Mitigating Low Bus Factor Risks:A Proactive
Approach to Address Single Points of Failure in
Software Development Teams

0. V. De Silva
Index No: 20000367

T.P.M De Silva
Index No: 20000375

H.U. Samaliarachchi
Index No: 20001551

Supervisor: Dr. Ajantha Atukorale
Co-Supervisor: Dr. Thilina Halloluwa

University of Colombo, School of Computing
Colombo, Sri Lanka

Submitted in partial fulfillment of the requirements of the
B.Sc(Hons) in Software Engineering 4th Year Project (SCS4223)

April 2025

Declaration

I certify that this dissertation does not incorporate, without acknowledgment, any
material previously submitted for a degree or diploma in any university and to the
best of my knowledge and belief, it does not contain any material previously published
or written by another person or myself except where due reference is made in the
text. I also hereby give consent for my dissertation, if accepted, be made available for
photocopying and for inter-library loans, and for the title and abstract to be made
available to outside organizations.

Member Name: 0. V. De Silva
. ﬁ/ Date: 30.06.2025

Signature of Member: _

Member Name: T.P.M. De Silva V4

Signature of Member: | ,/ Date: _ 30.06.2025
Member Name: H.U. Samaliarachchi

Signature of Member: {{:}_&/ _ Date: 30.06.2025

This is to certify that this dissertation is based on the work of O. V. De Silva, T.P.M.
De Silva and H.U. Samaliarachchi under my supervision. The thesis has been prepared
according to the format stipulated and is of an acceptable standard.

Supervisor’s Name: Dr. Ajantha Atukorale 5

Signature of Supervisor: Date: 30.06.2025

Co-supervisor’s Name: Dr. Thilina Halloluwa

.) U adle
Signature of Co-supervisor: L Date: 30.06.2025

30.06.2025

30.06.2025

30.06.2025

30.06.2025

30.06.2025

Acknowledgement

We would like to express our heartfelt gratitude to our supervisor, Dr. Ajantha
Atukorale, and co-supervisor, Dr. Thilina Halloluwa, for their invaluable guidance,
encouragement, and unwavering support throughout this research. Despite their de-
manding schedules, they consistently made time to provide insightful feedback and
direction, which significantly contributed to the success of our work.

We are also sincerely thankful to Dr. Randil Pushpananda and Ms. Amali Perera,
the course coordinators of the SCS4223 Final Year Project in Software Engineering
at the University of Colombo School of Computing, for their continuous support, co-
ordination, and dedication in facilitating this project from start to finish.

Our deep appreciation extends to the industry experts who generously contributed
their time and expertise to validate our results, providing us with practical insights
and constructive suggestions that enriched the quality and impact of our research. We
also thank our fellow colleagues who assisted us during the initial validation phases,
offering helpful feedback and encouragement.

Last but certainly not least, we are profoundly grateful to our parents and colleagues
for their unwavering support and encouragement throughout this year-long journey.
Their belief in us has been a constant source of motivation and strength.

Abstract

This research addresses a common problem in software engineering where the knowl-
edge is concentrated in a small subset of developers within a team which can lead
to serious problems on their departure. The bus factor is a vital metric for assessing
the resilience of software projects by estimating the risks associated with the loss of
key contributors. Traditional approaches often rely on simplistic heuristics, failing to
capture the complex collaboration dynamics and distributed knowledge within devel-
opment teams. This thesis presents a graph-based method that models contributor
interactions through social network analysis to identify critical knowledge holders. By
incorporating multiple dimensions—such as lines of code contributions, file ownership
diversity, interaction centrality, and knowledge decay—the proposed approach offers
a more comprehensive and context-aware assessment of project risk. To enhance
accuracy, the method integrates project context data from Jira issues, enabling the
identification of essential contributors who may not write significant amounts of code
but play key roles in the development process. Additionally, the tool supports effi-
cient onboarding through automated documentation generation, facilitating smoother
knowledge transfer. This study adopted a pragmatic research philosophy with an in-
ductive, mixed-methods approach, leveraging Design Science Research Methodology
(DSRM) to develop and evaluate a system for identifying critical knowledge holders
in software projects. Through iterative development, the tool was enhanced across
three stages: analyzing version control data to detect high-risk areas, integrating
issue-tracking data for contextual insights, and generating detailed documentation
to support knowledge transfer. The outcomes were validated through comparative
analysis and stakeholder feedback, ensuring both technical accuracy and real-world
applicability. The solution is delivered as an interactive, web-based application opti-
mized for usability and visual analysis while evaluating its effectiveness using GitHub
repositories, beginning with university projects and extending to 12 real-world in-
dustry projects from diverse organizations. The tool successfully identified all key
contributors in these 12 projects with an overall accuracy of 85.56% , demonstrating
its robustness across different team sizes, repository structures, and workflows. Com-
pared to traditional techniques, this approach provides deeper insights for proactive
risk mitigation and significantly strengthens team resilience.

i

Contents

1 Introduction
1.1 Key Terms and Concepts
1.2 Background o
1.3 Research Problem
1.4 Research Aim
1.5 Objectives
1.6 Research Questions
1.7 Scope
1.8 Significance
1.9 Overview of the dissertation
2 Literature Review
2.1 Early commit based approaches
2.2 Algorithmic advancements
2.3 Metric-based techniques oL
2.4 ML based techniques L
2.5 Visualisation tools
2.6 Network-Based Approaches for Identifying Core Developers in Software
Projects
2.7 Limitations of the traditional techniques
3 Research Methodology
3.1 Chapter Overview
3.2 Research Philosophy
3.3 Research Approach,
3.4 Research Strategy
3.4.1 Problem Identification and Motivation
3.4.2 Tteration 1
3.4.3 Tteration 2
3.4.4 Tteration 3
3.4.5 Communication
3.5 Time horizons

il

OO UU s = W=

- N

oo

10
11

11
12

3.6 Data Collection 20
3.7 Data Preparation and Analysis 22
3.7.1 Data Processing L 22
3.72 Data Analysis 22
3.7.3 SUS Score 24
3.8 Hardware Configuration 24
3.9 Software Development Life-Cycle 25
3.10 Experiments and Preliminary Results 25

3.10.1 Comparative analysis of Bus Factor estimations by Bus Factor
Explorer and Avelino et al. algorithm 25

3.10.2 Correlation analysis between bus factor and Cognitive/Cyclo-
matic Complexityo 27

3.10.3 Correlation analysis between the number of contributors and
Bus Factor. 28
3.10.4 Analyzing Bus factor in small teams (team size <10) 29

3.10.5 Analyzing the trend of Bus Factor towards specific program-
ming languages 29
3.11 System Designo 32
3.11.1 High-Level Architecture Diagram 32
3.11.2 Use Case Diagram 33
3.11.3 Activity Diagrams 34
3.11.4 Functional Requirements 36
3.11.5 Quality Attributes 37
Implementation 38
4.1 Contribution Pattern Analysis 38
4.2 Identification of Tools and Technologies 39
4.3 Basic Bus Factor Calculation 41
4.4 Enhanced Bus Factor Calculation with Jira Integration 46
4.4.1 Architecture 47
4.4.2 Jira Integration Overview 47
4.5 Documentation Generation to Improve On-boarding of New Developers 49
4.5.1 RepoMix and DeepSeek Integration 49
4.5.2 JSON Output Structure 49
4.5.3 Prompt used in DeepSeek API 50
Evaluation and Results 54
5.1 Chapter overview 54
5.2 Evaluation Questions 54
5.3 Evaluation of Graph-Based Bus Factor Calculation Method 55
5.3.1 Initial Evaluation on University Projects %)
5.3.2 Extended Evaluation on Industry Projects 56

v

5.3.3 Simulation-Based Robustness Testing 58

5.3.4 Performance Metrics 59
5.3.5 User Feedback on Usability 60
5.3.6 Generalizability Across Projects 61
54 Results 61
5.4.1 Identification of Potential Single Points of Failure 61
5.4.2 Methods for Effective Critical Knowledge Transfer 62
5.4.3 Alignment with Existing State-of-the-Art Algorithms 62
Discussion 63
6.1 Key Contributions 63
6.2 Challenges 64
6.2.1 Data Availability Challenges 64
6.2.2 Evaluation and Feedback Challenges 64
6.2.3 Technical Challenges 65
Conclusion 66
7.1 Overview 66
7.2 Limitations 66
7.2.1 Future Work.o 66
7.3 Final Remarks.o 67

List of Tables

2.1

3.1
3.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
5.9

Addressing Gaps in Existing Bus Factor Estimation Techniques . .. 14
SUS Score Interpretation (Bangor, Kortum & Miller, 2009) 24
Summary of repositories and their bus factor values (no. of contribu-

tors < 10) 30
Per-project performance metrics for Explorer vs. Network GraphGen 55

Result Comparison between the ground truth bus factor values, results
from the existing Explorer method, and the proposed Graph-based

method 56
Average Performance Metrics for Tools using Bus Factor (Dev) as
Ground Truth 56
Industry projects (anonymised): ground truth vs. graph-based method
results . . .o a7
True positives (TP), false positives (FP), false negatives (FN), and
accuracy per project. Lo D7
Comparison of Ground Truth vs Graph-based Key Contributor Iden-
tification and Bus Factor Estimation 59
Accuracy of Graph-based Methods under various contribution scenarios 59
Graph-based Method: Computation Time and Scalability Metrics . . 60
User Feedback Scores for Key System Aspects 61

vi

List of Figures

3.1
3.2

3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10

4.1

4.2

4.3

4.4
4.5

Design Science Research Methodology 17
Bus Factor estimations for various repositories using two approaches:

Bus Factor Explorer (solid hatching) and Avelino et al. algorithm
(dotted hatching). The x-axis lists repositories, and the y-axis indicates

the corresponding bus factor values 26
Scatter plot illustrating the relationship between Bus Factor and two
software complexity metrics—Cognitive Complexity (magenta stars) and
Cyclomatic Complexity(cyan plus markers) for selected repositories . 27
Scatter plot showing the relationship between Bus Factor and the
number of contributors in software projects. Each point represents

a project, with Bus Factor on the vertical axis and the number of
contributors on the horizontal axis 28
A bar plot depicting average Bus Factor for projects grouped by pro-
gramming language. The bars(light blue) represent the average Bus
Factor for each language, while the dashed line(red) indicates the over-

all average Bus Factor (2.49). A trend line (orange) highlights the

increasing trend in the average Bus Factor across languages 31
High-Level Architecture Diagram 32
Use Case Diagram 33
Activity diagram - BF Calculation without JIRA Integration 34
Activity diagram - BF Calculation with JIRA Integration 35
Activity diagram - BF Calculation and Documentation Generation. . 36

Visualization of the key collaboration network for the GitHub reposi-

tory team-ayura/Ayura-Server. 43
Treemap visualization of file-level contributions by the key developer
pasangimhana within the Ayura.API/Models directory of the GitHub

repository team-ayura/Ayura-Server. 44
Documentation generated for the GitHub repository team-ayura/Ayura-

Server 52
Documentation of team-ayura/Ayura-Server continued 53
Documentation of team-ayura/Ayura-Server continued 53

vil

5.1

Commit Count vs Computation Time

viii

Acronyms

API Application Programming Interface. 37, 39
BF Bus Factor. 18

DK Design Knowledge. 16
DOA Degree of Authorship. 8, 9
DSRM Design Science Research Methodology. 16

DSRP Design Science Research Process. 17

LLM Large Language Model. 40, 41
LOC Lines of Code. 42, 43

LOCC Lines of Code Changes. 10, 17

MVP Minimum Viable Product. 25

NPM Node Package Manager. 39

PoC Proof-of-Concept. 63

SDLC Software Development Life Cycle. 15, 25

VCS Version Control System. 5, 7, 9, 13, 17, 36

X

Chapter 1

Introduction

In the complex and rapidly evolving landscape of Software Development, the com-
bined effort of a team leads to the success of the project. The average software team
consists of approximately five to ten membersDikert et al. (2016), where the dynamic
interplay of skills, individual talents, and experience within the team is pivotal. How-
ever, the continuous progress of such teams is frequently weakened by the uneven
distribution of critical knowledge, which is often concentrated in the hands of a few
key members. This imbalance can lead to significant vulnerabilities, particularly when
these individuals are no longer available.

The critical role of collaborative team efforts in ensuring project success has long
been recognized Constantino et al. (2020), yet knowledge concentration among a
small subset of team members remains a significant risk. It’s clear that about 16%
of open-source projects suffer from the fact that the exit of all key developers leads
to severe disruptionsAvelino et al. (2019). Only 41% of these projects managed to
continue their development in the absence of their central figuresJabrayilzade et al.
(2022). This phenomenon, often quantified using the ”bus factor,” measures the
number of key team members whose loss would stall project progress Coplien and
Harrison (2004). Traditional methods for calculating the bus factor rely heavily on
static metrics, such as commit frequency or simplistic thresholds, which fail to ac-
count for the complex and dynamic nature of modern development environments.

The disadvantages of a low bus factor cause not only project delays but can also lead
to a single point of failure, increase the on-boarding times for new team members, and
increase the overall organizational dependency of employees. This research proposes
a novel approach to bus factor analysis that leverages contribution pattern analysis
and social network metrics providing a dynamic, interaction-focused perspective that
adapts to modern workflows. It identifies critical contributors and highlights areas
of concentrated knowledge, enabling proactive risk management through knowledge
transfer and team-wide collaboration strategies.

1.1 Key Terms and Concepts

Bus factor

The concept of the bus factor, which is also known as the truck factor, was introduced
in the book “Organizational Patterns of Agile Software DevelopmentCoplien and
Harrison (2004)” as the minimum number of team members that have to suddenly
be hit by a bus before the project stalls. In other words, The Bus Factor is a simple
approach to express and comprehend a software project’s reliance on key developers.
It refers to the minimum number of developers required for project maintenance
and evolution without halting the projectAvelino et al. (2019). A lower bus factor
indicates a higher existential risk for projects. Conversely, a higher bus factor (relative
to team size) implies a more evenly distributed knowledge base, minimizing the impact
if a team member leaves the project suddenlyJabrayilzade et al. (2022).

Degree centrality

Degree centrality is a local centrality measure that indicates how well-connected a
developer is within a network. It is calculated based on the number of edges, or
direct connections, a developer (vertex) has with other developers. In other words,
the degree centrality of a node v in a graph G is defined as C'D(v) = deg(v), where
deg(v) represents the total number of connections associated with that nodeBosu and
Carver (2014). A higher degree centrality suggests that the developer is more actively
engaged or influential within the network due to having more direct interactionsBock
et al. (2023).

Lines of code (LOC)

Lines of Code (LOC) is a metric in software engineering used to quantify the size of
a software project by counting the number of lines in its source code.

1.2 Background

Software projects are typically developed by teams rather than individuals. According
to data from the ISBSG repository, the average software development team consists
of about 7.9 members, with a median size of 5. In such collaborative environments,
tracking how knowledge is distributed among team members can be a complex task.
However, monitoring this distribution is essential, as studies have shown that devel-
opers with limited expertise in a particular component are more likely to introduce
bugs into the project Jabrayilzade et al. (2022).

