Smart IoT Based

Water and Fertilization System

D. S. R. Shehan

2024

Water and Fertilization System

A dissertation submitted for the Degree of Master of
Information Technology

D. S. R. Shehan
University of Colombo School of Computing
2024

Declaration

Name of the student: D S R Shehan

Registration number: 2019/MIT/090

Name of the Degree Program: Master of Information Technology

Project/Thesis title: Smart IoT Based Water and Fertilization System

. The project/thesis is my original work and has not been submitted previously for a degree at this or
any other University/Institute. To the best of my knowledge, it does not contain any material published
or written by another person, except as acknowledged in the text.

. Tunderstand what plagiarism is, the various types of plagiarism, how to avoid it, what my resources
are, who can help me if I am unsure about a research or plagiarism issue, as well as what the
consequences are at University of Colombo School of Computing (UCSC) for plagiarism.

. Tunderstand that ignorance is not an excuse for plagiarism and that I am responsible for clarifying,
asking questions and utilizing all available resources in order to educate myself and prevent myself
from plagiarizing.

. I'am also aware of the dangers of using online plagiarism checkers and sites that offer essays for sale. |
understand that if I use these resources, I am solely responsible for the consequences of my actions.

. T assure that any work I submit with my name on it will reflect my own ideas and effort. I will properly
cite all material that is not my own.

. I'understand that there is no acceptable excuse for committing plagiarism and that doing so is a
violation of the Student Code of Conduct.

Signature of the Student Date
T 06-10-2024

Certified by Supervisor(s)

This is to certify that this project/thesis is based on the work of the above-mentioned
student under my/ot supervision. The thesis has been prepared according to the format
stipulated and is of an acceptable standard.

Supervisor 1

Supervisor 2

Supervisor 3

Name

Malik Silva

Signature

A

Date

14th Oct 2024

ABSTRACT

This project describes the design, development and evaluation of a Smart IoT Based Water and
Fertilization System that utilizing IoT technology. Its goal is to address issues, in agriculture such
as reducing water usage, improving fertilizer efficiency and promoting precision agricultural
methods. The system integrated with sensors to monitor soil moisture, temperature, humidity and
nutrient levels using IoT technology. This enables adjustments of watering and fertilization based

on the requirements of each crop.

The innovative Smart IoT Water and Fertilizer System is designed with a technological foundation
that encompasses both front-end and back-end components to ensure seamless operation and user
interaction. Angular is utilized for creating a dynamic and responsive user interface while Redux
efficiently manages the applications state on the end. On the backend the system uses .NET Core
for its services, Entity Framework for object mapping, PostgreSQL as database for data handling
SignalR for real-time communication and MQTT, for IoT messaging. This system is hosted on
Azure offering data management capabilities, real time communication features and user-friendly

interface.

The system has evaluated with a survey and a small-scale pilot project. Based on the results, a few
modifications were made to algorithms to enhance the accuracy and efficiency of the system. The
project will be extended to the next stage of development to include a mobile app and a rainwater

utilization feature with the capability to handle more crops.

11

ACKNOWLEDGMENTS

My deepest gratitude is for the School of Computing of the University of Colombo. In addition to
providing me with the necessary academic resources, the university has been an invaluable
resource for personal and professional development. The lecturers and staff provided invaluable

support, offering direction and insights crucial to this project and academic growth.

I would like to express my sincere appreciation to MR. Malik Silva, my project supervisor, for
providing invaluable support during this project. Without his assistance, the successful completion

of this project would have been far more challenging.

Finally, I express my gratitude to my family members, friends from Cloud Solution International

(Pvt) Ltd, and all those who contributed to my success in the project.

111

TABLE OF CONTENTS

ABSTRACT ...ttt et b e et e bt e st e e bt e et e e sb e e eabeesbeesabeesbeeenbeeee i
ACKNOWLEDGMENTS ...ttt ettt sttt sttt e sbe e e bt e see e s neesaneeas il
TABLE OF CONTENTS. ...ttt ettt ettt st sbt e et e it s beesaeeens iv
LIST OF FIGURESottt ettt st ettt et st e st esabeeeees vii
LIST OF TABLES ...ttt ettt sttt et st e sat e et sbe e sneenaee e X
LIST OF ACRONYMS ..ottt ettt ettt et ettt e s e et e s e s e e naee e X
1 CHAPTER — INTRODUCTIONooiiiiiiiiiiiiiieeitete ettt sttt st 1
1.1. Problem Overview and MOUIVALIONccoouuiiiriiiiiiieieiieeniteenieeeeie ettt 1
| O 1 o] <ol PR RRRRRTSR 2
1.3. Background of the StUAYccocuiiiiiiiiiieee e 3
L4, Scope Of the STUAY.....cooiuiiiiiiii ettt st 3
1.5. Structure of the DiSSEertation..........cc.eiiiiiiiiiieiiiiieieeeteerte ettt 4

2 CHAPTER —BACKGROUDcootiiiiieceeeetet ettt st 5
2.1, Requirement ANALYSISccceeeiiieeriieeiiieeitee et e eiteeeite e st e e sbeeesibeeesabeessabeesnseesnaneesnseas 5
2.1.1. Hardware REqQUITEMENLS.occuiiiiiriiiiiiieiieieeeeceecre e 5
2.1.2. Software REQUITEMENTScc.eeviiiiiiiriieiieeieeeeeteeee ettt 7
2.1.3. USer ReQUITEMENLSccciuiiieiiieeiiieeiiee ettt eiteeeite et eesteeesibeeeabeeeabeessaeesseeesnneeens 7
2.1.4. Functional REqUITEMENTScccuiieriiieeiiieeiieeeiie et esieeesreeesreeesbeeesaeeesabeesnaaeeens 8
2.1.5. Non-Functional REqUITEMENLSc.ceereiriiiiiiiriieiieeieeeenieeee et 8

2.2. Review of SImIlar SYSTEIMS ..cc.veeeiiiriiiriiiiienieeeeree ettt 9
2.3. Related TeChNOIOZIESccoiiieiiiieiiie ettt e e e aae e e e e snaee e 13
2.4. Development MethOdOIOZYccouiiiiiiiieiiieeiiieeiieeeite et 14

3 CHAPTER — DESIGN ..ottt ettt ettt sttt sttt e st e bt e snbeesaaeenseens 15
3.1, INEFOAUCHION ..ttt ettt et e et e s it e st e e eeatee e 15

v

3.2, SYStEM ATCRITECIUIE ...c.uvieeiiieeiiieeciieeeie e et e eee e et e e et e e ebe e e e bee e saeeesnaeeenseeennseeensseeennns 15

3.3, Frontend ATChITECTUIEcocueiriiiiiiiriieeiteete ettt ettt st et eeesaneens 16
3.4. Backend ATCRITECIUTEcocuiiriiiiiiiiieeiieeie ettt st et 18
3.5, UML DIAGIAIMNS ..cntiiiiiiiiiiiiieie ettt ettt ettt et e st e ebe e s abe e bt e s bt e saeeeabeens 20
3.5.1. Use Case DIagram........ccouiiiuiiiiiiiiiieeieee ettt st 20
3.5.20 BER DIAZIAM ...oeiiniiiiiiiie ettt ettt et ettt st e s 32
3.5.3. Sequence DIagramis.cc.eieiiiiiiiieiiiiieeiieeeite ettt ettt st 33
3.5.4. Class DIAZIAMcoiiiiiiiiiieiieeeeeeeteete ettt ettt st st 38
3.6. User Interface DEeSI@N.......cocueiiiiiiiiiiiiiiieieceeeecee e 39
3.0.1. ULCOLOTS ..ttt ettt sttt et e 39
3.6.2. SYStEIM LAYOULSeiiiiiiiiiiie ettt ettt ettt e ettt e et e et e st e e saeeesneeas 39
3.6.3. Main Dashboard............oouiiiiiiiiii e 40
3.6.4. Plant Dashboardccoouiiiiiiiiiiiie e s 41
30,5, POPUPS .ttt ettt et ab e ettt e et e e e eabeeenaeas 42
CHAPTER - IMPLEMENTATION ..ottt ettt sttt et 43
4.1. Related TeChNOIOZIEScooiiiiiiiiiiiieieeeeeee et 43
4.1.1. Frontend TeChNOIOZIES.ccccuiiiriiiiiiiieeriie ettt e e e e 43
4.1.2. Backend TeChNOLOZIESccevuiiiiiiieiiieeeite ettt et s e s e e e 43
4.2. Hardware Implementation...........ccocuuiiriiiiiiitiniie ettt 44
4.2.1. Hardware COMPONENLS........cccueriieruieriienieenieeieeeteesteesreesreesneesneesneesreeeneenreesaneens 45
4.2.2. SensOr INTEEIAtION ...cccuviiiiiieeiiieeiieeeiee ettt et e e rree et e st e e eabeesaeeesaneeesnnne 46
4.2.3. Actuator INTEZTAtIONcevuiieeiiieeiieeeiieeeiee ettt et e et ee et eeaaeeeaaeesareesnseeesnnee 46
4.2.4. COde SEZMENLS.....corctiiiiiritieiienieeee ettt ettt st e sen e e sae e saneesbeesneenreeeaneens 47
4.3. Software Implementationcocuieriiiriieiiienieeiienee ettt sane s 53
4.3.1. Frontend ATCRItECTUTEcoouiiiiiiiiiiieeiteeicete et 54
4.3.2. Backend ATChitECIUIE.coiuiiiiiiiiieiieiieeie ettt ettt 57
4.3.3. Machine Learning Inte€gration...........cccceeeeriieenieriieniinieeieeie st 62

4.4, System DeplOYMENntcoouiiiiiiiiiiiieiie ettt ettt 63

S5 CHAPTER - TESTING AND EVALUATION.......cocciiiiiiiiinieieeeceeeee e 64
S.1. TESHUNZ SIFALEZIES ..vveeeuirieeiiieeiiee ettt e ettt e ettt e sttt e st e e sabteesabeeesabeeesabeesabeesnteesneeesnseesanee 64
S.LLT. UNIE TESHNG .ottt ettt ettt et e et e bt e s b e e saee e 64
S5.1.2. INte@ration TESHINEc.ceeiiiiiiiiiieiieite ettt ettt st e e 64
S5.1.30 SyStem TeSHINZ cc..viiiiiieiiiieeiiee ettt ettt et e e e st e sbeeesnneas 64

520 TEST CASLS.ceueiiiiieiieeieette ettt ettt ettt ettt ettt st e b e st s bt e b eneens 65
530 TESERESULLS ..eeiaiiiiiie ettt ettt s 73
S EVAIUALION.oiiiiiiiiie ettt st 86
S L. SUIVEY ottt ettt e s e e st e e st e e st e e abee e nabeeeab e e e abeeenabeeenreas 86
5.4.2. Results Of the SUTVEY ...cccuiiiiiiiiiiieieeeeee et 89
5.4.3. Small-scale pilot PrOJECEccocuiiiiiiiiiiiiiieieee e 91
5.4.4. Data Collection and ANalySiS........ccocueeruieriieiiiiniiiiiieieeeeeee e 91
5.4.5. Results and AdJUSTMENTS.cc.ueieiiiiiiiiieeiieeeite et eeiee et rteeesibeeesbeeesbeessareesaeees 92

6 CHAPTER — CONCLUSION......ccctiiiiitiiiniteee sttt ettt 93
6.1. Future IMProvemMeNtcocuviiiiiiiiiiiieiieie et s 93
6.2. Knowledge GaINEd.........ceoviiieiiiiieiiieeiee ettt ettt e e sbee e e e e s eesnnee e 93

7 REFERENCESottt st ettt et st e eaees 94

vi

LIST OF FIGURES

Figure 2.1: Mobile User Interface of MyJohnDeere............ccooueiiiiiiiiiiiiiiiniiiiceieeceeceeee, 10
Figure 2.2 : Dashboard of MyJORNDEETE...........cooouiiiiiiiiiiiiiiiiiieceee e 10
Figure 2.3 Dashboard of Growlink smart irrigation SYSteMc..eeevureerrieeenieeeniiieerieesnireesnieeens 12
Figure 2.4: Desktop and Mobile App of Growlink Systemcccevveeriiieniiiiiniiieiniieirieesieene 12
Figure 3.1 High-Level System ArChiteCture...........oovuieiiiiiiiiiiieieieeee ettt 15
Figure 3.2 Frontend ATChItECTUTIE.c.ueiiiiiiiiiiieiiieeeiie ettt ettt et esbee e 16
Figure 3.3: Backend ATChItECTUIEovviuiiiiiiieiiie ettt et e s esaee e 18
Figure 3.4: Use Case DIaZIamcooouiiiiiiiiiiiiiiiieeiite ettt ettt sit e s 20
Figure 3.5:Entity Relationship Diagramccoociiiiiiiiiiiiiiiiicececceeeee e 32
Figure 3.6:Sequence diagram for plant managementccceevveeeriieeriieeniieeeniiie e eeeesieee s 33
Figure 3.7: Sequence diagram for device managementceevveeerireeriiieeniieeeniieeenieeeseeesneeens 34
Figure 3.8: Sequence diagram for configuration management.............cooceeevvueeeniieeinieennieenneeenne 35
Figure 3.9: Sequence diagram for watering managementcocueevveriveeneeeeeeneennreeneeeneennnes 36
Figure 3.10: Sequence diagram for fertilization management..........cccueeevveerieeeriieeeniieenneeesneeens 37
Figure 3.11: Class DIQ@Iamccoouviiiiiiiiiiiiieiiie ettt ettt e et e et eessaveeeaaeesnseeens 38
Figure 3.12:Main Dashboardc.ccooiiiiiiiiiiieece e 40
Figure 3.13 : Plant Dashboardcooiiiiiiiiiniiieee e 41
Figure 3.14: Add plant POPUPeeeueeeeiiieiiieeeite ettt eriee et e eete e st e e e taeesbeeesabeessaseesnneesnseeens 42
Figure 3.15: Add deVICE POPUP..cceutiiiitieiiiieeite ettt eeteeertee et ete e st e e st eesbeeesabeeesaseesnseesneeeens 42
Figure 4.1:Hardware Components DIagramcccccoecuieiieniiiiiieniiiiiienieeeeeeeeee e 44
Figure 4.2: Actual Hardware Implementationccooueeiiiieiiieeniicenieeeieeciee e 44
Figure 4.3: Wifi Connection INTHAtION.ceeiiieriiiiiiiieeiiie et sree e e e e siee e 47
Figure 4.4: MQTT SUDSCIIPHON ...vveiiiiieiiiieeiieeeieeeeieeeeiiee et e eiteeeieeeeteeesaeeessbeeesaseessneesnseeens 48
Figure 4.5: Watering Handle Methodcooiiiiiiiiiiieeeeece e 48
Figure 4.6: Fertilizing Handle Methodccoooiiiiiniiieeeeee e 49

vil

Figure 4.7: Soil Moisture Value Reading Method...........coccoiiiiiiiiiiiiiiiiiieeeeeeeee, 50

