Enhancing Productivity In
Sri Lanka’s Agriculture Sector with
a Cloud-Based System for Data
Acquisition and Representation to

Facilitate Informed Decision Making

L.R.S.D. Rathnayake
2024

Enhancing Productivity in
Sri Lanka’s Agriculture Sector with
a Cloud-Based System for Data
Acquisition and Representation to
Facilitate Informed Decision Making

A dissertation submitted for the Degree of Master of
Information Technology

L.R.S.D. Rathnayake
University of Colombo School of Computing
2024

Declaration

Name of the student: L.R.S.D. Rathnayake

Registration number: 2020/MIT/083

Name of the Degree Programme: Master of Information Technology

Project/Thesis title: Enhancing Productivity in Sri Lanka’s Agriculture Sector with a Cloud-Based
System for Data Acquisition and Representation to Facilitate Informed Decision making

1. The project/thesis is my original work and has not been submitted previously for a degree at this or
any other University/Institute. To the best of my knowledge, it does not contain any material
published or written by another person, except as acknowledged in the text.

2. T understand what plagiarism is, the various types of plagiarism, how to avoid it, what my
resources are, who can help me if [am unsure about a research or plagiarism issue, as well as what
the consequences are at University of Colombo School of Computing (UCSC) for plagiarism.

3. I understand that ignorance is not an excuse for plagiarism and that [am responsible for clarifying,
asking questions and utilizing all available resources in order to educate myself and prevent myself
from plagiarizing.

4. T am also aware of the dangers of using online plagiarism checkers and sites that offer essays for
sale. I understand that if I use these resources, I am solely responsible for the consequences of my
actions.

5. Tassure that any work I submit with my name on it will reflect my own ideas and effort. I will
properly cite all material that is not my own.

6. T understand that there is no acceptable excuse for committing plagiarism and that doing so is a
violation of the Student Code of Conduct.

. Date
Signature of the Student (DD/MM/YYYY)
<i %L/ 25.09.2024

Certified by Supervisor(s)

This is to certify that this project/thesis is based on the work of the above-mentioned student under
my/our supervision. The thesis has been prepared according to the format stipulated and is of an
acceptable standard.

Supervisor 1 Supervisor 2 Supervisor 3
Name Prof. M.G.N.A.S. Fernando

Signature Q\Qﬂﬁf ‘ﬁ"_

Date 24.09.2024

Acknowledgements

I extend my sincere gratitude to Prof. M.A.G.N.A.S. Fernando for his exceptional supervision
and unwavering support throughout every stage of this project's journey to successful

completion. His invaluable guidance and expertise played a pivotal role in ensuring its success.

I'am deeply thankful to the University of Colombo School of Computing for providing me with
a remarkable opportunity and a robust platform to enhance my knowledge and skills in

Information Technology through its esteemed postgraduate degree program.

My heartfelt appreciation goes out to all the lecturers, visiting scholars, and non-academic staff
at UCSC who generously invested their time and efforts to equip us with the essential
knowledge, skills, and IT-centric mindset vital for success in the field of Information

Technology.

The invaluable assistance and guidance of numerous respected professionals significantly
contributed to the accomplishment of this project. Lastly, I express profound gratitude to my
husband, family, and colleagues for their unwavering support and encouragement. Without

their inspiration, this challenging endeavor would not have been possible.

iv

Abstract

The agricultural sector is a major component in Sri Lanka economy, employing a significant
portion of country’s population and under the guidance and support of the department of
agriculture. Agriculture sector struggles due to unreliable decision-making, caused by a lack of
local data recording. This issue hampers effective management and strategy implementation

within the sector by today.

This project introduces "Ceylon AgriData", a cloud-based system designed to revolutionize the
agricultural sector in Sri Lanka. "Ceylon AgriData", aims to enhance operational efficiency by
transitioning from traditional paper-based data collection methods to a digital, cloud-based
approach. This transition is facilitated through a mobile application tailored for agricultural

officers, enabling streamlined data collection and management directly from the field.

By digitizing data collection, "Ceylon AgriData" significantly enhances data accuracy and
accessibility, storing it securely on a centralized cloud database. This database is accessible to
a wide range of stakeholders, including department administrators, field officers, researchers,
and other key stakeholders through user-friendly interfaces. The system's web application
features intuitive dashboards and tools, empowering stakeholders to make well-informed
decisions, develop effective policies, and provide superior support to farmers, thus promoting

sector-wide efficiency.

Besides, "Ceylon AgriData" encompasses a comprehensive webapp that allows for the
generation of detailed reports from the aggregated agricultural data, facilitating streamlined
operations and informed decision-making within the sector. A message broadcasting service is
also integrated, ensuring the timely dissemination of important information to enhance
information sharing and engagement across the sector. The system incorporates a free
advertising service, enabling farmers to directly market their products without intermediaries.
This feature not only facilitates better sales opportunities for farmers but also aids the
government in making informed decisions on price regulation. By analyzing the recorded data
on crop yields, products, and prices, the government can implement policies that ensure fair

pricing and market stability.

The development of "Ceylon AgriData" utilized a robust technology stack, including Python
and Flask for backend services, JavaScript and React for the web platform, and the Flutter
framework for mobile application development. This combination has resulted in the creation

of a user-centric mobile app and a web-based system, both integrated via a REST API service.

An extensive testing workflow was employed to validate the system's functionality,
encompassing unit, integration, and user acceptance testing phases. These tests, conducted both
manually and automatically, highlighted the system's usability and identified areas for further

refinement.

The project was managed using the iterative waterfall model, ensuring structured progress and
adaptability throughout its development. This methodical approach guaranteed that "Ceylon
AgriData" not only met its initial objectives but also laid a foundation for ongoing
enhancements, setting a new standard for technological innovation in Sri Lanka's agricultural

sector.

vi

Table of Contents

Declaration --1ii
Acknowledgements v
Abstract v
LiSt Of FIUIES =mmmmmmm e e e e e X
List of Tables Xiv
List of Acronyms XV
Chapter 1 - Introduction 1
1.1 Project Overview 1
1.2 Background of Study 2
1.3 Motivation 3
1.4 Objectives 4
1.5 Scope of Study 5
1.6 Structure of the Dissertation 6
Chapter 2 — Background 7
2.1 Introduction 7
2.2 Literature Review and Similar Systems 8
2.3 Related Technologies 10
2.4 Existing System Processes and Functionalities 11
2.4 Requirement Analysis ----14
2.4.1 Introduction 14
2.4.2 Overall Description 14
2.4.3 Functional Requirements 16
2.4.4 Non - Functional Requirements 19

2.5 Proposed Development Process Model 20
2.6 Summary 21

vii

Chapter 3 — Design Architecture

3.1 Introduction

3.2 Design Strategies Used

3.3 System Architecture

3.3.1 Frontend and Backend Module Overview within the System Architecture

3.4 Justification of selecting React and Flask in the project

22

22

23

31

33

35

3.5 UML Diagrams

3.5.1 Use case analysis

3.5.2 Process Modelling

3.5.3 Data Modelling

36

36

39

43

45

3.6 Summary

Chapter 4 — Implementation

4.1 Introduction

4.2 Implementation Methodology

4.3 Implementation Environment

4.3.1 Front-End Implementation Environment

4.3.2 Back-End Implementation Environment
4.3.3 Data Persistent and Management Environment

4.4 Utilized Pre-Built Libraries and Frameworks

4.5 Integration of Third-Party Services

51

52

4.6 Explanation of Key Code Sections

4.6.1 Logging into the system

53

53

4.6.2 Inserting agriculture data into the system

4.6.3 Generating Reports

4.6.4 Message Broadcasting

4.7 Summary

62

79

91

96

Chapter 5 — Testing and Evaluation

viii

97

5.1 Introduction 97

5.2 Related Testing Types Utilized 97
5.3 Testing Methodology 97
5.3 Testing of Mobile Application 98
5.3.1 Unit testing — Mobile Application 98
5.3.2 Exploratory Testing — Mobile Application 101
5.3.3 Integration testing — Mobile Application 101

5.4 Testing of Back-end Services, REST APIs 109
5.5 Testing of Front-End (React Web Application) 116
5.5.1 Exploratory Testing — React web application 116
5.5.2 Cross-Browser Testing - React web application 118
5.5.3 End to end Testing - React web application 119

5.6 User Evaluation 121
5.6.1 Results of the Testing 122

5.7 Summary 124
Chapter 6 — Conclusion 125
6.1 Introduction 125
6.2 Critical Assessment 125
6.3 Lessons Learned 126
6.4 Problems Encountered During the Project 127
6.5 Potential Future Work 127
References 129
Appendixes 132

X

List of Figures

Figure 2.1 :
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9 :

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:

details into

Figure 3.27

Top level use case diagram of the system, “Agrimanager” (Agrimanager)....... 12
Iterative Waterfall Model (Bhatnagar, 2015).............cooiiiiiiiiiiiiiinn., 20
High-level representation of modules in "Ceylon AgriData" Syste.................. 24
Splash page designing of mobile application................cooeviviiiiiiiiiin.. 25
Login page designing of mobile application...............cocvviiiiiiiiiniiiiinenn 25
Home page designing of mobile application..............cccooiiiiiiiiiiiiiiiin.. 25
Dashboard page designing of mobile application...............c.ccoeviiviinnn.. 25
Farmer manager home page designing of mobile application........................ 25
Farm manager home page designing of mobile application........................... 26
Cultivation manager home page designing of mobile application................... 26
Aid manager home page designing of mobile application........................... 26
Register farmer page designing of mobile application....................ccoeeeene 26
Add farm page designing of mobile application..................cooviiiiiiiian. 27
Add cultivation page designing of mobile application.................c.ccoevuenen. 27
Add cultivation page designing of mobile application.....................coeene. 27
Add disaster page designing of mobile application..................ccovveiennnnn. 27
Search operation page of designing of mobile application.......................... 27
Page for update / delete operations of designing of mobile application........... 28
Logout button at main menu in designing of mobile application................... 29
designing of UI - landing page of react webapp............coviviiiiiiiiiiin... 29
Designing of UI of webapp for data managing related operations................. 30
Report generating page design of webapp.........ccoovviiiiiiiiiiiiiii 30
Advertisement service page designing of webapp..........ocoviiiiiiiiiiiiiiiiiinnn. 31
High-level solution architecture of the "Ceylon AgriData" system............... 33
Frontend and Backend overview of the "Ceylon AgriData" system............... 34
High level diagram of modules designed as per system architecture.............. 34
Use case Diagram of the System "Ceylon AgriData"................................ 40
Activity diagram for register a new farmer and adding his farm, cultivation
the system by Agri field officer............ooooiiiiiiii 41

: Activity diagram to generate agricultural reports by a agriculture field officer..42

Figure 3.28: Activity diagram for publishing advertisements by farmer......................... 43

Figure 3.29: Database model of "Ceylon Agridata" system..............ccooeviiiiiiieinnnn. .. 44
Figure 4.1: MYSQL database in WAMP Server...........ooiiiiiiiiiiiiiiiiiiiiiiaeeeane 48
Figure 4.2 :SQL Alchemy used in the project with model class- User........................... 49
Figure 4.3: SQL Alchemy query builder example...........ccooiviiiiiiiiiiiiiiii e, 49
Figure 4.4: Schemas using ‘Marshmallow’..............ooiiiiiiiiiiieee, 50
Figure 4.5 (a):Code snippet of building the “Login Page” Ul.................coooiiiiiinn, 54
Figure 4.5 (c): Login Page UI of mobile application.............c..ccooiiiiiiiiniiiiiiininnan 54
Figure 4.5 (b): Code snippet of building the “Login Page” Ul....................ooiiiiinni 55
Figure 4.6: Code snippet of Login function in mobile application.....................coevinnn. 56

Figure 4.7(a): Code snippet of checking response status code and preview relevant
10788 [1 0] 1 N 56

Figure 4.7(b): Code snippet of checking response status code and preview relevant

NOLTICALIONS. . ..ottt 57
Figure 4.8 (a): Code snippet for Login endpoint of REST APL...............c.oooiiiiiiiiin 57
Figure 4.8 (b): Code snippet for Login endpoint of REST APIL...............coooiiiiiiiie 58
Figure 4.9(a): Ul modal of Login in web application..............ccoeviiiiiniiiiniiniininennnn 59
Figure 4.9(b): Code snippet of building login modal in web application (front end)........... 59
Figure 4.10: Code snippet of login functionality in web application front end.................. 60
Figure 4.11 (a) :Code snippet of validating the API response.............ccevveviiiinniiiininn.. 61
Figure 4.11(b):User validation code snippet of webapp (front end).............................. 61
Figure 4.12: Code snippet of validating the API response............c.coovviiiiiniiiiniininninn 62
Figure 4.13:UI for add cultivation details in mobile application.......................ooeeenn.. 63

Figure 4.14:Code snippet represents a user interface in Flutter for adding cultivation

EtailS. .o 64
Figure 4.15: Code snippet for get current location button in frontend UI in mobile

APPLICALION. .. 65
Figure 4.16: Code sippet regarding the function that gets location.............................. 65
Figure 4.17: Uls of get current location functionality in mobile application................... 66

Figure 4.18: Code snippet of sending post request to API to insert cultivation information
from mobile application front-end................cooiiiii i 67

Figure 4.19: Code snippet of flask route of add cultivation information in REST API....... 68

xi

Figure 4.20: Code snippet of tab pane in manage cultivation information in web

APPLICALION. ... 69
Figure 4.21: Tab pane of manage cultivation information functionality in web

APPLICALION. ... 69
Figure 4.22: The code snippet for a single input text in web application........................ 69

Figure 4.23:forms used for managing the "Add Cultivation" functionalities in web

7o) 0] HTeT: 11 o) s DN 70
Figure 4.24: Handle submit function for calling 'Add Cultivation Information Function' that
sends request to REST APL......oo i e 70
Figure 4.25: Code snippet of making a POST request to the specified endpoint................ 71
Figure 4.26: Preview map when “Use Map” button is clicked in add cultivation information
functionality in web application.............ooiiiii i 77
Figure 4.27: Local storage saves the selected coordinates...............c.oceiiiiiiiiiinnn.. 76

Figure 4.28(a): Code snippets of getting longitude and lattitude of cultivatin location in web
application using 1eaflet...........ouiiin i e 75
Figure 4..28(b): Code snippets of getting longitude and lattitude of cultivatin location in web
application using 1eaflet...........o.iiein it 76
Figure 4 .29: Preview of search results in search cultivation information in web

APPLICALION. .ottt e 77
Figure 4.29: Preview map when “Use Map” button is clicked in add cultivation information
functionality in Web application.............oouiitiii i e 78
Figure 4.30: Code snippet of display and interaction with harvest data in a specified time
range in Web appliCation...........ooii it 80
Figure4.31: Preview of total harvest in selected timeframe...................oooviiiiiiiii.. 79

Figure 4.32: Function of sending API call to get harvest data to specified route in REST

AP 81
Figure 4.33: Flask route that handles GET requests for fetching aggregated data on harvested
and estimated harvested amounts of crops for a specified agricultural year..................... 81
Figure 4.34 (a): Code snippet for rendering a map interface related to crop yield.............. 83

Figure 4. 34(b): Code snippet for JSX structure for rendering a form interface for selecting
various parameters related to crop yield reportingo.oveiiiiiiiiiiiiieea, 84

Figure 4.35: displaying a map and filtering data based on user selections....................... 82

Xii

Figure 4.36: Code snippet for setting up map container using mapContainer from react-leaflet

103 1 o0 83
Figure 4.37: Flask route for fetching crop records with authentication. (REST API).......... 84
Figure 4.38: frontend User interface of the Field map report form................................ 85

Figure 4.41: Setting district and officers of the selected district to the state variables to be
USEd 1N ATOPAOWIS.ttt 87
Figure 4.42: Code snippet for Setting marker data to the map................coooveiiiiiiin.n. 88
Figure4.43: Code snippet of UseEffect hooks to retrieve data once input are filled, using API

service function “searchCultivationMapInfoByDistrictMonthlyOffice........................... 89
Figure 4.44: Markers shown inthemap...............oooii i, 89
Figure 4.45: Backend service function..............c.ooiiiiiiiiii e, 90
Figure 4.46: Email sending feature in "Ceylon AgriData " system..................cccoeenen.. 91

Figure 4.47: Ul of broadcasting emails feature...............oooooiiiiiiiiiiiiiiiiii 91
Figure 4.48: Selection Of reCIPIeNtS.ttt e, 92
Figure 4.49: API service fUnCiON.ouiiniiiit it eees 93
Figure 4.50: API calls that sends requests to backend APL..................cooiiiiinn. 94

Figure 4.51: Backend API function that is called by frontend.......................ooi 95

Figure 5.1: Code snippet of user registration unit test function.........................ooeeeis 112

Figure 5.2: Integration testing done using Postman for user login functionality - user login

end point in AP 114
Figure 5.3 Integration testing for Aid Distribution...............cooviiviiiiiiiiininenne. 115
Figure 5.4 Integration testing for sending emails.................c.oooiiiiiiiiiiiiiiii 115
Figure 5.5 Microsoft Edge testing..........ooovniiiiiiii e 118
Figure 5.6 Google Chrome teSting.o.uiuiitiine it 118

Figure 5.7 Locally deployed python flask backend interaction logs when testing.............120
Figure 5.8: Ngrok logs when exposed API with the database publicly for testing.............120
Figure 5.9: System Feedback Survey............oooiiiiiiiiiii 122

xiii

List of Tables

Table 2.1 : Summarized comparison of commonly used agricultural aid software applications

I STTLANKa. ..o 13
Table 3.1: Modules designed for mobile application designing................cceeeeevirinnnn.e. 24
Table 3.2: Modules designed for web application designing................cooevvviiiiiiinnnn..n 28
Table 3.3: Justification of selecting React and Flask in the project...................ccooeeeeii. 35

Table 4.1: Summarization of hardware implementation environment of "Ceylon AgriData..50

Table 4.2: Summarization of software Environment of " Ceylon AgriData" system........... 51
Table 4.3: Utilized pre-built libraries and frameworks in “Ceylon AgriData”.................. 52
Table 4.4: Third-party services utilized in "Ceylon AgriData" application...................... 53
Table 4.5: code snippets for Update, delete, and search endpoints in the REST API........... 72
Table 5.1:Test cases used in unit testing of mobile application........................ooiai. 98

Table 5.2: Test cases for integration testing in mobile application and captured results......101

Table 5.3:Test cases for user related functionalities in unit test of APL........................ 109
Table 5.4: Test Cases for User related functionalities of integration testing of API.......... 113
Table 5.5: Test Results of exploratory testing of web app.........coovviiiiiiiiiiiiiiiiinnn... 116
Table 5.6: Part of identified major issues in end-to-end testing................cocveeveiinnn.. 119
Table 5.7: Summarized resultsooiiiiiiii 122

Xiv

List of Acronyms

REST API - Representational State Transfer Application Programming Interface
ORM - Object-Relational Mapping

CLI - Command Line Interface

NPM - Node Package Manager

CORS - Cross-Origin Resource Sharing

JSON- JavaScript Object Notation

DOM- Document Object Model

XV

Chapter 1 - Introduction

The agriculture sector is important to Sri Lanka's economy and especially, most of the rural
population employs in farming. In 2021, agriculture contributed 8.7% to the country's
GDP(Aaron O'Neill, 2023). Sri Lanka primarily produces rice, vegetables, and fruits for
domestic consumption, while also exporting commodities such as tea, rubber, and coconut.

Many people in the country rely on agriculture as their primary occupation.

1.1 Project Overview

The project objective is to increase efficiency in Sri Lanka's agriculture sector by introducing
a cloud-based system, “Ceylon AgriData” for collecting and representing up-to-date
agriculture data. This system will enable informed decision-making in the agriculture sector

and improve its services.

A user-friendly mobile application will be implemented for agricultural field officers who usually
responsible in collecting farmer related data during field visits. This application will enable them
to effortlessly gather crucial data such as farmer details, farm details such that locations, cultivating
crop categories, yields, costs, pesticide and fertilizer usage, as well as occurring crop disease and
disaster details, if any. This will replace the current manual, paper-based method of agricultural
data collection with the proposed mobile and web applications, improving data accuracy and

accessibility.

The collected data will be securely stored in a centralized cloud database, accessible to relevant
stakeholders such as agricultural department administrators, agricultural field officers,
researchers, and other key players in the agricultural sector. The cloud platform will provide
user-friendly dashboards, report generating functionalities, user and agriculture data
management services assisting stakeholders to make informed decisions and develop policies

to support all stakeholders in agricultural sector.

Additionally, the project aims to launch a free advertising service within the system, assisting
farmers to expose to local and foreign markets. It will enable farmers to enter product details and
find potential buyers, ensuring fair pricing and better selling opportunities freely. Thereby,

government will have oversight in regulating prices and promoting fair market practices.

1

Furthermore, the project will establish a communication service to facilitate timely information
dissemination (meetings, notices of distributing fertilizers, etc.) among agricultural officers,
registered farmers. This will ensure the efficient broadcasting of messages, keeping all relevant
parties informed about important updates and initiatives.

By implementing this cloud-based system, “Ceylon AgriData”, aims to provide up-to-date and
comprehensive agricultural data, empowering stakeholders to make better decisions, support

farmers, and enhance overall efficiency in Sri Lanka's agriculture sector.

1.2 Background of Study

Agriculture plays a vital role in the country's economy, contributing to the GDP and providing
employment opportunities, particularly in rural areas. Currently, the agriculture sector is
undergoing various challenges such that a lack of knowledge on sustainable agriculture, lack of
financial support, lack of a proper management system, and proper ways to share knowledge and
information among agricultural parties, as a result, having low productivity and value for their
harvest can be stated. A key problem is the lack of detailed, trustworthy data, making it hard to
make informed decisions. Therefore, even though agriculture is a significant source of economic

growth in Sri Lanka, the sector's productivity remains low at the moment.

The Sri Lankan agriculture sector, heavily relies on government support, including free irrigation
and extension services, substantial fertilizer subsidies, support prices, and trade protection
measures (Manoj Thibbotuwawa, 2021).The lack of updated agricultural data has hindered the
government's efforts to enhance efficiency and productivity in the agriculture sector. Without
access to necessary and current information, it becomes challenging for the government to

implement effective measures to improve agricultural productivity.

One of the key challenges is the reliance on traditional and manual data collection methods.
Agricultural officers often rely on paper-based systems to gather information, which is time-
consuming, prone to errors and lacks real-time accessibility. This inefficiency in data collection
limits the ability to make informed decisions and develop effective policies to support the

agriculture sector

Many farmers in Sri Lanka face difficulties accessing market opportunities and receiving

reasonable product prices. Limited information and inadequate platforms for connecting farmers

with buyers result in market inefficiencies and reduced profitability, especially when they lack

awareness of the specific prices in the Colombo market.

Furthermore, there is a need for improved communication between agricultural departments,
officers, and farmers. Timely dissemination of information, updates, and important notifications is

crucial for effective decision-making and addressing challenges promptly.

The background of this study recognizes these challenges and aims to address them by proposing
the development of a comprehensive system consisting of a mobile application and a cloud-based
platform. This system will streamline data collection processes, provide real-time information

access, establish a marketplace for farmers, and enhance communication between stakeholders.

1.3 Motivation

The motivation for this project is to address challenges and unlock the potential in Sri Lanka's
agriculture sector, which plays a vital role in the economy but faces obstacles to its growth and

development.

One key motivation is the need for improved data acquisition and management. Traditional
manual methods of data collection in agriculture are time-consuming, error-prone, and lack
real-time accessibility. By developing a mobile application and a cloud-based platform, this
project aims to streamline the data collection process, enhance accuracy, and provide
stakeholders with timely and comprehensive information. This will enable informed decision-
making, effective resource allocation, and the formulation of evidence-based policies to

support the agriculture sector.

Another motivation is to address the market inefficiencies faced by farmers. Limited access to
market opportunities and a lack of information regarding fair prices undermine the profitability
of farmers. By establishing a free advertising service within the proposed system, this project
seeks to assist farmers to connect directly with buyers, ensuring efficiency in sales and
enhancing market transparency. The integration of government oversight will further enable

price regulation and market regulation, creating a favorable environment for farmers.

Timely and accurate communication is vital for addressing challenges promptly, providing

essential updates, and facilitating effective collaboration. The “Ceylon AgriData” system, will
3

serve as a communication tool, enabling the broadcasting of important messages and

notifications to relevant stakeholders, ultimately improving overall efficiency and productivity.

Overall, the motivation behind this thesis is to leverage technology and innovation to overcome the
limitations and inefficiencies within Sri Lanka's agriculture sector. By addressing data collection,
market access, and communication challenges, this study aims to enhance productivity, promote
sustainable agricultural practices, and ultimately contribute to the socio-economic development of

the country.

1.4 Objectives

1. To design and develop a mobile application system for agricultural field officers to collect
farmer related data during field visits.

This mobile system would assist regional agricultural field officers to collect essential
agricultural data such as details of farmers, farms, and its locations, encapsulated crop
categories, yields, costs, consumption of pesticides and fertilizers, and crop disease and disaster
details. The system will provide a more efficient data acquisition method compared to the
current manual process that relies on paper documentation. This mobile system will improve
data accuracy and accessibility, enabling agricultural departments to make informed decisions

and enhance overall agricultural services

2. To develop a cloud-based system to store, maintain and represent agricultural data.

This will enable easy access to and sharing of information for various stakeholders,
including agriculture departments, scientists, researchers, farmers, and other agricultural
stakeholders. The platform aims to facilitate the stakeholders with accurate and timely data that

can be used to make better decisions to support the country's agricultural sector.

3. Launch a free advertising service to help farmers access better market opportunities and
sell their products at favorable prices. This service will also enable exporters to buy directly
from farmers, improving the efficiency of sales and purchases. Additionally, the

government will monitor pricing to ensure fairness.

4. To provide efficient and on-time message conveying facilities from the Agriculture

Department to regional agricultural officers, and farmers.

1.5 Scope of Study

The project’s initial phase will focus on implementing the system as per the requirements in the

government agricultural regional office located in Dodangoda, Kalutara District, Sri Lanka.

The proposed project aims to enhance the agriculture sector in Sri Lanka through the development
of a comprehensive system consisting of a mobile app and a cloud-based platform. The mobile
app will replace traditional paper-based methods, allowing regional agricultural officers to
efficiently and accurately collect agriculture-related data in the field. This includes farmer
information, farm and cultivation details, aid distribution records, and disaster reports,
streamlining the data collection process for improved decision-making. The project also
includes the implementation of a field mapping facility, allowing agriculture field officers to
digitally enter field locations ensuring their field visits more transparent and efficient. The mobile
application will facilitate effective communication among the agriculture department, field
agriculture officers and farmers. Important information and updates can be broadcasted through the
application, ensuring that officers have the most up-to-date information to respond promptly. Also,
the app will assist in gathering data on crop damages in times of disasters such that flooding, crop
diseases etc., enabling the allocation of resources and support to affected farmers in a timely
manner. Furthermore, the application will collect farmer details, which can be utilized to inform
them about fertilizer distribution, donations, and other forms of assistance through broadcasting

service.

All collected data will be securely stored in a centralized cloud database, accessible to agricultural
department administrators, researchers, and other stakeholders through user-friendly dashboards.
This database will serve as a valuable resource for making informed decisions and developing
policies to support farmers. The database will provide up-to-date data for analysis, enabling
stakeholders to address agricultural challenges by identifying trends, patterns, and potential

solutions.

The project will also establish a free advertising service where farmers can conveniently enter the
details of their yields and connect with potential buyers. The goal is to accommodate farmers with
limited computer literacy by offering a user-friendly interface. By facilitating direct communication
between farmers and buyers, the marketplace promotes transparency and efficiency in the

agricultural supply chain.

The platform will enable the government to monitor pricing trends, allowing for real-time
regulation of prices and promotion of fair market practices under the supervision of agricultural
administrators. Government participation, especially for farmers registered with regional
agricultural offices, will facilitate timely interventions and support. This government-
supervised free advertising portal will ensure that farmers can sell their products at fair prices
and receive the assistance they need from authorities, creating a supportive environment for

agricultural commerce.

1.6 Structure of the Dissertation

Chapter 2, the Literature Review and Similar Systems examines the literature review (similar
systems) related to the agriculture sector in Sri Lanka, focusing on challenges and the
importance of data acquisition and informed decision-making. In Chapter 3, the Design
chapter, the system architecture, data acquisition methods, storage and processing techniques,
and user interface design are discussed. Chapter 4, Implementation, details the steps taken to
develop and implement the cloud-based system, including software and hardware components,
programming languages, and any challenges encountered. Chapter 5, Testing and Evaluation,
covers the testing procedures, results, and any identified limitations or areas for improvement.
The dissertation concludes with the Conclusion, summarizing key findings, discussing
implications, and suggesting future research directions. Also. the thesis includes a references
section and appendices that provide supplementary information, data, or materials that support

and enhance the project.