Inherently, software development projects are fraught with risks. Many projects face
challenges like cost overruns, missed deadlines, and the development of incorrect func-
tionalities, often due to underestimated risks such as personnel shortages. As software
projects grow in complexity, the need for effective risk management strategies has be-
come more pressing. To mitigate these risks, companies have increasingly adopted
risk management solutions, which rely on indicators to evaluate project risks such as
cost, time, and quality Cosentino et al. (2015). One critical risk factor is employee
turnover, which can be assessed through the concentration of knowledge among de-
velopers. This is commonly referred to as the bus factor, which helps gauge the risk
of key personnel leaving the project.

A low bus factor can arise from several factors: organizational, technical, and cultural
Almarimi et al. (2021). Organizational factors include a lack of formal documenta-
tion, while technical challenges arise from maintaining complex or specialized systems.
Cultural factors may involve environments that discourage knowledge sharing or pro-
mote isolated work. The consequences of a low bus factor are far-reaching—ranging
from project delays and a single point of failure to increased onboarding times for
new team members and greater organizational dependency on specific employees.

Numerous studies Avelino et al. (2016); Jabrayilzade et al. (2022); Klimov et al.
(2023); Almarimi et al. (2021); Fritz et al. (2014); Rigby et al. (2016) have inves-
tigated the distribution of knowledge among software developers. However, these
studies predominantly rely on algorithmic approaches that use hard-coded thresholds
to measure the weight of contributions and knowledge distribution.

From a broader perspective, solving this problem has significant implications for the
software industry. By ensuring a more equitable distribution of knowledge, companies
can improve productivity, enhance project resilience, and increase overall employee
satisfaction.

1.3 Research Problem

The uneven distribution of knowledge within software development teams is a common
issue that often goes unaddressed. This knowledge imbalance can result in various
problems, including unequal workloads, increased stress on key individuals, and po-
tential project delays or failures. While previous research has developed algorithmic-
based methods to identify the bus factor, as well as machine learning techniques
related to detecting code smells, a significant gap still exists in the practical appli-
cation of these methodologies at the organizational level. Therefore, developing a
solution that can monitor and manage knowledge distribution, while identifying key
dependencies to facilitate effective knowledge transfer, is both timely and crucial.

1.4 Research Aim

Design and develop a comprehensive application-based solution that can identify po-
tential single points of failure (i.e., those contributing to a low bus factor) in software
projects, highlight knowledge dependencies on individual developers and visualize
their contribution areas in order to implement effective strategies for managing and
transferring critical knowledge to reduce organizational bus factor risks.

1.5 Objectives

e To identify key personnel who are the potential single point of failure earlier in
the project life cycle.

e To enhance the process of critical knowledge transfer within software develop-
ment teams.

e To apply both the proposed tool and the benchmark algorithms to real-world
project data and evaluate the practical relevance of identified key developers
and bus factor scores.

1.6 Research Questions

1. How can we identify personnel who are potential single points of failure (i.e.,
those who cause a low bus factor) during the project life-cycle?

2. What methods can be implemented to help project members effectively manage
critical knowledge transfer?

3. To what extent do the bus factor and key developer estimations generated by
our tool align with those identified by existing state-of-the-art algorithms?

1.7 Scope

In-scope
e Identifying key personnel within software development teams

Analyze the data residing within respective data sources (Ex: Version Control
System (VCS), Jira issues) clearly identifying and indicating the key people
within the team who’re potential single point of failure.

e Visualize developer dependencies and key contributor effort distribution across
project components.

Developer dependencies are visualized using a network graph that highlights
interactions between contributors, helping to identify critical knowledge links
and potential single points of failure. Additionally, a treemap visualization
illustrates the percentage of work done by key developers across different areas
of the project, with each segment representing a component and the developer’s
relative contribution.

e Automatically generate project documentation to support on-boarding and knowl-
edge transfer.

Generate comprehensive documentation that highlights key components and
workflows within the project, helping newly on-boarded developers quickly un-
derstand the system and facilitating smoother knowledge transfer.

Out-scope

e Results will only be valid for the organizations/software teams that maintain
code-bases with proper version control in GitHub.

e The primary focus lies on identifying issues in the code-base rather than directly
modifying the code-base itself. No automated tools for refactoring code to
reduce the identified dependency will be offered from the system.

e The project will not perform comprehensive security audits or vulnerability
assessments, and it will not include features specifically designed for identifying
security issues in the code.

e The project will not involve making direct decisions about hiring or firing per-
sonnel, managing HR processes or policies, offering a comprehensive project
management suite, or replacing existing tools like Jira, but will integrate with
them and aid in making decisions to improve the knowledge distribution in
certain high-risk areas.

1.8 Significance

This research addresses critical challenges faced by software development teams by
supporting the organizations in proactively identifying key contributors whose ab-
sence could critically impact project continuity. Also, we propose a practical solution
for visualizing developer dependencies and contribution distribution using interactive
network graphs and treemaps powered by dynamic contribution metrics. These visu-
alizations allow teams to pinpoint areas of knowledge concentration and take action
to balance knowledge across the team.

We believe this approach will not only improve risk awareness within teams but
also streamline the process of onboarding new developers and managing long-term
maintainability of software projects. By leveraging a custom centrality score that
incorporates lines of code, unique files modified, and degree centrality, our system
offers a nuanced view of contribution beyond conventional commit counts.

The final outcome of this research is a web-based, open-source application that can
be integrated into existing workflows. In contrast to existing work that primarily fo-
cuses on algorithmic estimation, we prioritize usability, real-world applicability, and
transparency. Furthermore, the tool runs efficiently on standard hardware, without
requiring high-performance computing environments—making it accessible to orga-
nizations of all sizes.

1.9 Overview of the dissertation

This dissertation is organized into six main chapters. Chapter 2 provides a compre-
hensive review of existing literature related to developer knowledge retention, bus
factor estimation, and visualisation tools, highlighting the limitations of traditional
methods. Chapter 3 details the research methodology, including the philosophical ap-
proach, data collection and analysis techniques, and the design process followed during
development. Chapter 4 describes the implementation of the proposed system, from
contribution analysis to the documentation generation. Chapter 5 presents the eval-
uation of the proposed methods through both qualitative and quantitative analysis,
along with user feedback. Finally, Chapter 6 discusses the challenges encountered,
summarizes the key contributions, identifies limitations, and outlines directions for
future work.

Chapter 2

Literature Review

Several studies have been conducted to calculate the bus factor in recent years, most of
which are algorithmic. Primarily, these studies calculate the bus factor using different
ways of measuring code authorship, with some building upon and improving earlier
research. This section provides an overview of the existing approaches for calculating
the bus factor and its advancements over the years.

2.1 Early commit based approaches

Several bus factor estimation algorithms consider the knowledge distribution among
project members using VCS data. When considering the methodology of capturing
this knowledge distribution using VCS data it’s important to examine the code un-
derstandability for a single developer. If the code can be easily understood by many
members within a team the bus factor will be increased resulting in an even knowledge
distribution. Early bus factor algorithms faced significant challenges in accurately
capturing critical knowledge distribution across team members Avelino et al. (2016).
As algorithms evolved, each introduced new methods to address previous limitations,
focusing on refining how knowledge is assessed, reducing overestimations, and making
the process scalable for larger teams.

Early bus factor estimation algorithms primarily relied on data from VCS, like Git,
which record every modification made to a project’s files. These algorithms, such as
the one developed by Zazworka et al. (2010), operated on the assumption that any
developer who made changes to a file was "knowledgeable” about that file, meaning
they could maintain or extend it in the future Avelino et al. (2016). However, this
assumption led to several issues:

¢ Overestimating Knowledge
Treating any contributor as ”knowledgeable” about a file doesn’t consider the

depth or significance of their changes. For instance, if a developer made minor
modifications, like updating documentation or fixing small bugs, the algorithm
would still count them as knowledgeable about the file.

e Struggling with Minor Contributions and Large Commits
Another problem arose with “clean-up” commits, where a developer might up-
date multiple files without making substantial changes to the underlying code.
These types of changes are often necessary but don’t indicate deep familiar-
ity with the code. Additionally, some commits are large but simple, such as
reformatting code or updating dependencies. The initial algorithm could not
differentiate these superficial edits from substantial contributions, so the bus
factor estimation didn’t always reflect actual developer expertise.

To address these issues, later algorithms Avelino et al. (2016); Cosentino et al.
(2015); Rigby et al. (2016); Jabrayilzade et al. (2022) introduced more sophisticated
approaches for evaluating developer knowledge.

2.2 Algorithmic advancements

Cosentino et al. (2015) proposed a six-step algorithm to create a tool for assessing and
visualizing the bus factor of a software project. The developer knowledge calculation
and identifying the key developer steps play an important role in this approach.

In the developer knowledge calculation, the Knowledge percentages are assigned to
developers for each file based on their contributions. This knowledge is aggregated at
different levels (directory, branch, project) and by file extension, using four metrics
(M1-M4):

e MI1: Assigns all knowledge of a file/line to the last contributor.

e M2: Knowledge is distributed based on modification frequency.

e Ma3: Similar to M2 but groups consecutive changes by the same developer.
e M4: Weighs more recent contributions more heavily.

During the key developer identification process, developers with sufficient knowledge
of an artifact are identified as key developers. This step distinguishes between pri-
mary (modified a significant portion) and secondary developers (modified at least half
of the threshold for primary developers).

Avelino et al. (2016) incorporated the Degree of Authorship (DOA) metric which
was suggested by Fritz et al. (2014) where the contributions are weighted based on
the extent and frequency of changes made by each developer. This meant:

e Weighted Contributions: Instead of counting every change equally, DOA assigns
a higher weight to developers who contribute more significantly to a file over
time. If a developer consistently makes large, meaningful contributions to a file,
their DOA score increases, indicating they have a deeper knowledge of it.

e Discounting Insignificant Edits: Minor or infrequent changes contribute lit-
tle to a developer’s DOA score. This helps to avoid counting developers as
”knowledgeable” based on minor edits, creating a more accurate picture of true
expertise within the team.

DOA helps identify key developers who are genuinely knowledgeable about a file
or set of files. This improved accuracy in bus factor estimates by differentiating be-
tween developers who only made occasional minor edits and those who were actively
responsible for important portions of the codebase. In this approach Avelino et al.
(2016), the authors of a file are calculated based on the changes performed in the file.
These changes can be minor or major depending on the component and they haven’t
focused much on the impact of a change and its influence on the authorship of the
specific file. The authors have mentioned that treating all the files as equal and not
defining a clear line between core and non-core files were problems pointed out by
the developers in a survey they performed. Therefore, the algorithm can further be
improved by taking those limitations into concern.

An essential refinement in bus factor estimation has been the consideration of knowl-
edge decay and time sensitivity. Early algorithms did not account for the fact that
a developer’s familiarity with code can decrease over time if they haven’t actively
engaged with it recently.

Jabrayilzade et al. (2022) introduced mechanisms to address this issue by a mul-
timodal bus factor algorithm incorporating code reviews, VCS data, and meetings
data. The algorithm introduced here also considers the DOA formula by Fritz et al.
(2014), adjusting it by incorporating the contribution decay, code reviews, and meet-
ings. This approach of calculating the bus factor is based on the algorithm introduced
by Avelino et al. (2016).

e Time-Sensitive Contribution Metrics
Jabrayilzade et al. (2022) began addressing this by incorporating time-sensitive
elements into their calculations. They included a ”"knowledge decay” factor,
which gradually reduces the weighting of a developer’s contribution over time
if they have not made recent updates.

e Impact on Bus Factor Calculation
By factoring in knowledge decay, the bus factor becomes a dynamic, time-
sensitive metric rather than a static one. This change improves risk assessments

by focusing on current knowledge holders, reducing reliance on outdated con-
tributions that no longer add to the project’s resiliency. It allows for a more
responsive approach to identifying single points of failure, making the project
better prepared to address critical team changes.

The algorithm developed by Rigby et al. (2016) introduced a blame-based approach
to assess the susceptibility of software projects to developer turnover. Unlike previous
commit-based methods, such as those proposed by Avelino et al. (2016), which rely
on overall commit frequency, Rigby et al. (2016) approach leverages the git-blame
feature to attribute authorship to each line of code. This focus on line-level author-
ship provides a granular view of developer knowledge and potential points of failure
within the codebase.

In this approach, a line of code is considered abandoned if attributed to a devel-
oper who has since left the project, with an entire file being considered abandoned
if at least 90% of its lines are abandoned. This high threshold is intended to ex-
clude minor or trivial contributions and to provide a realistic measure of the project’s
vulnerability to turnover.

2.3 Metric-based techniques

Lisan and Norris (2024) examine two notable bus factor algorithms: one proposed
by Cosentino et al. (2015) (CST) and another by Rigby et al. (2016) (RIG). The
CST algorithm, which is publicly available, was enhanced in this study to incorpo-
rate additional metrics like Lines of Code Changes (LOCC) and cosine difference of
lines of code (change-size-cos). On the other hand, the RIG algorithm, which em-
ploys a git-blame-based approach, was implemented from scratch in this study due
to the unavailability of its code or tool. The authors’ implementation and compari-
son of both algorithms on five open-source projects revealed key insights, which were
further validated by feedback from the principal developers of these projects. How-
ever, the differentiation between core files and non-core files hasn’t been properly
addressed. The results indicated that LOCC and change-size-cos were more accurate
than commit-based measurements, and their scalable implementation of the CST
algorithm outperformed the existing tools.

2.4 ML based techniques

Despite all the algorithmic approaches, Almarimi et al. (2021) have developed the
tool:csDetector by taking an ML-based approach for detecting the community smells
by learning from known bad community development practices to identify similar
issues, including the bus factor itself.

10

Each smell type is detected using its specific pre-trained model, and the results are
displayed to the user via a command-line interface. The effectiveness of csDetector
was evaluated using 143 open-source projects from GitHub, achieving an average F1
score of 84% in detecting ten common community smells. However, this study doesn’t
focus mainly on bus factor calculation and also it lacks a visualization component that
would help developers track the health of their development community:.

2.5 Visualisation tools

Visualization tools play a crucial role in bus factor analysis by presenting data in
an intuitive and interactive manner. Only a limited number of bus factor analysis
tools offer features for visualization. The tool by Cosentino et al. (2015) features a
visualization tool that simplifies the bus factor analysis with an intuitive GUI and
web interface. It displays project details like the bus factor, file counts, and devel-
oper knowledge distribution. Users can interact with clickable elements to explore
relationships between files, directories, and developers. The tool also simulates devel-
oper turnover, recalculating the bus factor and highlighting affected artifacts to assess
project vulnerabilities dynamically. Later, Klimov et al. (2023) introduced a web ap-
plication designed to compute, export, and explore the bus factor metric named Bus
Factor Explorer which’s based on the study by Jabrayilzade et al. (2022). In this
tool, the authors have excluded the data related to meetings and reviews considered
in that algorithm to simplify the implementation. The application features treemap
visualization, simulation mode, and a chart editor.

2.6 Network-Based Approaches for Identifying Core
Developers in Software Projects

Identifying core developers is crucial for assessing the bus factor of a software project.
While traditional approaches often rely on contribution metrics such as commit count
or lines of code, these methods overlook the relational and collaborative aspects of
software development. Network-based methods offer a more holistic view by captur-
ing the interactions and structural positions of developers within social and technical
networks.