Figure 4.8:Tempreture and Humidity Value Reading Method...........cccccooeeniiniiiniiniiininieeee. 50
Figure 4.9:NPK Values Reading Methods..........ccccovieriiiiiniiiiiiieeeneceeeeee e 51
Figure 4.10: Sensor Values Publishing Methodc.ccooiiiiiiiiiiiiiiieeeeeeeeeeeeen 52
Figure 4.11: Front-end and Back-end ArchiteCtureccocueeiiiiiiiiiiiiiiniieeeeeeeeeee 53
Figure 4.12: Front-end Code StrUCTUTEc...coiuiiiiiiiiiniieieerieeteee ettt 54
FIgure 4.13: SEIVICE ClaSS ..couviiuiiiiiiiiieiteeteet ettt ettt ettt et st neees 54
Figure 4.14: Constructor Dependancy INJECtion............coocueiiiiiiiiiiiiiiiiniieeieeeeceee e 55
Figure 4.15: Add Plant Methodcoc.eoiiiiiiiiiiiii et 55
Figure 4.16: Redux State Management..........ccceeruiriiieniiiiienieiieenieeiee et 56
Figure 4.17: Web APLIMeEthodscooiiiiiiiiiiiiieete e 57
Figure 4.18: Service Layer Methodccoooiiiiiiiiiiiiiiieceeeee e 58
Figure 4.19:Repository MEthOdScociiiiiiiiiniiiiececee e 59
Figure 4.20: Back@round TasKsccc.coueiriiiiiiniiiieeeeeeceee et e 60
Figure 4.21: Subscribe MQTT TOPIC....cccueiriiiiiiiiiiiieeieeeeeeeee et 61
Figure 4.22:Publish message t0 MQTT (OPICcocuiiiiiriiiiiiniicieeeeeeeee e 61
Figure 4.23 Watering Dataselcooviiuiiiiiiiienieieeeeeee e 62
Figure 4.24 Model Training AIOTItRIMcocouiiiiiiiiiiiie et 62
Figure 4.25 Prediction FUNCHONoc.iiiiiiiiiiiieiicceeeee et 63
Figure 4.26: Deployment ATChItECTUTEcocviiiiiiiiiniiiienieeeeecee e 63
Figure 5.1 Survey - Google FOrm pagelccccooiiiiiiiiiiiecceeeeceeeeee e 86
Figure 5.2: Survey - Google FOrm Page?2c..oovviiiiiiiiiiie ittt e 87
Figure 5.3: Survey - Google FOrm page3c..oooiiiiiiiiiiiie ettt e 88
Figure 5.4 Survey Result Page 1.......coooiiiiiiiiee e 89
Figure 5.5 Survey Result Page 2.......cccoooiiiiiiiiiieee e 89
Figure 5.6 Survey Result Page 3.......couooiiiiiiiieee ettt et e 90
Figure 5.7 Survey Result Page 4.......ccuvoviiiiiiiieee ettt e 90

Figure 5.8 Hardware component applied to small plant...........ccccoooeeiiiiiiiniiniinieiieiceeeee, 91

LIST OF TABLES

TADIE 3. 11 USET TYPES .ttt ettt ettt e s e e et e st e st e s beeesbaee e 21
Table 5.1: Test Cases for UL COMPONENLSeeeruieiriiiiiiieeiiieeiteeeiee et esieeesieeesreeesibeessieeeeas 71
Table 5.2: Test Cases for Hardware COMPONENLScovueeeriiieriiieeniiiieniieeniieenieeenieesieeessieeeens 72
Table 5.3 Test Results for UL component teSt CASESccouveerrurieriiieiniiieniieerieeeriee e 84
Table 5.4:Test Results for Hardware related test CaSescccueeeviiieiiiiiiiieiniiieiniieeieeeee e 85
Table 5.5 Pilot Project RESUILS.........eiiiiiiiiiieciii ettt et e s 92

X

LIST OF ACRONYMS

GDP - Gross domestic product

IoT — Internet of Things

UI — User Interface

UX — User Experience

API - Application Programming Interface
MQTT - Message Queuing Telemetry Transport
HTTP - Hypertext Transfer Protocol

HTTPS - Hypertext Transfer Protocol Secure
CRUD - Create, read, update and delete
UML - Unified Modeling Language

ORM - Object Relational Mapper

ER - Entity Relationship

HTML - Hypertext Markup Language

SCSS - Syntactically Awesome Style Sheets
USB - Universal Serial Bus

RH - Relative Humidity

NPK - Nitrogen, Potassium, Phosphorous

RAM - Random Access Memory

1 CHAPTER - INTRODUCTION

1.1. Problem Overview and Motivation

The agriculture sector in Sri Lanka significantly contributes to both the economics and culture of
the country. Over 30% of the population is involved in agriculture activities. Agriculture
contributes to about 7.5 percent of the nation’s GDP, and it has a significant impact on the
livelihoods of many citizens in the country. Sri Lanka's agricultural sector continues to rely heavily
on traditional farming methods. Typical agricultural practices frequently result in resource waste
and environmental degradation. Practices such as flood irrigation and manual labor can result in

an excessive use of water and fertilizers, compromising soil health and water availability.
Sri Lankan farmers are facing following challenges in recent years.

Water scarcity: Sri Lanka faces challenges with water scarcity due to a combination of factors
such as increasing population, climate change, and deforestation. This has resulted in reduced
water resources availability for agriculture, making it difficult for farmers to access the water they
need for their crops (Chandrasekara, 2021). As per the world health program, 80% of Sri Lanka’s
land is in dry and intermediate zones which face frequent water shortages. Sri Lanka’s dry zone is
the main paddy producing area in the country and some parts of this area will face an absolute
scarcity of water by 2025. Furthermore, research has suggested that paddy production in Sri Lanka
will increase by 10% by year 2025 and that additional amount will be totally irrigation based
(Rodrigo, 2013).

Soil Degradation: Overuse of fertilizers can lead to soil degradation, reducing the soil's fertility
and loss of biodiversity. When too many fertilizers are used, the extra nutrients can leach into the
groundwater and bodies of water on the surface. This can negatively impact aquatic environments
and lead to the growth of harmful algae. Excess nutrients in the soil can change its pH levels that
can reduce plant growth (Bisht & Chauhan, 2020).

Crop Yields: Overusing water and fertilizers could result in reduced crop production impacting
the income of farmers and food security, in the country. Presently 15% of the people, in Sri Lanka

are identified as experiencing food insufficiency (Thibbotuwawa, 2021).

Lack of access to modern technologies: Many farmers in Sri Lanka face challenges in accessing
farming technologies like precise irrigation systems and real time soil monitoring systems.
Utilizing these tools is essential, for enhancing their techniques to increased crop production and
the adoption of eco-friendly approaches. (Thibbotuwawa, 2021).

Environmental Impact: Overusing water and fertilizers can have effects on the environment by

polluting water sources.

The aim of this project is to develop and implement a solution, for managing water and fertilizer
that combines Internet of Things (IoT) to tackle the issues mentioned earlier. The system will
continuously track soil moisture, nutrition levels, temperature and humidity levels and provide
automation on watering and fertilizing in real-time. Machine learning algorithms will analyze
sensor data to identify trends and predict the timing and amount of watering and fertilization

needed.

1.2. Objectives

The following objectives will be considered when planning and implementing the system to use

water and fertilizers more efficiently,

e Develop a smart water and fertilization system that uses sensors and IoT technology to
monitor soil moisture, nutrient levels and other environmental conditions, then use this data
to optimize water and fertilizer usage in crop production.

e Integrate the smart system with a user-friendly web platform that allows farmers to oversee
and manage watering and fertilization from a distance, in real time. They can also get
notifications and suggestions tailored to crop conditions and weather forecasts.

e Integration with machine learning algorithms to enable the system to make more accurate

predictions and recommendations based on crop and environmental data.

Machine learning integration will be a huge advantage to system capabilities to make predictions
with the historical data. These predictions beneficial for farmers to make decisions on the plant as

well as environment variables.

1.3. Background of the Study

The Internet of Things (IoT) is revolutionizing agriculture worldwide giving rise to concepts, like

"Smart Farming" and "Precision Agriculture." Technology is playing a role in the industry by

providing farmers with data driven insights to improve efficiency, productivity and sustainability.

However, the adoption of technologies in Sri Lanka has been lacking recently. Many farmers in

Sri Lanka have yet to embrace cutting edge farming technologies such, as precision irrigation

systems and real time soil sensors. These innovations have the potential to increase crop yields

minimize impact and optimize water and fertilizer usage effectively. The primary focus of this

initiative is to introduce and integrate [oT based systems into Sri Lankas sector.

1.4. Scope of the Study

The proposed project is a smart water and fertilization system that connect both
hardware and software components. Microcontrollers with sensor technology will

be used to capture parameters such as NPK levels, soil moisture, temperature, and humidity.

The system will have a web application that farmers can access data from
the sensors, and automate irrigation and fertilization processes. Based on
collected parameters, the system will determine how much water and fertilization should be
applied to crops. Additionally, the system capable in both manual and automated watering and

fertilization process.

The data gathered by the sensors will be combined with machine learning to generate more
precise forecasts and suggestions. The machine learning process will be based on
supervised learning, and a model will be trained using a collection of known data to make

accurate predictions.

At this phase, the project will concentrate on a single crop, for which all hardware

components will be constructed. But the web application will support numerous crop types.

To ease the implementation of this project, the irrigation and fertilization control flow will
be indicated using relays and pumps instead of actual water and fertilizer pumping.

procedures, which require more time and resources to perform.

1.5. Structure of the Dissertation

The rest of this dissertation has following structure:

Chapter 2: Background
This chapter will include a requirement analysis of the project. Further, it will review and
analyze similar systems and their key points.

Chapter 3: Design
The design chapter outlines the technical design of the system architecture, hardware setup,
and choice. of sensors to algorithms, UI/UX design, and diagrams.

Chapter 4: Implementation
This chapter describes implementation, configurations, software, and hardware
integrations. best practices, and major code segments of this project.

Chapter 5: Testing and Evaluation
This chapter will provide an evaluation of the project's accuracy, effectiveness, and
quality assurance of the final product.

Chapter 6: Conclusion
This chapter describes the major key areas of the project and further discusses the overall

result of the system.

2 CHAPTER - BACKGROUD

2.1. Requirement Analysis

2.1.1. Hardware Requirements

Designing a successful IoT-based system requires a thorough consideration of the hardware
requirements. These are the tangible, physical components that form the system's backbone,
including sensors that capture vital environmental data, microcontrollers that analyze this data,
and actuators that respond based on the interpreted data. This technology interacts in a continuous
data collection, processing, and action cycle, enabling intelligent irrigation and fertilization to
optimize crop health and yield, following the [oT component required to design the hardware

setup.
Micro Controller

This is the main component of the hardware setup. The microcontroller is responsible for fetching
sensor readings, processing collected data and transmitting information to the application. In
return, it executes instructions given by the application. There are various types of microcontrollers

which can be used for IoT solutions, such as Raspberry Pi, Arduino, ESP.
ESP32 wroom-32 will be used for the system because of the following reasons.

The ESP32 wroom-32 board is one of the most well-known in the ESP series. It is excellent for
beginners and small to medium-sized projects. It has a powerful set of tools that works reliably.
Since it has enough digital and analog input/output pins, it can connect all the necessary sensors
and actuators for this setup. The ESP32 development board comes with built-in Wi-Fi support.

Therefore, additional integration is not required for internet usage.
Soil Moisture Sensors

The main function of this sensor is to measure water content in the soil. There are two types of soil

moisture Sensors.

e Resistive Soil Moisture Sensor - This sensor operates on the principle that water is an excellent
electrical conductor. Two probes are inserted into the soil by the sensor. The resulting current
is measured when a voltage is applied to the sensors.

e Capacitive Soil Moisture Sensor - Instead of measuring resistance, these sensors measure the

soil's dielectric permittivity, which varies depending on its moisture content.

5

The data obtained from the soil moisture sensor can be applied to determine the ideal time and
quantity of watering for the plants. The system efficiently controls moisture levels, preventing

excessive water consumption and promoting better growth of plants.

Temperature and Humidity Sensor

The temperature and humidity sensor measures the temperature and humidity levels in the
environment where the system is installed. Typically, the sensor will have a digital output that
can be easily interfaced with a microcontroller. Some sensors may necessitate the use of an
analog-to-digital converter. These sensors' data can be utilized to make irrigation and
fertilization decisions. For instance, higher temperatures may require more frequent watering,
whereas high humidity may require less irrigation. Similarly, the application rate of fertilizer

may be modified based on these parameters.

Actuators
These components perform physical tasks based on data received from the microcontroller.

Actuators include relays, water pumps, and fertilizer pumps.

Connectivity
The IoT device requires an internet connection. This could be accomplished via Wi-Fi, cellular
networks. This enables the transmission of sensor data to the application and receiving

instructions.

2.1.2. Software Requirements

The software includes an interface that allows farmers to engage with the system, monitor real-
time information, and obtain recommendations for watering and fertilization. The software
requires a database for storing the gathered sensor data, machine learning algorithms for analyzing
the data, and application programming interfaces (APIs) for facilitating interaction with the

hardware components.

Communication Protocols: Protocols like MQTT, HTTP/HTTPS will be needed for data
transmission between devices and the UI and Backend.

Embedded Software: This includes the [oT device's firmware, which takes sensor data, processes
it, controls the actuators, and sends the data to the communication protocol. Firmware should

consist of MQTT consumers and publishers.

Backend Service: Required server-side service to manage underlying infrastructure, requests from

client applications, and providing appropriate responses and communication with IoT.

Data Processing and Analysis: Required Framework to process and analyze using machine

learning algorithms to make predictions.
User Interface - Web or mobile application, where users can view and interact with the system.

2.1.3. User Requirements

The primary user of the system is the farmer. Therefore, the user required a reliable, easy-to-use
solution to optimize watering and fertilization practices. The system should provide real-time data
and watering and fertilization automation. The system should be simple to install, maintain, and

use, without requiring extensive technical expertise.

2.14.

2.1.5.

Functional Requirements

Continuous Monitoring: The system should monitor soil conditions continuously using
the installed sensors.

Automated Control: The system should be able to automate the watering and fertilization
process based on sensor values and system recommendation.

Real-time Data: The system should operate real-time for water and fertilizer applications
based on the sensor data and all information should appear real-time in user interface.
Data Processing and Analysis: System should capable to process analyze sensor values
and generate predictions with the help of machine learning algorithms.

Non-Functional Requirements

Reliability: The system should provide accurate data and recommendations with minimal
errors.

Efficiency: The system should process the sensor data and perform tasks quickly.
Usability: The user interface should be attractive and easy to navigate.

Scalability: The system should be able to handle more plants without performance

deration.

2.2. Review of Similar Systems

The MylJohnDeere Operations Center (John Deere, 2024), is an online tool that offers farmers

immediate updates on their farming activities. It includes data on soil moisture, crop yield and

machinery efficiency. Farmers can oversee and control their machinery, track their crops progress

and make well informed choices about planting, fertilizing and harvesting. The platform comes

equipped with various valuable functions.:

Data collection: The platform integrates with numerous sensors and machinery to collect
data on soil moisture, yield, and other vital metrics.

Data analysis: Collected data will be further analyze and provide predictions based on
machine learning algorithms.

Equipment management: Farmers can use the tool to track their machines' performance
and when they need to be serviced.

Crop management: The platform has tools for crop planning, like picking seeds and
figuring out how much fertilizer to use.

Collaboration: Farmers can share statistics with their advisors and partners through the
platform, which helps them work together and make better decisions.

The main benefits of the MyJohnDeere Operations Center are:

Enhanced decision making: The system offers farmers, up to date insights, into their
farming activities empowering them to decide on planting, fertilizing and harvesting
practices.

Increased efficiency: Farmers have the opportunity to enhance their productivity by
adjusting their planting and fertilization practices according to, up to date information. This

approach can lead to yields, cost savings and reduced waste, on the farm.

Few user interfaces of the product are showing in figure 2.1 and 2.2

2021 Seeding Progress

WO >

OB View All Equipment
rem

Rye (Europe) Seeding

0-0-60 Potash Applcation

NEIA Iy %0

Corn Harvest

0 wm® B

Corn Marvest

o
.
Equipment Performance
Corn Harvest Az
o Engino Load - Woeking Engine Speed - W
AN ANTIN

ft & el

Mo

Figure 2.1: Mobile User Interface of MyJohnDeere

a Operations Center: Map [New) @ A ,’l Agritechnica 2019 l

Lo Equipment Map Satellite

Q

= Name

» CcOMBINE

v FORAGE MARVESTER

“ JAGUAR 950 JAGUAR 950
49899

* John Deere 8500i
w TRACTOR
&9 aronsso
5 e A
&9 awonsso
O 10hn Deere 6220

& John Deere 6250R

SPEED FUEL LEVEL HEADING

o M

Fields

Figure 2.2 : Dashboard of MyJohnDeere

10

GroGuru

GroGuru (GroGuru, 2024) is an irrigation and soil monitoring technology that provide
recommendations to farmers in optimizing water usage and increasing crop yield. The system
collects real-time data on soil moisture, temperature using wireless soil sensors. This information

will be sent to a cloud-based to provide insights to users.

