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Abstract

Dementia is a syndrome significantly impacting the daily lives of individuals, predomi-

nantly among the elderly population. It leads to a deterioration in cognitive capabilities,

encompassing memory, concentration, reaction time, problem-solving abilities, and dif-

ficulties in language articulation and word recall. Due to the impairments in spatial

awareness, memory deficits, restlessness, and agitation commonly observed in individuals

with dementia, there is a significant propensity for these patients to wander. Wandering

behavior in dementia patients is a critical issue, as it can lead to disorientation, exposure

to hazardous environments, and difficulties in returning home. Various types of wandering

behaviors have been identified, such as aimless wandering, pacing, lapping, and shadow-

ing. These behaviors can be triggered by anxiety, confusion, unmet needs, or an attempt

to find a familiar location or person. Managing wandering behavior requires continuous

supervision, which places a substantial burden on caregivers. To address this issue, This

study mainly focuses on developing a wearable IoT (Internet of Things) device equipped

with LoRa modules for real-time tracking and intelligent monitoring of dementia wan-

dering patients. LoRa technology supports the development of low-energy, long-range

Internet of Things (IoT) devices, and LoRa modules serve as essential components in

our IoT platforms, facilitating the transmission of sensory data to central applications

and enhancing remote monitoring capabilities. The wearable device is being developed

with a cost-effective approach, primarily aimed at middle and low-income countries with

high dementia prevalence and prohibitive healthcare costs. Designed for energy efficiency,

these devices minimize the need for frequent charging, thereby ensuring consistent oper-

ation and improving practicality for dementia patients who may be prone to forgetting

to recharge. The proposed IoT platform provides continuous location monitoring, ensur-

ing timely intervention by caregivers to prevent potential dangers. Continuous data on

patient movement collected via wearable devices is transmitted to the cloud for machine

learning, trajectory analysis, and anomaly detection to identify wandering scenarios. The

IoT platform is engineered to integrate multiple wearable devices and sensors, forming a

comprehensive medical suite for dementia patients. The integration of wearable devices

allows the pre-processing of movement data on the device, reducing network latency and

optimizing response times for critical alerts. The web application is designed with an

intuitive user interface and incorporates features such as caregiver alerts, multi-user sup-
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port, and historical tracking data visualization. A smart detection strategy is suggested

in order to guarantee that wearable technology is utilized regularly and to offer dementia

patients efficient monitoring. In order to detect when the wearable is no longer in contact

with the body, it combines sensors like bioimpedance, capacitive touch, and inertial mea-

surement unit (IMU). This enables the system to react instantly, assisting caregivers in

maintaining trustworthy supervision by either sending alarms or initiating other required

actions. Given the sensitivity of patient location data, the system integrates end-to-end

encryption added in the LoRa module and secure cloud storage to safeguard user privacy.

Designed for middle and low-income countries, the solution prioritizes affordability by

leveraging cost-effective hardware and open-source technologies. The device enhances

patient safety, promotes independent living, and reduces the risks associated with wan-

dering behavior in dementia patients. The design and development of the proposed IoT

platform focused on user-centric design and design science research methodology. This

research has the potential to improve the quality of life for individuals with dementia and

simplify the responsibilities of family members, caregivers, and healthcare providers.
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1 The introduction

Dementia is a syndrome that significantly impacts the daily lives of individuals, predomi-

nantly among the elderly population. It leads to a deterioration in cognitive capabilities,

encompassing memory, concentration, reaction time, and problem-solving abilities, as

well as difficulties in language articulation and word recall (McKhann et al., 1984). De-

mentia shows long symptoms, and it is crucial to identify dementia in its early stages

and provide necessary aid. Following is an illustration that shows the different stages of

dementia.

Figure 1: Stages of dementia (JasmineHEH, 2024)

Individuals with Alzheimer’s disease or other forms of dementia may lose the ability to

recognize familiar places and faces, leading them to wander and become disoriented. This

behavior can occur at any stage of the disease and poses significant safety concerns. Ap-

proximately 60% of those living with dementia will wander at least once, with many doing

so repeatedly. People with dementia who wander often show several signs, such as trying

to go ”home” even when they’re already there, forgetting familiar locations, or taking an

unusually long time to walk from one place to another (Wandering — Alzheimer’s As-
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sociation 2024). Tracking and monitoring the location of dementia patients is important

in both indoor and outdoor situations due to safety issues. Many devices are available

for monitoring the location of dementia patients, but most are very expensive and not

accessible in middle and low-income countries where dementia cases are more prevalent.

LoRa is one of the communication protocols that provides long-range communication in

an energy-efficient and cost-effective way. This research project focuses on developing

a cost-effective, energy-efficient, intelligent tracking system based on LoRa technology

for dementia patients, which provides real-time monitoring facilities for caregivers. In

addition to hardware efficiency, this work also introduces a machine learning-based dy-

namic geofencing approach to improve safety through adaptive zone classification based

on patient movement behavior.

1.1 Research Background

According to the literature review, most dementia tracking systems implement static geo-

fencing, which involves a set of coordinates tracked by GPS. However, many patients in

the middle stages of dementia are still capable of performing daily activities, even though

they may occasionally forget their location.

Static geofencing systems are often rigid and fail to adapt to the patient’s daily move-

ment patterns or environmental factors. In diverse geographic regions such as Sri Lanka,

where conditions can vary from urban to rural, a fixed set of coordinates may not ac-

curately represent safe or risky areas. This limitation can lead to either missed alerts

or false alarms, reducing the effectiveness of caregiver intervention. To address these

shortcomings, recent studies suggest the potential of dynamic geofencing, where zone

boundaries adapt based on behavior and context.

When we consider wearable devices for dementia patients these devices usually lack

the means to confirm continuous contact with the body, resulting in gaps in monitor-

ing. This is particularly very important in dementia care, as patients may accidentally

remove or misplace wearables. Skin contact is detected by capacitive touch sensors resis-

tance changes across skin tissues are measured by bioimpedance sensors and movement

patterns are analyzed by IMU sensors. Real-time off-body scenario identification is made

dependable by the combination of these technologies. In the literature, most studies

have focused on cellular communication as a medium for communicating between de-
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vices, with only a limited number of studies exploring real-time tracking using LoRa

technology. Given that LoRa enables long-range communication and is energy-efficient,

developing a wearable device that utilizes LoRa could be a cost-effective solution for

middle/low income countries, providing an affordable alternative to expensive devices.

1.2 Project Aim and Objectives

1.2.1 Project Aim

To develop a cost-effective, energy-efficient, and intelligent real-time tracking system

including off-body device detection for dementia patients using LoRa communication,

integrated with a machine learning-based dynamic geofencing approach to enhance pa-

tient safety and support caregivers through adaptive zone classification and predictive

wandering detection.

1.2.2 Project Objectives

• To design and develop a real-time location tracking system for dementia patients

using LoRa technology, with a wearable IoT device (LoRa end) and a home IoT

device (LoRa gateway), and a protocol that is scalable for multiple home devices.

• To implement a dynamic machine learning model that classifies patient movement

into adaptive safety zones (Safe, Warning, Danger) based on GPS data and contex-

tual features such as terrain and movement patterns.

• Make sure a wearable device stays on a dementia patient’s body by efficiently alert-

ing caregivers in real-time when it is taken off, allowing the patient to benefit fully

from ongoing support and monitoring.

1.3 Research Questions

• How to develop a cost-effective and energy-efficient real-time patient tracking sys-

tem using LoRa with a wearable device?

• How effectively can a machine learning-based dynamic geofencing system classify

patient zones using real-time GPS data and contextual movement patterns to sup-

port early detection of wandering behavior in dementia patients?
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• What ways can multiple sensors be combined to accurately detect when a wearable

device is removed from a dementia patient’s body?

1.4 Justification of Software Engineering Project

This project introduces a real-time dementia monitoring platform that uses IoT devices

communicating via the LoRa medium. We have developed a wearable device that is

energy-efficient, cost-effective, and user-friendly. Additionally, a web application has

been created to facilitate easy real-time monitoring of dementia patients.

Current dementia tracking systems predominantly rely on static geofencing tech-

niques, which are unable to adapt to the changing behaviors and needs of dementia

patients. These systems use predefined boundaries to trigger alerts, often resulting in

false alarms or missed events as they fail to account for patient movement patterns and

environmental factors.

This project introduces a novel approach by integrating machine learning (ML) for

dynamic geofencing. Unlike static geofencing, this system uses real-time GPS data and

contextual factors, such as movement history and terrain details, to dynamically classify

areas as Safe, Warning, or Danger. The use of machine learning allows the system to

learn from patient behavior, improving its ability to predict wandering patterns and

offer timely alerts. This dynamic approach ensures that geofences are personalized and

responsive to the individual needs of each patient, enhancing both the effectiveness and

accuracy of monitoring.

Additionally, the incorporation of shapefiles for spatial data processing is an inno-

vative aspect of this project. Shapefiles, which contain geographical features such as

land use, roads, and terrain, enable the system to classify zones with a higher degree

of precision. This combination of machine learning and spatial data allows for a more

nuanced understanding of the environment surrounding dementia patients, creating safer

and more efficient geofencing boundaries. The dynamic classification of zones based on

both movement data and environmental context represents a significant advancement

over traditional, static geofencing methods.

Maintaining the wearable gadget on the body is very important to the system’s over-

all dependability. By avoiding erroneous data gathering and guaranteeing prompt inter-

ventions, the integration of numerous sensors for off-body detection directly helps this
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objective. This element improves system integrity and user safety, particularly in-patient

groups with memory impairments.

1.5 Research Methodology

The research project employs design science research (DSR) as its methodology, providing

a systematic approach to developing practical, user-focused solutions aimed at enhancing

the quality of life for people with dementia and assisting their caregivers. By engaging in

an iterative process of design, development, and evaluation, DSR ensures that technology

effectively and sustainably meets the genuine challenges faced in dementia care, while also

taking into account the intricate and evolving needs of both patients and their caregivers

(Brocke, Hevner, and Maedche, 2020).

The protoype monitoring system includes two IoT devices: wearable LoRa devices

that will be attached to dementia patients and a home device that is placed in the

patient’s house. Wearable devices periodically send GPS location and sensory data, while

nearby home devices capture this data and transmit it to the web application. Since the

patient can walk beyond the range of one home device to another, a routing protocol was

developed to provide balance and scalability in the LoRa network. A web application was

developed to provide remote, real-time monitoring of dementia patients. The application

contains profiles for each patient and their caregivers, facilitating user-friendly monitoring

of dementia patient.

The dynamic geofencing artifact that uses machine learning to classify areas as Safe,

Warning, or Danger based on real-time GPS trajectories and contextual spatial data

extracted from shapefiles. The methodology involves: identifying the problem of static

geofencing limitations, defining the objectives of a dynamic and adaptive solution, de-

signing and developing a predictive LSTM-based model, demonstrating its functionality

through test scenarios with GPS datasets, evaluating its accuracy using metrics such

as Mean Squared Error (MSE), and communicating the findings. Integrating shapefile

data (e.g., terrain, roads, and land use) with movement history is a novel aspect of this

approach, enabling geofences to be continuously refined based on both behavioral and

environmental cues.