Joblin et al. (2016) introduced several network-based models to distinguish core and
peripheral developers, emphasizing the value of social network structures over sim-
ple contribution counts. By applying metrics such as degree centrality, eigenvector
centrality, and hierarchy analysis, their work demonstrated how core developer roles
emerge and evolve within communication and collaboration networks over time.

11

Oliva et al. (2015) examined the Apache Ant project from a socio-technical perspec-
tive. They identified key developers based on the artifacts they modified and analyzed
their communication patterns using social network analysis (SNA). In addition, they
constructed a coordination requirements network—based on task dependencies—to
assess whether key developers occupied central positions in both social and technical
contexts. Their study also evaluated socio-technical congruence, comparing expected
and actual coordination, offering deeper insights into developer roles.

Zhang et al. (2011) evaluated the effectiveness of various network metrics—including
degree centrality, PageRank, HITS (an algorithm to detect hubs and authorities),
and betweenness centrality—in identifying core developers in the ArgoUML project.
Using a ground truth based on mailing list posting privileges, they found all metrics
performed similarly, with precision and recall around 60%. Their approach highlights
the potential of network-based methods for developer classification in open-source
environments.

Building on these foundations, the study by Bock et al. (2023) proposed an automated
classification method using three widely accepted network metrics: degree centrality,
a local metric measuring the number of developer connections; eigenvector centrality,
a global metric that weighs a developer’s influence by their neighbors’ importance;
and hierarchy centrality, which captures a developer’s position relative to loosely
connected clusters. Developers scoring in the top 20% quantile for each metric were
considered core, based on the commonly used 80/20 threshold. This study validated
the classification across various GitHub projects, demonstrating strong agreement
with developer perception and improving generalizability through the use of diverse
network structures.

Together, these studies underscore the value of network-based approaches in revealing
the structural and social dynamics of software projects, providing a robust foundation
for more accurate and context-aware bus factor estimation.

2.7 Limitations of the traditional techniques

Traditional bus factor estimation techniques, while foundational, face several signifi-
cant limitations. Early methods often relied on oversimplified assumptions, treating
any contributor to a file as equally knowledgeable without considering the depth or
significance of their changes Zazworka et al. (2010); Avelino et al. (2016). These ap-
proaches also failed to account for the complexity or criticality of different files, treat-
ing all code artifacts uniformly despite their varying levels of importance Avelino et al.
(2016). Additionally, knowledge decay over time was neglected, leading to inflated
estimates based on outdated contributions Jabrayilzade et al. (2022). Scalability

12

posed another challenge, as fine-grained analyses, like the git-blame-based approach,
struggled to handle large-scale projects efficiently Rigby et al. (2016). Moreover,
traditional algorithms often ignored non-code contributions, such as code reviews or
documentation, which are vital to understanding a team’s overall knowledge distri-
bution Jabrayilzade et al. (2022); Almarimi et al. (2021). These limitations highlight
the need for more comprehensive, dynamic, and multi-modal approaches to bus factor
estimation.

When accessing the bus factor, the methods have progressed from simple VCS-based
algorithms to multi-modal and machine learning approaches reflecting a broader trend
towards integrating diverse data sources and advanced analytical techniques. When
considering the past recent researches, the key turning points include the introduc-
tion of multi-metric and blame-based methods, the incorporation of visualization
tools, and the shift towards comprehensive, multi-modal analyses.

Despite not directly calculating the bus factor, network-based methods provide a
robust framework for identifying core developers in a software development project.
These methods model developer interactions—such as communication patterns, co-
ordination needs, and collaboration structures—using social network analysis (SNA).
As highlighted in studies Bock et al. (2023),Joblin et al. (2016), Oliva et al. (2015),
Zhang et al. (2011) network-based metrics such as degree centrality, eigenvector cen-
trality, and hierarchy centrality offer richer insight into developers’ roles and influence
in a project. They can reveal hidden leaders, key communicators, and coordination
bottlenecks that traditional contribution-based metrics may overlook.

In the studies mentioned previously, there is inadequate attention given to handling
code with varying levels of complexity and understandability. Since the Bus factor is
a metric to measure the knowledge spread within an organization it’s important to
treat files of differing code complexities distinctly to accurately reflect their impact
on knowledge spread and maintainability. Balancing complexity and usability, the
accuracy of different metrics, and the inclusion of non-code contributions when cal-
culating the bus factor further need to be studied and addressed.

To bridge these gaps, our proposed method incorporates enhancements that directly
address the limitations identified in existing literature. Table 2.7 summarizes these
shortcomings alongside the corresponding features of our approach that mitigate each
issue. By aligning the enhancements with specific weaknesses in prior techniques, the
table provides a clear rationale for the methodological choices made in this research.

13

Limitations in Existing Techniques

Enhancements in Proposed
Approach

Equal weighting of all contributors
regardless of contribution depth

Neglect of temporal relevance and
knowledge decay

Scalability issues in fine-grained analyses
(e.g., git-blame)

Exclusion of non-code activities such as
documentation and code reviews

Limited insight into communication and
collaboration structure

Limited visualization for actionable
insights

Introduces a composite centrality score
combining LOC (Lines of Code), file
diversity, and degree centrality to reflect
the significance of contributions.

Limits data analysis to contributions
within the most recent 1.5 years, ensuring
focus on current project knowledge
holders.

Uses higher-level contribution metrics that
scale better for large projects.

Incorporates Jira issue tracking data (e.g.,
reporting, commenting, assignments),
capturing non-code contributions.

Builds a collaborative developer network
using both Git and Jira data to uncover
social-technical relationships.

Provides interactive network graphs and
treemap visualizations that highlight
critical developers and their contribution
areas, enabling stakeholders to easily
detect knowledge silos and key
dependencies within the project.

Table 2.1: Addressing Gaps in Existing Bus Factor Estimation Techniques

14

Chapter 3

Research Methodology

3.1 Chapter Overview

This chapter provides a comprehensive overview of the methods and processes used
in the development and evaluation of the system. Starting with outlining the research
philosophy and approach that guided the study, laying the foundation for how deci-
sions were made throughout the design process. The selected Software Development
Life Cycle (SDLC) model is then discussed, followed by a breakdown of the data
collection methods and the steps taken to prepare the data for analysis. Further-
more, the hardware configurations, preliminary experiments and finally, the system
architecture is presented through various diagrams, including use case, activity, and
architectural diagrams, to visually represent the system’s structure and behavior.

3.2 Research Philosophy

For research philosophy, pragmatic research philosophy is chosen as it focuses on
practical outcomes and uses mixed methods for addressing the research questions,
explicitly bridging positivism and interpretivism philosophies. With that it priori-
tizes the research problem over rigid philosophical commitments, allowing flexibility
to combine empirical observations with subjective interpretations (Kirongo A. Chege
(2020)). The positivist approach highlights evaluating the success of a study by look-
ing over the observable evidence and results. This aligns well with our research goals,
which include evaluating the accuracy of our results by comparing them with base-
line datasets, analyzing the tool performance which require quantitative assessments,
produce measurable and reproducible findings while providing a solid empirical foun-
dation for our study. Complementing this, the interpretivist approach adds a layer
of depth by acknowledging the subjective aspects of project dynamics. Through
methods such as collecting feedback from project stakeholders and analyzing the con-
textual factors behind team interactions, we seek to embrace the variability of the

15

results based on the subjective experience and perspective of the individuals.

3.3 Research Approach

This study adopts an inductive research approach, emphasizing on deriving general
insights and patterns from specific observations rather than testing predefined the-
ories. Unlike the deductive method which begins with a hypothesis and focuses on
verifying it the inductive approach is suits best to the exploratory nature of this re-
search since the main goal here is not to confirm or refute an existing theory, but to
uncover and understand how critical knowledge holders can be identified in software
projects through a novel method developed from real-world data and observed pat-
terns.

The inductive reasoning with a mixed-methods strategy, provides both flexibility and
depth while the integration of quantitative and qualitative data allows the system to
evolve over time, enhancing both its accuracy and practical usefulness.

3.4 Research Strategy

Design Science Research Methodology (DSRM) was selected as the research strategy
for this study as it well aligns with the goal of creating a new process model tailored
to a specific problem domain. Rooted in engineering and the sciences of the artificial,
the Design Science Research (DSR) paradigm is inherently problem-oriented and
focuses on addressing practical challenges while expanding human knowledge through
the creation of innovative artifacts and the development of Design Knowledge (DK)
Brocke et al. (2020). A major advantage of this approach is its innovative potential
as it boosts human and organizational capabilities by creating practical solutions
like models, methods, and tools. Thanks to its structured, iterative process and
focus on real-world impact, DSR is especially effective in scenarios like this. By
applying DSRM, this research was able to develop a robust and impactful process
model to tackle the issue of bus factor mitigation within organizations. The following
subsections details how this methodology was applied throughout the study.

16

Nominal process Process Iteration

sequence l l l I

Communicate.

Identify Problem Define Objectives Design & Demaonstrate. Evaluate.
& Motivate. of a Selution. Development,
Find suitable

context,

Observe how
effective, efficient
el

Wit would a better Artifact.
artifact accomplish?

Define Problem.

publications.

Use artifact to solve
problem.

Shore Importance.
Tterate back to
design.

Inference

Theory

Objective-

Centered
Solution

Possible Research Entry Points

Figure 3.1: Design Science Research Methodology

3.4.1 Problem Identification and Motivation

Starting with the initial phase of the Design Science Research Process (DSRP), this
research adopts a problem-centered approach, aiming to identify the key individuals
influencing the bus factor and facilitate the transfer of their knowledge to minimize
related risks. The bus factor reflects the threat associated with losing critical knowl-
edge when essential team member(s) leave the particular organization they have been
working on, making it a serious concern for project sustainability and the organiza-
tion’s capacity for growth and adaptation. This challenge prompted the motivation
to undertake this study and additionally, a detailed description and explanation of
the problem is presented in the introduction and literature review sections.

3.4.2 Iteration 1
Objectives

e Develop a system to identify key personnel contributing to the bus factor within
an organization using only the metrics derived from VCS data.

e Determine areas of high risk associated with potential employee turnover.

e Providing early indications for relevant stakeholders about identified risks.

Design and Development

e Gather contributor data from VCS data (GitHub) which includes the contrib-
utor list and the list of files, LOCC which each contributor has contributed.

17

e Key individuals (Critical knowledge holders) were identified using a graph based
method which incorporates a custom centrality metric calculated using the prior
collected data.

e Assessed the risk level of different areas based on the identified key personnel and
their contributions. For a given area in the code, if majority of the contributions
made by the key individuals, such areas are considered as high-risk areas that
require immediate attention.

e Visualize the code areas and the risk factor associated with it using the tree-map
visualization.
Demonstration

The implemented tool calculated the BF for projects in the primary dataset and
compared the results with ground truth values. Additionally, BF was computed for
projects in the secondary dataset to enable a comparative analysis of the findings.

Evaluation

The accuracy of the results was calculated against ground truth data from the primary
dataset. Additionally, variance between outputs from existing tools and the proposed
artifact was measured to assess deviations in the results.

3.4.3 Iteration 2
Objectives

e Integrate project-context data (Jira issues) to identify critical knowledge holders
who may not contribute significant code.

e Improve the precision of bus-factor estimates across varied collaboration pat-
terns by blending code and process signals.

e Provide richer, actionable explanations of risk to managers by linking contrib-
utors to both code and issue-tracking artefacts.

Design and Development

e For acquiring the data, queried the Jira boards, using the Jira REST API for
issues updated in the same 18-month window as the Git commit history.

e Applied fuzzy matching on names and emails to merge Jira users with GitHub
contributors, producing a unified contributor registry.

18

e Added Jira co-participation edges (shared issues, comments, task assignments)
to the file-co-edit graph; edge weights reflect both code and issue interactions.

e Extended the centrality formula to include a Jira activity term, weighted by
tunable parameters (jira_weight, jira_only_weight).

e Treemap and network visuals now colour-encode nodes by the composite score,
with tooltips disaggregating Git vs. Jira contributions.

Demonstration

The enhanced tool was executed on 15 projects with public or cooperative Jira boards.
Comparative dashboards illustrated how previously overlooked coordinators (e.g., QA
leads, product owners) emerged as key contributors. These visualizations were re-
viewed with project stakeholders for validation.

Evaluation

The accuracy of the results was calculated against ground truth data from the simu-
lated dataset.

3.4.4 Iteration 3
Objectives

e Develop a comprehensive documentation generation mechanism which enables
the users to generate and store in-detailed documentation of the functionalities
offered by a given project. (Reason: In case if a key individual departs, the
newcomers spend more time understanding what functionalities are offered from
that particular piece of software, what is the flow of the method invocation
and how they interact and collaborate with each other to provide the desired
functionality, etc. Having detailed documentation which contains all of this
information cuts down this latency and provides a smooth onboarding.)

Design and Development

e Integrated RepoMix to convert the source code repository into a single .xml file
that includes structural metadata (classes, functions, files).

e Developed a prompt template for the DeepSeek API, instructing the model to
analyze the XML and output a developer-friendly documentation structure in

JSON.

e Enabled visualization of the generated documentation structure within the tool,
seamlessly integrated with the key developer identification module to provide a
comprehensive view of both system functionality and contributor responsibility.

19

Demonstration

Documentations were generated for 10 projects from the primary dataset used for
calculating the bus factor, where the exact functionalities and workflows are already
known.

Evaluation

It employed an empirical validation approach, where the tool’s generated outputs is
compared the manual, ground-truth understanding of how those systems operated.
It allowed for iterative checking whether the component accurately traced method
invocations, captured key workflows, and organized information logically.

3.4.5 Communication

e Dissemination of Results: Shared the research findings with the evaluation pan-
els and have already submitted two research papers for publication which are
under peer-review right now.

e Stakeholder Engagement: Presented the outcomes to the industry experts, and
organizations/teams connected with this research, highlighting the practical
implications and benefits of the developed system.

3.5 Time horizons

Although longitudinal studies are often preferred in Design Science Research (DSR)
due to their ability to capture the iterative nature of development, assess long-term
practical impact, and observe emerging behaviors over time, this study adopted a
cross-sectional time horizon. The primary reason for this choice was the practical
constraint of limited time available for the research. Despite this limitation, the cross-
sectional approach proved effective by enabling targeted data collection and analysis
at key stages of the study. This snapshot-style evaluation provided timely insights
that directly informed the iterative development process, allowing for meaningful
refinement of the artifact based on the results and feedback gathered during each
evaluation phase.

3.6 Data Collection

This research adopted a multi-faceted approach to data collection, combining both
qualitative and quantitative methods to gain a comprehensive understanding of the
system’s usability and potential for adoption. The different methods used for the
data collection are listed below.

20

Initial Survey: An initial survey was conducted to validate the core idea be-
hind the research and to assess the perceived need for a tool capable of calculat-
ing the bus factor more accurately. Participants included software developers,
engineers, and project managers who provided valuable input on the practical-
ity of such a tool, including the types of features and insights they would expect
from it. This method was effective in grounding the research in real-world needs
and aligning the system design with user expectations.

Expert Opinions: To deepen the understanding of team dynamics and the
practical aspects of software project management, expert opinions were gathered
from individuals with significant experience in the software industry. These
insights helped contextualize how key developers are traditionally identified,
how knowledge flows within teams, and the challenges in recognizing complex
or emerging risks such as knowledge silos. Expert input was crucial in shaping
the assumptions of the proposed approach and refining its practical relevance.