GroGuru's "Root Zone Monitoring" is a unique feature that collects vital information about the
condition of the root zone of crops. The root zone is the area of soil that encompasses the roots of
a plant. It is important to plant health because this is where plants absorb most of their water and

nutrients.

But GroGuru's system doesn't provide automation for applying fertilizer. User required to perform

scheduled tasks manually.
Growlink Smart Irrigation Controller

The Growlink Smart Irrigation Controller (Growlink, 2024) can control both watering and
fertilizing processes. It uses multiple sensors that send data in real-time, such as readings for soil
moisture, temperature, and electrical conductivity (EC). These data will be used to make proper

watering and fertilization process.

Growlink's system provide a mobile app to their users that can handle the system from anywhere.

Based on sensor data, it has automated tools that change the watering and fertilizing plans.
Growlink Smart Irrigation Controller have some advantages and disadvantages as follows:
Advantages

e Provides comprehensive irrigation and fertilization management.

e Utilizes multiple sensors (soil moisture, temperature, and EC) for real-time data-driven
precise control.

e Includes a mobile application for remote control and a simple data visualization interface.

e Provides automation features that modify irrigation and fertilization schedules in response

to sensor data.

Disadvantages

11

The system may require more work to configure and manage, particularly for non-technical
users.

Due to the advanced features and multiple sensor connections, the price could be higher.

Few user interfaces of the Growlink product are showing in figure 2.3 and 2.4

® Manual Task
Device Sensor Trigger
Value Dynamically Determined By

Day Tempersture

Devices *

102 - Lights

Valve *

B Show Advanced Options
® Override

Faciry

Good morning, Abbott!

A Pachity Optemitamion Seore B e & Cumivan

0 Marvest Schedule

Figure 2.4: Desktop and Mobile App of Growlink System

12

2.3. Related Technologies

The system uses several cutting-edge technologies to make the user experience seamless, reliable,

and effective.

Hardware Components: ESP-wroom-32 will be used as a microcontroller with sensor

technology. 12V Water and fertilizer pumps will be used to indicate flows.

MQTT Broker: MQTT (Message Queuing Telemetry Transport) is a lightweight publish and
subscribe messaging protocol that was designed to be used in low-bandwidth and unreliable
network environments. MQTT Broker will be used as communication protocol between
Microcontroller and server. All data transmission will be handled real time by MQTT broker.

Web Application Architecture: Proposed web application will be developed to Client Server
Architecture. Server consist of the database and client-side users can use the system with web
browser without using any software additionally on their local machines. Server and client sides
will communicate and share data through Web APIL

Technology Stack: Proposed system consists of web-based application, and it will be developed
using Angular frontend, NET Core backend, Bootstrap, Web API 2.0 and Entity Framework,
Postgres as Database.

Machine Learning — ML.NET will be used as machine learning framework.

Deployment: Web Application will be hosted on Azure services.

Layered architecture will be used as back-end architecture with asynchronous programming.
Web API will be used for presentation tier; logic tier and data tiers will be implemented using a

repository pattern. Entity framework will be used with Postgres server to reduce development
time and make CRUD operations efficient.

13

2.4. Development Methodology

In software engineering, a software development methodology or system development
methodology is a framework used to organize, plan, and manage the process of constructing an
information system. Among other techniques, the classic Waterfall Model would be utilized due

to the following key benefits.

e The project has a predefined timeline, and both development and implementation must be
completed within that timeframe.

e All project milestones are established prior to the initiation of the project. Therefore, it is
important to capture project requirements clearly and ensure they remain unchanged until

the project is delivered.

14

3 CHAPTER - DESIGN

3.1. Introduction

This chapter provides an overall detailed description of the system's architecture. System
architecture design is the process of organizing and structuring the entire system to meet the
requirements, and future scalability needs while keeping the system maintainable and adaptable.

It encompasses design techniques and methodologies applied to structures and solutions.

This system's architectural design provides a structural layout that specifies the system's
components and how they interact with each other. Components are the system's fundamental

pieces, including software modules, databases, user interfaces, etc.

This process contains graphical representations, diagrams, and notations such as UML to visualize
and document the system's structure and processes.
3.2. System Architecture

The system is divided into two main parts: hardware setup and web application. In the hardware
setup, all controllers and sensors will be controlled via a microcontroller, and the microcontroller
communicates to the web application via the MQTT broker. Web applications consist of client
servicer architecture and will communicate via HTTP API calls. High-level system architecture is

shown in Figure 2.5

O C)

NPK Sensor shent

Q Microcontroller T l
Tempeture and Humidity Consume Consume
—> e

Sensor < Server
: Publish Publish

Soll Moisture Sensor l T

=
v
Actuators -'.)
Database

Water Nitrogen Phosphorus Potassium

%

\

Figure 3.1 High-Level System Architecture

15

3.3. Frontend Architecture

Ul Controller Components Data Controllers

e) I
Browser Component Data Model

1
1
1
1
1
1
1
1
1
1
1
1
1
1 User Interface H
1
1
1
1
1
1
1
1
1
1
1

Calculated Model

Configuration

E

:

i
E

Figure 3.2 Frontend Architecture

Figure 3.2 shows the High-Level architecture of the front-end. The front-end application will be
implemented on top of the Angular JavaScript framework. Angular is a prominent framework for
developing web applications. It encourages using patterns and best practices for building scalable
and maintainable applications. We refer to the organizational strategies and patterns used for
Angular applications when considering Angular front-end architectures. Here are several common

architectures and strategies which will be used in implementation:

Component-Based Architecture: Angular relies mainly on component-based architecture. This
implies that Uls are made up of multiple components, each responsible for a unique feature.

Components encapsulate the layout, data, and behavior of an interface element.

Modules: Angular groups related components, directives, pipelines, and services using modules
(NgModules). Modules facilitate application organization and promote features such as lazy

loading.

Services and Dependency Injection: Services are used in angular to share data and behavior
across components. Dependency Injection (DI) is a design approach in which a class requests
external sources for dependencies instead of making them itself. The DI system in Angular gives

components and services their dependencies.

16

Routing: The Angular Router makes users switch from one view to another as they perform
application tasks. It facilitates the creation of Single Page Applications (SPA), which are not
required to load a new HTML page from the server to switch between views.

Observables and Reactive Programming: RxJS, a library for reactive programming, is
extensively utilized by Angular. This enables the efficient handling of asynchronous operations,
management of data flows, and propagation of changes using Observables, Observers, and

Operators.

17

3.4. Backend Architecture

Presentation Layer =L T T B Repository

Data Mapper Entity

—
‘—

Data Source

CRUID

WEB API Controllers

DB Context

Background Service //

Figure 3.3: Backend Architecture

The backend application will be implemented as a Layered architecture. Layered architecture,
known as n-tier architecture, is the common standard for most Java EE applications and is widely
used in.NET applications. It assists in reducing the complexity of software into manageable
chunks. Each layer is responsible for its own tasks, and each layer depends solely on the layer

directly beneath it. Here is a breakdown of the typical layers and their responsibilities:
Presentation Layer (API Controllers):

e Presentation layer is the entry point where the front-end or external services will
communicate with the backend. All the web API endpoints will be implemented in this

layer.
Business Logic Layer (Service Layer):

e Business logic, computations, validations, and application-specific functionality.

e Acts as an intermediary between the Presentation and the Data Access layers.

18

Data Access Layer (DAL):

Responsible for accessing data from database. * Contains code for accessing data and maps this
data to the business entities. This mapping can be done using ORMs (Object-Relational Mapping)
tools. Entity framework will be used as ORM in the system.

Repository Pattern

The Layered architecture will be implemented based on the repository pattern. The repository
pattern is a well-known design pattern used in application software architecture, especially in the
context of domain-driven design. The main goal of this pattern is to separate the business logic of
a program from the logic for accessing data. Repository pattern makes the system more
maintainable, testable, and scalable by protecting the business logic from any knowledge of the
underlying data sources. In the solution, data access layer will be used to maintain all the

repositories.
Unit of Work

Unit of Work is a design pattern introduced with the Repository pattern to handle transaction
administration in a domain-driven design context. The primary objective of the unit of work pattern
is to ensure that multiple database operations occur within a single transaction boundary. The unit
of work provides mechanisms for committing or reverting database changes. If a single operation
within the unit of work fails, the entire sequence of operations can be reverted to ensure data

consistency.
Background Layer

An additional layer will be added to the backend architecture to handle real-time communication
with 10T devices, HTTP socket communication and machine learning integration. Background
layer will interact with repository layer and service layers to perform background tasks. When an
IoT device sends data, it can first be pushed to a message queue, ensuring that data processing is

fast and does not block the device. Background workers can then process data from the queue.

19

3.5. UML Diagrams
3.5.1. Use Case Diagram

Use case diagrams help illustrate the functional requirements of a system from the user's
perspective. It illustrates the interactions between different actors (users or external systems) and
the system's use cases (specific functionalities). Use case diagrams are helpful for communicating
and understanding system functionality at a high level. They provide a clear explanation of how

various actors interact with the system and the actions they can take.

Smart Water & Fertilization Management

Manage 10T Devices

Manage Plants
cextends> Manuel Fertilization

Control Fertilization
---------- B3 ==
extend>> Automated Fertilization
I Manuel Waterin
o oooo--zextendssTT
Control Watering

<<include=> € coxiendss
H H T e ----(_ Automated Watering

<<include=>

Farmer
<<gystem==>

[

Microcontroller
cinCludes e Control Water Injectors, Water Pump,
"""" h LEDs, Buzzers
Measure Humidity, Temp, N ______ e o
Soil Moisture <<includes> Monitor Sensors cesystems>

Analyze Data —
_=<includes>
Suggest Recommendation
Machine Learning Model
—————— <<include>>----«_ Setup Standard Sensor Values

Control Actuators

Setup Configurations

View Weather Daia
Receive Alerts

<<system>>

— X

Weather

Figure 3.4: Use Case Diagram

As per the use case diagram in figure 3.4, the farmer is considered as the primary actor, and the
microcontroller, weather service, and machine learning model are considered as external systems.
Fertilization and watering processes can be managed manually by the farmer, or each plant can be
set up for an automated procedure. The machine learning model is informed of the completed task
at the end of each procedure. To obtain weather information, the system will integrate an external

weather service. User types and user narratives as follows:

20

User Types

Table 3.1 consist the user types that will be used in the system.

Actor

Farmer

Microcontroller

Machine Learning

Model

Weather Station

Description

The individual or entity responsible for managing the farm and using
the system.

A device that reads data from various sensors and sends commands

to control systems.

A software component that analyzes data and makes

recommendations based on historical and current data.

A system that provides real-time weather data, which can be used to

make informed decisions.

Table 3.1: User Types

21

Use Case Narratives

The following case narratives will be used in the system.

Use Case 1: Manage Plants

Attribute

Use Case Name
Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Manage Plants
Farmer

Farmer has access to the plant management system. Plants are
planted in the farm.

Plants are monitored, cared for, or updated as per the farmer's
requirements.

1. Farmer navigate to plant management page.

2. Farmer selects the type of plants to manage.

3. Farmer can add new plants or Farmer can views the status
and health of the already added plants and update the care
settings for the plants, if necessary

4. Farmer sends the updated settings to the system.

The system validates the settings and applies them to the
plants.

6. The system confirms to the Farmer that the settings have
been successfully updated.
If the care settings are invalid:
The system shows an error message.
The Farmer corrects the settings and retries.
If the system is not responding;:
The system shows an error message. The Farmer

checks the system and retries.

The system should provide real-time feedback on the status of the
plants. The system should be able to integrate with loT devices
for automated care of plants.

22

Use Case 2 : IOT Device Manage

Attribute

Use Case Name

Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

IOT Device Manage

Farmer

Farmer has access to the IoT device management system. [oT
devices are installed in the farm.

IoT devices are configured, monitored, or updated as per the
farmer's requirements.

1. Farmer navigate to IOT device management page.

2. Farmer selects the [oT devices to manage.

3. Farmer views the status and configuration of the selected
devices.

4. Farmer updates the configuration settings for the devices,
if necessary.

5. Farmer sends the updated configuration settings to the
system.

6. The system validates the settings and applies them to the
devices.

7. The system confirms to the Farmer that the settings have
been successfully updated.

If the configuration settings are invalid:

The system shows an error message.

The Farmer corrects the settings and retries
If the system is not responding:

The system shows an error message.

The Farmer checks the system and retries.

The system should provide real-time feedback on the status of the
IoT devices. The system should be able to integrate with various

types of IoT devices.

23

Use Case 3: Control Fertilization

Attribute

Use Case Name

Primary Actor

Stakeholders and Interests

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Control Fertilization

Farmer

Fertilization System

The fertilization system is installed and operational.

Fertilization is controlled as per the farmer's input or automated
settings.

Fertilization data is saved.

1. The Farmer decides to control the fertilization process.

2. The System provides options for manual or automated
control.

3. The Farmer selects the desired option.

4. The System controls the fertilization process as per the
selected option.

1. If the Farmer chooses Manual Control
The System triggers the "Manual Fertilization" use

case (extend relationship).

2. If the Farmer chooses Automated Control
The System triggers the "Automated Fertilization"

use case (extend relationship).

The System must respond to the Farmer's input within 5 seconds.

24

Use Case 4 : Control Watering

Attribute

Use Case Name

Primary Actor

Stakeholders and Interests

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Control Watering

Farmer

Watering system

The watering system is installed and operational.

Watering is controlled as per the farmer's input or automated
settings.

Watering data is saved.

1.
2.

(98]

The Farmer decides to control the water process.

The System provides options for manual or automated
control.

The Farmer selects the desired option.

The System controls the water process as per the selected
option.

If the Farmer chooses Manual Control
The System triggers the "Manual Watering" use
case (extend relationship).

If the Farmer chooses Automated Control
The System triggers the "Automated Watering" use

case (extend relationship).

The System must respond to the Farmer's input within 5 seconds.

25

Use Case 5 : Control Actuators

Attribute Description

Use Case Name Control Actuators

Primary Actor Microcontroller

Precondition Microcontroller is operational and connected to actuators;

Commands are received from the Farmer or System.

Postcondition Actuators are controlled as per the received commands; Actuator
status is logged.

1. The Microcontroller receives a command to control

Main Flow
actuators.
2. Microcontroller validates the received command.
3. The Microcontroller initiates the corresponding control
actions for the actuators (include relationships: Control
Relays, Water Pump, Fertilizer Pumps.
4. The Actuators execute the commands and change their
states.
5. The Microcontroller confirms successful execution and
logs the actuator status.
Extensions If the received command is invalid:
The Microcontroller logs an error and ignores the
command.
If any actuator is offline or not responding:
The Microcontroller logs an error and may trigger an alert
Special Requirements The Microcontroller must validate commands within 2 seconds.

The Microcontroller must securely authenticate the source of the
commands. The Microcontroller must log all actuator control

activities for auditing.

26

Use Case 5 : Monitor Sensors

Attribute

Use Case Name

Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Monitor Sensors

Microcontroller

Microcontroller is operational and connected to sensors; Sensors
are calibrated and operational.

Sensor data is collected, processed, and logged; Alerts are
generated if necessary.

1. The Microcontroller initiates the sensor monitoring cycle.

2. The Microcontroller sends commands to sensors to start
measurements (include relationships: Measure Humidity,
Temp, Soil Moisture).

3. The Sensors take measurements and send the data back to
the Microcontroller.

4. The Microcontroller processes and logs the received
sensor data.

5. The Microcontroller checks if the sensor data is within
acceptable ranges and decides whether alerts are
necessary.

6. The Microcontroller ends the sensor monitoring cycle.

If any sensor is offline or not responding.

