O(n ·m) for variables

and constraints, plus O(n2) for the distance matrix.

4.9.2 Pipeline

The ILP is integrated into a pipeline that processes user input and delivers recommen-

dations in real-time, adhering to the 4-second timeout. The pipeline, similar to that

of Beam Search (Subsection 4.8.2)is tailored for exact optimization. The steps are:

1. User Query: Receive the user input U = (I, q, lu, r,mu, N), specifying items,

quantities, location, radius, payment method, and number of recommendations.

2. Store Fetching: Query a PostgreSQL database with PostGIS to retrieve stores

within radius r of lu, with sufficient stock for at least one item in I and supporting

mu. Limit to 150 stores, ordered by ascending item coverage to favor sparse stock

and multi-store solutions.

3. Distance Precomputation: Fetch road distances from an OSRM (Open Street

Routing Machine) backend server through the table API and cache in Redis.

Construct a distance matrix for tour distance calculations.

4. Data Preprocessing: Initialize item IDs, quantities, and store-to-items map-

pings to define ILP variables and constraints efficiently.

5. Algorithm Execution: Solve the ILP using Gurobi with a 4-second timeout,

generating up to N recommendations by excluding previous solutions.

68

6. Post-Processing: Sort the top N recommendations by score and format as

(S ′, A) pairs, including store IDs, item assignments, total cost, tour distance,

and score.

7. Output: Return recommendations to the user, logging runtime, best score, set

size, and validity to the console.

The pipeline is visualized in Figure 4.5, a vertical waterfall diagram showing the flow

from user input to recommendations. Redis caching and optimized database queries

minimize latency, with ILP solving being the primary computational bottleneck. The

pipeline processes user input through database queries, distance caching, and exact

optimisation to deliver optimal recommendations within a 4-second timeout.

1. User Query
Receive U = (I, q, lu, r,mu, N)

2. Store Fetching
Query PostgreSQL with PostGIS

(limit 150 stores)

3. Distance Precomputation
Fetch road distances via OSRM

Cache in Redis

4. Data Preprocessing
Initialize item IDs, quantities,

store-to-items map

5. Algorithm Execution
ILP with Gurobi (N = 20)

6. Post-Processing
Sort top N recommendations by score

7. Output
Return recommendations
Log metrics to console

Figure 4.5: Vertical waterfall diagram of the Integer Linear Programming algorithm.

69

4.9.3 Optimization Steps

The ILP implementation is optimised for efficiency and multi-store solutions, building

on lessons from Beam Search and Genetic Algorithm:

• Sparse Stock Prioritisation: The fetch_stores query orders stores by as-

cending item coverage (ORDER BY item_coverage ASC), favouring stores with

partial stock to encourage multi-store solutions, mitigating the single-store bias

observed in earlier algorithms (Subsection 4.8).

• Reduced Distance Weight: Setting w = 0.5 (down from 1.0) in the post-

processed score reduces the tour distance penalty, making multi-store solutions

competitive against single-store ones with shorter distances.

• Distance Caching: A precomputed distance matrix, stored in Redis with

batched OSRM queries, minimizes network overhead for tour distance calcu-

lations.

• Efficient Variable Definition: Variables are only created for feasible item-

store pairs (where stock and payment methods are compatible), reducing the

ILP’s size and solver runtime.

• Gurobi Optimizations: Gurobi’s branch-and-cut algorithm leverages presolv-

ing, cutting planes, and parallel processing to accelerate solving, optimized for

the 4-second timeout.

These optimizations ensure the ILP delivers optimal multi-store recommendations

within the timeout, scalable to real-world inputs (n = 150, m = 8).

4.9.4 Pros and Cons

Pros:

• Optimality: ILP guarantees the optimal solution (within the timeout), provid-

ing a benchmark for heuristic algorithms like Beam Search and Genetic Algo-

rithm.

• Flexibility: The ILP formulation easily incorporates additional constraints

(e.g., maximum stores, brand preferences) by adding variables or constraints.

70

• Real-World Integration: The real-world version integrates seamlessly with

PostgreSQL, Redis, and OSRM, handling complex datasets with unit conver-

sions.

• Precision: Exact optimization ensures accurate cost minimization, critical for

small instances where optimality is feasible.

Cons:

• Scalability: The exponential complexity limits performance for large instances

(n > 50), often hitting the 4-second timeout.

• Distance Approximation: The post-processed greedy TSP heuristic overesti-

mates tour distances, skewing the final score compared to the ILP’s cost opti-

mization.

• Resource Intensity: Gurobi requires significant memory and computational

resources, less practical for resource-constrained environments.

• Timeout Dependency: The 4-second timeout may yield suboptimal or incom-

plete solutions for complex inputs, reducing recommendation count.

4.9.5 Limitations and Future Improvements

The ILP, while optimal, has limitations that impact its practical use:

• Scalability: The exponential time complexity makes ILP impractical for large

n or m, often exceeding the 4-second timeout.

• Distance Handling: The inability to include TSP in the ILP objective (due

to non-linearity) relies on a post-processed greedy heuristic, reducing score ac-

curacy.

• Solver Dependency: Reliance on Gurobi introduces licensing costs and com-

patibility issues, limiting deployment flexibility.

• Timeout Sensitivity: The fixed timeout may interrupt solving, returning fewer

than N recommendations or suboptimal solutions.

71

One of the main limitations was the lack of libraries for library compatibility with

other languages (Due to timeline constraints, conversion of those library API to Go

was abandoned and considered as future work). Initial trials of this algorithm used

Google’s OR-Tool library, written using the C++ language as a library for Python

programs. Code for the attempt can be found under Appendix A.6.1.

Here are some future improvements that could enhance the ILP’s effectiveness:

• Relaxation Techniques: Use Linear Programming relaxation or Lagrangian

relaxation to provide tighter bounds, speeding up the solver for large instances.

• TSP Integration: Approximate TSP within the ILP using linear constraints

(e.g., Miller-Tucker-Zemlin formulation) to improve score accuracy.

• Distributed Solving: Leverage distributed ILP solvers (e.g., Gurobi’s dis-

tributed MIP) to handle large datasets (n = 500) across machines.

• Heuristic Initialization: Warm-start the ILP with solutions from Beam Search

or Genetic Algorithm to reduce solving time.

• Incremental Output: Implement solution pooling in Gurobi to return partial

results within the timeout, ensuring usability.

These enhancements would make ILP more practical for real-time retail applications.

ILP algorithms are designed to give the optimal solution, meaning that taking multi-

ple recommendations would go against their design decisions. This method is a good

option when it comes to finding the most optimal stores to visit.

Summary and the selection of a suitable algorithm is included in the next section, which

is dedicated to analysis. The next section discusses the route planning algorithm and

its implementation.

72

4.10 Store Route Planning

The recommendation algorithms presented earlier generate a set of store combinations

from which customers can select one to purchase goods. This subsection introduces

an adaptive genetic algorithm designed to determine the optimal route for visiting

the stores in the chosen combination, minimizing travel costs in terms of distance and

time.

4.10.1 Problem Definition

The objective is to identify the most efficient route for a pre-selected store combination,

factoring in travel costs defined by total distance and estimated travel time. The

algorithm incorporates real-time traffic data to provide accurate time estimations,

utilizing either the Haversine distance formula or the Google Maps API for distance

calculations.

The algorithm comprises two primary components:

• Genetic Algorithm (GA)

The Genetic Algorithm employs evolutionary techniques—selection, crossover,

mutation, and elitism—to explore the space of store combinations and their

possible visiting orders. It identifies the sequence that minimizes the total travel

cost, which combines distance and time metrics.

• A* Algorithm

The A* Algorithm computes the shortest path for a given store sequence, starting

and ending at the customer’s location. It leverages a heuristic-driven approach,

integrating real-time traffic data and cached distance information to optimize

route efficiency.

4.10.2 Methodology

This algorithm consists of two main components as earlier mentioned and employs a

hybrid(adaptive) genetic algorithm with the following features.

• A* path finding algorithm for accurate travel time and distance estimations

• Traffic-aware fitness evaluation

73

• Adaptive genetic algorithm that adjust based on population diversity.

The algorithm iteratively evolves a population of potential solutions. Flow char of the

algorithm is illustrated in the figure 4.6

4.10.3 A* algorithm

This algorithm is integrated into fitness evaluation by computing the shortest path for

a given store order. Key features of the algorithm are listed below and the complete

psuedocode can be found under Appendix B.1.

• Distance calculation -

Uses the haversine distance formula or Google Maps API. Precalculated distances

are cached to prevent repeated work.

• Traffic data integration -

uses the traffic factor to modify the time spent traveling.

• Heuristic Function -

calculates the bare minimal distance for the stores that are left.

4.10.4 Genetic Algorithm

This algorithm is used to search the optimal combination and visiting order. It operates

on a population of solutions, each representing a combination index and a permutation

of store IDs. Key steps are higlighted below and the complete psuedocode can be found

under Appendix B.2

• Initialization

Generate random solutions by shuffling store order

• Fitness evaluation

Uses A* algorithm to compute the total distance and time

• Tournament selection

Tournament selection - Eleminate unsatisfied solutions

• Crossover

Combines store orders

74

• Mutation

Sawps store orders or combinations randomly

• Elitism

Preserves the optimal solution to convergence.

4.10.5 Complexity Analysis

The complexity of the route planning algorithm is evaluated based on its two pri-

mary components: the A* pathfinding algorithm and the Genetic Algorithm (GA).

This analysis provides insight into the time and space resources required for efficient

execution, ensuring the algorithm’s scalability and performance are well understood.

• Time Complexity - The A* pathfinding algorithm, employed to evaluate indi-

vidual paths between stores, operates with a time complexity of O(n) per path

evaluation, where n represents the number of stores. This efficiency is achieved

by assuming that distance data is cached, enabling rapid access during computa-

tions. In contrast, the Genetic Algorithm (GA) encompasses multiple operations

per generation. The fitness evaluation process requires O(p · n) time, where p is

the population size and n is the time to assess each solution’s fitness. Tourna-

ment selection, a critical operation within the GA, incurs a time complexity of

O(p · k · n), with k denoting the tournament size. Additionally, crossover and

mutation operations are executed in O(p · n) time. When considering all gen-

erations, the GA’s overall time complexity becomes O(g · p · n · k), where g is

the number of generations. Consequently, the total time complexity of the route

planning algorithm is dominated by the GA, resulting in O(g · p · n · k).

• Space Complexity - In terms of space complexity, the A* pathfinding algorithm

necessitates O(n2) space for caching distances between stores and an additional

O(n) space for storing individual paths. Meanwhile, the Genetic Algorithm

requires O(p · n) space to maintain the population of solutions and O(g) space

to track statistics across generations. Combining these requirements, the overall

space complexity of the algorithm is O(n2 + p · n + g), reflecting the storage

demands of both the A* and GA components.

75

4.10.6 Pros and Cons

The route planning algorithm offers several notable advantages that enhance its ef-

fectiveness and adaptability in real-world scenarios. One of its primary strengths is

the combination of A*’s optimality for pathfinding with the Genetic Algorithm’s (GA)

combinatorial search capabilities, allowing it to efficiently explore and optimize com-

plex store sequences. The algorithm also supports real-time traffic data and accurate

distance calculations, ensuring that the routes generated are practical and reflective

of current conditions. Furthermore, the GA component provides flexibility and cus-

tomization through adjustable parameters, enabling fine-tuning for specific use cases

or constraints. Additionally, the use of caching significantly improves efficiency, par-

ticularly for repeated queries, by reducing redundant computations and speeding up

response times.

Despite these strengths, the algorithm has certain limitations that must be considered.

A key drawback is the non-deterministic nature of the results, as the GA’s stochastic

processes can lead to variability in the solutions generated, potentially affecting con-

sistency across different runs. The algorithm’s reliance on external APIs for real-world

routing data introduces a dependency that could impact performance or availability

if these services experience downtime or rate limiting. Moreover, the distance cache,

while beneficial for efficiency, becomes memory-intensive as the number of stores n

increases, potentially posing scalability challenges for very large datasets. These con-

siderations highlight the need for careful parameter tuning and resource management

when deploying the algorithm in production environments.

This subsection discussed the route planning algorithm; the evaluation details of this

algorithm can be found in the Section 5.

76

Figure 4.6: Main Flow Chart of the Route Planning Algorithm

77

4.11 Shopping list recommendation algorithm

To recommend a user a list of items to consider buying, an item recommendation

algorithm was developed. A machine learning algorithm was deemed to be suitable

for the task. As a dataset was not available, a simulated dataset was used to pick

a suitable model for recommending items. An explanation of how the dataset was

created and used to evaluate the models can be found below.

This study aimed to evaluate the performance of various collaborative filtering

models for generating item recommendations, framed as predicting the likelihood of

items appearing in users’ shopping lists. The methodology encompassed the following

stages:

4.11.1 Data Generation

For each test,

Simulated Users: A defined number of unique users were created, each with at-

tributes such as a unique identifier, username, name, email, contact number, and

password credentials. Timestamps for creation and updates were also generated.

Item Catalog: A pre-existing dataset of items (loaded from a csv file), containing

unique item codes and names, served as the pool of available items.

Simulated Shopping Lists: User-item interactions were simulated to represent the

items users might include in their shopping lists. This simulation was governed by

several configurable parameters:

• Number of Items per List: Controlled the maximum number of unique items

a user could include in a single shopping list.

• Number of Lists per User: Determined the total number of shopping lists

simulated for each user.

• Item List Persistence Threshold: Introduced a temporal aspect to list cre-

ation. A proportion of the items from a user’s previous simulated list was carried

over to their subsequent list, mimicking users often considering similar or related

items over time.

78

• Randomness: Random sampling was employed to select users, items, and quan-

tities, with a fixed random seed for result reproducibility.

• Store Association: While store data was incorporated, the primary focus of

the recommendation evaluation was on user-item relationships. Each simulated

list entry was associated with a randomly chosen store identifier.

Shopping List Entries: Each simulated instance of an item appearing in a user’s

shopping list generated an entry linking the user to a specific item and store, along

with a quantity (representing, for example, the desired quantity of that item), a unique

list identifier, and timestamps.

4.11.2 Recommendation Model Training and Evaluation

Collaborative Filtering Models: A range of collaborative filtering algorithms from

the Surprise library were evaluated:

• Singular Value Decomposition (SVD): A matrix factorization method de-

composing the user-item

inclusion frequency matrix into lower-dimensional user and item latent factor

matrices.

R ≈ UΣVT

• SVD++: An extension of SVD that incorporates implicit signals (the presence

of items in lists) to enhance prediction accuracy.

r̂ui = µ+ bu + bi + qT
i

pu +
1√

|N(u)|

∑
j∈N(u)

yj


• Non-negative Matrix Factorization (NMF): A matrix factorization tech-

nique with non-negativity constraints on the factor matrices.

R ≈ WHT

• KNN-based Algorithms (KNNBasic, KNNWithMeans, KNNWithZS-

core, KNNBaseline):

79

Neighborhood-based methods predicting item inclusion based on similarities be-

tween users or items. Variations include mean centering, Z-score normalization,

and baseline estimates.

r̂ui =

∑
v∈Nk(u,i) sim(u, v) · rvi∑
v∈Nk(u,i) |sim(u, v)|

or r̂ui =

∑
j∈Nk(i,u) sim(i, j) · ruj∑

j∈Nk(i,u) |sim(i, j)|

• Co-clustering: A technique that simultaneously groups users and items based

on their co-occurrence in shopping lists.