The implementation of a strong off-body detection feature effectively addresses a sig-

nificant issue. By integrating capacitive touch sensing, motion tracking, and biometric
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verification, the system guarantees ongoing confirmation that the device remains in con-

tact with the patient. This capability not only boosts the safety and dependability of

the system but also enhances the confidence of caregivers. Being aware that the device

will automatically alert them if it is taken off or malfunctioning allows caregivers to

grant dementia patients greater independence and mobility. This creates a more compas-

sionate caregiving atmosphere, alleviates the stress of constant supervision, and enables

caregivers to have trust in the technology being used.
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2 Literature Review

2.1 LoRa based IoT Applications

LoRa (Long Range) is a technology used to enable connectivity between IoT devices over

long distances while being energy efficient. LoRa, created by SEMTECH, employs spread

spectrum modulation derived from chirp spread spectrum (CSS) technology. This enables

long-distance signal transmission that is less sensitive to interference, requires less energy

in the modules, and enhances communication between transmitters and receivers (LoRa

PHY — semtech.com 2025).SIGFOX, NB-IoT, and LTE-M are alternative technologies

designed to enable long-distance communication among IoT devices. The comparison

between these solutions and LoRa can be found in the Table 1.

LoRaWAN (Long Range Wide Area Network) is a communication protocol and sys-

tem architecture for long-range, low-power communications used primarily in Internet of

Things (IoT) applications. It is built on top of the LoRa (Long Range) physical layer,

which employs Chirp Spread Spectrum (CSS) modulation to enable long-range trans-

mission with low power consumption. LoRaWAN defines the communication protocol

and system architecture for the network, including device-to-gateway communication,

security, and network scalability. LoRaWAN operates in unlicensed ISM (Industrial, Sci-

entific, and Medical) bands—typically 433 MHz, 868 MHz, or 915 MHz—depending on

the region. It supports three classes of end devices (A, B, and C) to balance latency,

power consumption, and downlink availability (Figure 2). Due to its ability to support

large-scale deployments, long-range communication (up to 15 km in rural areas), and

battery life of up to 10 years, LoRaWAN is widely used in applications such as smart

cities, agriculture, environmental monitoring, and industrial automation. LoRaWAN is

governed by the LoRa Alliance, a nonprofit association of member companies collaborat-

ing to drive the global success of the protocol as an open standard for secure, carrier-grade

IoT LPWAN connectivity (lora-alliance.org 2025, Centenaro et al., 2016).

9



Parameter LoRa SIGFOX NB-IoT LTE-M

Technology Proprietary
(PHY), Open
(MAC)

Proprietary Open LTE Open LTE

Spectrum Unlicensed Licensed Licensed Licensed

Frequency
Band

Sub-GHz ISM Sub-GHz ISM Cellular band Cellular band

Modulation CSS D-BPSK 2-BPSK, 2-
QPSK

BPSK, QPSK,
16QAM,
64QAM

Duty Cycle /
Tx Restric-
tion

1% 140 msg/day – –

Frequency 433, 868, 915
MHz

868, 915 MHz 700–2100 MHz 700–2600 MHz

Bandwidth
(BW)

125, 250, 500
kHz

100, 600 Hz 200 kHz 1.4 MHz

Coverage 1–10 km 10–40 km 15 km 11 km

Battery Life 10 years 10 years 10 years 10 years

Deployment Multi-operator,
self deployment

– In-band, Guard
Band, Stan-
dalone

In-Band LTE

Standard LoRaWAN No 3GPP Release
13

3GPP Release
12

Security AES-128 AES-128 LTE security LTE security

Table 1: A comparison of the long-range communication technologies (Jouhari et al.,
2023)

Figure 2: LoRaWAN Architecture
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LoRa is utilized across various sectors such as agriculture, smart buildings, smart

cities, and industrial projects, among others. LoRa technology is particularly advanta-

geous for agricultural applications due to its impressive connectivity range. The study

Chanwattanapong et al., 2021 presents a LoRa network designed for agricultural ap-

plications, enabling real-time environmental monitoring through multi-wireless sensor

nodes that collect data on soil moisture, temperature, humidity, and light intensity. The

LoRa gateway facilitates long-range communication between the sensor nodes and cloud

storage, allowing for efficient data transfer and analysis every 15 seconds. This system

enhances agricultural practices by providing accurate environmental data, which can lead

to better decision-making and resource management for farmers (Chanwattanapong et

al., 2021).

Figure 3: LoRa network for agriculture Chanwattanapong et al., 2021

The Rachmani and Zulkifli, 2018 paper presents a monitoring system for starfruit

plantations utilizing LoRa technology, which allows for data transmission over distances

of up to 700 meters, ensuring effective communication within the farming area. The sys-

tem integrates various sensors, including pH and soil moisture sensors, to collect critical

agricultural data, which is then processed by an Arduino UNO microcontroller. Data is

periodically sent to a cloud database, enabling farmers to access real-time information

through a user-friendly interface available on both desktop and mobile platforms. The im-

plementation of this system aims to enhance agricultural practices by providing insights

into soil conditions, thereby assisting farmers in making informed decisions regarding

irrigation and fertilization.
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Smart cities are a common domain where LoRa technology is widely used to develop

advanced applications. The paper Rao and Chaudhari, 2020 introduces a LoRaWAN-

based traffic clearance system aimed at facilitating the swift passage of emergency vehicles

(EMVs) through traffic signals by creating a green corridor. LoRa technology is utilized

for its long-range, low-power communication capabilities, allowing EMVs to transmit

their unique ID and GPS coordinates to nearby traffic signals. This system enables traffic

signals to change to green automatically when an EMV approaches, thereby minimizing

delays and improving response times during emergencies. By leveraging the strengths of

LoRa, the proposed solution addresses existing challenges in traffic management, such

as energy efficiency and complexity, while ensuring reliable communication and real-time

monitoring (Rao and Chaudhari, 2020).

2.2 LoRa-based Tracking Systems

LoRa can be utilized to transmit GPS coordinates from IoT devices, which can be applied

for tracking individuals, vehicles, logistics, and more. In the study Torres et al., 2021,

LoRa is utilized as the core communication technology in a secure IoT tracking system

designed for the BIRA bicycle project (Figure 4). The architecture incorporates GPS-

equipped bicycles that transmit location, route, speed, and battery data through the

IPVC’s LoRaWAN network to a central application server, enabling real-time monitoring

and analysis. This setup uses low-cost TTGO T-Beam boards and ensures secure data

transmission via LoRaWAN’s built-in features like mutual authentication, data integrity,

and payload confidentiality (Figure 5). The system’s implementation not only supports

sustainable mobility but also addresses scalability, energy efficiency, and privacy concerns

across a university campus or even a city-wide scale (Torres et al., 2021).
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Figure 4: LoRa Tracking device on BIRA bicycle (Torres et al., 2021)

Figure 5: Application for monitor BIRA bicycle (Torres et al., 2021)

In the study Hayati and Suryanegara, 2017, LoRa is employed as the core communi-

cation technology to enable real-time location tracking of patients via wearable devices.

The system architecture consists of LoRa end-devices with GPS and microcontrollers,

which transmit data to LoRa gateways located in hospitals and public spaces. These

gateways forward the information to local or cloud servers using Wi-Fi or mobile net-

works, making it accessible to caregivers and psychiatrists through a mobile application.

LoRa’s long-range capability, low power consumption, and scalability make it ideal for

wide-area patient monitoring and emergency response support. The study Ahmed et al.,
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2024 utilizes LoRaWAN to create a geofencing system for remote monitoring of vulnerable

communities, addressing the limitations of cellular networks in areas with poor coverage

(Figure 6). The system employs an optimized Echo protocol over a mesh network to

enhance reliability and scalability. LoRaWAN’s long-range, low-power capabilities are

crucial for monitoring subjects like cattle or patients in remote areas. The architecture

includes LoRa nodes and hubs for data collection and transmission, enabling real-time

tracking and geofencing alerts (Ahmed et al., 2024).

Figure 6: LoRa-based geo fencing application for vulnerable communities(Ahmed et al.,
2024)

2.3 Wandering Behavior in Dementia

Wandering is one of the most challenging and hazardous behavioral symptoms displayed

by individuals living with dementia, especially between those who are diagnosed with

Alzheimer’s disease. This behavior can be defined by aimless, tedious, or disoriented

movement and may include actions like pacing, lapping, retracing the routes, or unex-

pectedly leaving from familiar environments. Even though these sudden movements look

random to the spectators, these actions are motivated by internal psychological or cog-

nitive conditions like perplexity, anxiety or as an effort to recollect the missed routines.

According to researchers, wandering can be divided into three main categories such as

patterned wandering, which explains repetitive tracing along an identical path; random

wandering, which lacks a clear direction or a goal; and purposeful wandering, in which

14



the person seems to have a destination but often guided by conditions like confusion or

misbeliefs. These subcategories help to understand the level of risk and the appropriate

protective measures like environmental modifications or identification aids which can help

to guarantee the safety and well-being of the patient Algase et al., 2010.

A significant number of people with dementia are affected by wandering. According

to studies; it is estimated that up to 60% of patients will experience wandering at least

once, and often repeatedly during the illness. The outcomes of such behavior can be dire,

including physical harm, exposure to dangerous conditions; even death if the person is

missing for over 24 hours. Wandering — Alzheimer’s Association 2024 highlights that

the probability of getting a severe injury or death worsens the longer the individual stays

missing. These situations place a heavy emotional and mental burden to caregivers, who

often worry about the safety of their loved ones. As a result, most of the caregivers turn to

restrictive tactics like locking out the doors or using other physical barriers or restrictions

which can diminish the dignity and the quality of life of the individuals who are affected.

Wandering should not be viewed solely as a symptom of a mental decline. It’s just more

than that. It can also be a way for the individuals to express their unaddressed needs like

hunger, isolation or physical discomfort. Factors such as environmental cues, daily rou-

tines or practices from their earlier life stages also can trigger the wandering behavior. For

example, some may believe that they have to “go to work” or “see a relative”, even when

these activities are no longer a part of their current reality. Understanding these deep

motivations is the key for developing practical interventions. With the advancements in

sensor-based and GPS technologies, researchers are increasingly exploring smart systems

powered by machine learning to spot early indicators of wandering and take swift action.

These systems are designed not just to enhance the safety, but to support the dementia

patients’ autonomy and dignity.

2.4 The Role of Machine Learning in Behavioral Prediction

As a core component of artificial intelligence, machine learning equips systems with the

ability to learn independently from data and accurate decisions or forecasts without

specifically being instructed for every case. In dementia care, particularly for anticipat-

ing and monitoring wandering behaviors, ML shows a great potential. ML is capable

of processing and interpreting complex patterns over time in areas including movement,
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surroundings and behavioral signals. By analyzing inputs like GPS signals, accelerome-

ter readings and mobility history; machine learning models can detect early changes in

behavior and generate alerts before the situation becomes dangerous.