Primary Dataset: A primary dataset was constructed specifically for this
research, comprising a selected set of software projects where the actual bus
factor and the list of critical contributors were already known. This dataset
served as the ground truth for validating the accuracy and effectiveness of the
proposed graph-based method. Using this controlled set of data allowed for
reliable benchmarking and performance evaluation under known conditions.

Secondary Datasets: In addition to the primary dataset, several secondary
datasets were obtained from previously published research that attempted to
address the bus factor calculation problem. These datasets, along with the re-
sults reported in those studies, were used to conduct experiments and compare
the performance of the proposed approach against existing methods. This com-
parative analysis helped highlight the improvements and contributions made by
the novel technique.

Synthetic Datasets: Since the organizations reluctant to share project-specific
or context-related data such as internal communications, project management
data or meeting logs, synthetic datasets were also created to supplement the
real-world data. These datasets were carefully designed to reflect realistic
project scenarios by closely analyzing publicly available data from open-source
projects and incorporating feedback from industry experts. This process helped
mitigate inconsistencies and ensured a higher degree of reliability and represen-
tativeness across both real and synthetic datasets.

21

3.7 Data Preparation and Analysis

3.7.1 Data Processing

In preparing the primary dataset for this study, most of the data was derived from
version control systems of selected software projects. A key step in the data pro-
cessing phase involved filtering out bot accounts that are commonly used in modern
development pipelines to automate tasks such as dependency updates, code format-
ting, etc. These automated contributors do not reflect actual knowledge ownership
or decision-making within a team and thus were excluded to ensure that only real
human contributors were considered in the analysis.

Moreover, it was important to address the scale of contributor involvement when
processing secondary datasets. Most real-world industry projects typically involve
small to medium-sized teams with around 20 members or fewer but majority of the
projects listed in the available datasets featured significantly larger contributor bases.
This disparity can skew analysis, especially when trying to generalize results to closed
source or enterprise settings. Therefore, data points from open-source projects with
unusually large contributor pools were selectively filtered out to retain only those that
aligned more closely with realistic team sizes.

Another refinement involved excluding open-source projects that had aged signifi-
cantly. In the early stages of any project, knowledge tends to be concentrated among
a few core individuals. However, as open-source projects mature and grow in popular-
ity, knowledge and responsibilities are naturally distributed among a wider contrib-
utor base. This evolutionary behavior does not align with the dynamics observed in
most real-world, closed-source projects, where critical knowledge often remains cen-
tralized. Due to this reason, older projects were excluded from the secondary datasets
to maintain relevance and realism in the evaluation process.

3.7.2 Data Analysis

The data analysis phase combined both quantitative and qualitative approaches to
offer a more complete evaluation of the proposed method’s effectiveness.

On the qualitative side, the initial user survey served to capture subjective feedback
on the idea of a more accurate bus factor calculation tool, including user expectations
and practical feature suggestions. Furthermore, feedback from individuals directly in-
volved in the selected projects was collected during the final result evaluation phase.
These participants were asked to assess whether the system accurately identified criti-
cal knowledge holders in their teams. Since only those who have worked closely within
a project can truly understand the flow of knowledge, this feedback offered valuable
insights.

22

For the quantitative evaluation, standard metrics such as accuracy, precision, and
recall were used to assess how well the proposed method identified key contributors
compared to known ground truth data, providing an objective measure of the system’s
performance. Apart from that, system resource usage was also monitored, including
memory consumption and CPU usage, to evaluate the efficiency and scalability of the
tool under varying workloads. This allowed research to not only assess the accuracy of
the results but also the practicality of deploying the tool in real-world settings. Also,
benchmarking the system’s performance against existing algorithmic approaches and
tools will provide a clearer and more comprehensive understanding of its effectiveness.

Accuracy

Accuracy measures the proportion of true key developers correctly identified by the
tool relative to the total number of actual key developers. It answers the question,
which out of all developers who truly matter, how many did the tool correctly flag?

A True Positives « 100%
ccuracy =
Y True Positives + False Negatives + False Positives ’

In the above formula;
e True Positives: Developers correctly identified by your tool

e False Negatives: Key developers not identified by your tool

Precision

Precision evaluates how reliable the tool’s positive identifications are by answering of
all developers labeled as key by the tool, how many are actually key?

True Positives
Precision = x 100%
True Positives + False Positives ¢

Recall

Recall (or Sensitivity) quantifies how comprehensively the tool captures all actual key
developers.(Did the tool identify most (or all) of the true key contributors?)

True Positives
Recall = x 100
eea True Positives 4 False Negatives %

23

F1l-score

The F1-Score harmonizes precision and recall into a single metric, balancing their
trade-offs by showcasing how well does the tool balance reliability (precision) and
completeness (recall)?

Precision x Recall

F1- =2 X
seore Precision + Recall

3.7.3 SUS Score

The System Usability Scale (SUS) yields a score from 0 to 100 that represents a
percentile-based measure of overall usability. While the raw SUS value is technically
a percentile, it is often mapped to adjective ratings, letter grades, and percentile ranks
to aid interpretation. A commonly used benchmark (Bangor, Kortum & Miller, 2009)
is shown in Table 3.7.3.

Score Range Adjective Rating

0-25 Worst imaginable
26-39 Poor

40-52 OK (below average)
53-73 Good (average)
74-85 Excellent

86-100 Best imaginable

Table 3.1: SUS Score Interpretation (Bangor, Kortum & Miller, 2009)

In practice, a SUS score of 68 is considered the average benchmark:

e Scores below 68 indicate usability issues that may require improvement.
e Scores around 68 are “above average.”

e Scores above 80.3 correspond approximately to an A grade and are deemed
truly excellent.

In our study, the average SUS score of 86.7 falls in the “Best imaginable” range,
underscoring an exceptionally high level of user satisfaction and ease of use.

3.8 Hardware Configuration

The testing and evaluation of the proposed system were conducted on a machine run-
ning Windows 11 64-bit, equipped with an 11th Gen Intel Core i7-1165G7 processor
(2.80GHz) and 16 GB of RAM, providing sufficient computational power and memory
to handle the data processing and experimental workloads efficiently.

24

3.9 Software Development Life-Cycle

As for the Software Development Life Cycle (SDLC), this research followed the it-
erative and incremental approach. This enables a cyclical and flexible method of
development where the product evolves through repeated cycles (iterations) and is
built in small, manageable increments.

The incremental aspect of the approach was beneficial as the system gets devel-
oped in multiple stages, and each stage introduces a certain set of new features or
enhancements allowing the development team to build upon a stable foundation while
testing each addition thoroughly. Since the research-based product involved evolv-
ing requirements and gradual integration of components, adapting the incremental
model ensured that progress was tangible and measurable after each phase without
disrupting previously developed functionality. Meanwhile, the iterative nature of the
process enabled continuous refinement where each iteration began with a subset of
requirements, aiming to produce a working prototype or Minimum Viable Product
(MVP), which was then tested and reviewed. Feedback from stakeholders and obser-
vations during testing helped identify gaps, uncover new requirements, and improve
system behavior.

3.10 Experiments and Preliminary Results

This section presents a detailed exploration of the factors influencing bus factor es-
timation, highlighting the limitations of traditional methodologies and the complex-
ities of modern software development. Through a series of targeted experiments,
we compare prominent tools and algorithms, such as the Bus Factor Explorer and
Avelino et al. (2016) approach, to assess their accuracy and practical relevance. Ad-
ditionally, we investigate correlations between bus factor values and key metrics like
cognitive complexity, cyclomatic complexity, team size, and programming language
trends. These analyses reveal critical gaps in existing methods, such as their inability
to account for nuanced collaboration dynamics and knowledge decay. By identifying
these shortcomings, the findings of this section establish a solid foundation for the
development of a more dynamic and comprehensive approach to bus factor analysis.

3.10.1 Comparative analysis of Bus Factor estimations by
Bus Factor Explorer and Avelino et al. algorithm

To better understand the variability in bus factor estimations, we conducted a com-
parative analysis of two prominent methodologies: the Bus Factor Explorer and the
algorithm proposed by Avelino et al. (2016). These algorithms were chosen due to
their significant impact in the domain—Bus Factor Explorer being regarded as an in-
tuitive tool leveraging modern refinements, and Avelino et al. (2016) algorithm serving

25

as the benchmark for bus factor studies. Notably, the Bus Factor Explorer incorpo-
rates a modified version of Avelino et al. (2016)’s algorithm, refined by Jabrayilzade
et al. (2022), which introduces an exponential decay model. This model prioritizes
recent contributions by halving the knowledge impact of older contributions every
five months, addressing the temporal relevance of activity—a consideration absent in
Avelino et al. (2016)’s approach.

19 Approach
18 mEm Bus Factor Explorer
17 ' @@ Avelino et al.

S 12
Sn
& 10
"
s
o
I] l I ‘J .‘]‘-‘LL-‘L

Repository

O HLNWREU G0

public-apis/public-apis
facebook/react
ohmyzsh/ohmyzsh
TheAlgorithms/Python
flutter/flutter
Significant-Gravitas/Aute-GPT
vercel/next.js
avelinofawesome-go
huggingface/transformers
kubernetes/kubernetes
nodejs/node
mrdoob/three.js
microsoft/PowerToys
denoland/deno
angularfangular
mui/material-ui
Genymobile/scrcpy
storybookjs/storybook
flawesome-chatgpt-prompts
laravel/laravel
django/django
doocs/advanced-java

goldbergyoni/nodebestpractices

awesome-selfhosted/awesome-selfhosted
AUTOMATIC1111/stable-diffusion-webui

Figure 3.2: Bus Factor estimations for various repositories using two approaches: Bus
Factor Explorer (solid hatching) and Avelino et al. algorithm (dotted hatching). The
x-axis lists repositories, and the y-axis indicates the corresponding bus factor values

We analyzed bus factor estimations across 25 widely recognized GitHub reposito-
ries, encompassing projects with star counts ranging from 70,000 to 240,000. The
results(Figure 3.2) highlighted notable discrepancies between the two algorithms.
While repositories like flutter/flutter and kubernetes/kubernetes displayed signifi-
cantly higher bus factor values under Avelino et al. (2016)’s method, others, such as
public-apis/public-apis and ohmyzsh/ohmyzsh, showed relatively smaller variations.
This underscores the sensitivity of bus factor estimates to the choice of algorithm and
highlights the overall impact over the final bus factor value by the introduction of
factors such as knowledge decay in assessing developer contributions.

26

3.10.2 Correlation analysis between bus factor and Cogni-
tive/Cyclomatic Complexity

Cognitive complexity explains how difficult it is for a developer to understand the
code, which directly affects the maintainability and debugging of the code. In con-
trast, Cyclomatic complexity measures the number of linearly independent paths
through a program’s source code Ebert and Cain (2016). We create the hypothesis
that repositories with higher cognitive and cyclomatic complexities might have lower
bus factor due to the high difficulty in understanding and managing the code. In
other words, a higher bus factor could be associated with lower complexity, conclud-
ing that multiple contributors can easily continue the project in case some developers
are unavailable.

* # Cognitive Complexity
Cyclomatic Complexity

14

12 A

10 A

Bus factor

L * * *

T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000
Complexity

Figure 3.3: Scatter plot illustrating the relationship between Bus Factor and two
software complexity metrics—Cognitive Complexity(magenta stars) and Cyclomatic
Complexity(cyan plus markers) for selected repositories

To explore this correlation between bus factor and cognitive/cyclomatic complex-
ity we took set of repositories and calculated the bus factor using bus factor explorer
tool Klimov et al. (2023) and SonarCloud! which is an online automated software
quality analysis platform delivered by SonarQube? to get the Cognitive Complexity

Thttps://sonarcloud.io/login
Zhttps:/ /www.sonarsource.com/products/sonarqube/

27

and Cyclomatic Complexity. The scatter plot in 3.3 suggests a weak correlation be-
tween bus factor and cognitive or cyclomatic complexity which also means that higher
cognitive or cyclomatic complexity does not necessarily lead to a high bus factor.

3.10.3 Correlation analysis between the number of contrib-
utors and Bus Factor

This examines the relationship between team size and bus factor, motivated by the
observation in prior studies that agile software development projects typically thrive
with team sizes of 5-8 members, while exceeding 20 members often hinders collab-
oration and communication. Such challenges are critical, as reduced collaboration
can result in a low bus factor, suggesting a potential negative correlation between
these two factors. Large teams, despite offering diverse expertise, may inadvertently
contribute to lower bus factor values due to issues such as increased specialization
leading to knowledge silos, communication complexities causing misconceptions and
knowledge gaps, and difficulties in assigning clear ownership, which can disengage
contributors and restrict knowledge sharing.

20.0 1

17.5 4

15.0

12.5 4

10.0 4

Bus Factor

7.54

5.0 A

2.5 A

T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000
Mentionable Users

Figure 3.4: Scatter plot showing the relationship between Bus Factor and the number
of contributors in software projects. Each point represents a project, with Bus Factor
on the vertical axis and the number of contributors on the horizontal axis

To explore this, we analyzed 200 repositories extracted from the dataset used in the
study of the Bus Factor Explorer tool. The bus factor and the number of mentionable

28

users were plotted(Figure 3.4), and their correlation was calculated. While a slight
positive correlation (0.28) was observed—indicating a weak tendency for bus factor
to increase with larger teams—the trend was neither strong nor definitive. This
finding underscores that team size alone does not strongly predict bus factor values,
and other factors may play a more significant role in determining the resilience of
software development teams.

3.10.4 Analyzing Bus factor in small teams (team size <10)

Conducted to focuses on analyzing the bus factor within small teams, defined as hav-
ing 10 or fewer contributors, to understand the dynamics of key developer dependen-
cies in such setups. Using 20 randomly selected GitHub repositories with star counts
exceeding 1,000, bus factor values were calculated using the Avelino et al. algorithm
and the Bus Factor Explorer tool(Table 3.2). A consistent trend was observed across
the repositories: despite the presence of multiple contributors, a significant portion
of the work was typically managed by a single individual.

Notably, discrepancies arose between the two tools. For example, in the go-size-
analyzer repository, Avelino et al. (2016)’s tool listed the same user twice, likely due
to a single individual using multiple GitHub accounts. In the gBitTorrent-fluent-
theme repository, the Bus Factor Explorer identified a different primary contributor
than Avelino’s tool, emphasizing the latter’s focus on recent contributions. While
both methods generally reported a bus factor of 1, the variation in identifying the
key contributor highlights differences in their algorithms—such as how each accounts
for recency and activity patterns. This reinforces the nuanced understanding re-
quired when analyzing bus factor in small teams, where dependency on individual
contributors is particularly pronounced.

3.10.5 Analyzing the trend of Bus Factor towards specific
programming languages

To investigate whether the bus factor of software projects exhibits trends based on
the programming language used, a hypothesis is considered along with several factors
that potentially influencing the bus factor, including the language’s learning curve,
complexity, community size, resource availability, documentation culture, maturity,
stability, and paradigm familiarity. To test this, an unbiased sample from same
original dataset from the Bus Factor Explorer study was extracted and analyzed,
grouping projects by their primary programming language. The average bus factor
for each language was calculated and visualized using a bar plot sorted in ascending
order.