Chapter 2 — Background

2.1 Introduction

Agriculture serves as the foundational sector in a majority of nations across the globe. China,
India, Japan, Mexico, Brazil, Russia, USA, and France stand out as prominent examples of
countries that display great potential in this regard (FAO, 2023). According to the World Bank,
the advancement of agriculture emerges as a highly potent instrument for eradicating extreme
poverty, promoting inclusive economic growth, and ensuring sustenance for an estimated 9.7
billion individuals by the year 2050 (WorldBank, 2023). To achieve specified objectives,
people have adopted automation, precision farming, and smart agricultural practices utilizing
information technology to advance their agricultural sectors and attain desired results
(Jayathilake et al., 2010). However, a comprehensive data collection center is essential to

increase the productivity of agriculture.

Sri Lanka's economy heavily depends on agriculture, a sector pivotal for its development,
employment generation, and food security for all. It significantly contributes to the nation's
prosperity and sustains livelihoods, particularly in rural regions (Ministry of Agriculture,
2023). Agriculture in Sri Lanka encompasses crop cultivation, animal husbandry, fishing, and

forestry.

However, the agriculture sector in Sri Lanka faces challenges due to limited access to timely
and accurate agricultural data. This lack of information hampers decision-making and prevents
stakeholders from improving agricultural practices and resource allocation. Traditional data
collection methods, such as manual surveys and paper records, are slow, labor-intensive, and
vulnerable to errors, causing delays in analysis and response. Inefficient data representation
further complicates the integration and utilization of valuable insights. To address these
challenges, a centralized crop data management platform is needed. This platform would assist
administrators collecting, storing, analyzing and representation of agricultural data and farmers
to access agricultural information and market opportunities by directly finding vendors from
the system. It would also support decision-making and scenario planning in the agricultural

sector

2.2 Literature Review and Similar Systems

The agricultural sector has significantly adopted information technology (IT) to enhance the
effectiveness and productivity of farming practices. The latest advancements in IT have
introduced smart devices, sensor technologies, web services and applications, which offer
immense potential to promote sustainability and productivity in the agriculture industry
(Cheema and Khan, 2019). Precision farming and e-farming techniques have simplified
agricultural processes, while the availability of online databases containing comprehensive
agricultural data has created a valuable platform for policymakers and researchers to actively

contribute to the improvement of the agricultural sector worldwide.

Prominent cloud-based agricultural management software systems, such as 'Bushel', 'Granular',
'FieldView', 'AgriWebb', 'AgSense', 'Conservis', 'Agrible-Morning Farm Report', 'aWhere' and
‘Cropin’ (Agrible-Morning Farm Report, AgriWebb, AgSense, 2003, aWhere, BushelFarm,
Climate Corporation, Conservis, 2008, Cropin, 2010, Granular) are widely utilized in modern
farming practices to optimize and streamline operations. Also, they are utilized with crop
monitoring, analytics, crop information and advisory features. These systems offer a diverse range
of applications and advantages, encompassing crop and field management, inventory and supply
chain management, data analytics and decision support, financial management, compliance and
reporting, as well as remote monitoring and control. By integrating advanced technology and data-
driven insights, farmers can effectively enhance the efficiency, sustainability, and profitability of
their agricultural practices. Overall, these software applications can help farmers to streamline their

operations, optimize resource utilization, and improve their yields and profitability.

‘AgriWebb’ (AgriWebb) is a simple application that can be used for global cattle and sheep
production provenance, profitability and sustainability across the supply chain and it offers a user-
friendly interface that can be easily accessed and utilized by farmers, along with real-time data
entry and insights into crop management processes. One disadvantage of the ‘AgriWebb’
(AgriWebb) is that it requires a stable internet connection, which may be a challenge for farmers
working in rural areas with limited connectivity. ‘Farmforce’ (Farm Force) is a cloud-based crop
management system, developed in Kenya. The system offers tools for tracking crop activities,

monitoring yields and sales, and analyzing data to improve farm performance.

Various system applications have been identified in the literature as being utilized in Sri Lanka for

agricultural purposes, aiming to enhance relative productivity. These applications include ‘Cropin’,

8

'Agri Manager', 'Krushi Advisor', 'Govi Mithuru', 'Helawiru', 'Coconut App', 'MyAgri' and ‘Agri
Life’ (Agrimanager, Coconut Cultivation Board, 2023, Cropin, 2010, Department of Agriculture,
2021, Govi Mithuru, 2015, Helawiru, KOMA Labs, 2020, My Agri, 2021) . These applications are
utilized to enhance the relative productivity of agriculture in Sri Lanka. ‘Coconut App’ is an
Android application that is facilitated with services to establish a sustainable coconut cultivation
by providing necessary input and financial facilities to coconut growers island-wide through an
efficient extension & advisory service (Coconut Cultivation Board, 2023). ‘Agro life’ (KOMA
Labs, 2020) is a mobile app designed for Sri Lankan farmers and agricultural community which
provides complete information on crop production, crop protection, fertilizers, machinery, and

impact of climate, storage procedures and all relevant allied services.

The mobile-based Android application systems, such that, 'Krushi Advisor', 'Govi mithuru', and
'My Agri' (Department of Agriculture, 2021, Govi Mithuru, 2015, My Agri, 2021) serve as
comprehensive advisory platforms for farmers and relevant stakeholders, providing them with self-
guidance regarding crops, seeds, cultivation information, and appropriate fertilizers. By leveraging
these applications, farmers can access valuable knowledge and become more informed in their

agricultural practices.

'Helaviru', and 'Agrithing' (Agrithing, Helawiru) are dynamic digital marketplaces that facilitate
trading activities of agriculture-related products and harvests for small-scale collectors, retailers,
and large consumers. These platforms were developed to enable timely sales of products at
reasonable prices, thereby benefiting both sellers and buyers in the agricultural market. However,
the lack of maintenance, reliability have made these systems low productive and disqualified to be

used in accurate decision making by the government at the moment.

Table 2.1 provides a summarized comparison of commonly used agricultural aid software
applications in Sri Lanka. The table highlights that most of these applications are primarily
focused on knowledge delivery, offering information and guidance to farmers. Additionally,

some applications also provide real-time market information, allowing farmers to stay updated
on pricing trends and market conditions. Unfortunately, a limited number of agricultural aid
mobile applications are presently operational and functioning effectively in Sri Lanka.
Consequently, this situation has resulted in inefficiencies, inadequate tracking, and reduced
productivity within the agricultural sector of the country. However, considering the related

works it clearly shows the necessity of a system that provide accurate and updated information

9

among the farmers, traders and the department of agriculture for informed decision making to
improve the agriculture sector in Sri Lanka especially as a developing country amidst the
economic crisis. As a developing country, Sri Lanka is in need of an intelligent centralized
system for agricultural data and a mechanism for informed decision-making to enhance the
efficiency and productivity of its agricultural sector. The government has been actively
supporting the agricultural sector by providing substantial freely available facilities to farmers,
distinguishing Sri Lanka from other countries worldwide. Consequently, it is crucial for the
government to establish a mechanism that enables accurate insights of the current market

information of agricultural products for regulatory purposes and decision making.

2.3 Related Technologies

Understanding the underlying technologies is essential for comprehending the functionalities
and capabilities of these applications in supporting the agricultural sector. The aforementioned
technologies, namely cloud computing, sensor technologies, mobile application development,
data analytics, machine learning, database management systems, geospatial technologies, and
communication protocols, can be primarily classified as related technologies utilized in
agriculture management systems (Christine Zhenwei Qiang et al., 2012, Ojha et al., 2015,

Rathod et al., 2022).

Cloud computing enables the storage, management, and processing of agricultural data in cloud-
based platforms, allowing for scalable and accessible storage and collaboration among stakeholders
(Singh et al., 2020). Mobile applications are created specifically for agriculture management
systems to offer farmers convenient access to information, advisory services, market updates, and

communication channels while on the move (Jayathilake et al., 2010).

Combination of cloud-based software, mobile application development, communication protocols,
and database management systems forms a comprehensive technological framework for effective
agricultural software services. Cloud-based software provides a scalable and accessible platform
for agricultural data management, allowing for efficient storage, processing, and collaboration
among stakeholders. This technology enables the centralization of agricultural data, ensuring its
availability and security. Mobile application development is another significant technology that
empowers farmers by offering on-the-go access to vital information, advisory services, market
updates, and communication channels. These applications facilitate real-time decision-making,

enabling farmers to access relevant data and services directly from their mobile devices,
10

irrespective of their location. Communication protocols are essential for establishing secure and
efficient communication channels within agricultural management systems. These protocols enable
seamless data sharing, collaboration, and synchronization between different components of the
system. Real-time data exchange ensures timely and accurate information dissemination,
enhancing coordination and decision-making processes. Database management systems (DBMS)
are critical for efficient organization, storage, and retrieval of agricultural data. These systems
ensure data integrity, provide robust querying capabilities, and enable seamless access to relevant

information.

2.4 Existing System Processes and Functionalities

Existing system, ‘Agrimanager’(Agrimanager) closely aligns with the proposed system's
requirements and functionalities. User management, data collection, data storage and retrieval,
communication, market connectivity, and system administration, closely match the desired features
of the proposed system. By leveraging its capabilities, the new system can benefit from an
established framework and effectively incorporate and enhance existing functionalities. Figure 2.1
illustrates the top-level use case diagram of the existing system, showcasing its functionalities and
processes that align with the proposed system. The diagram presents an overview of the key
interactions and relationships between actors and use cases within the existing system, highlighting

the core functionalities and their corresponding actors.

11

i 4/ Manage User Profile

Farmer Receive Notifications

\'& Connect to Local Market
‘ Connect to Foreign Market

Report Crop Disasters

Vendor @semoles andP@—

Admin
Collect Field Data

Enter Crop Information

@ Crop Disease Details

Manage System Settings

Broadcast Messages

Send SMS Notifications

Retrieve Data from Cloud

Store Data in Cloud

Generate Reports

Figure 2.1 : Top level use case diagram of the system, “Agrimanager” (Agrimanager)

12

YUY 14§ Ul SuonvINddp 2.4pM3J0S PIv [DANINOLISD Pasn AJuowI0d JO UOSLIPAUO0D pazLIDWIUNG : ['7 2]qD.

[eAsIsy
JUSWADIISAPY SUNysIqng pue aFeI0)S PnoD
SI3013J0 103 Suryorr] dejA plerg uonedrddy gamy (wa)sAs
uonEULIOFu] J3IeIN 3jep 0} dn (prozpuy) justudofansg | - pasodoid)
senbrutpda 1 woneAnn) 7 V2 A N v V x s vonedrddy AMQOA | PNO[DUBY
[eAsysy
pue aFer0)g pnopd
(sor
‘prozpuy) juswdofaneg
UOTJEULIOJUT JONIBJA] SUIT) ey X N X X X X X uonedrddy AMIQOIN nIAR[RH
[eAsysy
pue aFeI0)S PnoD
SIS JUSWISA0S 0} SSY (proxpuy) Justudofaasq ddy
senbrutoa 1 voneann) i » A X X o uonedrddy AIqoN nuod0)
sasudia)us a3reT ‘sessaursng
SZISPIAL TeWS I0f 2[qeyng SonATeury eje([easLal
JuSWSSRURIA JOQRT 29 YSEL pue a5eI0)S PNOD
JUSIF eURIA] [RTOURTT] yuatrdoraaap IaSeueIA
JuawaSeuey] AToyuaAuy 7 A s i / A X unoperd Paseq-qgam. usy
[eAsIsy
pue aFeI0)S pnopd
SIS JUSWUISAOS 0} SSIIY (prozpuy) justudofana TINIA
SIVIAPY s, astyradxy X s Va a X X Y vonedrddy MqQOIN 1100
SIS JUSWIISA0S 0} SSY (prozpuy) Justdofansq IOSTAPY
senbrutpda 1 woneAnn) X X X Vs Vs X N uonedrddy QO TUSTLY]
sun.today
UONRULIOJU] | S)SEII0F | SIseasiq » duepmo
BYO SLID[Y/SMAN | oepdyasprery | Jawieapy | 3159 | SI9ZIDISY | SISATeuy doa)
auey
saInjea g Pas)) SIIS0[ouYII L :ot«u:.wﬂ?.

13

2.4 Requirement Analysis

2.4.1 Introduction

Requirement analysis provides a clear understanding of user needs, enabling the development of a
system that effectively addresses the requirements of agricultural officers, farmers, administrators,
and other stakeholders. The analysis helps in designing an intuitive and user-friendly mobile
application and a robust cloud-based platform, ensuring the system meets the specific needs of the
agriculture sector in Sri Lanka. Accurate resource estimation and scope management keep the
project on track and prevent budget and timeline issues. Identifying risks and challenges early on
helps us address and minimize their impact on the project. When stakeholders are aligned, their
expectations are taken into account, resulting in higher satisfaction. Additionally, the analysis
enables us to collect, store, and manage data efficiently, which supports making well-informed
decisions. Thus, it defines the design and development of a comprehensive cloud—based system for

data acquisition and representation to facilitate informed decision-making.

2.4.2 Overall Description
1. Product Perspective
The proposed system, “Ceylon AgriData” will be an implemented software solution that includes

third-party libraries and API services. For more details, see Chapters 4.

2. Product Features
The main features and functionalities of the system, including:
e Mobile application for agricultural field officers to collect farmer related data
efficiently during field visits
e Cloud-based system for securely storing and maintaining agricultural data efficiently
e Data representation via different dashboards to support stakeholders for informed
decision-making
e Broadcast message service among agriculture stakeholders
e A complimentary advertising platform designed to directly connect farmers with
vendors, eliminating intermediaries, while enabling government agencies to monitor

and regulate pricing effectively.

14

3. User Classes and Characteristics

The system will mainly cater to the following user classes:

Agricultural Officers: Responsible for collecting farmer data using the mobile application
and will benefit in making reports.

Farmers: Users who will benefit from the complementary advertising platform service and
receive broadcast messages on a timely manner.

Administrators: Manage and maintain the system, including access control and will benefit
in generating reports.

Researchers: Access agricultural up-to-date data to analyze data for research purposes.

4. Operating Environment

The system should be compatible with the following operating environment:

Mobile Application: Android devices with the latest versions.

Cloud Platform: Web browsers and internet connectivity

5. Design and Implementation Constraints

The system should be user-friendly, ensuring ease of use for agricultural officers and
farmers with varying technical expertise.
The cloud-based platform should be capable to handle a large volume of agricultural

data and concurrent user access.

6. Assumptions and Dependencies

It is assumed that mobile devices and internet connectivity will be available to
agricultural officers and farmers at least for a limited time period regularly in the target
areas.

The system will depend on reliable network connectivity to synchronize data between
the mobile application and the cloud platform.

The availability and accuracy of agricultural data depend on the timely input and

cooperation of agricultural officers.

15

2.4.3 Functional Requirements
1. User Authentication and Authorization
User authentication and authorization of the system will be handled by basic authorizations

(using user name and password); encrypted them and Bearer token to maintaining sessions.

e Login/Logout: Users, including agricultural officers, administrators, and farmers, must
securely log in and out of the system using username and password credentials.

e Role-Based Access Control: Depending on the user's role (e.g., regional agricultural
officer, admin, farmer), the system will grant different access levels, ensuring that
sensitive operations (such as data modification) are restricted to authorized personnel.

e Session Management: Sessions are maintained using encrypted bearer tokens,

ensuring continuous security without requiring frequent reauthentication.

2. Data Management

The software enables the storage, retrieval, and management of agricultural data in a cloud
database. It supports seamless integration with various data sources, ensuring data integrity,
reliability, and scalability. The cloud-based system provides secure storage for the collected
agricultural data.

Cloud Database Integration: The system integrates with a cloud-based database, ensuring
secure and scalable data storage for large volumes of agricultural data, including farmer
records, cultivation data, and disaster reports.

e Data Storage: All data collected through the mobile app and web app will be securely
stored in the cloud, with redundancy measures for data recovery in case of system
failures.

o Data Retrieval and Syncing: Users can retrieve and synchronize data in real-time
between the mobile app, web app and the cloud. The system automatically resolves

conflicts when data is updated simultaneously by different users.

3. Data Collection
The mobile application allows agricultural officers to collect farmer related data. webapp along
with cloud-based system allows officers to collect ad store almost all data related to farmers,

farms, cultivation, harvest details, aid information (fuel, fertilizer, pesticides, monetary etc.),

16

crop disasters and disaster occurring f agriculture farms. The application has validation checks

to ensure accurate and complete data entry.

Farmer Data Entry: Agricultural officers can enter detailed farmer profiles, including

demographic information (name, age, region), land size, and cultivation methods.

Farm and Cultivation Details: Officers can collect specific data on the types of crops
grown, farm size, and location (using GPS data), irrigation methods, and expected yield.
Aid Distribution Records: The system allows officers to record and track the
distribution of various types of aid, including monetary support, fuel, fertilizer, and
pesticides. The status of each distribution is updated in real time, ensuring transparency.
Disaster Reporting: Officers can collect detailed information on agricultural disasters
(e.g., droughts, floods), including the scale of the disaster, affected farms, and the type
of damage sustained.

Data Validation: Built-in validation checks ensure that required fields are completed,
data formats are correct (e.g., date fields, numeric values), and duplicate records are

minimized.

4. Data Representation

The system is designed to enhance user experience through interactive dashboards that feature

customizable charts, graphs, and maps. It offers advanced filtering capabilities, allowing users

to drill down into data based on specific criteria and parameters. Additionally, the system is

equipped to generate visualizations that are compatible across a variety of devices and screen

sizes, ensuring accessible and adaptable data representation.

Customizable Dashboards: Different stakeholders (agricultural officers, regional
managers, farmers) will have access to personalized dashboards tailored to their
specific needs.

Interactive Visualizations: The system supports the generation of dynamic charts,
graphs, and geographical maps to visualize agricultural data trends (e.g., yield data,
disaster impact, aid distribution).

Data Filters: Advanced filtering options allow users to drill down into data by region,

crop type, aid type, or disaster impact, making it easier to identify patterns or issues.

17

5. Messaging and Notifications
The web service allows broadcast messages to regional agricultural officers, farmers, and
stakeholders when necessary.
e Broadcast Messaging: The system includes functionality to send urgent broadcast
messages to all users (agricultural officers, farmers) in cases of emergency, such as
natural disasters or sudden changes in aid policies.

e Message History: A log of sent messages is maintained for future reference.

6. Registering Users

The application enables the registration of farmers based on their regional location.
Additionally, it allows for the registration of agricultural officers into the system. Individuals
have the capability to self-register as generic users. Administrative personnel, including admins
and agricultural field officers, are empowered to assign specific roles to the users who have

registered, facilitating a structured and role-based access to the system's features.

Self-Registration: Generic users (e.g., farmers) can self-register via the web application by
entering basic details such as name, location, and contact information.

o Role-Based Registration: Agricultural officers and admins will have elevated
permissions to register new users within their jurisdiction or system. These officers can
add and verify farmers, assigning them to specific regions.

e User Verification: A verification process will be required for certain users, such as
agricultural officers, where admin approval is necessary to activate their account.

e User Role Assignment: Admins and field officers will be able to assign user roles (e.g.,

farmer, field officer, admin), with role-specific access and functionality.

7. Report Generating
Agricultural officers have the capability to generate necessary reports. Additionally, users have
access to publicly available reports, allowing for broader dissemination and reference of

important agricultural data and insights.

Customizable Reports: Agricultural officers can generate detailed reports based on the data

collected, such as farmer profiles, cultivation progress, disaster impacts, and aid distribution.

18

o Predefined Reports: Standardized reports are available for common use cases,
including monthly cultivation updates, disaster assessments, and resource distribution
logs.

o Dynamic Report Filters: Officers can apply various filters (e.g., time period, region,
aid type, crop type) to create customized reports, aiding in targeted decision-making.

e Publicly Accessible Reports: Certain reports (e.g., general agricultural trends or
disaster impact summaries) will be made available to the public for broader
transparency and insight-sharing.

o Export Functionality: Reports can be exported for offline analysis or presentation.

2.4.4 Non - Functional Requirements

1. Performance

The system should have fast response times for efficient data entry and retrieval. The system
should handle a large volume of data without performance degradation. The cloud-based
system should provide quick and reliable access to stored agricultural data.

2. Reliability

The system should be reliable and stable, minimizing crashes and errors. The system should
have backup and recovery mechanisms to prevent data loss. The cloud-based system should
ensure high availability and minimal downtime.

3. Usability and User Experience

The software should have an intuitive user interface, providing a seamless and user-friendly
experience. It should be accessible across different devices and platforms, ensuring a consistent
user experience. It should be accessible to users with varying levels of technological
proficiency

4.Scalability

The software should be capable of handling a large volume of concurrent users and data
processing tasks without compromising performance. It should scale effectively to
accommodate increasing user demands.

5. Security

The application should employ robust security measures to protect sensitive agricultural data.
It should ensure data confidentiality, integrity, and availability through secure data

transmission protocols and authentication mechanisms.

19

6.Integration

The mobile application and cloud-based system are designed to integrate flawlessly, facilitating
uninterrupted data synchronization and sharing. This integration may extend to include third-
party services, aiming to boost the system's functionality and improve data exchange processes.
For further details on this integration, including specific methodologies and technical

guidelines, Chapter 4 offers comprehensive insights.

2.5 Proposed Development Process Model

The iterative waterfall model is chosen for to adopt in the project; practical mobile app
development and web system development. Because, it provides clear project phases,
accommodates stable requirements, involves stakeholders, ensures integration and testing,
facilitates early risk mitigation, and enhances efficiency (Bhatnagar, 2015). In practical
software development, the iterative waterfall model addresses this by incorporating feedback
paths for error detection and correction within the same phase, rather than waiting until the
project's end. This model combines sequential steps with iterative design, allowing
improvements and changes at each stage. Iterative waterfall model includes stages such as
requirements gathering, design, implementation, testing, and deployment. This approach
ensures flexibility and progress throughout the development process. Figure 2.2 showcases the
Iterative Waterfall model i.e. a popular and traditional approach in practical software

development.

[Requwement Analyss]w
System & Software
Design l

A [Implementing &

Unit Testing] '

[Integration & Testmg]‘-w/
Operation &
Maintenance

Figure 2.2: Iterative Waterfall Model (Bhatnagar, 2015)

20

2.6 Summary

Chapter 2 provides the background information for the proposed system aimed at enhancing
the agriculture sector in Sri Lanka. It highlights the importance of agriculture for the country's
economy, job creation, and food security. The chapter emphasizes the challenges faced by the
agriculture sector due to limited access to timely and accurate data, which hampers decision-
making and resource allocation. The chapter further explores the related technologies used in

current agricultural software systems.

The chapter reviews similar systems and technologies that have been utilized in the agriculture
industry in Sri Lanka and globally. It mentions cloud-based agricultural management software
systems, mobile applications, and sensor technologies that have been used to optimize and

streamline farming practices.

The chapter discusses the existing system processes and functionalities, focusing on
'Agrimanager' (Agrimanager) as a closely aligned system with similar requirements and
highlights the features and capabilities of it that can be incorporated and enhanced in the

proposed system.

The chapter concludes with a requirement analysis, which emphasizes the need for a
comprehensive cloud-based system for data acquisition, representation, and informed decision-
making in the agriculture sector. It outlines the scope of the proposed system, including mobile
data collection, cloud-based data storage, market connectivity, communication, and data
analysis. The user classes and characteristics are also identified, including agricultural officers,

farmers, administrators, and researchers.

21

Chapter 3 — Design Architecture

3.1 Introduction

The agricultural sector plays a pivotal role in the livelihoods of the Sri Lankan population but
is currently impeded by significant decision-making challenges due to the lack of
comprehensive, island-wide agricultural data. This project aims to address these challenges by
leveraging technology to create a centralized agricultural database. By utilizing cloud
technology, along with mobile and web applications, the initiative seeks to modernize
traditional agricultural practices, thereby enhancing decision-making efficiency and boosting
productivity in farming. This technological integration promises to transform the agricultural

landscape in Sri Lanka, making it more data-driven and efficient.

The project design comprises several key components: a mobile application, a webapp, a cloud-
based platform, and databases. Together, these elements facilitate data collection, accessibility,
and decision-making support for users. The mobile app empowers regional officers to gather
agricultural data directly from farmers and update the system's database. The webpp serves as
a management tool for agricultural data and facilitates report generation. Additionally, a
broadcast message service enhances efficiency in the agricultural sector by ensuring timely and
reliable dissemination of information. All data is securely stored in a cloud database, enabling
informed decision-making through data representation. Reports aid users in visualizing and
strategizing based on agricultural data. The project also offers free advertising services for
farmers, enabling direct communication with buyers and government oversight of pricing and
regulation. This ensures fairness and informed decision-making regarding price changes.
Furthermore, researchers can leverage the centralized agriculture data to support informed
decision-making and contribute to the improvement of Sri Lanka's agricultural sector. Overall,
the project optimizes data utilization and fosters collaboration for the betterment of Sri Lankan

agriculture.

This chapter presents visual representations and it collectively provides a comprehensive
perspective of the system’s design. The design elements harmonize user requirements, system

functionality, and data management.

22

3.2 Design Strategies Used

Design strategies are methods that help to arrange sections of a program in a way that's simple
to create and modify. In this project, Object Oriented Design (Hillar, 2015) is used and, objects,
classes, encapsulation, inheritance, polymorphism are some major features which were
adopted. This means we focus on the things in the system (entities) and what makes them
unique, rather than just the tasks the software does. Object Oriented Design makes it easier to

manage complexity and create efficient and reusable implementation.

The top-down design approach (Miinch, 2022), is used because it helps to understand and build
the system step by step. It highlights that systems consist of multiple sub-systems and
components, forming a hierarchical structure (Miinch, 2022). Top-down design involves
initially considering the entire software system as one entity and breaking it down into sub-
systems or components based on certain characteristics. Each of these is then treated as its own
system and further broken down. This process continues until the lowest level of the system
hierarchy is reached. Starting from a generalized model, top-down design progressively defines
more specific parts of the system, culminating in the complete system once all components are
integrated (Miinch, 2022). Multitier architecture is adopted in this project as it promotes
separation of concerns, modularity, and ease of maintenance. Each layer communicates with
adjacent layers through well-defined interfaces, and changes in one layer have minimal impact

on other layers.

Modularization involves breaking down a software system into smaller, self-contained
modules. Each module focuses on a specific aspect of functionality. Figure 3.1 illustrates
Modules in “Ceylon AgriData” System and it contains its own set of functions, logic. This
makes it easier to work on individual modules independently and allows for better code

organization, enhances reusability, minimize risks, error conflicts etc.

"Ceylon AgriData" comprises two primary components: a mobile application and a web app.

The following sections will provide detailed explanations of each component.

23

Ceylon AgriData System

f [Mobile Application Module] \ K (WebApp Module] x

[User Interface Module] (User Interface Module)
[User Management Module J [User Management Module J
[Data Collection Module } (Data Collection Module }
[Message Broadcasting Service) [Data Representation Module J
Module
p
\ j Report Generate Module J
&
Message Broadcasting Service J
L Module
-
Free Advertising Service }
\ \ Module j

Figure 3.1: High-level representation of modules in "Ceylon AgriData" System

Table 3.1 outlines the design modules for the mobile application component, while Table 3.2

provides a summary of the design modules for the web application component within the

"Ceylon AgriData" system.

Table 3.1: Modules designed for mobile application designing

Module Name Description
User interface module (UI) All UI s of mobile application
User management module User management related functionalities of

users (basically CRUD operations of

farmers)

Data Collection module Data collection related functionalities (data

on agricultural entities such as farms,

24

cultivation, aids like fertilizer, pesticides, fuel,

and information of farmers etc.)

Message Broadcasting Service module Broadcasting messages to farmers by

agricultural field officers

Figures 3.2 — 3.17 represents the designed Ul s of mobile application.