In the field of dementia care, supervised learning approaches are widely used to clas-

sify patient behavioral pattern changes based on pre-labeled data sets. Algorithms like

Decision Trees, Random Forests, Support Vector Machines (SVM), and Multilayer Per-

ceptrons (MLPs) have proven the effectivity in recognizing activities by analyzing data

points such as GPS coordinates, timestamps, speed and direction of movement. For ex-

ample, if a patient who typically walks 10 minutes in a safe familiar environment, but

suddenly veers off track or heads into unknown territory, these algorithms can detect the

irregularity and trigger alerts. Despite the effectiveness of the supervised models, a major

drawback is their dependence on labeled data, which is both resource intensive and time-

consuming to gather in medical environments. To address these drawbacks of supervised

learning, researchers have turned to unsupervised learning techniques. Algorithms such

as k-means, DBSCAN, Isolation Forest, and Autoencoders are used to uncover patterns

or to detect unusual behaviors in dataset that lack predefined labels. These scenarios are

especially beneficial in practical settings where labeling the patient is not feasible. For

instance, anomaly detection systems can monitor patient behavior and flag the deviations

that could be a signal of wandering or potentially hideous movement.

Deep learning techniques have recently pushed the boundaries of behavior prediction

systems. Temporal models such as Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks excel at analyzing sequential movement data, allowing

for accurate forecasts of future locations and behavior trends based on prior movement

history. These models are adept at capturing temporal relationships in data like speed

variations, frequent pauses, and repeated paths which can be a signal of cognitive decline

or anxiety-related wandering. When these systems are enriched with additional context

such as time of the day, weather, patient’s medical background and terrain, Long Short-

Term Memory (LSTM) can generate highly detailed and more personalized predictions

about wandering risks Khaertdinov, Semerci, and Asteriadis, 2021.

Recent studies are highly investigating hybrid machine learning models that bring

together different modeling techniques. For example, ensemble methods or architectures

that merge Convolutional Neural Networks (CNNs) for spatial data analysis with LSTM
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networks for interpreting time-based patterns have proven effective in fields such as el-

derly care and activity tracking. Moreover, reinforcement learning is gaining researchers

attention for its continuous refinement with the inputs from caregivers or system feed-

back. This adaptive approach helps to tailor more precisely and accurate alerting while

reducing the rate of false, unnecessary alerts Oliveira et al., 2022.

Figure 7: Wandering Patterns Oliveira et al., 2022

The combination of ML and Internet of Things (IoT) devices significantly boosts

the real-time effectiveness of predictive technologies. Through the inputs from wearable

devices such as GPS trackers and sensors, ML systems can process either local devices or

through cloud computing. This immediacy is vital in critical care situations where timely

alerts can prevent severe injuries or fatalities Jafarpournaser, Delavar, and Noroozian,

2023. Furthermore, the scalability property of cloud based models make it possible for

widespread implementation across residential and institutional environments - supporting

large-scaled monitoring and preventive care Sarita et al., 2024. However, there still persist

some notable challenges. Concerns about patient data privacy, transparency of model,

and how well the system can accommodate shifts depending on patient behavioral changes

still remains. Additionally ethical concerns also arise regarding the use of constant digital

monitoring and algorithm driven decision making. These should be addressed carefully.

Even so, the future of ML in dementia care is still promising with the advancement

of research supporting its ability to forecast wandering and provide intelligent, safety

enhancing interventions.
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2.5 Machine Learning Models for Wandering Detection and

Prediction

Research literature has applied a wide range of machine learning models to identify and

predict wandering nature in individuals with dementia. This is done by spanning from

straightforward rule based methods to sophisticated deep learning algorithms. These

approaches commonly rely on analyzing mobility data such as GPS paths, accelerometer

readings and contextual factors to pinpoint abnormalities in movement patterns that

could indicate potentially dangerous wandering scenarios Mohammed, Fakhrudeen, and

Alani, 2024.

2.5.1 Rule-Based vs. Learning-Based Systems

Initial efforts to monitor wandering relied on fixed rule based systems which trigger the

alerts when specific conditions like patient stays beyond a set of distance away from

familiar residence environment or staying outside a defined safe zone for too long. One

such approach was implemented by Nasution and Emmanuel using motion detectors

and proximity thresholds. Although these systems were easy to implement, they lacked

flexibility to adapt to changes in behavior over time. In contrast, learning based models

provide more adaptive and personalized methods by using historical data to model typical

behaviors. For example, researchers utilized an LSTM model trained on sequence of

movement data to detect wandering episodes by spotting deviations of typical walking

habits of individuals, which led to higher accuracy and fewer false alarms .
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Figure 8: Comparision between rule based learning based approaches Zhang et al., 2016

2.5.2 Sequence Models: LSTM and GRU

LSTM and GRU models; both are types of Recurrent neural network (RNN) architectures

widely used for analyzing time dependent data due to their strength in capturing temporal

relationships. This makes these models particularly useful in the field of dementia care;

especially when wandering behavior tends to involve gradual shifts in movement over

time. LSTM models have been successfully added to GPS tracking data to classify

time intervals to differentiate between typical mobility and wandering behaviors. These

models demonstrate strong potential to understand the behavioral trends with accuracy

over 85%. GRUs, which are a more lightweight version of LSTM, have offered similar

functionality with fewer computational demands making them well suited for limited

power usage devices like wearable.

2.5.3 Hybrid Approaches

Hybrid approaches that use different data streams and machine learning techniques tend

to be more resilient and responsive. A notable example involves combining GPS and

motion sensor data with a blend of Decision Trees, and Hidden Markov Models (HMMs)

allowing for real time detection of wandering and forecasting of probable destination of

individuals. This dual capability allows caregivers to take action before risk escalates.

Additionally some other researches have integrated deep learning for feature recognition

with probabilistic forecasting models. These models are capable of handling both current
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detection and future movement prediction in a single cohesive setup.

Our research supports the hybrid model concept by integrating dynamic geospatial

features through adaptive geofencing. Instead of relying on rigid, manually defined geo-

graphic boundaries, our system employs detailed shape files to build flexible zones rich

with real world features such as infrastructure, terrain and land use. These geofenced

zones are labeled as safe, intermediate or high risk. They adapt over time in response

to the individual’s behavior, environmental context and potential hazards. By drawing

on datasets from resources like OpenStreetMap and official geographic databases, and

applying spatial analytics like joins and geometric computations, the system can factor

in elements like road proximity, water bodies and population density to shape risk aware

mobility patterns.

After classifying the labeled zones, machine learning algorithms are employed to fore-

cast movements across these zones. For instance, of a patient begins shifting from a pre

labeled safe zone to an intermediate zone, while simultaneously exhibiting a rise in walk-

ing speed and randomness of movement, the model may forecast a probable transition

into a dangerous zone This allows to trigger early alerts. LSTM models are ideal for

these scenarios as they consider both present location and overall trajectory. To enhance

interpretability, layers of attention mechanisms further refine the model by recognizing

influential temporal factors like evening hours or known risk associated with specific

routes.

2.6 Feature Engineering and Context Awareness

The success of wandering detection systems depends on choosing and crafting the right

features. In dementia monitoring these features are typically categorized as spatial, tem-

poral, or contextual. Dwell time is a key spatial metric which indicates how long an

individual can stay in a particular location. If this duration is unusually long, or anoma-

lies of patterns in an unfamiliar place, it may alert uncertainty or cognitive distress.

Additionally, movement metrics like speed and acceleration also offer valuable insights.

Erratic speed changes or repeated stopping may reflect agitation or desire to flee.

Another valuable metric is path entropy. This evaluates how random or how dis-

ordered an individual’s movements are. Elevated path entropy often indicates aimless

or directionless movement, which is a common sign of wandering. Low entropy implies

20



more deliberate, goal oriented movement towards a familiar environment. Other useful

indicators such as turning angles, how closely the current route matches the previous one

and the likelihood of returning back to the familiar environment also helps to separate

wandering behavior from normal standard mobility patterns.

We expand on traditional features by incorporating geo-contextual awareness through

the use of geographic shape files. By mapping GPS movement data over maps detail in-

frastructure and environmental attributes. From this we derive context aware features

such as terrain classification (urban, rural, near water), land type (residential, forest,

commercial), and potential hazard zones (such as highways or rivers). This additional

layer of inputs enriches the model to make more informed decisions by considering en-

vironmental risk alongside behavioral patterns of the patient. For example, wandering

near a river at night would be treated as more critical than walking through a fenced

neighborhood and would trigger a more urgent alert.

Time related variables including daily routine, weekday versus weekend behavior,

seasonal fluctuations play a vital role in detecting wandering. This is especially important

due to phenomena like sun downing, where the confusion in dementia patients often

worsens in late afternoon or evening. By factoring these temporal cues, models can be

fine tuned lowering the rate of false alerts and ensuring timely alerts are issued identifying

genuine wandering events.

Through the integration of sophisticated feature engineering, flexible geo fencing

boundaries, and strong temporal analysis, the system is designed to create a context

aware adaptive platform. Its goal is to both identify and predict wandering behavior

with high accuracy. Such foresight is the key to ensure safety and allowing early inter-

vention in settings where continuous human monitoring is not available.

2.7 Sensors based Off-body Detection

In recent years, wearable health monitoring devices have drawn a lot of attention, partic-

ularly from dementia and older patients (Cote et al., 2021). One of the biggest challenges

of these systems, particularly for those with dementia is its ability to maintain the de-

vice’s constant touch with the body. Devices are frequently taken out, lost, or worn

improperly due to cognitive loss, discomfort, and lack of awareness, which might result

in missing or inaccurate data, for example, wearable device adherence is frequently low
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among dementia patients, with usage durations varying greatly and some cases of devices

being worn for as little as six minutes. In order to verify data integrity and to raise

an alert when the gadget is removed or not worn properly, off-body detection is very

important. Research indicates that continuous wear is a behavioral issue as well as a

technical one. For instance, highlighted that the success of long-term monitoring systems

is directly impacted by older persons’ frequently low adherence to wearable use in the

absence of caregiver support or intelligent reminders (Fowe, Sanders, and Boot, 2023).

Specifically, research has demonstrated that wearable health monitors’ efficacy in

dementia care is contingent upon usability, comfort, and autonomy in addition to sensor

performance (Yang et al., 2025). Patients or caregivers frequently refuse to use devices

that are large, inconvenient, or necessitate constant contact. For this reason, in dementia

care settings, wearable technology with built-in off-body sensing that requires little human

input is highly preferred. Additionally, it has been suggested that these detection devices

be integrated with remote monitoring platforms or caregiver alerts to guarantee prompt

assistance and intervention (Sweeney et al., 2022).

In dementia care, it can be very challenging to keep wearable health monitoring equip-

ment in continual contact with the body. To solve this issue, a number of researchers

have suggested behavioural and design solutions. Using soft, textile-based wearables that

are incorporated into clothes is one successful tactic that improves comfort and lowers

the possibility of removal. For example, adding sensors to common clothing items like

shirts or socks greatly increased adherence among senior users.

Furthermore, it has been demonstrated that automated off-body detection systems

that employ capacitive or bioimpedance sensors increase dependability by disregarding

or flagging data obtained when the device is not in contact with the skin. (Zheng et al.,

2020) developed a wearable capacitive sensor capable of monitoring physiological signals

such as breathing and pulse without requiring skin contact. The sensor’s configuration

including a porous dielectric layer and electrodes shaped as a disk at the bottom and

a ring at the top elevated its ability to detect proximity variations. The specific design

allowed the sensor to recognize non-contact scenarios through capacitance changes when

an object was nearby.