The Microcontroller logs an error and may trigger an alert.
If the sensor data is outside acceptable ranges.

The Microcontroller triggers an alert and may initiate

corrective actions (e.g., adjusting actuators).

The Microcontroller must validate sensor data within a defined
time interval. The Microcontroller must securely authenticate the
source of the sensor data. Microcontroller must log all sensor
monitoring activities for auditing. The system must be capable of
alerting the Farmer in real-time if critical thresholds are breached.

27

Use Case 6: Analyze Data

Attribute

Use Case Name

Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Analyze Data

Machine Learning Model

The Machine Learning Model is trained and operational. Sensor
data is available and valid.

Analysis is completed; Recommendations are generated and
communicated to the Farmer.

1. The Machine Learning Model initiates the data analysis
process.

2. The Model retrieves the latest sensor data from the data

repository.

The Model processes and analyzes the retrieved data.

4. The Model includes the "Suggest Recommendation" use
case to generate actionable insights based on the analyzed
data.

5. The Model logs the analysis results and generates
recommendations.

6. The Model communicates the recommendations to the
Farmer through a user interface or notification system.

7. The Model ends the data analysis process.

(98]

If the retrieved sensor data is incomplete or invalid:
The Model logs an error and may trigger an alert.
If the Model cannot generate recommendations:
The Model logs an error and may trigger an alert to the

Farmer.

The Model must validate the integrity and validity of the sensor
data. The Model must log all data analysis activities for auditing.
The system must be capable of alerting the Farmer in real-time if
critical issues are detected. The recommendations must be

generated within a defined time interval.

28

Use Case 8 : Setup Configurations

Attribute

Use Case Name

Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Setup Configurations

Farmer

System is working based on configurations.

The configurations are updated and saved. The system operates
based on the new configurations.

l.
2.

N n ke

8.

The Farmer initiates the configuration setup process.
The Farmer includes the "Setup Standard Sensor Values"
use case to define and update standard values for various
Sensors.

The Farmer reviews and modifies other configurations
(e.g., alert thresholds, irrigation schedules).

The Farmer submits the updated configurations.

The system validates the submitted configurations.

The system saves the validated configurations.

The system confirms to the Farmer that the configurations
have been successfully updated.

The Farmer ends the configuration setup process.

If the submitted configurations are invalid:

The system displays an error message to the Farmer.

The Farmer can correct the configurations and resubmit.

System should validate the configurations. Configuration should

be updated without getting errors in current flow.

29

Use Case 9 : View Weather Data

Attribute

Use Case Name

Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

View Weather Data

Farmer

The Weather Station is operational and sending data. The Farmer
is authenticated and authorized to view weather data.

The Farmer has viewed the current weather data.

1. The system appears the weather data in dashboard to the
Farmer.
2. The Farmer reviews the weather data.

If the system cannot retrieve the weather data:

The system displays an error message to the Farmer.

The system must ensure the security and privacy of the weather
data. The system must update the weather data at regular
intervals. The system must display the weather data in a user-
friendly format. The system must log all access to the weather
data for auditing. The system must be capable of handling
different types of weather data (e.g., temperature, humidity, wind
speed).

30

Use Case 10 : Receive Alerts

Attribute

Use Case Name

Primary Actor

Precondition

Postcondition

Main Flow

Extensions

Special Requirements

Description

Receive Alerts

Farmer

The alerting system is operational. The Farmer is registered to

receive alerts.

The Farmer has received and acknowledged the alert.

1. A critical condition (e.g., extreme weather, low soil
moisture) triggers an alert in the system.

2. The Microcontroller or Weather Station sends an alert to
the system.

3. The system processes the alert and determines that it
should be sent to the Farmer.

4. The system sends the alert to the Farmer via the preferred

communication channel (e.g., SMS, email, app

notification).

The Farmer receives and reviews the alert.

6. The Farmer acknowledges the receipt of the alert through
the system.

e

If the system cannot send the alert to the Farmer. The system logs
the failure. The system retries sending the alert after a predefined
time interval. If the alert is still not sent after several attempts, the

system escalates the issue to a system administrator.

The system must ensure the security and privacy of the alerts. The
alerts must be sent in real-time or near-real-time. The system must
log all sent alerts for auditing. The alerts must be clear, concise,
and actionable. The system must allow the Farmer to customize

alert preferences.

31

3.5.2. ER Diagram

1
dule

Figure 3.5:Entity Relationship Diagram

As per the Figure 3.5, Each plant will be associated with multiple tasks, and there will be a
predefined schedule for each task. Fertilization and watering processes will be executed through
the tasks and schedules. Plants can have multiple sensors and actuators connected, but sensors and
actuators can only be attached to one plant. Audit details of each task will be inserted into a separate

table for the machine learning process.

32

3.5.3. Sequence Diagrams

Sequence diagrams describe the interaction between the objects in sequence order that those
interactions occur. Sequence diagram organized based on time with the time flow running from

top to bottom of the diagram. The following figures describe main flows of the system.

Scenario 1: Plant management

[Plant \ |. Device .'| | Database |
| Controller | | Controller | \ |

AN v /
Far:'ner — i -
1 1 1 :
1] 1 1
1 1 1 I
! Add Plant - ! i
1 > _ 1
1 Insert Plant Details 1
1 +
1 1
Return Plant Details
: € T T O ERRCECETEEEPEEEERE PR
| Display Success Message |
L]
P Tty ' '
1 1 :
1 1 1 f
1 1 1 1
1 1 1 f
1 1 1 f
! Update Plant [! 1
1 1
1 - Request Plant Details 1 '
1 T f
| Return Plant Details | f
! S A GLRECTCEELLLEEITELR P Ao '
L]
1 1
1 Update Plant Details 1 :
1 T f
1 Return Plant Details 1 f
1 (------------------------------------ demece s sc s s s s s s s s s s s === 1
: Display Success Message :
I* -------------------- | 1 :
1 1 1 f
1 1 1 f
1 . 1 1
]
1 Map Device to Plant e Request Device Details 1
»~ .
1 Y & 1
! Fetch Device Details [
1 L e
: Update Plant Details 1
»
| Return Plant Details |
1 e Ao s e e cccccccccoooaa
1) 1
1 Display Success Message 1
"""""""""" 1 1
1 L 1 1
1 1 1]
1 1 1 n
1 1 1 1

Figure 3.6:Sequence diagram for plant management

Figure 3.6 describes plant insert, plant details update and plant mapping to devices. User can map

devices to plant at the initial plant insertion or after the plant creation.

33

Scenario 2: Device Management

[Device | [| Database |
| Controller | | Controller |

N /

1 T 1
1 1 | :
1 1 1 1
1] 1 I
! Add Devi !
. evice > X I
1 Insert Device Details |
! >
1 1
Return Device Details

1
! € TR S ESRCECEEEEEEEER PR PR
| Display Success Message |

1
P e ety : 1
1 | :
1 1 1 f
1 1 | '
1 1 1 '
1 1 1 1
! Update Device 7 !
1 >) 1 !
1 Request Device Details] '
1 T '
! Return Device Details ! 1
X D R e e Pl 1

1
1 |
1 Update Device Details I :
1 T 1
1 Return Device Details ! '
1 DR T L L L L T T '
: Display Success Message :
I* -------------------- | 1 :
1 1 | '
1 1 1 f
1 . i |

1
1 Map Plant to Device Request Plant Details '
1 ~ »

1
! Fetch Plant Details 1
1 R e el e e
1 . .
' Update Device Detials] >
! Retumn Plant Details !
1 S e
1 1
1 Display Success Message |

"""""""""" 1 1

1 T 1 1
1 1 |]
1 1 1]
1 1 | 1

Figure 3.7: Sequence diagram for device management

Figure 3.7 describes device insert, device details update and device mapping to plant. At this point

one device can only be assigned to one plant.

34

Scenario 3: Configuration Management

[Config \ [Plant | | Device | Database |
(| \ /
| Controller | | Controller | | Controller | \ /
\ / N / \ / . p
Farmer . , ~— - % i
s . . :
1 1
1 1 ! ! !
1 1 ! . !
1 ' ! : !
. Add Config o ' : 1
! = Insert Config Details 1 1
1 . 3 }-
1
1 1
1 Return Config Details e e mem—bmmmm—m———mmm——————
------------------------------------ N
1) « ' 1
1 Display Success Message 1 1 '
1
___________________ 1 1 [
A - ! -
1 1 [
: : ' ' -
1 1 ! : !
1 1 ! . !
1 ' ! : !
\ Update Config o[! : 1
1
! 4 Request Config Details 1 l 1
: T + >
1 Return Config Details ! ! l
! B Y JE e 1
1 ! K !
1 1 [
! Update Config Details 1 1 f
A -
: T ¥ |
| Return Config Details 1 : 1
----------------------------------- B e I |
| <
1 Display Success Message : :
]
I‘ """""""""" 1 1 1
1 - 1 ' 1
I : ' ' '
— 1 ! [
: Map Config to Plant Request Plant Details !]
»~ - 1
1 r g .]
| Fetch Plant Details . !
1 Sttt 1
1 Update Config Detials T I -
1 1 1 »
| Return Config Details 3
! S L TR PP PP PR Ao oo
1
IK- Display Success Message 1 1 1
-------------------- 1 1 1
1
1] \ \
1 1 !
1 1 ! ' !
7 1 ! 1
: Map Config to Device L' Request Device Details 1 1
[" »
1 \ > I
| < Fetch Device Details B !
!) 1
1 Update Config Details 1 1 -
1 »
| Retumn Config Details 1 1
. [- mmmmm e e R LT E T R LT
1
k Display Success Message 1
.................... '
' 1
| 1
| 1
| 1

Figure 3.8: Sequence diagram for configuration management

Figure 3.8 describes configuration insert, configuration details update, and configuration mapping
to plants and devices. Configuration is common for both plants and devices; it stores a value

against the specified key.

35

Scenario 4: Watering Management

Watering Micro | Ccontig | Database Machine |
Controller EOE Controller | Aba
Farmer h g - [
] T T :
1
' 1 1
' 1 1
e ! !
1 1
1

Check Plant and Device configuration

Y

Request Config Details

Return Config Details

Return Config Details

Request Sensor Data

Return Sensor Data

(____________________________________

Request to Perform Watering Process

-t

Return Performed Watering Process !

Display Notification Save to Audit Details for Machine Leaming

Y

A

R,

Request Manuel Watering

Check Plant and Device configuration

\4
Y

Request Config Details

Return Config Details

Return Config Details

R LT T T

Request to Perform Watering Process

Return Performed Watering Process

Display Notification Save to Audit Details for Machine Learning

Y

ety G e LT

S

Figure 3.9: Sequence diagram for watering management

Figure 3.9 describes one of the main flows of the system. Watering process can be performed based
on user involvement, or it can be set up to automate based on sensor values and default config

values.

36

Scenario 5: Fertilization Management

Fertilizer Micro | Config | | Database Ea——
Controller EOE Controller | Aba
\ p o

~
1
1
1
e

Check Plant and Device configuration

Y

Request Config Details

Return Config Details

Return Config Details

Request Sensor Data

Return Sensor Data

(____________________________________

]
]

]

1

1

|

]

]

]

]

1

1

]

]

]

]

]

]

1 Request to Perform Fertilization Process
]

]

]

]

]
€

-t

Return Performed Fertilization Process !

Display Notification Save to Audit Details for Machine Leaming

Y

A

R,

Request Manuel Fertilization

Check Plant and Device configuration

\4
Y

Request Config Details

Return Config Details

1

1

]

]

]

]

L

]

1

]

]

: Return Config Details
f G T
]
]
]
]
]
]
]
]
]
]
]
]

Request to Perform Fertilization Process

Return Performed Fertilization Pracess

Display Notification Save to Audit Details for Machine Learning

Y

S

Figure 3.10: Sequence diagram for fertilization management

Figure 3.10 describes one of the main flows of the system. The fertilization process can be
performed based on user involvement, or it can be set up to automate based on sensor values and

default configuration values.

37

3.5.4. Class Diagram

The following class diagram illustrates the system's structure in terms of classes, their attributes,

methods, and object relationships. Class diagrams are typically used to depict the static view of a

system.
Configuration
Id: int N
Alert Type: string
1@ int N Key: string
Type: string Value: string
y e +GetConfig()
Message: string +CreateConfig()
Priority: int +MapConfig()
Date: string N
+SendAlert();
1
Flant
1 1
Id: int 1
) Device
Name: string
o Id: int
SensorData PlantDate: string
o int : 1 Row: string N Name: string
) o Type: string
Walue: string Column: string
. Port: int
GetSensorData() +CreatePlant()
CreateSensorData() +GetPlantDetails() Image: baset4
1 +CreateDevice()
+GetDeviceDetails()
+MapDevice()
1
N
Schedule Task . Audit
Id: int Id: int Id: int
StartTime: datetime Name: string Date: datetime
EndTime: datetime ! ! Description: string ! ! TaskName: datetime
Duration: timestamp Type: string TaskDescription: string
Status: string Volume: int Value: int
+GetSchedule() + Performi) + SaveAudit()
+SaveSchedule()

Figure 3.11: Class Diagram

38

3.6. User Interface Design

User Interface mainly focuses on appearance, feel, and interactivity in the system. It aims to
provide a simple, effective, and user-friendly experience by serving as the link between the user's
experience and the system's functionality. This section describes the visual elements, layout

structures, and interactions that will be implemented to create a consistent user experience.

3.6.1. UI Colors

User Interface color scheme consists primarily of various shades of green, enhanced by neutral
tones to create a balanced and visually attractive user interface. Since the system is related to
agriculture and environmental behavior, the use of green shades make it feel calm and natural,

which makes it easier for the user to navigate through the system.

3.6.2. System Layouts

The system style uses rounded shapes for things like buttons and layouts, as well as green colors.
The design feels softer and kinder because the corners are rounded, which matches the system's
natural theme. System UX design has mainly focus to achieve web application feel and stylish

appearance. There will be two main dashboards for the system.

e Main Dashboard — User can view all plant information on this dashboard.
e Plant dashboard — User can view and manage each plant.

39

3.6.3. Main Dashboard

The Figure 3.12 is main dashboard design and it contains multiple sections including header,

weather card, plant grid, plant card, task bar.

e Header: The header section is common for all pages, and it contains all main pages in the
system.

e Weather Card: This section contains all the information related to the weather conditions
in the location.

e Plant Grid: All plants will be appeared in plant grid. Users can view information related
to the plant by selecting each grid item.

e Plant Card: Whenever a user selects the plant grid item, information relevant to the
selected plant will be displayed in the plant card.

e Task Bar: Task progress will be visible to user with the task bar. It will be displayed the
progress of each task.

Indoor Farming | August 5th, 2023

Lavender

26 weeks

Air Temperature Weather Humidity
Sri Lanka 28°
Mostly Cloudy 57%

19%

Humidity

65% 39%
A Lavender Aster Lily Soil Moisture
Watering .
Watering Recommended Time
07:00 PM - 09.00 AM
‘ 65% 1H 39M
65% B Lavender Lily Next watering
Fertilization
Fertilising Ml Nitrogen
1 2 3 4 5 6 2 579 Recommended Time
07:00 PM - 09.00 AM
™9 Phosphorus
ol 46% 1H 39M
e Nllmgen Mext fertilization
< 88%
Plant Event Progress i
Statistics Dashboard

Lavender Watering Plant I

Figure 3.12:Main Dashboard

40

3.6.4. Plant Dashboard

Figure 3.13 is the design of plant dashboard and it is including all watering and fertilization
options. The plant dashboard shows all the information about the selected plant, and the user may
check all sensor details as well as control the watering and fertilization processes. Except for the
plant grid, all components of the main dashboard are available in the plant dashboard. Two major

parts will be introduced to control the system's key functions.

e Watering Control — View related sensor details, control watering process, view watering
related recommendations.

e Fertilization Control - View related sensor details, control fertilization process, view
fertilization related recommendations.