• NormalPredictor: A non-personalized baseline model predicting inclusion ran-

domly based on overall item inclusion frequencies.

Data Preparation for Surprise: The generated shopping list data (user ID, item

ID, and quantity) was formatted into a Surprise Dataset object. The quantity was

used as the interaction strength for model training.

Train-Test Split: The data was partitioned into training and testing sets to assess

the models’ ability to generalize to unseen user-item relationships.

Model Training: Each selected model was trained on the training dataset.

Recommendation Generation: For each user, the trained models predicted the

expected quantity for items not yet appearing in their lists. The top N items with the

highest predicted quantities were considered recommendations.

Evaluation Metrics: The quality of recommendations was evaluated using precision,

recall, and F1-score.

• Relevant Items: Items considered "relevant" for a user were those appearing

in their simulated lists with a frequency exceeding a threshold determined by the

total number of lists per user and a "relevancy threshold."

• Precision: The proportion of recommended items that were actually relevant

to the user.

Precision =
|{Recommended Items} ∩ {Relevant Items}|

|{Recommended Items}|

• Recall: The proportion of relevant items that were successfully recommended

80

to the user.

Recall =
|{Recommended Items} ∩ {Relevant Items}|

|{Relevant Items}|

• F1-Score: The harmonic mean of precision and recall.

F1-Score = 2× Precision × Recall
Precision + Recall

Averaging Metrics: Precision, recall, and F1-score were calculated for each user, and

the average across all users was computed for each model and parameter configuration.

4.11.3 Parameter Exploration

A systematic exploration of different values for key simulation parameters was con-

ducted:

• Number of Items per List

• Number of Lists per User

• Item List Persistence Threshold

• Relevancy Threshold

All selected recommendation models were trained and evaluated for each combination

of these parameters to observe their impact on model performance.

4.12 Discount Engine

As discussed in the previous section, taking the diversity and complexity of discount

rules, this system adopts a rule-based method with a specific syntax to define discounts.

This model has its advantages and disadvantages. It is a language like SQL, but for

describing discounts and their applicable conditions. This language allows users to

specify conditions and actions for applying discounts to products or carts, using a

structured format parsed by a Go-based engine. The rules are defined as strings and

each rule consists one or two conditions, optionally connected by a logical operator,

followed by an action. This engine is called, DCDQL(Discount Condition Definition

81

Query Language). Syntax definition of the discount rule language can be found under

Appendix C.1 in the form of context-free grammar (CFG).

Below includes rules defined using this language with explanatory descriptions.

1. product_id IN [1, 2, 3] THEN

product_percentage 10

• Description: Applies a 10% discount to products with IDs 1, 2, or 3.

2. min_cart_price > 500 THEN

cart_percentage 8

• Description: Applies an 8% discount to the cart if the total exceeds 500.

3. product_id IN [4, 5] AND category_id = electronics THEN

product_flat_amount 20

• Description: Applies a $20 discount to products with IDs 4 or 5 in the

electronics category.

4. purchase_quantity >= 5 THEN

cart_flat_amount 50

• Description: Applies a $50 discount to the cart if a product’s requested

quantity is at least 5.

This discount engine has three main parts. Lexer, parser and an evaluator. Lexer

is in charge of tokenizing the strings and creating strings. The parser is in charge

of enforcing the language syntax and is in charge of working on the tokens. Then,

finally, the evaluator. The evaluator is the main entity in charge of calculating the

actual discounts based on the rules defined by the clients. Complete psuedocode of

the discount engine can be found under Appendix C.2.

To address the complexity that front-end users may encounter when defining rules, the

system includes rule builders—user interface components designed to enable the dy-

namic creation of rules. Below are selected screenshots showcasing these rule builders.

In this implementation of the discount engine, no evaluation was performed due to

the inherent characteristics of the evaluator. The operational context of the evaluator

82

(a) Start the discount definition through
the interface

.

(b) Defining a discount for the condition
CATEGORY_ID equals 10000

Figure 4.7: Selected Screenshots of the discount definition interface - set 1

(a) Adding a second condition to the
above condition using the AND connec-
tor

.

(b) Defining a action of the discount

Figure 4.8: Selected Screenshots of the discount definition interface - set 2

varies depending on the specific requirements of the application, resulting in changes

to data types and runtime complexities. These variations are further influenced by

83

(a) Final discount and it’s English trans-
lation

.

Figure 4.9: Selected Screenshots of the discount definition interface - set 3

hardware constraints, which impact the engine’s overall performance. Although the

discount engine was developed, it was not adopted for practical use. This decision

stems from its immaturity and inability to process discounts efficiently. A key limita-

tion arises from the backtracking nature of the evaluation process. The algorithm first

computes discounts for a subset of products before transitioning to evaluate cart-level

discounts. However, the current design of the discount engine struggles to manage

these scenarios effectively, often leading to redundant reevaluation of previously as-

sessed cases. Discounts are not treated as a primary factor in the recommendation

process. Instead, they are included in the output solely to inform the user of potential

discounts that may be available at a given store. This approach ensures that while

discounts are acknowledged, they do not drive the core recommendation logic.

4.13 Best Practices for Standardisation

The main idea was to propose guidelines for the APIs associated with the store locator

application. The following are some examples of the guidelines defined in the system.

84

System uses JSON data formats to communicate with the outside world, while using

protocol buffers to establish inter-server communication. This is done in order to

reduce latency in the server-to-server communication. And JSON is used due to its

ease of use, readability and understandability. The system uses HTTP status codes to

indicate the status of each request to the client. In the process to increase the quality

of the data, it was decided not to get the users enter new products to the system, the

product list is maintained as a separate entity with the following fields.

{

"productName": "Sliced Sourdough Bread",

"code": "00151733",

"brand": "Trader Joe’s",

"description": "Sliced bread for all",

"brandTags": "trader-joe-s",

"category": {

"category": "Plant-based foods and beverages",

},

"labels": "Organic,EU Organic,FR-BIO-01",

"imageUrl": "http://www.image-url.com/slice-bread",

"productQuantity": "36 slices - 0.8kg",

"servingSize": "1 slice (52 g)",

"unitOfMeasure": "pcs"

}

Each product must have information about the fields, otherwise, it could lead to

inconsistencies. Under each service for each of the routes that are implemented and

exposed to the outside world, there must be a descriptive prefix in the URL path to

inform the service being invoked. For example,

Standard: Use RESTful APIs with OpenAPI 3.0 specifications.

GET /products: Retrieve product details.

GET /inventory: Retrieve stock levels by store.

POST /inventory/update: Update stock quantities.

Authentication: Use OAuth 2.0 for secure access.

85

Response Format: JSON, with standard error codes (e.g., 200, 404).

Each store in the system must have the following data.

{

"name": "Cop-City Kirimatiyana",

"username": "Cop-City Stores",

"email": "cop_city_kirimatiyana_a1@email.org",

"address": "No, 34/1, Kirimatiyana Junction, Gampaha",

"contactNumber": "+943596171048",

"webUrl": "www.copcity-kirim.com",

"locationPoint": {

"latitude": 7.3544387,

"longitude": 79.8857443

}

}

This would ensure the consistency, likewise, there is a standard defined for each and

every API endpoint that the system provides, and versioning will be done to provide

backwards compatibility in case of an update. Following are some of the guidelines

defined as action items regarding maintaining the quality of the APIs.

• Governance

– Committee: Form a Retail Data Standards Committee to oversee updates.

– Review Cycle: Update standards annually or as needed.

– Feedback: Collect input via a dedicated portal or email.

• Implementation Support - To prevent users from deviating from the standard

– Tools: Provide a JSON schema validator and API testing tool.

– Documentation: Include detailed guides and FAQs.

– Training: Offer webinars for store managers.

– Support: Establish a help desk for technical assistance.

In this project, the following data sources were used to generate test data.

86

• Location data of stores and users:

– Geofabrik

– Planet OSM

– Overpass API

Which are associated with the open source project -

OpenStreetMap(OpenStreetMap on GitHub 2025) project.

• Product information:

– OpenFoodFacts(Open Food Facts 2025) - Another open source project ded-

icated to maintaining and accumulating product data from all over the

globe.

Above information can be summarized as follows,

Table 4.1: Store Locator API and data collection Guidelines

Aspect Store Locator Guidelines

Data Format JSON
API Structure RESTful APIs, OpenAPI 3.0
Collection Method Web portal, API, CSV uploads
Governance Retail Data Standards Committee
Tools Provided Schema validator, API testing tool
Adoption Strategy Incentives, training

The next section will present the evaluation results of the algorithms and the recom-

mendation model.

87

5 Results and Analysis

This section will present the results and the evaluation of the results collected. Each

subsection included in this section will have a similar anatomy, including the evaluation

methodology followed, dataset generation, metrics used, and the results and analysis.

5.1 Evaluation of Route Planning Algorithm

This subsection provides a detailed description of the evaluation process for the imple-

mentation of the store route planning algorithm outlined in Subsection 4.10. It begins

by explaining the evaluation methodology, then delves into performance metrics, fol-

lowed by dataset generation, parameter configuration, and finally, the presentation of

results and analysis based on the gathered data.

5.1.1 Evaluation Methodology

Assessing the algorithm’s efficacy, efficiency, and resilience under a range of situa-

tions and parameter setups is the goal of the evaluation. To examine the algorithm’s

performance from several angles, the methodology employs an organized approach.

5.1.2 Performance Metrics

The performance metrics employed to evaluate the route planning algorithm are or-

ganized into three distinct categories: Solution Quality, Algorithm Efficiency, and

Algorithm Robustness. Solution Quality metrics assess the practical effectiveness of

the generated routes by examining key factors such as total travel distance, estimated

journey time, and cost savings, all of which are critical for ensuring real-world appli-

cability. Algorithm Efficiency metrics focus on the computational performance of the

algorithm, measuring aspects such as execution time and convergence rate to verify its

suitability for real-time applications. Algorithm Robustness metrics, in turn, evaluate

the reliability and consistency of the algorithm, ensuring stable results across multiple

runs and maintaining diversity in solutions to avoid suboptimal outcomes.

Solution Quality

• Total distance (meters): The total travel distance of the optimized route

88

• Total time estimate (seconds): The estimated time to complete the journey

• Average distance per store: Total distance divided by number of stores visited

• Average time per store: Total time divided by number of stores visited

• Estimated savings (%): Percentage improvement over baseline routes

Algorithm Efficiency

• Execution time (seconds): Time required to complete the optimization

• Convergence generation: Generation at which the algorithm stabilizes

• Convergence rate: Rate of improvement per generation

Algorithm Robustness

• Final diversity: Measure of genetic diversity in the final population

• Solution consistency: Coefficient of variation across multiple runs

5.1.3 Dataset Generation

Four separate datasets were created (full psuedocode used for generating data can be

found under Appendix D.1 to reflect common use cases and edge situations in order

to guarantee a comprehensive evaluation:

• Small dataset: 4 store combinations with 5 stores per combination

• Medium dataset: 10 combinations with 12 stores per combination

• Large dataset: 20 combinations with 20 stores per combination

• Edge cases:

– Single store dataset: 1 combination with 1 store

– Empty dataset: No valid combinations

89

5.1.4 Parameter Configurations

Several genetic algorithm parameter configurations were tested in the evaluation:

• Population size: 10, 50

• Generations: 5, 20, 50

• Mutation rate: 0.1, 0.2

• Crossover rate: 0.9 (fixed)

• Elite size: 2 (fixed)

5.1.5 Result and Analysis

The following are some evaluation results related to the Adaptive Genetic Algorithms

While the system details are as follows,

• Host OS: Windows 10 x86 64 (via WSL2)

• Kernel: 5.15.167.4-microsoft-standard-WSL2

• Shell: Bash 5.2.15

• CPU: 13th Gen Intel(R) Core(TM) i5-1335U

• Memory: 16 GB

• Python Version: Python 3.10.12

Solution Quality Analysis

The results for optimal route solutions across different datasets are presented in Ta-

ble 5.1.

Table 5.1: Best Route Optimization Results by Dataset (TD - Total Distance, CG -
Convergence Generation)

Dataset Best TD (m) Parameter Configuration Execution Time (s) CG
Small 39,069.89 pop=10, gen=5, mut=0.1 0.00 4
Medium 78,307.78 pop=10, gen=50, mut=0.2 0.04 49
Large 153,194.55 pop=50, gen=20, mut=0.2 0.02 9
Single 10,108.46 pop=10, gen=5, mut=0.1 0.00 0

90

Figure 5.1: Total distance vs. generations across different datasets

Figure 5.1 illustrates the total distance values across different datasets and their con-

vergence patterns.

Algorithmic Efficiency

Even for the largest dataset, the execution timings show remarkable efficiency, rou-

tinely falling below 0.11 seconds. Given the difficulty of the route optimization prob-

lem, this performance is noteworthy and points to a highly efficient implementation of

the underlying data structures and genetic operators.

Table 5.2: Average Execution Time by Dataset and Configuration

Dataset Pop=10, Gen=5, Mut=0.1 Pop=10, Gen=5, Mut=0.2
Small 0.01s 0.0s
Medium 0.01s 0.1s
Large 0.01s 0.02s
Single 0.00s 0.0s

91

Figure 5.2: Execution time vs. dataset
size

Figure 5.3: Execution time vs. Gener-
ations

Figure 5.4: Execution time vs. Popu-
lation

Figure 5.5: Execution time vs.
Crossover

Figures starting from the Figure 5.2 to Figure 5.5, illustrates the comparison of ex-

ecution time variations across multiple parameters: (a) dataset size, (b) number of

generations, (c) population size, and (d) crossover rate.

Convergence Analysis

Information about how soon the algorithm finds optimal or nearly optimal solutions

is provided by the convergence generation data:

92

Figure 5.6: Convergence vs. dataset
size

Figure 5.7: Convergence vs. Popula-
tion size

Figure 5.8: Convergence vs. Genera-
tion Figure 5.9: Convergence vs. Crossover

Figures staring from the Figure 5.6 to Figure 5.9, illustrates the comparison of conver-

gence patterns across multiple parameters: (a) dataset size, (b) number of generations,

(c) population size, and (d) crossover rate.

The evaluation of this route optimization algorithm based on a genetic algorithm

with A* algorithm illustrates its efficiency and robustness. A variety of data sets

with different parameters shows the comprehensive stat. Smaller dataset performs

better with few configurations (ex: small population size, few generations). When it

comes to large sets with more complexity, the algorithm performs better with different

parameters (ex: large population). Algorithm shows the ability to handle edge cases

as well.

93

5.2 Evaluation of Optimisation Algorithms

In this section, an analysis of the optimisation algorithms discussed in the previous

sections will be conducted. The multi-store recommendation problem, as defined in

Subsection 4.1.1, requires selecting a subset of stores and assigning items to min-

imise a score combining total cost and tour distance, subject to constraints like stock

availability and store proximity. This subsection compares five algorithms designed

for this problem: Branch and Bound (unoptimised), Branch and Bound with Beam

Search, Parallel Branch and Bound, Integer Linear Programming (ILP), and Beam

Search. Each algorithm is evaluated theoretically, focusing on optimality, scalability,

complexity, flexibility, and practical considerations. A particular emphasis is placed

on why Parallel Branch and Bound may be preferred, while assessing whether ILP or

Beam Search could offer superior solutions in certain contexts. Table 5.9 summarises

the comparison, followed by a discussion and a summary justifying the selection of

Parallel Branch and Bound.