Additionally, behavioral approaches such including caregiver alarms or reminder sys-

tems have been suggested. Also highlighted that when caregivers received warnings if
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a device was removed or reminders were included, individuals with dementia were more

likely to continue proper device usage. Ergonomics advancements and the shrinking of

wearable technology have also been beneficial. Participants were more obedient when

the wearables were small, light, and had simple straps or fasteners, particularly if they

looked like conventional accessories like pendants or wristwatches, according to a study

by (Guu, Aarsland, and Ffytche, 2023).

Capacitive touch sensors are frequently used in wearable technology and consumer

electronics to detect skin contact. When a conductive substance, such as human skin,

is nearby, capacitive sensors identify variations in capacitance. Research indicates that

capacitive sensors are appropriate for low-power, real-time wear monitoring in wearables

due to its ability to reliably detect contact loss events (Geißler et al., 2024).

The Bioimpedance sensors measure physiological signals like heart rate and breath-

ing. These sensors track electrical resistance variations between electrodes and skin

that increase significantly when the device is taken off the body. Research indicates

bioimpedance is sensitive to skin contact and hydration levels which enables it to detect

off-body events effectively (Groenendaal, Lee, and Hoof, 2021).

Accelerometers and gyroscopes are combined in IMU sensors to detect orientation

and motion. The health monitoring devices can be used to track posture, gait, and

activity levels. IMUs assist in distinguishing human motion patterns from static or erratic

movements that happen when a gadget is placed down on a table or left unattended (Kim

et al., 2021). IMUs are less reliable when it is used by themselves to detect direct skin

contact, but when combined with other sensor data, they provide useful context.

The three types of sensors can be combined to improve the off-body detection’s ac-

curacy and dependability. In various researches Sensor fusion techniques have been

suggested to enhance classification performance and lower false positives, especially in

applications that are vital to health, like in the case of dementia care.

Despite significant progress in wearable health monitoring devices, numerous critical

deficiencies persist, especially in dementia treatment. The literature indicates that a

principal problem is maintaining persistent device-to-skin contact, frequently undermined

by cognitive impairment, pain, and insufficient user awareness. Although capacitive,

bioimpedance, and IMU sensors exhibit potential for off-body detection, each possesses

inherent limitations when utilized in isolation. Additionally, current solutions frequently
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appear to be not optimized for the comfort and efficacy of dementia patients or do not

integrate with caregiver alert systems. Despite the fact that the majority of commercial

wearables are based on wristbands with off-body detection, these are often ineffective for

dementia patients who may remove them due to discomfort, forgetfulness, or agitation,

thereby limiting their practical impact on caregivers. The objective of this study is to

address these gaps by investigating off-body detection in multiple wear locations beyond

the wrist, improving detection accuracy through sensor fusion, and ensuring real-time

communication with caregivers to facilitate timely intervention and support.
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3 The Implementation

3.1 High Level Architecture

The system comprises two key components: IoT devices and a web platform. Our system

consists of two categories of IoT devices: LoRa end devices and LoRa gateway devices.

LoRa end devices function as wearable device within the network, transmitting patients’

GPS locations obtained from the GPS NEO-6M module via the LoRa medium. In the

prototype, the wearable device only uses GPS data to send its location as the tracking

mechanism. However, these end devices can be extended with additional sensor modules

to collect various data from patients, including health metrics like heart rate and move-

ment, among others. LoRa wearable devices can be positioned on the patient’s hand

or can be adapted to be attached to various other parts of the body, such as the belt,

arm, or clothing. The LoRa-enabled home device situated in the home of the dementia

patient, linked to the web platform through the internet connection. Sensory information

transmitted from the LoRa device is collected through home devices and relayed to the

web application via the HTTP protocol for real-time monitoring and geo-fencing features.

Figure 9: High level architecture
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3.2 LoRa module

The devices are equipped with a LoRa module that enables the transmission and reception

of data packets via the LoRa medium. For the prototype LoRa Ra-02 SX1278 module

used and it connected with NodeMCU ESP32 WiFi Bluetooth Dual Mode IoT Dev Board.

The antenna utilized for the LoRa module is a 433MHz RF antenna with a gain of 2-3

dBi. The price of the LoRa module along with the antenna is Rs. 1750.00. Below are the

settings that have been configured for the LoRa module in the prototype IoT devices.

1 // Change sync word (0xF3) to match the receiver

2 // The sync word assures you don’t get LoRa messages from other LoRa

transceivers ranges from 0-0xFF

3 LoRa.setSyncWord (0xF3);

4 LoRa.setTxPower (10);

5 LoRa.setSpreadingFactor (10);

6 LoRa.setSignalBandwidth (62.5E3);

Listing 1: LoRa ESP32 configurations

Figure 10: LoRa Ra-02 SX1278 Module(MD0532 - Tronic.lk 2025)

26



Figure 11: RF 433MHz Antenna 2-3 dBi(MD0164 - Tronic.lk 2025)

3.3 Wearable Device(End Device)

The wearable device is developed to reduce its dimensions while enhancing user-friendliness

for patients. The LoRa module is smaller and lighter than other cellular modules. In

the prototype, we use the ESP32 module instead of an Arduino board to reduce the size.

The ESP32 module has been included for development purposes, but will be removed in

the actual deployment of IoT devices in a real-world environment. This change means

that the contributions of LoRa, GPS, and other sensors will affect the overall size. For

the GPS module Ublox NEO-6M GPS Module Aircraft Flight Controller for Arduino

module used and it costs around Rs. 1550.00. Wearable devices send two types of the

data packets which are STS(Status) data packets, GPS(GPS) data packets. The STS

data packet is used to send the connection request through the LoRa network, and the

ACK data packet is used to send a successful connection message to the wearable. GPS

data packet used for send GPS locatin data to the web application.
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Figure 12: Ublox NEO-6M GPS Module(MD0153 - Tronic.lk 2025)

Figure 13: Wearbale device
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Figure 14: Example GPS data send by wearable device

Entry in data packet value

Data type GPS

Source mac address e:3c:da:77:38:e2

Latitude N6.901766

Longitude E79.861526

Generated timestamp 1745315259

Table 2: Decoded GPS data packet

3.4 Home Device(Gateway Device)

The home device is a LoRa gateway that captures data packets from a wearable device

and sends them to a web application. The home device contains a LoRa RA-02 SX1278

module, along with a NodeMCU ESP32. The ESP32 is used to connect to the internet

via Wi-Fi. Home devices are static LoRa nodes that do not move, and the antenna

needs to be placed outside of the house to provide maximum coverage. Each patient will

have both a wearable device and home devices; therefore, at any given time, the number

of gateway devices is equal to the number of wearable devices in the system. The home

device will capture data packets from nearby wearable devices, with a balanced frequency

limit set by a protocol to optimize and reduce internet bandwidth usage.
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Figure 15: Home device

3.5 Dynamic Geo-fencing Using ML

In this research, we designed a dynamic geofencing-based system to detect and predict

wandering behavior among dementia patients using real-time GPS data and machine

learning models. The system architecture comprises multiple stages including data pre-

processing, zone labeling using shapefiles, feature extraction, zone classification, and

wandering prediction using time-series models.

3.5.1 Haversine Distance for Movement Filtering

Raw GPS data collected from wearable or IoT devices often includes jitter or redundant

records, especially when the subject is stationary or moving slowly. To ensure that only

meaningful movement is captured, we apply the Haversine formula to calculate the real-
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world distance (in meters) between two consecutive latitude and longitude points.

This method is particularly useful for dementia cases, as subtle movements like pacing

indoors can falsely appear as transitions. By applying a minimum threshold (e.g., 5–10

meters), we filter out non-significant noise and preserve meaningful mobility data.

1 from geopy.distance import geodesic

2

3 def haversine(lat1 , lon1 , lat2 , lon2):

4 return geodesic ((lat1 , lon1), (lat2 , lon2)).meters

Listing 2: Haversine Function

This improves both data quality and model performance, ensuring that wandering

behaviors—which often involve broader, spatially erratic movements—are accurately de-

tected.

3.5.2 Shapefile-Driven Geospatial Intelligence

To perform geofencing, we use locally stored OSM-derived shapefiles rather than relying

on online APIs. This decision was driven by three key factors:

• Edge Processing: Devices used for tracking dementia patients often have limited

computational resources. Downloading and storing only the relevant .shp tiles

based on the patient’s starting location helps minimize memory usage and supports

efficient local processing.

• Privacy: Monitoring dementia patients involves highly sensitive personal data.

By avoiding real-time API calls and instead relying on locally stored shapefiles, the

system ensures greater control over data privacy and reduces exposure to third-

party services.

• Offline Functionality: In many rural or indoor environments where internet con-

nectivity may be unreliable or unavailable, having preloaded shapefiles ensures the

system continues to function without interruptions.

To minimize storage while maximizing spatial awareness, we initially extract only

OSM tiles covering a buffer zone (e.g., 3–5 km) around the patient’s home or care center.
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These files contain layers like buildings, roads, land use, natural features, and points of

interest.

3.5.3 Using OSM Attributes for Dementia-Specific Zone Classification

Each polygon or line feature in the shapefiles includes a key attribute fclass which repre-

sents the semantic type of the feature

We tailored a dementia-sensitive classification system by grouping fclass values into

three categories:

Zone Type OSM fclass Ex-
amples

Dementia Rationale

Safe residential, path,
park

Familiar and non-threatening environ-
ments such as home neighborhoods, walk-
ing paths, or parks that are often part of
the patient’s daily routine.

Warning secondary, indus-
trial, commercial

Areas that may confuse dementia patients
due to unfamiliar layouts, noise, or in-
creased social interaction. These zones in-
crease the likelihood of disorientation.

Danger river, forest, rail-
way, motorway

High-risk environments where accidental
injury, getting lost, or restricted access
may occur. These zones should trigger im-
mediate alerts.

Table 3: Zone classification based on OSM fclass for dementia-oriented geofencing

1 # Example mapping

2 def classify_zone(fclass):

3 if fclass in [’residential ’, ’park’, ’path’]:

4 return ’Safe’

5 elif fclass in [’industrial ’, ’commercial ’]:

6 return ’Warning ’

7 elif fclass in [’river’, ’forest ’, ’railway ’]:

8 return ’Danger ’

9 return ’Default ’

Listing 3: Zone Classification

By dynamically assigning these labels to GPS coordinates using spatial joins (gpd.sjoin),

we provide real-time context to patient movements.
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3.5.4 Polygon Creation and Dynamic Geofencing

The spatial zones from shapefiles are converted into geofencing polygons using tools like

Shapely. Each polygon acts as a zone boundary. When a GPS point enters a polygon,

its type (Safe/Warning/Danger) is assigned geofabrik.de n.d.

1 from shapely.geometry import Point

2

3 point = Point(longitude , latitude)

4 for polygon in danger_zones:

5 if point.within(polygon):

6 return ’Danger ’

Listing 4: Dynamic Labeling for Points

In contrast to static geofences (e.g., circular areas), our polygonal geofences adapt to

the actual environment (e.g., river path), making them especially effective for dementia

patients, who may stray unpredictably.

3.5.5 Feature Engineering for Wandering Detection

From the spatiotemporal GPS data and zone classifications, we extracted the following

features

• Time in Zone: Measures the dwell time spent in each labeled zone (Safe, Warning,

Danger) to assess prolonged presence in risk-prone areas.

• Speed and Acceleration: Computed between each GPS timestamp to detect

abnormal movements such as sudden bursts or halts.