(\ / Login Po\ge\ / Home Page \

Menu
m M
Logo -
Navigates
.| ==
usemoame S—
word I
SPlask o N -
or Register

o /AN AN J

Figure 3.2: Splash page Figure 3.3: Login page Figure3.4: Home page designing of mobile application
designing of mobile application designing of mobile application

Dashboad Pouje,

Farm Mgt
-

(cultivation Buttons : | Search Buttons :

. pge . :

[Disaster Lo : fa

: : Update/Dele :
te

Figure 3.5: Dashboard page designing of mobile Figure 3.6: Farmer manager home page
application designing of mobile application

Cu l‘tivo\‘t?onHomD

Search Buttons : Search Buttons :
Update/Dele . [Update/Dele
te : te

Fig{tre. 3. 7: qum manager home page Figure 3.8: Cultivation manager home page
designing of mobile application designing of mobile application

/ AidHome \

Gdo(Farmer Po«D

____________________________ NIC
e
: Contacts

Search Buttons e
. Assigned
= Office Id

Update/Dele :
Te Assigned
¢ : area Id
\ """"""") qubm:tButtonJJ

Figure 3.9 : Aid manager home page designing of

Figure 3.10: Register farmer page designing
mobile application

of mobile application

26

(Ao!o(Farm Page\ @ Cultivation P“f’) /Aﬁd distribution Po‘ge_\

one

FormerId |

FarmerId

AgﬁOﬁceIo(

cropId '

——— date

| cultivated area |

Contacts amount received
| started date |
location
'ty Estimoted a\mountAppr‘ove,o(
harvesting date
harvesting
. Z% DPOPJOM\
1t SN cultivation
I Quartile é}_‘&b s rd
K[SubmitButton]/ (SubmitButton]
& J K (SubmitButton)j
?gyre'i 11 Addfarmpggle Figure 3.12: Add cultivation page designing
esigning of mobile of mobile application Figure 3.13: Add cultivation page

application designing of mobile application

Add Disasters Page \ - - - _ﬂ _____ e \\

] ()\

| cultivation info id | | |
|

IRlters []

| otouuoxgeol areo I | :
' [),

\ N y

estimated damaged - - T - - -"—-=-=-= -
M!‘Vest o S — - — ~
I \
Loss in LKR I |
Lestimatedd | I
| Listdown :
Setobas o : Results .
Iso;s < e | as a table |
| |
DropDown | ’I
\

/

N -

3= m - /)
K) Figure 3.15: Search operation page of designing of

Figure 3.14: Add disaster page mobile application

designing of mobile application

27

/
[Seod‘ck by IJJ

R

N

Listdown
Results

—___
(De'etej [Update

N)

Figure 3.16: Page for update / delete
operations of designing of mobile
application

Table 3.2: Modules designed for web application designing

Main Menu

l_ogou't

Figure 3.17: Logout button at main
menu in designing of mobile application

Module Name

Description

User interface module (UI)

All UI s of web application

User management module

User management related functionalities of
users (CRUD operations of users: farmers,

agriculture officers, researchers etc.)

Data collection module

Data collection related functionalities (data

on agricultural such as farms, crops,

cultivation, aids like fertilizer, pesticides, fuel,
information of farmers,

monetary and

researchers etc.)

Data representation module

Representation of collected agriculture data
in a comprehensive manner using tables,
graphics such as pie-charts, bar charts and

maps.

28

Report generate module

Use filters to make reports to facilitate data
driven decision making. Filtered data can be

downloaded as .csv files.

Message broadcasting service module

Broadcasting messages to farmers, officials

by agricultural field officers and admin.

Free advertising service module Functions related

to advertising

advertisements of registered farmers.

Figures 3.18 to 3.21 depict the designed user interfaces (Uls) of the web application.

content

X
| usemame |
I password I
or REGISTER A
WebApP
Q A/ouv}go:t]on Bar 53‘]'\17\ Btnl
O?O
___ I
Pictures >

Contacts :De,‘todls

Figure 3.18: designing of UI - landing page of react webapp

29

Nav Bar AJ""/ATF\QHOPRCU/
O toge Registered any User.

l..oggedI n

When e,nro"ing\,\Pou't'ICular oPe,ro,;t-/ons will be loaded
~ e

| zrsert |[Update || Search | [Delete |

Figure 3.19: Designing of Ul of webapp for data managing related operations

Adwmin / Agﬁcul‘ture P-elo(officer
/

O nav bar :.‘ : Loﬁep‘ n

Reports preview reports

|
1
|
|

I
I
I
I
I
I
ReportsiTypes |
I
I
|
I
I
I

Figure 3.20: Report generating page design of webapp

30

Udlertisement]s
trezadanee s rarn ey T e T
contacts contacts contacts

Figure 3.21: Advertisement service page designing of webapp

3.3 System Architecture

The layered architecture pattern arranges components into horizontal layers, each with a
distinct role in the application. While the number and types of layers can vary, a common setup
includes four layers: presentation, business, persistence, and database, which can be combined

based on needs, resulting in three to more than five layers in different applications (Richards,

2022).

In the project, service-oriented multi-tier architecture is employed, featuring distinct layers:
presentation (mobile and web applications), application logic (REST web service), and data
storage (database), ensuring effective separation of roles. This approach promotes scalability
and maintainability, as alterations in one layer and, do not impact the others, with REST APIs
facilitating communication between the presentation and application logic layers (Petrillo et

al., 2016).

The presentation layer handles user interaction and interface, the application logic layer

manages processing and business rules, and the data storage layer handles data management

31

and storage. This separation of concerns enhances scalability, maintainability, and reusability

by isolating different functionalities into well-defined layers (Richards, 2022).

Figure 3.22 depicts the high-level solution architecture of the system. Presentation layer
exposed interfaces for system consumers such that agriculture officers (admins, agriculture
field officers), Farmers, Researchers, generic users etc. Application logic layer includes the
API service and the web app which handles all the business processes and logic in the
considered domain such as agricultural data management (insert, update, delete agricultural
data, search options, authorization, login/logout functionality, report generating functions,
message broadcasting functionality, free advertising service functionality etc.). Data Layer

holds all the domain related data.

Python language is used to build the backend of the web application as it supports for building
scalable and maintainable web applications using different web frameworks/libraries like flask,
Django etc. Python is renowned for its high-level nature, readability, and extensive library of
modules and packages, which contribute to faster and more efficient development processes.
Flask is used as the web framework for building the application as it is flexible and easy to use,
making it a popular choice for building RESTful APIs. A relational database - MYSQL
database is used for the data storage requirement of the application. React is used to build Web
application front end. The mobile application is built using flutter for android. As the
application was built as a modular service, like react based web frontend application, python-
based flask API, and data persistence, any supportive cloud service can be used to deploy this

system in production convincing that the design of the project more flexible.

In addition, cloud-based systems, integrating APIs, web applications, and cloud-hosted
databases, yield scalable, cost-efficient solutions with global accessibility, fostering rapid
development and high reliability (Petrillo et al., 2016). This approach enables seamless
integration, ensures security and compliance, and streamlines maintenance, empowering

enterprises to innovate effectively and maintain competitiveness.

32

1

1 Data Layer '
! 1
! 1
! :

| M f}} :
! pe=—ar g MusSQ .
! |
! 1
! 1

Application Logic Layer

1
: !
1
[l
1
[WebApp ol
! 1
! 1

« —
Flutter @ -
3 Mobile App Ul }T Web UI (Dashboards) !
Users

Figure 3.22: High-level solution architecture of the "Ceylon AgriData" system

3.3.1 Frontend and Backend Module Overview within the System Architecture

The design of the “Ceylon AgriData” system is structured around two core separate services:
the frontend and the backend. The frontend serves as the GUI, encompassing both the mobile
and web application Uls, while the backend handles business logic, data persistence, and
communication scenarios as indicated in Figure 3.23. Integration with third-party services like

Gmail API and mapping tools enhances functionality.

33

’ 3rd party
Services
REST APIs
\ Boack end \

REST API

TT——ResT AN
(e))

user

Figure 3.23: Frontend and Backend overview of the "Ceylon AgriData" system

In the frontend, the API service manages all HTTP requests centrally, using the Axios library
for efficiency. The React Components module maintains Ul elements for a unified user
experience, ensuring clarity and modularity in development. The backend comprises key
modules including ‘Models’, ‘Schemas’, and ‘Routes’. Models define entity structure, while
Schemas provide structured data representation for consistency. Routes coordinate data flow
and operations, exposing endpoints for client interaction. High level diagram of modules

designed as per system architecture is in Figure 3.24.

Together, these modules form a robust system for agricultural management, facilitating
efficient data handling and functionality implementation. This structured approach ensures
coherence, scalability, and seamless communication between frontend and backend

components.

Frontend ¢ | Backend

sCﬁvce$ Eg:Axio

I |
I

| |
! |
l |
: |
! |
: g Eg: SQLAI:L@_—V o
| Models C
. | x
|

' |
' |
|

| |
| |
| |

React
[omponen‘ts

Figure 3.24: High level diagram of modules designed as per system architecture

34

3.4 Justification of selecting React and Flask in the project

React and Flask were chosen for their strengths: React's component-based architecture
simplifies Ul management, virtual DOM optimization ensures faster rendering, and state
management is enhanced with React Hooks. Flask's lightweight framework and support for

various ORMs streamline development. Both benefit from rich ecosystems of third-party

libraries for additional functionality, as outlined in Table 3.3.

Table 3.3: Justification of selecting React and Flask in the project

React

Flask

Component-based architecture
React allows to build Uls using component-
based architecture, making it easier to

manage and reuse.

Framework
Flask uses Python, a dynamically typed
language. No need to declare types.

Flask is a lightweight web framework for

React provides various options for managing
application state, such as React’s built-in
state management; React Hook functions

such as useState and useEffect.

Python.
Virtual DOM Project Structure
React’s virtual DOM implementation | Flask projects typically have a simpler
optimizes performance by only updating the | structure
parts of the DOM that have changed,
resulting faster rendering
State Management Configuration

Flask uses Python code for configuration,
typically in the form of function decorators

or configuration files.

Third-party libraries

Axios — HTTP client for the browser and
handles responses in react applications,
React-Leaflet — Integrate maps in react
applications,

Ul

React-Bootstrap — pre-designed

components for rapid development etc.

ORM
Flask supports various ORMs (Object-
Relational Mappers) like SQLAlchemy for

interacting with databases.

35

3.5 UML Diagrams

Unified Modeling Language (UML) diagrams are essential tools in software development,
offering standardized visual representations for design, structure, and behavior aspects of a
system and these diagrams bring multiple advantages, facilitating comprehension,

communication, and implementation of intricate software systems (Dennis, 2012).

3.5.1 Use case analysis

Use cases are used to describe how users interact with a system to achieve tasks. They help to
understand the steps needed for users' goals and can lead to detailed functional requirements
stated in chapter 2. Use cases are important for various development methods and are especially
helpful for systems involving user interactions. Figure 3.25 represents the use case diagram of

the system, “Ceylon AgriData”.

Actors of the system are the persons who interact with the system,;
e Admin : Person who has access to overall system “Ceylon AgriData”.
e Agricultural field officers: Person who has access only to privileged area.
e Farmer, researcher, generic user are the persons who interact with the system to have
services.
Use case descriptions of particular actors are as follows.
1. Admin:
e Admin logins/sign in the system
e Manage agricultural field officers and other users
- Admin verify other users sign-up requests.
- Assigns officers to specific fields as needed.
e Manage aid funds information
-Manages funding aids receives (fuel, fertilizer, pesticides, monetary etc.) by the
government in the system
e Generate Reports
-Generates various reports including officer details, crop cultivation, farmer details, aid

distribution, etc.

Broadcast messages

-Broadcasts messages to officers for reliable message dissemination

View public reports
36

View published advertisements on webapp

Sending requested data to researchers and maintain its records

. Agriculture Field Officer:

Registration
-The agriculture field officer signs up via the mobile application or webapp, providing
necessary details.

- A request is sent to the regional admin for verification and approval.

- Upon approval, the agriculture field officer receives an email confirmation and gains
access to the system.
Manage Farmers
- After logging in, the Agriculture Officer adds/updates/views farmer details through
mobile or web applications. (Using mobile application in field visits are more
convenient)
Manage Farm Information

- logs in the system and adds/updates/views farm details via the mobile or web
application.

- Geographical location can be added via the mobile application during field visits.
- or, manually can be added using web application.
Manage Cultivation information
- Add/update/view cultivation details and upload them to the system.
- Cultivation details can be updated at any time, and past records are accessible.
- Eligible farmers must be registered in the system beforehand.
Manage Fertilizer Distribution

- Update the system with aid distribution details for their assigned area.

- Eligible farmers must be registered in the system beforehand.
Manage Fuel Distribution
- Updates the system with aid distribution details for their assigned area.
- Eligible farmers must be registered in the system beforehand.
Manage Pesticides Distribution
- Update the system with aid distribution details for their assigned area.
- Eligible farmers must be registered in the system beforehand.
Manage Monetary Distribution

37

-Update the system with aid distribution details for their assigned area.

- Eligible farmers must be registered in the system beforehand.

Manage miscellaneous aid distribution

- Update the system with miscellaneous aid distribution details for their assigned area.
- Eligible farmers must be registered in the system beforehand.

Manage Disaster Information

- Update disaster damage details for affected cultivations in their field area.

Manage Disaster Information

- Update disaster damage details for affected cultivations in their field area.

Verify Advertisements of farmers in free advertising service portal

Generate Reports

-Generate reports on cultivation, farmer, disaster damage, and aid distribution details
with various filters.

View public reports on web application

View published advertisements on webapp

Broadcast messages to farmers

Farmer:

Registration

- Farmers are registered to a field area by the Agriculture Officer.

- Upon registration, farmers create an account in the system for marketplace access.
Publish advertisements

- Registered farmers publish/view/update/remove advertisements for their harvest in
the marketplace.

- Advertisements are verified by the agricultural field officer before publishing.

View public reports and dashboard

- Farmers generate reports on cultivation and harvest information.

View published advertisements on webapp

Researcher
View Public Reports/Dashboard
- Researchers view public reports and dashboard on agricultural data.

View published advertisements on webapp
38

e Request data
- Researchers contact agriculture office by sending messages through "contact us"

feature to request data.

5. Generic User
e View Public Dashboard and Reports
- Users view public dashboard and reports provided by the system.
e View published advertisements on webapp
e Request data
-Contact agriculture office by sending messages through "contact us" feature to request
data.
Admins and agriculture field officers have the capability to generate reports essential for
official tasks and informed decision-making within the sector. The system provides various
data representations and supports the download of agriculture data to facilitate this process.
Users can specifically generate reports using filters available in the report section. Appendix A
provides a comprehensive overview of the MIS reports that can be generated and visualized

within the "Ceylon AgriData" system.

3.5.2 Process Modelling

Process modeling is a technique used to visually represent and describe the sequence of
activities, tasks, and interactions within a system or a workflow. Process modeling helps in
understanding the flow of work, identifying potential bottlenecks or inefficiencies, and
improving the overall efficiency and effectiveness of a process (Dennis, 2012).

Manage users (registration, authenticate login),, manage Agri-Information (farms, cultivation,
disasters etc.), manage Agri-aid information (money, pesticides, fertilizer, fuel etc.), manage
free advertising service, data processing (upload and retrieve to cloud), data representation
(represent Agri-Information for decision making etc.), broadcasting message service are
included the main business processes in the "Ceylon AgriData" System.

Activity diagrams are the commonly used graphical representations to illustrate flow of
activities, actions and decisions in the system. Figure 3.26 represents the activity diagram for
registering a new farmer and add his farm and cultivation details using mobile application by

agriculture field officer.

39

Admin

Agricultural Field

Officer

NN AN\

[System Bounda

/m
PesticidesFunds ponagsiEoelins
* ,’ Manage
\ <<includes>> . ¥ FertilizerFunds

<<includes>>' =<includes>> .-~

v
.
.
.
.
‘.

“Zxincludes={ . Manage
oo NMiscellaneousFund
<<includes>> o
Authenticate User
<<includes>>,_ .-~

a® -~ hi
Manage Officers ‘ o P

<<includes>>

Generate Reports Select Recipients
< <<includes=>
Broadcast Messages
- View Published
Advertisements Maintain UserSession

Authenticate User <
*

_s<includes=>
' <<includes>>,
/’ Login / Sign in

' View PublicReports .

L--"" =<includes>>

<<includes>>

Maintain Record)-»(_ Authenticate User '~
-

<<includes=> ~
Authenticate User Agriizan:rﬁé)ata
<<includes>>
"\
<<indudes>>
Verify Adverticement Je--..___ Publish Advertisements

<<includes>>

Manage Farm N T TTTeseeee. Get geographical
information 4 location

lanage Cultivation *. <<includes>>
information £

.. <<includes>>

Manage Disaster
information

<<inclu

Manage Farmers
<

Manage Miscellaneous

Distributions Information

Wanage Fertilizer Distribution
Information s
ZZincludes>» /

#<includes>>

/ 7

’l v "
'r<<in9{udgs>>
S

Manage Pesticides

Distributions Information

Wanage monetary distributiol
Information

Manage fuel distribution
Information

GenericUser

Researcher

ey

Farmer

Figure 3.25: Use case Diagram of the System "Ceylon AgriData"

40

Invalid Require Valid
username and

password

Navigate to Register
a New Farmer
Section

S

Fill required details

~

——Y
—
No Preview Faild

Press Submit Button
Message

| —

Preview Success
Message

v

Navigates to Add

Farm Section

Fill required details

Recheck |
v N
0 Preview Faild
Press Submit Button Message
Success
Preview Success
Message
A
I Navigates to Add
Fill required details Culti 1 Info
Section
Recheck |
A
) No . .
Preview Faild
Press Submit Button Message

Success

Preview Success
Message

I Navigates to

HomePage

Logout

Figure 3.26.: Activity diagram for register a new farmer and adding his farm, cultivation
details into the system by Agri field officer

4]

Figure 3.27 depicts the activity diagram illustrating the process of generating agriculture
reports by an agriculture field officer. And, Figure 3.28 illustrates the activity diagram outlining

the procedure for advertising reports by a farmer.

rEg'cult.'e Field Office]

Invalid

Require Valid
username and
password

Navigate to Report
Section

h 4

Apply Required

Filters

A 4

Preview Report

A 4

Press Download
Button

Logout

Figure 3.27: Activity diagram to generate agricultural reports by a agriculture field officer

42

Farmer [System| Agriculture Field Office

Login

|

p—
Invakd| Get valid credentials
from Agriculture »| Register Farmer

officer

:

Fill the form to publish
an adverticement

::: Verify Adverticement

Submit

~——

View Published Display Approved
Advertisement Message

Figure 3.28: Activity diagram for publishing advertisements by farmer

3.5.3 Data Modelling

Data modeling in software design involves creating a structured representation of how data will
be organized, stored, and interacted with within a software system. It assists in designing a
database schema and ensuring that data is accurately captured and processed according to the
software's requirements. All data related to various business processes is stored in the data
layer. For a detailed description of the tables used in the database pertaining to these data layer
functionalities, please refer to Appendix B and Appendix C. Figure 3.29 illustrates the database
model of the “Ceylon AgriData” system.

43

adAL
uonduosag L|_ \IsaneHpabeweqpajewns3
fgpappy slegpappy JsaneHpabewegpajewns3
Agpajepdn junowypajssneH ealypabeweq
paaig 8jegpajsaneH awiy
oweNdoi) /gpappy aeq
Agpajepdn e
pidoId id uoseag BAYIND 134
uogduosa@aloy doiy Jaueno PloILORENIND
aweNs|oy JEBAUOY
bl jsaneHpalewns3 Projupelsesia o,
sjegbunsaneHpslewns3
8ioy ON3li3xeL ajegpapels 'a =
A ajeqgpals)sibay UONBANDIOBANY uondudsaq 2
Agpappy apnye| panosddyunowy 2
fgpaepdn - — — apnybuol Bassnesmansanad paNBIBYINOY B
I aweN/fe(dsig PLIBYOPabIEYOY| =
pleasypja1jpaubissy | . awiL =
PIRILOPRUBISSY i pidos L aleg <
puasn X4 | pluses |44 uoseay ono
puasn Md | plojujuoneAlnd Md 1344 o_o_c_cw__-._mo“n_hmw <
Jawieq | ojujuoneAnnd pIpY PIBoWOUBY M
||||||||||||||||| _ " PIPIYSNOBUEIIBSIN - Hd pIPY 14 =
CETEETET { - i JZmSocm__oom_E PIUORNGARSI Md @
pleakojdw3Agabeuepy h uoRNqUISIaPIY N
| " 3jeq InBS | % Ine IO/
; | pleaoLdy] SWENWIES o)
“ SuEN | sy w_wwmwﬁwm I So%_ooom Jnau
BWENJIBUM
= pIBdWOUY I | sleq g i puasn 14| ! DINBURO ELISTELE] s
ansul | PlRAIVPRIY Nd | fuobaied i puesn Nd| ! plalioeary SWENPY uoseay ®
puasn 94 | ealypjald | puasn DE i SRR | adfyL uonduaseq pIpY o S
pussn d Sy ! PiHoday b | ! : =Ry Whocy pIprvIon3 A S
v ! suoday J yaregpr RS
JayoIeasay { | | PIBIWO o Q
$.Nu.www | ! | puswses M4 pleowopabieyou; 3 -— =
— o | ” I puasn PPN Nd Sacumgm Q
ON _u__wz_. swen = | | pluwses Nd| pIY L)
oNBayssauisng L L | wiey N
puasn Iy < [| : PP %4 g
pUssN Md Piaaouty uu | - [TEPSUSTT feon |
J0pUBA souwoul e Lmsleim o I yurjebew pIpIvARY ﬁ = =~
apogealy I _ PLBIOP3LLIA 050 Ll
daiaL uonduasaq
BWeNAWOH JoquinN v A Y vv ONsuoy adfy uonduosaq
ONBWoH jlew3 SweN SoAL
Mdpepoou3 oIS puesn IMid 800 aieghida prved
SWENIBS umoL 1 sweniseq ONUdleg ajeghudx3
40 I PioEju0d *d SWENBIPPIN Pt foian
=l=9 s D I WeNjsi i i Siegainpejnuen s
pussn N4 pussn : Peuo) sweNisid uonduasag alegainoenue
! pissappy xd[] ! ON anmm ppy
I I
puasn =_Mm_ i ssappy | e e Rt i At s < ol08 vW__Mh odhL GRS i PP LN
" PO T O IO OO O OO O N 2 I 5 A S 5 O SO N O > pussn 35, I 9.
> 950 pussn x“ Jszpes pIPVOPOISSd Y
J pIY X sapsad
4 a uBwasIuBADY

3.6 Summary

Chapter 3 presents the comprehensive design architecture for the "Ceylon AgriData" system,
aimed at addressing decision-making challenges in Sri Lanka's agricultural sector through
technology integration. The design encompasses a mobile application, a website, a cloud-based
platform, and databases, facilitating data collection, accessibility, and decision-making
support. Utilizing Object-Oriented Design and a top-down approach, the system achieves
modularity and scalability. The architecture follows a service-oriented multi-tier approach,
with distinct layers for presentation, application logic, and data storage, ensuring effective
separation of concerns and promoting scalability and maintainability. Leveraging Python,
Flask, React, and MySQL, the system boasts a flexible and efficient backend, complemented
by a robust frontend. The chapter provides a detailed breakdown of system modules, frontend-
backend interactions, design strategies, justification for technology selection, UML diagrams,
and process modeling. Additionally, it outlines use cases for various user roles, including
admins, agriculture field officers, farmers, researchers, and generic users. Furthermore, the
chapter includes activity diagrams for key processes and a data model description for the
database schema. Together, these elements offer a comprehensive overview of the system's

design, emphasizing its potential to revolutionize Sri Lanka's agricultural landscape.

45

Chapter 4 — Implementation

4.1 Introduction
This chapter includes the implementation process of the project aimed at modernizing data
collection in Sri Lanka's agricultural sector. The objective is to create a comprehensive system
comprising a mobile application and a cloud-based platform. Transitioning to a cloud-based
system improves efficiency by replacing outdated paper methods, enhancing data accuracy,
accessibility, and collaboration among stakeholders. The project targets the Sri Lankan

agricultural sector focusing on efficient field data collection to facilitate decision-making.

4.2 Implementation Methodology

The "Ceylon AgriData" system utilizes a service-oriented multi-tier architecture, which
features separate layers for presentation, application logic, and data storage. The presentation
layer comprises both a mobile application and a wbapp, developed using Flutter and React,
respectively. The application logic is encapsulated in a REST API implemented using Python
Flask. Data storage is managed through a MySQL database.

The system integrates these components into a cohesive whole and utilized third-party
integrations to enhance the user experience, as detailed in section 4.5. The frontend components
are developed independently, while the backend is structured into schemas, models, and routes,
with connectivity to the database facilitated by an ORM (Object-Relational Mapping) tool such
as SQLAlchemy.

Implementation, resulted in the creation of a mobile application and a React web application
designed for agricultural data acquisition and visualization. Detailed user manuals for mobile

application can be found in Appendix K and Uls of Webapp resides in Appendix L.

4.3 Implementation Environment

The "Ceylon AgriData" system was implemented on a machine running the Microsoft

Windows operating system and its software requirements are summarized in Table 4.1.

4.3.1 Front-End Implementation Environment

1. “Ceylon AgriData” Mobile ApplicationThe mobile application was ingeniously

crafted using the Dart programming language in conjunction with the Flutter

46

framework, enabling the development of natively compiled applications for mobile,
web, and desktop from a single codebase.

2. “Ceylon AgriData” Webapp

The web component of the project was developed with JavaScript — React framework,
leveraging its powerful in-built server capabilities to foster an agile development environment.
JavaScript served as the base for building the frontend components, facilitating functionalities
such as user input validation, data manipulation, and asynchronous communication with the
backend server. The utilization of React’s CLI commands, ‘$§ npm build’ for compiling the
application's source code into a production-ready bundle, and ‘ $ npm start’ for launching a

development server.

To facilitate the development and deployment of the frontend components, an environment
powered by Node.js and NPM (Node Package Manager) was established. Node.js provided a
robust runtime environment for executing JavaScript code outside of a web browser, enabling
server-side rendering of React components and efficient dependency management. Meanwhile,
NPM served as a crucial tool for installing, managing, and updating the countless of third-party
libraries and dependencies required for frontend development. This comprehensive toolset
empowered developers to harness the full potential of modern web development practices,
ensuring the creation of a sophisticated and responsive user interface tailored to the unique

requirements of the agricultural data management system.

The system's diagrams were crafted using Draw.io, an open-source, cross-platform tool
renowned for its diagramming capabilities. Meanwhile, Canva, a versatile graphic design
platform, was employed to edit and design all images utilized within the mobile application
and website, offering a user-friendly interface and a plethora of design options for professional-

grade visuals.

4.3.2 Back-End Implementation Environment

A virtual machine was set up to host the backend services, with Flask, A lightweight and

versatile web application framework, installed to manage the REST API. The command ‘$

flask run’ was employed to initiate the Flask development server. Flask served as the backbone

of the backend system, providing a lightweight yet powerful foundation for handling HTTP

requests and responses. Leveraging Flask's modular design, developers were able to seamlessly
47

define routes, handle authentication, and integrate various middleware components to enhance

functionality and security.

Complementing the Flask framework, Flask-Cors version 4.0.0 played a pivotal role in
enabling cross-origin resource sharing (CORS) within the backend system. This crucial
extension facilitated seamless communication between the backend server and the frontend
client, allowing for the exchange of data across different domains without encountering
browser security restrictions. Flask-Cors helps to implement robust API endpoints and ensure
smooth interoperability between different kind of components of the agricultural data
management system.

To streamline dependency management and package installation within the backend
environment, ‘Pip’ was employed as the primary package manager. Pip facilitated the seamless
integration of third-party libraries and extensions, allowing developers to augment the
functionality of the Flask framework with ease.

4.3.3 Data Persistent and Management Environment

In this project, we used MY SQL as the database for data persistence. MySQL is an open-source
database that can handle large volumes of data and can scale to accommodate growing
applications with large data amounts, as we expect for AgriData. This is famous for its good
community support, reliability and security as a relational database. Further, it is relatively easy
to learn, install, configure and manage for developers. In the development environment,
WAMP server is used to host the MYSQL database. WAMP server seamlessly connects the
database to the backend API, facilitating efficient data exchange. Figure 4.1 illustrates the
MYSQL database in WAMP Server.

« C D localhost/phpmyadmin/indexphp?rox

Filters

I

EEREEE RN

T 009

I Consoke laneous_aids 4,000 WYISAM utfimbd 0900 3 6 293.1 K

Figure 4.1: MYSQL database in WAMP Server
48

As We use SQLALchemy ORM - Object relational mapping library, a python SQL toolkit that
can be used to interact with relational databases using python. It helps to work with databases
in an object-oriented way and reduces the complexities of SQL queries to the databases to some
extent. One of the main benefits is that supporting multiple databases such as SQLite, MYSQL,
Oracle SQL etc. it supports SQL queries using query builder as shown in the code snippet in
Figure 4.2 and Figure 4.3. See Appendix B for other database models used in the project.