The analysis(Figure 3.5) revealed that irrespective of the programming language,
most projects exhibit a relatively low average bus factor, typically between 2 and
4 while the overall average bus factor across all languages was approximately 2.49

29

Table 3.2: Summary of repositories and their bus factor values (no. of contributors

< 10)

Repository Language | No. of | No. of | Busfactor | Algorithm
contribu- | stars explorer | by
tors Avelino

et al.

murex Go 10 1.5k 1 1

dum Rust 10 1.5k 1 1

wat Python 7 1.6k 1 1

SO-vits-sve Python 8 3.6k 1 1

bright Typescript | 7 1.4k 1 1

go-size-analyzer | Go 6 1.2k 1 2

JankyBorders C 4 1.3k 1 1

circumflex Go 6 1.3k 1 1

lucky-commit Rust 9 1.3k 1 1

focus-rings Typescript | 10 1.1k 1 1

errorx Go 6 1.1k 1 1

gotraceui Go 6 1.1k 1 1

suture Ruby 8 1.4k 1 1

pyapp Rust 10 1.2k 1 1

shpool Rust 6 1.2k 1 1

frourio Typescript | 7 1.2k 1 1

suspend-react Typescript | 8 1.4k 1 1

gBitTorrent- Python 6 1.2k 1 2

fluent-theme

OpenNJet C 4 1.2k 1 1

httm Rust 4 1.4k 1 2

(rounded to 3), underscoring that the risk of low bus factor persists regardless of lan-
guage choice. This trend was consistent even among widely used languages like Java
and Python, suggesting that the bus factor is more heavily influenced by the project’s
structure and dynamics rather than the characteristics of the language itself. While
factors such as community size, documentation quality, and language maturity might
enhance a project’s overall development process, they do not significantly mitigate
the risk of a low bus factor.

Also conducting these experiments clarified several other drawbacks of the existing
Bus Factor Explorer algorithm:

e Inaccuracy: Despite claims of accuracy, the tool failed to produce correct
results for a known set of repositories in almost all cases, indicating significant
flaws in its calculations.

30

Trend Line
== Overall Average Bus Factor (2.49)
Average Bus Factor

Figure 3.5: A bar plot depicting average Bus Factor for projects grouped by pro-
gramming language. The bars(light blue) represent the average Bus Factor for each
language, while the dashed line(red) indicates the overall average Bus Factor (2.49).
A trend line (orange) highlights the increasing trend in the average Bus Factor across
languages

e Bot Filtering: The algorithm does not properly filter out bot accounts, result-
ing in bots being incorrectly identified as key contributors in some instances.

e User-Friendliness: The tool returns users’ email addresses instead of GitHub
usernames, making the results less user-friendly and harder to interpret.

These limitations motivated us to explore alternative approaches for analyzing
bus factor trends and developing customized methods tailored to our research goals.

31

3.11 System Design

3.11.1 High-Level Architecture Diagram

User
©)
[

E=1

!

Controller

GitHub

Documentation —— ﬂ
~—rd .
Generator — : JIRA
~—— :
Data Store

Documentation DeepA?eek

Formatter

Figure 3.6: High-Level Architecture Diagram

32

3.11.2 Use Case Diagram

Integrate
JIRA for project context related
Info

Calculate Bus Factor ~ N\¢_..-co---rocs
for a given repository

View the list of individuals
contributing to the low bus factor

View the tree map visualization of the
repository status

View Bus Factory calculation

User result history

Generate repository workflow
documentation

Figure 3.7: Use Case Diagram

33

3.11.3 Activity Diagrams

Bus Factor Calculation (without JIRA Integration)

User System

Insert the GitHub Token
future requests

—

‘l Save it temporary for handling J

A 4

Enter the GitHub Repo Name Ji Display the repo search interface}

GitHub API

Search and fetch the repo using J

\ 2
Calculate the BF and the
list out the key Generate t_he Treemap
individuals View
\
[Display results]

Figure 3.8: Activity diagram - BF Calculation without JIRA Integration

34

Bus Factor Calculation (with JIRA Integration)

User System

. (

Enter the GitHub and JIRA 1 Save it temporary for handling

Tokens | ” future requests
A
A4
Enter the GitHub Repo Name L Display the repo search interface

) .
P

+| Search and fetch the repo using

7 GitHub API

l

Fetch project management related
data from JIRA

Generate the Treemap
View

list out the key

Calculate the BF and the
individuals

N

Display results

Figure 3.9: Activity diagram - BF Calculation with JIRA Integration

35

Bus Factor C: ion (with D

User System LLM

Insert the GitHub Token (Save it temporary for handling
L future requests

[Enter the GitHub Repo Name] [Display the repo search interface

GitHub API

Calculate the BF and the
list out the key Generate the Treemap
individuals View

Trigger Documentation Generation }4—4[Display results]

(Generate Compressed Version of the
fetched Repo

l

Send documentation generation prompt
. g P! P! Analyze the repo and the
to the LLM along with compressed repo as
prompt
context
Display the generated documentation Gener_ate the output corresponds W.Ith the
given output format and return it

(Search and fetch the repo using J

Figure 3.10: Activity diagram - BF Calculation and Documentation Generation

3.11.4 Functional Requirements

e Integrate with existing data sources (e.g., GitHub for VCS and Jira) to ingest
relevant project data such as commit histories and issue logs.

e Analyze source data to compute developer-specific metrics, including bus factor
scores and dependency profiles to pinpoint potential single points of failure.

e Generate a network graph visualization that illustrates developer interactions
and dependency links across the project components.

e Produce a treemap visualization to depict the contribution percentages of key
personnel relative to different project areas.

36

Automatically create comprehensive project documentation that highlights crit-
ical components, workflows, and knowledge dependencies to support onboarding
and knowledge transfer.

3.11.5 Quality Attributes

Usability: The system should offer an intuitive interface that minimizes cog-
nitive effort while ensuring users can easily navigate its features. Clear instruc-
tions and visual feedback must guide users in interpreting results (e.g., bus
factor scores and contributor lists) without confusion.

Performance: To deliver actionable insights, the system must efficiently gen-
erate dependency graphs, compute the bus factor, and identify key contributors
with high accuracy. Timely processing is critical, especially for large projects,
to ensure practicality in real-world use.

Security: Since the system handles sensitive credentials (e.g., GitHub/JIRA
tokens), data must be encrypted during transmission and storage. Secure au-
thentication protocols and token management are essential to prevent unautho-
rized access or leaks.

Compatibility: The system must seamlessly integrate with platforms like
GitHub and JIRA to fetch project data (e.g., commits, issues). Standard-
ized APIs and adaptive data parsing ensure reliable functionality across diverse
project environments.

Maintainability: Modular design and well-documented code enable future
updates, such as adding new data sources or refining algorithms. This reduces
technical debt and ensures long-term viability as project ecosystems evolve.

37

Chapter 4

Implementation

Building on insights from the preliminary analysis of existing methods and their limi-
tations, this section presents a novel methodology for bus factor estimation. Leverag-
ing social network metrics, contribution patterns, and also the project management
data from JIRA, it addresses gaps identified earlier such as static assumptions and
insufficient collaboration modeling. By visualizing team dynamics as a network of
interactions and incorporating both quantitative measures—Ilike lines of code diver-
sity and unique file contributions—and contextual data from project management
practices, this approach offers a dynamic and actionable framework for identifying
critical contributors and enhancing project resilience.

4.1 Contribution Pattern Analysis

Contribution Pattern Analysis, grounded in Social Network Metrics, offers a struc-
tured method for examining the collaborative dynamics within software engineering
teams. By visualizing a project as a network, where nodes represent developers and
edges signify interactions (such as code reviews, shared file contributions, or collab-
orative tasks), this analysis helps reveal patterns in collaboration, knowledge distri-
bution, and dependency structures within the project. This approach is particularly
valuable in assessing the “bus factor” of a software project—the risk posed to project
continuity if key contributors were to exit the team. Through Contribution Pattern
Analysis, it is possible to move beyond surface-level contributions to capture a nu-
anced view of how knowledge flows within a project, identify potential vulnerabilities,
and highlight candidates for knowledge transfer or mentorship. This analysis not only
facilitates a deeper understanding of team dependencies but also supports the design
of targeted interventions to mitigate potential risks. Other than that the following
benefits can also be drawn via a successful contribution pattern analysis;

e Identification of key collaborators aka “central” developers who act as primary
knowledge conduits within the team. These individuals are often highly con-

38

nected and involved in multiple interactions, indicating their integral role in
both knowledge-sharing and cross functional collaboration. Recognizing such
individuals enables a clearer understanding of where crucial knowledge resides,
and aids in planning for knowledge redundancy if such individuals are at risk
of leaving.

e The network structure can reveal clusters, or “silos,” where knowledge may be
concentrated among a subset of team members. Identifying such silos helps in
gaining insight into where knowledge may not be sufficiently dispersed, posing
a risk if team members within these silos become unavailable.

e Within most projects, few developers may act as the primary link between
otherwise distinct groups or clusters within the team (bridges) to facilitate col-
laboration and information flow across groups. Turnover of such individuals
will severely disrupt communication between clusters hence recognizing these
bottlenecks enables proactive knowledge-sharing practices and mitigates risks
associated with dependency on a single link.

e Highlight potential mentors—developers who, due to their position within the
network, could efficiently transfer knowledge to less experienced team members.

4.2 Identification of Tools and Technologies

Front-End: Aligning with the required functionality which comprises of a consider-
able amount of dynamically changing components, React: an open-source JavaScript
library, recognized for its efficiency in developing user interfaces was selected as the
primary front-end framework. React emphasis on reusable components, enables devel-
opers to leverage readymade Ul elements rather than constructing them from scratch
and accelerates the development process. Also, by facilitating the incorporation of
open-source community-driven components, compatibility with third-party libraries
via Node Package Manager (NPM) enhances the system’s flexibility and extensibility,
particularly for integrating visualization tools, ensuring a modular and maintainable
frontend architecture.

Back-End: Due to its versatility and expressive syntax, Python makes it a preferred
choice for diverse software development needs. Flask, a lightweight web framework,
complements this by providing a streamlined foundation for building RESTful web
services. The ecosystem enhances through an extensive collection of libraries and
packages, enabling rapid feature implementation and the design principles of Flask
set up great emphasis on flexibility and simplicity, making it easier for creating scal-
able RESTful APIs that guarantee solid, flexible communication.

39

NetworkX5: is a widely used Python library designed for complex network analysis
and graph-based computations. It provides an efficient way to model relationships and
analyze structural patterns within a dataset. NetworkX5 plays a key role in construct-
ing a collaboration network among contributors and by leveraging its graph modeling
capabilities, it ease the process of identifying key contributors (critical knowledge
holders) using a custom centrality metric that combines several project level metrics.

Git and GitHub: Git is an essential version control system for managing code
changes, while GitHub serves as a cloud-based platform for hosting repositories and
enabling collaborative development. In this implementation, Git is utilized to retrieve
commit history, analyze contributor activity, and extract code modification patterns
directly from the repository. Meanwhile, GitHub’s API provides structured access
to contributor metadata, allowing the script to differentiate between human contrib-
utors and automated bot accounts. The integration of Git and GitHub ensures a
comprehensive analysis of developer interactions, enabling the identification of core
contributors and the assessment of the project’s bus factor—a crucial metric for eval-
uating knowledge distribution and potential risks associated with developer turnover.

D3.js: is a powerful JavaScript library for producing dynamic, interactive data visu-
alizations in web browsers. It provides extensive support for binding data to graphical
elements and applying data-driven transformations. In the current implementation,
D3.js is used to create an interactive graph network that visually represents the collab-
oration structure among contributors, allowing users to explore relationships between
developers and their contributions. Additionally, the treemap visualization of code-
base components with a low bus factor, makes it easier to identify high-risk areas
where knowledge is concentrated among a few individuals.

RepoMix: RepoMix is a utility that transforms an entire software repository into
a single, Al-friendly text file, optimized for consumption by modern Large Language
Models (LLMs) such as ChatGPT, DeepSeek, Perplexity, Gemini, and others. In this
research, RepoMix plays a key role in the documentation generation pipeline. The pri-
mary use is to prepare the codebase in a structured and context-rich format, enabling
the LLM to better understand the relationships, workflows, and overall functionality
within the project. By packaging the repository in this way, RepoMix ensures that
the language model receives consistent and relevant information, which is crucial for
generating meaningful and accurate technical documentation.

DeepSeek LLM: DeepSeek is a powerful large language model fine-tuned specif-
ically for code understanding, reasoning, and generation tasks. It is designed to in-
terpret complex code structures and deliver context-aware outputs, making it highly
effective for software engineering use cases. In this case, DeepSeek is used in the
automated documentation generation process with the help of contextual inputs pre-

40

pared by RepoMix. It generates explanations of functionalities, module breakdowns,
and workflows provided by that particular software project and the LLM adapts its
output based on the given prompt structure and the organization of the codebase.
Further technical details on how this is integrated and utilized within the documen-
tation process are discussed in the corresponding subsection later in this chapter.

4.3 Basic Bus Factor Calculation

This section describes the basic bus factor calculating scenario which only incorpo-
rates the data collected via the version control history of a given repository. The
process is further broken down into the following 7 steps.

Step 1: Data Collection and Preprocessing. In the first step, it begins with
programmatically cloning the target repository into a temporary directory using the
git Python3 library. Contributor data is then retrieved from GitHub through the
GitHub via the PyGithub4 module. To ensure accurate and clean data, contributors
are normalized by their usernames, with bot accounts being filtered out based on pre-
defined criteria such as username patterns and metadata. To maintain consistency
in analysis, the focus was limited to commits made within the last 1.5 years by cal-
culating a cutoff date from the most recent commit. This preprocessing ensures the
data clearly depicts the current state of the project while providing enough context
also both relevant and manageable for further analysis.

Step 2: Normalization and Contributor Grouping. After retrieving the raw
contributor data, further processing it is required by grouping contributors based on
their normalized usernames. This step resolves inconsistencies caused by variations
in names or aliases, such as the same individual using different emails or usernames.
A fuzzy mapping is created to relate the normalized names with their corresponding
original usernames and emails. This standardization ensures accurate representation
and analysis of individual contributors.

Step 3: Building a Collaborative Network Graph. In this step, the construc-
tion of a collaborative network graph happens where each node represents a unique
contributor. Commits are iterated over to examine the modified files, identifying
contributors who have co-edited the same files. For every co-editing relationship, an
undirected edge is added to the graph, with edge weights representing the number of
shared file modifications between contributors. This graph models the collaboration
dynamics within the repository, highlighting the interaction intensity between con-
tributors.

41

Step 4: Calculating Lines of code (LOC) and File Diversity. Next the con-
tribution patterns were analyzed by calculating the number of LOC modified in each
commit, including both insertions and deletions. This data is attributed to the cor-
responding normalized contributors. Additionally, the unique files modified by each
contributor is also tracked, providing a measure of file diversity. These metrics cap-
ture the breadth and depth of individual contributions to the repository.