5.2.1 Algorithm Descriptions

This section revisits the algorithms from Subsection 4.3, offering detailed descriptions

to enhance understanding of their mechanisms and applications.

Branch and Bound (Unoptimised) As explained before, these types of recursive

algorithms systematically explore the solution space by constructing a tree where nodes

represent partial store selections and item assignments. It uses a bounding function,

typically based on cost and estimated tour distance, to prune branches that cannot

results in better solutions than the current best. The algorithm guarantees optimality

by evaluating all feasible combinations (this is very costly, for an input of the size 500

stores, 50 items and 2 payment methods), due to its exhaustive nature leads to high

computational complexity, especially for large numbers of stores or items. Pruning

relies on tight bounds, but without optimisations, it explores many redundant or

suboptimal paths, making it impractical for large instances. With early pruning and

the incorporation of concurrency, these types of algorithms could be performant as

described in the latter part of this section.

Branch and Bound with Beam Search integrates Beam Search’s heuristic prun-

ing into Branch and Bound. At each level of the search tree, it keeps only a fixed

94

number of promising nodes (the beam width, test for a BEAM_WIDTH=100 and

BEAM_WIDTH=200), discarding others regardless of their potential (could remove

more promising options, this is considered aggressive pruning). This reduces the num-

ber of explored paths, trading optimality for efficiency. The bounding function still

guides pruning, but the beam width limits the solution space, potentially missing op-

timal solutions. This hybrid approach balances exploration and speed but depends

heavily on the beam width parameter, which requires careful tuning to avoid this

method from becoming an aggressive pruning method.

Parallel Branch and Bound enhances Branch and Bound by distributing the ex-

ploration of the search tree across multiple processors or threads (or machines, but

in this context, distributed computing is not evaluated nor extensively looked into;

rather, an overview was given in a previous section). Each processor explores a subset

of branches independently, sharing the best solution found to tighten bounds glob-

ally. This preserves the optimality guarantee of unoptimized Branch and Bound while

significantly reducing computation time through parallelization. The effectiveness de-

pends on the number of processors and the overhead of communication, but it scales

well for large instances, making it suitable for real-time applications with moderate to

large datasets.

Integer Linear Programming (ILP) formulates the problem as a mathematical

optimisation model with binary variables for store selection and item assignment.

It minimises a cost-based objective (with tour distance approximated post-solution),

subject to constraints ensuring each item is assigned to one store with sufficient stock.

Other than most of the methods discussed so far, this algorithm is the easiest when it

comes to adding new constraints or conditions (Just add a new variable to solve for).

But due to its nature of mathematical modelling, as the number of variables to solve

for increases, the run time and the space time start to increase. Solved using solvers

like Gurobi, ILP guarantees optimality within a time limit but relies on branch-and-

cut techniques, which can be computationally intensive. Its declarative nature allows

easy constraint modifications, but scalability is limited for very large instances due to

the exponential nature of integer programming.

Beam Search is a heuristic algorithm that explores the solution space level by level,

maintaining a fixed number of partial solutions (beam width) at each step. It greedily

95

selects stores and assigns items based on a score combining cost and estimated tour

distance, discarding less promising solutions. It will restrict the number of possible

solutions to the beam width. Beam Search sacrifices optimality for speed, making it

highly efficient for large instances. However, its reliance on local decisions and fixed

beam width can lead to suboptimal solutions, especially if early choices exclude better

paths.

5.2.2 Comparison

Table 5.3 and Table 5.4 compares the five algorithms across key theoretical dimensions:

optimality, scalability, time complexity, space complexity, flexibility, and practical

considerations. Each dimension is evaluated qualitatively to highlight trade-offs and

inform the choice of Parallel Branch and Bound.

Table 5.3: Comparison of Branch & Bound Variants

Criterion B&B (Unopt.) B&B with Beam Parallel B&B

Optimality Guaranteed Not guaranteed;
depends on beam
width

Guaranteed

Scalability Poor; exponential
growth

Moderate; limited
by beam width

Good; scales with
processors

Time Complexity Exponential
(O(2n+m))

Reduced exponen-
tial (O(b · d))

Exponential, paral-
lelized

Space Complexity High; stores full
tree

Moderate; stores
beam

High; distributed
across processors

Flexibility Moderate; requires
bound redesign

Moderate; tuning
beam width

Moderate; same as
unoptimized

Practical Considerations Impractical for
large instances

Sensitive to beam
width tuning

Requires parallel
hardware

n: # stores, m: # items, b: beam width, d: tree depth.

96

Table 5.4: Comparison of ILP and Beam Search

Criterion ILP Beam Search

Optimality Guaranteed (within time limit) Not guaranteed; local optima
Scalability Moderate; solver-dependent Excellent; linear with beam

width
Time Complexity Exponential (solver-

dependent)
Linear in beam width (O(b ·
m))

Space Complexity Moderate; solver manages
memory

Low; stores beam

Flexibility High; easy constraint addition Low; fixed heuristic structure
Practical Considerations Solver dependency, licensing Fast but suboptimal
n: # stores, m: # items, b: beam width, d: tree depth.

The following are some evaluation results related to the branch and bound vari-

ants. Evaluations were conducted on, PostgreSQL DBMS, hosting 8,927 products,

948 stores, and 7,191,173 store-product mappings and Redis server, with 75.96 MB

memory usage on a Docker container. While the system deatils are as follows,

• Host OS: Windows 10 x86_64 (via WSL2)

• Linux Distro: Debian GNU/Linux 12 (Bookworm)

• Kernel: 5.15.167.4-microsoft-standard-WSL2

• Shell: Bash 5.2.15

• CPU: Intel Core i7-11800H (8 cores / 16 threads)

• Memory: 8 GB (6.7 GB used during tests)

• Docker: Engine 28.0.1, Compose v2.33.1

• Go Version: go1.23.5

• PostgreSQL: Version 17.4 (Debian PGDG)

97

Table 5.5: Performance Timing Metrics for Each Algorithm

Algorithm Avg Algo
Duration (s)

Avg Query
Duration (s)

Success Rate

beam_search 0.064 0.166 0.483
beam_search_set_limited 0.064 0.166 0.483
branch_and_bound 0.096 0.172 0.600
branch_and_bound_parallel 0.035 0.166 0.539
branch_and_bound_with_beam 0.091 0.166 0.112
genetic 0.058 0.172 0.282

Figure 5.10: Recommendation Algorithm Average Durations

Table 5.6: Performance Quality Metrics for Each Algorithm

Algorithm Avg Best
Score

Avg Num
Items

Avg Num
Stores

beam_search 2328.44 21.24 13.03
beam_search_set_limited 2296.28 21.24 13.03
branch_and_bound 2267.76 22.05 13.44
branch_and_bound_parallel 2147.11 21.24 13.03
branch_and_bound_with_beam 279.26 21.24 13.17
genetic 829.65 22.05 13.44

98

Table 5.7: Detailed Statistics for Branch and Bound

Metric Value

Avg Algo Duration (s) 0.096
Avg Query Duration (s) 0.172
Avg Best Score 2267.76
Success Rate 0.600
Avg Num Items 22.05
Avg Num Stores 13.44
Timeout Rate 1.000

Figure 5.11: Recommendation Algorithm Average Best Scores

Figure 5.12: Recommendation Algorithm Average Success Rates

Practical Considerations: Unoptimized Branch and Bound is impractical for

99

Table 5.8: Branch and Bound Performance by Number of Items

Num Items Avg Query
Duration (s)

Avg Algo
Duration (s)

Avg Num
Recs

Avg Best
Score

2 0.044 0.101 3.000 70.30
4 0.052 0.062 1.600 101.87
10 0.139 0.101 3.235 461.61
20 0.179 0.101 3.125 982.54
30 0.413 0.108 2.500 1550.85
40 0.235 0.102 5.000 3911.26
50 0.270 0.105 2.750 3042.94

Table 5.9: Evaluation Results of Recommendation Algorithms

Algorithm Runtime Metrics Recommendation Metrics

Avg
Dura-

tion (s)

Avg
Best
Score

Success
Rate

Avg
Num
Items

Avg
Num
Stores

beam_search 0.064 2328.44 0.483 21.24 13.03
beam_search_set_limited 0.064 2296.28 0.483 21.24 13.03
branch_and_bound 0.096 2267.76 0.600 22.05 13.44
branch_and_bound_parallel 0.035 2147.11 0.539 21.24 13.03
branch_and_bound_with_beam 0.091 279.26 0.112 21.24 13.17
genetic 0.058 829.65 0.282 22.05 13.44

large instances due to its computational resource requirements. Branch and Bound

with Beam Search requires careful beam width tuning, and as the statistics shows the

branch_and_bound_with_beam had the lowest success rate, meaning the algorithm

yield infeasible as it’s answers for larger datasets, which can be challenging in dynamic

settings, as this algorithm could lead to infeasible states frequently. Parallel Branch

and Bound demands parallel hardware but offers robust performance for real-time

applications.

Why Choose Parallel Branch and Bound? Parallel Branch and Bound combines

the optimality guarantee of unoptimized Branch and Bound with improved scalability

through parallelisation. As you can see from the statistics this algorithm has the

second highest success rate and it has the least duration, when compared with other

algorithms. Unlike ILP, it avoids solver dependencies, making it more portable and

cost-effective. Compared to Branch and Bound with Beam Search and Beam Search, it

ensures optimal solutions without relying on heuristic pruning, which can miss better

solutions. Its ability to leverage parallel hardware makes it suitable for real-time retail

100

applications with moderate to large datasets, balancing speed and quality. Beam

Search is better for scenarios prioritising speed over optimality, especially with very

large instances.

Is There a Better Solution? Among the compared algorithms, Parallel Branch and

Bound is often seen as a good choice for its balance of optimality and scalability, but

ILP (even though, the section doesn’t evaluate this algorithm, only an explanation

is given in the implementation stages due to the challenges faced) could be better

when complex constraints (e.g., budget limits, store preferences) are needed, as its

declarative capabilities simplify modifications. Beam Search is preferable in time-

critical applications with large datasets where suboptimal solutions are acceptable.

Branch and Bound with Beam Search offers a middle ground but is less reliable due to

its sensitivity to beam width, and it’s evident from the stats that the algorithm has a

very low success rate without the incorporation of other optimisations. Unoptimised

Branch and Bound is rarely practical due to its poor scalability.

5.2.3 Summary of Optimisation algorithms

Parallel Branch and Bound is the preferred algorithm for the multi-store recommen-

dation problem due to its ability to guarantee optimal solutions and scale through

parallelisation, high success rates and it’s average best score is less compared (lower

the better) to the successful algorithms (not the branch and bound with beam version

and the genetic version). It outperforms unoptimized Branch and Bound by leveraging

multiple processors, avoids the solver dependencies of ILP, while ILP excels in flexibil-

ity and Beam Search in efficiency, Parallel Branch and Bound strikes a balance, making

it ideal for real-time retail applications requiring high-quality recommendations within

practical time constraints. And this could be improve with a more efficient pruning

metric in the branching state and the bounding states.

5.3 Evaluation of Recommendation Model

Next, the evaluation of the recommendation model will be done. The average preci-

sion, recall, and F1-score for each model and parameter setting were stored in CSV

files. Visualisations were generated to analyse the relationships between simulation

parameters, the number of recommendations (N), and performance metrics:

101

• Line plots: Illustrating the impact of the number of recommendations (N) on

the average F1-score for each model.

• Heatmaps: Showing the relationship between pairs of simulation parameters

(e.g., items per list vs. lists per user) on the average F1-score, separated by

recommendation model.

• Box plots: Comparing the distribution of average F1-scores across different rec-

ommendation models.

The results of these experiments, detailed in the generated CSV files and visualizations,

revealed the relative performance of the different recommendation models under the

various simulated conditions. The following is a summary of the key findings with

accompanying visualizations:

5.3.1 Model Performance Hierarchy:

Figure 5.13: Distribution of average f1 score by model

As can be seen in Figure 5.13, the different recommendation models exhibited varying

degrees of performance across the simulated conditions. The conditions were made to

be the worst case scenario when it came to the patameters, which is why every model

is not shown to have great performance in this distribution. However, when it comes

102

to normal scenarios, the models performed much better. The unfavourable performing

results for all the models were kept in the evaluation to avoid chasing confirmation

bias.

The baseline model, NormalPredictor had the lowest average F1-score. It failed to gen-

erate good recommendations for most users, and the other models performed better in

almost every case giving it a score of 0.0 or close to it. Co-clustering was slightly bet-

ter than NormalPredictor, but still not as good as the other models. The KNN-based

models performed even better, but not to a satisfactory level. NMF was better than

the other KNN-based models, but still not as good as the SVD-based models. SVD

and SVD++ performed the best, with the highest average F1-scores and maintaining

the best scores for normal scenarios.

A normal scenario would be one where there are a significant number of users, with

each user having a number of lists with about 10 items in each list. These lists would

also have a persistence threshold of around 50-90%. Meaning that the each list would

retain that percentage of the items from the previous list. The persistence was done

not by retaining a number of items for all lists and filling the gaps but by retaining

from each subsequent lists and adding random items to fill the gaps. This would mean

that the lists would have a similar number of items, but the lists would become diverse

for each user.

The results from such a normal scenario for the best performing models (SVD and

SVD++) can be seen in the figures Figure 5.14 and Figure 5.15 respectively.

The ultimate target for this model is to create a recommendation for a list containing

at most 20 items. Store surveys suggested that this would be around the upper limit

of the number of items a user would include in a shopping list. The SVD and SVD++

models performed well in this scenario but their characteristics were different as can

be seen in the figures 5.14 and 5.15. The SVD++ model increases its recall as the

recommended list goes, meaning that it will recommend more correct items as the list

grows as opposed to SVD which plateaus to around 0.7. But the accuracy for SVD is

much better that SVD++ on smaller lists which are the most common scenarios. The

very low recall of SVD++ on normal scenarios makes it a poor choice for this task.

The F1-score on average for SVD++ on the worst case scenarios is better than SVD.

But as can be seen here the overall best choice for this recommendation problem based

103

Figure 5.14: Scores for a normal scenario by SVD

Figure 5.15: Scores for a normal scenario by SVD++

on F1-score is SVD out of all the models tested.

104

Figure 5.16: Impact of number of recommendations (n) on average scores

5.3.2 Impact of Recommendation Count (N):

The number of recommendations (N) is the number of items recommended to a user

in a list. The target as mentioned previously is to recommend at most 20 items. The

results from this experiment can be seen in Figure 5.16. The top performing models

from above demonstrated almost identical behavior in in this regard as can be seen in

the figure. The average recall increases as the number of recommendations increases.

and the accuracy drops as the number of recommendations increases. The average

F1-score for the models sometimes increases from 10 to 20 but in general it drops as

the number of recommendations increases. This was used to see whether any model

would excel at recommending a large number of items.

105

5.3.3 Influence of Simulation Parameters:

The simulation parameters that were used to generate the data were analyzed to see

how they affect the performance of the models. The results from this experiment can

be seen in following figures. The F1-score is used as the metric to highlight with the

changing of the parameters as it is a good indicator of the model’s performance. The

scores are averaged across all the users and the models. The F1-scores may seem

particularly low for these evaluations but this is because the evaluations are averaged

for the worst case scenarios. The results from the normal scenarios are still satisfactory.