1 from flask_sqlalchemy import SQLAlchemy

2 from sgqlalchemy import Column, Integer, String, Date, DateTime, Boolean
3 from sqlalchemy import Column, Integer, String, Date, ForeignKey

4 from sqlalchemy.orm import relationship

5

6 # This file contains the database models for the application.

7 db = SQLAlchemy()

8

9 # The following classes are the database models for the application.

10 class User(db.Model): # User class
11 _ tablename__ = 'user' # Table name
12 user_id = Column(Integer, primary_key=True) # SQL Alchemy will auto-increment
13 first_name = Column(String(100)) # Column name and type

14 middle_name = Column(String(100), nullable=True)

15 last_name = Column(String(100))

16 nic = Column(String(100), unique=True)
17 email = Column(String(100), unique=True)

18 password = Column(String(100))

19 dob = Column(Date)
20 role = Column(Integer, nullable=False)

Figure 4.2 :SQOL Alchemy used in the project with model class- User

322 # Query the database for the cultivation information

323 result = db.session.query(

324 Agrioffice.district,

325 Crop.crop_name,

326 CultivationInfo.cultivation_info_id,

327 CultivationInfo.longitude,

328 CultivationInfo.latitude,

329 Agrioffice.agri_office_id,

330).join(

331 Farm, Farm.farm_id == cultivationInfo.farm_id # Join with Farm table
332).join(

333 Farmer, Farmer.user_id == Farm.farmer_id # Join with Farmer table
334).join(

335 Agrioffice, Agrioffice.agri_office_id == Farm.office_id # Join with Agrioffice table
336).join(

337 Crop, Crop.crop_id == CultivationInfo.crop_id # Join with Crop table
338).filter(

339 # Apply filters based on the request parameters

340 CultivationInfo.agri_year == agri_year,

341 CultivationInfo.crop_id == crop_id,

342 extract('month’, CultivationInfo.estimated_harvesting_date) == month,
343 Agrioffice.district == district,

344 Agrioffice.agri_office_id == office_id

345 .all()

Figure 4.3: SOL Alchemy query builder example
49

It was able to seamlessly integrate it with the Flask web application with SQLite & MYSQL

database in this project. SQLite was used only for development purposes in the initial stage of

implementation before switching to MYSQL. For Data serialization, we used a python library

called "‘Marshmallow’ a lightweight serialization library, which plays a key role in defining

data schemas and transforming complex data structures to and from JSON format in this

backend service of the system. See Figure 4.4 for Marshmallow schemas defined in the project

backend. See Appendix C for other schemas used in the project.

ONOOUDE WNPOOVOONGOUVAWNR

This file contains the schemas for the database models

ma = Marshmallow()

Schemas for the database models
class UserSchema(ma.Schema):
class Meta:
fields = ('user_id', 'first_name', 'middle_name', 'last_name', 'email’, 'nic', ‘'dob', 'role')

class FarmSchema(ma.Schema):
class Meta:
fields = ('farm_id', 'farm_name', ‘'address', 'type', 'farmer_id', 'area_of_field', 'owner_nic'

class ContactSchema(ma.Schema):
class Meta:
fields = ('contact_id', 'user_id', 'number', 'area_code')

Figure 4.4: Schemas using ‘Marshmallow”’

Summarized details regarding the frameworks, programming languages, IDEs, and other

essential tools that utilized in the project are provided in Table 4.1. And, the related hardware

implementation environment of “Ceylon AgriData” mobile application is as follows in Table

4.2.

Table 4.1: Summarization of hardware implementation environment of "Ceylon AgriData

Hardware Environment

Mobile Application e 12th Gen Intel(R) Core (TM) i5-1235U 1.30 GHz, RAM

16.0 GB (15.7 GB usable)
e Used, Android Mobile Phone instead of Virtual Emulator.
Samsung A30— with Android version 11, 4GB Ram

Website e 12th Gen Intel(R) Core (TM) i5-1235U 1.30 GHz, RAM
16.0 GB (15.7 GB usable)

50

Table 4.2: Summarization of software Environment of " Ceylon AgriData" system

version 8.0.31

2.4.54.2 (Wamp
Server version

3.3.0 64 bit)

Frameworks/ | Programming Web Servers IDE Other
Database Language Necessities
Mgt
Software
Mobile Flutter Dart - Android Ngrok,
Application Studio Canva
Draw.io
Website React- version JavaScript React Inbuilt VS Code Canva
(Front- 18.2.0 Server (Node.js Draw.io
End) version 18.16.0
and npm version
9.5.1)
REST API | Flask- version Python Flask VS Code Flask-Cors
(Back-End) 3.0.0 Development version 4.0.0
Server Pip version
19.2.3
Database MySQL Python Apache version - SQLAIchemy

version 2.0.21
Marshmallow

version 3.20.1

4.4 Utilized Pre-Built Libraries and Frameworks

The project is utilized with pre-built React components and layout structures, as well as Flask

libraries and extensions in Python. It also incorporates Material UI and Core UI: UI component

libraries for React applications, along with Python Google libraries for various functionalities

provided by Google's APIs. Table 4.3 summarizes its description and sources separately.

51

Table 4.3: Utilized pre-built libraries and frameworks in “Ceylon AgriData”

Category

Description

Source/Reference

React Template

Pre-built React components
and layout structure for web

development

Custom development / Open-source

libraries

Libraries and extensions for

the Flask web framework in

Flask Libraries Python Flask Documentation / PyPI
UI component libraries for
React applications,
providing pre-designed

Material UI & CoreUI components Material-UI / CoreUI

Python Google Libraries

Python libraries provided by
Google for various

functionalities

Google APIs Python Client Library

Flask JWT Token

Library for generating JSON
Web Tokens (JWT) for

authentication in Flask apps

Flask-JWT-Extended

4.5 Integration of Third-Party Services

The project integrates third-party services to enhance its functionality and user experience. One

key integration involves leveraging the Leaflet.js library for interactive mapping on the web,

utilizing its API to customize maps and integrate with other web technologies. Additionally,

Google APIs, particularly the Gmail API, are utilized for seamless email integration, requiring

OAuth 2.0 authentication and API calls integration for secure access and efficient management

of email data within the application. See Table 4.4.

52

Table 4.4: Third-party services utilized in "Ceylon AgriData" application

Third-Party Service | Description Provider
Leaflet Mapping JavaScript library for interactive | Leaflet.js (Volodymyr
maps on the web Agafonkin, 2010)

Google APIs-Gmail | APIs provided by Google for | Google (Google Cloud

integrating Gmail functionality into | Console)

applications
Google Auth | Tool Provided by Google for testing | Google Developers
Playground and debugging OAuth authentication

flows

4.6 Explanation of Key Code Sections

To elucidate the coding flow in both the mobile application and web application, it is segmented
into two sections: the mobile app and the web app. Several major use cases to illustrate this:
logging into the system, inserting agriculture data, message broadcasting, representing
agricultural data using interactive ‘Choropleth Map’ of Sri Lanka. Specifically, the requisite
backend support with REST API and database integration will be discussed within. For further

insights into code explanations, please refer to Appendix E.

4.6.1 Logging into the system

1. Mobile application login functionality
The mobile application is exclusively designed for use by agriculture field officers. The Flutter

code snippet for implementing the login functionality is outlined below.

The code snippet of building the “Login Page” Ul presents in Figure 4.5(a) and Figure 4.5(b).
It constructs a scaffold with a centered body, containing a single child scroll view and padding
for layout consistency. Within the scroll view, the UI elements for the login form are organized
vertically in a column. These elements include an image asset for the logo, text form fields for
username and password entry, an elevated button for submitting the login credentials, and

additional UI components for dividing the form sections and displaying options for registration.

53

1 // Build the login page UI

2 @override

3 Widget build(BuildContext context) {

4 return Scaffold(

5 body: Center(

6 child: SinglechildScrollview(

7 child: Padding(

8 padding: const EdgeInsets.all(30.0),

9 child: column(

Lo crossAxisAlignment: CrossAxisAlignment.center,
11 children: <wWidget>|

12 Image.asset(

L3 "lib/assets/logo.png",

14 width: 150.0,

&3 height: 150.0,

L6)s

L7 const SizedBox(height: 30),

L8 TextFormField(

19 controller: username,

20 decoration: const InputDecoration(
21 labelText: "Username",

22 prefixIcon: Icon(Icons.person),
23)>

24 Y

25 const SizedBox(height: 30),

26 TextFormField(

D7 controller: password,

28 obscureText: true,

29 decoration: const InputDecoration(
30 labelText: "Password"”,

31 prefixIcon: Icon(Icons.lock),
32)>

33)s

Figure 4.5 (a):Code snippet of building the “Login Page” UI

The Login Page Ul is in Figure 4.5 (¢).

1553 s HEE = Foallol ITHA

= |Ceylon
|)|AgriData

°
A Usermame

a Password

Figure 4.5 (b): Login Page Ul of mobile
application

Don't have an account? Register

54

34 ElevatedButton(

35 onPressed:

36 _login, // call the _login method when the button is pressed
37 child: const Text('Login'),

38)

39 const SizedBox(height: 20),

40 Row(mainAxisAlignment: MainAxisAlignment.center,
41 children: <widget>[

42 Expanded (

43 child: Divider(

a4 color: Colors.teal.shade300,

45 height: 10,

a6)s

a7)

48 const Text("or"),

49 Expanded (

50 child: Divider(

51 color: Colors.teal.shade300,

52 height: 10,

53))))])))

54 const SizedBox(height: 20),

55 Row(mainAxisAlignment: MainAxisAlignment.center,
56 children: <widget>[

57 | const Text(

58 'Don\'t have an account? ',

59 style: TextStyle(fontSize: 16),

60 ¥

61 GestureDetector(

62 onTap: () {

63 performRegistration(context);

64 }:

65 child: const Text(

66 "Register”,

67 style: TextStyle(fontSize: 16, color: Colors.teal),

Figure 4.5 (b): Code snippet of building the “Login Page” UI

The code snippet in Figure 4.6 (a) and (b) defines a method named “ login()” responsible for
handling the login functionality in a Flutter application. Within this method, a constant string
“apiUrl” is declared, representing the endpoint URL for the login API. Then, an asynchronous
HTTP POST request is sent to this API URL using the “http.post()” method from the “http”
package. The request includes headers specifying the content type as JSON, and the request
body is encoded into JSON format using “jsonEncode()”. The body contains the user's email
and password obtained from text form controller “username” and “password”. The method

executes asynchronously and awaits the response from the API.

Figure 4.7 checks the response status code received from the login API. If the status code is
200 (indicating a successful response), the JSON response body is parsed into a map of string-
dynamic pairs using “jsonDecode()”. The role value is extracted from this map, along with

other user details like token, first name, last name, email, and user ID. Depending on the user's
55

role, if it equals 4, indicating an agriculture field officer, the application navigates to the home
page using “Navigator.pushReplacement()”. If the role is not 4, indicating an invalid login
attempt, a toast message displaying "Invalid login" is shown using “Fluttertoast.showToast()”.
If the response status code is not 200, indicating a failed login attempt, an alert dialog is
displayed with the title "Login Failed" and a message indicating "Invalid username or

password", prompting the user to dismiss the dialog by pressing the "OK" button.

// Define a method for login functionality
Future<void> login() async {
const String apiurl =
"https://bluebird-balanced-drum.ngrok-free.app/user/login'; // API Url:Login

// Send a POST request to the login API
final response = await http.post(
Uri.parse(apiurl),
headers: <String, String>{
'Content-Type': 'application/json; charset=UTF-8',
¥
body: jsonEncode(<String, String>{
‘email’: username.text, //username taken by defined text controllers
'password’: password.text, //password taken by defined text controllers

1)

Figure 4.6: Code snippet of Login finction in mobile application

// Check the response status code
if (response.statusCode == 200) {
// Parse the JSON response
final Map<String, dynamic> responseData = jsonDecode(response.body);
// Extract the role value from the JSON response
final int role = responseData['role’];
token=responseData["token'];
firstname=responseData['firstname'];
lastname=responseData['lastname’];
email=responseData['email’];
Egssig=response0ata['user_id'];
// Check the user role
if (role == 4) {
// Redirect to the home page if role is 4
Navigator.pushReplacement(
context,
MaterialPageRoute(builder: (context) => const HomePage()),

);

Figure 4.7(a): Code snippet of checking response status code and preview relevant notifications

56

// Show invalid login message if role is not 4
} else if(role!=4){
Fluttertoast.showToast(
msg: 'Invalid login’,
toastlLength: Toast.LENGTH_LONG,
gravity: ToastGravity.BOTTOM,
timeInSecForIosWeb: 1,
backgroundColor: Colors.transparent,
textColor: Colors.red,
fontSize: 16.0,
)s
¥
telse{
// Show error message for failed login
showDialog(
context: context,
builder: (BuildContext context) {
return AlertDialog(
title: const Text('Login Failed'),
content: const Text('Invalid username or password.'),
actions: <Widget$[
TextButton('
onPressed: () {
Navigator.of(context).pop();

b
child: const Text('OK'),

Figure 4.7(b): Code snippet of checking response status code and preview relevant notifications

When the mobile application sends a POST request to the login API, it triggers the
corresponding endpoint in the REST API. The relevant code snippet for this API endpoint is
provided in Figure 4.8(a) and (b).

//defines a route
app.register_blueprint(user_routes, url_prefix="/user’)
11/
@user_routes.route("/login", methods=["POST'])
def login():
if request.is_json:
email = request.json['email’]
password = request.json['password’]
else:
email = request.form['email’]
password = request.form['password’]

user
user

User(email=email, password=password)
user_login(user)

userEmail=user.email
userFname=user.first_name
userLname=user.last_name
user_id=user.user_id

Figure 4.8 (a). Code snippet for Login endpoint of REST API
57

/17
def

/17
def

if user:
access_token = get_access_token(user)
#access_token = create_access_token(identity=user.user_id, expires_delta=timedelta(days=1))
return jsonify(message="Login succeeded!", token=access_token, role=user.role, firstname=userFname,
| lastname=userLname,email=userEmail, user_id=user_id), 200
else:
return jsonify(message='error in email or password', result=user), 401

user_login(user):
user=User.query.filter_by(email=user.email, password=user.password).first()
return user

get_access_token(user):
access_token = create_access_token(identity=user.user_id, expires_delta=timedelta(days=1))
return access_token

Figure 4.8 (b): Code snippet for Login endpoint of REST API

When a POST request is made to this route “/user/login”, the function “login()” is executed.

The function checks if the request is in JSON format or form data and extracts the email and

password accordingly. It then attempts to authenticate the user by querying the database with

the provided credentials using the “user login()” function. If authentication is successful, an

access token is generated using “create _access_token()” function, and a JSON response is

returned with a success message, access token, user role, first name, last name, and user ID. If

authentication fails, a JSON response with an error message and HTTP status code 401

(Unauthorized) is returned. The “user login()” function queries the database for a user with the

provided email and password and returns the user object if found. Finally, the

“get_

access_token()” function generates an access token for the authenticated user, which is

then returned.

1. Web application Login Functionality

Code snippets pertaining to the frontend of the web application are detailed below. See Figure

4.9(a) for the Ul in Web app. The React code snippet for implementing the login functionality

is provided in Figure 4.9(b). This code snippet represents a modal component for user login

functionality in a web application built with React. The modal includes input fields for the

user's email address and password, along with buttons for signing in and registering. The

“show” and “handleClose” props control the visibility of the modal and its closing action. The

user input for email and password is captured using the “Form.Control” component and stored

in the “username” and “password” state variables, respectively. The “password” function is

called when the “Sign In” button is clicked, while the “handleRegister” function is called when

58

the “Register” button is clicked. Figure 4.10 shows the modal built from the above explained

code snippet.

Sign In

Email address

Enter email

Password

Password

Figure 4.9(a): Ul modal of Login in web application

//Render the LoginModal component with show and handleClose props
<LoginModal show={show} handleClose={() => setShow(false)} />

//Modal header with a close button and title
<Modal.Header closeButton>
<Modal.Title>Sign In</Modal.Title>
</Modal.Header>
//Modal body containing a form for email and password input
<Modal.Body>
<Form>
<Form.Group controlld="formBasicEmail">
<Form.Label>Email address</Form.Label>
<Form.Control
type="email"
placeholder="Enter email"
value={username}
onChange={(e) => setUsername(e.target.value)}
/>
</Form.Group>

<Form.Group controlld="formBasicPassword">
<Form.Label>Password</Form.Label>
<Form.Control
type="password"
placeholder="Password"
value={password}
onChange={(e) => setPassword(e.target.value)}
/>
</Form.Group>
</Form>
</Modal.Body>
//Modal footer containing buttons for registration and signing in
<Modal.Footer>
<Button variant="secondary"” className="ml-auto” onClick={handleRegister}>
Register
</Button>
<Button variant="primary" onClick={handleSubmit}>
Sign In
</Button>
</Modal.Footer>
</Modal>

Figure 4.9(b): Code snippet of building login modal in web application (front end)
59

Figure 4.10 shows the code snippet of the login function in web application front end. It
verifies if the username and password fields are filled, then sends a POST request to a login
endpoint with the provided credentials. If successful, it validates the user with the received

token for further authentication.

// Function to handle user login
const logInUser = () => {
// Check if the username field is empty
if (username.length === 0) {
alert('Email has left Blank!"')
// Check if the password field is empty
} else if (password.length === 0) {
alert('password has left Blank!')
// If both fields are filled, send a POST request to the login endpoint
} else {
axios
.post('http://127.0.0.1:5000/user/login", {
email: username,

password: password,
)
.then(function (response) {
console.log(response)
// If a token is received in the response, validate the user with the token
if (response.data.token) {
// Validate the user with the token
axios
.post(
'http://127.0.0.1:5000/user/validate”’,
{
email: username,

b
I
v
// Include the token in the request headers for authentication
headers: {
Authorization: “Bearer ${response.data.token}”,
1

s

Figure 4.10: Code snippet of login functionality in web application front end
When the API sends a response, the frontend of the web application validates the response

status to display the relevant messages. This functionality is implemented in the code snippet

shown in Figure 4.11(a) and Figure 4.11(b). User validation code snippet is in Figure 4.12.

60

.then(function (validateResponse) {
// Log the validation response
console.log(validateResponse)
// Check if the user is valid
if (validateResponse.data.valid) {
// Store the token in local storage
localStorage.setItem(' token’, response.data.token)
// Set isValidUser state to true
setIsValidUser(true)
// Set the response state
setResponse(validateResponse)
} else {
// Show an alert if user validation failed
alert('User validation failed, please log in again or contact Admin')

}
7)

Figure 4.11 (a) :Code snippet of validating the API response

useEffect(() => {
// Check if isValidUser and response exist and have data
if (isValidUser && response && response.data) {
// Check the user role and navigate accordingly
if ([1].includes(response.data.user.role)) {
// Navigate to dashboard for certain user roles
navigate('/dashboard’, { state: { isValidUser: isValidUser } }) // Update isValidUser to true
} else if ([2, 5, 6].includes(response.data.user.role)) {
// Navigate to genericDashboard for certain user roles
navigate('/genericDashboard’, { state: { isValidUser: isValidUser } }) // Update isValidUser to true
} else if ([3, 4].includes(response.data.user.role)) {
// Navigate to officer-dashboard for certain user roles
console.log(isValidUser, ‘isValidUser')
navigate('/officer-dashboard’, { state: { isValidUser: isValidUser } }) // Update isValidUser to true
} else {

// Show an alert for failed logging
alert('Logging was failed, please log in again or contact Admin')
¥
}

}, [isValidUser, response])

Figure 4.11(b): User validation code snippet of webapp (front end)

61

.catch(function (validateError) {
console.log(validateError, ‘validateError')
// Show an alert for error validating token
alert('Error validating token')
1)
} else {
// Show an alert for invalid token
alert('Invalid token')
}
)

.catch(function (error) {
console.log(error, ‘error')
// Check if there is a response error
if (error.response) {
// Check if the status code is 401 (Unauthorized)
if (error.response.status === 401) {
// Show an alert for invalid credentials
alert('Invalid credentials, please try again.')
}
// Check if the error is an AxiosError
} else if (error instanceof Aﬁingrror) {
// Show an alert for network error
alert('An network occurred. Please try again later')
// Check if the error code is ECOMNREFUSED (Connection refused)
} else if (error.code === "ECONNREFUSED") {
// Show an alert for connection refused
alert('Connection refused. Please check your network connection.')
} else {
console.log(error)
// Show an alert for general error
alert('An error occurred. Please try again later.')

Figure 4.12: Code snippet of validating the API response

4.6.2 Inserting agriculture data into the system

The primary categories of agricultural data to be incorporated into the system include details
regarding farmers, farms, cultivations, aid distributions, and disasters. Among these, the code
snippets pertaining to "adding cultivation information" are integrated within following

sections.

Refer Appendix D, E and F for selected coding snippets of mobile application, web application
and REST API of the project.

62

1. Add cultivation information through mobile application

Code snippet represents a user interface in Flutter for adding cultivation details is in Figure
4.14. Tt consists of various input fields for entering information such as farm ID, location
details, crop details, cultivation area, estimated harvest, dates, agri year, quartile, and net yield.
Users can also retrieve location details and select dates using date pickers. Upon filling out the
required fields, wusers can submit the form, which triggers the function
“ performLogCultivation(). Additionally, users can navigate back to the home page using the

home button on the app bar. Thus built Ul is in Figure 4.13.

lepoME™MSH - & el ll 43%8
Add Cultivation Details
Q, FarmId
@ Farm Id
Farm Location Details
@ Get Current Location f \
>
Q@ Longitude -
// Estimated Harvesting Date c
9 Latitude //
/ d Agri Year Select an Option v
"Fo Farm Display Name [
/ 1l Quartile Select an Option v
<& Cropld /
} (™ NetYield
A\ Cultivated Area in Acre /
Submit
¥ Estimated Harvest Amount /
/]] @ < 8
Cultivation Started Date // r,-
W\/—\

Figure 4.13:UI for add cultivation details in mobile application

63

//AppBar
appBar: AppBar(
title: const Text(
"Add Cultivation Details", // Title of the app bar
style: TextStyle(fontSize: 30.9), // Styling for the title text
)>
backgroundColor: Colors.teal.shade200,// Background color of the app bar
leading: IconButton(
icon: const Icon(Icons.home),// Icon for navigating back to home page
onPressed: () {
Navigator.pushReplacement(// Replacement navigation to home page
context,
MaterialPageRoute(builder: (context) => const HomePage()),// Builds HomePage widget
)s
///codes relating to body ..
body: SingleChildScrollView(// Widget for scrollable content
child: Padding(// Widget for padding around the content
padding: const Edgelnsets.all(30.0),// Padding for all sides
child:
Column(crossAxisAlignment: CrossAxisAlignment.center, children: [
Row(
mainAxisAlignment: MainAxisAlignment.end,
children: [

ElevatedButton.icon(// Elevated button widget with icon and label
icon: const Icon(Icons.search), // Add the search icon here
label: const Text(

‘Farm Id',

style: TextStyle(fontSize: 18.0),
)s
onPressed: () {

_performFarmIdSearch(context);// Functionality for performing farm ID search
|5

)s

I
///repeats this..
//calling function for API all by pressing submit button
ElevatedButton(// Elevated button widget for submitting cultivation details
onPressed: () {// Functionality to be executed when the button is pressed
_performLogCultivation();// Calls the function to log cultivation details

¥
child: const Text(

'Submit’,

style: TextStyle(fontSize: 25.9),
)5

Figure 4.14:Code snippet represents a user interface in Flutter for adding cultivation details

64

Get Current location

This code in Figure 4.15 creates a button labeled "Get Current Location" with an edit location
icon. When pressed, it calls the performGetLocation(context) function to retrieve the current
location. The code in Figure 4.16 defines that asynchronously retrieves the current location. It
opens a new screen using to get the location details. After receiving the result from the new

screen, it updates the latitude and longitude text fields with the obtained.

“GetCurrentLocation” in Figure 4.16 utilizes the geolocator and geocoding packages to fetch
the location coordinates and address details. See Appendix G for more information. The screen
includes a Google Map widget to visualize the location, buttons to fetch the current location
and confirm it, and text widgets to display latitude, longitude, and address information in Figure

4.17.

ElevatedButton.icon(
icon: const Icon(
Icons.edit_location_alt), // Add the search icon here
label: const Text(
'Get Current Location’,
style: TextStyle(fontSize: 18.9),
)>
onPressed: () {
_performGetLocation(context);

Js

Figure 4.15: Code snippet for get current location button in frontend Ul in mobile application

void _performGetLocation(BuildContext context) async {
final result = await Navigator.push(
context,
MaterialPageRoute(
builder: (context) => const GetCurrentlLocation(),
)>
);
print(result.toString());
if (result != null) {
setState(() {
latitude.text = result['latitude’].toString();
longitude.text = result['longitude’].toString();

Ds;

1
J

-
J
.

Figure 4.16: Code sippet regarding the function that gets location

65

e ME™MH - &= Tl all 43% & oo @M H - &z Bl all 43% 6

& Location Page & Location Page
i e

k‘;sgas Handiya

Keells Super - Q =]
Wakada, Panadura

\\\
Et'\“t\
\\wsmm WEST Panint HotBun\

MENDISWATTA

THALPITI
SOUTH

LAT: LAT: 6.6957714
LNG: LNG: 79.9157174

ADDRESS: ADDRESS: 19/2A, , Kalutara,

Gat Current Location Confirmy Location Get Current Location Confirm Location

@ 0 < G @ @) < (43

Figure 4.17: Uls of get current location functionality in mobile application

When press the “Submit” button in Figure 4.13, it asynchronously sending a POST request to
a specific API endpoint to log cultivation details. It begins by defining the URL of the API.
Using the “http” package, it constructs and sends the POST request to the designated endpoint,
incorporating necessary headers like content type and authorization token. The body of the
request is formed by encoding cultivation details such as farm ID, crop ID, display name,
cultivation start date, estimated harvesting date, longitude, latitude, area of cultivation,
estimated harvest, agricultural year, and quarter as JSON. Before sending, it ensures
appropriate data types by parsing relevant text field inputs. After the request is made, the
function awaits the response. This process facilitates the inserting of cultivation information

via an external API. The relevant code snippet is in Figure 4.18.

66

Future<void> _performLogCultivation() async {
// API URL for cultivation information
const String apiUrl =
"https://bluebird-balanced-drum.ngrok-free.app/cultivation/info"';

// Sending POST request to the API with cultivation information
final response = await http.post(
Uri.parse(apilrl),
headers: <String, String>{
'Content-Type': 'application/json; charset=UTF-8',
‘Authorization': 'Bearer $token', // Authorization token
¥
body: jsonEncode(<String, dynamic>{
‘farm_id': int.parse(farmld.text),
"crop_id': int.parse(cropld.text),
‘display_name': displayName.text,
"started_date': cultivationStartedDate.text,
‘estimated_harvesting_date': estimatedHarvestingDate.text,
"longitude’: longitude.text,
'latitude’: latitude.text,
'area_of_cultivation': int.parse(cultivationArealnAcre.text),
‘estimated_harvest': int.parse(estimatedHarvest.text),
"agri_year": agri_year,
"quarter"”: quarter

1>

)s

Figure 4.18: Code snippet of sending post request to API to insert cultivation information from mobile application front-end

The authorization token is used for authentication, ensuring that only authorized users can
access the cultivation information endpoint. It validates the identity of the client making the

request.
Figure 4.19 showcase the code snippet of Flask route for adding cultivation information. It

requires JWT authentication. It extracts data from the request, checks if farm and crop IDs

exist, creates a new cultivation record, adds it to the database, and returns a success message.