Step 5: Custom Centrality Metric Calculation. Using the NetworkX5 library,
degree centrality for each node in the graph is calculated, representing the direct col-
laboration ties of each contributor. Using that a custom centrality score is computed
for each contributor, incorporating three factors: degree centrality, the proportion of
LOC changed relative to the maximum LOC changed by any contributor, and the
proportion of unique files modified relative to the maximum unique files modified by
any contributor. Weighted factors, such as 0.5 for LOC and 0.5 for file diversity, are
applied to balance these metrics. These weights were determined through continuous
experimentation, where adjustments were made and results were compared against
the ground truth to ensure optimal accuracy. This custom centrality score provides
a comprehensive measure of each contributor’s importance in the repository.

Step 6: Identifying Key Contributors. Contributors are ranked by their cus-
tom centrality scores in descending order to identify the most critical individuals. A
threshold percentage of the total centrality (e.g., 30%) is used to determine the key
contributors. By tracking the cumulative centrality score, it is able to identify the
minimal set of contributors required to meet the threshold. This step isolates the
essential contributors whose absence would significantly impact the project.

Step 7: Bus Factor Calculation and Visualization. The collaborative net-
work graph is visualized using the D3.js library to provide an intuitive representation
of contributor interactions. Key contributors are highlighted in the graph with a
distinct color, while other nodes are depicted in a separate color. A treemap is also
generated which contains tiles with a unique set of colors that helps to visualize the
file-level contributions by the key developer(s) making it easiy to identify files and
modules with high dependency on a such individuals.

42

Bus Factor Home Completed Tasks

e N .
(Full Contribution Network | [Key Collaborators Network] Project guide Bus Fqctor . 2
N J
Key Developers
ruchira-bogahawatta
pasangimhana

nnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnn

Figure 4.1: Visualization of the key collaboration network for the GitHub repository
team-ayura/Ayura-Server.

As an example to further clarify the above above flow, figure 4.1 contains a the
result obtained by running the bus factor calculation tool over a project. The network
graph illustrates the interactions between contributors, with node size representing
the level of contribution and edge thickness indicating collaboration strength. The
highlighted nodes correspond to the two key developers—ruchira-bogahawatta and
pasangimhna—whose absence would critically impact the project, resulting in a bus
factor of 2.

Figure 4.2 is the corresponding treemap generated for the above example scenario
and the colored blocks represent individual files and folders, with size proportional to
the Lines of Code (LOC) (depicted on top of each block) of each file/folder.

e Orange blocks denote contributing files, where the key contributor has made
significant code contributions.

e Light grey blocks indicate non-contributing files, depicting files with no contri-
butions.

e Green blocks represent folders, which are clickable to reveal nested files.

e The top yellow bar indicates the current root folder path within the treemap.

43

Bus Factor ome Completed Tasks

Contributions by pasangimhana

1 Contributing File Non-Contributing File 1 Folder (Clickable) Root Folder Path (Clickable)

Figure 4.2: Treemap visualization of file-level contributions by the key developer
pasangimhana within the Ayura.API/Models directory of the GitHub repository
team-ayura/Ayura-Server.

This visualization helps identify files and modules with high dependency on a
specific developer, which is crucial for evaluating the bus factor.

Algorithm 1 sums up the exact same set of steps outlined above, which will even-

tually list out the bus factor for the given project and the list of key individuals who
contribute to the bus factor.

44

Algorithm 1 Key Developer Identification Algorithm

if repository_url is provided then
repo_name <— extract,repositoryjlame(repository,url)
github_connection + authenticate with token(GITHUB TOKEN)
end if
temp_dir - create_temporary_directory()
cloned_repo « clone_repository(repository_url, temp_dir)
contributors < fetch_contributors(github_connection, repo_name)
for all contributor in contributors do
contributor_data[contributor.login] < {type: contributor.type, normal-
ized_name: normalize_username(contributor.login)}
if contributor.email exists then
email_to_username[contributor.email] +— contributor.login
else if contributor.name exists then
name_to_username[contributor.name] < contributor.login
end if
end for
most_recent_commit < get_most_recent_commit(cloned_repo)
cutoff_date <— most_recent_commit.date — 547 days
for all commit in cloned repo.commits do
if commit.date < cutoff_date then
break
end if
author — resolve_author(commit.author, email_to_username,
name_to_username)
if is_bot(author) then
continue
end if
normalized_author < normalize_username(author)
loc_per_contributor[normalized_author] 4+ = commit.total lines_changed
unique_files_per_contributor[normalized_author].add(commit.modified files)
end for
collaboration_graph < create_empty_graph()
for all commit in recent_commits do
author < normalize_username(commit.author)
contributor_map|author].add(commit.author)
for all file in commit.modified files do
file_contributorsfile].add(author)
end for
end for
for all normalized name in contributor map do
representative <— get_representative(contributor_map[normalized name])
add_node(collaboration_graph, representative)
end for
for all file in file_contributors do
contributors « file_contributors|file]
for all pair in combinations(contributors, 2) do
if edge_exists(collaboration _graph, pair) then
increment_edge_weight (collaboration_graph, pair)
else
add_edge(collaboration_graph, pair, weight=1)
end if
end for
end for
for all node in collaboration_graph.nodes do
centrality < calculate_degree_centrality(node)
loc_score + normalize(loc_per_contributor[node])
file_score «— normalize(unique_files_per_contributor[node].count)
custom_centrality[node] < centrality + 0.5 x loc_score 4+ 0.5 x file_score
end for
sorted_contributors <— sort_by_centrality(custom_centrality)
top-developers <« select_top_contributors(sorted_contributors, threshold=0.3)
visualize_network(collaboration_graph, highlight_nodes=top_developers)
print(”Bus Factor:”, top_developers.count)
print(” Top Key Developers:”, top_developers.names)
delete_directory(temp_dir)

45

4.4 Enhanced Bus Factor Calculation with Jira In-
tegration

This section outlines the enhanced approach to bus factor calculation, extending the
original version control-based method with integrated Jira activity analysis. This
integration provides a more comprehensive perspective by including non-code contri-
butions, such as issue reporting, task assignments, and comments, which are crucial
to collaborative development. The enhanced process consists of the following steps;

Step 1: Data Collection and Preprocessing. As in the basic method, the target
Git repository is cloned and contributor data is retrieved via the GitHub API using
the PyGithub module. Contributors are normalized, and bots are excluded based on
metadata and naming patterns. Commits from the past 1.5 years are considered to
ensure relevance.

In addition to GitHub data, Jira issues related to the target project are fetched via
the Jira REST API. The query filters issues updated within the same time frame as
the Git data, ensuring temporal consistency.

Step 2: Contributor Normalization Across Platforms. To integrate Jira data
with GitHub contributions, contributor identities from both platforms are normal-
ized using fuzzy matching on display names and email patterns. A unified identifier
is created for contributors to ensure that activities from both systems are attributed
correctly.

Step 3: Collaborative Network Graph Construction. A graph is constructed
with each node representing a normalized contributor. Edges are drawn between
nodes where contributors have co-modified the same file (from Git) or interacted on
the same issue (from Jira). Edge weights are incremented for every shared interac-
tion, combining file edits and Jira-based collaborations.

Step 4: Activity and Diversity Analysis. This step computes LOC changes
and file diversity for each contributor based on commit history. Simultaneously, Jira
activities such as issue reporting, task assignment, and commenting are tallied. A
composite activity score is created, capturing the contributor’s coding and project
management involvement.

Step 5: Custom Centrality Score with Jira Weighting A custom central-
ity score is computed using the NetworkX library, extending the basic formula by
incorporating Jira activity. The score includes:

e Degree centrality from the graph.

e LOC contribution proportion.

46

e File diversity proportion.

e Jira activity score, scaled using a tunable Jira weight (e.g., 5 for GitHub-linked
users, 0.2 for Jira-only users).

These components are combined to yield a holistic score of contributor importance.

Step 6: Key Contributor Identification. Contributors are ranked based on
their updated centrality scores. A threshold (e.g., top 30% of cumulative centrality)
is used to identify the key contributors who form the core bus factor of the project.
This approach ensures contributors with significant Jira activity but limited commits
are not overlooked.

Step 7: Graph Visualization and Result Output The final network graph
is rendered using D3.js, with key contributors visually highlighted. Graph metadata
and metrics (including Jira-based scores) are exported in JSON format for integration
into dashboards or further reporting. integrating broader collaborative signals, better
reflecting the diverse roles in modern software development teams.

4.4.1 Architecture

e Ingestion — A single pass over the Jira REST API downloads issues updated
within the same time window as the Git history.

e Identity Resolution — Fuzzy matching aligns Jira display names with GitHub
usernames to build a unified contributor registry.

e Fusion Layer - Jira activities are merged with Git-derived graph metrics,
producing a composite centrality score.

4.4.2 Jira Integration Overview

Purpose and Rationale Software development work extends far beyond source-code
commits. Issue tracking systems capture critical knowledge such as bug triage, fea-
ture planning, task assignment, discussion, and validation. By incorporating Jira
activity, our model recognises contributors who may write little code but still hold
indispensable domain or coordination knowledge.

47

Algorithm 2 Key Developer Identification with GitHub and Jira Integration

if repo URL is provided then
Extract repo name and authenticate GitHub with token
end if
Clone repository to temp directory
Fetch all contributors via GitHub API
for all contributor in contributors do
Normalize contributor’s username
Store contributor metadata (type, login)
end for
Determine cutoff date = most recent commit - 547 days
for all commit in repository do
if commit date < cutoff date then break
end if
Resolve and normalize author’s username
Update LOC and unique files for the contributor
Track file-level changes for all contributors
end for
Create collaboration graph G
for all commit in recent commits do
Normalize author and track file contributions
for all file in commit.files do
Add author to file contributors
end for
end for
for all normalized name in contributor map do
Add a node with representative name to G
end for
for all file in file contributors do
for all pairs of contributors to that file do
if edge exists then
increment weight
else
create edge with weight 1
end if
end for
end for
Calculate degree centrality for each node
Compute custom centrality using:
degree + 0.5 X normalized LOC + 0.5 X normalized file diversity
Fetch Jira issues from the past 1.5 years
Score Jira activity: +1 for reporter/assignee/comment
for all GitHub nodes in graph do
Add weighted Jira activity to their centrality
end for
for all Jira-only contributors do
if no match in GitHub nodes then
Add as new node with low weighted centrality
end if
end for
Sort contributors by centrality
Select top contributors whose cumulative centrality > 30% of total
Label top nodes as Key Developers (class = 1), others as class = 2
Generate graphs, calculate file sizes and contribution percentages
Return all graphs and contribution mappings

48

4.5 Documentation Generation to Improve On-boarding
of New Developers

Efficient on-boarding of new developers is crucial for maintaining productivity and
reducing ramp-up time in software projects. In this context, generating compre-
hensive documentation automatically can greatly aid in familiarizing new developers
with the project’s main workflows, components, and functionalities. This section de-
scribes the implementation of an automated documentation generation approach that
leverages the DeepSeek API' in conjunction with RepoMix?. The goal is to provide
new developers with an understanding of the codebase’s structure, workflows, and
interdependencies.

4.5.1 RepoMix and DeepSeek Integration

To automate the documentation generation process, the code repository is first pro-
cessed by RepoMix, a tool that packages the entire codebase into a single, Al-friendly
file. This file, typically in the XML format, contains metadata about the repository,
including class structures, function definitions, dependencies, and other relevant in-
formation. Once the repository is packaged, the XML file is passed to the DeepSeek
API, which analyzes the codebase and generates a JSON-formatted output that serves
as a comprehensive guide for new developers.

4.5.2 JSON Output Structure

The JSON output generated by DeepSeek follows a fixed structure designed to provide
clear insights into the codebase. The key attributes of the JSON output are as follows:

e Project Overview: A brief description of the project’s purpose, goals, and
scope. This section introduces new developers to the overall context of the
project.

e Module Breakdown: A hierarchical breakdown of the project’s modules. It
categorizes components into logical sections:

— Components: Defines key components of the project and their function-
alities.

— Views: Describes the various views or UI components that interact with
the user.

— Global: Includes globally relevant modules or utilities used across the
project.

Thttps://api-docs.deepseek.com/
Zhttps://repomix.com/guide/

49

e Key Workflows: A list of the project’s main workflows that define the se-
quence of events in achieving critical functionalities.

e Key Functionalities: A list of the project’s core functionalities, with a de-
tailed breakdown of their associated flow of events. Each functionality specifies
the sequence of functions or methods invoked during its execution.

e Critical Dependencies: Identifies key dependencies between classes, func-
tions, or modules that are crucial for understanding how the codebase operates
and how different parts of the system interact.

4.5.3 Prompt used in DeepSeek API

This section describes the prompt used to generate structured and comprehensive
documentation that highlights the project’s key components, workflows, functionali-
ties, and critical dependencies.

4.5.3.1 Prompt

Analyze the xml input containing data of a github repository and generate a JSON
formatted output according to given json format below, which will help new developers
to understand the inner working of the code when onboarding. The ”flowOfEvents”
attribute defines what is the flow when providing the functionality for the particular
functionality (what classes and functions that will be invoked and all)

JSON FORMAT
{
"projectOverview": ""
"moduleBreakdown": {
"Components": {2},
"Views": {},
"Global": {}
Fo
"keyWorkflows": {
"MainAnalysisFlow": {1},
"DataProcessingFlow": {}
ry
"keyFunctionalities": [
{
"functionality": "",
"flowOfEvents": {}
}
[
"criticalDependencies": []

}

50

EXAMPLE FLOW OF EVENTS
{
"flowOfEvents": {
"PasswordResetManager.initiatePasswordReset ()":
"Initiates the password reset process.",
"TokenGenerator.generateToken()":
"Generates a password reset token.",
"NotificationService.send()":
"Sends the password reset token to the user.",
"PasswordResetManager.validateResetToken () ":
"Validates the password reset token.",
"PasswordResetManager.completePasswordReset () ":
"Completes the password reset process."

The flowOfEvents attribute within the JSON output provides a detailed sequence
of method calls and their corresponding actions for each key functionality. This at-
tribute helps new developers understand the internal logic of the codebase by showing
the order in which functions are invoked during the execution of specific tasks.

Each function is accompanied by a concise description of its role in the overall pro-

cess, which helps developers quickly understand the flow and dependencies between
different parts of the code.

51

Bus chtor Completed Tasks

Project Overview

Ayura is an all-in-one mobile application designed to help users proactively maintain and track their
personal health. It serves as a constant companion, providing tools, guidance, and support for well-being,
accessible through a smartphone. The application collects data from daily activities like footsteps, heart
rate, and user input regarding health issues or symptoms to understand health status, allowing users to
set goals and challenge themselves to improve fitness and wellbeing.

Module Breakdown

Components

* Activity: Handles user activity data including cycling and walking/running, with services to add, retrieve, and
analyze activity data.

* Challenge: Manages challenges within communities, including creation, participation, and leaderboard tracking.

* Community: Facilitates community interactions, including posts, comments, and member management.

+ EmailVerification: Manages email verification processes for user registration and security.

* GenerativeTips: Provides Al-generated health and wellness tips.

* MoodTracking: Tracks and analyzes user moods over time, offering insights and tips.

* OTP: Handles one-time password generation and verification for secure access.

* Profile: Manages user profile information, including retrieval and updates.

* Registration: Handles user registration, authentication, and login processes.

* Sleep: Tracks and analyzes sleep patterns and quality.