• Zone Transition Count: Captures the number of times a patient switches be-

tween different zones, which may indicate restlessness or aimless wandering.

• Path Entropy: Quantifies the randomness of the walking path. Higher entropy is

associated with disoriented or aimless movement patterns.

• Direction Deviation: Measures sudden changes in walking direction, which may

signify confusion or erratic behavior.
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• Time of Day: Includes temporal context since wandering behavior is more preva-

lent during late hours due to sundowning effects in dementia.

These features were normalized and structured into sliding time windows (e.g., 10-

minute sequences) to capture temporal movement dynamics for further analysis and

model training.

3.5.6 LSTM-Based Personalized Machine Learning for Wandering Predic-

tion

To address the task of predicting wandering behavior in dementia patients, we developed

a Long Short-Term Memory (LSTM) based model that processes real-time movement

data to predict the patient’s next location. LSTM networks are particularly well-suited

for this task because they can capture long-term temporal dependencies, remember se-

quential patterns over time, and handle irregular time gaps in the input data — prop-

erties that are crucial when modeling real-world GPS trajectories where movement is

not uniform. Traditional machine learning models like Random Forests, Support Vector

Machines (SVM), and even basic feedforward neural networks were considered. However,

these models generally assume independent samples and lack the capability to model tem-

poral sequences effectively. In contrast, LSTM networks are explicitly designed to learn

from ordered data, making them more appropriate for forecasting future positions based

on historical movement patterns. Therefore, we prioritized LSTM over conventional mod-

els to better capture the evolving wandering behaviors of dementia patients and enable

real-time, adaptive prediction of location Khaertdinov, Semerci, and Asteriadis, 2021.

The LSTM model was constructed with the following architecture:

1 from tensorflow.keras.models import Sequential

2 from tensorflow.keras.layers import LSTM , Dense , Dropout , Bidirectional

, LayerNormalization

3

4 model = Sequential ([

5 Bidirectional(LSTM(64, return_sequences=True), input_shape =(

sequence_length , len(features))),

6 LayerNormalization (),

7 Dropout (0.3),

8
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9 Bidirectional(LSTM(64, return_sequences=False)),

10 LayerNormalization (),

11 Dropout (0.3),

12

13 Dense(32, activation=’relu’),

14 Dense (2) # Latitude , Longitude

15 ])

16

17 model.compile(optimizer="adam", loss="mse")

18 model.summary ()

Listing 5: LSTM model construction

The model architecture consists of several layers. Initially, a Bidirectional LSTM layer

with 64 units processes the sequential data, capturing both past and future context. Bidi-

rectional LSTMs are important for understanding movement patterns where the future

behavior may depend on both previous and subsequent data points. The output from

the first LSTM layer is passed to a LayerNormalization layer to stabilize activations and

a Dropout layer to prevent overfitting by randomly dropping neurons during training. A

second Bidirectional LSTM layer, also with 64 units, processes the sequence and outputs

the final prediction. This layer does not return sequences, as the task is to predict a

single output for each sequence. After the LSTM layers, the model includes a Dense

layer with 32 units and ReLU activation to learn more complex relationships between the

hidden states, followed by a final Dense layer with 2 units to predict the next latitude

and longitude.

The model is compiled with the Adam optimizer, which adapts the learning rate

based on the model’s performance during training, and Mean Squared Error (MSE) as

the loss function, as the task involves predicting continuous values. The model is designed

to be trained on real-time data, using past sequences of the patient’s movements to

predict future coordinates. By learning typical movement patterns, the model can detect

deviations, which may indicate wandering behavior.

The use of Bidirectional LSTM layers enables the model to incorporate both past

and future context when making predictions, which is crucial for detecting wandering

patterns where the patient may move in unexpected ways. LayerNormalization improves

the efficiency of training by stabilizing activations, while Dropout prevents the model from
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overfitting to the training data, ensuring it generalizes well to new, unseen movement

data. The ReLU activation function introduces non-linearity into the model, which is

necessary for capturing complex relationships in the data. Finally, the choice of the

Adam optimizer accelerates the training process by adapting the learning rate based on

the model’s performance, ensuring efficient convergence.

This model is specifically designed to handle real-time data, continuously updating

as new movement information becomes available, and provides real-time predictions of a

patient’s future location, helping to detect wandering behavior promptly and effectively.

3.6 Web Application

For the prototype web application created with Node.js and the Express framework to

handle data packets transmitted from a LoRa home device. The web application inter-

faces with a PostgreSQL database that manages authentication and tracks patients using

the MAC addresses of their wearables. Following is the ER diagram of the database

(Figure 16). The database schema consists of three main tables: device, location, and

profile. The ‘device‘ table stores information about all registered devices in the systems,

including a unique MAC address, a human-readable name, the last known GPS location

(as a geography point), the device type (such as an end device or a gateway), the current

status, and the last time the device was active. The location table records location events

of devices, including a unique location ID (generated using UUID), the MAC address of

the source device being tracked, the location point, the MAC address of the detecting

gateway device, and the time of the record. Both MAC addresses in this table reference

the device table and are set to NULL if the associated device is deleted. The profile table

holds user information such as username, display name, password, telephone number,

and links each user to both an end device and a gateway device via foreign keys to the

device table.
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Figure 16: ER Diagram

The prototype web application contains a login page and the dashboard page which

includes a map interface developed for monitoring the real-time location of dementia

patients. Every dementia patient using the system is equipped with wearable devices

and home devices, each uniquely registered with its MAC address. Once the login is

successful, the dashboard of the web application displays the details of the devices based

on their current status and location (Figure 17). Caregivers of dementia patients can

log into the web application at any time with their credentials to access the patient’s

information (Figure 18).
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Figure 17: Login Page of the Application

Figure 18: Dashboard of the Application

3.7 Protocol for Multiple Home Devices

The system uses multiple home devices to ensure extensive coverage for wearable devices,

with industrial-grade home devices capable of covering distances between 600 meters to

1 kilometer within the patient’s neighborhood. Every home device is used to collect

positional data from wearable devices. When a wearable device connects or moves out of

the range of one home device, the system automatically identifies and connects to another

suitable home device within the network. This works similar to the handoff in cellular
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networks where mobile devices change their towers (Seshan, Balakrishnan, and Katz,

1997). Wearable devices periodically send out status (STS) messages to communicate

their connectivity over the LoRa medium. When a home device receives an STS message

from a wearable device, it registers the wearable device with the home device if the

home device is available to capture GPS data from it. The home device can collect

data packets from various wearable devices and may frequently collect GPS location

information. This will increase the internet bandwidth consumed by the home devices

and needs to be balanced between other home devices. To improve the connectivity and

internet bandwidth usage, we introduce a routing protocol to provide a static route in a

broadcast LoRa network.

When a wearable device comes online, it sends STS messages to nearby home devices.

All the home devices within the range of wearable will receive this message since LoRa

operates in a broadcast manner (Figure 19).

Figure 19: Initial connection process of wearable device

The STS data packet contains the source MAC address and a list of MAC addresses

of intermediate home devices, which are added as a stack data structure. This stack data
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structure is used to send an ACK message back to the wearable after registration with

the web application. When an STS data packet is broadcasted by an intermediate node,

the MAC addresses of the intermediate home device will be added to the stack, and the

TTL (Time to Live) value will be reduced by one.

Figure 20: Example STS message broadcasted by two home devices

Figure 21: Example ACK message broadcasted by registered home device

If the home device is occupied or locked with multiple wearable devices, it sends out an

STS message to nearby home devices.Once the STS message is received by the available

home device, it sends an HTTP request to the web application to lock the wearable device

to that home device. After the wearable device is locked, other home devices will not

process the STS/GPS data from that wearable device, as it is confined to a specific route

in the LoRa network (Figure 27).

Figure 22: Broadcasting STS message to connect available home device
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Once a home device is locked with a wearable device, an acknowledgment (ACK)

message will be sent to both the wearable device and the intermediate home devices along

the communication path. This message updates their broadcast table and capture table.

Each home device in the network maintains two tables: a capture table and a broadcast

table. Capture a table to maintain a list of MAC addresses of wearable devices to capture

data packets from given home device and send them to the web application. At a given

time, only one home device will be registered with a specific wearable device, which

eliminates duplicates of the same data packet sent to the web application by multiple

home devices. The broadcast table is similar to the capture table, where the MAC

address of the wearable device and a specific TTL value are stored. Home devices will

only broadcast the message if the data packets match the source MAC address and the

TTL value provided in the broadcast table. Using this algorithm, we can minimize the

frequent broadcasting that happens in the LoRa network and provide network-wide load

balance (Figure 23).

MAC Address TTL value

12:34:56:78:9A:BC 3

FE:DC:BA:98:76:54 2

01:23:45:67:89:AB 4

Table 4: Example capture table

MAC Address TTL value

00:1A:2B:3C:4D:5E 3

11:22:33:44:55:66 1

AA:BB:CC:DD:EE:FF 5

Table 5: Example broadcast table
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Figure 23: Routing the GPS messages

1 function handleMessage(message):

2 if (message.type == "STS" and message.hop_counter > 0){

3 if homedevice.status == BUSY{

4 decrement hop counter by 1

5 message.mac_stack.add(homedevice.mac)

6 broadcast message

7 }else{

8 bool reg = register(message.source_mac , homedevice.mac)

9

10 if reg == True{

11 send ACK message

12 capture_table.add(messagemac_stack.top(), message.

hop_counter):

13 }else{

14 drop message

15 }

16 }

17 }else if (message.type == "ACK" and message.mac_stack.top() ==

homedevice.mac){

18 broadcast_table.add(message.mac_stack.top(), message.

hop_counter):

19 message.mac_stack.pop()

20 increment hop counter by 1

21 broadcast message

22 }else if( message.hop_counter > 0){

23 if capture_table.contains(message.source_mac , message.

hop_counter){

24 send message to web application
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25 }else if (broadcast_table.contains(message.source_mac , message.

hop_counter)){

26 decrement hop counter by 1

27 broadcast message

28 }else{

29 drop message

30 }

31 } else {

32 drop message

33 }

34 }

Listing 6: Home device algorithm

3.8 Multisensor-Based Off-Body Detection

This research adopts a multisensor based detection mechanism to precisely detect the

wearing or removing of the wearable. The system combines three different types of sen-

sors: capacitive touch sensor (TTP223), a photoplethysmography (PPG) sensor (MAX30101),

and an inertial measurement unit (IMU) sensor (MPU6050). The different data streams

from each sensor when combined allow reliable context aware inference of the device’s

condition. This is due to fusion ofsensors that improves the weaknesses of single sensors,

making the overall results accurate and frequent in a wide range of situations.

Figure 24: TTP223 capacitive touch sensor
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Changes in capacitance that indicate contact or closeness are used by the TTP224

capacitive touch sensor to detect the presence of a human body. It acts as the initial

line of detection when determining if gadget is in direct contact with the skin. Since it

reacts rapidly and uses less processing power this sensor can be appropriate for real-time

monitoring. However by itself it can be prone to inaccurate results as it may sense touch

when placed near conductive materials such as metal surfaces or when exposed to high

humidity. Furthermore it’s accuracy is limited when used alone due to it’s inability to

distinguish between human skin and other conductive materials.