This study is not meant to be a proof of the best model for this task but rather to

highlight the performance of different models under different scenarios.

Figure 5.17: Average F1-score vs Items per List vs Relevancy Threshold

Here in figure 5.17 the F1-score is plotted against the number of items per list and

the relevancy threshold. The Items per list seemed to have less of an impact than

the relevancy threshold. This is because the relevancy threshold is a threshold for the

number of items that a user would include an item in their shopping lists. With the

106

lists being as random as they are, only very low relevancy thresholds are useful in this

test. In the real world, higher numbers may also work. But this shows that models like

SVD and SVD++ can still find the most relevant items much better than the other

models.

Figure 5.18: Average F1-score vs Items per List vs Transactions per User

The randomness in list generation is apparent in this analysis as the F1-score degrades

when the transactions per user is increased. A higher score could have been achieved

if the item persistence behaviour was changed to repeat a fraction of items for a user’s

lists without randomness, but that would have been too much of a beneficial scenario

for these models and would have made the results less representative of the worse cases.

The results from the normal scenarios are still satisfactory. Chasing confirmation bias

is not a good way to evaluate the performance of a recommender system.

Here it can be seen that without list persistence and a low relevancy threshold, the

F1-score is very low for all models. The models perform well only when there is a

semblance of a pattern to the data as expected. It can be observed that relevancy

threshold is less of a factor when the list persistence is high for some models like

107

Figure 5.19: Average F1-score vs Relevancy Threshold vs List Persistence Threshold

NMF, the KNN-based models and Co-clustering. SVD based models scale with the

relevancy threshold and the list persistence threshold. But the F1-scores show that

even when affected, SVD and SVD++ perform better than the other models.

The KNN-based models are less affected by the number of lists per user but the persis-

tence threshold still affects them greatly here. The SVD and SVD++ models perform

better when the lists are persisted for longer periods of time. Under-performing sec-

tions of SVD and SVD++ still contain exceptional scores compared to the others.

SVD being better still.

In conclusion for this problem, with the above results and analysis, the recommen-

dation model for this problem was evaluated under a variety of simulated scenarios

to determine its suitability for suggesting shopping list items. A range of collabora-

tive filtering models was tested using data that aimed to replicate real user behavior,

including temporal persistence and randomness. Among these, SVD emerged as the

most balanced performer, particularly in typical scenarios where users have moderately

persistent lists with a manageable number of items. While SVD++ showed strength in

108

Figure 5.20: Average F1-score vs Lists per User vs List Persistence Threshold

recall when longer lists were recommended, its performance on smaller, more realistic

lists did not justify its use over SVD.

The results reflected that model performance was strongly dependent on the charac-

teristics of the input data, especially persistence and relevancy thresholds. Even under

worst-case configurations, SVD-based models remained the most reliable, avoiding ma-

jor performance drops seen in other approaches. These findings supported the selection

of SVD as the core model for generating item recommendations in the system, with

the potential to adapt further as more real-world usage data becomes available.

When it comes to future work relating to this model and the problem at large, it is a

fact that the recommendation algorithm was developed and evaluated using simulated

data, which, while diverse and configurable, does not capture the full complexity of

real-world user behaviour. Moving forward, the next step would be to deploy the model

within the live system and gather actual user, interactions to retrain and fine-tune its

predictions. This would allow the model to adapt to real preferences and shopping

habits over time.

109

Additionally, efforts will be made to incorporate context-aware features that were

highlighted in the user survey, such as time of day and seasonal patterns, which may

further improve recommendation quality.

Finally, user feedback mechanisms should be added to allow refinement of suggestions

over time and help reduce noise from unusual or one-time purchases. This feedback

loop could serve as a valuable source of implicit and explicit signals for future model

improvements.

5.4 Qualitative Survey Results

Apart from the systematic evaluation, a qualitative survey was conducted by visiting

local stores to gain insights into the practical concerns associated with a project like

this. The rest of this section is dedicated to explaining the results of the qualitative

survey results and insights. The insights identified were as follows,

• The survey discovered that customers have a tendency not to explore more than

3-4 stores to get the desired products. This heuristic is actually used when

implementing the branch and bound parallel algorithm. This algorithm, for most

cases, tries to limit the number of stores in a recommendation to 3-4. And due to

this, this algorithm can handle a vast number of stores as well. It is evident when

looking at the number of average stores considered to make recommendations.

• The survey identified hectic business hours to be 6 A.M. - 9 A.M.in the morning

and, 11.30 P.M. - 2.40 P.M. due to lunch hour and due to where the stores

are situated, many stores that are near to public infrastructure (like schools, for

example) confirmed this, and from 5.40 P.M. to about 7.00 P.M. were recorded

as busy hours for the evening. Queue sizes are most likely to be at their longest

near or between those hours. But some stores (about 1km or more away from

a town) confirmed that the queues consisted of less than 5-7 people, within the

said periods.

• Querying about stock supply frequencies revealed that many of the stores fre-

quently resupply perishable/consumable items like dairy products (Milk packets,

Nestle products and other related products), Tea packets and soap. Unless for

seasonal holidays where almost all items need to be restocked more frequently.

110

• The next questions were about their point of sale systems, and what sort of

methods they used to keep track of daily sales. Many of the stores (smaller

stores) didn’t use POS systems or other methods other than pen and paper to

keep track of their daily sales. Most of the mini supermarkets had POS systems

and didn’t like the idea of integrating some external software into them. But

some stores liked the idea if it helps with better management of their products

and sales in general. Some liked the idea of giving IoT devices or some sort

of embedded devices to communicate with our servers, while some wanted to

use their mobile phone, which is ideal, due to the use of bar-code scanning

to keep track of stocks. Due to the diversity of data and differences between

communication method.

• Next question was regarding the discounts provided by the stores and the pay-

ment methods. Some of the mini-supermarkets(3) provided card payment op-

tions, while many of the mini or small stores only accepted cash payments. Many

of the stores didn’t have discount offers, other than BOGO(buy one get one free,

especially for dairy products like yogurt or small milk cartons or ice-cream. Only

the much larger, established store chains like Keels Super provided users with

an array of discounts or the Arpico store chain. Due to this, the most common

and frequent type of discount is BOGO, and when looking at the geographical

placement of big, established stores, they are often situated near main roads or

populated areas.

• While most of the stores liked the idea of this service, two stores in particular

opposed the idea.

Doing this survey revealed that there should be a large emphasis on the practical side

of the solutions. Due to this, the algorithms could be more optimized and the conflicts

between standardizing the APIs to work with different streams of data without the

use of intermediate adapters or data translators seems to be infeasible. Following is a

comparison between the considered data gathering methods.

Table 5.10 highlights the trade-offs, with API integrations being the most effective for

real-time data, while crowd-sourcing and web scraping offer broader but less reliable

coverage.

111

Table 5.10: Comparison of Data Collection Methods for Inventory Updates

Method Description Advantages Challenges

API Integrations Partner with stores
for real-time inventory
data via APIs.

Accurate, real-time,
reliable.

Requires store cooper-
ation, complex setup.

Crowd-Sourcing Users report prices
and availability, often
gamified.

Broad coverage, cost-
effective.

Less reliable, depends
on user engagement.

Web Scraping Collect data from
store websites auto-
matically.

Wide data source,
initial coverage.

Legal issues, technical
challenges.

Manual Updates Stores update inven-
tory via portal, less
common for small
stores.

Simple for stores, di-
rect control.

Less reliable, time-
consuming for stores.

6 Discussion and Conclusion

This section reflects on the overall project, interpreting the results in the context of

the research objectives and the broader field, while also addressing limitations.

6.1 Discussion

When it comes to the modern day online shopping experience, most customers are

numb to the idea of keeping up with the stores to finding the best deals available.

That is because the current way that stores market these deals is through methods

like mailing lists, ads and so on. These are bombarded on to customers and have lost

their effect on most people except the diligent deal hunters. The innovations that have

come about in the space that have succeeded the most are delivery services and online

marketplaces that are centralized to their own stores or their value add only. The

community benefits from these but there are also downsides as it demoralizes smaller

shops and reduce the opportunity for innovation in the shopping experience. Searching

for the items one wants at the store that there is a limited set of choices to choose

from is the norm in online shopping. The advent of the smartphone has created a

culture where customers are willing to share their location with service providers for

convenience but the over promotion of delivery has created a gap in the market for the

ones who would actually like to go to the store themselves. The in-store experience

is devalued and the brick and mortar roadside shops are finding it difficult to adapt

112

to the new age. Groceries are where the project found that there is a great gap and

the greatest amount of users that could be catered to. However the solution presented

could also be adapted to other fields if it succeeds.

So the project proposes the solution as an application that takes what a customer

needs to buy, checks the local stores that may have them in the customer’s vicinity

and shows the route that the customer should take to get the best deal in a convenient

route. Additionally using the application for an extended period of time would allow

the customer to just pick the items that the system will understand are what they

usually buy. However this creates the need for the stores to be on-board as well.

The system would need data and lots of it to serve the customers their best deals.

Surveying stores showed that they are interested, especially if the addition of the

system could help them adjust to the new age of e-commerce. Sri Lanka is still a

mainly pen and paper based nation after all. However, they are not in unison about

how exactly the data should be presented to the system. This sparked talk about

standards. Standards that have shown success elsewhere and may benefit the local

population as well. Say that the system actually has the data, then that data would

need to be filtered effectively such that the customers are not overwhelmed. If the

filtered data is irrelevant to the customer, the solution is a failure.

Taking these into consideration, as explained throughout the document, a system was

developed. The system can take input from customers about what they want to buy

and from stores about what they sell. Then after exploring the options there are

to solve complex problems as mentioned above, algorithms as discussed earlier were

chosen. A user friendly interface was designed. An architecture that could handle the

potential load of a great amount of people all using the system was created.

The evaluation of the store recommendation and route planning system demonstrates

its effectiveness in addressing the project’s objectives. The parallel branch and bound

algorithm, as detailed in Section 4.7, achieved near-optimal store recommendations

with an average execution time of 0.096 seconds (Table 5.7), meeting the requirement

for timely responses. This efficiency is crucial for real-time applications, ensuring users

receive recommendations quickly. Furthermore, the route planning component, which

combines an adaptive genetic algorithm with A* search, reduced travel distances by

up to 25% (Figure 5.1), directly contributing to cost-effective shopping experiences.

113

These results align with and extend the existing literature. The hybrid approach to

route planning builds on the foundational work of Hart, Nilsson, and Raphael 1968

and Tang et al. 2021 by incorporating real-time traffic data, addressing a significant

limitation in static route planning methods. Similarly, the use of parallel branch

and bound for store recommendations offers a practical alternative to exact methods

like Integer Linear Programming (ILP), which can be computationally prohibitive for

large-scale problems.

The implications of these findings are substantial. By providing users with optimized

store suggestions and efficient routes, the system has the potential to reduce shopping

time and costs, addressing the issues of information overload and price discrepancies

highlighted in the motivation (Section 1.1). Moreover, the modular architecture (Sec-

tion 3.1) ensures scalability, a feature lacking in existing chain-specific solutions such

as those of Target or Walmart (Section 2.5).

However, the system is not without limitations. The reliance on API-based data col-

lection, as discussed in Section 4.13, introduces challenges related to data accuracy

and timeliness, as vendors may not update their inventories in real-time. Addition-

ally, user adoption may be hindered by ingrained shopping habits, as revealed in the

qualitative survey (Section 5.4). These challenges underscore the need for future work

to refine data collection methods, possibly through IoT or POS integration, and to

explore strategies for encouraging user engagement.

Looking ahead, several avenues for enhancement present themselves. Integrating pub-

lic transport options or dynamic re-routing could further optimize the route planning

component. Additionally, incorporating contextual factors such as store queues or

real-time inventory changes could improve the system’s responsiveness to real-world

conditions.

6.2 Conclusion

This research successfully developed and validated a system that enhances the gro-

cery shopping experience through optimized store recommendations and efficient route

planning. The key findings include the achievement of near-optimal store suggestions

within 0.096 seconds (Table 5.7) and a reduction in travel distances by up to 25% (Fig-

ure 5.1). The SVD-based model for predicting future purchases further demonstrated

114

the system’s personalization capabilities, achieving an F1-score of 0.85 (Figure 5.14).

The primary contributions of this work lie in its integration of recommendation sys-

tems, route planning, and data standardization within a scalable, user-centric frame-

work. By addressing the limitations of existing solutions and proposing a flexible

approach to data collection, this research offers a practical solution tailored to the Sri

Lankan retail context, with potential for global adaptation.

While challenges remain, particularly in data accuracy and user adoption, this project

represents a significant step toward streamlining the grocery shopping experience. One

such challenge is that stores have different data, and most stores have never taken the

steps to make their stock appear online. As mentioned earlier, to cater to the stores

that already have their own websites, the stores that use a point of sale system and

the stores that barely have any computers at all, the system and the thinking behind

it needs to be flexible. Due to this, room was left to expand the options for data

ingestion in the future while having the basics set up in the scope of the project.

Another challenge is the fact that routing is its own beast when it comes to solving the

problem at large. Simply using euclidean distance is useless when the customers need

to travel in actual roads. So the use of available real world routing techniques were

explored and integrated into the system. Creating a standard for all stores to adhere

to when sharing data is a difficult challenge as well. Especially in the Sri Lankan

climate where the good results of digital standardization has not become apparent

to the populace yet. Another challenge is the fact that peoples’ needs can change at

any moment. If the system recommends you a route but on the way you remember

something else to buy as well, how should the system be ready to handle this? If the

stores report that they have something but someone comes in and buys all the stock

before the customer gets there, how should the system handle that? The last few

challenges are definitely the hardest to try to solve. But these are cases that do not

disprove that the system can be effective in-spite of them.

There are practical doubts about the system being effective in the real world. As

the survey and simple observations of our surroundings reveal, people are creatures of

habit. Going to the same stores that you usually go to and buying at whatever prices

they offer is what people are used to and it would be greatly optimistic to think that

that behavior will change with the introduction of this solution.

115

When it comes to the lessons that were learned during the process of developing the

solution, the main one was that even the most mundane interaction in our daily lives

can be exponentially more complex if enough focus were given to doing it as effectively

as possible. At first the thought of choosing the best stores to buy groceries from seems

extremely simple but doing it at scale while not wasting people’s time is extremely

difficult. The fact that users’ voices being the most important thing to get a hold

of at the start of a venture like this is another lesson that was learned. It would

have prevented a lot of doubts of the effectiveness of the system had the survey been

conducted earlier in the development cycle. Another lesson learned is that creating a

new technique or even applying a rarely used technique can create unforeseen blocks in

development. The project ran into such issues when the languages chosen to implement

certain features did not have specific libraries or functionalities desired by the solution.

And another great lesson was that scope must be kept solid as the mind wanders. There

were many a time when refocusing on the core ideas were required to keep the project

moving smoothly.

In conclusion the solution proposed and implemented to solve the problem of effective

routing recommendation for in person shopping is a great first step towards a very

complicated problem. And there is a great amount of work to be done to make the

system be as polished as can be. And as was discussed, there is still more room for

innovation in the online shopping space, even when the giants of the world seem to

be dominating. Future refinements, such as enhanced data integration and contextual

awareness, could further elevate its impact, underscoring the ongoing potential for

innovation in this domain are discussed in detail under the next Section 7.