Indoor Farming | August 5th, 2023

. Location . Air Temperature Weather Humidity Lavender
. o
Moratuwa, Sri Lanka 28 Mostly Cloudy 57% 26 weeks
Watering Control Fertilization Control 1 9%
Humidity
Sensor Readings Sensor Readings
: 39%
Humidity X Moisture Tem;:’efalure N Niogen p Phosphorus K Potassium b Soil Moisture
57% 57% 28 57% 57% 45% .
Reccomendation Reccomendation Watering Recommended Time

07:00 PM - 09.00 AM

Optimal water level is 300mtl Optimal water level is 300ml ‘ 65% 1H 39M
Next watering

Actions Actions Fertilization

" 9 Nitrogen
Start Manual Test Injectors Start Manual Test Injectors " 579% Recommended Time
07:00 PM - 09.00 AM

®® Phosphorus
o 46% 1H 39M

Next fertilization

09 Potassium

- 88%
Plant Event Progress e 5
D ender Watering Plant — Statistics Main Dashboard

Figure 3.13 : Plant Dashboard

41

3.6.5. Popups

Pop-up windows will provide access to features such as managing plants, devices, and setups.

These pop-ups are user-friendly and intuitive, allowing for quick and simple navigation. They will

appear when you click on specific buttons or options, allowing you to have a seamless experience

without leaving the current web page. This method aims to make the system more efficient and

user-friendly. Figure 3.14 and Figure 3.15 are the designs of the Popup components.

Add Plant

Flant Marme

Description

Row Select

Fant Date 2023-08-03 v

Detault Watering Level

Default Fertilization Level

Figure 3.14: Add plant popup

Add Device

Device Name

Description

Plant Select ¥

Deevice Type Select W

Serial Number

Port Select

Figure 3.15: Add device popup

42

4 CHAPTER - IMPLEMENTATION

This chapter describes the implementation of the system including software and hardware
components, related technologies, system design and architecture, hardware components, software

components and system deployment will be focus in this chapter.

4.1. Related Technologies

The proposed smart water and fertilize system consist both software system and hardware setup
that communicate each other over wireless connection. Software system has developed as a web-
based application that consist both frontend and backend. Following latest technologies have used

to develop the system with industry standard and the well-known best practices.

4.1.1. Frontend Technologies

UI and the frontend application has Implemented with Angular. Angular is a popular open-source
web application based on JavaScript which mostly use for single page applications that update
HTML pages dynamically. Angular is build using Typescript and entire frontend application coded
with typescripts that’s makes easier to write more complex code and maintain large scale

applications.

UI components implemented with HTML, SCSS and Bootstrap 5 styles used to make components

more attractive. Ngx-boostrap used to integrate few Ul components.
SignalR Angular and Redux state management tools has utilized for real-time feature in the system.

4.1.2. Backend Technologies

Backend is implemented with .Net Core, developed by Microsoft. It’s a free open-source, cross
platform framework used for building complex applications. .NET core build on the top of C#
language. Entity Framework (EF) has integrated with .NET Core as object relational mapping
(ORM) framework to simplify data operations. EF allows to map domain entities to database
tables, without using most of data-access code. PostgreSQL database used with Entity Framework
to store data of the system. PostgreSQL is powerful open-source object relational database that

provide more reliability, data integrity.

SignalR technology used to facilitates real-time communication. SignalR uses WebSockets to

notify change of events from server to connected clients real time.

43

MQTT messaging protocol used to communicate between system backend and hardware
components. MQTT is lightweight and efficient messaging protocol suitable for environment that
has limited bandwidth.

4.2. Hardware Implementation

12v+

3 [15
12v to 5V Buck
converter

Water Pump
Power Supply

220v

4-Relay Module v

Nitrogen Pump

12v+
Phosphorus Pump
GPIO

12v+

I Potassium Pump

. _—
m = e
GPIO

GPIO

Tempreture and
Humidity Sensor

Soil Moisture Sensor

Figure 4.1:Hardware Components Diagram

Figure 4.2: Actual Hardware Implementation

The connection between electronic components is illustrated in Figure 4.1. Actual hardware

configuration implementation is depicted in Figure 4.2.

44

4.2.1. Hardware Components

ESP32 Devkit 1 Microcontroller: The ESP32 is WIFI and Bluetooth inbuilt microcontroller
which is operate in 3.3V. This development board consume low power and consist dual-core
processor and 512KB memory. ESP32 board provides multiple GPIOs including serial

communication ports. It is capable to operate in USB power or external Sv power input.
Water Pump: DC 12v Powered water pump with brush less magnetic.

4-Relay Module: A relay module used to control high voltage devices which connected
microcontroller. This module consist 4 relays and it allow use control 4 different devices from

microcontroller. This module operates on Sv.

12v Buck Convertor: Buck convertor is electronic circuit that convert higher voltage to lower

voltage. This module is capable to convert 12v to 5-11v range.

RS485 to TTL convertor: Signal conversion circuit that convert RS485 to TTL signals in serial

communication.

NPK Sensor: NPK sensor is specialized device used in agriculture industry to measure the
nutrients levels of Nitrogen, Phosphorus and Potassium in soil. This device operates in 5-12v range

and support only serial communication in broad rate of 4800.

Temperature and Humidity Sensor: DHT11, which is a widely used temperature and humidity
sensor that can measure temperature range from 0°C to 50°C with a +2°C accuracy. DHT11 has a
humidity measurement range of 20% to 90% RH (Relative Humidity) with a +5% RH accuracy.
This device operates at 3.3V and provide digital signals only.

Soil Moisture Sensor: Device used to measure the water content in soil. This device operates at

3.3V and provide both analog and digital signals.

45

4.2.2. Sensor Integration

According to the Figure 4.1, three sensors are used to measure nutrient levels, soil properties, and
environmental variables. The DHT11 and Soil moisture sensors are directly attached to the ESP32
board as they both operate on a 3.3v power supply, which can be provided by the microcontroller.

Two digital input pins are utilized for the purpose of reading sensor information.

The NPK sensor requires a power supply of 5-12V for its operation and is connected to an external
power source that generates 12V 5A from a 220V AC input. The NPK sensor only supports serial
communication. The NPK sensor generates RS485(TIA-485(-A)) signal, which must be converted
to TTL (Transistor-Transistor Logic) in order to be recognized by the microcontroller. Thus, an
RS485 to TTL converter is linked between the NPK sensor and the ESP32 microcontroller.

4.2.3. Actuator Integration

According to the Figure 4.1, there are four pumps linked to the system. All of these pumps are
functioning at a voltage of 12 volts and require the use of relays to respond to incoming signals
from a microcontroller. The pumps are linked to an external power source via the relay modules.
The pump motor operates exclusively when a signal is received from the microcontroller through
each relay. The 4-Relay module functions at a voltage of 5 volts, and a Buck converter is installed
to convert an external power supply of 12 volts to the required 5 volts for the relay module. The
ESP32 allocates four GPIO pins for the relay module.

46

4.24. Code Segments

The ESP32 microcontroller is programmed using the ArduinolDE with ESP extensions. The

following sections provide detailed explanations of the main code snippets.
WiFi Connection and MQTT connection

void setup() {

58T 50TTware serlal baud To 1151406

Serial.begin(115288);
SerialPort.begin(480@, SERIAL_8N1, 16, 17);
delay(1e);

Lonnectlng To a W1kl netwWork

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(588);
Serial.println({"Connecting to WiFi..");
}
Serial.println{"Connected to the WiFi network™);

connecting to a mgtt broker
client.setServer(mgtt_broker, mgtt_port);
client.setCallback(callback);
while (!client.connected()) {
String client_id = "esp32-client-";
client_id += String(WiFi.macAddress());
Serial.printf("The client ¥s connects to the public mgtt broker\n", client_id.c_str());
if (client.connect{client_id.c_str())) {
Serial.println({"Public mgtt broker connected");
Y else {
Serial.print("failed with state ");
Serial.print(client.state());
delay(20080);
}
h

client.subscribe("SWFS/wateringtasks™);
client.subscribe("SWFS/fertlizetasks™);

Figure 4.3: Wifi Connection Initiation

The program initially establishes a WiFi connection and a connection to a MQTT broker.

47

Perform Watering and Fertilizing tasks

After establishing a connection, the program will subscribe to two topics, namely
"SWEFS/wateringtasks" and "SWFS/fertilizetasks", in order to carry out tasks received from the
.Net backend. Currently, the callback method has been registered with the MQTT client. When a

message is received, it will be passed to each method as Figure 4.4.

void callback{char *topic, byte *payload, unsigned int length) ﬂ

print("Message arrived in topic: ");

ntln{topic);

Lprint(“Message:");

String messageTemp;

for (int i = @; i < length; i++) {
serial.print({char)payleoad[i]);
messageTemp += (char)payload[i];

1
I

Serial.println();
Serdial.println("------cmcmmmmmmmiaaon "

if (strcmp(topic, "SWFS/wateringtasks") == @) {
Serial.println(topic);
handleWateringRelay(messageTemp, length);

1
7

if (strcmp(topic, "SWFS/fertlizetasks") == @) {
Sserial.println(topic);
handleFertilizerRelay(messageTemp, length);

1
i

i

Figure 4.4: MQTT Subscription

The watering and fertilization operation is carried out using following methods with the use of
variables in the received JSON message. Essentially, the relays will receive power for a

predetermined duration and subsequently deactivate.

void handleWateringRelay(String message, unsigned int length) ﬂ
DynamicJsonDocument doc(512);
deserializelson(doc, message);

if (doc.containsKey("Port") && doc.containsKey("Duration™)) {
TaskDto task;
task.Port = doc["Port”];
task.Duration = doc["Duration”];

Serial.println("Watering Task Received:");
Serial.print("Port: ");
Serial.println(task.Port);
Serial.print("Duration: ");
Serial.println(task.Duration);

digitalWrite(task.Port, LOW);
delay(task.Duration);
digitalWrite(task.Port, HIGH);
- else {
Serial.println{"Invalid JSON format for Watering Task™);

Figure 4.5: Watering Handle Method

48

void handleFertilizerRelay(String message, unsigned int length) {
DynamicJsonDocument doc(1824);
deserializelson(doc, message);

if (doc.is<Jsonhrray>()) {
JsonArray tasks = doc.as<JsonArray>();
Serial.println{"Fertilizer Tasks Received:");
for (const auto &task : tasks) {
if (task.containskKey("Port") && task.containsKey("Duration™)) {
TaskDto fertilizerTask;
fertilizerTask.Port = task["Port"];
fertilizerTask.Duration = task["Duration™];

Serial.print("Port: ");
Serial.println(fertilizerTask.Port);
Serial.print("Duration: ");
Serial.println(fertilizerTask.Duration);

f/ handle fertilizer relays
activateRelay(fertilizerTask);
digitalWrite(fertilizerTask.Port, LOW);
delay(fertilizerTask.Duration);
digitalWrite(fertilizerTask.Port, HIGH);

1} else {
Serial.println("Invalid 150N format for a Fertilizer Task");
¥
}
} else {
Serial.println{"Invalid JSON format for Fertilizer Tasks");
h
}

Figure 4.6: Fertilizing Handle Method

49

Obtaining Data from Sensors

The DHT humidity and temperature sensor has an internal library for reading values. Soil
moisture sensor is using the default ESP32 analog signal read method.

int readSocilMoisturer(int port) {
int sensorValue = analogRead(port);
int moisturePercentage = (188 - ((sensorValue / 4@95.88) * 188));
return moisturePercentage;

r

Figure 4.7: Soil Moisture Value Reading Method

float readTempreture(int port) {
float t = dht.readTemperature();
return t;

float readHumidity({int port) {
float t = dht.readHumidity();
return t;

Figure 4.8:Tempreture and Humidity Value Reading Method

The NPK sensor responds exclusively to RS485 Modbus commands in order to provide values
for each level of nitrogen, phosphorus, and potassium. The NPK sensor responds to the inquiry
frame with 8 hexadecimal values that include the values for nitrogen (N), phosphorus (P), and

potassium (K). This communication operates through serial communication using an RS486 to
TTL converter.

Request frames for N, P, K values as below
const byte nitreo[] = { 6x@1, 9xB83, 8x88, B6x04, Bx86, 8181, Oxc5, éxch I;

const byte phos[] = { @x@l, @xB3, 8x88, Bx85, 8xe8, éx8l, exo4, 8xeb 1,
const byte pota[] = { éxgl, éxB3, 6x80, Bx06, B8xe8, axbl, exdd, 8xéb };

50

Nitrogen(), phosphorous() and potassium() methods request above inquiry frame to NPK sensor
via serial communication. Once response receive it will return back from the method.

byte nitrogen{) {
delay(1@);
if (SerialPort.write(nitro, sizeof(nitro}) == 8) {
for (byte i =@; i < 7; i++) {
values[i] = SerialPort.read(};
}
}
return values[4];
}
byte phosphorous() {
delay(1@);
if (SerizlPort.write(phos, sizeof(phos)) == 8) {
for (byte i =@; 1 < 7; i++) {
values[i] SerialPort.read();
}
}
return values[4];
}
byte potassium() {
delay(1@);
if (SerizlPort.write(pota, sizeof(pota)) == 8) {
for (byte i =8; 1 < 7; i++) {
values[i] = SerialPort.read();

¥
Serial.println();
ky
return values[4];

)

Figure 4.9:NPK Values Reading Methods

51

Publishing sensor values to MQTT topic

Once the values obtained from the sensors, they are transmitted to the backend service using

MQTT topic using the following methods.

float value, String sensorType) {

void publishSensorData(int port,
" + String(port) +

String jsonMessage = "{\"port\"
: dength() + 1];7

client.publish("SWFS/sensor-data"”, messageBuffer);

}

void publishMPKSensorData

+ String(port) +

String jsonMessage {\"port

i

char messageBuffer[jsonMessage.length() + 1

client.publish("SWFS/sensor-data"”, messageBuffer);

}
Figure 4.10: Sensor Values Publishing Method

“ \value\":”
char messageBuffer[jsonMessage
jsonMessage.toCharArray(messageBuffer, sizeof(messageBuffer));

(int port, String sensorType, int N, int P, int K) {
LAV AT

+ String(value) + ",\"sensor\":\"" + sensorType + "\"}";

"+ string(P) +

"+ string(M) +

jsonMessage.toCharArray(messageBuffer, sizeof(messageBuffer));

52

+ String(K) + ",\"sensor\":\"" %+ sensorType + "\"}";

4.3. Software Implementation

Frontend

Browser

' Components
'

; —E2
Bl e intertace " '

! '

Presentation Layer Business Logic Layer Repository : ___________________ .
i

Micro Controlier

Database

Figure 4.11: Front-end and Back-end Architecture

System has developed based on Client -Server software architecture. Angular frontend as client
and NET backend as service working with web API and web socket communication. Postgres
database has used to save all data. MQTT protocol has used to communicate from backend to
microcontroller. Both frond end and backend developed focus on maintainability and
extensibility for the industry standards.

53

4.3.1. Frontend Architecture

board.component htm

ashboard.compone

board.component.s

ar

-bar.component.html

bar.component.

> add-device
> -plant
> up
> weather-card
board.component html
ashboard.compones
board.compone:

board.component.ts

Figure 4.12: Front-end Code Structure

Frontend of the System has developed based on component-based architecture to organize
angular application into hierarchy of interconnected components. Each component contains its
own view, styles, logic and metadata that working together to render unit of application UL All
these units have bundle together to produce functional application.