67

Route for adding cultivation information
@cultivation_routes.route('/info', methods=['POST'])
@jwt_required()# Requires JWT authentication
def add_CultivationInfo():

Get the request data

data = request.get_json()

Check if farm_id exists in the Farm table
farm = Farm.query.get(data['farm_id'])
if not farm:
return jsonify(message='Invalid farm_id'), 400

Check if crop_id exists in the Crop table
crop = Crop.query.get(data['crop_id'])
if not crop:
return jsonify(message='Invalid crop_id'), 400

Create a new cultivation info record
cultivation_info = CultivationInfo(
display_name=data['display_name'],
farm_id=data['farm_id'],
crop_id=data['crop_id'],
longitude=datal['longitude’],
latitude=data['latitude’],
area_of_cultivation=data['area_of_cultivation'],
started_date=parse_date(data['started_date']),
estimated_harvesting_date=parse_date(data['estimated_harvesting date']),
estimated_harvest=data['estimated_harvest'],
agri_year=data['agri_year'],
quarter=data['quarter'],
added_by=get_jwt_identity(),
updated_by=get_jwt_identity(),
added_date=datetime.date.today()

Add the cultivation info record to the database
db.session.add(cultivation_info)
db.session.commit()

Return a response
return jsonify(message='Cultivation info added successfully'), 201

Figure 4.19: Code snippet of flask route of add cultivation information in REST API

2. Manage cultivation information through web application
The web application utilizes functions for inserting, updating, searching, and deleting
cultivation information. The Figures below display the relevant code snippets and UI elements
in the web application. See Appendix E for other selected agricultural data management code

snippets.

68

Figure 4.20 showcases the code snippet relevant to Tab pane, Figure 4.21. The code presents a
tabbed interface with three panes: one for adding new cultivation information, another for
searching existing information, and a third for updating details. This setup streamlines user
interaction, offering distinct functionalities for managing cultivation data efficiently within a

web application.

<CTabContent>

{/* First tab pane for adding cultivation info */}

<CTabPane role="tabpanel” aria-labelledby="home-tab-pane” visible={activeKey === 1}>
<AddCultivationInfo />

</CTabPane>
{/* Second tab pane for searching cultivation info */}

<CTabPane role="tabpanel” aria-labelledby="profile-tab-pane” visible={activeKey === 2}>
<SearchCultivationInfo />

</CTabPane>
{/* Third tab pane for updating information */}

<CTabPane role="tabpanel" aria-labelledby="disabled-tab-pane" visible={activeKey === 4}>
<UpdateInformation />

</CTabPane>

</CTabContent>

Figure 4.20: Code snippet of tab pane in manage cultivation information in web application

Add Cultivation information Search information Update Cultivation information

Figure 4.21: Tab pane of manage cultivation information functionality in web application

Each functionality: Add, search, and update-utilizes a designed form. The code snippet for a
single input text is depicted in Figure 4.22, while similar code structures for other
functionalities are present throughout. Specifically, Figure 4.23 illustrates the forms used for
managing the "Add Cultivation" functionalities.
u*
This JSX code represents an input group component with conditional styling based on whether the form is empty

The input group contains a text label "Farm ID" and an input field for entering the farm ID.
The input field is disabled to prevent user modification.

)k/]
<CInputGroup className={ mb-3 ${isFormEmpty ? 'border border-danger' : "'} }>
<CInputGroupText>Farm ID</CInputGroupText>
<CFormInput

placeholder="Farm ID"
autoComplete="Farm ID"
onChange={handleInputChange}
name="farm_id"
value={farm.farm_id}
disabled
>
</CInputGroup>

Figure 4.22: The code snippet for a single input text in web application
69

Cultivation D 1

FarmID 47

Display Name |~ Cultivation1

FamID | 1 CroplD | 2
Display Name = Dispiay Name Longitude = 81.01543939209791
CropID | CropID Latitude = 6.205815%
Longitude = GPS Location - longitude Area of the Cultivation
Use Map . R R
Latitude = GPS Location - latitude Started Date ~ 05/09/2023
Est. Marvesting Date ~ 07/25/2023

Area of Cultivation

Area of Cultivation

Estimated Harvest

Started Date mm/dd/yyyy (w]
AgriYear | 2022
Est. Harvesting Date = mm/dd/yyyy (w]
Quarter
Estimated Harvest = Estimated Harvest
Harvested Date ~ 08/16/2023

AgriYear = Agri Year
Harvest Amount
Quarter = Quarter

Add Cultivation Info

Update Cutivation Info

Use Map
o
(=]
Search Cultivation info
& | PamID
& Crop
o & | AgriYes
& | Quarter

Figure 4.23:forms used for managing the "Add Cultivation” functionalities in web application

After filling the form, when ‘Add Cultivation Info’ button pressed the ‘handleSubmit’ function

is triggered. It prevents the default form submission behavior, checks if any form field is empty

or null, and displays an alert message if any field is empty. If all fields are filled, it attempts to

add cultivation information by calling the ‘addCultivationinfo’ function asynchronously.

Depending on the response status, it sets a state variable to indicate successful addition or

displays an error message. The related code snippet is in Figure 4.24.

const handleSubmit = async (event) => {
console.log(formData)
if (event) {
event.preventDefault()

if (Object.values(formData).some((value) => value === "'

setIsFormEmpty(true)

alert('Please fill in all the fields.')

return

else {

try {

const response = await addCultivationInfo(formData)

console.log(response)

if (response.request.status
setCultInformation(true)
alert('Cultivation information added successfully!"')

} else {

|| value

-

201) {

null)) {

alert(response, 'Error occurred while adding cultivation information.')

}

f

} catch (error) {
console.error(error)
alert('Error occurred while adding cultivation information.')

Figure 4.24: Handle submit function for calling 'Add Cultivation Information Function' that sends request to REST API

70

Figure 4.25 shows code snippet of making a POST request to the specified endpoint with the
provided form data. It first retrieves the authentication token from local storage, then sends the
POST request with the form data and includes the token in the request headers for
authentication purposes. If the request is successful, it returns the response object. If an error
occurs during the request, it checks the status code of the error response. If the status code is
400, it displays an alert message with the error message from the response data. Otherwise, it

logs the error to the console.

AAAAAA

const addCultivationInfo = async (formData) => {
const token = localStorage.getItem('token")
try {
const response = await axios.post(http://127.0.0.1:5000/cultivation/info”, formData, {
headers: { v
Authorization: "Bearer ${token}’,

}s
)]
return response
catch (error) {

R

if (error.response.status === 400) {
alert(error.response.data.message)
return

1
J

console.error('Failed to fetch farm details:’', error)

return

-

Figure 4.25: Code snippet of making a POST request to the specified endpoint

Update, delete, and search endpoints are invoked from the web application frontend using a
similar approach as described earlier. Below are the code snippets for these endpoints in the
REST API in Table 4.5.

71

Table 4.5: code snippets for Update, delete, and search endpoints in the REST API

Code Snippet Description

Search

@cultivation_routes.route('/search’, methods=["'GET'])
@jwt_required()
def search_CultivationInfo():
Get the filter parameters
farm_id = request.args.get('farm_id")
crop_id = request.args.get('crop_id")
//--rest parameters--//
Build the filter conditions
filter_conditions = []
if farm_id:
filter_conditions.append(CultivationInfo.farm_id == farm_id)
//--other filters--//
Search for cultivation info records based on the filters
query = CultivationInfo.query.filter(
*filter_conditions)
#Pagination
pagination = query.paginate(page=page, per_page=per_page)
cultivation_info = pagination.items
Return the search results
result = cultivation_infos_schema.dump(cultivation_info)
return jsonify({
‘data’: result,
'total_pages': pagination.pages,
‘current_page': pagination.page,
'per_page': pagination.per_page,
"total_items': pagination.total
}), 200

Description

¢ Defines an endpoint for updating cultivation information

e Receives a PUT request with the ID of the cultivation information to be updated.

o Checks if the record exists and if the provided farm and crop IDs are valid.

o If everything is valid, it updates the cultivation information record with the provided data and

commits the changes to the database.

¢ Also handles optional fields like harvested date and amount if provided

72

Update

@cultivation_routes.route('/<int:cultivation_id>"', methods=['PUT'])
@jwt_required()
def update_CultivationInfo(cultivation_id):
Get the request data
data = request.get_json()
Check if the cultivation info record exists
cultivation_info = CultivationInfo.query.get(cultivation_id)
if not cultivation_info:
return jsonify(message='Cultivation info not found'), 404
Check if farm_id exists in the Farm table
farm = Farm.query.get(data['farm_id'])
if not farm:
return jsonify(message='Invalid farm_id'), 400
crop = Crop.query.get(data['crop_id'])
if not crop:
return jsonify(message='Invalid crop_id'), 400
Update the cultivation info record
cultivation_info.display_name = data['display_name’]
--//rest updates//--
Commit the changes to the database
db.session.commit()
#Return a response
‘ return jsonify(message='Cultivation info updated successfully'), 200

Description
¢ Defines an endpoint for searching cultivation information based on various filter parameters
such as farm ID, crop ID, agricultural year, and quarter.
e Receives a GET request with optional query parameters and constructs filter conditions based
on the provided parameters.
e Searches for cultivation information records matching the filter conditions.

e Paginates the results, and returns them along with pagination metadata.

73

Delete

@cultivation_routes.route('/<int:cultivation_id>", methods=['PUT'])
@jwt_required()
def update_CultivationInfo(cultivation_id):
Get the request data
data = request.get_json()
Check if the cultivation info record exists
cultivation_info = CultivationInfo.query.get(cultivation_id)
if not cultivation_info:
return jsonify(message='Cultivation info not found'), 404
Check if farm_id exists in the Farm table
farm = Farm.query.get(data['farm_id'])
if not farm:
return jsonify(message='Invalid farm_id'), 400
crop = Crop.query.get(data['crop_id'])
if not crop:
return jsonify(message='Invalid crop_id'), 400
Update the cultivation info record
cultivation_info.display_name = data['display_name’]
--//rest updates//--
Commit the changes to the database
db.session.commit()
#Return a response
return jsonify(message='Cultivation info updated successfully'), 200

Description
e Defines an endpoint for deleting cultivation information.
e Receives a DELETE request with the ID of the cultivation information to be deleted.
e Checks if the record exists, and if so, it deletes the record from the database and commits the
changes.
o Returns a success message upon successful deletion or a message indicating that the record

was not found if it does not exist.

Get cultivation location using Map in web application

When the "Use Map" button (in Figure 4.23) is clicked, the click event is handled by the
function "handleSetGPSLocation" with the parameter set to true. Inside this event handler
function, the state variable "isMapOpen" is changed using the "setOpenMap" useState function
in React. Subsequently, as "isMapOpen" is set to true, the map view of the "SelectArea"
component is opened. Within the "SelectArea" component, the map is loaded using React
Leaflet components, allowing the user to select a location using a marker icon as in Figure

4.29. After the user clicks on the save button, the coordinates are saved in the local storage

74

(Evidence in Figure 4.27). Finally, when the user clicks on the close button, the map view is
closed, and the saved coordinates are set to the "formData" state coordinates fields in the
"handleSetGPSLocation" function. Consider the code snippet in Figure 4.28 (a) and Figure
4.28(b).

//UseMap Button

<CButton color="success"” onClick={() => handleSetGPSLocation(true)}>

Use Map
</CButton>

//Event handler function

const handleSetGPSLocation = (value) => {

setOpenMap(value)
if (!value) {

//Retrieve coordinates from localStorage and update formData state
const coordinates = JSON.parse(localStorage.getItem('coordinates'))
setFormData((prevFormData) => ({

...prevFormData,

latitude: coordinates[@],

longitude: coordinates[1],}))
setSelectedCoordinates(true)}}

//close map view
<SelectArea userCoordinates={selectedCoordinates} />
<div className="col-sm-2 mb-2 d-flex align-items-center justify-content-center"”>
<CButton color="danger" onClick={() => handleSetGPSLocation(false)}> Close</CButton>
</div>

//selectArea component
const SelectArea = () => {
const [coordinates, setCoordinates] = useState([7.505, 80.35])
const customIcon = new Icon({
iconUrl: 'https://cdn-icons-png.flaticon.com/128/8326/8326599.png",
iconSize: [38, 38],

1))

Figure 4.28(a): Code snippets of getting longitude and lattitude of cultivatin location in web application using leaflet

75

//EXSE handler for map click
const MapClickHandler = () => {
const map = useMap()
useMapEvents({
click: (e) => {

//update coordinates on map click
setCoordinates([e.latlng.lat, e.latlng.lng])
console.log('resize’, coordinates)
map.invalidateSize()},})

return null}

//Function to save coordinates to localStorage
const handleConfirm = () => {
localStorage.setItem('coordinates’, JSON.stringify(coordinates))}
return (
<div>
<h1>Select Map Area</hl>
//react leaflet map container
<MapContainer center={coordinates} zoom={30} style={{ height: '400px', width: '100%" }}>
<TilelLayer url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" />
//Handler for map click
<MapClickHandler />
//marker to select coordinates
<Marker position={coordinates} icon={customIcon} />
</MapContainer>
//button to save coordinates
<CButton className="m-2" onClick={handleConfirm}>
Save Coordinates
</CButton>
</div>

Figure 4..28(b): Code snippets of getting longitude and lattitude of cultivatin location in web application using leaflet

Sources Network Performance Memory Application Security Lighthouse Recorder & Performance insights 28

C [Filter Q@ X
http://localhost:3000

Origin http://localhost:3000

Key Value
coordinates [6.599215937217964,80.37575833534116]

Figure 4.27: Local storage saves the selected coordinates

Viewing the map

In the search result data cell, when the user clicks on the "View Map" button as depicted in
Figure 4.29, the event handler function alters the state of "isMapOpen" and sets the relevant
coordinates in the local storage for use in the ShowMap component. Subsequently, the

ShowMap component is rendered within the search form using an if condition and, previewed
76

map container is illustrated in Figure 4.30. The related code snippets are presented in Figure
4.31.

Farm Crop Estimated Agri Estimated Harvested Harvested Recorded
D D Name Location Harvest Year Quarter Harvesting Date Date Amount Date
1 1 Cultivation1 1 2023 0 2024-03-10 2024-03-24 1 2024-03-03

2022 0 2022-05-30 2022-06-12 3 2024-03-03

w

View

Map

1 1 Cultivation2 View 2 2023 0 2023-11-05 2023-12-04 2 2024-03-03

Map

1 1 Cultivation3 View
Map

1 1 Cultivationd View 4 2022 0 2023-01-25 2023-02-17 4 2024-03-03
Map

Figure 4 .29: Preview of search results in search cultivation information in web application

»
= > = g
w

Select Map Area

+ |

Ridiyagomo

Tank

apoM Ro¥d
f Previewed map container when "View Map" , clicked in web application

Save Coordinates

Figure 4.26: Preview map when “Use Map” button is clicked in add cultivation information functionality in web application

77

//handles using handler function..
{isMapOpen ? (
<ShowMap />
) : (//other part of code..){if condition}

------ //ShowMap Starts//------

const ShowMap = () => {

// Retrieve default longitude and latitude from localStorage
const defaultlongitude = parseFloat(localStorage.getItem('longitude’))
const defaultlLatitude = parseFloat(localStorage.getItem(’latitude'))

// set coordinates based on retrieved longitude and lattitude
const coordinates = [defaultlLatitude, defaultlongitude]

//Log longitude and latitude from local storage
console.log('Longitude from local storage:', defaultlongitude)
console.log('Latitude from local storage:', defaultlLatitude)

//define custom marker icon
const customIcon = new Icon{{
iconUrl: 'https://cdn-icons-png.flaticon.com/128/8326/8326599.png’,
iconSize: [38, 38],
b))

return (
<div>
<h1>Select Map Area</hl>
//react leaflet map container
<MapContainer center={coordinates} zoom={30} style={{ height: '4@0px', width: '100%" }}>
<TilelLayer url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" />
<Marker position={coordinates} icon={customIcon} />
</MapContainer>
</div>
)
¥

export default ShowMap

Figure 4.29: Preview map when “Use Map” button is clicked in add cultivation information functionality in web application

78

4.6.3 Generating Reports
Different types of reports are available for generation within the "Ceylon AgriData" system.
Among these options, report generating of cultivation information is discussed here. For a

comprehensive list of reports that can be generated, refer to Appendix A.

Generating reports on cultivation information functionality

1. Report 1: Estimated harvest vs Actual harvest

The code snippet in Figure 4.30, renders a card body that facilitates the display and interaction
with harvest data pertaining to a specified time range. It begins with a title indicating the total
harvest within the defined period, followed by a textual representation of the start and end dates
of the selected timeframe obtained from the ‘formData’ state. A dropdown menu allows users
to select the year, triggering the ‘handleYearChange’ function upon selection change. The
centerpiece of the component is a bar chart (‘CChartBar’) presenting expected and actual
harvest amounts for various crops. These datasets are dynamically populated using the
‘harvestData’ state, with each bar representing a different crop. The chart's colors distinguish
between expected and actual harvest amounts, offering users a clear visual representation of
cultivation performance over time. Figure 4.31 showcases the output of the above-described

code snippet.

Total harvest in the following time range:

AR AV

A5
2020

2099

Lvis

2092

&Ved
: II II II II II

Figure4.31: Preview of total harvest in selected timeframe

79

<CCardBody>
<CRow>
<CCol>
{/* Title displaying */}
<h4>Total harvest in the following time range:</h4>
<div className="small text-medium-emphasis">
S
{/* Displaying start date and end date */}
{formData.start_date} : {formData.end_date}
</div>
{/* selecting year */}
<div style={{ height: ‘auto’', marginTop: '4@px' }}>
<CFormSelect custom name="year" id="year" onChange={handleYearChange}>
<option value="2020">2020</option>
<option value="2021">2021</option>
<option value="2022">2022</option>
<option value="2023">2023</option>

</CFormSelect>

{/* Barchart dispalying */}

<CChartBar
style={{ height: '3@0px', marginTop: '1@px" }}
data={{

labels: harvestData.map((data) => data.crop_name),
// dataset for expected harvest amount
datasets: [

&
¢
label: 'Expected Harvest Amount’,
backgroundColor: ‘blue’,
data: harvestData.map((data) => data.total_estimated_harvested_amount),

1

// dataset for actual harvest amount

r
L
label: 'Actual Harvest Amount’,
backgroundColor: ‘green’,
data: harvestData.map((data) => data.total_harvested_amount),}],}}

---//rest code//---
1

Figure 4.30: Code snippet of display and interaction with harvest data in a specified time range in web application

The code snippet in Figure 4.32, ‘HarvestEstimatedVsActual’ component is a functional React
component responsible for fetching and displaying harvest data. It utilizes React's ‘useState’
hook to manage state variables such as harvestData, year, and formData. The ‘useEffect’ hook
is employed to trigger a data-fetching function when the component mounts or when the
selected year changes. This function, implemented using the axios library, fetches harvest data
from the server based on the selected year and updates the harvestData state variable

accordingly.

80

// Handle useState()
const HarvestEstimatedVsActual = () => {
const [harvestData, setHarvestData] = useState([])
const [year, setYear] = useState(new Date().getFullYear())
const [formData, setFormData] = useState({ start_date: '', end_date: '' })

//Get dataset from database through an API call
useEffect(() => {
const getData = async () => {
try {

const response = await axios.get(${API_BASE_URL}/report/harvest-amount-by-crop/${year}’)

setHarvestData(response.data)
} catch (error) {
console.error('Error fetching data’, error)
}
}

getData()
}> [year])

Figure 4.32: Function of sending API call to get harvest data to specified route in REST API

Code snippet in Figure 4.33 describes the REST API endpoint for the above-described scenario.
This code defines a Flask route that handles GET requests for fetching aggregated data on
harvested and estimated harvested amounts of crops for a specified agricultural year. It queries
the database to aggregate this data and returns it as JSON, including crop IDs, total harvested

amounts, estimated harvested amounts, and crop names.

@report_routes.route('/harvest-amount-by-crop/(int:agri_year)', methods=["'GET'])
def get_harvest_amount_by_crop(agri_year):

cultivation_infos = db.session.query(
CultivationInfo.crop_id,
func.sum(CultivationInfo.harvested_amount).label('total_harvested_amount"'),
func.sum (CultivationInfo.estimated_harvest).label('total_estimated_harvested_amount')
).filter(
CultivationInfo.agri_year == agri_year
) -group_by(
CultivationInfo.crop_id
).all()

Convert the query results to a list of dictionaries
harvest_amount_by_crop = [
{'crop_id': info.crop_id, 'total_harvested_amount': info.total_harvested_amount,
"total_estimated_harvested_amount’: info.total_estimated_harvested_amount}
for info in cultivation_infos

]

Get the crop names from the Crop table
for data in harvest_amount_by_crop:
crop = Crop.query.get(data['crop_id'])
data['crop_name'] = crop.crop_name if crop else 'Unknown'’

return jsonify(harvest_amount_by_crop)

Figure 4.33:Flask route that handles GET requests for fetching aggregated data on harvested and estimated harvested
amounts of crops for a specified agricultural year

81

Query the database for the total harvested amount and estimated harvested amount of each crop

2. Crop Yield Report
Code snippet in Figure 4.34(a), Figure 4.34(b) builds a React component called
‘LankaMapByCropYieldAdmin’ responsible for displaying a map and filtering data based on
user selections (see Figure 4.35). The component renders a form allowing users to select
various parameters such as crop type, year, month, province, district, and office. When it makes
selections, the component sends requests to the backend API using Axios to retrieve data based
on the chosen parameters. The received data is then used to update the map dynamically, on
the map based on the total harvested crops amount in different districts. The map is rendered

using the ‘MapContainer’ component from the ‘react-leaflet’ library (see Figure 4.36).

Crop Yield Report

Crop Type v
Select Year v
Select Month Select Month v
Select Province Select Province v
Select District Select District v a
Select Office Select Office b

s

| District Overall Cultivation Info 2024

y Hover over a district

v
N
e

Figure 4.35: displaying a map and filtering data based on user selections

82

const LankaMapByCropYieldAdmin = () => {
const center = [7.8731, 80.7718] // coordinates for Sri Lanka
const [offices, setOffices] = useState([])
const [crops, setCrops] = useState([])
const monthNames = [//---months----//]
const [formData, setFormData] = useState({year: '’,month: "', crop_id: '',type:'’,district: '’,office_id: "',}
const [districts, setDistrict] = useState([])
const [filteredOffices, setFilteredOffices] = useState([])
const [mapKey, setMapKey] = useState(9)
const sri_lanka_provinces = [//----Provinces----//]

//resets map in every form data ange
useEffect(() => {
setMapKey((prevKey) => prevKey + 1)
}, [formData])

//Fetch crop data on component mount
useEffect(() => {
const token = localStorage.getItem('token")
Imﬁ}/crop/crops’, { I%—— API Call
Readers: 1
Authorization: “Bearer ${token},},})
.then((response) => {
if (response.status === 200) {
setCrops(response.data)}})
.catch((error) => {
console.log(error)})}, [1)

const handleTypeSelect = (event) => {
const { name, value } = event.target
setFormData((prevFormData) => ({
...prevFormData,
[name]: value,}))}

const handleYearSelect = async (event) => {--Handle the selection of year--}

const handleMonthSelect = async (event) => {--Handles the selection of month-}

const handleProvinceChange =async (event) =>{-Handles the province selection-}

const handleDistrictChange =async(event) =>{-Handles the district selection}

const filterOfficesByDistrict=(offices, district) =>{-Handles the office selection-}

Figure 4.34 (a): Code snippet for rendering a map interface related to crop yield

<MapContainer
key={mapKey }
center={center}
zoom={8}
style={{ height: '709px’', width: '5@0px' }}
dragging={false}
touchZoom={false}
doubleClickZoom={false}
scrollWheelZoom={false}
keyboard={false}
zoomControl={false}

<TilelLayer
url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png"
attribution="© 0OpenStreetMap’
maxZoom={8}
/>
<MapFeatureDatalLayer formData={formData} />
</MapContainer>

Figure 4.36: Code snippet for setting up map container using map Container from react-leaflet library

83

return (
<CContainer fluid>
<CCard>
<CCardBody>
<CRow>
<CCol style={{ margin: '30px’ }}>
<h4>Crop Yield Report</h4d>
<div style={{ height: ‘auto’, marginTop: '40px' }}>
<CInputGroup className={ mb-3"}>
<CFormSelect

custom
name="crop_id"
value={formData.crop_id}
onChange={handleTypeSelect}

<option value="">Crop Type</option>
{crops.map((crop, index) => (
<option key={index} value={crop.crop_id}>
{crop.crop_name}
</option>
N}
</CFormSelect>
</CInputGroup>
<CInputGroup className={ mb-3"}>
<CFormSelect
custom
name="year"
value={formData.year}
onChange={handleYearSelect}

<option value="">Select Year</option>
<option value="2020">2020</option>
<option value="2021">2021</option>
<option value="2022">2022</option>
<option value="2023">2023</option>
<option value="2024">2024</option>

Figure 4. 34(b): Code snippet for JSX structure for rendering a form interface for selecting various parameters related
to crop yield reporting

Code snippet in Figure 4.37 defines a Flask route to handle GET requests to the ‘/crops’
endpoint. The route is protected by JWT authentication, ensuring that only authenticated users
can access it. When a GET request is received, the function ‘crops()’ is executed. This function
retrieves all crop records from the database using SQLAlchemy's query interface and serializes
them into JSON format using a Marshmallow schema named ‘crops_schema’. The serialized
data is then returned as a JSON response to the client using Flask's ‘jsonify()’ function. In
essence, this route provides authenticated users with access to a list of crop data stored in the

database, facilitating interactions between the frontend and backend of the application.

@crop_routes.route('/crops’', methods=["GET'])
@jwt_required()
def crops():
crop_list = Crop.query.all()
result = crops_schema.dump(crop_list)
return jsonify(result)

Figure 4.37: Flask route for fetching crop records with authentication. (REST API)
84

3. Field Mapping Report

Among the various types of reports supported by the system, the field mapping report is used
to represent the geo location related data of the cultivations. According to the user input, Data
is filtered and retrieved from the backend and it is shown in the map using React-leaflet.
The following Figure 4.38 shows the frontend user interface of the report generating
form. Users can download the data for relevant filters in CSV format by clicking the download

icon as shown in the following.

Field Mapping Report

Crop Type v
Select Year v
Select Month ~ Select Month v
Select Province Select Province v
Select District Select District v

Select Office Select Office v

4 Jaffna

Negoembx

Sri J.uy.m.’ndcruuuru
Kotte

Figure 4.38: frontend User interface of the Field map report form

85

Frontend User interface implementation

This Figure 4.39 shows the form input components used to build the above UI form. When it

is filled by the user, relevant dropdowns are loaded according to the previous user selection.

<CInputGroup classhame={ mb-3"}>
<CInputGroupText>Select Month</CInputGroupText>
<CFormSelect
name="month"
value={formData.month}
onChange={handleMonthSelect}
>
<option value="">Select Month</option>
{monthNames.map((month, index) => (
<option key={index} value={index + 1}>
{month}
</option>
N}
</CFormSelect>
<CInputGroupText>
<CButton color="secondary">
<CIcon icon={cilArrowCircleBottom} />
</CButton>
</CInputGroupText>
/CInputGroup>
CInputGroup className={ mb-3"}>
<CInputGroupText>Select Province</CInputGroppText>
<CFormSelect
onChange={handleProvinceChange}
name="province"
value={formData.province}
>
<option value="">Select Province</option>
{sri_lanka_provinces.map((province, index) => (
<option key={index} value={province/}>
{province}
</option>
N}
</CFormSelect>

</CInputGroup>
<CInputGroup className={ mb-3"}>
<CInputGroupText>Select District</CInputGroupText>
<CFormSelect
name="District"
value={formData.district}
onChange={handleDistrictChange}
>
<option value="">Select District</option>
{districts.map((district, index) => (
<option key={index} value={district}>
{district}
</option>
N}
</CFormSelect>
<CInputGroupText>
<CButton color="secondary">
<CIcon icon={cilArrowCircleBottom} />
</CButton>
</CInputGroupText>
</CInputGroup>
<CInputGroup classhame={ mb-3"}>
<CInputGroupText>Select Office</CInputGroupText>
<CFormSelect
name="office_id"
value={formData.office_id}
onChange={handleTypeSelect}
>
<option value="">Select Office</option>
{filteredOffices.map((office, index) => (
<option key={index} value={office.agri_office_id}>
{office.name}
</option>
)}
</CFormSelect>
<CInputGroupText>
<CButton color="secondary">
<CIcon icon={cilArrowCircleBottom} />
</CButton>
</CInputGroupText>
</CInputGroup>

Figure 4.39 :Form of the field mapping reports with dynamic option update with the user inputs

As shown in the following Figure 4.40, Crop types are retrieved from the database. The first

time the component is rendered, data is retrieved by a REST API request. The react useEffect

function is used to send the request and set the data in crop dropdown only once when the

component is rendered.