Figure 25: MAX30102 bioimpedance sensor

The MAX30101 bioimpedance sensor, uses photoplethysmograpghy to measure psy-

chological signals and is frequently used for heart rate and SpO2 monitoring. It shines

light onto the skin and measures the change in reflected light brought by variations in

blood volume. When it comes in contact with the human skin the device records a steady

pulse waveform. Due to this it is quite good at confirming true human contact differ-

entiating between actual skin and artifical conductive surfaces. Although it’s accuracy

the MAX30101 has drawbacks. It is very sensitive to motion artifacts, ambient light

interference and skin elements like dryness or hair, which may distort or inhibit readings.

It also needs stable and secure skin contact to produce clear signals.
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Figure 26: MPU6050 sensor

The MPU6050 sensor consists of a three-axis gyroscope along with a three-axis ac-

celerometer, which enables the sensor to output data regarding motion, orientation, and

acceleration. The sensor was crucial in determining whether the device is stationary or

in motion, thereby enabling the detection if a user is active, resting, or if the device has

been removed and kept somewhere else. For example, motionless posture combined with

lack of contact gives a hint of removal, while similar quiescence when touch and heartbeat

are continuously active suggests that the user is merely resting. The IMU sensor cannot

confirm by itself the existence of contact with the skin and may incorrectly interpret an

idle device placed in a bag or on a tabletop as being worn.

The system detects Off body events with greater accuracy by integrating the outputs

of all three sensors. The specific faults of each sensor are minimized by the sensor fusion

technique which also allows to comprehend the context and surroundings of the device

more thoroughly. The system can be certain if for example the motion sensor reports no

activity, the heart rate sensor does not detect a pulse and the capacitive touch sensor

indicates loss of contact. On the other hand the gadget is verified to be worn and in use if

the PPG and touch sensors both display accurate data and the IMU pickups up activity.

Rule based logic is used to achieve this multisenor technique which can subsequently

be extended to include machine learning for more dynamic and adaptive detection. If

none of the sensors detect any movement, contact, or phsychological data, the device

might be categorized as removed according to a standard logical framework. In spite of

motion the device is considered worn if touch and phsychological data are present. The

terms ”uncertain” or ”needs verification” are used to describe circumstances where only
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one or two sensors produce contradicting data. This can be lead to a result in a prompt

for user confirmation or additional monitoring.

Take the rule-based logical framework as an example. Physical touch is monitored by

the TTP223 device. However the technology cross-verifies using motion and biometric

data, because it is unable to differentiate between skin and other materials. Body move-

ment is tracked by the MPU6050. Removal is suspected when the motion data shows the

gadget has switched from active movement to immobility and the touch sensor detects

lack of contact or unchanging input. Lastly, the MAX30102 detects the pulse of a human.

Within a predetermined window, the system verifies that the device is no longer worn if

no valid heartbeat is detected.

Figure 27: Off-Body Detect alert web notification

The three sensors work together to provide a number of significant benefits. By in-

creasing redundancy it ensure that the system keep functioning even in the event that

one sensor fails. Additionally it improves context awareness which enables the device to

distinguish between subtle situations like a user napping, the device being worn loosely

or it being carried in a bag. Furthermore the multisensor approach improves the reliabil-

ity of alarms provided to the caregivers or monitoring systems and dramatically lowers

possibility of false positives.

The ESP32 microcontroller processes all sensor data in real time which reads the

inputs, executes the detection logic and sends outcome via LoRa to a remote monitoring

system. An instant alert is sent out if the sensor fusion logic determines that the device

46



has been taken out of the user’s body. Through the embedded GSM/Internet module that

is linked to the central server the caregivers will be automatically notified by SMS. If the

person may be in danger the caregivers can act quickly because of this SMS which acts

as an urgent real time alert. At the same time the event is recorded and shown on webs

based monitoring platform for the project which provides the exact GPS coordinates of

the site where the removal of the device took place. In order to give caretakers or medical

personnel a visual reference to react promptly, the system marks the location on live map

interface using the last known position from the LoRa transmitted GPS data. Both real

time response and historical tracking of removal events for additional behavioral analysis

or emergency intervention are guaranteed by this alert system which consists of SMS and

web notifications.

Touch (TTP223) Pulse (MAX30101) Motion (MPU6050) Inference Test Scenario Description

Detected Pulse present Active Device is securely worn
and in use

User is walking, moving hand, or
performing daily activities while
wearing the device properly.

Detected Pulse present Idle Device is worn, user is
at rest

User is sitting or sleeping while the
device is snug on the wrist or arm,
generating pulse and touch data
with no movement.

Not Detected No pulse Idle Device is removed Device is placed on a table or shelf
where it is motionless and not in
contact with the skin.

Not Detected No pulse Active Device removed but
moving (e.g., bag)

Device is carried in a bag or ve-
hicle—detecting movement but no
skin contact or pulse.

Detected No pulse Idle Device may be loosely
worn or obstructed

Device is loosely worn or shifted
(e.g., worn over clothing or tilted),
causing improper skin contact and
loss of pulse signal while still reg-
istering touch.

Not Detected Pulse only Idle Inconsistent state –
verify contact

The sensor is manually triggered
under a controlled condition (e.g.,
fingertip lightly pressed to PPG
sensor without full skin contact
over touch pad) to simulate a bor-
derline/uncertain state. Useful for
anomaly detection testing.

Table 6: Off-Body Detection Scenarios Based on Sensor Fusion

In conclusion, a strong and contextually aware off body detection method is produced

by combining the TTP223 capacitive touch sensor, MAX30101 bioimpedance sensor and

MPU6050 IMU sensor. By combining phsychological,physical, and motion based data

the system correctly detects whether the device is securely worn or has been withdrawn.

The constraints of each sensor are minimized by this multisenor fusion technique which

enables precise detection in a range of real world situations such as movement, rest,
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loose,contact, or intentional removal. When the system detects a device removal event it

instantly notifies the authorised caregiver via SMS and updates the web based monitoring

dashboard with the device’s last known GPS location and visual notification. This dual

alert method promotes safety and situational awareness enabling cargivers to respond

quickly and effectively to any wandering episodes or crises. This implementation is a

crucial component of assistive wearable technology for dementia care and vulnerable user

monitoring because it combines dependable sensor input, clever fusion logic and real time

warning systems.
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4 The Results and Analysis

4.1 LoRa Wearable with Single Home Device

The experimental setup consists of a home device prototype and a wearable device pro-

totype, both deployed in the UCSC ground area for conducting the experiment. Here are

the tracking details displayed on the dashboard of the web application.

Figure 28: Experiment - Web application interface - 1

Figure 29: Experiment - Web application interface - 2
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Figure 30: Experiment - Web application interface - 3

Figure 31: Experiment - Web application interface - 4

50



Figure 32: Experiment - Web application interface - 5

Figure 33: Experiment - Web application interface - 6

51



Figure 34: Experiment - Web application interface - 7

1 messageType ,nodeType ,sourceMAC ,gpsStatus ,rawData ,utcTimestamp ,latNS ,

↪→ latVal ,longWE ,longVal ,beReceivedTime

2 STS ,END ,ce:3c:da :77:38:e2 ,1,STSENDce :3c:da :77:38: e2GPS1

↪→ , , , , , ,1744106660289

3 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901756 E79 .861694

↪→ TM1744106653 ,1744106653 ,N ,6.901756 ,E ,79.861694 ,1744106665690

4 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901756 E79 .861694

↪→ TM1744106653 ,1744106653 ,N ,6.901756 ,E ,79.861694 ,1744106671269

5 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901790 E79 .861755

↪→ TM1744106667 ,1744106667 ,N ,6.901790 ,E ,79.861755 ,1744106676953

6 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901793 E79 .861755

↪→ TM1744106673 ,1744106673 ,N ,6.901793 ,E ,79.861755 ,1744106682486

7 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901793 E79 .861755

↪→ TM1744106673 ,1744106673 ,N ,6.901793 ,E ,79.861755 ,1744106688099

8 STS ,END ,ce:3c:da :77:38:e2 ,1,STSENDce :3c:da :77:38: e2GPS1

↪→ , , , , , ,1744106691324

9 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901786 E79 .861778

↪→ TM1744106684 ,1744106684 ,N ,6.901786 ,E ,79.861778 ,1744106696678

10 GPS ,END ,ce:3c:da :77:38:e2 ,,GPSce:3c:da :77:38: e2N6 .901786 E79 .861778

↪→ TM1744106684 ,1744106684 ,N ,6.901786 ,E ,79.861778 ,1744106702292

Listing 7: Message Data
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1 Statistics for duration_s:

2 count 82.000000

3 mean 2.470841

4 std 1.168260

5 min 1.069000

6 25% 1.797750

7 50% 2.092000

8 75% 2.385250

9 max 6.509000

10 Name: duration_s , dtype: float64

11

12 Mean Duration (in seconds): 2.4708414658414637

13 Standard Deviation of Duration (in seconds): 1.1682600686762479

14 Earliest Duration (in seconds): 1.069000006

15 Latest Duration (in seconds): 6.509000063

Listing 8: Packet delivery time statistics

From the test scenario, 82 data entries were collected using GPS location, GPS-

generated time (utcTimestamp), and received timestamp(beReceivedTime) from the web

server after being transmitted and processed by the gateway through the LoRa medium.

According to the pre-processed data, the average latency for a data packet is 2.470841

seconds(above listing), and the system can provide the location of the dementia every

2.5 seconds. This latency can be improved by using better LoRa hardware modules,

antennas, and the physical location of the home device.

4.2 Dynamic Geo-fencing Using ML

To show how well the geofencing and zone classification system works, several images are

used based on real GPS data. These images show both fixed zones and how the patient

moves in real time. In the maps, red areas mean danger zones, yellow areas are warning

zones, and green areas are safe zones. These zones are based on land type, terrain, and

past behavior. The model’s predictions about possible wandering are shown in purple

shapes, which highlight areas where wandering might happen. The patient’s movement

path is also shown using colored lines—red, yellow, or blue—based on how risky each part

of the path is. Together, these visual elements help caregivers and researchers understand
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where it is safe or dangerous for the patient and how well the system predicts wandering

behavior.

4.2.1 Experiment 1: Urban Zone with Dense Buildings

1 Timestamp ,Latitude ,Longitude

2 09:00:00+00:00 ,6.90154 ,79.86054

3 09:00:01+00:00 ,6.90154 ,79.86056

4 09:00:02+00:00 ,6.90156 ,79.8606

5 09:00:03+00:00 ,6.90158 ,79.86064

6 09:00:04+00:00 ,6.9016 ,79.86067

Listing 9: Pre-processed data head - Experiment 1

Figure 35: Experiment 1- Zone Classification
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Figure 36: Experiment 1- Wandering Zone Prediction

Figure 37: Experiment 1- Evaluation MSE: 0.0467

The predicted coordinates closely match the actual ground truth path, with minimal

deviations at sharp turns or signal bounce zones. The error level is acceptable for real-

time zone classification and indicates high spatial accuracy.