Services and Dependency Injections

All http calls have coded inside service classes and injected those classes to component with
dependency injections. Dependency injection allow to share class instances between components
to consume its methods making system more modular and efficient.

savePlant(plantData: any b
return .http.post<any>(" .apiUrl}/plant™, plantData);

}
getPlants()) [
return 5 c 3 .apiurl}/all-plants™);

getPlant(plantId: e
return .htt)3

updatePlant(plantData: {
return .http.post) .apiurl te”, plantData);

Figure 4.13: Service Class

54

ConfigPopupComponent } fr

templateUr
styleUrls:

onInit{

bsModalRef
xAxisNumbers =
yAxisNumbers
selectedPlant:
selectedPlantI

grid: any[][] =

|
bsModalService:
plantService:
toastr :
router

Figure 4.14: Constructor Dependancy Injection

As per the Figure 4.13 and Figure 4.14 http API request has maintained inside plant service and
it has injected to the required component constructor. Component can receive and send data with
the use of RXJS subscription as Figure 4.15.

addPlant() {
if .plantForm.valid
.isloading = 5
.plantService.savePlant(.plantForm.getRawValue()).subscribe(

next: (response
if(response && response.resultData){
.toastr.success(Plan fully
.close();

IS
J

3

error:

Figure 4.15: Add Plant Method

Redux State Management

Redux provide capability to hold entire state of the application with single store. Redux store has
implemented in application to keep real-time data in centralized location. Application obtains

real-time data such as sensor values from store with the use RXJS subscriptions. Application
update component data at every time state has change.

55

SignalR

SignalR is a library from Microsoft to helps to minimize complexity of adding real-time web
functionality to Application. SingalR provide NPM package to make compatible angular
applications to handle real-time communication which happens on the top of web sockets. It is a
two-way communication between server and its connected clients that server can push content to
its client instantly.

stopConnection(
-hubConnection

console.log("C
console.log('E

(data)

.store.di d { sensorData: data }));
console.log N

', error);

.store.dispatch(updateE
console.log n di

i, error);

Figure 4.16: Redux State Management

As per the Figure 4.16, Application will listen to the web socket and it will dispatch action to
redux store whenever data hub receives a data object. Once get notified from listener store will
update its state to different latest state. For every change of state angular component get updated
with the latest data across the application.

56

4.3.2. Backend Architecture

NET core backend implemented based on repository pattern. Classes have organized into layered
architecture for better maintainability. NET core application contains three main layers API,

services, repositories and three minor layers to hold entities, data transfer objects, utilities.

a 53 Solution 'UCSC.SWFS.SRV' (6 of 6 projects)

P ﬁgﬁ UCSC.SWFS.5RV.API

b alcs] UCSCSWFS.SRV.Dto

P a[c8] UCSCSWFS.SRV.Entity

b & [es] UCSCSWFS.SRV Repositories
P a e8] UCSCSWFS.SRV.Service

b & e8] UCSCSWFS.SRV.Utilities

API Layer

Contains all web API methods and working as presentation layer for request and respond by
communicated directly with the business logic layer. HTTP controller methods and service layer
interaction describe by following figure. Services have injected to the controller using dependency

injections.

—inamespace UCSC.SWFS.S5RV.APL.Controllers
{

L puvie class PamConteatien : Controtierbase
! private rreadunr'l.y IPlantService _plantService;
= pufl;l.jj.c iI;"L;M;t‘CU:r::r}c)'L'I.-e_l;(EI:PfLia:ntS;;;f:ice: ;lgl;tSE‘PViCE)
¢ _plantService = plantService;

}
[HttpGet("all-plants")]

. public async TaskeRespanseDtoslist<PlantDtoss> GetAlIPlants()
! return await _plantService.GetAllPlants();
%Htthet(“plant”)]

= pub'-L;c -async Ta;R<Respon5eD‘1:o<D'LamtDtD>-> SavePlant(int plantId)

{

return await _plantService.GetPlant(plantId);
}

[HttpPost("plant")]
= pub:L;c 7async Ta;R<Respon5eD‘to<P'Lam:tDtD>; SavePlant([FromBody] PlantDto plant)
! return await _plantService.SavePlant(plant);
{Httppost(”update"]]
= pub:L;c 7async Ta;R<Respon5eD‘to<P'LamtDtD>; UpdatePlant([FromBody] PlantDto plant)
! return await _plantService.UpdatePlant(plant);

¥

Figure 4.17: Web APl Methods

57

Service Layer (Business logic layer)

Contain core functionality of the application including logical decisions, data processing,
background tasks, real-time communications. This layer act as intermediary between presentation
layer and repository layer. Following figure contains Plant service which hold all data fetching and
storing methods related to the plant. Service layer communicate to the repository layer that has
only access to the data source. Multiple repositories can inject to the service class with the use of

constructor dependency injection in order to use data methods in repositories.

public class PlantService : IPlantService

{
private readonly IPlantRepository _plantRepository;
private readonly IUnitofWork _unitofWork;
private readonly IMapper _mapper

public PlantService(IPlantRepository plantRepository, IMapper mapper, IUnitofWork unitofWork)

{
_plantRepository = plantRepository;
_unitoflWlork = unitofWork;
_mapper = mapper;

}

public async Task<RespenseDto<lList<PlantDto>>> GetAllPlants()
{
ResponseDto<List<PlantDto>> plantResponseDto = new ResponseDto<List<PlantDto>>();
plantResponseDto.ErrorList = new List<ErrorInfoDto>()
try
{
List<Plant> plants = await _plantRepository.GetAl1().Include(x => x.SensorData).TolistAsync();
if (plants != null && plants.Count > @)
{
var plantDtolList = _mapper.Map<lList<PlantDto>>(plants);
plantResponseDto.ResultData = plantDtolist;
}
else
{
plantResponseDto.ResultData = null;
}
}
catch (Exception ex)
{

plantResponseDto.ErrorList.Add(nem ErrorInfoDto

{
ErrorCode = "SMFS_ERR_82",
ErrorMessage = UserResource.SMFS_ERR_02
1
throw ex;

}

Figure 4.18: Service Layer Method

Apart from data handling, this layer responsible for real-time communication, MQTT

communication and background tasks.

58

Repository Layer

Data access layer on the other hand repository layer provide direct access to the database and
contain logics and method for inserting and updating data. Each database table contain its own
repository. Each repository can only access its relevant data table. Repository classes coded with
generic way with the using interfaces, entity framework and unit of work. Unit of work handle
transaction and make sure all changes to the entities in the domain model are applied together in a
single transaction to maintain data integrity and consistency. Following figure shows generic

repository method written with the use of entity framework and Unit of work implementation.

publiec class Repository<TEhtity) : IRepbsitory<TEntity) where TEntity : class

{
protected readonly DbContext _dbContext;
protected readonly DbSet<TEntity> _dbSet;
private readonly IRequestHeader _requestHeader;
public Repository[DbCoEte;t dbContext,-IRequestHeader requestHeader)
{
_dbContext = dbContext;
_dbSet = dbContext.Set<TEntity=();
_requestHeader = requestHeader;
}
public async Task<IQuefyaBle<TEntity>>-GetAllAsync(ExpressiontFurc<TEntity, bool>> predicate = null)
{
IQueryable<TEntity> query = await Task.FromResult(_dbSet.AsQueryable());
if (predicate != null)
{
query = guery.Whers(predicate);
}
return query;
}
publie IQueryable<TEntify>-Getﬂll(Expre;sion<Func4TEntity, bool>> predicate = null)
{
IQueryable<TEntity> query = _dbSet;
if (predicate != null)
{
query = query.Where(predicate);
}
return gquery;
}
public async Task<TEntify=-Insertﬂsync(%Entity entity)
{
Helper.SetBasePropertiesOnInsert(entity, _requestHeader);
await _dbSet.AddAsync(entity);
return entity;
- - - - . at s

Figure 4.19:Repository Methods

59

Background Tasks

Scheduler task has defined for watering and fertilization process. At each 30 seconds it will
check for plant status and do watering and fertilization as per the requirement.

protected override async Task ExecuteAsync{CancellationToken stoppingToken)

{

/f Your background logic goes here
while (!stoppingToken.IsCancellationRequestad)
{

using (var scope = _serviceScopeFactory.CreateScope())

{

IScheduleService _scheduleService = scope.ServiceProvider.GetRequiredService<IScheduleService>()
f/ Perform the tasks or operations you need
Console.WriteLine($"Background service is running @ {@DateTime.UtcNow}™)

await _scheduleService.WateringPlantsSchedulerAsync();
f/ Delay for a certain duration before running the next iteration
await Task.Delay(TimeSpan.FromSeconds(38), stoppingToken);

await _scheduleService.FertilizingPlantSchedulerAsync();
/{ Delay for a certain duration before running the next iteration
await Task.Delay(TimeSpan.FromSeconds(38), stoppingToken);

Figure 4.20: Background Tasks

As per the Figure 4.20, two methods handling critical functionality in the system. It will check
for plant water and fertilizer level from the sensors and then perform watering and fertilization
process by communicating to microcontroller. At the same time all events are notify to clients
via SignalR to show progress to frontend application users real-time.

MQTT Integration

Consumer and publisher have implemented to handle data publish and consume with
microcontroller. At each 60 seconds microcontroller publish all sensor data to “SWFS-sensor-
data” and service will consume data object and process. On the other hand, backend service
will publish message to MQTT topic “SWFS -WateringTasks”, “SWFS-FertilizingTasks?”
whenever plant required watering or fertilization.

60

0 references | Rishmi Shehan, 145 days ago | 1 author, 1 change
protected override async Task ExecuteAsync(CancellationToken stoppingToken)

{

var options = new MgttClientOptionsBuilder()
.WithTcpServer("test.mosquitto.org", 1883)
LBuild();

_mgttClient.ApplicationMessageReceivedAsync += HandleReceivedApplicationMessage;

await _mgttClient.ConnectAsync(options, stoppingToken);

var subscribeOptions = new MgttClientSubscribeOptionsBuilder()
WithTopicFilter("SWFS-sensor-data")
LBuild();

await _mgttClient.SubscribelAsync(subscribeOptions, stoppingToken);

3

Figure 4.21: Subscribe MQTT Topic

TaskDto wateringTask = new TaskDto()

{
PlantId = plant.Plantld,
TaskType = "WATERING",
Port = waterPump.Port,
Duration = wateringDuration
Y

performedTime = DateTime.UtcNow;
await _MQTTBrockerService.PublishMessageToMqttBroker("WateringTasks", JsonConvert.SerializeObject(wateringTask));
EventDataDto wateringEventDataDto = new EventDataDto()
{
Id = Guid.NewGuid(),
Type = "WATTERING",
PlantID = plant.Plantld,
EventType = "AUTOMATED_WATERING",
StartAt = performedTime,
Duration = wateringDuration
i I

await _dataHubContext.Clients.All.SendAsync("EventData", eventDataDto);

if (plant.WateringScheduleType == nameof(WateringScheduleType.ROUTING))
{

plant.NextWateringTime = NextWateringDate(plant);
}

plant.LastWatered = performedTime.HasValue ? performedTime.Value : null;

_plantRepository.Update(plant);
await _unitofWork.SaveChangesAsync();

Figure 4.22:Publish message to MQTT topic

61

4.3.3. Machine Learning Integration

Few data models have been trained using the dataset from an external source. Due to the lack of
historical data in the system, an external dataset was utilized to train the models.

A E C D E F
1 ICrupTypelCrupDa‘,fﬁ SoilMoistur Temperatt Humidity Irrigation
2 |'Wheat 10 400 30 15 0
3 'Wheat 7 200 30 32 0
4 |Wheat 9 300 21 28 0
5 |'Wheat 3 500 40 22 0
& 'Wheat 2 700 23 34 0
7 |Wheat 5] 200 21 29 0
8 |Wheat 3 500 33 26 0
8 |\Wheat 8 350 21 28 0
10 'Wheat 11 123 17 45 0
11 'Wheat 12 543 25 53 0
12 'Wheat 13 425 33 22 0

Figure 4.23 Watering Dataset

The dataset shown in Figure 4.23 was utilized for training the model. It was divided into two
separate datasets for training and evaluation purposes. Figure 4.24 illustrates the algorithm
utilized for training the watering model and its output, which is the accuracy of the data model
after evaluation.

public ModelEvaluationMetries TrainAndSaveModel()
{
try
{
IDataView dataview = _mlContext.Data.LoadFromTextFile<CropWateringData>
(Constants.basePath + Constants.WateringDataSet, hasHeader: true, separatorChar: *',');
DataOperationsCatalog.TrainTestData dataSplit = _mlContext.Data.TrainTestSplit(dataview, testFraction: 6.2)
IDataView trainingData = dataSplit.TrainSet;
IDataView testData = dataSplit.TestSet;

var dataProcessPipeline = _mlCentext.Transforms.Concatenate("Features", nameof(CropWateringData.CropDays),
hameof(CropWateringData.SoilMoisture), nameof(CropWateringData.Temperature), nameof(CropWateringData.Humidity))
.Append(_mlContext.BinaryClassification.Trainers.SdcalogisticRegression(nameof(CropWateringData.Irrigation), featureColumnName: "Features"));

var model = dataProcessPipeline.Fit(trainingData)

var predictions = model.Transferm(testData)
var metrics = _mlContext.BinaryClassification.Evaluate(predictions, labelColumnName: nameof(CropWateringData.Irrigation));

_mlContext.Model.Save(model, trainingData.Schema, Constants.basePath + Constants.WateringModelSavePath);

// Create and return the metrics object
return new ModelEvaluationMetrics
{
Accuracy = metrics.Accuracy,
AreaUnderRocCurve = metrics.AreaUnderRocCurve,
FlScore = metrics.FlScore
Iy
}
catch (Exception ex)
{
Console.WriteLine($"An error occurred: {ex.Message}l");
throw ex;

}

1

Figure 4.24 Model Training Algorithm

62

Once the training completed, the trained model is saved into a file and it will be retrieved whenever

the system needs to make data predictions, as shown in figure 4.25.

public L\rateringprediction Dredict(_Crop\u'ateringData input)

{
DataviewSchema modelSchema;
_model = _mlContext.Model. Load(Constants basePath + Constants.WateringModelSavePath, out);
var predictionEngine = _mlContext.Model.CreatePredictionEngine<CropWateringData, WateringPrediction>(_model);
return predictionEngine.Predict(input);
}

Figure 4.25 Prediction Function

Based on the return predicted value system determine plant require water or not.

4.4. System Deployment

Entire system deployed in Kubernetes cluster inside Microsoft Azure (AKS). Azure CI/CD

pipelines integrated to automate deployment.

Azure Kubernetes (AKS)

HEER F Backend Services
rontend

]] p———

o e

Client Application

ClicD i
Azure kubernetes
Pipelines |___ 5, «— Cluster

Postgres

Azure Container
Registry

Figure 4.26: Deployment Architecture

Standard_A2_v2 Kubernetes cluster with 4GB CPU and 2GB RAM used to deploy frontend and
backend services. Azure pipeline build versions on top of Linux base image and then built docker
images will push to Azure container registry. Finaly images will be taken from container registry

and deploy in Kubernetes cluster. Postgres service also deploy inside Kubernetes cluster.

63

S CHAPTER - TESTING AND EVALUATION

This section provides an overview of the objectives of the testing process, the main stages it
includes, the techniques that can be used for carrying out tests, and the implementation of test
plans. Afterwards, it focuses on the test cases, providing comprehensive information on each test's
essential requirements and objectives, the required inputs and actions, and the expected results.
Additionally, the chapter offers a system evaluation of the system by implementing it in a small-

scale pilot project.

5.1. Testing Strategies

A test strategy outlines the process and approach for executing tests on a project, including aspects
of both verification and validation and following test strategies used to validate the developed

system.

5.1.1. Unit Testing

Unit testing involves thoroughly reviewing and verifying individual components or modules of a
web application to ensure their proper functioning in isolation. Unit testing was done in the first
phase of software development, and it helped to detect and fix bugs and also improved the
robustness and reliability of the system. Developers can ensure the accuracy of individual

functions, methods, or classes by concentrating on the most testable components of an application.

5.1.2. Integration Testing

Integration testing is a crucial stage in the software development process that assesses the
interaction between hardware and software components of a system. This testing process extends
unit testing by evaluating the functioning of various modules or systems when they are integrated.
Integration testing involves initiating events from the system, assessing the hardware's response to

each event, and assessing the outcome of an event initiated by hardware.