86

useEffect(() => {
// Retrieve the token from local storage (assumes token was previously saved)
const token = localStorage.getItem('token’);

// Make a GET request to fetch crops data from the API
axios
.get (" ${API_BASE_URL}/crop/crops™, {
headers: {
// Include the Authorization header with the Bearer token for authentication
Authorization: “Bearer ${token},
I
1)
.then((response) => {
// Check if the response status is 200 (OK)
if (response.status === 200) {
// If successful, update the 'crops’ state with the fetched data
setCrops(response.data);

¥

1)

.catch((error) => {
// Log any errors that occur during the request
console.log(error);

¥, [1); // Empty dependency array ensures this runs only once on component mount

Figure 4.40: UseEffect to Run once when the component is rendered

Once the crops are set to the drop down, users can select the crop type with other filters from
the form. When the province is selected, the relevant districts are added to the dropdown using

API request to the backend API as shown in the following Figure 4.41)

<CInputGroup className={ mb-3"}>
<CInputGroupText>Select District</CInputGroupText>
<CFormSelect
name="District"
value={formData.district}
onChange={handleDistrictChange

This function is called when the selected pro;

const handleProvinceChange = async (event) => {
const { name, value } = event.target; // Extfact the name and value from the event.
// Update the formData state with the new selected province.

elect District</option> setFormData((prevFormData) => ({

ince changes.

<option value=

{districts.map((district, index) => (-..prevFormData,
<option key={index} value={district}> [name]: value, // Set the province value based on the user input.
{district} s
</option> // Make an asynchronous request to get all offices and districts by the selected province.

AndDistrictsByProvince(value);

3 const response = await getAllOffice
state with the data from the response.

// Update the offices and district
[setOffices(response.data.offices)ﬂ
setDistrict(response.data.districts);

</CFormSelect>
<CInputGroupText>

D ;.

// This function is called when the selected district changes.
const handleDistrictChange = async (event) => {
const { value } = event.target; // Extract the selected district value from the event.
// Update the formData state with the new selected district.
setFormData((prevFormData) => ({
...prevFormData,
district: value, // Set the district value based on the user input.
s
// Filter the offices by the selected district.
const filteredOffices = filterOfficesByDistrict(offices, value);
// Update the filteredOffices state with the filtered offices.
setFilteredOffices(filteredOffices);

Figure 4.41: Setting district and officers of the selected district to the state variables to be used in dropdowns

87

Once the filters are added, users will receive data from the backend service by the function
shown in Figure 4.42 and Figure 4.43. Then, the markers will be added to the map, and the
map is zoomed automatically according to the filters given. The code related to this

functionality is as follows.

<div
style={{
display: 'flex',
justifyContent: 'center’,
alignItems: 'top’,
height: '700px’,
1}

>

<MapContainer
key={mapKey }
center={center}
zoom={8}
style={{ height: '700px’, width: '500px’ }}

Handles automatically
zooming to the markers

<Tilelayer
url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png"
attribution='© 0penStreetMap’
maxZoom={16}

/>

{bounds && <ChangeView center={bounds.getCenter()} zoom={13} />}

{markersData.map(«——— | Map data is set by the markersData state
(data, index) => (variable
console.log('dataToAdd", data),
(
<Marker
key={index}
position={[data.latitude, data.longitude]}
icon={myIcon}

/>
)
)>
)}
</MapContainer>
</div>

Figure 4.42: Code snippet for Setting marker data to the map

88

// The function passed to useEffect will run after the render is committed to the screen.
useEffect(() => {
// Check if all necessary fields in formData are filled
if (
formData.year !== '' && // Ensure the 'year' field is filled
formData.crop_id !== '' && // Ensure the 'crop_id' field is filled
formData.month !== '' && // Ensure the 'month’ field is filled
formData.district !== '' & // Ensure the 'district’ field is filled
formData.office_id !== '' // Ensure the ‘office_id' field is filled
) |
// If all fields are filled, make a request to get the cultivation map info
searchCultivationMapInfoByDistrictMonthlyOffice(
formData.year,
formData.crop_id,
formData.month,
formData.district,
formData.office_id,
)
.then((response) => {
// If the request is successful (status code 200), update the markersData state
if (response.status === 200) {
setMarkersData(response.data); // Update the markersData with the response data
console.log('response’, response.data); // Log the response for debugging
}
b))
.catch((error) => {
// If the request fails, do nothing
console.error(error); // Log the error for debugging purposes

s

¥

i
// The array of dependencies. When one of these values changes, the function will be run again.
formData.year, formData.crop_id, formData.month, formData.district, formData.office_id

Figured4.43: Code snippet of UseLffect hooks to retrieve data once input are filled, using API service function
“searchCultivationMapInfoByDistrictMonthlyOffice

Once the valid filters are provided, the map will be loaded as in the following Figure 4.44.

Field Mapping Report
Paddy v
2022 v
Select Month = January v liil
Select Province = Western v
Select District Kalutara v
Select Office AgriOffice76 v

Figure 4.44: Markers shown in the map

&9

Backend service function for field report
There are several functions used to filter the data and send the response to the request sender
as shown in below Figure 4.45.

@report_routes.route('/search/cultivation-map/monthly/district/office’, methods=['POST'])
def search_crop_cultivation_map_by_monthly_district_office():

Get the request data

data = request.get_json()

Extract the required parameters from the data
agri_year = data.get('year')

month = data.get('month’)

crop_id = data.get('crop_id")

district = data.get('district’)

office_id = data.get('office_id")

Query the database for the cultivation information
result = db.session.query(
AgriOffice.district,
Crop.crop_name,
CultivationInfo.cultivation_info_id,
CultivationInfo.longitude,
CultivationInfo.latitude,
AgriOffice.agri_office_id,

).Jjoin(

Farm, Farm.farm_id == CultivationInfo.farm_id # Join with Farm table
).Jjoin(

Farmer, Farmer.user_id == Farm.farmer_id # Join with Farmer table
).Jjoin(

AgriOffice, AgriOffice.agri_office_id == Farm.office_id # Join with AgriOffice table
).Jjoin(

Crop, Crop.crop_id == CultivationInfo.crop_id # Join with Crop table
). filter(

Apply filters based on the request parameters

CultivationInfo.agri_year == agri_year,

CultivationInfo.crop_id == crop_id,

extract('month’, CultivationInfo.estimated_harvesting_date) == month,

AgriOffice.district == district,

AgriOffice.agri_office_id == office_id
).all()

Return the result as a JSON response
return jsonify([row._asdict() for row in result])

Figure 4.45: Backend service function

90

4.6.4 Message Broadcasting

One of the main use cases of the requirement was to introduce a feature to directly send
messages to agricultural field officers and to the farmers. System allows admins and officers
to send and keep information on sent messages. The Figure 4.46 explains the implementation

of sending emails to system administrative role officers to agricultural field officers.

f front endl \ Back end
| ResT Jsond—L—>| AgriData APT (8]
receiver

n Bl the Form N

. ResT
L click send

sender

I

Send email Form email Service }/

. w

Figure 4.46: Email sending feature in "Ceylon AgriData " system

Send new mail to Officer(s)

Send mail to officers registered in the system
Select Province ~ Select Province 7

Select all officers @ Select officers by filters

Select District v
Select Office v

Enter officer IDs separated by “,"
Receivers

N

Receivers Enter Subject

Enter Message
Receivers

Va
Send Message

Clear

Figure 4.47: Ul of broadcasting emails feature

Sender gets two options to send messages to all officers or sending officers by given filters.
This form in Figure 4.47, is generated by React form as shown above. It uses react core-ui radio

buttons to get the user input and the selection is set to declared state variables using React's

91

‘useState’ hook in the functional component. According to the state variable value, the input

elements are disabled as shown in Figure 4.48.

The state variable

const |messages, setMessages] =

const [isAllSearchClicked; setIsAllSearchClicked] = useState(false) '

<CForm>
<h1>Send new mail to Officer(s)</hl>
<p className="text-medium-emphasis">
Send mail to officers registered in the system
</p>
<CInputGroup className={"mb-3 ${isFormEmpty 2 'border border-danger' : "'} }>
<CInputGroupText>Select Province</CInputGroupText>
<CFormSelect ---
</CFormSelect>
</CInputGroup>
<CInputGroup> ---
</7tinputGroup>
<CInputGroup className={"mb-3 ${isFormEmpty ? 'border border-danger' : "'} }>.-
</CInputGroup>
<CInputGroup className={"mb-3"}>---
</CInputGroup>
<CInputGroup classMame={"mb-3 ${isFormEmpty 2 'border border-danger' : "'} }>...
</CInputGroup>
<CInputGroup className={"mb-3 ${isFormEmpty ? 'border border-danger' : "'} }>..-
</CInputGroup>
<CInputGroup className={"mb-3 ${isFormEmpty ? 'border border-danger' : "'} }>..-
</CInputGroup>
<div className="d-grid">---
</div>
</CForm>

<CFormCheck
inline
type="radio"
name="inlineRadioOptions"

Radio Buttons id="inlineCheckbox1"
value="true"
onChange={handleSelectAl10fficerRadioChange}
label="Select all officers"
defaultChecked={isAl110fficerSelected}

/>

<CFormCheck
inline
type="radio"
name="inlineRadioOptions"
id="inlineCheckbox2"
onChange={handleSelectAl10fficerRadioChange}
value="false"
label="Select officers by filters"
defaultChecked={!isAl10fficerSelected}

/>

CInputGroup>

Figure 4.48: Selection of recipients

92

When the user selects “Select all officers option” then, the user needs to select the province
that all officers should select. Once the province is selected and the subject and the message is
added, the user can click on the send message that calls an API service function to send the

request to the backend API along with the user inputs. Related code snippet is in Figure 4.49.

<div className="d-grid">
{isLoading 2 (
<Spinner animation="border" variant="primary" />

y &
//////<Cé;;::n
Spinner to be shown color="success"

until backend onClick={lhandlelewItemSendButtonSubmit
response comes disabled={isFormEmpty}

>
Send Message
</CButton>

)}

<CButton color="secondary"
Clear
</CButton>
</div>

onClick={handleSendMessageCleanForm}

const handleNewItemSendButtonSubmit = async (event) => {
event.preventDefault()
console.log(messageSendingForm)

try {
if (
messageSendingForm.isAllSelected === true &% .
messageSendingForm.message !== "' && API serVICe
messageSendingForm.subject !== "' && function to send
messageSendingForm.province !== "" message to all
) { officer at once
setIslLoading(true)
const response = await sendBulkMailsByProvice(
messageSendingForm.province,
messageSendingForm.subject,
messageSendingForm.message,
)
console-logiresponse;
if (response.status === 200) {
alert('Messages were dispatched Successfully!")
} else if (response.status === 409) {
alert(response.data.message)
} else {
alert('Message sending to the system failed. Contact API service in charge.')
}
} else if (
messageSendingForm.isAllSelected === false &%
messageSendingForm.message !== ' && API service function
messageSendingForm.subject !== "' && to send message with
messageSendingForm.officerList.length !== 0 filters for officers
)
setIsLoading(true)

const response = await sendMailToOfficer(
messageSendingForm.subject,
messageSendingForm.message,
messageSendingForm.officerlList,

Jl

Figure 4.49: API service function

93

The following code snippet in Figure 4.50 is the API function calls that send the request to

Backend API with the details of the email message.
REST API calls are

sent using Axios library

import axios from 'axios'’
import { API_BASE_URL } from 'src/Config’
const sendBulkMailsByProvice = async (proviricelame, /subject, message) => {
const token = localStorage.getItem('t
try {
const response = await axios.post(
*${API_BASE_URL}/communication/bulk-mailofficer/send",
{ province: provinceName, subject: subject, message: message },
! 4
L

headers: {
| Authorization: “Bearer ${token}’/ Calling backend APIs with
}3s) Authorization header with

return response token of the users

} catch (error) {
console.error('Failed to fetch faym details:', ertor)
return}}
const sendMailToOfficer = async (subject, message, officerlList) => {
| const token = localStorage.getItem('token') ™|
try {
const response = await axios.post(
*${API_BASE_URL}/communication/mail/officer/send”,
{ receivers: officerList, subject: subject, message: message },
!
L

headers: {
Authorization: “Bearer ${token}",
7s1s)
return response
} catch (error) {
console.error('Failed to fetch farm details:’, error)
return}}

Figure 4.50: API calls that sends requests to backend AP

The following code snippet Figure 4.51 shows the function that is called by the front-end
application as explained above. First, it gets all the officers in the given province, then it iterates
the email list using a for loop and it sends the emails and finally saves the response with relevant
information of each message in the database. If something goes wrong with dispatching emails
to Google, then those details can be checked using the email table from the database, as it saves

the response, ensuring better message sending functionality to the system.

94

#Hs#s#HEEEE BUlk Email Sending to officers in province
@com_routes.route(' /bulk-mail/officer/send’, methods=['POST'])
def send_bulk_mail_officers_by_province():

data = request.get_json() Getting all officers in

province = data.get('province') the given province

message_text = data.get('message’)
subject = data.get('subject')

if not province:

return jsonify({'error': 'Province

ameter is missing'})

emails = db.session.query(User.email).\
join(AgricultureOfficer, User.user_id == AgricultureOfficer.user_id).\
join(AgriOffice, AgricultureOfficer.agri_office_id == AgriOffice.agri_office_id).\
filter(AgriOffice.province == province).\
all()

emails_list = [email[@] for email in emails]
for receiver in emails_list:
response = send_gmail(

access_token=config.ACCESS_TOKEN,

refresh_token=config.REFRESH_TOKEN, Sending Email using
client_id=config.CLIENT_ID, Google Gmail API with
client_secret=config.CLIENT_SECRET, «— | provided google library
sender=config.MAIL_SENDER, functions

to=receiver,
subject=subject,
message_text=message_text

)

print(“msg"”,response)

Create a new EmailRecord

record = EmailRecord(
email=config.MAIL_SENDER,
subject=subject,
message_text=message_text,
sent_at=datetime.datetime.now(),

sent_by=config.MAIL_SENDER, ¢ Shavlng sms details in
sent_to=receiver, the database
status_sent = 'SENT' in response[’lab 5”5

response = json.dumps(response

)

db.session.add(record)

Commit the changes to the database
db.session.commit()

Figure 4.51: Backend API function that is called by frontend

For Google API call authentication, the service is needed to set the client id, client secret and
access token, refresh token as configurations in the initialization of the system. Here, the
authorization grant type of OAuth2.0 is used as recommended by the google. These tokens can
be generated using the following link for google support docs.

Link:https://developers.google.com/gmail/api/auth/scopes#configure_oauth 20 for authoriz

ation

95

4.7 Summary

Chapter 4 explores the technical aspects of implementing the "Ceylon AgriData" system, which
aims to modernize data collection in Sri Lanka's agricultural sector. The chapter details the
adoption of a service-oriented architecture, employing Flutter and React for the frontend,
Python Flask REST API for the backend, and MySQL for data storage. The implementation
ensures efficiency, accuracy, and scalability. Third party libraries and services such as
Leaflet.js and Google APIs enhance functionality. Detailed explanations of code components
cover user authentication, routing, HTTP request handling, and business logic implementation,
highlighting best practices in software development. The integration of security measures like
JWT authentication and CORS configuration underscores the system's reliability. Overall, the
chapter provides a comprehensive guide to the technical implementation of "Ceylon AgriData,"

showcasing its innovative approach to agricultural data management.

96

Chapter 5 — Testing and Evaluation

5.1 Introduction

The ‘Ceylon AgriData’ platform is designed to enhance the efficiency and productivity of the
agricultural sector. It integrates various stakeholders, including administrators, agriculture
officers, farmers, vendors, and researchers, facilitating a seamless exchange of information and
resources. This chapter provides an overview of the rigorous testing process undertaken to

determine the reliability, functionality, and user-friendliness of the ‘Ceylon AgriData’ system.

5.2 Related Testing Types Utilized

In the development of the "Ceylon AGriData" system, various testing types were employed to
ensure its robustness and reliability. These included unit testing, integration testing, end-to-
end testing, cross-browser testing, and user acceptance testing. Unit testing focused on
verifying individual units or components. Integration testing validated the interaction between
different modules for testing the backend API's connection with the database. End-to-end
testing ensured the seamless flow of both mobile and web applications to validate user interface
and backend functionality. Cross-browser testing ensured compatibility across different
browsers for the React web application. Finally, user acceptance testing, assessed the system's
compliance with user requirements. These testing types collectively ensured the quality and
effectiveness of the "Ceylon AGriData" system across its various components and

functionalities

5.3 Testing Methodology

The testing methodology for the "Ceylon AgriData" system was structured to ensure thorough
validation of its mobile application, web application, and backend API. Beginning with the
identification of test tasks and definition of corresponding test cases, the testing process
encompassed various phases. Unit testing involved both manual and automated approaches,
with automated tests specifically targeting user services. Integration testing verified the
interaction between components, utilizing Postman to test the backend API's connection with
the database. First we use locally hosted applications for testing, However, for facilitating end-
to-end testing of the mobile app, Ngrok, an open-source tool, was employed to establish a
secure tunnel between the mobile application and the backend API, which was running locally

on localhost 5000. This setup enabled the execution of API calls from the mobile application
97

for comprehensive validation. End-to-end testing ensured the seamless flow of both web and
mobile applications, conducted manually to validate user interface functionality and backend
processes. Next, Same approach was used to do the end-to-end tests of the web application.
Cross-browser testing was performed on the React web application to guarantee compatibility
across different browsers. Exploratory testing was employed to systematically explore the
application for unforeseen issues, while user acceptance testing, facilitated by a questionnaire,
assessed compliance with user requirements. Test execution predominantly occurred manually,

with comprehensive documentation of test cases and results provided in tables for analysis.

5.3 Testing of Mobile Application
5.3.1 Unit testing — Mobile Application

In the Unit Testing phase, some major test cases specified in Table 5.1 were rigorously
examined using the Android Studio emulator, tested manually. The primary focus during this
phase was on ensuring the accurate construction of widgets and the proper functioning of
associated functionalities within the Android application. By utilizing the Android Studio
emulator, it could assess the behavior of individual components and functions within the
application's codebase. This approach enabled thorough validation of the application's core
building blocks, ensuring their correctness and reliability before proceeding to subsequent
testing phases. Through Unit Testing, potential issues related to widget construction and

function execution were systematically identified and addressed.

Table 5.1:Test cases used in unit testing of mobile application

Test Test Case Expected Result Actual Result
Case
Id
1 Splash page loading Splash page loading | Splash page loaded
successfully
2 Navigates to login page | Successfully navigates to | Login page loaded

login page automatically | automatically after splash

after splash page page

3 Building login page | Successfully built the login | All widgets were
widgets page displayed

98

4 Login function Login function working | Login function worked
well with button click
5 Register agriculture | Register function working | Register function worked
officer function well with button click
6 Building Register page | Successfully built the | All widgets were
widgets register page widgets displayed
7 Build farmer manager | Successfully built the page | Page was loaded and
page and preview all buttons buttons were previewed
8 Build farm manager | Successfully built the page | Page was loaded and
page and preview all buttons buttons were previewed
9 Build cultivation | Successfully built the page | Page was loaded and
manager page and preview all buttons buttons were previewed
10 Build aid manager page | Successfully built the page | Page was loaded and
and preview all buttons buttons were previewed
11 Build disaster manager | Successfully built the page | Page was loaded and
page and preview all buttons buttons were previewed
12 Input farmer details Working all textformfields | Was able to insert details
through textformfields
13 Input farm details Working all textformfields | Was able to insert details
through textformfields
14 Input cultivation details | Working all textformfields | Was able to insert details
through textformfields
15 Input aid details Working all textformfields | Was able to insert details
through textformfields
16 Input disaster details Working all textformfields | Was able to insert details
through textformfields
17 Functioning dropdown | Successfully working | Dropdown was not
in add cultivation page | dropdown working well
18 Functioning dropdown | Successfully working | Dropdown was working
in add disaster page dropdown well
19 Register farmer function | Register function working | Register function worked

well with button click

99

navigates to get location
page and fetch current

location successfully

20 Add cultivation function | Add cultivation function | Add cultivation function
working well with button | worked
click
21 Add aid function Add aid function working | Add aid function worked
well with button click
22 Get location button | Successfully functioning | Current locations were
functioning get locations fetched successfully
23 Logout function Logout function working | Logout function worked
well with button click
24 Building Main menu Building successfully Main menu successfully
previewed but the logo
was not previewed
25 Search function Successfully triggers when | Searched and previewed
button click results
26 Update/Delete function | Successfully triggers when | Successfully listed search
button-search and update or | result and could edit and
delete clicked update it , Finally could
deleted the result.
27 Textformfields of | Successfully Working all | Was able to update details
Update/Delete textformfields through textformfields
28 Home icon When presses the icon, | Successfully navigated to
successfully navigates to | home page
home page
29 Get current location When press the button, | Successfully fetched the

location (longitude and

latitude)

Overall, the unit testing results indicate a high level of success in building widgets,

implementing functions, and achieving expected behaviors within the Android application. The

majority of test cases aligned with their expected results, demonstrating effective construction

of pages, successful execution of functions such as login, registration, and data input, as well

as proper navigation and interaction with various elements. However, some discrepancies were

100

noted, such as the malfunctioning dropdown in the add cultivation page and the absence of the
logo preview in the main menu. These issues highlight areas for improvement to ensure full

functionality and consistency across all aspects of the application.

5.3.2 Exploratory Testing — Mobile Application

Exploratory testing was manually performed on the mobile application by navigating through
its pages and verifying the correct functioning of the mobile phone's back button for navigation.
The results indicated successful navigation, and it was confirmed that the application smoothly

facilitated movement between pages.

5.3.3 Integration testing — Mobile Application

Integration testing was conducted to verify the seamless connection between the mobile
application, REST API, and database. As outlined in the methodology, Ngrok was utilized to
facilitate this process as previously mentioned. Major test cases listed in Table 5.2 were

executed manually, and the results were captured for analysis.

Table 5.2: Test cases for integration testing in mobile application and captured results

Id | Description Pre- Steps Expected Actual

condition Results Results

1 Valiate login wuser | Need stable | Enter valid | User logged | User logged
with correct input internet email and | successfully | into system
connection, | password
User should
be on Login
page, User
should be a
agriculture

field officer

2 Validate login user | Need stable | Enter either | Preview Previewed
with incorrect input | internet invalid email or | dialog box | the message
connection, | password saying login
User should failed

be on Login

101

page, User
should be a
agriculture

field officer

Validate login user

with incorrect role id

Need stable
internet
connection,

User should

Enter correct
username or
password, but

user’s role not

Preview
dialog box
saying

invalid login

Previewed

the message

be on Login | be equal t 4
page,
User should
be a
agriculture
field officer
Register a farmer Need stable | Enter all details | Preview Previewed
internet correctly, toast the message
connection, | Click submit | message
User should | button saying
be logged in registered
successfully
Register a farm Need stable | Enter all details | Preview Previewed
internet correctly, toast the message
connection, | Click submit | message
User should | button saying
be logged in registered
successfully
Add a cultivation Need stable | Enter all details | Preview Previewed
internet correctly, toast the message
connection, | Click submit | message
User should | button saying
be logged in registered
successfully

102

7 Add an aid | Need stable | Enter all details | Preview Previewed
distribution internet correctly, toast the message
connection, | Click submit | message
User should | button saying
be logged in registered
successfully
8 Add a disaster | Need stable | Enter all details | Preview Previewed
record internet correctly, toast the message
connection, | Click submit | message
User should | button saying
be logged in registered
successfully
9 Search Farmers Need stable | Enter user id or | Preview Previewed
internet TaxFileNo or | search results
connection, | Office Id or | results
User should | Field Area Id,
be logged in, | Click search
Should button
available
farmer
records
10 | Search Farms Need stable | Enter farm Id or | Preview Previewed
internet farmName or | search results
connection, | Owner NIC or | results
User should | Type,
be logged in, | Click search
Should button
available

farm records

103

11 | Search Cultivation | Need stable | Enter farm Id or | Preview Previewed
internet farmName or | search results
connection, | Owner NIC or | results

Type,
User should | Click search
be logged in, | button
Should
available
cultivation
records
11 | Search aid | Need stable | Enter aid Id or | Preview Previewed
distribution records | internet farmer id or | search results
connection, | AgriOfficeld or | results
User should | aidType or
be logged in, | In_charged
Should Agri_ officer Id,
available Click search
records button
12 | Search disaster | Need stable | Enter type or | Preview Previewed
records internet farm_id or | search results
connection, | farmer id or | results
User should | Type,
be logged in, | Click search
Should button
available
disaster
records

104

13 | Update farmer | Need stable | Enter userld, Previewed Previewed
records internet Search for | searched message
connection, | results, record and
User should | Update record, | preview
be logged in, | Click Update | toast
Should button message of
available updated
particular successfully
record
14 | Update farmer | Need stable | Enter userld, Previewed Previewed
records internet Search for | searched message
connection, | results, record and
User should | Update record, | preview
be logged in, | Click Update | toast
Should button message of
available updated
particular successfully
record
15 | Update farm records | Need stable | Enter farmld, Previewed Previewed
internet Search for | searched message
connection, | results, record and
User should | Update record, | preview
be logged in, | Click Update | toast
Should button message of
available updated
particular successfully
record
16 | Update cultivation | Need stable | Enter Previewed Previewed
records internet cultivationld, searched message
connection, record and

105

User should | Search for | preview
be logged in, | results, toast
Should Update record, | message of
available Click Update | updated
particular button successfully
record
17 | Update aid records | Need stable | Enter aidld, Previewed Previewed
internet Search for | searched message
connection, | results, record and
User should | Update record, | preview
be logged in, | Click Update | toast
Should button message of
available updated
particular successfully
record
18 | Update disaster | Need stable | Enter disasterld, | Previewed Previewed
records internet Search for | searched message
connection, | results, record and
User should | Update record, | preview
be logged in, | Click Update | toast
Should button message of
available updated
particular successfully
record
19 | Delete farmer | Need stable | Enter userld, Previewed Previewed
records internet Search for | searched message
connection, | results, record and
User should | Click delete | preview
be logged in, | button toast
Should message of

106

available deleted
particular successfully
record
20 | Delete farm records | Need stable | Enter farmld, Previewed Previewed
internet Search for | searched message
connection, | results, record and
User should preview
be logged in, | Click delete | toast
Should button message of
available deleted
particular successfully
record
21 | Delete cultivation | Need stable | Enter Previewed Previewed
records internet cultivationld, searched message
connection, | Search for | record and
User should | results, preview
be logged in, toast
Should Click delete | message of
available button deleted
particular successfully
record
22 | Delete aid records Need stable | Enter aidld, Previewed Previewed
internet Search for | searched message
connection, | results, record and
User should preview
be logged in, | Click delete | toast
Should button message of
available deleted
particular successfully
record

107

23 | Delete disaster | Need stable | Enter disasterld, | Previewed Previewed
records internet Search for | searched message

connection, | results, record and
User should | Click delete | preview
be logged in, | button toast
Should message of
available deleted
particular successfully
record

24 | Broadcast messages | Need stable | Get recipient | Preview Previewed
internet list, successfully | message
connection, | Enter Subject, sent toast | successfully
User should | Enter message | message
be logged in, | body,
Should Click send
available message button
farmer mail
addresses

25 | Logout Need Click Logout in | Navigates to | Navigated to
internet main menu login page | login page
connection, successfully
Navigate to
main menu

All test cases were successfully passed, indicating that the mobile application effectively

triggered API calls to the backend API and accessed the database.
The "Ceylon AgriData" mobile app was smoothly installed and operated on Samsung A30

running Android 11, and Oppo F19 pro, running Android 13 showcasing its compatibility and

reliability on the latest Android version and device model. This underscores the importance of

108

thorough device compatibility testing in ensuring optimal performance and user experience

across diverse platforms.

5.4 Testing of Back-end Services, REST APIs

5.4.1 Unit Testing — Backend Services & APIs

The backend testing phase of the ‘Ceylon AgriData’ platform utilized Python's built-in module,

'unittest,' to execute unit tests across diverse scenarios. 'unittest' draws inspiration from the

xUnit architecture, a widely adopted framework for unit testing. The objective was to verify

the functionality of each component within the ‘Ceylon AgriData’ platform.

Creating a test environment for unit testing with Python's "unittest' module involves organizing

the project structure with dedicated directories for source code and tests. Within the test’s

directory, Python files containing test cases are written, importing relevant modules and

defining test methods. Tests are executed using the ‘python -m unittest path for test file’

command, with results indicating the success or failure of each test case, aiding in debugging

and ensuring code reliability. The related test cases, input data, test steps, expected results and

test status for ‘User’ entity are summarized in Table 5.3. See the unittest sample code in

Appendix H.

Table 5.3:Test cases for user related functionalities in unit test of API

Test Case | Input Data | Test Steps Expected Actual
Name Results Results
User User Details: Registration | Registration
Registration firstName, 1. Input relevant data into | succeeds succeeded

MiddleName, the system. And commit

lastName, the data to the database.