116

7 Future Directions

The project holds significant potential and can be extended into various other do-

mains. However, the current system faces limitations, particularly in the methods

of data collection and aggregation. Timely acquisition of store-product data or the

implementation of recurring updates (periodic updates) is essential. To address this,

the incorporation of intelligent web scrapers and IoT or embedded devices capable of

transmitting data over long ranges is proposed. An initial concept involved establish-

ing a peer-to-peer network, allowing clients to join ad hoc and retrieve necessary data

from stores within the network, thereby identifying the most cost-efficient solution.

In the solver algorithms, explained in the earlier section, the OSRM server is being used

to get the real-world, accurate travelling data. In the current system, in the filtering

stages, a query is used to find the locations that are closest to the user using a built-

in PostGIS function that considers the direct distance between the two points. This

is not very accurate. Because in the real world, travelling distances are determined

by the road networks. Even though a point may seem close to the user, it could be

very expensive in terms of travelling time and cost to reach the store. In the current

implementation, these cases are not being filtered in the initial filtering stages. Due

to this, the algorithms perform additional calculations for unnecessary or incorrect

solutions. Trajectory planning is also important. Assume the user was heading towards

home, and the solver service is recommending solutions in the opposite direction, then

in that case, it is not convenient for the user. The current system is not very concerned

about such cases.

In the current system, the recommendation system is being used to predict a possible

list of items that the user might purchase in the future. The next step is to incorporate

the recommender service or a similar model to consider user preferences in an efficient

manner. Due to this limitation in the system, even though the system is capable of

predicting the items that a user might buy in the future, using this to better serve

the user in the recommendation process and integrating the existing model or a new

model is left as future work. Adding contextual understanding to the recommendation

system is considered a future work, and the recommendation service will be aware of

the user, and the recommendation service could leverage this data to provide more

personalised predictions.

117

As mentioned previously mentioned under Section 4, the branch and bound algorithms

can be distributed among many nodes. This could lead to increased performance and

is considered future work in this context. As discussed before, making sure these

algorithms work to give practical answers is more important. To achieve this, more

survey data should be collected and studied to understand the patterns between using

purchase patterns. Taking the real-world context into provide recommendations is very

important for client retention. But there are two sides to this. In some cases, some of

the constraints must be tightened, and some of the constraints or heuristics used by

the algorithms should be more loosened. This could lead to over-approximation and

under-approximation problems, thus it could lead to the suboptimal solution being

presented to the users. And the algorithm could give biased answers. For example,

just because customers like to travel less, recommending stores that provide the most

items would leave more cost-efficient solutions. More research and survey data should

be collected to find the right balance between the optimisation parameters.

In order to increase the overall quality of the recommendations and to avoid any dis-

putes with the store owners, for example, think of a scenario like this: the application

is recommending to the user some item with the sales value of $100, which was entered

to the system by the store owner, once the customer reach the store, the store owner

may barter with the customer and ask for a much higher price, in such cases the store

own has violated the terms of the system as well as the trust of the customer towards

the application to gain a competitive edge by adding products at much lower prices,

as a mitigation method, the system can use reviews and review scores in the recom-

mendation process. The current system neither provides any review analysis method

nor a review submission method. This is also considered as a future work.

Currently, the discount processing engine is not integrated into the main flow of the

algorithm pipeline. Refining the discount processing engine and integrating the dis-

count engine into the main flow could lead to solutions with added cost reductions.

Even though this parameter is not directly used as it can be given as a secondary key

for identifying a solution that has the highest possibility of having discounts for the

items the user wants to buy.

Data extraction still remains an issue, as a mitigation methodology, the use of intelli-

gent web scrapers or crawlers can be identified. Sometimes vendors may upload images

118

with product information, and crawlers have the ability to process such information

could lead to higher amounts of information extraction and processing. All the in-

formation in a single method could help with the standardisation issues as well. The

accumulation of the same information from different sources and processing it into a

single format could lead to information with higher accuracy. Creating the necessary

documents to streamline the standards, such as API documents, rule guidelines, and

conducting developer workshops, is encouraged to ensure the audience captures the

reasons behind standardisation as well as the motivations. This is a technique to avoid

being over-reliant on vendors for data. Due to the unification of the standards, no mat-

ter what option the provider uses, the server will always receive a single format, using

this, the system can make an informed decision whether to update the existing record

(for example, inventory data) or not. As an indirect consequence of standardisation,

this will serve as a multi-mode confirmation method for data validity. Integrating of

inventory tracking systems discussed in the previous sections would also be a possible

automation method.

119

Appendices

A Pseudocodes for Store Recommendation Algorithms

A.1 Naive Algorithm

FUNCTION generate_store_recommendation_naive(shopping_list ,

index)

// Get item IDs from shopping list

requested_item_ids = shopping_list.get(’item_id ’)

// Track which stores have which requested items

store_inventory_map = empty dictionary

// Process each item in inventory

FOR EACH inventory_item IN items

current_item_id = inventory_item [1][’item_id ’]

current_quantity = inventory_item [1][’item_quantity ’]

// Check if item is in our shopping list

IF current_item_id IN requested_item_ids THEN

current_store_id = inventory_item [1][’storeID ’]

IF current_store_id IN store_inventory_map THEN

store_inventory_map[current_store_id]

[current_item_id] = current_quantity

ELSE

store_inventory_map[current_store_id] =

{current_item_id: current_quantity}

END IF

END IF

END FOR

// Initialize result categories

stores_with_all_items = empty array

120

stores_with_some_items = empty array

stores_with_no_items = empty array

total_item_count = 0

max_item_count = 0

// Categorize stores

FOR EACH current_store_id , store_items IN store_inventory_map

matching_items = intersection(keys(store_items),

requested_item_ids)

IF size(matching_items) == size(requested_item_ids) THEN

// Store has all items

append [current_store_id , store_items , matching_items] to

stores_with_all_items

ELSE IF size(matching_items) > 0 THEN

// Store has some items

append [current_store_id , store_items , matching_items] to

stores_with_some_items

ELSE

// Store has no items

append [current_store_id] to stores_with_no_items

END IF

total_item_count = total_item_count + size(matching_items)

max_item_count = maximum(max_item_count , size(matching_items

))

END FOR

// Calculate average items per store

average_item_count = 0

IF size(store_inventory_map) > 0 THEN

average_item_count = total_item_count / size(

store_inventory_map)

END IF

121

// Return results

RETURN {

stores_with_all_items ,

stores_with_some_items ,

stores_with_no_items ,

average_item_count ,

max_item_count

}

END FUNCTION

FUNCTION check_combinations(stores , shopping_list , min_results

=2)

viable_combinations = empty array

// Try combinations of 2 to min(10, number of stores) stores

FOR combination_size = 2 TO minimum (10, size(stores))

FOR EACH store_combination IN combinations(stores ,

combination_size)

remaining_items = set of shopping_list.get(’item_id ’)

item_store_mapping = empty string

// Check if combination covers all items

FOR EACH candidate_store IN store_combination

FOR EACH item IN candidate_store [2]

IF item IN remaining_items THEN

item_store_mapping = item_store_mapping + item + ":"

+ candidate_store [0] + "\n"

remove item from remaining_items

END IF

END FOR

END FOR

122

// If all items are covered

IF remaining_items is empty THEN

append [store [0] for each store in store_combination] to

viable_combinations

IF size(viable_combinations) >= min_results THEN

break inner loop

END IF

END IF

END FOR

IF size(viable_combinations) >= min_results THEN

break outer loop

END IF

END FOR

RETURN viable_combinations

END FUNCTION

{

stores_with_all_items ,

stores_with_some_items ,

stores_with_no_items ,

average_item_count ,

max_item_count

} generate_store_recommendation_naive(shopping_list , index)

output stores_with_all_items + check_combinations(

stores_with_some_items ,

shopping_list ,

min_results =2

)

123

A.2 Memory-Optimized Algorithm

FUNCTION to_string(array)

// Converts an array of values to a string by mapping each

value

to its character representation

RETURN concatenate(map each element in array to its character

representation)

END FUNCTION

// Global variable to cache calculation results

calculated = [False , None]

FUNCTION pre_calculate_combinations ()

// Check if combinations were already calculated

IF calculated [0] THEN

RETURN calculated [1]

END IF

// Group items by store ID

grouped_items = group items by ’storeID ’

// Dictionary mapping unique item combinations to store IDs

store_item_combination_strings = empty dictionary

// For each store , create a string representation of its

unique items

FOR EACH store_id , store_items IN grouped_items

// Create a sorted string of item IDs this store carries

item_set_string = to_string(sort(unique values of

store_items[’item_id ’]))

// Add the store to the appropriate item combination entry

IF item_set_string NOT IN store_item_combination_strings

THEN

124

store_item_combination_strings[item_set_string] = [

store_id]

ELSE

append store_id to store_item_combination_strings[

item_set_string]

END IF

END FOR

// Cache the results

calculated = [True , store_item_combination_strings]

RETURN store_item_combination_strings

END FUNCTION

FUNCTION generate_store_recommendation_memory(shopping_list ,

index)

// Get pre -calculated store -item combinations

store_item_combination_strings = pre_calculate_combinations ()

// Convert shopping list to a sorted string representation

item_ids = sort(unique values of shopping_list.get(’item_id ’))

item_string = to_string(item_ids)

// Initialize result containers

stores_with_matching_items = empty dictionary // hasSome

stores_with_all_items = empty array // hasAll

stores_with_no_items = empty array // hasNone

max_item_count = 0

total_item_count = 0

// Check each store’s inventory against the shopping list

FOR EACH store_item_combination_string , store_ids IN

store_item_combination_strings

matching_item_count = 0

matching_items_string = empty string

125

// Count matching items by character comparison

FOR EACH character IN item_string

IF character IN store_item_combination_string THEN

matching_item_count = matching_item_count + 1

matching_items_string = matching_items_string +

character

END IF

END FOR

// Categorize the store based on item matches

IF matching_item_count == length(item_string) THEN

// Store has all items

append all store_ids to stores_with_all_items

ELSE IF matching_item_count > 0 THEN

// Store has some items

IF matching_items_string NOT IN stores_with_matching_items

THEN

stores_with_matching_items[matching_items_string] =

store_ids

ELSE

append all store_ids to

stores_with_matching_items[matching_items_string]

END IF

ELSE

// Store has no items

append all store_ids to stores_with_no_items

END IF

// Update statistics

total_item_count = total_item_count + matching_item_count

max_item_count = maximum(max_item_count , matching_item_count

)

END FOR

126

// Remove duplicates from arrays

stores_with_all_items = remove_duplicates(

stores_with_all_items)

stores_with_no_items = remove_duplicates(stores_with_no_items)

// Collect all stores that have some items

stores_with_some_items = union of all

store arrays in stores_with_matching_items

stores_with_some_items = remove_duplicates(

stores_with_some_items)

// Find store combinations that cover all items

viable_combinations = greedy_check_combinations(

stores_with_matching_items , item_string

)

// Return results

RETURN {

stores_with_all_items ,

stores_with_matching_items ,

stores_with_no_items ,

total_item_count ,

max_item_count ,

viable_combinations

}

END FUNCTION

FUNCTION non_empty_substrings(string)

// Generates all non -empty substrings of a given string

substrings = empty array

FOR start = 0 TO length(string) - 1

FOR end = start + 1 TO length(string)

127

append string[start:end] to substrings

END FOR

END FOR

RETURN substrings

END FUNCTION

FUNCTION greedy_check_combinations(stores_with_matching_items ,

item_string)

// Set of unique characters (items) in the shopping list

unique_items = set of characters in item_string

// Dictionary mapping item subsets to stores that have them

store_item_power_map = empty dictionary

previous_key_count = 0

// Build power set of item combinations and associated stores

FOR iteration = 1 TO 10

FOR item_subset , store_ids IN stores_with_matching_items

// Generate all substrings of the item subset

FOR substring IN non_empty_substrings(item_subset)

IF substring IN store_item_power_map THEN

append all store_ids to store_item_power_map[substring

]

ELSE

store_item_power_map[substring] = store_ids

END IF

END FOR

END FOR

// Remove duplicate store IDs

FOR EACH key , value IN store_item_power_map

store_item_power_map[key] = remove_duplicates(value)

END FOR

128

// Check if we’ve added any new substrings

current_key_count = size(store_item_power_map)

IF current_key_count == previous_key_count THEN

output "iteration " + iteration

break loop

END IF

previous_key_count = current_key_count

END FOR

// Convert store arrays to sets for faster operations

FOR EACH key , value IN store_item_power_map

store_item_power_map[key] = convert value to set

END FOR

// Look for complementary store combinations

viable_combinations = empty array

max_substring_length = length(item_string) / 2

// Sort keys by length in descending order

FOR item_subset IN sort store_item_power_map keys by length (

descending)

subset_items = set of characters in item_subset

// Find the complement of items not in this subset

missing_items = unique_items - subset_items

missing_items_string = sort and join missing_items into

string

// Check if we have stores that cover the missing items

IF missing_items_string IN store_item_power_map THEN

append (

store_item_power_map[item_subset],

129

store_item_power_map[missing_items_string]

) to viable_combinations

END IF

// Optimization: stop checking once substrings are too short

IF length(item_subset) <= max_substring_length THEN

break loop

END IF

END FOR

Return viable_combinations

END FUNCTION

{

stores_with_all_items ,

stores_with_matching_items ,

stores_with_no_items ,

total_item_count ,

max_item_count ,

viable_combinations

} = generate_store_recommendation_memory(shopping_list , index)

output stores_with_all_items + viable_combinations

130

A.3 Filtered Greedy Algorithm

FUNCTION generate_recommendations(shopping_list)

// Extract item IDs from shopping list

requested_item_ids = get item IDs from shopping_list

// Get items data from all stores

store_inventory = get_store_items_data ()

// Filter out items not in the shopping list

store_inventory = keep only rows where item_id is in

requested_item_ids

// Process each item in shopping list to adjust quantities and

prices

FOR EACH item IN shopping_list

requested_quantity = get quantity of item

current_item_id = get item_id of item

// Remove stores that don’t have enough quantity

store_inventory = keep only rows where

(item_quantity >= requested_quantity OR item_id !=

current_item_id)

// Multiply price by requested quantity

FOR EACH row IN store_inventory where item_id equals

current_item_id

row.item_price = row.item_price * requested_quantity

END FOR

END FOR

// Group items by store_id and calculate total prices

store_summaries = empty list

FOR EACH store_id IN unique store_ids from store_inventory

131

items_in_store = get all rows from store_inventory with this

store_id

item_set = get unique item_ids from items_in_store

total_price = sum of item_price from items_in_store

item_count = count of items in item_set

add {store_id , item_set , total_price , item_count} to

store_summaries

END FOR

// Sort by number of items

sort store_summaries by item_count in descending order

// Find stores that have all requested items

stores_with_all_items = empty list

stores_with_some_items = empty list

FOR EACH store IN store_summaries

IF store.item_count equals count of items in shopping_list

THEN

add store to stores_with_all_items

ELSE

add store to stores_with_some_items

END IF

END FOR

// Sort stores with all items by price

sort stores_with_all_items by total_price in ascending order

// Get set of all requested item IDs for easier comparison

requested_items_set = set of requested_item_ids

// Initialize recommendations structure

132

recommendations = create dictionary with empty "combinations"

list

// For each possible item count (from max to min)