5.1.3. System Testing

Validate that the system meets the initial requirement and behaves according to expected

outcomes. This process covers both functional and non-functional requirements.

64

5.2. Test Cases

Table 5.1 contains some of the main test cases related to the Ul components.

Test
#

1

Test Description

Add Plant with all
inputs

Add Plant without Plant

Name

Save button disabled when

form is invalid

Add Device with valid data

Add Device without Device

Name

valid

Input/Action

Plant Name: "Rose", Plant Type:
"Flower", Planting Date: "2023-
11-01", Water Level: "25",
Fertilizer Level: "20",
Recommended Temperature
Min: 28", Max: "30", Soil
Moisture: "40", N: "20", P: "20",
K: "20"

Plant Name:
valid

, remaining fields

Leaves required fields empty and
tries to click "Save"

Device Name: "Temp Sensor 1",

Device Type:
"TEMPERATURE_SENSOR",

Port: 28

Device Name: "", Device Type:
"HUMIDITY_SENSOR", Port: 2

65

Expected Outcome

Plant is added
successfully, and a
success message is
displayed. New plant
added to main grid

Validation error message
for "Plant Name is
required." is displayed.

The "Save" button is
disabled until all
required fields are valid.

Device is added
successfully, and a
success message is
displayed.

Validation error message
for "Device Name is
required." is displayed.

10

11

12

13

14

Save button disabled when
form is invalid

Map Device to Plant

Add Global Configuration
with valid data

Add Global Configuration
without a name

Add Plant Configuration
with valid data

Add Device Configuration
with valid data

Added plant configuration
reflect in config grid

Added device configuration
reflect in config grid

Leaves required fields empty and
tries to click "Save"

Search for a plant by ID or Name,
select it, and click "Map" button

Configuration Type: "Global
Configuration", Configuration
Name: "Max Temperature",
Value Type: "number", Value:
3"

Configuration Type: "Plant
Configuration", Name: ""

Configuration Type: "Plant
Configuration", Configuration
Name: "Max Temperature",
Value Type: "number", Value:
n3o"

Configuration Type: "Device
Configuration",Configuration
Name: "Max Temperature",
Value Type: "number", Value:
n3g"

None

None

66

The "Save" button is
disabled until all
required fields are valid.

The selected plant is
mapped to the device,
and its details are
displayed under
"Selected Plant."

Configuration is added
successfully, and a
success message is
displayed.

Validation error message
for "Configuration Name
is required." is displayed.

Configuration is added
successfully, and a
success message is
displayed.

Configuration is added
successfully, and a
success message is
displayed.

Configuration appear in
config grid

Configuration appear in
config grid

15

16

17

18

19

20

21

22

Delete Configuration

Display plants in the grid

Select a plant from the grid

Add a new plant from an
empty grid cell

Display correct plant details

Validate plant selection
functionality

Validate dynamic grid
updates

Display Sensor Readings

Click respective row delete
button

Load the grid view

Click on a plant card

Click on an empty grid cell

Hover or click on a plant card

Select different plants
sequentially

Add or remove plants and

observe grid updates

Load the control section

67

Configuration deleted
from grid

Each cell in the grid
should correctly display
a plant card if a plant
exists, or an empty card
otherwise.

The clicked plant card
becomes highlighted
(selected), indicating it
has been selected.

Triggers the add plant
functionality, potentially
opening a form to input
new plant details.

The plant's details (e.g.,
plant name) are correctly
displayed on the card.

Each selection clears the
previous selection and
highlights the new
selection.

The grid should
dynamically update to
reflect changes, showing
or hiding plant cards and
empty cells.

Sensor readings for
temperature, humidity,
and moisture are
displayed correctly with
appropriate icons and
values.

23

25

26

27

28

29

30

Update Sensor Readings

Validate Temperature
Reading Display

Validate Humidity Reading
Display

Validate Moisture Reading
Display

Toggle Watering Mode

Save Automated Watering
Mode

Save Manual Watering
Mode

Trigger an update (e.g., change
sensor locations)

Check the temperature reading

Check the humidity reading

Check the moisture reading

Click on "Automated" and then
"Manual" radio buttons under
the "Actions" section.

Select "Automated" mode and
trigger an interface action to
save/update the plant
configuration.

Select "Manual" mode and
trigger an interface action to
save/update the plant
configuration.

68

Updated sensor readings
are fetched and
displayed real-time
accurately.

The temperature is
displayed correctly with
the temperature icon
and should be in °C.

The humidity is
displayed correctly with
the humidity icon and
should be represented as
a percentage (%).

The moisture is
displayed correctly with
the moisture icon and
should be represented as
a percentage (%).

The interface updates to
show options specific to
each selected watering
mode.

The system saves the
"Automated" watering
mode as the setting for
the plant and maintains
this setting upon page
reload or navigation.

The system saves the
"Manual" watering
mode as the setting for
the plant and maintains
this setting upon page
reload or navigation.

31

32

33

34

35

36

37

38

Select Automated Watering
Schedule Type

Update Watering Schedule
in Automated Mode

Select Water Level Type in
Automated Mode

Input Manual Water Level in
Automated Mode

Toggle Water Level Type in
Manual Mode

Refresh Sensor-Based Water
Level in Manual Mode

Input Manual Water Level in
Manual Mode

Execute Watering Action

In "Automated" mode, select
"Sensor Based" and "Routing"
options for watering schedule

type.

Choose a schedule from the
dropdown when "Routing" is
selected as the schedule type
and trigger an update.

Select between "Sensor Based"
and "Manual" water level types
in "Automated" mode and
trigger an update.

Enter a value in "Manual Water
Level (ml)" under "Automated"
watering and trigger an update.

Click between "Sensor Based"
and "Manual" under "Manual"
watering mode.

Click the "Refresh" button under
"Sensor Based" water level type
in "Manual" mode.

Enter a value in "Manual Water
Level (ml)" under "Manual"
watering mode and trigger an
update.

Click the "Start" button under
either watering mode.

69

Options relevant to the
selected schedule type
are displayed
appropriately.

The chosen watering
schedule is saved and
will be applied to the
plant's watering routine.

The interface updates to
display input fields
appropriate for the
selected water level

type.

The manual water level
input is saved for the
plant's watering
configuration.

The interface updates to
reflect the selected
water level type,
showing sensor data or
allowing manual input.

The displayed sensor-
based water level is
updated to the current
reading.

The manual water level
input is saved for the
plant's watering
configuration.

The system initiates the
watering action based on

39

40

41

42

43

44

45

Display Sensor Readings for
Nitrogen

Display Sensor Readings for
Phosphorus

Display Sensor Readings for
Potassium

Display Fertilizing Control
Label

Toggle Automated Fertilizing
Mode

Toggle Manual Fertilizing
Mode

Automated Mode: Select
Fertilizing Schedule Type -
Sensor Based

Navigate to the sensor readings
section.

Navigate to the sensor readings
section.

Navigate to the sensor readings
section.

Check the top of the fertilizing
control div.

Select the "Automated" radio
button under Actions.

Select the "Manual" radio button
under Actions.

In Automated mode, select
"Sensor Based" for the Fertilizing
Schedule Type.

70

the current settings and
configuration.

Nitrogen sensor readings
are displayed correctly,
showing "30mg" as per
the latest sensor data.

Phosphorus sensor
readings are displayed
correctly, showing
"40mg" as per the latest
sensor data.

Potassium sensor
readings are displayed
correctly, showing
"155mg" as per the
latest sensor data.

The label "Fertilizing
Control" is displayed
prominently at the top of
the control section.

The automated fertilizing
options become
available for
configuration.

The manual fertilizing
options become
available for
configuration.

The system should not
display additional
options for schedule
customization, relying on
sensor data.

46

47

48

Automated Mode: Select
Fertilizing Schedule Type -
Routing

Automated Mode: Select
Fertilizing Level Type -
Manual

Manual Mode: Verify
Fertilizer Level Type
Selection

Table 5.1: Test Cases for Ul components

In Automated mode, select
"Routing" for the Fertilizing
Schedule Type.

In Automated mode, select
"Manual" for the Fertilizer Level

Type.

In Manual mode, ensure both
"Sensor Based" and "Manual"
options are available.

71

The system displays
options to select
fertilizing schedule
frequency.

Input fields for N, P, and
K fertilizer levels become
available for manual
input.

Both options should be
selectable with
respective adjustments
in the Ul for entering or
displaying fertilizer
levels.

Table 5.2 contains test cases for hardware components.

Test | Test Description Input/Action Expected Outcome
#
49 Water Pump Activation Test Change watering Water pump
type to manual and activates and
trigger watering task | irrigation begins.
with 50ml water System logs the
amount activation event.
50 Fertilization Pumps Accuracy Test Program specific N, P, | Each pump dispenses
K fertilizer release. the exact
programmed amount
of fertilizer.
51 Temperature Sensor Calibration Expose to controlled | Sensor readings align
Test temperature. with calibrated
reference
thermometer
readings.
52 Humidity Sensor Response Test Place in known Sensor readings
humidity levels. reflect in system
53 Insert into soil with Sensor readings
Soil Moisture Sensor Functionality varying moisture. reflect in system
Test
54 NPK Sensor test Expose to various soil | Sensor readings
types reflect in system

Table 5.2: Test Cases for Hardware Components

72

5.3. Test Results

Table 5.3 contains the results for Ul test cases.

Test# Test
Description
1 Add Plant with

all valid inputs

Add Plant
without Plant
Name

Save button
disabled
when form is
invalid

Input/Action

Plant Name: "Rose",
Plant Type: "Flower",
Planting Date: "2023-
11-01", Water Level:
"25", Fertilizer Level:
"20", Recommended
Temperature Min:
"28", Max: "30", Soil
Moisture: "40", N:
"20", P: "20", K: "20"

Plant Name: "",
remaining fields valid

Leaves required fields
empty and tries to
click "Save"

73

Expected
Outcome

Plant is added
successfully,
and a success
message is
displayed. New
plant added to
main grid

Validation error
message for
"Plant Name is
required." is
displayed.

The "Save"
button is
disabled until

Test Result

R 3 —)

' = B

Success!
Plant successfully saved!

Add New Plant

AddNewPlant ~ (Cose

Blant hame

Add Device
with valid data

Add Device
without
Device Name

Save button
disabled
when form is
invalid

Map Device
to Plant

Add Global
Configuration
with valid
data

Device Name: "Temp
Sensor 1", Device
Type:
"TEMPERATURE_SEN
SOR",Port: 28

nn

Device Name: "",
Device Type:
"HUMIDITY_SENSOR"
, Port: 2

Leaves required fields
empty and tries to
click "Save"

Search for a plant by
ID or Name, select it,
and click "Map"
button

Configuration Type:
"Global
Configuration",
Configuration Name:
"Max Temperature",
Value Type:
"number", Value:
n3g"

74

all required
fields are valid.

Device is added
successfully,
and a success
message is
displayed.

Validation error
message for
"Device Name
is required." is
displayed.

The "Save"
button is
disabled until
all required
fields are valid.

The selected
plant is mapped
to the device,
and its details
are displayed
under "Selected
Plant."

Configuration is
added
successfully,
and a success
message is
displayed.

Success!

Device successfully saved!

Add New Configuration

Add Global
Configuration
without a
name

Add Plant
Configuration
with valid
data

Add Device
Configuration
with valid
data

Added plant
configuration
reflect in
config grid

Added device
configuration
reflect in
config grid

Configuration Type:
"Plant
Configuration”,
Name: ""

Configuration Type:
"Plant
Configuration",
Configuration Name:
"Max Temperature",
Value Type:
"number", Value:
3"

Configuration Type:
"Device
Configuration",Config
uration Name: "Max
“Temperature",Value
Type:
"number",Value: "30"

None

None

75

Validation error
message for
"Configuration
Name is
required." is
displayed

Configuration is
added
successfully,
and a success
message is
displayed.

Configuration is
added
successfully,
and a success
message is
displayed.

Configuration
appear in config
grid

Configuration
appear in config
grid

15

16

17

18

Delete
Configuration

Display plants
in the grid

Select a plant
from the grid

Add a new
plant from an
empty grid
cell

Click respective row

delete button

Load the grid view

Click on a plant card

Click on an empty
grid cell

76

Configuration
deleted from
grid

Each cell in the
grid should
correctly
display a plant
card if a plant
exists, or an
empty card
otherwise.

The clicked
plant card
becomes
highlighted
(selected),
indicating it has
been selected.

Triggers the add
plant
functionality,
potentially
opening a form
to input new
plant details.

Configuration is successfully
removed from the grid.

wwwww

29

20

21

22

Display
correct plant
details

Validate plant
selection
functionality

Validate
dynamic grid
updates

Display
Sensor
Readings

Hover or click on a

plant card

Select different

plants sequentially

Add or remove plants

and observe grid
updates

Load the control
section

77

The plant's
details (e.g.,
plant name) are
correctly
displayed on
the card.

Each selection
clears the
previous
selection and
highlights the
new selection.

The grid should
dynamically
update to
reflect changes,
showing or
hiding plant
cards and
empty cells.

Sensor readings
for
temperature,
humidity, and
moisture are
displayed
correctly with

Lavender

24 20m6

Tempreture N

23

Humidity e

25 66MG

Moisture S
Watering Last Watered
€ GZXD) 06:12 AM

Next Watering

03:17 PM
Fertilization Last Fertilization
oML Next Fertilization

03:17 PM

| Launch Plant Dashboard

Verified Each selection clears
the previous selection and
highlighted

the new section

Verified grid update for each
event

Watering Control

Sensor Readings

Tempreture s Humidity & & Moisture
28°C 65% 3%

23

25

26

27

Update
Sensor
Readings

Validate
Temperature
Reading
Display

Validate
Humidity
Reading
Display

Validate
Moisture
Reading
Display

Trigger an update
(e.g., change sensor
locations)

Check the
temperature reading

Check the humidity
reading

Check the moisture
reading

78

appropriate
icons and
values.

Updated sensor
readings are
fetched and
displayed real-
time accurately.

The
temperature is
displayed
correctly with
the
temperature
icon and should
be in °C.

The humidity is
displayed
correctly with
the humidity
icon and should
be represented
as a percentage
(%).

The moisture is
displayed
correctly with
the moisture
icon and should
be represented
as a percentage
(%).

Confirmed that real-time sensor
reading updates are working

Tempreture

28°C

Humidity
® 65%

Maoisture

31%

28

29

30

31

Toggle
Watering
Mode

Save
Automated
Watering
Mode

Save Manual
Watering
Mode

Select
Automated
Watering

Schedule Type

Click on "Automated"
and then "Manual"
radio buttons under
the "Actions" section.

Select "Automated"
mode and trigger an
interface action to
save/update the
plant configuration.

Select "Manual"
mode and trigger an
interface action to
save/update the
plant configuration.

In "Automated"
mode, select "Sensor
Based" and "Routing"
options for watering
schedule type.

79

The interface
updates to
show options

specific to each

selected

watering mode.

The system
saves the
"Automated"

watering mode

as the setting
for the plant

and maintains

this setting
upon page
reload or

navigation.

The system
saves the
"Manual"

watering mode

as the setting
for the plant

and maintains

this setting
upon page
reload or

navigation.

Options

relevant to the

selected

schedule type

Actions Automated
[——

Watering Schedule Type

Water Level Type

Sensor Based

Water Level Type

Manual Water Level (ml) 50

Confirmed that the saved
mode is visible
again after a page refresh

Confirmed that the saved
mode is visible
again after a page refresh

32

33

34

35

Update
Watering
Schedule in
Automated
Mode

Select Water
Level Typein
Automated
Mode

Input Manual
Water Level in
Automated
Mode

Toggle Water
Level Type in
Manual Mode

Choose a schedule
from the dropdown
when "Routing" is
selected as the
schedule type and
trigger an update.