NIC, 2. Assert result

Email,

Password,

DOB, Role

109

User Login

Email
Password

. Verify that the email and

password provided
correspond with the
entered input data.

. Assert result

Login
succeeds

Login
succeeded

User Deletion

User Id

Check if a user exists in
the system with the
provided email address.
If a user is found, delete
the user account.

. Assert result

Deletion
succeeds

Deletion
succeeded

User update

Data Need to
get updated
(User details)
and user_id

Check if a user exists in
the system with the
provided user id.

If a user is found, update
the user account with
given input data

. Assert result

Update
succeed

Update
succeeded

Search User

Filters need
to filter the
result

Specify filters to search
for users with a specific
first name and define
pagination parameters
Perform the search
operation using the
defined filters.

. Assert result

Search
succeed

Search
succeeded

Validate User

Use id
Email

predefined

Invoke the function with
parameters
(user_id and email)

. Assert the result

Validate
succeed

Validate
succeeded

Get User
Information
by Id

user_id

predefined

Invoke the function with
parameters
(user_id)

Retrieve user information

. Assert the result

Successfully
retrieving
user
information

Successfully
retrieved user
information

Get User
Information
by Email

Email

predefined

Invoke the function with
parameters
(Email)

. Retrieve user information

Successfully
retrieving
user
information

Successfully
retrieved user
information

110

3. Assert the result

Get user | Email 1. Retrieves the user with the | Successfully | Successfully
access token specified email address | get the access | got the access
from the database, if it | token token
exists

2. the test proceeds to
generate an access token
for the user

3. Asserts that the generated
token is not None

Unit testing code explanation

Following Figure 5.1 showcases the code snippet for unit test conducted by ‘Python unittest’,
for user registration functionality. The unit test method assesses the user registration process
by simulating the creation of a test user and invoking the registration function. It confirms the
success of registration based on the returned values, validating the system's ability to register
users effectively and provide the expected success message. The ‘test user registration’ test
method begins by accessing the application context to interact with the Flask application
environment. A test user object is then generated with simulated user data, encompassing
various fields such as first name, last name, NIC (National Identification Card), email,
password, date of birth, and role. Subsequently, the ‘register user’ function is called with the
test user object, facilitating the user registration process. The function returns a tuple
comprising a Boolean value indicating registration success (isSuccess) and a descriptive
message. Assertions are utilized to validate the registration process: self.assertTrue(isSuccess)
verifies successful registration, while self.assertEqual(message, ‘Registration success!’)

ensures that the returned message aligns with the expected message for successful registration.

111

def test_user_registration(self):
with self.app.app_context():
user = User(
first_name='fName',
middle_name="mName',
last_name='1Name’,
nic="testNIC',
email="test@example.com’,
password="test’,
dob=parse_date('1990-01-01"),
role=1,
isSuccess, message = register_user(user)
self.assertTrue(isSuccess)
self.assertEqual(message, 'Registration success!’)

Figure 5.1: Code snippet of user registration unit test function

5.4.1 Integration testing - Backend Services & APIs

Integration testing was employed manually by connecting the system using Postman, focusing
on verifying the functionality of backend API endpoints while ensuring authorization and
SQLAIchemy connections. Postman served as a comprehensive platform for executing HTTP
REST API requests to the server, allowing for thorough testing of API endpoints. The testing
process involved validating the behavior of each endpoint, including the required authorization
mechanisms, to ensure secure access. Additionally, As the backend APIs and the locally hosted
MYSQL database was deployed, Postman facilitated the testing of Backend APIs,
SQLAIchemy functionalities with the database, ensuring seamless interaction with the
database. This integrated approach ensured that the API functions correctly within the broader

system context, covering both functional and non-functional aspects of the application.

The testing process involved defining API endpoints and request methods, organizing them
into a Postman collection. Testing was performed to verify the functionality of each API
endpoint, including proper authentication mechanisms to system backend using JWT bearer
token as the Authorization header. This provides valuable insights into the security and

reliability of the backend API functionality.

'User' entity-related endpoints in the backend API, includes endpoints for user registration,
login, retrieval of user information, updating user details, and deleting user accounts and test

results are summarized in Table 5.4. Integration testing ensures that these endpoints function

112

correctly in a real-world scenario, handling various HTTP requests and responses

appropriately. Additionally, authentication and authorization mechanisms are thoroughly

tested to ensure that user access is securely managed. The testing process also involves

verifying the integration of the SQLAIchemy ORM with the database backend to ensure

seamless data operations. Through comprehensive integration testing, the 'User' entity

endpoints are evaluated to ensure reliability, security, and adherence to specified requirements.

Figures 5.2, 5.3 and 5.4 provide a visual representation of the testing conducted in Postman as

supporting evidence.

Table 5.4:Test Cases for User related functionalities of integration testing of API

Test Case End Points Input Data Authorizatio | Expected Status
n Result
User ‘/user/register’ User Details: None Registration | Registration
Registration firstName, succeeds succeeded
MiddleName,
lastName,
NIC,
Email, Password,
DOB, Role
User Login | ‘/user/login’ Email None Login Successfully
Password succeeds LoggedIn
User 'fuser/<int:userid> | User Id Bearer Token | Deletion Successfully
Deletion ' succeeds Deleted
User update | ‘/user/update/’ Data Need to get [Bearer Token | Update Updated
updated (User succeeds successfully
details) and
user id
Search User | ‘/user/search’ Filters need to | Bearer Token | Search Previewed
filter the result succeeds search results
Validate ‘/user/validate’ Use id Bearer Token | Validate Validated
User Email succeeds Scuccessfully
Get User | ‘/user/info’ user id Bearer Token [Successfully | Successfully
Information retrieving retrieved user
by Id user information
information
Get User | ‘/user/find by em | Email Bearer Token | Successfully | Successfully
Information | ail’ retrieving retrieved user

113

http://127.0.0.1:5000/user/login

Body e

x-www-form-urlencoded

Test Results (5/5)

Pre-request Script

® raw

GraphQL JSON v

by Email user information
information
Get user | /user/check token | Email Bearer Token | Successfully | Successfully
access token get the access | got the access
token token
Juser/login

Figure 5.2: Integration testing done using Postman for user login functionality - user login end point in API

As this backend supports a lot of API endpoints, The following figures shows some of them

are tested using Postman.

114

@® Agriproject BE / AidDistribution / SearchAidDistribution

@) save v 7 =

GET v http://127.0.0.1:5000/aid/aid-distribution/search d
Params e Authorization Headers (8) Body Pre-request Script Tests ® Settings Cookie|
Query Params

[:] Key Value Description «s+ Bulk Edit
C] description Fuel
Key Value Description
Body Cookies Headers (6) Test Results (4/5) @® sStatus: 200 OK Time: 49 ms Size: 285KB [g) Save as example
Pretty Raw Preview Visualize C
1 8970 2055 2023-11-30
1 7162 3271 2023-08-06
1 6107 3685 2024-02-02
1 8304 3767 2023-08-25
1 7671 1700 2023-04-05
POST v http://127.0.0.1:5000/communication/send
Params Authorization e Headers (11) Body e Pre-request Script Tests @ Settings
® none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON

1 i
2 "message”: "Hi",
3 “receivers": ["sandaruwandanushka@gmail.com"],
4 “subject”: “"Test from Project"
5§ %
Body Cookies Headers (6) Test Results (5/5)
All Passed Skipped Failed C

Response status code is 200

LSSl Content-Type header is application/json
Response has the required field 'response’
Response field should not be empty

Verify that the 'response’ field is a string type

@® status: 200 OK

Figure 5.4 Integration testing for sending emails

115

All other major endpoints were meticulously tested to ensure seamless integration with the

database using Postman. For test results, refer to the Appendix I.

5.5 Testing of Front-End (React Web Application)

5.5.1 Exploratory Testing — React web application

This involved navigating through the website just like a regular user would. By clicking on

buttons, filling out forms, and interacting with different components, to ensure whether the all-

features function smoothly as expects. Table 5.5 showcases the major test results with

execution of this testing conducted manually.

Table 5.5: Test Results of exploratory testing of web app

as a researcher

dash board,
Navigating through the web

app,

follow the steps
and request

data

Id | Test case Steps Expected Actual result
Results
1 Access Web app | Preview publicly available | Successfully Pass
as a generic user | dash board, interact with
Navigating through the web | webapp as a
app, generic user
See the public reports
2 | Access Web app | Preview publicly available | Successfully Pass
as a farmer dash board, follow the steps
Navigating through the web | and publish
app, advertisements
See the public reports,
Register in the system,
After wvalidate by admin,
publish advertisements
3 | Access Web app | Preview publicly available | Successfully Pass

116

See the public reports,

Ask for non-public data

through contact forum

Access Web app
as an agriculture

field officer

Preview publicly available
dash board,

Do login,

Preview Field-officer dash
board,

Manage agricultural data,
Generate reports,

Broadcast messages to

registered farmers,

Approve advertisements

Successfully

follow the steps

Pass

Access Web app

as an admin

Preview publicly available
dash board,

Do login,

Preview Admin dash board,
Insert Funding records,
Manage users,

Manage agricultural data,
Generate reports,

Broadcast messages,

Send requested data to

researchers and maintain its

records

Successfully

follow the steps

Pass

117

5.5.2 Cross-Browser Testing - React web application

To guarantee compatibility and consistent behavior across various platforms, the website was
tested on different web browsers, including Chrome, Firefox, Edge as shown in the following
figures. This comprehensive testing approach ensured that users could access and interact with

the website seamlessly, regardless of their browser preference. See Figures 5.5 and 5.6.

localhost / MysQL

G W 2 agicious x
€ C @ loclhost3000

c : :
AEK‘SE\A Home Services ¥ Reports ¥ About Us Contact Admin ¥

Reports

o =

Total Registered Users

Estimated Harvest vs Actual

Monthly Aid Distribution to Farmers rovince Central v

Agricultural Aid Distribution Funding & Aids Select District | Matale %
Crop Yield by Maps

Office Select Office v
Field Mapping

Reset
Tax Prayer Report -

Disaster Overview Report

Advertisement Overview Report

v 4 AgriCloud x o+ = =] X
€ 5 C O localhost3000 @ a¥x O 0@

|S7L9>f‘<‘ Home Services ¥ Reports ¥ About Us Contact Admin ¥

Reports

Total Registered Users

Estimated Havest vs Actual
Monthly Aig Dstrioution to Farmers
Agricutursl A Distribution Funding & Aids
Crop Yieid by Maps i Oiqreintrvctfevm: S o Mot A
Fleo Maopng

Tox Prayer Report
Disaster Ovenview Report

Acvertisement Overview Report

Figure 5.6 Google Chrome testing

118

5.5.3 End to end Testing - React web application

Complete End to end testing for the frontend along with locally hosted backend API was

conducted for each feature implemented manually, ensuring the expected behavior of the

frontend components of the react application with the backend API services. Finally, Backend

was deployed and exposed publicly using Ngrok as shown in Figure 5.8 and deployed the

frontend web application in another local machine after providing the correct configuration of

the publicly exposed backend API service. Next, A comprehensive End to end testing was done

starting from the User Authorization up to all features including report generation for each role

type (farmer, administrator, field officer, researcher, generic user), free advertising support,

email sending, data collection forms with geo location support and all data management

operations including inserting updates, deletions and searches. In this testing we were able to

identify the following issues shown in the Table 5.6 fixed them accordingly.

Table 5.6: Part of identified major issues in end-to-end testing.

Issue

Identified Service

Description

Fix

When backend is not
deployed, failing to
handle

the error

properly.

Frontend React Web
App

When user tries to
logging, no responses

from the system.

Added error handling

& alert messages.

Some reports were
shown regardless the

role-based access

Frontend React Web
App

When checking field
officer reports, admin

reports were shown

Fix the navigation
based on the user role
of the session of after

a user logged in

Some reports data
was not shown
partially

Frontend React Web

app - react charts

As we added
pagination for data
retrieval, only part of
the data retrieve to the

request.

Add mis-report API
endpoint for report to
process the data as in
required format to the

reports.

119

Some images are not

rendered as expected

Frontend React Web
app

Some images were

too large or small

Added proper image

sizes

when testing in

different screens.

Color combinations | Frontend React Web | Some colors were not | Tried to add color to

were not appropriate | app - react charts properly blend with | make more user

in the reports the other depending | friendly
on the place of
rendering.

* Debug mode: off
INFO:werkzeug: i a

* Running on http://127.0.0.1:5000

INFO:werkzeug:Press CTRL+C to quit

INFO:werkzeug: 0.0.1 - - [07/Mar/2024 05:38:47] "OPTIONS /user/login HTTP/1.1" 200 -

INFO:werkzeug: 0.0.1 - [07/Mar/2024 :38:47] "POST /user/login HTTP/1.1" 200 -

INFO:werkzeug: 0.0 - [07/Mar/2024 :38:47] "OPTIONS /user/validate HTTP/1.1" 200 -

INFO:werkzeug: 0.0 [07/Mar/2024 :38:47] "POST /user/validate HTTP/1.1" 200 -

INFO:werkzeug:127.0.0. [07/Mar/2024 ©5:38:55] "OPTIONS /report/farmer/total count-by-district HTTP/1.1" 200 -

INFO:werkzeug:127.0.0. [07/Mar/2024 ©5:38:55] "GET /report/farmer/total count-by-district HTTP/1.1" 200 -

INFO:werkzeug: 0.0. [07/Mar/2024 ©5:39:14] "OPTIONS /report/farmer/total count-by-district HTTP/1.1" 200 -

INFO:werkzeug: 0.0 [07/Mar/2024 4] "OPTIONS /report/offices-districts/by-province?province=Central HTTP/1.1" 200 -

INFO:werkzeug:127.0.0 [07/Mar/2024 4] "GET /report/farmer/total count-by-district HTTP/1.1" 200 -

INFO:werkzeug: 0.0 - [07/Mar/2024 4] "GET /report/offices-districts/by-province?province=Central HTTP/1.1" 200 -

INFO:werkzeug: 0.0 - [07/Mar/2024 ©5:39:15] "OPTIONS /report/users/farmer/count-by-district-and-province?province=Central&district=Matale HTTP/1.1" 200
INFO:werkzeug:
INFO:werkzeug:
INFO:werkzeug:

[07/Mar/2024 :39:15] "GET /report/offices-districts/by-province?province=Central HTTP/1.1" 200 -
[07/Mar/2024 :39:16] "GET /report/users/farmer/cou district-and-province?province=Central&district=Matale HTTP/1.1" 200 -
[07/Mar/2024 ©5:41:59] "OPTIONS /user/login HTTP/1.1" 200 -

™ Command Prompt - ngrok

ngrok (Ctrl+C to quit)

Account
Version
Region
Latency

Web Interface
Forwarding

sandunidilshika@gmail.com (Plan: Free)

3.6.0

India (in)

216ms

http://127.0.0.1:4040

https://bluebird-balanced-drum.ngrok—free.app —> http://localhost:5000

rtl
0.09

rt5
0.03

Connections £ttt opn

12 0

p50
0.04

po0
0.25

HTTP Requests

OPTIONS /report/farmer/total_count-by-district

POST /user/validate

POST /user/login

OPTIONS /user/validate

OPTIONS /user/login

OPTIONS /report/users/farmer/count-by-district-and-province
OPTIONS /report/farmer/total_count-by-district

OPTIONS /report/offices-districts/by—-province

POST /user/login

POST /user/login

Figure 5.8 : Ngrok logs when exposed API with the database publicly for testing

120

5.6 User Evaluation

The system "Ceylon AgricData" (Mobile application and Webapp) underwent user acceptance
testing (UAT) to gauge its reception among intended users. For UAT, commonly referred to as
beta or end-user testing. A representative sample of users was chosen based on their roles.
Administrators, agricultural field officers, farmers, and general users were targeted the testing
that performed. These selected participants conducted an evaluation of the system, identifying
both its strengths and weaknesses. Their assessments and feedbacks were captured through a
specifically designed questionnaire form in Figure 5.9. A sample of eleven personal were
participated in the evaluation and given their feedback through falling-out the questionnaire.
The table below showcases the summarized outcomes of this user evaluation process. See

Appendix J for the questionnaire.

With the limited resource and time allocated to this phase, the setup for the system built as in
the end-to-end testing, as discussed above section, and provided to the users to interact with
the system. Here, Mobile app was installed to android phones, a laptop with the locally
deployed frontend application and another separate laptop with locally deployed backend API
and exposed publicly using Ngrok static domain support to be used with the mobile apps and
the frontend web app separately.

I had to meet physically the different roles of the system and provide the system for test. After
presenting the system, provided the following survey form to the users. The different roles as
per the selected samples were physically met and provided the system for testing. Thus,

examined and interacted personas feedbacks were collected.

121

e "Ceylon AgriData" System Feedback Survey [vt 2 @ © 9 e m 8 @

Questions Responses) Settings

Section 1 of 10 @
n H n v a
Ceylon AgriData" System Feedback Survey * o
T
“Ceylon AgriData" is a cloud-based system aiding the government's agricultural sector by efficiently managing [m|
data for informed decision-making.
Please take a moment to share your feedback through this user feedback survey, providing honest insights on =
your experience with the prototype. Your contribution will greatly aid us in shaping a more impactful solution.
Thank you for your participation! =
This form is automatically collecting emails from all respondents. Change settings
What is your role within the agricultural sector? *
Administrator
Agriculture Field Officer
Farmer 0

Figure 5.9 System Feedback Survey

5.6.1 Results of the Testing
The questionnaire was summarized to align with showcasing feedback from all roles together,
facilitating a comprehensive evaluation. (see Table 5.6)
e Total responded personas = 11
Admin -1
Agriculture Field Officers -2

Others are Farmers, Researchers, Generic Users

Table 5.7 Summarized results

No | Statement Strongly | Agree | Neutral | Disagree | Strongly
Agree Disagree
1 Registration Simplicity | 5 4 2 0 0
Rating

How would you assess the
simplicity of the new user
registration process on "Ceylon

AgriData"?

122

Intuitiveness of Data
Management

How natural was the experience
of inputting agricultural data on

"Ceylon AgriData"

Intuitiveness of Data
Management

How natural was the experience
of updating agricultural data on

"Ceylon AgriData"

Intuitiveness of Data
Management

How natural was the experience
of deleting agricultural data on

"Ceylon AgriData"

Intuitiveness of Data
Management

How natural was the experience
of searching agricultural data

on "Ceylon AgriData"

Effectiveness of Reporting
Tool

How would you rate the
efficacy of the reporting feature
within "Ceylon AgriData" for

generating detailed reports?

Challenges in Report
Configuration

Did you face any difficulties
while setting parameters for
reports? Please describe your

experience

123

8 Effectiveness of Advertising | 1 6 4 0 0
Advertisements

How would you rate the
efficacy of this feature within

"Ceylon AgriData"

9 General Satisfaction Level 0 10 1 0 0
How would you rate the Ul

design of "Ceylon AgriData" ?

10 | General Satisfaction Level 0 10 1 0 0
How would you describe your
overall satisfaction with Ceylon

AgriData's usability?

There was a single administrator and two agricultural officers involved in the test, with the
remainder being farmers and researchers. As such, the key functions can be assessed based on
the contributions of these three officers, particularly in data management. The majority of
researchers express satisfaction with the system, while farmers appreciate the free advertising
service. Additionally, there was a suggestion to include language preferences, with Sinhala

proposed as a secondary language. Overall, reports indicate positive outcomes.

5.7 Summary

Chapter 5 details the testing and evaluation of the "Ceylon AgriData" system. Various testing
types were utilized, including unit testing, integration testing, end-to-end testing, and user
acceptance testing. The testing methodology involved identifying test tasks, defining test cases,
and conducting manual and automated testing. Results indicated success in building
components and functions, though some issues were identified for improvement. User
evaluation through acceptance testing gathered feedback from representative users. End-to-end
testing of the React web application ensured expected behavior with backend services. Overall,
the chapter showcases the system's reliability, functionality, and user satisfaction through

rigorous testing and evaluation processes.

124

Chapter 6 — Conclusion

This chapter provides an in-depth overview of the "Ceylon AgriData" cloud-based system,
detailing its constraints, achievements, and drawbacks. It encompasses a comprehensive
summary of the author's perspective and reflection on the system's development and

implementation process.

6.1 Introduction

The agriculture sector of Sri Lanka holds significant importance in the country's economy.
However, in recent times, various critical issues have emerged within the sector, leading to
challenges and impediments. One of the primary identified issues is the lack of reliable
availability of agriculture data. This absence of robust data-driven decision-making
mechanisms has exacerbated the problems faced by the sector. Therefore, the establishment of
a reliable and efficient data collection process aimed at supporting the agricultural sector
becomes imperative. This system endeavors to address this crucial need by facilitating a

streamlined data collection process.

6.2 Critical Assessment

The primary objective of the system is to facilitate informed decision-making within the
agriculture sector through the utilization of collected data. Starting from the requirement
analysis phase, all identified requirements were addressed to ensure comprehensive coverage.
Subsequently, the project was initiated in key phases, including system design,

implementation, and testing adopting iterative waterfall model.

The "Ceylon AgriData" system, operating as a cloud-based platform, is designed for the
collection and presentation of agricultural data to support stakeholders involved in decision-
making within the agriculture sector. Comprising a mobile application for field data collection
by agriculture field officers and a web application developed with React for stakeholders such
as agriculture officers, farmers, and researchers, the system aims to enhance efficiency and
accessibility and transparency in the agricultural sector by replacing conventional paper-based

methods of data acquiring and presentation.

125

Notably, the mobile application's major functionalities were integrated into the web
application, allowing agriculture field officers to efficiently engage in data collection
processes. They can utilize the mobile app during field visits for data collection, while the web
application serves as a tool for office use. In cases where farmers visit agriculture offices to

avail services, they can register with the system using the web application.

Although the system architecture was intentionally separated into distinct front-end and back-
end components to facilitate ease of maintenance and scalability, the mobile application
ensures operational efficiency for agriculture field officers. Additionally, registered farmers
are provided with a feature for free advertising to promote their productions. Furthermore,
governmental bodies can leverage the collected data for informed decision-making,

particularly regarding price regulation.

To enhance communication among stakeholders and promote sectoral productivity, a message
broadcasting service is employed for efficient dissemination of information. The
implementation phase involved crafting of both front-end and back-end components, while
testing procedures encompassed unit testing, integration testing, and user acceptance testing.
The latter focused on user perspectives and assessed usability aspects. Through these measures,
the system aims to fulfill its objective of supporting informed decision-making and enhancing

productivity within the agriculture sector.

6.3 Lessons Learned

As a student pursuing a degree program, this project provided me with a valuable opportunity
to apply theoretical knowledge in practical scenarios. Despite facing various challenges, I
endeavored to complete the project within the stipulated time frame, adhering strictly to the

Software Development Life Cycle (SDLC) methodology throughout the project duration.

Throughout the project, I gained invaluable insights into mobile application development, rapid
development of React web applications, and the implementation of APIs. Additionally, I
acquired proficiency in utilizing third-party libraries and conducting literature reviews in IT-
related projects. Managing time effectively emerged as a crucial skill that [honed during the

project, enabling me to navigate through the complexities of IT projects more efficiently.

126

Furthermore, I expanded my knowledge of different testing procedures applicable during the
testing phases. Writing the thesis enabled me to develop the ability to succinctly summarize
acquired knowledge and present it in an optimized flow, enhancing my communication and
organizational skills in the process. Overall, this project served as a comprehensive learning
experience, equipping me with valuable skills and insights that will undoubtedly prove

beneficial in my future endeavors.

6.4 Problems Encountered During the Project

During the requirement gathering phase, I visited the agriculture office in Dodangoda, Kalutara
district, and engaged in discussions with agriculture officers. However, as time passed, they
informed that it takes much time to provide the necessary data for the system. Therefore, had
to continue the project with a planned time frame with limited information gathered from the

agriculture office. And also, I had to use mock data in the system.

I had to do a limited user acceptance testing with just few identified roles without any

intervention to official connections.

Additionally, the project utilized updated technologies, which required a substantial amount of
time to learn before implementation could begin. This learning curve proved to be a major
hurdle, especially considering the limited time available for project completion. As someone
not coming from an IT background, acquiring proficiency in these new technologies took

longer than anticipated, further exacerbating the time constraints.

Despite planning to incorporate an SMS gateway into the project, the need to purchase such
gateways, coupled with the constraints of time and resources, presented significant challenges.

These obstacles were particularly daunting given the individual nature of the project.

6.5 Potential Future Work

1. Improve Security
Enhancing security measures is essential for safeguarding sensitive data. While the system

currently employs encrypted usernames and passwords, as well as JWT access tokens for user
127

validation and session maintenance, implementing OTP functionality could provide an
additional layer of security. Furthermore, integrating a separately available user management

system with an identity service can further fortify the security infrastructure of the system.

2. Enhance Frontend Usability
Improving frontend usability is crucial for enhancing user satisfaction and facilitating smoother
interactions. Utilizing advanced CSS techniques and incorporating user feedback can greatly

enhance the user experience, making the system more intuitive and user-friendly.

3. Expand Report Functionalities
Expanding the range of report types can provide users with more comprehensive insights and
analysis capabilities. By incorporating additional reporting functionalities, users can access a
wider range of data representations, enabling more informed decision-making within the

agriculture sector.

4. Implement News Updates
Keeping users informed with relevant news updates directly within the web application can
enhance user engagement and provide valuable insights into industry trends and developments.
Integrating a news update feature can help users stay up-to-date with the latest information,

enriching their overall experience with the system.

5. Agriculture Knowledge Sharing Portal
Integrating a knowledge-sharing portal within the system can facilitate the exchange of
valuable information and insights among stakeholders in the agriculture sector. By providing a
platform for knowledge dissemination, users can access and share expertise, fostering

collaboration and innovation within the agricultural community.

6. Robust Marketplace Integration
Incorporating a robust marketplace integration feature enables users to directly engage in
buying and selling agricultural products within the system. By seamlessly integrating
marketplace functionalities, users can leverage the platform for efficient and convenient

transactions, enhancing productivity and profitability within the agriculture sector.

128

References

Aaron O'Nell. 2023. Share of economic sectors in the GDP in Sri Lanka 2021 [Online].
Available: https://www.statista.com/statistics/728539/share-of-economic-sectors-in-the-gdp-
in-sri-lanka/ [Accessed 18-06-2023].

Agrible-Morning Farm Report. Agrible — Morning Farm Report [Online]. Available:
https://u.osu.edu/agsoftwarelibrary/2018/03/2 1/agrible-morning-farm-report/ [Accessed
2023].

Agrimanager. Agrimanager [Online]. Available: https://www.getapp.com/industries-
software/a/agrimanager/ [Accessed 18-06-2023].

Agrithing. AgriThing [Online]. Available: https://agrithing.com/ [Accessed 19-06-2023].

Agriwebb. AgriWebb [Online]. Available: https://www.agriwebb.com/ [Accessed 2023].

Agsense. 2003. AgSense [Online]. Available: https://www.agsense.com/ [Accessed 2003].

Awhere. aWhere [Online]. Available: https://www.climateshot.earth/awhere [Accessed 2023].

Bhatnagar, V. 2015. A comprative study of sdlc model. IJAIEM, 4, 23-29.

Bushelfarm. BUSHEL [Online]. Available: https://bushelpowered.com/ [Accessed 2023].

Cheema, M. J. M. & Khan, M. A. 2019. Information Technology for Sustainable Agriculture.
In: Farooq, M. & Pisante, M. (eds.) Innovations in Sustainable Agriculture. Cham: Springer
International Publishing.

Christine Zhenwei Qiang, Siou Chew Kuek, Andrew Dymond & Steve Esselaar 2012. Mobile
Applications for Agriculture and Rural Development. /n: ICT SECTOR UNIT, W. B. (ed.).
World Bank

Climate Corporation. Climate FieldView [Online]. [Accessed 2023].

Coconut Cultivation Board. 2023. Coconut App [Online]. Available:
https://play.google.com/store/apps/details?id=zincat.net.cocoguru&hl=en&gl=US [Accessed
18-06-2023].

Conservis. 2008. Conservis [Online]. Available: https://conservis.ag/ [Accessed 2023].

Cropin. 2010. Cropin [Online]. Available: https://www.cropin.com/ [Accessed 19-06-2023].
Dennis, A. 2012. Systems Analysis and Design, Wiley Publishing.

Department of Agriculture. 2021. Krushi Advisor [Online]. Available:
https://play.google.com/store/apps/details?id=com.prasadbandra.krushiadvisor&hl=en&gl=U
S [Accessed].