4.2.2 Experiment 2: Suburban Region near Kandy – Low Movement Vari-

ance

1 Timestamp ,Latitude ,Longitude
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2 09:00:00+00:00 ,7.29736 ,80.65048

3 09:00:01+00:00 ,7.29749 ,80.65043

4 09:00:02+00:00 ,7.29761 ,80.65037

5 09:00:03+00:00 ,7.29763 ,80.65036

6 09:00:04+00:00 ,7.29765 ,80.65036

Listing 10: Pre-processed data head - Experiment 2

Figure 38: Experiment 2- Zone Classification

56



Figure 39: Experiment 2- Wandering Zone Prediction

Figure 40: Experiment 2- Evaluation MSE: 0.0189

The model achieved very low error, indicating that in semi-urban or suburban regions

like those surrounding Kandy, GPS signals tend to be more stable and easier to learn by

the model. The path is mostly linear with slight displacement, resulting in high prediction

accuracy. The terrain and lesser signal interference likely contributed to the low MSE.

4.2.3 Experiment 3: Riverbank Area near Kandy – Low-Labeled Terrain

1 Timestamp ,Latitude ,Longitude
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2 09:00:00+00:00 ,7.27409 ,80.71298

3 09:00:01+00:00 ,7.27394 ,80.71309

4 09:00:02+00:00 ,7.27393 ,80.71309

5 09:00:03+00:00 ,7.27362 ,80.7133

6 09:00:04+00:00 ,7.27351 ,80.71339

Listing 11: Pre-processed data head - Experiment 3

Figure 41: Experiment 3- Zone Classification
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Figure 42: Experiment 3- Wandering Zone Prediction

Figure 43: Experiment 3- Evaluation MSE: 0.0263

The model performed with a moderate level of accuracy, as reflected by the MSE.

The slight increase in error compared to suburban tests is likely due to the low density

of labeled features in this riverbank area, which may reduce the contextual information

available to the model. Nonetheless, the path is relatively smooth and consistent, enabling

the model to still perform well.
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4.2.4 Experiment 4: Nuwara Eliya Golf Club – Familiar Movement Pattern

in a Labeled Danger Zone

1 Timestamp ,Latitude ,Longitude

2 09:00:00+00:00 ,6.97396 ,80.76707

3 09:00:01+00:00 ,6.97407 ,80.76698

4 09:00:02+00:00 ,6.9741 ,80.76695

5 09:00:03+00:00 ,6.97419 ,80.76688

6 09:00:04+00:00 ,6.97424 ,80.76683

Listing 12: Pre-processed data head - Experiment 4

Figure 44: Experiment 4- Zone Classification
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Figure 45: Experiment 4- Wandering Zone Prediction

Figure 46: Experiment 4- Evaluation MSE: 0.0382

Despite being labeled as a danger zone, the patient’s movement pattern did not ex-

hibit typical signs of wandering. Instead, the movement was smooth, forward-directed,

and time-bound, suggesting deliberate navigation rather than aimless roaming. This

may reflect the patient’s previous experience or comfort with the golf club environment,

possibly indicating habitual or recreational use (e.g., golfing).

The model’s zone misclassification (from Red to Yellow) is semantically reasonable,

as the patient’s behavior does not match typical risk patterns, despite the location label.
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This implies that behavioral context is as important as geospatial context, especially for

adaptive geofencing.

4.2.5 Experiment 5: Rambakan Oya Forest Reservoir – High-Risk Zone with

No Path

1 Timestamp ,Latitude ,Longitude

2 09:00:00+00:00 ,7.31104 ,81.39261

3 09:00:01+00:00 ,7.31099 ,81.39267

4 09:00:02+00:00 ,7.31081 ,81.39292

5 09:00:03+00:00 ,7.31144 ,81.39317

6 09:00:04+00:00 ,7.3115 ,81.39321

Listing 13: Pre-processed data head - Experiment 5

Figure 47: Experiment 5- Zone Classification

The model correctly did not attempt to classify any sub-region as Warning or Safe,

reflecting an appropriate risk-averse behavior. The area was fully flagged as dangerous in

both ground truth and prediction, showing that the system can prioritize patient safety in

clearly hazardous zones. This reinforces the model’s reliability in unfamiliar and high-risk

terrains, where any movement should trigger immediate alerts.
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4.2.6 Experiment 6: Hambantota Coastal Area – Noise Handling and Accu-

rate Wandering Detection

This test is conducted along the Hambantota coastal region, where proximity to large

water bodies often introduces GPS drift and location noise. Despite this, the model

effectively identified the actual wandering behavior along a nearby residential path, rather

than falsely interpreting erratic GPS points near the water as significant.

1 Timestamp ,Latitude ,Longitude

2 09:00:00+00:00 ,6.16415 ,81.13097

3 09:00:01+00:00 ,6.16415 ,81.13084

4 09:00:02+00:00 ,6.16414 ,81.13016

5 09:00:03+00:00 ,6.16415 ,81.1296

6 09:00:04+00:00 ,6.16395 ,81.1296

Listing 14: Pre-processed data head - Experiment 6

Figure 48: Experiment 6- Zone Classification
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Figure 49: Experiment 6- Wandering Zone Prediction

Figure 50: Experiment 6- Evaluation MSE: 0.184

The relatively higher MSE indicates that while the model captured the general wan-

dering behavior, the noisy GPS data from coastal reflection or drift led to misclassification

of certain points. This highlights a limitation in handling continuous GPS distortion in

open, reflective environments.
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4.2.7 Critical Analysis of Dynamic Geo-fencing

The experimental evaluations conducted across geographically and semantically diverse

locations—such as the Kandy riverbank, Nuwara Eliya golf club, Rambakan Oya forest

reserve, and Hambantota coastal belt—provide a multi-faceted lens through which the

system’s current strengths and deficiencies are revealed. The machine learning-based

geofencing approach, driven by GPS trajectory inputs and spatial metadata (e.g., terrain

and land-use types), showed commendable ability in learning spatial behavior patterns

rather than relying on static spatial labels. For instance, despite the Nuwara Eliya golf

club being labeled as a “danger” zone in the static database, the system learned from

sequential GPS data that the movement was routine and bounded, which was reflected

in a lower predicted threat level (yellow zone). This reflects an important feature: the

model learns from behavior over space, not from static classification, offering contextual

intelligence in decision-making.

Additionally, the mean squared error (MSE) across tests remained low in areas with

well-defined movement patterns (e.g., near residential roads in Hambantota or through

known village paths in Kandy), showcasing the model’s competence in trajectory fitting

and spatial generalization. However, in less structured environments such as Rambakan

Oya forest reserve—where no meaningful trajectory pattern exists—the model rightly

identifies the region as entirely dangerous, demonstrating the model’s ability to generalize

high-risk areas when behavioral data is absent or non-interpretable. That said, this

conservative fallback might limit utility in nuanced wilderness tracking, where portions

of the area could be relatively safer but are uniformly flagged due to data sparsity.

On the downside, there were several technical bottlenecks. First, GPS noise and

sampling gaps in open environments (coastal areas, large fields) introduced trajectory

artifacts, leading to increased MSE in some scenarios (e.g., 0.184 in the Hambantota

test). This underscores the need for Kalman filtering, dead reckoning, or spatio-temporal

smoothing techniques to better estimate true movement paths. Second, the lack of tem-

poral modeling is evident: patients moving at different times of day or under different

activity contexts (e.g., exercise, wandering, leisure) are not differentiated. This severely

limits the model’s behavioral context awareness, especially in recurring-use zones like golf

clubs. Integrating time-windowed modeling (using LSTM or Transformer-based sequence

learning) would allow the system to build richer embeddings of ”routine vs anomalous”
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behavior over time.

Furthermore, the model currently treats all terrain classes equally in behavioral model-

ing, even though terrains (e.g., forest, water, commercial areas) have asymmetric risk im-

plications. In future iterations, introducing risk-weighted terrain encoding, multi-modal

sensor fusion (e.g., movement from accelerometer, heart rate anomalies), and personal

behavior profiling (e.g., known safe patterns for the patient) would significantly improve

prediction robustness. Additionally, the model could benefit from adaptive zoning, where

zones are dynamically adjusted based on recent behavior history and environmental con-

ditions (e.g., weather, local events).

In summary, while the current implementation demonstrates strong foundational ca-

pabilities in spatial movement interpretation, its evolution demands attention to signal

robustness, temporal intelligence, and behavioral personalization. Such enhancements

will not only improve precision but also elevate the clinical utility and caregiver trust in

the system for real-time dementia patient monitoring and intervention.

4.3 Multisensor-Based Off-Body Detection

4.3.1 Using TTP223 capacitive touch sensor

During the controlled testing the TTP223 capacitive touch sensor showed excellent sensi-

tivity in identifying direct skin contact. Eventhough there was a small distance of 2 mm

between the sensor and the skin, it reliably and precisely registered touch which proved

its ability to record both firm and gentle touch inputs. However the sensor demonstrated

a notable tendency for false positive throughout prolonged testing across a range of real

world materials and surfaces. The sensor frequently misidentified objects like metals,

plastic or wood as legitimate touch events when the device was placed on them. Simi-

larly the sensor continued to record touch events even when it was covered with materials

like cloth or glass and then touched by a hand or object.
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Figure 51: TTP223 Touch Test

These findings suggest that although the TTP223 is highly effective at instantly iden-

tifying skin like touch it is not able to discriminate between conductive or semi conductive

non skin materials and real skin. It is unreliable as a stand alone sensor for off body de-

tection because of its restrictions. Consequently it is clear that this sensor needs to be

combined with other methods like motion sensing or bioimpedance in order to correctly

detect real skin contact and ascertain if the device is being worn or taken off.

4.3.2 Using MPU6050 Motion Sensor

When the gadget was worn the MPU6050 motion sensor successfully recorded quite mo-

tion patterns. The sensor displayed constant and dynamic changes in acceleration and

orientation when being used actively such as when walking moving hands or moving the

body in general. Due to physiological micro movements it is continued to register slight

variations even when it was in low activity states such as sleeping or sitting motionless.

But there was also a detectable level of noise in the raw sensor data particularly in static

or low motion situations. This was fixed by adding a motion detection threshold to the

accelerometer’s X, Y, and Z axes. The threshold was adjusted to remove noise and better

capture real motion through a series of tests involving movements in various directions

and speeds. With the use of this threshold mechanism detection was greatly enhanced

enabling the system to reliably detect movements and accurately determine when the

gadget became stationary.
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Figure 52: Acceleration Plot

Figure 53: Acceleration Gyroscope value

These findings demonstrate how well the MPU6050 detects if the device is being

worn actively as opposed to being taken off or left unattended. The accelerometer and

gyroscope readings stabilised, indicating a static state when the gadget was taken out

and set on a table or other surfaces. The sensor only detected short erratic bursts of

motion if the gadget was in a pocket or bag without being worn; it did not detect the

steady movement profile that a worn device would have. This will cause the person to

continue carrying the device or to dress without wearing it. One important factor in

lowering false positives brought on by sensor noise was the threshold mechanism. Taken

into account even if MPU6050 by itself cannot verify skin contact, it provides vital motion

based indications like orientation changes and motion cessation that when paired with

information from the capacitive and bioimpedance sensors, allow for a dependable and

complete off body detection system.

4.3.3 Using MAX30102 bioimpedance sensor

When the MAX30102 optical sensor was pressed firmly against human skin, it was able to

generate reliable and consistent photoplethysmographic (PPG) waveforms. It was able

to capture rhythmic signal patterns that closely mirrored the user’s pulse while being
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tested on the wrists and fingertips, which indicated that the presence of living tissue. It’s

interesting to note that some infrared values persisted even when the sensor was not in

contact with the skin or was lying on materials like wood, plastic, or metal. However,

the periodic, pulse-like waveform observed during real human touch was absent from

these observations. Rather, they exhibited a lack of biological rhythm and flat or uneven

patterns. As a result, human skin contact can be differentiated from false positives by

examining the IR signal’s pattern and structure rather than just its existence.