FOR k = count of items in shopping_list - 1 DOWN TO 2

// Check stores that have at most k items

FOR EACH store IN stores_with_some_items where item_count <=

k

// Find missing items for this store

missing_items = items in requested_items_set

that are not in store.item_set

// Find stores that have the missing items

found_missing_stores = empty list

// Check each missing item

FOR EACH item IN missing_items

// Find stores carrying this item

stores_with_item = get rows from store_inventory

where item_id equals

item

// If no store has this item , can’t complete the

shopping list

IF stores_with_item is empty THEN

break inner loop

END IF

// Add the first store that has this item

add first store from stores_with_item to

found_missing_stores

END FOR

// If we found stores for all missing items

133

IF count of found_missing_stores equals count of

missing_items THEN

// Track additional stores needed and their costs

additional_stores = empty dictionary

// Process each store with missing items

FOR i = 0 TO count of found_missing_stores - 1

store_id = get store_id from found_missing_stores[i]

item_price = get item_price from found_missing_stores[

i]

item_id = get item_id from found_missing_stores[i]

IF store_id exists in additional_stores THEN

// Update existing store entry

additional_stores[store_id].price += item_price

add item_id to additional_stores[store_id].items

ELSE

// Create new store entry

additional_stores[store_id] = {

price: item_price ,

items: [item_id]

}

END IF

END FOR

// Add this combination to recommendations

add {

main_store_id: store.store_id ,

main_item_ids: store.item_set ,

main_item_price_total: store.total_price ,

extra_stores: additional_stores

} to recommendations.combinations

END IF

134

break inner loop

END FOR

END FOR

// Add stores with all items to recommendations

recommendations.hasAll = stores_with_all_items

RETURN recommendations

END FUNCTION

INPUT shopping_list

output generate_recommendations(shopping_list).recommendations

135

A.4 Branch and Bound Algorithm

Input: UserInput U = (I, q, l_u , r, m_u , N), Stores S

Output: List of top N Recommendations

1. Initialize:

- item_ids = [i.id for i in I]

- item_quantities = {i.id: q_i for i in I}

- dist_matrix = precompute_distances(l_u , S)

- Bits = bitset(item_ids)

- store_items = {

s.id: Bits([

i for i in item_ids

if s.stock[i] >= q_i and m_u in s.payment_methods

])

for s in S

}

- all_items = Bits(item_ids)

- item_to_stores = {

i: sort([

(s, s.prices[i]) for s in S

if s.stock[i] >= q_i and m_u in s.payment_methods

], key=price)

for i in I

}

- min_item_costs = {

i: item_to_stores[i][0][1] * q_i for i in I

}

- best_score = infinity

- candidates = []

- store_set = {}

2. Function branch_and_bound(store_ids , covered , assignment ,

total_cost):

- uncovered = all_items \ covered

136

- est_cost = sum(

min_item_costs[i] for i in uncovered

if min_item_costs[i] >= 0

)

- if any(min_item_costs[i] < 0 for i in uncovered): return

- tour_dist = calc_tour_distance(store_ids , l_u , dist_matrix)

- lower_bound = total_cost + tour_dist + est_cost

- if lower_bound >= best_score: return

- if covered == all_items:

- store_tuple = tuple(sorted(store_ids))

- if store_tuple not in store_set:

- store_set.add(store_tuple)

- rec_stores = [s in S where s.id in store_ids]

- candidates.append(

Recommendation(

rec_stores , assignment ,

total_cost , tour_dist

)

)

- best_score = min(best_score , total_cost + tour_dist

)

- return

- for each store s in S:

- if s.id not in store_ids and m_u in s.payment_methods:

- new_store_ids = store_ids + (s.id ,)

- new_covered = covered \cup store_items[s.id]

- new_assignment = copy(assignment)

- new_cost = total_cost

- for each item_id in new_covered \ covered:

- valid_stores = [

(s_id , price) for s_id in new_store_ids

if item_id in store_items[s_id]

]

- if valid_stores:

137

- (best_store_id , best_price) = min(

valid_stores , key=price

)

- new_assignment[item_id] = store with id

best_store_id

- new_cost += best_price * q[item_id]

- branch_and_bound(

new_store_ids ,

new_covered ,

new_assignment ,

new_cost

)

3. Call branch_and_bound ((), Bits ([]), {}, 0.0)

4. Return sorted(candidates , key=score)[:N]

138

A.5 Beam Search Algorithm

Input: UserInput U = (I, q, l_u , r, m_u , N), Stores S

Output: List of top N Recommendations

1. Initialize:

- item_ids = [i.id for i in I]

- item_quantities = {i.id: q_i for i in I}

- dist_matrix = precompute_distances(l_u , S)

- Bits = bitset(item_ids)

- store_items = {

s.id: Bits([

i for i in item_ids

if s.stock[i] >= q_i and m_u in s.payment_methods

])

for s in S

}

- all_items = Bits(item_ids)

- item_to_stores = {

i: sort([

(s, s.prices[i]) for s in S

if s.stock[i] >= q_i and m_u in s.payment_methods

], key=price)

for i in I

}

- min_item_costs = {

i: item_to_stores[i][0][1] * q_i for i in I

}

- BEAM_WIDTH = 100

- candidates = []

- store_set = {}

- beam = [((), Bits ([]), {}, 0.0)]

2. While beam is not empty:

- new_beam = []

139

- For each (store_ids , covered , assignment , total_cost) in

beam:

- If covered == all_items:

- store_tuple = tuple(sorted(store_ids))

- If store_tuple not in store_set:

- store_set.add(store_tuple)

- rec_stores = [s in S where s.id in store_ids]

- tour_dist = calc_tour_distance(

store_ids , l_u , dist_matrix

)

- candidates.append(

Recommendation(

rec_stores , assignment ,

total_cost , tour_dist

)

)

- Continue

- For each store s in S:

- If s.id not in store_ids and m_u in s.

payment_methods:

- new_store_ids = store_ids + (s.id ,)

- new_covered = covered \cup store_items[s.id]

- new_assignment = copy(assignment)

- new_cost = total_cost

- For each item_id in new_covered \ covered:

- valid_stores = [

(s_id , price) for s_id in new_store_ids

if item_id in store_items[s_id]

]

- If valid_stores:

- (best_store_id , best_price) = min(

valid_stores , key=price

)

- new_assignment[item_id] = store

140

with id

best_store_id

- new_cost += best_price * q[item_id]

- uncovered = all_items \ new_covered

- est_cost = sum(

min_item_costs[i] for i in uncovered

if min_item_costs[i] >= 0

)

- If any(min_item_costs[i] < 0 for i in uncovered

):

continue

- tour_dist = calc_tour_distance(

new_store_ids , l_u , dist_matrix

)

- lower_bound = new_cost + tour_dist + est_cost

- new_beam.append ((

new_store_ids , new_covered ,

new_assignment , new_cost

))

- Sort new_beam by (total_cost + tour_distance)

- beam = new_beam [: BEAM_WIDTH]

3. Return sorted(candidates , key=score)[:N]

141

A.6 Integer Linear Programming Algorithm

The following pseudocode outlines the Integer Linear Programming (ILP) logic used

to solve the multi-store recommendation problem. It optimizes for cost while adhering

to constraints such as item availability and store selection.

Input: UserInput U = (I, q, l_u , r, m_u , N), Stores S, Redis

client

Output: List of top N Recommendations

1. Initialize:

- item_ids = [i.id for i in I]

- item_quantities = {i.id: q_i for i in I}

- dist_matrix = precompute_distances(l_u , S, redis_client)

- model = Gurobi.Model("MultiStoreRecommendation")

- store_select = {s.id: binary_var for s in S}

- item_assign = {(i, s.id): binary_var for i in I for s in S

if s.stock[i] >= q_i and m_u in s.payment_methods}

- candidates = []

- store_set = {}

2. Set Objective:

- cost = sum(item_assign[i, s.id] * s.prices[i] * q_i for i

in I for s in S if (i, s.id) in item_assign)

- model.setObjective(cost , GRB.MINIMIZE)

3. Add Constraints:

- For each i in I:

sum(item_assign[i, s.id] for s in S if (i, s.id) in

item_assign) == 1

- For each (i, s.id) in item_assign:

item_assign[i, s.id] <= store_select[s.id]

- sum(store_select[s.id] for s in S) >= 1

4. For n = 1 to N:

- model.optimize () with timeout

142

- If solution exists:

selected_stores = [s for s in S if store_select[s.id] >

0.5]

store_ids = tuple(sorted ([s.id for s in selected_stores])

)

If store_ids not in store_set:

assignment = {}

total_cost = 0.0

For each i in I:

For s in selected_stores:

If item_assign[i, s.id] > 0.5:

assignment[i] = s

total_cost += (s.prices[i] * q_i)

tour_dist = calc_tour_distance(store_ids , l_u ,

dist_matrix)

candidates.append(Recommendation(selected_stores ,

assignment , total_cost , tour_dist))

store_set.add(store_ids)

Add constraint:

sum(store_select[s.id] for s in store_ids) <= len(

store_ids) - 1

- Else: break

- If timeout: break

5. Return sorted(candidates , key=score)[:N]

143

A.6.1 Attempted Implementation

An attempted was carried out to fully implement and integrate the Integer Linear

Programming methods to solve the multi-store recommendation problem. Due to

the nature of the problem, resulting code could not handle large datasets and was

considered as infeasible. This algorithm is a part of a matrix-based method to solution

to solve multi-store recommendation problems, by modeling the problem in to a matrix

based format. Initial algorithm can be found below.

from ortools.linear_solver import pywraplp

import random

def solve_store_item_problem(costs):

"""

args:

costs (list of list of float): A 2D array where

costs[i][j] is the cost of buying item j from

store i.

returns:

list of tuples: Optimal assignments in the form

(store , item , cost).

"""

num_stores = len(costs)

num_items = len(costs [0])

solver = pywraplp.Solver.CreateSolver("SCIP")

if not solver:

raise Exception("Solver not available!")

Create decision variables: x[i][j] indicates whether

item j is bought from store i

x = []

for i in range(num_stores):

x.append ([

solver.IntVar(0, 1, f"x[{i}][{j}]")

144

for j in range(num_items)

])

Objective: Minimize total cost

objective = solver.Objective ()

for i in range(num_stores):

for j in range(num_items):

objective.SetCoefficient(x[i][j], costs[i][j])

objective.SetMinimization ()

for j in range(num_items):

solver.Add(

solver.Sum(

x[i][j] for i in range(num_stores)

) == 1

)

status = solver.Solve()

results checks

if status == pywraplp.Solver.OPTIMAL:

solution = []

total_cost = 0

for i in range(num_stores):

for j in range(num_items):

if x[i][j]. solution_value () > 0:

solution.append ((i, j, costs[i][j]))

total_cost += costs[i][j]

return solution , total_cost

else:

raise Exception("No optimal solution found!")

if __name__ == "__main__":

Example costs: 3 stores and 3 items

145

costs = [

[10, 20, 15], # Store 1

[12, 18, 25], # Store 2

[14, 16, 22], # Store 3

]

solution , total_cost = solve_store_item_problem(costs)

print("Optimal assignments:")

for store , item , cost in solution:

print(

f"Store {store + 1}: Buy Item {item + 1} "

f"(Cost: {cost})"

)

print(f"Total Cost: {total_cost}")

num_items = 1000

num_stores = 1000

cost_matrix = [

[

random.randint (700, 2000)

for _ in range(num_items)

]

for _ in range(num_stores)

]

solution , total_cost = solve_store_item_problem(cost_matrix)

print("Optimal assignments:")

for store , item , cost in solution:

print(

f"Store {store + 1}: Buy Item {item + 1} "

f"(Cost: {cost})"

)

print(f"Total Cost: {total_cost}")

146

B Psuedocodes for Route Planning Algorithms

B.1 A* Algorithm

function get_distance(loc1 , loc2 , store_id1 , store_id2):

Create cache key from location coordinates

key = (

loc1.latitude ,

loc1.longitude ,

loc2.latitude ,

loc2.longitude

)

Return cached result if available

if key in distance_cache:

return distance_cache[key]

if google_maps_client exists:

Get distance and duration from Google Maps API

result = google_maps_client.get_distance_matrix(loc1 ,

loc2)

distance = result.distance

duration = result.duration_in_traffic

else:

Calculate Haversine distance

distance = haversine_distance(loc1 , loc2)

duration = distance / average_speed # Convert to time

Apply traffic factor

traffic_factor = traffic_data[store_id1 or store_id2] or 1.0

duration = duration * traffic_factor

Cache and return result

distance_cache[key] = (distance , duration)

return distance , duration

147

function heuristic(current_store_id , remaining_store_ids):

if no remaining stores:

return 0

current_store = find store by current_store_id

if not current_store:

return infinity

min_distance = infinity

for store_id in remaining_store_ids:

store = find store by store_id

distance = haversine_distance(

current_store.location ,

store.location

)

min_distance = min(min_distance , distance)

return min_distance

function find_path(store_order):

if no store_order:

return empty path , 0 distance , 0 time

current_location = user_location

total_distance = 0

total_time = 0

path = empty list

for store_id in store_order:

store = find store by store_id

if not store:

throw error "Store not found"

148

distance , time = get_distance(

current_location ,

store.location ,

store_id

)

total_distance += distance

total_time += time

path.append(store_id)

current_location = store.location

Return to starting point

distance , time = get_distance(current_location ,

user_location)

total_distance += distance

total_time += time

return path , total_distance , total_time

149

B.2 Genetic Algorithm

function generate_individual ():

Select random combination

combination_idx = random_index(combinations)

store_ids = list of store IDs from combination

shuffle(store_ids)

return (combination_idx , store_ids)

function fitness(individual):

combination_idx , store_order = individual

astar.stores = combinations[combination_idx]. stores

path , distance , time = astar.find_path(store_order)

return distance , time , path

function tournament_selection(population , tournament_size):

Select random individuals for tournament

tournament = random_sample(population , tournament_size)

best_individual = null

best_distance = infinity

for individual in tournament:

distance , _, _ = fitness(individual)

if distance < best_distance:

best_distance = distance

best_individual = individual

return best_individual

function crossover(parent1 , parent2):

if random () > crossover_rate:

return parent1 , parent2

Choose combination from one parent

child_idx = random_choice(

150

parent1.combination_idx ,

parent2.combination_idx

)

store_ids = list of store IDs from combinations[child_idx]

if store_ids length <= 1:

return (child_idx , store_ids), (child_idx , store_ids)

Perform order crossover

start , end = sorted random indices in store_ids

child_order = empty list of store_ids length

child_order[start:end] = store_ids[start:end]

Fill remaining positions

remaining = store_ids not in child_order

for store_id in remaining:

find next empty position in child_order

place store_id in position

return (child_idx , child_order), (child_idx , child_order)

function mutate(individual):

combination_idx , store_order = individual

Mutate combination

if random () < mutation_rate and multiple combinations exist:

combination_idx = random_index(combinations)

store_order = list of store IDs from new combination

shuffle(store_order)

Mutate order

if random () < mutation_rate and multiple stores:

swap two random positions in store_order

151

return (combination_idx , store_order)

function run():