Views

* Controllers: Serve as the entry points for handling HTTP requests and responses, interacting with services to
process data.

* DTOs: Data Transfer Objects used to encapsulate data and send it across process boundaries.

* Models: Represent the data structures and business logic of the application.

Global

* Constants: Defines enums and static values used across the application.

* Helpers: Provides utility functions, such as JWT token resolution.

* Mailservice: Handles email sending functionalities for notifications and verifications.

* Middleware: Includes custom middleware for authentication and request processing.

Figure 4.3: Documentation generated for the GitHub repository team-
ayura/Ayura-Server

52

Key Workflows

DataProcessingFlow

« description: Processes user input and sensor data to update health metrics, generate reports, and
trigger notifications.

MainAnalysisFlow

+ description: Collects and analyzes user data from various activities and health metrics to provide
insights and recommendations.

Key Functionalities

1. User Registration and Authentication

» AuthController.Signin(): Initiates the user login process.

* AuthController.Signup(): Initiates the user registration process.

* AuthService.AuthenticateUser(): Validates user credentials and generates a JWT token for session management.

. Authsarvica.Registaruaer(}: Validates user data, hashes the password, and stores the user in the database.

2. Email Verification

* EmailVerificationController.GenerateEmailVerification(): Initiates the email verification process.

* EmailVerificationController.VerifyEmail(): initiates the verification code check.

* EmailVerificationService.GenerateEmailVerificationCode(): Generates a unique verification code and sends it to
the user's email.

* EmailVerificationService.VerifyEmail(): Validates the verification code and updates the user's verification status.

3. Activity Tracking

* ActivityController.AddActivityData(): Initiates the addition of new activity data.

* ActivityController.GetActivityData(): Retrieves activity data based on filters.

* ActivityService.AddActivityData(): Validates and stores the new activity data in the database.

* ActivityService.GetActivityData(): Processes the request, queries the database, and returns the formatted activity
data.

Figure 4.4: Documentation of team-ayura/Ayura-Server continued

Critical Dependencies

* MongoDB.Driver

* AutoMapper

* MicrosoftAspNetCore.Authentication.JwtBearer
* MailKit

* BCrypt.Net

* System.ldentityModel.Tokens.Jwt

Figure 4.5: Documentation of team-ayura/Ayura-Server continued

53

Chapter 5

Evaluation and Results

5.1

Chapter overview

This chapter outlines the evaluation process undertaken for the research focused on
calculating the bus factor and the accompanying software application. A system-
atic approach combining qualitative and quantitative methodologies was employed to
thoroughly assess the effectiveness, usability, and accuracy of the proposed solution.
The chapter provides details on the specific evaluation questions guiding the assess-
ment, elaborates on the methodologies used, and discusses the insights and outcomes
derived from the evaluation process.

5.2 Evaluation Questions

The evaluation was guided by the following criteria and associated questions:

Accuracy: How accurately does the proposed method calculate the bus factor?

Usability: How user-friendly and accessible is the software application to end-
users?

Scalability: How well does the proposed solution handle increasing data vol-
umes and complexity?

Generalizability: How effectively can the approach be applied across different
software projects and team sizes?

Performance: How efficiently does the software perform under typical oper-
ating conditions?

Strengths and Weaknesses: What are the key strengths and limitations
identified through the evaluation of the proposed solution?

o4

5.3 Evaluation of Graph-Based Bus Factor Calcu-
lation Method

The graph-based method introduced in this research employs centrality metrics de-
rived from contributions to source code repositories and Jira activity, integrated
through a network graph analysis. The evaluation of this method was conducted
in two primary stages: an initial assessment using university-based software projects,
followed by an extended evaluation incorporating feedback from both open-source
and industry software developers.

Repository Explorer Network GraphGen
Accuracy (%) F1-Score (%) | Accuracy (%) F1-Score (%)
Health-Project-Y3/frontend 100.00 100.00 100.00 100.00
Estructura-frontend 33.33 50.00 33.33 50.00
Estructura-backend 50.00 66.67 50.00 66.67
TruEvent_Horizons 50.00 66.67 100.00 100.00
CommuSupport 50.00 66.67 66.67 80.00
gasify 100.00 100.00 33.33 50.00
Ayura-Server 50.00 66.67 100.00 100.00
VentureVerse 50.00 66.67 66.67 80.00
FoodForALL 33.33 50.00 33.33 50.00
CosmiX 50.00 66.67 100.00 100.00
LIFELINE 100.00 100.00 100.00 100.00
Verdur 100.00 100.00 100.00 100.00

Table 5.1: Per-project performance metrics for Explorer vs. Network GraphGen

5.3.1 Initial Evaluation on University Projects

The preliminary evaluation was carried out on a selection of university projects, in-
volving direct feedback from project developers. The summarized results from these
projects are presented in the tables 5.1, 5.2 and 5.3 illustrating a comparison be-
tween the developers’ self-reported bus factors, the results from the existing Explorer
method, and the proposed Graph-based method.

Key insights from the preliminary results include:

e High alignment in bus factor results for certain repositories (e.g., Health-Project-
Y3/frontend).

e Differences in contributor identification and bus factor values highlighting the
sensitivity and specificity of the graph-based approach compared to the Explorer
method.

%)

Repo Name Bus Factor (Dev) Explorer Network GraphGen
BF | Contributors BF | Contributors BF | Contributors
Health-Project-Y3 2 DDH13, 2 DDH13, 2 DDH13,
Pawandi-W Pawandi-W Pawandi-W
Estructura-frontend 2 dewmni, sachin-um 2 Pubudu-Anuradha, 2 sachin-um,
dewmni Pubudu-Anuradha
Estructura-backend sachin-um, pubudu 1 sachin-um 1 sachin-um
TruEvent_Horizons saneru-akarawita, 1 saneru-akarawita 2 saneru-akarawita,
Chirasi Amaya Chirasi Amaya
CommuSupport 2 Thamuditha, 1 Thamuditha 3 Thamuditha,
pasangimhanna THAMUDITHA P
V GS,
pasangimhanna
gasify 1 Dinuka Ashan 1 Dinuka Ashan 2 | dinuka817, Dinuka
Ashan Amarasinghe
Ayura-Server 2 ruchira- 1 pasangimhanna 2 ruchira-
bogahawatta, bogahawatta,
pasangimhanna pasangimhanna
VentureVerse 2 Samindu, 1 Samindu 3 chrispereral999,
pasindufernandol pasindufernandol,
Samindu
FoodForALL 2 harini-udeshika, 2 akiladharmadasa, 2 harini-udeshika,
akiladharmadasa Amandi anjuna0305
CosmiX 2 Sandul, Dinuka 2 Sandul 2 Sandul, Dinuka
Ashan Ashan
LIFELINE 2 Pasindu Fernando, 2 Shinthujen-I, 2 Pasindu Fernando,
Shinthujen-I Pasindu Fernando Shinthujen-I
Verdur 2 vihanga-sen, 2 vihanga-sen, 2 vihanga-sen,
JDPrabasha JDPrabasha JDPrabasha

Table 5.2: Result Comparison between the ground truth bus factor values, results
from the existing Explorer method, and the proposed Graph-based method

Tool

Accuracy (%)

F1-Score (%)

Explorer BF
Network GraphGen BF

59.72
70.14

69.44
78.06

Table 5.3: Average Performance Metrics for Tools using Bus Factor (Dev) as Ground

Truth

5.3.2 Extended Evaluation on Industry Projects

The extended evaluation was conducted using 12 industry projects depicted in the
tables 5.4 and 5.5 from various organizations across multiple countries, encompass-
ing diverse team sizes and repository characteristics. Each repository was tested five
times to ensure consistency and mitigate the impact of transient fluctuations in activ-
ity data. This rigorous process provided comprehensive validation of the graph-based

method’s effectiveness across varied real-world scenarios.

56

The results were highly

encouraging, consistently demonstrating the method’s ability to identify key contrib-
utors accurately and reliably in practical settings.

Project

Ground-Truth Contribu-
tors

Bus Factor

Key Contributors Identified Bus Factor by Graph Method

by Graph Method

P1
P2
P3

P4

P5
P6
p7
P8
P9
P10
P11
P12

Dev A, Dev B, Dev C
Dev D, Dev E, Dev F
Dev H, Dev I, Dev J, Dev K

Dev M, Dev N, Dev O, Dev P,
Dev Q, Dev R, Dev S, Dev T,
Dev U, Dev V, Dev W, Dev X

Dev AB, Dev AC

Dev AD

Dev AE

Dev AF

Dev AH, Dev Al

Dev AK

Dev AL, Dev AM

Dev AN, Dev AO, Dev AP

12

W N =N = =N

Dev A, Dev B, Dev C

Dev D, Dev E, Dev F, Dev G
Dev H, Dev I, Dev J, Dev K,
Dev L

Dev M, Dev N, Dev O, Dev P,
Dev Q, Dev R, Dev S, Dev T,
Dev U, Dev V, Dev W, Dev X,
Dev Y, Dev Z, Dev AA

Dev AB, Dev AC

Dev AD

Dev AE

Dev AF, Dev AG

Dev AH, Dev Al Dev AJ
Dev AK

Dev AL, Dev AM

Dev AN, Dev AO, Dev AP,
Dev AQ

=~ W

wt

=N = W N = =N

Table 5.4: Industry projects (anonymised): ground truth vs
results

Project | TP | FP | FN | Accuracy (%)
P1 3 0 0 100.00
P2 3 1 0 75.00
P3 4 1 0 80.00
P4 12 3 0 80.00
P5 2 0 0 100.00
P6 1 0 0 100.00
P7 1 0 0 100.00
P8 1 1 0 50.00
P9 2 1 0 66.67
P10 1 0 0 100.00
P11 2 0 0 100.00
P12 3 1 0 75.00

. graph-based method

Table 5.5: True positives (TP), false positives (FP), false negatives (FN), and accu-
racy per project.

Across the twelve anonymised industry projects, our graph-based method achieved
an average accuracy of 85.56% (Table 5.5).

57

5.3.3 Simulation-Based Robustness Testing

In addition to empirical evaluations, extensive robustness testing was conducted using
simulated Jira boards and GitHub repositories. These simulations systematically
varied key parameters and collaboration scenarios—ranging from equal contributions,
highly skewed contribution distributions, to fluctuating activity levels (Table 5.6).
The aim was to statistically validate the fairness, stability, and reliability of the
graph-based method.

To quantify performance in each simulation, we employed the metric:

True Positives
A _ x 100% 5.1
U = True Positives + False Negatives + False Positives) oy

Consistently high accuracy scores across all scenarios (Table 5.7) confirm that
the method provides a robust and unbiased identification of key contributors under
diverse hypothetical conditions.

1. Equal Contributions - All contributors contribute equally with the same
number of commits.

2. Skewed Contributions - One or two contributors dominate most of the
commits while others contribute minimally.

3. Mixed Activity - Contributors participate at different levels, with some
highly active and others less active.

4. Sparse Activity - Very few commits overall with contributors rarely partici-
pating.

5. Dense Collaboration - All contributors frequently edit shared files with high
collaboration and file overlap.

58

Project Ground truth Bus Key contributors Bus
Factor | identified by Factor by
graph-based method Graph
method
Equal-simulation | Grace, Frank, 7 Dana, Charlie, Bob, 4
Eve, Dana, Alice
Charlie, Bob,
Alice
Skewed sim Alice, Charlie, 3 Alice, Charlie, Bob 3
Bob
Dense activity Frank, Eve, 5 Eve, Charlie, Bob, 4

Charlie, Bob,
Alice

Alice

Mixed activity

Eve, Alice, Bob

Eve, Alice, Bob

Sparse activity

Alice, Bob

Alice, Bob, Dana

Table 5.6: Comparison of Ground Truth vs Graph-based Key Contributor Identifica-
tion and Bus Factor Estimation

Scenario Accuracy (%)
Equal-simulation 57.00
Skewed sim 100.00
Dense activity 80.00
Mixed activity 100.00
Sparse activity 66.67
Average 80.76

Table 5.7: Accuracy of Graph-based Methods under various contribution scenarios

5.3.4 Performance Metrics

As depicted in the table 5.8 and figure 5.1 performance metrics quantitatively demon-
strate computational efficiency (for the repositories that have been tested with ground

truth)

59

Metric Description time (s)

Average Computation Typical analysis duration per 918

Time repository

Maximum Computation | Longest observed analysis duration 4958

Time

Minimum Computation | Shortest observed analysis duration 50

Time

Scalability Efficiency Performance consistency with 90%
increased data volume

Table 5.8: Graph-based Method: Computation Time and Scalability Metrics

5000 - x

4000

3000

2000

Computation time (s)

1000 %
X
¥ X

of ¥

T T T T T T
5000 10000 15000 20000 25000 30000
Commit count

Figure 5.1: Commit Count vs Computation Time

5.3.5 User Feedback on Usability

The usability of the system was evaluated using the System Usability Scale (SUS), a
standardized questionnaire designed to assess the overall user experience and satisfac-
tion. The evaluation involved 20 participants, comprising 10 industry professionals
and 10 final-year university students in computer science.

Industry participants included a diverse group of senior developers, DevOps engi-
neers, project managers, and software architects, while the university group consisted
of students with prior experience in team-based software development projects.

Each participant completed the SUS questionnaire after interacting with the sys-
tem. The SUS score was computed based on their responses, resulting in an average
score of 86.7 out of 100. According to established SUS benchmarks, this score
corresponds to an “Excellent” usability rating, indicating high user satisfaction and
effectiveness of the interface.

60

In addition to the SUS score, qualitative feedback highlighted the clarity of the in-
terface, ease of interpreting centrality scores, and the overall usefulness of the system
in identifying key developers (Table 5.9).

User Feedback Description Satisfaction

Metric Score (%)

Interface Clarity Ease of interpretation and interaction 82%

Centrality Breakdown Understanding of detailed centrality 83%
measures

Overall Usability General satisfaction with the system 90%
usage

Table 5.9: User Feedback Scores for Key System Aspects

5.3.6 Generalizability Across Projects

The graph-based method was designed to be language-agnostic, relying solely on ver-
sion control metadata, contribution metrics, and issue tracking data, rather than the
syntax or semantics of specific programming languages. This makes the method ap-
plicable across a wide range of software projects written in different languages such
as Java, Python, C++, JavaScript, and more. During evaluations, the method was
successfully applied to repositories in multiple programming languages without any
need for language-specific modifications. This further supports its generalizability
and practical adaptability in both academic and professional environments.

Generalizability showcases that the proposed method maintains relevance and ef-
fectiveness across diverse contexts, suggesting potential for broad industry adoption.

5.4 Results

This section addresses the outcomes related to the research questions formulated
at the beginning of this study, synthesizing findings derived from both quantitative
analyses and qualitative feedback.

5.4.1 Identification of Potential Single Points of Failure

The primary research question aimed to determine how potential single points of fail-
ure (key personnel whose absence significantly impacts a project) could be effectively
identified. The graph-based method introduced in this study successfully utilized
combined metrics from version control systems (VCS) and Jira activity to pinpoint
individuals crucial to project continuity. The results summarized in Tables 5.2 and

61

5.4 demonstrate the method’s ability to accurately reflect real-world scenarios. For
instance, the evaluation on university projects revealed substantial alignment with
developer-identified key contributors, accurately capturing 83% of these contribu-
tors. Furthermore, across the anonymized industry projects evaluated, the method
correctly identified critical contributors with an accuracy of 85%.