Figure 54: Finger Tip Touch

Figure 55: Metal Surface Touch

Figure 56: Plastic Surface Touch
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One of the MAX30102’s main advantages is its ability to distinguish between legit-

imate human interaction and object interference. No non-living surface can completely

reproduce the biological reflectance qualities that the sensor uses. The dynamic, pulsat-

ing waveform that is specific to blood flow is not produced by metal or plastic, despite

the fact that they may reflect infrared light and produce some raw data. This enables

the detection of real human presence not only by signal strength but also by waveform

features. However, if the contact is too loose or blocked by clothing, the PPG signal may

deteriorate or vanish, impairing the accuracy of the sensor. Therefore, when it comes to

confirming human skin contact, the MAX30102 is quite trustworthy.

4.3.4 Using All three sensor

By examining touch continuity, motion patterns, and biometric data, the system can

precisely determine if the device has been withdrawn from the user’s body, regardless of

how firm or minimal the contact was, due to the combined logic of all three sensors.

Figure 57: Tightly touched device remove detection

Figure 58: Lightly touched device remove detection
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4.4 Device Placement Based on Sensor Performance

The area of the body where the device is worn has a significant impact on how well

off-body detection and physiological monitoring utilizing the MAX30102 and MPU6050

sensors work. With an emphasis on the quality of the heart rate signal (IR value from

MAX30102) and movement patterns (acceleration in X, Y, Z axes from MPU6050), an

assessment was thus carried out to examine the performance of both sensors across various

body positions.

Wearables are frequently and conveniently placed on the wrist. According to tests, the

MAX30102 sensor provided reliable and accurate pulse waveforms along with powerful

infrared signals at the wrist. Both skin contact and heart rate were successfully detected

by the sensor. However, frequent hand movements, such eating, waving, or adjusting

clothes, caused the MPU6050 to provide high-magnitude acceleration values across all

axes. Although these data demonstrate strong motion sensitivity, they also add noise,

which raises the possibility of off-body detection erroneous triggers. As a result, the

wrist is ideal for tracking heart rate, albeit software may need motion filtering to increase

precision.

One of the finest locations for both sensors was the chest region. Because of its close-

ness to the heart and the lack of interference from significant movements, the MAX30102

generated steady infrared signals with a distinct heart rate pattern. Furthermore, the

MPU6050 consistently recorded low to moderate motion data, particularly when the in-

dividual was seated, walking, or changing between tasks. The chest region was shown

to be less susceptible to motion noise, which makes it a perfect place for both accurate

off-body detection and physiological monitoring.

Additionally, placement on the upper arm produced positive outcomes. Due to spo-

radic variances in skin contact, the MAX30102 IR signal was not as strong as the wrist

or chest, but it was still generally powerful. In comparison to the wrist, the MPU6050

recorded mild acceleration patterns that efficiently captured overall arm motion with less

noise. Because of this balance, the upper arm is a viable substitute location, particularly

if the chest region is uncomfortable or inaccessible for extended use.

On the other hand, the MPU6050 sensor performed exceptionally well in the waist and

hip areas. These points gave balanced, steady motion readings with distinct transitions

between walking and stillness because they are close to the body’s center of gravity.
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However, because of the thicker skin and lower capillary density in these areas, the

MAX30102 had trouble picking up strong infrared signals, and the pulse waveforms were

weak or irregular. Therefore, these locations are better suited for motion tracking than

for bio-signal monitoring.

Good motion sensitivity was offered by the ankle, particularly when walking. With

minimal noise, the MPU6050 recorded repeating and rhythmic acceleration patterns.

However, the ankle’s MAX30102 readings were feeble and wildly erratic, most likely as

a result of irregular sensor contact and restricted blood flow. Because of this, the ankle

works well for monitoring steps or analyzing overall movement, but not for precisely

detecting heart rate or human presence.

Lastly, the findings varied depending on whether the collar or neck was placed. Al-

though MAX30102 occasionally captured powerful infrared signals, movement or garment

interference frequently interfered with readings. The neck usually stays still when walking,

hence the MPU6050 also captured very little movement. This positioning is inconsistent

and could not be dependable for motion detection or heart rate monitoring.

In summary, the chest proves to be the most dependable and efficient place to affix

the device, providing excellent readings for both sensors. The wrist and upper arm are

good substitutes for the chest if it is not feasible, especially when signal processing is done

correctly. Although regions such as the waist or ankle provide precise motion tracking,

they are not advised as the main locations for off-body detection devices in dementia care

since they are less suited for physiological sensing
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5 Discussion and Conclusion

The main goal of using LoRa as a communication medium is to reduce costs for wearable

devices and to create devices that are more energy efficient compared to other communi-

cation mediums, including cellular. Even though the prototype LoRa module can cover

a radius of up to 300-400 meters, there are multiple physical factors that affect packet

delivery. The placement of the antenna and the power of the LoRa module are crucial

factors, especially when utilizing industrial-grade LoRa modules that can achieve a range

of up to 10 kilometers. According to the results of the experiments, data packet delivery

experiences a latency of about 1.5 to 2 seconds maximum, from the LoRa wearable de-

vice to the web application, with intermediate processing in the home device node. Given

the walking speed of elderly dementia patients, it’s better to monitor their movement in

neighborhoods and crowded areas. The wearable device is a cost-effective option, priced

at less than Rs. 7,000, while home devices are approximately Rs. 4,000. Compared to

other mediums, LoRa is energy-efficient, which makes it a good option for long-term use

without changing batteries.

With the proposed protocol, the coverage area can be extended in the future, since the

number of home devices is equal to the number of wearable devices, which helps provide

better performance in urban areas. The developed web application is user-friendly, and

caregivers can easily track their loved ones in real-time.

This research presents a machine learning-driven geofencing system capable of clas-

sifying spatial zones and predicting wandering behavior in dementia patients using GPS

movement data and regional geographic features. The integration of land use patterns,

terrain information, and sequential GPS traces enabled a dynamic approach to zone clas-

sification, moving beyond static radius-based geofencing. Experimental results conducted

across diverse terrains demonstrate the system’s capacity to distinguish between routine

and abnormal movement patterns.

The Mean Squared Error (MSE) observed across test cases remained within accept-

able thresholds, confirming that the model consistently predicts wandering behavior with

spatial accuracy. Notably, the system successfully identified typical behavioral patterns

in familiar regions such as golf clubs or residential areas, while raising warnings in less

safe environments such as forest reserves or isolated coastal paths. These results highlight

both the sensitivity and contextual adaptability of the model.
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However, certain limitations emerged. The accuracy of predictions is partially con-

strained by the granularity of shapefile data and the quality of GPS inputs. Noise in

data, such as jitter or inaccurate GPS sampling, can occasionally lead to misclassifica-

tions, especially in transitional zones between terrain types. Additionally, the current

model is based on generalized behavior, which may not capture the nuances of individual

patient routines.

Advanced tracking, real-time monitoring, and alert systems are essential components

of wearables for dementia care, but their efficacy depends solely on the patient actually

wearing the device. All monitoring features stop working if the wearable is taken off,

whether on purpose or by mistake, which could endanger the patient. The dependability

of current systems is severely constrained by this difficulty, particularly in unsupervised

settings.

This crucial deficiency is directly filled by integrating a strong off-body detecting

method. The system continuously confirms that the gadget is in physical contact with

the patient by integrating biometric verification, motion tracking, and capacitive touch

sensing. This function boosts caregiver confidence in addition to improving the system’s

safety and dependability. Caregivers can give dementia patients greater freedom and

movement because they know the device will alert them automatically if it is removed

or not working as intended. This makes the caregiving atmosphere more empathetic,

lessens the burden of constant supervision, and gives caregivers the confidence to trust

the technology.
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6 Future Directions

The prototype and experiments conducted using the LoRa Ra-02 SX1278, which is a

basic LoRa module available on the market, and using improved industrial-grade LoRa

modules, will improve the latency and coverage of the devices. Developing a custom

PCB board will drastically reduce the size of the wearable device and can be customized

for different types of wearable devices, including watches, belts, and attachments to

patient care equipment like walkers. Wearable devices and home devices can be further

extended to track the indoor movements of dementia patients, which can be used to

detect emergency situations.

Home devices can further extend to include voice assistance, such as Amazon Alexa

or Google Assistant, to provide conversational-based monitoring of patients in indoor

situations, helping them with day-to-day activities.

To further improve the reliability and contextual intelligence of the proposed geofenc-

ing and zone classification system, future work can focus on personalized behavioral mod-

eling. By maintaining a temporal history of each patient’s unique movement habits—such

as preferred routes, daily routines, or seasonal behavior shifts—the system can shift from

generalized risk detection to individualized anomaly detection. Incorporating sequence

modeling techniques like Transformer-based architectures could allow the system to learn

long-term dependencies in a patient’s movement and better detect deviations from their

norm.

In addition, spatiotemporal risk fusion can be introduced, where zone classification

is enriched by combining terrain data with live environmental feeds—such as weather

conditions, event-based crowd data, or traffic reports. This could be particularly useful

for distinguishing between static geographic risks and temporary situational hazards (e.g.,

a road under construction or a sudden flood risk). Integrating such real-time feeds can

make the system more adaptive to real-world changes.

Another powerful direction involves semi-supervised learning for zone boundary re-

finement. Many regions, especially rural or forested areas, lack high-quality labeled data

for training. By using a small set of expert-verified zones and large volumes of unlabeled

movement traces, the model can self-improve using cluster-based or contrastive learning

approaches, allowing for scalable deployment in new geographic regions with minimal

manual labeling effort.
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Lastly, incorporating a caregiver feedback loop—where manual corrections or obser-

vations from caregivers are used to update or fine-tune model predictions—can turn the

system into a continuously learning platform. This human-in-the-loop architecture would

not only enhance accuracy over time but also build trust and transparency in real-world

caregiving environments.

Machine Learning-Based Sensor Fusion is one of the upcoming improvements for the

off-body detection system. The system currently uses rule-based logic, but in order to

better fuse sensor data, machine learning methods like neural networks or decision trees

could be useful. In addition to forecasting possible health hazards based on continu-

ous sensor data, this would enable the system to learn from real-world usage, adjust to

individual behaviors, and decrease false positives or negatives.

Another area that needs work is adaptive threshold calibration. Sensor accuracy can

be impacted by variables such skin type, environment, and device positioning. Dynamic

thresholding would allow the system to adapt its sensitivity over time to preserve accuracy

while taking the user’s body or surroundings into consideration. The system can be

improved even more by integrating health monitoring. The device may provide continuous

health monitoring by measuring temperature, heart rate, and SpO2. It can also notify

caregivers of any significant changes, including a sudden drop in heart rate, which enables

them to respond to possible crises more quickly.

Lastly, by estimating the patient’s position in relation to the last known GPS location

using data from the MPU6050 sensor, Position Tracking During GPS Signal Loss can be

enhanced. The method could improve overall safety by tracking the patient even in

situations where GPS signals are lost by examining movement patterns
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