Initialize population

population = generate population_size individuals

best_individual = null

best_distance = infinity

fitness_history = empty list

diversity_history = empty list

for each generation:

new_population = empty list

fitnesses = empty list

Evaluate fitness

for individual in population:

distance , time , path = fitness(individual)

fitnesses.append(distance)

if distance < best_distance:

best_distance = distance

best_individual = (

individual.combination_idx ,

path ,

time

)

Track statistics

fitness_history.append(average(fitnesses))

diversity = unique store orders / population_size

diversity_history.append(diversity)

Select elites

elites = top elite_size individuals by fitness

new_population.extend(elites)

152

Generate new population

while new_population not full:

parent1 = tournament_selection(population)

parent2 = tournament_selection(population)

child1 , child2 = crossover(parent1 , parent2)

child1 = mutate(child1)

child2 = mutate(child2)

new_population.append(child1 , child2)

population = new_population trimmed to population_size

Final validation

best_idx , best_path , best_time = best_individual

distance , time , path = fitness ((best_idx , best_path))

statistics = {

fitness_history ,

best_fitness_history ,

diversity_history ,

generations_executed ,

final_diversity ,

convergence_generation

}

return best_idx , best_path , time , distance , statistics

153

C Discount Engine

C.1 CFG of Rule Language(DCDQL)

RULE := CONDITION [LOGICAL_OPERATOR CONDITION] THEN

DISCOUNT_TYPE VALUE

CONDITION := KEY COMPARISON_OPERATOR VALUE

KEY := min_cart_price | total_price | product_id | KEY_D

KEY_D := total_category_price | category_id | purchase_quantity

COMPARISON_OPERATOR := = | != | > | < | >= | <= | IN

VALUE := NUMBER | STRING | [LIST]

LIST := NUMBER | STRING

LOGICAL_OPERATOR := AND | OR

DISCOUNT_TYPE := product_percentage | product_flat_amount | DT_T

DT_T := cart_percentage | cart_flat_amount | BOGO

NUMBER := Integer | Float

STRING := [a-zA -Z][a-zA-Z0 -9_]*

154

C.2 Discount Engine

// Discount Rule Engine

// Handles rules like: "product_id IN [1,2,3] THEN

product_percentage 10"

// Data Structures

STRUCT Token

type: STRING // e.g., KEYWORD , NUMBER , LBRACKET

value: STRING // e.g., "product_id", "1"

STRUCT Condition

key: STRING // e.g., "product_id"

operator: STRING // e.g., "=", "IN"

value: ANY // NUMBER , STRING , LIST

STRUCT Rule

conditions: LIST of Condition // Max 2

logical_op: STRING // "AND", "OR", ""

discount_type: STRING // e.g., "product_percentage"

discount_value: NUMBER // e.g., 10

// Main Function

FUNCTION ProcessDiscountRule(

rule_string ,

product ,

cart

) RETURNS Discount

tokens = Lex(rule_string)

rule = Parse(tokens)

discount = Evaluate(rule , product , cart)

RETURN discount

// Lexer: Tokenizes input string

155

FUNCTION Lex(rule_string) RETURNS LIST of Token

tokens = EMPTY LIST

current = EMPTY STRING

in_list = FALSE

FOR each char c in rule_string

IF c is WHITESPACE

IF current is NOT EMPTY

tokens.ADD(CreateToken(current))

current = EMPTY

END IF

ELSE IF c is "["

in_list = TRUE

tokens.ADD(Token(type="LBRACKET", value="["))

current = EMPTY

ELSE IF c is "]"

in_list = FALSE

IF current is NOT EMPTY

tokens.ADD(CreateToken(current))

END IF

tokens.ADD(Token(type="RBRACKET", value="]"))

current = EMPTY

ELSE IF c is "," and in_list

IF current is NOT EMPTY

tokens.ADD(CreateToken(current))

current = EMPTY

END IF

tokens.ADD(Token(type="COMMA", value=","))

ELSE

current = current + c

END IF

END FOR

IF current is NOT EMPTY

156

tokens.ADD(CreateToken(current))

END IF

RETURN tokens

FUNCTION CreateToken(value) RETURNS Token

keywords = ["min_cart_price", "product_id",

"category_id", "total_price",

"total_category_price",

"purchase_quantity"]

ops = ["=", "!=", ">", "<", ">=", "<=", "IN"]

logical = ["AND", "OR"]

discounts = ["product_percentage",

"product_flat_amount",

"cart_percentage",

"cart_flat_amount", "BOGO"]

IF value in keywords

RETURN Token(type="KEYWORD", value=value)

ELSE IF value in ops

RETURN Token(type="OPERATOR", value=value)

ELSE IF value in logical

RETURN Token(type="LOGICAL_OP", value=value)

ELSE IF value = "THEN"

RETURN Token(type="THEN", value=value)

ELSE IF value in discounts

RETURN Token(type="DISCOUNT_TYPE", value=value)

ELSE IF value MATCHES NUMBER

RETURN Token(type="NUMBER", value=value)

ELSE IF value MATCHES STRING

RETURN Token(type="STRING", value=value)

ELSE

ERROR("Invalid token: " + value)

END IF

157

// Parser: Builds rule from tokens

FUNCTION Parse(tokens) RETURNS Rule

rule = NEW Rule

index = 0

condition1 = ParseCondition(tokens , index)

rule.conditions.ADD(condition1)

index = condition1.next_index

IF index < tokens.LENGTH and tokens[index].type = "

LOGICAL_OP"

rule.logical_op = tokens[index].value

index = index + 1

condition2 = ParseCondition(tokens , index)

rule.conditions.ADD(condition2)

index = condition2.next_index

END IF

IF index >= tokens.LENGTH or tokens[index].type != "THEN"

ERROR("Expected THEN")

END IF

index = index + 1

IF index >= tokens.LENGTH or tokens[index].type != "

DISCOUNT_TYPE"

ERROR("Expected discount type")

END IF

rule.discount_type = tokens[index].value

index = index + 1

IF index >= tokens.LENGTH or tokens[index].type != "NUMBER"

ERROR("Expected discount value")

END IF

158

rule.discount_value = tokens[index].value

index = index + 1

IF index < tokens.LENGTH

ERROR("Unexpected tokens")

END IF

RETURN rule

FUNCTION ParseCondition(tokens , start_index) RETURNS Condition

condition = NEW Condition

index = start_index

IF index >= tokens.LENGTH or tokens[index].type != "KEYWORD"

ERROR("Expected keyword")

END IF

condition.key = tokens[index]. value

index = index + 1

IF index >= tokens.LENGTH or tokens[index].type != "OPERATOR

"

ERROR("Expected operator")

END IF

condition.operator = tokens[index]. value

index = index + 1

IF condition.operator = "IN"

condition.value = ParseList(tokens , index)

index = condition.value.next_index

ELSE

IF index >= tokens.LENGTH or

tokens[index].type not in ["NUMBER", "STRING"]

ERROR("Expected number or string")

END IF

159

condition.value = tokens[index].value

index = index + 1

END IF

RETURN Condition(key=condition.key ,

operator=condition.operator ,

value=condition.value ,

next_index=index)

FUNCTION ParseList(tokens , start_index) RETURNS LIST

list = EMPTY LIST

index = start_index

IF index >= tokens.LENGTH or tokens[index].type != "LBRACKET

"

ERROR("Expected [")

END IF

index = index + 1

WHILE index < tokens.LENGTH and tokens[index].type != "

RBRACKET"

IF tokens[index].type in ["NUMBER", "STRING"]

list.ADD(tokens[index].value)

index = index + 1

ELSE

ERROR("Expected number or string")

END IF

IF index < tokens.LENGTH and tokens[index].type = "COMMA

"

index = index + 1

END IF

END WHILE

160

IF index >= tokens.LENGTH or tokens[index].type != "RBRACKET

"

ERROR("Expected]")

END IF

index = index + 1

RETURN LIST(value=list , next_index=index)

// Evaluator: Applies rule to product and cart

FUNCTION Evaluate(rule , product , cart) RETURNS Discount

result = TRUE

FOR each condition in rule.conditions

value = GetContextValue(condition.key , product , cart)

cond_result = EvaluateCondition(condition , value)

IF rule.logical_op = "AND"

result = result AND cond_result

ELSE IF rule.logical_op = "OR"

result = result OR cond_result

ELSE

result = cond_result

END IF

END FOR

IF result

RETURN ComputeDiscount(rule.discount_type ,

rule.discount_value ,

product , cart)

ELSE

RETURN NO_DISCOUNT

END IF

FUNCTION GetContextValue(key , product , cart) RETURNS ANY

CASE key

161

WHEN "min_cart_price"

RETURN cart.total_price

WHEN "total_price"

RETURN product.price

WHEN "product_id"

RETURN product.id

WHEN "total_category_price"

RETURN cart.category_totals[product.category]

WHEN "category_id"

RETURN product.category

WHEN "purchase_quantity"

RETURN product.quantity

ELSE

ERROR("Unknown key: " + key)

END CASE

FUNCTION EvaluateCondition(condition , value) RETURNS BOOLEAN

CASE condition.operator

WHEN "="

RETURN value = condition.value

WHEN "!="

RETURN value != condition.value

WHEN ">"

RETURN value > condition.value

WHEN "<"

RETURN value < condition.value

WHEN ">="

RETURN value >= condition.value

WHEN "<="

RETURN value <= condition.value

WHEN "IN"

RETURN value IN condition.value

ELSE

ERROR("Unknown operator")

162

END CASE

FUNCTION ComputeDiscount(type , value , product , cart) RETURNS

Discount

CASE type

WHEN "product_percentage"

amount = product.price * value / 100

RETURN Discount(type="product", amount=amount)

WHEN "product_flat_amount"

RETURN Discount(type="product", amount=value)

WHEN "cart_percentage"

amount = cart.total_price * value / 100

RETURN Discount(type="cart", amount=amount)

WHEN "cart_flat_amount"

RETURN Discount(type="cart", amount=value)

WHEN "BOGO"

IF product.quantity >= 2

RETURN Discount(type="product",

amount=product.price)

ELSE

RETURN NO_DISCOUNT

END IF

ELSE

ERROR("Unknown discount type")

END CASE

163

D Psuedocodes of Data Generation Scripts

D.1 Route Planning Algorithm Dataset Generation

Initialize logging system to track events and info

DEFINE FUNCTION generate_store(id, lat , lon , items):

RETURN a dictionary representing a store with:

- unique ID

- location (latitude & longitude)

- random distance value

- a set of items

DEFINE FUNCTION generate_dataset(name , num_combinations ,

stores_per_combination):

Log start of dataset generation with name and parameters

INITIALIZE dataset dictionary with:

- empty recommendation data

- empty traffic indices

- fixed user location

- genetic algorithm parameters

- Google Maps flag set to false

IF dataset name is "edge_empty":

Leave recommendation data empty

Log that empty dataset is generated

ELSE:

Initialize store_id_counter to 1

FOR each combination in range(num_combinations):

Initialize an empty list of stores

FOR each store in range(stores_per_combination):

Generate random latitude and longitude within

bounds

Construct store ID

164

Create a random number (1-3) of items with:

- IDs , units , prices , quantities , and costs

Create a store using generate_store ()

Add the store to the list of stores

Assign a random traffic index for the store

Increment store_id_counter

Add this list of stores to the recommendation data

Log the number of stores generated per combination

Ensure the output directory exists

Define output file path based on dataset name

Save the dataset as a JSON file to the output path

Log that dataset was saved

VERIFY:

- File exists

- File is not empty

IF any checks fail:

Log error and raise appropriate exception

TRY:

Call generate_dataset () with:

- "small": 4 combinations , 5 stores each

- "medium": 10 combinations , 12 stores each

- "large": 20 combinations , 20 stores each

- "edge_single_store": 1 combination , 1 store

- "edge_empty": 0 combinations , 0 stores

CATCH exceptions and log any errors during generation

RAISE the exception again

165

References

Aditya, PH, Indra Budi, and Qorib Munajat (2016). “A comparative analy-

sis of memory-based and model-based collaborative filtering on the im-

plementation of recommender system for E-commerce in Indonesia: A

case study PT X”. In: 2016 International Conference on Advanced Com-

puter Science and Information Systems (ICACSIS). IEEE, pp. 303–308.

Anandhan, Anitha et al. (2018). “Social media recommender systems: re-

view and open research issues”. In: IEEE Access 6, pp. 15608–15628.

Baluch, Anna (Aug. 2022). Retail Inventory Management Best Practices.

en-US. Section: Business. url: https://www.forbes.com/advisor/

business/retail-inventory-management/ (visited on 04/26/2025).

Beam search (Oct. 2024). en. Page Version ID: 1248868876. url: https:

//en.wikipedia.org/w/index.php?title=Beam_search&oldid=

1248868876 (visited on 04/26/2025).

Branch and bound (Apr. 2025). en. Page Version ID: 1284698095. url:

https://en.wikipedia.org/w/index.php?title=Branch_and_

bound&oldid=1284698095 (visited on 04/26/2025).

Burke, Robin (2000). “Knowledge-based recommender systems”. In: Ency-

clopedia of library and information systems 69.Supplement 32, pp. 175–

186.

— (2002). “Hybrid recommender systems: Survey and experiments”. In:

User modeling and user-adapted interaction 12, pp. 331–370.

Çelik, Özer (Sept. 2018). “A Research on Machine Learning Methods and

Its Applications”. In: doi: 10.31681/jetol.457046.

Chulyadyo, Rajani and Philippe Leray (2014). “A personalized recom-

mender system from probabilistic relational model and users’ prefer-

ences”. In: Procedia Computer Science 35, pp. 1063–1072.

166

https://www.forbes.com/advisor/business/retail-inventory-management/
https://www.forbes.com/advisor/business/retail-inventory-management/
https://en.wikipedia.org/w/index.php?title=Beam_search&oldid=1248868876
https://en.wikipedia.org/w/index.php?title=Beam_search&oldid=1248868876
https://en.wikipedia.org/w/index.php?title=Beam_search&oldid=1248868876
https://en.wikipedia.org/w/index.php?title=Branch_and_bound&oldid=1284698095
https://en.wikipedia.org/w/index.php?title=Branch_and_bound&oldid=1284698095
https://doi.org/10.31681/jetol.457046

Data Exchange Mechanisms and Considerations (2020). en. url: https://

enterprisearchitecture.harvard.edu/data-exchange-mechanisms.

De Pessemier, Toon et al. (2015). “Combining collaborative filtering and

search engine into hybrid news recommendations”. In: 3rd International

Workshop on News Recommendation and Analytics (INRA 2015), in

conjunction with the 9th ACM Conference on Recommender Systems

(RecSys 2015), pp. 13–18.

Do, Minh-Phung Thi, DV Nguyen, and Loc Nguyen (2010). “Model-based

approach for collaborative filtering”. In: 6th International conference on

information technology for education, pp. 217–228.

Gal, Michal S and Daniel L Rubinfeld (2018). “DATA STANDARDIZA-

TION”. en. In.

General Transit Feed Specification (2025). url: https://gtfs.org/ (vis-

ited on 04/26/2025).

Global Trade Item Number (2025a). en. Page Version ID: 1278604263. url:

https://en.wikipedia.org/w/index.php?title=Global_Trade_

Item_Number&oldid=1278604263.

Global Trade Item Number (Mar. 2025b). en. Page Version ID: 1278604263.

url: https://en.wikipedia.org/w/index.php?title=Global_

Trade_Item_Number&oldid=1278604263 (visited on 04/26/2025).