5.4.2 Methods for Effective Critical Knowledge Transfer

The second research question targeted methods that could facilitate critical knowl-
edge transfer once key personnel are identified. The implementation of comprehensive
visualization techniques (e.g., treemaps and interactive network graphs) significantly
supported stakeholders in pinpointing high-risk knowledge areas. Qualitative feed-
back, presented in the usability evaluation (Table 5.7), indicates a strong approval
rate (90%) among users for general system usability, highlighting the value of clear
visualization in effectively managing knowledge transfer activities. Specifically, users
emphasized the clarity and ease of interpreting centrality breakdowns (83%), affirming
the tool’s role in effectively highlighting contributors who require knowledge-sharing
interventions.

5.4.3 Alignment with Existing State-of-the-Art Algorithms

The final research question examined the extent of alignment between the bus fac-
tor estimations generated by our proposed method and existing state-of-the-art ap-
proaches, notably the Explorer method. Comparative analyses, detailed in Tables 5.1
and Table 5.3, consistently demonstrated superior accuracy and F1l-scores achieved
by our graph-based approach. Overall, the method averaged 70.14% accuracy and a
78.06% F1-score, significantly outperforming the Explorer method, which averaged
59.72% accuracy and 69.44% F1-score. Moreover, simulation-based robustness testing
confirmed this finding, where the graph-based method consistently achieved higher
accuracy across diverse scenarios, including equal contributions, skewed distributions,
and varied activity levels (Table 5.4).

These findings strongly validate the robustness, reliability, and enhanced capability

of the proposed graph-based bus factor identification method, affirming its potential
for practical application across various software development contexts.

62

Chapter 6

Discussion

The discussion chapter wraps up and summarize the key contributions of this study
including its significance while providing an overall overview of the challenges faced
through out the timeframe, which justifies certain decisions made during the imple-
mentation and validation stages.

6.1 Key Contributions

This research contributes a novel graph-based method for identifying key contribu-
tors in software development teams by incorporating both version control data and
issue tracking activity. Unlike traditional approaches that solely rely on metrics such
as commit frequency, file authorship, etc., this approach offers more comprehensive,
network-driven view of team dynamics and collaboration patterns. Furthermore, the
integration of issue management data from project management tools like Jira serves
as a Proof-of-Concept (PoC) for including broader collaborative activity beyond ver-
sion control in order to improve the accuracy of the results. Anyone who is willing
to continue in their journey of fine-tuning this approach can use this as a starting
point for making further extensions incorporating any other potential data sources
that contains project context related data.

Another significance of this approach is the ability to detect critical developers both
collaborative or low-commit scenarios, increasing the robustness of bus factor iden-
tification. The language-agnostic nature of the solution and the ability to handle
diverse repository structures enhance its applicability across a wide variety of real-
world settings. Also by considering only the timely contributions and interactions,
this method has the ability to cater the dynamic nature of a given project at a given
time.

Apart from the key developer identification, another pivotal contribution of this re-
search lies in the implementation of an automated documentation generation sys-

63

tem designed to accelerate developer onboarding in complex software projects. By
integrating RepoMix and the DeepSeek API, the solution transforms raw codebases
into structured, Al-generated guides that outline project architecture, workflows, and
critical dependencies. It addresses the common challenge of fragmented or outdated
documentation, offering new developers an intuitive roadmap to navigate code logic,
trace method interactions, and grasp system-wide behaviors without manual effort,
resulting in a significant reduction in onboarding time and cognitive load.

6.2 Challenges

The development and evaluation phases of the proposed method involved overcoming
several significant challenges.

6.2.1 Data Availability Challenges

e Obtaining complete and clean datasets from real-world repositories proved chal-
lenging due to confidentiality constraints and the limited availability of well-
documented projects. Many industry-grade codebases remain inaccessible, forc-
ing reliance on open-source alternatives, which often fail to mirror the complex-
ity of closed-source systems. Additionally, even available datasets tend to be-
come outdated as projects evolve, with knowledge dispersing across teams over
time. While open-source projects offer partial solutions, their structure and
development practices frequently differ from proprietary environments, limiting
their applicability in certain research contexts.

e Accessing active Jira boards with meaningful historical data was another major
hurdle, particularly for closed-source or professionally managed projects. Orga-
nizations often employ proprietary tools and methods for tracking project con-
text—such as meeting notes, issue resolution logs, and task dependencies—making
standardized data collection difficult. Sensitivity around internal processes fur-
ther restricted data sharing, as companies were reluctant to expose project-
specific details. This lack of transparency in issue-tracking systems hindered a
comprehensive analysis of development workflows and decision-making patterns
in real-world settings.

6.2.2 Evaluation and Feedback Challenges

e Sourcing suitable university projects for initial testing proved problematic, as
many lacked consistent development activity or detailed version control histo-
ries. This inconsistency made it difficult to replicate real-world scenarios during
early validation, limiting the reliability of preliminary results. While academic
projects provided a starting point, their smaller scale and sporadic contribution

64

patterns often failed to mirror the iterative, collaborative nature of industrial
software development

e Organizing structured feedback sessions with developers required meticulous
coordination due to conflicting schedules, geographically dispersed teams, and
varying engagement levels. Differences in organizational workflows—such as
agile versus waterfall methodologies—further complicated efforts to standardize
feedback collection. Additionally, subjective input from participants demanded
careful analysis to mitigate bias, requiring iterative refinement to align diverse
perspectives into actionable insights.

6.2.3 Technical Challenges

e Resolving contributor identity discrepancies across platforms (e.g., GitHub,
Jira) demanded algorithmic precision. Contributors often used distinct aliases
or multiple accounts, and the absence of centralized identity mappings risked
skewed attribution of work. This necessitated the development of cross-platform
matching logic to unify identities while accounting for edge cases like pseudonyms
or shared accounts.

e Designing adaptable centrality weighting mechanisms required extensive empir-
ical tuning to reflect realistic team dynamics. Static models struggled to ac-
commodate variations in organizational structures, such as hierarchical versus
flat teams, or differing roles like core maintainers versus part-time contributors.
[terative adjustments were essential to balance specificity (capturing unique
team cultures) and generalizability (ensuring the tool’s applicability across di-
verse projects).

65

Chapter 7

Conclusion

7.1 Overview

The conclusion chapter summarize the overall study and reflect on the research study,
highlighting its limitations and suggesting directions for future research.

7.2 Limitations

Limited access to full-scale Jira boards and extensive professional repositories con-
fined validation to a handful of projects, which may restrict how broadly these find-
ings apply across different team structures and development cultures. In addition, the
current approach used in unifying contributor identities across platforms like GitHub
and Jira is not always effective, risking both under- and over-attribution, especially
when pseudonyms or shared accounts were involved. Although centrality and activ-
ity weights were honed through empirical tuning, they may not translate perfectly
to organizations with hierarchical workflows, decentralized decision-making, or non-
traditional roles. Generating documentation for larger codebases frequently exceeded
LLM token limits when trying to combine the whole codebase as the context, forcing
context truncation that undermines usability for complex codebases. Also, the tool’s
real-world performance lagged behind its core algorithm’s speed in isolated environ-
ments, revealing implementation bottlenecks that must be addressed before real-time
or large-scale deployment.

7.2.1 Future Work

The empirical validation of the approach requires expansion through broader test-
ing with diverse, clean datasets. This testing will help refine weight calibration and
threshold values, ultimately ensuring the robustness of the system across varied team
structures and development methodologies. Performance optimization also stands
as a critical priority, with efforts needed to streamline the tool’s runtime efficiency

66

to match the core algorithm’s speed demonstrated in isolated environments. These
optimizations would address existing bottlenecks that currently limit the tool’s ap-
plicability in real-time scenarios or large-scale implementations.

Enterprise scalability presents another significant avenue for development, requir-
ing adaptations to the platform that would support continuous, real-time monitoring
in enterprise settings. Such adaptations must ensure seamless integration with evolv-
ing codebases and workflows characteristic of large organizations. The integration of
multi-source collaboration signals represents an opportunity to substantially enhance
the approach, incorporating additional data streams such as code reviews, Slack/MS
Teams activity, and temporal engagement patterns to enrich the model’s accuracy
and contextual awareness.

The development of intuitive, interactive dashboards would translate metrics into
actionable insights for both managerial and technical stakeholders, enhancing the
decision-support visualizations currently available. Meanwhile, advancing the predic-
tive capabilities of the system would involve implementing analytics to proactively
identify risks tied to team turnover, role shifts, or knowledge gaps during critical
project phases. Also the tool should be extended and fine-tuned to accurately cap-
ture scenarios where a bus factor risk does not exist, such as when all contributors
are equally engaged and critical knowledge is evenly distributed across the team.

Documentation generation capabilities could be refined through the adoption of dy-
namic, context-aware chunking strategies for LLM inputs. Such strategies would by-
pass token limits, enabling scalable documentation generation even for large projects.
The automation of contributor identity resolution represents another promising di-
rection, with potential experiments using LLM-driven approaches to unify cross-
platform identities, thus reducing reliance on error-prone static methods like fuzzy
matching. Finally, investigating bus factor dynamics across different software lifecy-
cle phases—from design through maintenance—would provide valuable insights for
refining risk mitigation strategies tailored to each development stage.

7.3 Final Remarks

This research addresses the critical challenge of knowledge imbalance in software
teams by introducing a graph-based method to identify key contributors and assess
bus factor risks. The outcomes align directly with the stated objectives, offering ac-
tionable insights for both academic and industrial contexts.

The first objective—identifying potential single points of failure early in the project

lifecycle—was achieved via the integration of network centrality metrics and activity
analysis. Empirical validation across 12 industry projects demonstrated the method’s

67

ability to pinpoint critical contributors with 85.56% accuracy, significantly outper-
forming existing benchmarks like the Explorer method (59.72% accuracy). This pre-
cision enables teams to proactively address knowledge concentration before it escalates
into operational risks.

As for the second objective, enhancing critical knowledge transfer, the system’s us-
ability played a central role. With an average SUS score of 86.7 and 90% satisfaction
in overall usability, stakeholders found the tool intuitive for visualizing contributor
roles and dependency networks. Qualitative feedback highlighted its effectiveness in
clarifying team dynamics, which supports targeted interventions such as mentorship
or task redistribution.

The third objective—evaluating practical relevance—was validated through rigorous
comparisons with state-of-the-art algorithms. As shown in Tables III and IV, the
graph-based approach consistently identified contributors with higher specificity, par-
ticularly in complex collaboration environments (e.g., 78.06% F1-score vs. 69.44%
for Explorer) which confirms its reliability in real-world settings, bridging the gap
between theoretical models and organizational needs.

While the method’s language-agnostic design and scalability (90% efficiency reten-
tion) broaden its applicability, limitations such as contributor identity discrepancies
and computational bottlenecks warrant further refinement. Nevertheless, the frame-
work provides a foundation for advancing software sustainability, enabling teams to
mitigate continuity risks through data-driven strategies. Future extensions could in-
tegrate real-time analytics or machine learning to further enhance adaptability across
evolving development pipelines.

Moreover, the research addresses a timely and critical issue, making a significant
contribution to the software engineering domain and the introduction of a novel ap-
proach for calculating the bus factor further enhances the existing body of knowledge,
providing development organizations with a practical framework to assess and mit-
igate knowledge concentration risks. The methodology developed throughout this
research offers tangible benefits for real-world software projects seeking to improve
their operational resilience and ensure sustainable development practices.

68

Bibliography

Almarimi, N., Ouni, A., Chouchen, M., and Mkaouer, M. W. (2021). csdetector: an
open source tool for community smells detection. pages 1560-1564.

Avelino, G., Constantinou, E., Valente, M. T., and Serebrenik, A. (2019). On the
abandonment and survival of open source projects: An empirical investigation.

CoRR, abs/1906.08058.

Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2016). A novel approach for
estimating truck factors. In 2016 IEEE 24th International Conference on Program
Comprehension (ICPC). IEEE.

Bock, T., Alznauer, N., Joblin, M., and Apel, S. (2023). Automatic core-developer
identification on github: A validation study. ACM Trans. Softw. Eng. Methodol.,
32(6).

Bosu, A. and Carver, J. C. (2014). Impact of developer reputation on code re-
view outcomes in oss projects: an empirical investigation. In Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, New York, NY, USA. Association for Computing Ma-
chinery.

Brocke, J. v., Hevner, A., and Maedche, A. (2020). Introduction to Design Science
Research, pages 1-13.

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Késtner, C. (2020). Under-
standing collaborative software development: An interview study. In Proceedings
of the 15th international conference on global software engineering, pages H55—65.

Coplien, J. O. and Harrison, N. B. (2004). Organizational patterns of agile software
development.

Cosentino, V., Canovas Izquierdo, J., and Cabot, J. (2015). Assessing the bus factor
of git repositories.

Dikert, K.-K., Paasivaara, M., and Lassenius, C. (2016). Challenges and success
factors for large-scale agile transformations: A systematic literature review. J.
Syst. Softw., 119:87-108.

69

Ebert, C. and Cain, J. (2016). Cyclomatic complexity. IEEE Software, 33:27-29.

Fritz, T., Murphy, G. C., Murphy-Hill, E., Ou, J., and Hill, E. (2014). Degree-of-
knowledge: Modeling a developer’s knowledge of code. ACM Trans. Softw. Eng.
Methodol., 23(2).

Jabrayilzade, E., Evtikhiev, M., Tiiziin, E., and Kovalenko, V. (2022). Bus factor in
practice.

Joblin, M., Apel, S., Hunsen, C., and Mauerer, W. (2016). Classifying developers
into core and peripheral: An empirical study on count and network metrics.

Kirongo A. Chege, Amos, O. C. O. (2020). Research philosophy design and method-
ologies: A systematic review of research paradigms in information technology. 8:33.

Klimov, E., Ahmed, M. U., Sviridov, N., Derakhshanfar, P., Tiiziin, E., and Ko-
valenko, V. (2023). Bus factor explorer. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE.

Lisan, A. and Norris, B. (2024). Guiding effort allocation in open-source software
projects using bus factor analysis.

Oliva, G. A., da Silva, J. T., Gerosa, M. A., Santana, F. W., Werner, C. M. L.,
de Souza, C., and de Oliveira, K. C. M. (2015). Evolving the system’s core: A case
study on the identification and characterization of key developers in apache ant.
Comput. Informatics, 34:678-724.

Rigby, P., Zhu, Y., Donadelli, S., and Mockus, A. (2016). Quantifying and mitigating
turnover-induced knowledge loss: case studies of chrome and a project at avaya.
pages 1006-1016.

Zazworka, N., Stapel, K., Knauss, E., Shull, F., Basili, V., and Schneider, K. (2010).
Are developers complying with the process: An xp study.

Zhang, W., Yang, Y., and Wang, Q. (2011). Network analysis of oss evolution: an
empirical study on argouml project. In Proceedings of the 12th International Work-
shop on Principles of Software Evolution and the 7th Annual ERCIM Workshop on
Software Evolution, IWPSE-EVOL '11, page 71-80, New York, NY, USA. Associ-
ation for Computing Machinery.

70