Select between
"Sensor Based" and
"Manual" water level
types in "Automated"
mode and trigger an
update.

Enter a value in
"Manual Water Level
(ml)" under
"Automated"
watering and trigger
an update.

Click between
"Sensor Based" and
"Manual" under

80

are displayed
appropriately.

The chosen
watering
schedule is
saved and will
be applied to
the plant's
watering
routine.

The interface
updates to
display input
fields
appropriate for
the selected
water level

type.

The manual
water level
input is saved
for the plant's
watering
configuration.

The interface
updates to
reflect the
selected water

Actions

Watering Schedule Type
Water Schedule

Water Level Type

Actions
Watering Schedule Type

Water Level Type

Automated

One Per Day

p——

Automsted

Sensor Based
Sensor Based

Actions
Watering Schedule Type

Water Level Type

Actions
Watering Schedule Type
Water Level Type

Manual Water Level (mi)

e

E——
Sensor Based

Automated
Sensor Based

Sensor Based EEELTEY

50

36

37

38

39

Refresh

Sensor-Based
Water Level in
Manual Mode

Input Manual
Water Level in
Manual Mode

Execute
Watering
Action

Display
Sensor
Readings for
Nitrogen

"Manual" watering
mode.

Click the "Refresh"
button under "Sensor
Based" water level
type in "Manual"
mode.

Enter a value in
"Manual Water Level
(ml)" under "Manual"
watering mode and
trigger an update.

Click the "Start"
button under either
watering mode.

Navigate to the
sensor readings
section.

81

level type,
showing sensor
data or allowing
manual input.

The displayed
sensor-based
water level is
updated to the
current reading.

The manual
water level
input is saved
for the plant's
watering
configuration.

The system
initiates the
watering action
based on the
current settings
and
configuration.

Nitrogen sensor
readings are
displayed
correctly,
showing
"30mg" as per
the latest
sensor data.

Actions Mo
O

Water Level Type

Sensor Based Water Level 50mI
Actions
Water Level Type
Sensor Based Water Level Somi
o~ Mo
el Manual
Manual Water Level (mi) 50

Confirmed functionality of the
watering pump for a certain
period of time.

Fertilizing Control

Sensor Readings

g Nitrogen Phosphorus ., Potassium
= 30mg 40mg = 155mg

40

41

42

43

Display
Sensor
Readings for
Phosphorus

Display
Sensor
Readings for
Potassium

Toggle
Automated
Fertilizing
Mode

Toggle
Manual
Fertilizing
Mode

Navigate to the
sensor readings
section.

Navigate to the
sensor readings
section.

Select the
"Automated" radio
button under
Actions.

Select the "Manual"
radio button under
Actions.

82

Phosphorus
sensor readings
are displayed
correctly,
showing
"40mg" as per
the latest
sensor data.

Potassium
sensor readings
are displayed
correctly,
showing
"155mg" as per
the latest
sensor data.

The automated
fertilizing
options become
available for
configuration.

The manual
fertilizing
options become
available for
configuration.

Fertilizing Control

Sensor Readings

g Nitrogen Phosphorus ., Potassium

30mg 40mg = 155mg

Fertilizing Control

Sensor Readings

2 Nitogen Phosphorus g Potassium
30mg 40mg 155mg

Fertilizing Control

Sensor Readings

.o Nitrogen Phosphorus .o Potassium
= 30mg 40mg “ 155mg

Recomendations
foice i Opimal el k3t (D)
Actions

Fertilizing Schedule Type

Fertilizer Level Type

Actions Manual
fertilizer Level Type Sensor Based
Sensor Based N Level 50ml
Sensor Based P Level som! (EEED)
Sensor Based K Level 50ml @

44

45

46

47

Automated
Mode: Select
Fertilizing
Schedule Type
- Sensor
Based

Automated
Mode: Select
Fertilizing
Schedule Type
- Routing

Automated
Mode: Select
Fertilizing
Level Type -
Manual

Manual
Mode: Verify
Fertilizer Level
Type

Selection

In Automated mode,
select "Sensor Based"
for the Fertilizing
Schedule Type.

In Automated mode,
select "Routing" for
the Fertilizing
Schedule Type.

In Automated mode,
select "Manual" for
the Fertilizer Level

Type.

In Manual mode,

ensure both "Sensor
Based" and "Manual"
options are available.

83

The system

should not

display Actions Automated
additiona e
options for

schedule

customization,

relying on

sensor data.

The system
displays options
tO SeleCt Actions Automated
e . Fertilizing Schedule Type
fe rt IlZIng Fertilizer Schedule One Per Day
schedule Fertilizer Level Type Sensor Based
frequency.
Input fields for
N, P, and K
fertilizer levels | A< s
beco me Fertilizing Schedule Type
. Fertilizer Level Type Manua
available for N fertlizerLevel (o -
manual input. P fertilizer Level (ml) 30
K fertilizer Level (ml) 50
Both options
should be
selectable with | Ao (utomres ED)
res pecl'ive fertilizer Level Type Sensor Based
K . Sensor Based N Level s50ml
adjustments n Sensor Based P Level som! (D)
the U I for Sensor Based K Level 50ml
. «<»
enteri ng or
displaying

fertilizer levels.

48

Manual
Mode: Input
Manual
Fertilizer
Levels

In Manual mode with | The entered
Manual level type
selected, enter values

for N, P, and K levels.

Table 5.3 Test Results for Ul component test cases

values are
updated.

The entered values are reflected
after the page is reloaded and
verified.

Table 5.4 contains test results for hardware components-related test cases.

Test | Test Input/Action | Expected Test Result

Description Outcome

49 Water Pump | Change Water Confirmed that the relevant relay is
Activation watering pump activated and the watering pump is
Test type to activates functioning.

manual and and

trigger irrigation

watering task | begins.

with 50ml System logs

water the

amount activation
event.

50 Fertilization | Program Each pump | Confirmed that the relevant relay is
Pumps specific N, P, | activates activated and that the fertilizer pumps
Activation K fertilizer and are functioning.

Test release. fertilization
begins.
System logs
the
activation
event.

51 Temperature Sensor Confirmed system reading temperature
Sensor readings values and change value for different
Response reflect in temperature levels
Test system

84

Sensor Readings
Tempreture Humidity 4 & Moisture
28°C ® 65% R
52 Humidity Sensor Confirmed system reading humidity
Sensor readings values and change value for different
Response reflect in humidity levels
Test system
Sensor Readings
Tempreture Humidity 4 & Moisture
28°C ® 65% b3
53 Soil Insert into Sensor Confirmed system reading moisture
Moisture soil with readings values and change value for different
Sensor varying reflect in soil types
Functionality | moisture. system
Test
Sensor Readings
Tempreture Humidity & & Moisture
28°C ® 65% o3
54 NPK Sensor Expose to Sensor Confirmed system reading NPK values
test various soil readings
types reﬂect in Fertilizing Control
SySte m Sensor Readings
wg Mitrogen Phosphorus wg Potassium
= 30mg 40mg = 155mg
Recomendations

Table 5.4:Test Results for Hardware related test cases

85

5.4. Evaluation

The system was evaluated through a survey and a small-scale pilot project experiment.

5.4.1. Survey

The survey primarily focused on the UI/UX aspect. The system was demonstrated to a select group
of experienced individuals in the IT industry and their input was gathered using a Google form.

The survey questions are illustrated in figures 5.1, 5.2, and 5.3.

Survey - Smart loT Based Watering and
Fertilization System

shehansc2010@gmail.com Switch account [

* Indicates reguired guestion

Email *

D Record shehansc2010@gmail.com as the email to be included with my response

Designation *

() Software Engineer

(_) Business Analysis

() oA
() UI/UX Engineer

() Other

How visually appealing do you find the interface of the smart watering and *
fertilization systam?

() Extremely appealing

() Veryappealing
() Moderately appealing
() Slightly appealing

() Mot appealing at all

Figure 5.1 Survey - Google Form pagel

86

How would you rate the clarity and readability of information presented in the
system’s interface?

() Very Clear

(C) somewnhat Clear
() Neutral

() Unclear

() Very Unclear

How easy is it to navigate through the system? *

() Very Easy
() Easy
() Neutral

() Difficult

() Very Difficutt

How intuitive do you find the process of setting up watering and fertilization
schedules in the system?

Extremely Intuitive
Intuitive
Neutral

Slightly Intuitive

O O O O0O0

Nat Intuitive at All

Figure 5.2: Survey - Google Form page2

87

How satisfied are you with the responsiveness of the system (e.g., reacting to -
inputs, loading times)?

Very Satisfied
Satisfied
Meutral

Dissatisfied

O O 00O

Very Dissatisfied

How well do the system's features meet watering and fertilization management *
neads?

Very Satisfied
Satisfied
Neutral

Dissatisfied

O O 00O

Very Dissatisfied

Figure 5.3: Survey - Google Form page3

88

5.4.2. Results of the Survey

Designation

10 responses

10

~

@ Software Engineer

@ Business Analysis

o oA

@ UIIUX Engineer

@ Daia Engineer

@ DeviOps Engineer

@ Senior Assistant Team Lead

How visually appealing do you find the interface of the smart watering and fertilization

system?

10 responses

Figure 5.4 Survey Result Page 1

@ Extremely appealing
@ Very appealing

® Moderately appealing
@ Slightly appealing

@ Not appealing at all

How would you rate the clarity and readability of information presented in the system's

interface?

10 responses

How easy is it to navigate through the system?

10 responses

Figure 5.5 Survey Result Page 2

@ Very Clear

@ Somewnhat Clear
@ Meutral

@ Unclear

@ Very Unclear

@ Very Easy
@ Easy

@ Meutral

@ Difficult

@ Very Difficult

89

IO copy

IO copy

O copy

O copy

How intuitive do you find the process of setting up watering and fertilization |_|:| Copy
schedules in the system?

10 responses

@ Extremely Intuitive
@ Intuitive

@ Meutral

@ Slightly Intuitive
@ Mot Intuitive at Al

How satisfied are you with the responsiveness of the system (e.g., reacting to inputs, |_|:| Copy
loading times)?

10 responses

@ \ery Satisfied
@ Satisfied

© Meutral

@ Dissatisfied

@ Very Dissatisfied

Figure 5.6 Survey Result Page 3

How well do the system's features meet watering and fertilization management I_D Copy
needs?

10 responses

@ Very Satisfied
@ Satisfied

@ Neutral

@ Dizzatisfied

@ Very Dissatisfied

Figure 5.7 Survey Result Page 4

90

5.4.3. Small-scale pilot project

Figure 5.8 Hardware component applied to small plant

During this evaluation phase, the system was implemented in a specific agricultural environment
as shown in figure 5.4 and its operation and performance could be monitored closely for a specified
period. The aim was to collect actual information from real-world scenarios in order to establish
an accurate basis for evaluating the functionality of the system. Watering process evaluated in with

the pilot project.

5.4.4. Data Collection and Analysis

Throughout the pilot project, few metrics were recorded in the database. The metrics covered water
utilization, fertilizer utilization, and sensor reading values. Following this, an evaluation was
conducted on the gathered data in order to determine the functional accuracy and overall efficacy

of the system.

91

5.4.5. Results and Adjustments

Based on the data recorded, a few changes have been applied for calculations in watering and

fertilization algorithms. Conclusions are made based on the following results.

Soil Moisture Temperature Humidity Water Amount
Day 1 20 32 80% 78ml
Day 2 31 31.3 82% 36ml
Day 3 34 30 95% 39ml
Day 4 32 30 75% 18ml
Day 5 30 30 75% 31ml

Table 5.5 Pilot Project Results

Based on the results, The smart water and fertilizing system optimized water and fertilizer usage

by reducing waste and ensuring resources were applied in the most effective amounts. This was

achieved by closely monitoring and making automated modifications based on real-time soil and

environmental variables. Optimal application of water and fertilizers can positively impact crop

health and productivity.

Based on the results, the soil moisture value has stable within a small range of values from day 2

onwards. Based on that, we can conclude that the soil's water level has remained constant.

92

6 CHAPTER - CONCLUSION

Smart IoT based water and fertilization system allowed to find feasibility of implementing IoT
technologies and components into plants and optimize water and fertilizer resources. This system
is innovative development in precision agriculture in Sri Lanka. System offers prediction based on
data analysis. System capable of monitoring plants and process watering and fertilization in both
manual and automated ways. Monitoring includes soil moisture, temperature, humidity and NPK
level of the plant. System developed with the latest technologies with the industry standards in
implementation. Based on the trained machine learning model system provide few predictions for
sensor values. System ensure that the plants are consuming resources for its required level and it

will effectively resolve primary causes of water and fertilizer wastage.

6.1. Future Improvement
Mobile App — Develop a mobile application to increase the usability.

Enhance Capacity — Increase system capability to handle wide range of plants with increasing

IoT components.

Rain Water Utilization — Utilize rainwater by harvesting and recycle method to minimize water

usage.

Improve Machine Learning Models — Train additional models from the system's past data and

produce more model-based predictions.

6.2. Knowledge Gained

I was able to explore wide range of technologies, best practices in coding, industry standards with
this project. This project allowed me to apply previously learned lessons to a real-world scenarios.
It’s been a full of educational effort that allow me to gain my knowledge. Project inspire me to

learn advanced concept of software engineering and apply those concepts into the system.

93

7 REFERENCES

Chandrasekara, S.S.K. et al, (2021). A review on water governance in Sri Lanka. [Online]
Available at: https://iwaponline.com/wp/article/23/2/255/80096/A-review-on-water-governance-
in-Sri-Lanka-the

[Accessed: 21 October 2023].

Rodrigo, C., (2013). Will Sri Lanka run out of water for agriculture or can it be managed. [Online]
Available at: https://www.ips.lk/talkingeconomics/2013/03/22/will-sri-lanka-run-out-of-water-

for-agriculture-or-can-it-be-managed
[Accessed: 21 October 2024].

Thibbotuwawa, M., (2021). Why the transition to smart farming is critical in Sri Lanka. [Online]
Available at: https://development.asia/insight/why-transition-smart-farming-critical-sri-lanka
[Accessed: 15 November2024].

Bisht, Chauhan, (2020). Excessive and disproportionate use of chemicals cause soil
contamination and nutritional stress. [Online]

Available at: https://www.intechopen.com/chapters/74460

[Accessed: 21 November2024].

Ashwini (2018). A study on smart irrigation system using 10T for surveillance, Research Gate.
[Online]

Available at:

https://www.researchgate.net/publication/327964370 A Study on_Smart Irrigation System Us

ing IoT for Surveillance of Crop-Field
[Accessed: 21 November 2024].

Amalraj, Banumathi, John,.(2019). A study on smart irrigation systems for agriculture using
10T, International Journal of Scientific & Technology Research. [Online]
Available at: https://www.ijstr.org/final-print/dec2019/A-Study-On-Smart-Irrigation-Systems-

For-Agriculture-Using-Iot-.pdf
[Accessed: 12 January 2024].

94

Hamoodi, N. Hamoodi, M. Haydar,. (2020). Automated irrigation system based on soil moisture
using Arduino board, Bulletin of Electrical Engineering and Informatics.[Online]

Available at: https://beei.org/index.php/EEl/article/view/1736/1464

[Accessed: 15 January 2024].

Joshi, Raval, Patel,. (2021). Design and implementation of a smart irrigation system for Improved
Water-Energy Efficiency [Online]

Available at:

https://www.researchgate.net/publication/318448984 Design_and_Implementation_of a_Smart

Irrigation_ System_for Improved Water-Energy Efficiency
[Accessed: 25 January 2024].

John Deere.(2024). John Deere US | Products & Services Information. [Online]
Available at: https://www.deere.com/en/
[Accessed: 21 February 20241].

GroGuru. (2024) Strategic Water Management Solutions for Farmers. [Online]
Available at: https:/www.groguru.com/
[Accessed: 21 February 2024].

Growlink. (2024). Smart irrigation system. [Online]
Available at: https://www.growlink.ag/
[Accessed: 21 February 2024].

95