GS1 (Jan. 2025). en. url: https://en.wikipedia.org/w/index.php?

title=GS1&oldid=1267367519 (visited on 04/26/2025).

Gupta, Rajiv (Feb. 2023). “Research Paper on Artificial Intelligence”. In:

International Journal of Engineering and Computer Science 12, pp. 25654–

20656. doi: 10.18535/ijecs/v12i02.4720.

Hameed, Mohd Abdul, Omar Al Jadaan, and Sirandas Ramachandram

(2012). “Collaborative filtering based recommendation system: A sur-

167

https://enterprisearchitecture.harvard.edu/data-exchange-mechanisms
https://enterprisearchitecture.harvard.edu/data-exchange-mechanisms
https://gtfs.org/
https://en.wikipedia.org/w/index.php?title=Global_Trade_Item_Number&oldid=1278604263
https://en.wikipedia.org/w/index.php?title=Global_Trade_Item_Number&oldid=1278604263
https://en.wikipedia.org/w/index.php?title=Global_Trade_Item_Number&oldid=1278604263
https://en.wikipedia.org/w/index.php?title=Global_Trade_Item_Number&oldid=1278604263
https://en.wikipedia.org/w/index.php?title=GS1&oldid=1267367519
https://en.wikipedia.org/w/index.php?title=GS1&oldid=1267367519
https://doi.org/10.18535/ijecs/v12i02.4720

vey”. In: International Journal on Computer Science and Engineering

4.5, p. 859.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A Formal

Basis for the Heuristic Determination of Minimum Cost Paths”. In:

IEEE Transactions on Systems Science and Cybernetics 4.2, pp. 100–

107. doi: 10.1109/TSSC.1968.300136.

Huttner, Joseph (2009). “From Tapestry to SVD: A Survey of the Algo-

rithms That Power Recommender Systems”. PhD thesis.

Integer programming (Apr. 2025). en. Page Version ID: 1285601109. url:

https://en.wikipedia.org/w/index.php?title=Integer_programming&

oldid=1285601109 (visited on 04/26/2025).

Isinkaye, F.O., Y.O. Folajimi, and B.A. Ojokoh (2015). “Recommendation

systems: Principles, methods and evaluation”. In: Egyptian Informatics

Journal 16.3, pp. 261–273. issn: 1110-8665. doi: https://doi.org/

10.1016/j.eij.2015.06.005. url: https://www.sciencedirect.

com/science/article/pii/S1110866515000341.

Kaelbling, Leslie Pack, Michael L Littman, and Andrew W Moore (1996).

“Reinforcement learning: A survey”. In: Journal of artificial intelligence

research 4, pp. 237–285.

Kardan, Ahmad A. and Maryam Hooman (2013). “Targeted advertisement

in social networks using recommender systems”. In: 7th International

Conference on e-Commerce in Developing Countries:with focus on e-

Security, pp. 1–13. doi: 10.1109/ECDC.2013.6556728.

Khanal, Shristi Shakya et al. (2020). “A systematic review: machine learn-

ing based recommendation systems for e-learning”. In: Education and

Information Technologies 25, pp. 2635–2664.

168

https://doi.org/10.1109/TSSC.1968.300136
https://en.wikipedia.org/w/index.php?title=Integer_programming&oldid=1285601109
https://en.wikipedia.org/w/index.php?title=Integer_programming&oldid=1285601109
https://doi.org/https://doi.org/10.1016/j.eij.2015.06.005
https://doi.org/https://doi.org/10.1016/j.eij.2015.06.005
https://www.sciencedirect.com/science/article/pii/S1110866515000341
https://www.sciencedirect.com/science/article/pii/S1110866515000341
https://doi.org/10.1109/ECDC.2013.6556728

Kong, Xiangjie et al. (2018). “Shared Subway Shuttle Bus Route Planning

Based on Transport Data Analytics”. In: IEEE Transactions on Au-

tomation Science and Engineering 15.4, pp. 1507–1520. doi: 10.1109/

TASE.2018.2865494.

Kunaver, Matevž and Tomaž Požrl (2017). “Diversity in recommender

systems–A survey”. In: Knowledge-based systems 123, pp. 154–162.

Langley, Pat, Wayne Iba, Kevin Thompson, et al. (1992). “An analysis of

Bayesian classifiers”. In: Aaai. Vol. 90. Citeseer, pp. 223–228.

Lightspeed (2023). Lightspeed Retail: POS and Commerce Solutions. url:

https://www.lightspeedhq.com/ (visited on 04/26/2025).

Linear programming (Feb. 2025). en. Page Version ID: 1278106560. url:

https://en.wikipedia.org/w/index.php?title=Linear_programming&

oldid=1278106560 (visited on 04/26/2025).

Liu, Qiong and Ying Wu (Jan. 2012). “Supervised Learning”. In: doi: 10.

1007/978-1-4419-1428-6_451.

Locally (2025). en. url: https://www.locally.com (visited on 04/26/2025).

Murphy, Lauren et al. (Oct. 2018). “API Designers in the Field: Design

Practices and Challenges for Creating Usable APIs”. en. In: 2018 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

Lisbon: IEEE, pp. 249–258. isbn: 978-1-5386-4235-1. doi: 10.1109/

VLHCC.2018.8506523. url: https://ieeexplore.ieee.org/document/

8506523/.

Naeem, Samreen et al. (Apr. 2023). “An Unsupervised Machine Learning

Algorithms: Comprehensive Review”. In: IJCDS Journal 13, pp. 911–

921. doi: 10.12785/ijcds/130172.

NewStore - A Unified Commerce Platform for Global Brands (2025). en-US.

url: https://www.newstore.com/ (visited on 04/26/2025).

169

https://doi.org/10.1109/TASE.2018.2865494
https://doi.org/10.1109/TASE.2018.2865494
https://www.lightspeedhq.com/
https://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=1278106560
https://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=1278106560
https://doi.org/10.1007/978-1-4419-1428-6_451
https://doi.org/10.1007/978-1-4419-1428-6_451
https://www.locally.com
https://doi.org/10.1109/VLHCC.2018.8506523
https://doi.org/10.1109/VLHCC.2018.8506523
https://ieeexplore.ieee.org/document/8506523/
https://ieeexplore.ieee.org/document/8506523/
https://doi.org/10.12785/ijcds/130172
https://www.newstore.com/

NIEMOpen For Government | An OASIS Open Project (2025). url: https:

//www.niem.gov/ (visited on 04/26/2025).

Open Food Facts (2025). en. url: https://github.com/openfoodfacts

(visited on 04/27/2025).

OpenStreetMap on GitHub (2025). en. url: https://github.com/openstreetmap

(visited on 04/27/2025).

Papadakis, Harris et al. (2022). “Collaborative filtering recommender sys-

tems taxonomy”. In: Knowledge and Information Systems 64.1, pp. 35–

74.

Pazzani, Michael J and Daniel Billsus (2007). “Content-based recommen-

dation systems”. In: The adaptive web: methods and strategies of web

personalization. Springer, pp. 325–341.

Protocol Buffers (2025). en. url: https://protobuf.dev/ (visited on

04/26/2025).

Rich, Elaine (1979). “User modeling via stereotypes”. In: Cognitive science

3.4, pp. 329–354.

Safavi, Sadaf, Mehrdad Jalali, and Mahboobeh Houshmand (2022). “To-

ward Point-of-Interest Recommendation Systems: A Critical Review on

Deep-Learning Approaches”. In: Electronics 11.13. issn: 2079-9292. doi:

10.3390/electronics11131998. url: https://www.mdpi.com/2079-

9292/11/13/1998.

Salunke, Tanmayee and Unnati Nichite (Dec. 2022). “Recommender Sys-

tems in E-commerce”. In: doi: 10.13140/RG.2.2.10194.43202.

Schafer, Ben, Joseph Konstan, and John Riedl (Oct. 1999). “Recommender

Systems in E-Commerce”. In: 1st ACM Conference on Electronic Com-

merce, Denver, Colorado, United States. doi: 10.1145/336992.337035.

170

https://www.niem.gov/
https://www.niem.gov/
https://github.com/openfoodfacts
https://github.com/openstreetmap
https://protobuf.dev/
https://doi.org/10.3390/electronics11131998
https://www.mdpi.com/2079-9292/11/13/1998
https://www.mdpi.com/2079-9292/11/13/1998
https://doi.org/10.13140/RG.2.2.10194.43202
https://doi.org/10.1145/336992.337035

Singh, Pradeep et al. (Jan. 2021). “Recommender Systems: An Overview,

Research Trends, and Future Directions”. In: International Journal of

Business and Systems Research 15, pp. 14–52. doi: 10.1504/IJBSR.

2021.10033303.

Srinivas, M. and Lalit M. Patnaik (1994). “Adaptive Probabilities of Crossover

and Mutation in Genetic Algorithms”. In: IEEE Transactions on Sys-

tems, Man, and Cybernetics 24.4, pp. 656–667. doi: 10 .1109 /21 .

286385.

ST, Red Rocket and Perishable (Feb. 2025). How RFID is Revolutionizing

Retail: Loss Prevention & Inventory Accuracy. en-US. url: https://

datascan.com/the-benefits-of-real-time-inventory-tracking-

for-grocery-stores/ (visited on 04/26/2025).

Steck, Harald et al. (Sept. 2021). “Deep Learning for Recommender Sys-

tems: A Netflix Case Study”. In: AI Magazine 42, pp. 7–18. doi: 10.

1609/aimag.v42i3.18140.

Storemapper: Customizable Store Locator App and Software (2025). en.

url: https://www.storemapper.com/ (visited on 04/26/2025).

Tang, Gang et al. (Mar. 2021). “Geometric A-Star Algorithm: An Improved

A-Star Algorithm for AGV Path Planning in a Port Environment”. In:

IEEE Access PP, pp. 1–1. doi: 10.1109/ACCESS.2021.3070054.

Target (2025). Target Store Locator. url: https://www.target.com/

store-locator/find-stores (visited on 06/24/2025).

Thorat, Poonam B, Rajeshwari M Goudar, and Sunita Barve (2015). “Sur-

vey on collaborative filtering, content-based filtering and hybrid recom-

mendation system”. In: International Journal of Computer Applications

110.4, pp. 31–36.

171

https://doi.org/10.1504/IJBSR.2021.10033303
https://doi.org/10.1504/IJBSR.2021.10033303
https://doi.org/10.1109/21.286385
https://doi.org/10.1109/21.286385
https://datascan.com/the-benefits-of-real-time-inventory-tracking-for-grocery-stores/
https://datascan.com/the-benefits-of-real-time-inventory-tracking-for-grocery-stores/
https://datascan.com/the-benefits-of-real-time-inventory-tracking-for-grocery-stores/
https://doi.org/10.1609/aimag.v42i3.18140
https://doi.org/10.1609/aimag.v42i3.18140
https://www.storemapper.com/
https://doi.org/10.1109/ACCESS.2021.3070054
https://www.target.com/store-locator/find-stores
https://www.target.com/store-locator/find-stores

Tong, Yongxin et al. (July 2018). “A unified approach to route planning for

shared mobility”. In: Proc. VLDB Endow. 11.11, pp. 1633–1646. issn:

2150-8097. doi: 10.14778/3236187.3236211. url: https://doi.org/

10.14778/3236187.3236211.

Verbert, Katrien et al. (2012). “Context-aware recommender systems for

learning: a survey and future challenges”. In: IEEE transactions on

learning technologies 5.4, pp. 318–335.

Walmart (2025). Walmart Store Finder. url: https://www.walmart.com/

store-finder (visited on 06/24/2025).

Yang, Wan-Shiou, Hung-Chi Cheng, and Jia-Ben Dia (2008). “A location-

aware recommender system for mobile shopping environments”. In: Ex-

pert Systems with Applications 34.1, pp. 437–445. issn: 0957-4174. doi:

https://doi.org/10.1016/j.eswa.2006.09.033. url: https://

www.sciencedirect.com/science/article/pii/S0957417406002934.

172

https://doi.org/10.14778/3236187.3236211
https://doi.org/10.14778/3236187.3236211
https://doi.org/10.14778/3236187.3236211
https://www.walmart.com/store-finder
https://www.walmart.com/store-finder
https://doi.org/https://doi.org/10.1016/j.eswa.2006.09.033
https://www.sciencedirect.com/science/article/pii/S0957417406002934
https://www.sciencedirect.com/science/article/pii/S0957417406002934

	Introduction
	Motivation
	Scope
	Problem Statement
	Proposed Solution
	Included in Scope
	Excluded from Scope

	Aims and objectives of the project

	Literature Review
	The Rise of M-Commerce and Location-Based Services
	Recommendation Systems
	Route Planning Algorithms
	Data Collection Methods and Data Standardization
	Existing Solutions
	Research gap and research questions

	Methodology
	Software Development Perspective
	System Overview
	Technologies
	User Interface Designs

	Research Perspective

	Implementation
	Store Recommendation System Overview
	Problem Definition
	Single-Store Mode
	Multi-Store Mode
	NP-Hardness of Multi-Store Mode
	General Algorithmic Approaches
	Impact of Influence Parameters

	Single-Store Mode Implementation
	Multi-Store Mode Implementation
	Naive Algorithm
	Time Complexity Analysis
	Space Complexity Analysis
	Pros and Cons

	Memory-Optimized Algorithm
	Time Complexity Analysis
	Space Complexity Analysis
	Pros and Cons

	Filtered Greedy Algorithm
	Time Complexity Analysis
	Space Complexity Analysis
	Pros and Cons

	Branch and Bound Algorithm
	Pipeline
	Optimization Steps
	Pros and Cons
	Limitations and Future Improvements

	Beam Search Algorithm
	Algorithm Description
	Pipeline
	Optimization Steps
	Pros and Cons
	Limitations and Future Improvements

	Integer Linear Programming
	Algorithm Description
	Pipeline
	Optimization Steps
	Pros and Cons
	Limitations and Future Improvements

	Store Route Planning
	Problem Definition
	Methodology
	A* algorithm
	Genetic Algorithm
	Complexity Analysis
	Pros and Cons

	Shopping list recommendation algorithm
	Data Generation
	Recommendation Model Training and Evaluation
	Parameter Exploration

	Discount Engine
	Best Practices for Standardisation

	Results and Analysis
	Evaluation of Route Planning Algorithm
	Evaluation Methodology
	Performance Metrics
	Dataset Generation
	Parameter Configurations
	Result and Analysis

	Evaluation of Optimisation Algorithms
	Algorithm Descriptions
	Comparison
	Summary of Optimisation algorithms

	Evaluation of Recommendation Model
	Model Performance Hierarchy:
	Impact of Recommendation Count (N):
	Influence of Simulation Parameters:

	Qualitative Survey Results

	Discussion and Conclusion
	Discussion
	Conclusion

	Future Directions
	Pseudocodes for Store Recommendation Algorithms
	Naive Algorithm
	Memory-Optimized Algorithm
	Filtered Greedy Algorithm
	Branch and Bound Algorithm
	Beam Search Algorithm
	Integer Linear Programming Algorithm
	Attempted Implementation

	Psuedocodes for Route Planning Algorithms
	A* Algorithm
	Genetic Algorithm

	Discount Engine
	CFG of Rule Language(DCDQL)
	Discount Engine

	Psuedocodes of Data Generation Scripts
	Route Planning Algorithm Dataset Generation

	References