FAO, F. A. A. 0. O. T. U. N. 2023. The State of Food and Agriculture 2023. Rome.
129

Farm Force. Farm Force [Online]. Available: https://farmforce.com/ [Accessed 19-06-2023].
Govi Mithuru. 2015. Govi Mithuru [Online]. Available: https://www.dialog.lk/govi-mithuru/
[Accessed 19-06-2023].

Granular, I. Granular [Online]. Canada, US. Available: https://www.farms.com/agriculture-
apps/technology/granular [Accessed 17-06-2023 2023].

Helawiru. Helaviru Platform [Online]. Available: https://www.helaviru.lk/ [Accessed 19-06-
2023].

Hillar, G. C. 2015. Learning Object-Oriented Programming, Packt Publishing.
Jayathilake, H., Jayaweera, B. & Waidyasekera E. 2010. ICT Adoption and Its’ Implications
for Agriculture in Sri Lanka. Journal of Food and Agriculture, 1(2), 54-63.

KOMA LABS. 2020. Agro Life Sri Lanka [Online]. Available:
https://play.google.com/store/apps/details?id=io.ionic.prog5e986¢cedd814f9698bb3adac&hl=
en&gl=US [Accessed 16-06-2023].

Manoj Thibbotuwawa. 2021. Leveraging technological innovations can help overcome growth
constraints and increase agriculture’s economic contribution [Online]. Available:
https://development.asia/insight/why-transition-smart-farming-critical-sri-lanka ~ [Accessed
20-06-2023].

Ministry of Agriculture , M. 2023. Overview [Online]. Available:
agrimin.gov.lk/web/index.php/en/about-us/overview123 [Accessed 2023].

MUNCH, T. 2022. System Architecture Design. In: MUNCH, T. (ed.) System Architecture
Design and Platform Development Strategies: An Introduction to FElectronic Systems
Development in the Age of Al, Agile Development, and Organizational Change. Cham:
Springer International Publishing.

My Agri. 2021. My Agri [Online]. Available:
https://play.google.com/store/apps/details?id=com.Erlanggastudio.MyAgri&hl=en&gl=US
[Accessed 2023].

Ojha, T., Misra, S. & Raghuwanshi, N. 2015. Wireless Sensor Networks for Agriculture: The
State-of-the-Art in Practice and Future Challenges. Computers and Electronics in Agriculture,
118.

Petrillo, F., Merle, P., Moha, N. & Gueheneuc, Y.-G. 2016. Are REST APIs for Cloud
Computing Well-Designed? An Exploratory Study.

Rathod, M., Shivaputra, A., Umadevi, H., Kenchappa, N. & Selvakumar Periyasamy, D. 2022.
Cloud Computing and Networking for SmartFarm AgriTech. Journal of Nanomaterials, 2022,
1-7.

Richards, M. 2022. Software Architecture Patterns, O'Reilly Media, Inc.

Singh, S., Chana, I. & Buya, R. 2020. Agri-Info: Cloud Based Autonomic System for
Delivering Agriculture as a Service. Internet of Things, 9, 100131.

130

Volodymyr Ahafonkin. 2010. Leaflet - a JavaScript library for interactive maps [Online].
Available: https://leafletjs.com/ [Accessed].

Worldbank. 2023. Agriculture and Food [Online]. Available:
https://www.worldbank.org/en/topic/agriculture/overview#1 [Accessed 2023].

131

Appendixes

e Appendix A
e Appendix B
e Appendix C
e Appendix D
e Appendix E
e Appendix F
e Appendix G
e Appendix H
e Appendix I

e Appendix J

e Appendix K
e Appendix L

132

Appendix A

MIT3201 — Individual Project in MIT Degree Program

MIS Report

Name : L.R.S.D.Rathnayake
IndexNo 20550839

Supervisor Signature:

Supervisor Name: Prof. M.G.N.A.S. Feranando

Management Information System (MIS) Report Templates for ‘AgriCloud’
System

Executive Summary

The ‘AgriCloud’ System introduces a comprehensive suite of Management Information System
(MIS) report templates designed to facilitate data-driven decision-making in the agricultural
sector. These templates encompass a broad spectrum of functionalities, including user
registration, aid distribution, disaster analysis, tax compliance, communication effectiveness,
and marketplace engagement. Through detailed data collection, analysis, and representation,
these reports aim to enhance the efficiency of agricultural management and operations,
ensuring accountability, transparency, and informed strategic planning.

MIS Report Template 1 : Registered User Report

This report provides detailed information about registered users in the ‘AgriCloud’ system,
including agriculture officers and farmers. It includes user IDs, names, contact details,
registration dates, and assigned regions for agriculture officers. It aims to facilitate efficient
management of user data.

Data Summary:
e Total number of registered users
e Breakdown of registered users by role (agricultural officers, farmers)
e Profile information of each user (name, contact details, role, assigned region/area)
e Date of registration

Analysis:
e Comparison of user distribution across different regions or districts
e Identification of any discrepancies or irregularities in user data

Representation:
e Detailed tables containing user information

e Visualizations such as pie charts or bar graphs depicting user distribution by region or
role

Registered Farmers in District

I Farmers by District

& @ 10® o oP SR B S I S e P 'a\ N
%,aoxb o8 \\a\ @Q & 5 ‘w\ qo(‘ @\\;\ ‘{\e@ o“”" e z‘ - \)\\b\ Q@Q \)‘\B @B \o‘“ \(@Q 5 C,'a (,,\ a\ P \006\
\e\ O

~

~

0

024, 9:13:51 AM

Total Registered Farmer Information

Select Province | Westemn

Select District ~ Select District

Office = Select Office

Figurel:Total Registered Users

User ID First Name
1 Farmerl
2 Farmerz
3 Farmer3
4 Farmerd
5 Farmer3
6 Farmerd
T Farmer?
& Farmers
9 Farmerd
10 Farmeri0
11 Farmeri1

Figure 2: Total Registered user details

Colombo [Kakutara

in the system

Last Name

Lastl
Lasi2
Lasi3
Las4
Lastis
Laste
Last?
Lastd
Lastg
Last10

Last11

MNIC

193000000001

183000000002

199000000003

199000000004

199000000005

139000020006

199000000007

199000000008

193000000009

199000000010

193000000011

Role

E
:

MIS Report Template 2 : Aid Distribution Report

This report offers a detailed look at the distribution of various forms of aid provided to farmers.
It covers several types of assistance, such as fuel, fertilizer, pesticides, and financial support.
Key information included in the report comprises the date of distribution, the specific type of
aid given, the amount distributed, details of the recipients (including farmer ID), and the region
where the aid was distributed. The report assists in monitoring aid distribution activities and
evaluating the effectiveness of support programs. It ensures transparency and accountability in
aid allocation and distribution processes.

Data Summary:
e The overall quantity of aid provided, including fuel, fertilizer, pesticides, and financial
support.
e Adetailed breakdown showing the type of aid and the quantities distributed.
e Distribution timeline and frequency
e Details about the recipients, including farmers' names, their locations, and the specific
aid they received.

Analysis:

e Assessment of aid distribution patterns and trends over time
e Evaluation of aid utilization effectiveness and impact on agricultural productivity
¢ Identification of areas or demographics with higher aid requirements

Representation:

e Comprehensive tables that lay out all the data related to the distribution of aid.
e Visual graphs to help show the trends and patterns in aid distribution, making it easier
to understand at a glance.

Total aid distribution in the following time range:

2022 w Total aid distribution in the following time range:
2023 v
Select Type e
Selact Type Fertilizer v
Fertilizer Ny M Total Amount Approved
Pesticide
Monetary »
Fuel
Other

Figure 3: Aid Distribution

Figure 4: Aid Funding Report

Total Aid distribution based on Funding:

2022 v

Select Fund | xcmxdhdpvx v

[axurokkwesunknecpvikvylunncsqyferwxpevhixkriudsic
B ayuvhxjpuicdbnzudotekfworrdoonixcaerkedtogewmiren
B ioahizshuboogskemkplbonngptmzopiikrdbwomekrvnpbmf
B bioxbswntuyngtexciradizikimplekoxgegpidiaypzkyzm
B s mvhhigycgikaunbdoyfuvdeogpspwijhjiwikicvehp
B covexcawdobopommiboowrastrkexd zutdvyqypkbzupgvii
B dcjdvstechaginampkmegvyobygxzzcheiczsugprvickucype
[dkekkefagmkntocsoakioogxigrkxbidrkjcydykalmhpssux
[dnbzzyreukddyscdglkgbsawxivamgnadyhzouggngublrawd
I ckpseusgrzzpezimntgomulowsaxcbvbpouvnskhrhtioby
B -chuomokkpzuhutvgxorvogalkitatgisuhadohueyrhlegw

MIS Report Template 3 : Crop Yield Analysis Report

This report offers an in-depth analysis of crop yield data, organized by crop type, geographical
region, and growing season. It encompasses vital details such as the specific type of crops, the
quantity of yield, the regions where these crops were grown, and the time of year they were
harvested. The primary goal is to uncover trends, patterns, and the key factors that affect crop
productivity, thereby aiding in making well-informed agricultural decisions.

Data Summary:
e The total amount of crop yield data gathered.

e Adetailed division of crop yields according to the type of crop, the region it was grown
in, and the season it was harvested.

e The average yield per hectare for each type of crop.

e A comparative study examining how yields vary across different seasons and regions.
Analysis:

¢ Identification of high-performing and underperforming crops and regions

e Evaluation of seasonal variations and their impact on crop productivity

Representation:

e Comprehensive tables that organize crop yield data by type, region, and season,
providing a clear overview.

e Various charts and graphs that visually depict the trends and fluctuations in crop yields,
making it easier to spot patterns and anomalies.

Estimated Crop Harvest(tons) By Months

Paddy Tea Carrot [Cnion Potato
25,000,000

=
20,000,000 ====— -./ \
15,000,000
10,000,000
5,000,000

0
January February March April May June July August September October November December

Farm Crop Estimated Agri Estimated Harvested Harvested Recorded

1D ID Name Location Harvest Year Quarter Harvesting Date Date Amount Date Actions

1 1 df view TREQ 2323 21 2024-02-19 2024-02-16 .
Map

1 1 df view TREED 2323 21 2024-02-19 2024-02-16 .
Map

1 1 rice view TRED 204 2 2024-02-20 2024-02-16 .
Map

Figure 6: Harvesting details

=3 ~
. / T “vati 202
Crop Yield Report y 5;:;-25,220\ erall Cultivation Info 2024
Paddy w \
L " \\
2023
. \

Select Month | January w

Select Pravince | Western

Select Office Select Office v

w
v
Select District = Select District w i N

\ AT

Figure 7: Crop Yield report

Harvest(tons) By years

2020 ~

I Harvest Amount

Paddy Tea Carrot Onion Potato

100,000,000

75,000,000

50,000,000

25,000,000

o

MIS Report Template 4 : Field Mapping Overview Report

This report provides an overview of field mapping activities conducted within the ‘AgriCloud’
system. It includes details such as field ID, location coordinates, assigned officer, and mapping
date. The report facilitates monitoring of field mapping progress and ensures accurate spatial
data management. It helps to Assessment of the impact of field mapping on resource allocation
and decision-making processes

Data Summary:

e The total count of fields that have been mapped.
e How these mapped fields are distributed across different regions and according to crop

types.
Analysis:

e Evaluation of field mapping coverage across different agricultural regions
e Identification of areas with incomplete or outdated mapping data

Representation:

e Maps and other visual aids that show the extent of field mapping coverage and how
mapped fields are distributed, helping to visualize the scope and scale of mapping

activities.
+ \t £)
¥
£33 \ LK 9 [+}
,\
Field Mapping Report \ vid
% Z
\ -t
\FEE [E
Paddy ~ \,‘ ’i
\ 4]
2022 - %
. i
X\ &2
% S i
Select Month | January e ’f‘ # 3o L
F)
E '
3 b # K %
Select Pravince | Western 3% Fanadu

~
Select District Kalutara - _ eg
»

Select Office AgriOffice7e w

v

Figure 8: Field Mapping

MIS Report Template 5: Acre Tax Tracking Report

This report tracks acre tax payments recorded by farmers in the AgriCloud system. It includes
key details such as the farmer's unique identifier (farmer ID), the amount paid, the date of
payment, and the geographical region. The main objectives of this report are to oversee tax
compliance, enhance revenue collection, and improve financial management practices.
Additionally, it aims to promote transparency and accountability in the tax collection process.

Data Summary:
e Adetailed breakdown of tax payees, categorized by farmers in regions

Analysis:

e Comparison of tax payees (farmers) distribution across different regions or districts

Representation:

e Comprehensive tables that detail acre tax payment information, facilitating easy review
and analysis.

e Visual representations, such as charts and graphs, that depict trends in tax payments and
highlight variations in compliance rates across different regions or times.

Acre Tax Payer Tracking Report

Select District e
Select Office w

i A d - I 4 d - _ £ i P 2 3 r 7
= i - . 5 et s o | -, -
& 7 = - 3 " :
“

K
=

-y = - T

Figure 9: Acre tax payer tracking report

MIS Report Template 6: Broadcast Message Report

This report compiles and analyzes the broadcast messages sent within the AgriCloud system.
It captures essential information about each message, including its content, the sender’s details,
the type of recipients targeted, and the time it was sent. The focus is on maintaining a
comprehensive record of messages broadcasted by agriculture officers to various stakeholders.

Data Summary:
The aggregate count of broadcast messages that have been sent.

A categorized summary of these messages, detailing the sender, the recipient group, and the
type of content shared.

Analysis:
e Evaluation of message content and relevance to target audience

Presentation:

e Comprehensive logs that detail the activities related to broadcast messages, including
sender, content, and recipient information, presented in detailed tables for clarity and
ease of analysis.

Mail ID Sender Message Status Sent To Response

1 sandunidilshika@gmail.com test emaill2@example.com {"id": "18e0e0d38efc8182", “threadld": "18e0e0d38efc8182", "labellds":
message ["SENT"]}

2 sandunidilshika@gmail.com test email24@example.com {"id": "18e0e0d4069f589a", "threadld": "18e0e0d4069f589a", "labellds":
message ["SENT"]}

3 sandunidilshika@gmail.com test email35@example.com {"id": "18e0e0d4768dda16", "threadld": "18e0e0d4768dda16", "labellds":
message ["SENT"]}

4 sandunidilshika@gmail.com test email52@example.com {"id": "18e0e0d4cafe8183", "threadld": "18e0e0d4cafe8183", "labellds":
message ["SENT"]}

5 sandunidilshika@gmail.com test email56@example.com {"id": "18e0e0d540b050dc", "threadld": "18e0e0d540b050dc", "labellds":
message ["SENT"]}

6 sandunidilshika@gmail.com test email65@example.com {"id": "18e0e0d5ccdbc2d9”, “thread|d"; "18e0e0d5ccdbc2d9”, “labellds":
message ["SENT"]}

7 sandunidilshika@gmail.com test email67 @example.com {"id": "18e0e0d635df3015", "threadld": "18e0e0d635df3015", "labellds":
message ["SENT"]}

8 sandunidilshika@gmail.com test email83@example.com {"id": "18e0e0d69801f094", "threadld": "18e0e0d69801f094", "labellds"™
message ["SENT"]}

9 sandunidilshika@gmail.com test email84@example.com {"id": "18e0e0d723ccd477", "threadld": "18e0e0d723ccd477", "labellds":
message ["SENT"]}

Figure 10:Message broadcasting logs

MIS Report Template 7: Disaster Analysis Report

This report delves into agricultural disaster data within the AgriCloud system, with the
objective of evaluating the impact of such disasters on crop yields and overall agricultural
productivity. It aims to provide valuable insights that can inform disaster preparedness and
response strategies effectively.

Data Summary:
e A catalog of the types of agricultural disasters encountered and their occurrence
frequency.
o Detailed assessments of the damage and losses incurred from each type of disaster.
e The geographical spread of areas affected by disasters.

Analysis:
e An examination of the agricultural systems' vulnerabilities and their resilience against
various disaster scenarios.
¢ Identification of high-risk areas and crops susceptible to disaster damage.

Representation:

e Detailed reports on disaster events, including damage assessments and response
activities

e Visual aids such as maps and charts to depict areas hit by disasters and the extent of
crop damage, facilitating a clearer understanding of the impact and scope.

Disaster OverView Report

Disaster Type W
2023 v
Select Month | Select Manth e @
Select Province | Select Province w
Select District ~ Select District w
Select Office | Select Office w
Submit
Clear

Figure 0.1: Disaster overview generating filter form

MIS Report Template 8: Free Advertising Service Engagement Report

his report examines how registered users, including farmers and vendors, interact with the
marketplace feature on the AgriCloud system. It seeks to understand the marketplace's role in
bridging the gap between farmers and potential buyers, evaluating its efficiency and
effectiveness.

Data Summary:
e The count of farmers and vendors actively participating in the marketplace.

e The variety and distribution of products listed, including details on advertisements
posted.

Analysis:
e An analysis of how the marketplace is adopted and utilized by its users, identifying
patterns and trends in usage.

e An evaluation of the marketplace's success in ensuring fair pricing and efficient
transactions between sellers and buyers.

Representation:

e A detailed account of the advertisements posted, including information on the types of
products, their pricing, and the total volume of listings. This helps to provide a
comprehensive overview of the marketplace's activity and offerings.

Figure 0.1: Advertisement overview report

Conclusion

In conclusion, these Management Information System (MIS) Report Templates serve as
essential tools for the AgriCloud’ system, offering structured and detailed insights into various
operational aspects. From tracking registered user engagement and analyzing crop yields to
monitoring disaster impacts and assessing marketplace dynamics, each template is designed to
facilitate informed decision-making and strategic planning. By systematically collecting,
analyzing, and representing data, these reports enable stakeholders to identify trends, evaluate
effectiveness, and identifying areas for improvement. Ultimately, the effective use of these
templates will enhance operational efficiencies, support sustainable agricultural practices, and

foster a more resilient and productive agricultural sector.

** Evidences were taken with several mock data inserted in database.

Appendix B

Database Models int the project are as follows.

Role table
class Role(db.Model) :
__tablename = 'role'
role_id = Column(Integer, primary key=True)
role name = Column(String(100))
role description = Column(String(100))
Contact table
class Contact(db.Model) :
__tablename _ = 'contact'
contact_id = Column(Integer, primary key=True)
user_id = Column(Integer, ForeignKey('user.user_id'))
number = Column (String(100))
area_code = Column(String(100))
user = relationship("User", backref="contacts")
Address table
class Address (db.Model) :
__tablename _ = 'address'
address_id = Column(Integer, primary key=True)
user_id = Column(Integer, ForeignKey('user.user_ id'))
city = Column (String(100))
town = Column (String(100))
street = Column (String(100))
home no = Column (String(100))
home name = Column(String(100))
user = relationship("User", backref="addresses")
AgricultureOfficer table
class AgricultureOfficer (db.Model) :

__tablename = 'agriculture_officer'

user_id = Column(Integer, ForeignKey('user.user_id'), primary key=True)

employee id = Column (Integer)

managed by employee id = Column (Integer)

agri_office_id = Column(Integer)

service_ start_date = Column (Date)

field area_id = Column(Integer)

user = relationship("User", backref="agriculture officers")
AgriOffice table
class AgriOffice (db.Model) :

__tablename = 'agri_office'

agri_office id = Column(Integer, primary key=True)

name = Column (String(100))

city Column (String (100))
province = Column(String(100))
district = Column(String(100))

FieldArea table

class FieldArea (db.Model) :
__tablename__ = 'field area'

field area_id = Column(Integer, primary key=True)

agri_office id = Column(Integer,
ForeignKey ('agri_office.agri_office_id'))

name = Column (String(100))

agri_office = relationship("AgriOffice", backref="field areas")
Reports table
class Reports (db.Model) :

__tablename _ = 'reports'

report_id = Column(Integer, primary key=True)

category = Column (String(100))

date = Column (Date)

time = Column (String(100))

user_id = Column(Integer, ForeignKey('user.user_ id'))

user = relationship("User", backref="reports")

Farmer table
class Farmer (db.Model) :
__tablename _ = 'farmer'
user_id = Column(Integer, ForeignKey ('user.user_ id'), primary key=True)

assigned office_id = Column(Integer,
ForeignKey ('agri office.agri_ office id'))

assigned field area id = Column(Integer,
ForeignKey ('field area.field area_id'))

updated by = Column (Integer)

added_by = Column (Integer)

registered date = Column(Date)

tax file no = Column(String(100))

user = relationship("User", backref="farmers")

assigned office = relationship("AgriOffice",
foreign_keys=[assigned office_id])

assigned field area = relationship("FieldArea",
foreign keys=[assigned field area id])

Login table
class Login(db.Model) :
__tablename _ = 'login'
user_id = Column(Integer, ForeignKey ('user.user_ id'),primary key=True)
username = Column (String(100))
encoded pw = Column (String(100))
user = relationship("User", backref="logins")
Researcher table
class Researcher (db.Model) :
__tablename = 'researcher'
user_id = Column(Integer, ForeignKey ('user.user_id'), primary key=True)
institute = Column(String(100))

user = relationship("User", backref="researchers")

Advertisement table
class Advertisement (db.Model) :
__tablename = 'advertisement'
ad_id = Column(Integer, primary key=True)
published by = Column(String(100))
type = Column (String(100))
title = Column(String(100))
category = Column (String(100))
description = Column (String(100))
date = Column (Date)
time = Column (String(100))
user_id = Column(Integer, ForeignKey('user.user_id'))
unit_price = Column (Integer)
crop_id = Column (Integer)
amount = Column (Integer)
telephone_no = Column (String(100))
verified officer id = Column(Integer)
image_link = Column(String(100))
user = relationship("User", backref="advertisements")
Farm table
class Farm(db.Model) :
__tablename__ = 'farm'
farm id = Column(Integer, primary key=True)
farm name = Column (String(100))
farmer id = Column(Integer, ForeignKey ('farmer.user_ id'))
address = Column (String(100))
type = Column (String(100))
area of field = Column(String(100))
owner nic = Column(String(100))
owner name = Column(String(100))
recorded by = Column (Integer)

office_id = Column(Integer, ForeignKey('agri_ office.agri_ office_id'))

field area_id = Column(Integer, ForeignKey('field area.field area_ id'))
farmer = relationship ("Farmer", backref="farms")
Crop table
class Crop(db.Model) :
__tablename _ = 'crop'
crop_id = Column(Integer, primary key=True)
crop_name = Column(String(100))
breed = Column (String(100))
description = Column (String(100))
updated by = Column (Integer)
added by = Column (Integer)
added_date = Column (Date)
DisasterInfo table
class DisasterInfo (db.Model) :
__tablename _ = 'disaster_info'
disaster_info_id = Column (Integer, primary key=True)

cultivation_info_id = Column(Integer

Appendix C

All the related schemas are as follows

Farm schema

class FarmSchema (ma.Schema) :
class Meta:

fields = ('farm id', 'farm name',
'area of field', 'owner nic', 'owner name'

Contact schema
class ContactSchema (ma.Schema) :
class Meta:

fields = ('contact id', 'user id',

Address schema
class AddressSchema (ma.Schema) :
class Meta:

fields = ('address id', 'user_ id',
'home no', 'home name')

SuperAdmin schema
class SuperAdminSchema (ma.Schema) :
class Meta:

fields = ('user id', 'employee id'

RegionalAdmin schema
class RegionalAdminSchema (ma.Schema) :
class Meta:

fields = ('user_id', 'employee id'
'district', 'province', 'agri office id',

AgricultureOfficer schema

class AgricultureOfficerSchema (ma.Schema) :

'address', 'type', 'farmer id’,

)

'number', 'area code')

'city', 'town', 'street',

, 'role type')

, 'managed by employee id',

'service start date')

class Meta:

fields = ('user_id', 'employee id', 'managed by employee id',
'agri office id', 'service start date', 'field area id')

AgriOffice schema
class AgriOfficeSchema (ma.Schema) :

class Meta:

fields = ('agri office id',

FieldArea schema
class FieldAreaSchema (ma.Schema) :
class Meta:

fields = ('field area id’,

Reports schema
class ReportsSchema (ma.Schema) :

class Meta:

'name', 'city', 'province', 'district')

'agri office id', 'name')

fields = ('report id', 'category', 'date', 'time', 'user id', 'link')

Farmer schema
class FarmerSchema (ma.Schema) :

class Meta:

fields = ('user id', 'assigned office id', 'assigned field area id',
'updated by', 'added by', 'registered date', 'tax file no')

Login schema
class LoginSchema (ma.Schema) :

class Meta:

fields = ('user_id', 'username',6 'encoded pw')

Vendor schema
class VendorSchema (ma.Schema) :

class Meta:

fields = ('user id', 'business reg no', 'tax file no')

Researcher schema
class ResearcherSchema (ma.Schema) :
class Meta:

fields = ('user_ id', 'institute')

Advertisement schema
class AdvertisementSchema (ma.Schema) :

class Meta:

fields = ('ad _id', 'published by', 'type', 'title', 'category',

'description', 'date', 'time', 'user id', 'unit price', 'crop_ id',
'telephone no', 'verified officer id', 'image link')

Crop schema
class CropSchema (ma.Schema) :
class Meta:

fields = ('crop_ id', 'crop name', 'breed', 'description',
'updated by', 'added by')

DisasterInfo schema
class DisasterInfoSchema (ma.Schema) :

class Meta:

fields = ('disaster info id', 'cultivation info id', 'date'

'damaged area', 'estimated damaged harvest',
'estimated damaged harvest value', 'type')

Aid schema
class AidSchema (ma.Schema) :
class Meta:

fields = ('aid id', 'aid name', 'aid batch', 'year',
'in charged office id', 'description')

Fertilizer schema

'amount',

, 'time',

class FertilizerSchema (ma.Schema) :

class Meta:

fields = ('fertilizer id', 'aid id', 'manufactured date', 'brand',
'batch no', 'expiry date', 'name', 'type', 'description')

Pesticides schema
class PesticidesSchema (ma.Schema) :

class Meta:

fields = ('pesticides id', 'aid id', 'manufactured date', 'brand',
'batch no', 'expiry date', 'name', 'type', 'description')

MonetaryAid schema
class MonetaryAidSchema (ma.Schema) :

class Meta:

fields = ('monetaryAid id', 'aid id', 'description', 'reason')

Fuel schema
class FuelSchema (ma.Schema) :

class Meta:

fields = ('fuelAid id', 'aid id', 'reason',

'fuel type')

MiscellaneousAids schema
class MiscellaneousAidsSchema (ma.Schema) :

class Meta:

fields = ('miscellaneousAids_id', 'aid id’,

'description')

AidDistribution schema
class AidDistributionSchema (ma.Schema) :

class Meta:

'description',

'type', 'reason',

fields = ('distribution id', 'aid id', 'agri office id', 'date',
'time', 'in charged officer id', 'cultivation info_ id', 'farmer id',

'amount received', 'amount approved', 'description')

Appendix D

Mobile Application Code
e Login page

// Import necessary packages

import 'package:flutter/material.dart';

import 'package:fluttertoast/fluttertoast.dart';

import 'package:http/http.dart' as http;// Import http package for making
HTTP requests

import 'dart:convert';// Import 'dart:convert' for JSON decoding//provides
encoders and decoders for converting between JSON and Dart objects.

import '../Home/HomePage.dart';

import 'RegisterAgriOfficer.dart';

// Define variables to keep user information who logged in the app
String? token;

String? firstname;

String? lastname;

String? email;

int? userid;

// Define the LoginPage widget
class LoginPage extends StatefulWidget {
const LoginPage ({super.key});

@override
State<LoginPage> createState() => LoginPageState();

}

// Define the state for the LoginPage
class LoginPageState extends State<LoginPage> ({

// Create controllers for username and password text fields
TextEditingController username = TextEditingController();
TextEditingController password = TextEditingController();

// Define a method for login functionality
Future<void> login() async {
const String apiUrl =
'https://bluebird-balanced-drum.ngrok-free.app/user/login'; // API
Url:Login

// Send a POST request to the login API
final response = await http.post(
Uri.parse(apiUrl),
headers: <String, String>{
'Content-Type': 'application/Jjson; charset=UTF-8',
by
body: jsonEncode (<String, String>{
'email': username.text,
'password': password.text,

1)y
);

if (!mounted) return;

// Check the response status code

if (response.statusCode == 200) {
// Parse the JSON response
final Map<String, dynamic> responseData = jsonDecode (response.body);

// Extract the role value from the JSON response
final int role = responseDatal['role'];
token=responseDatal'token'];
firstname=responseData['firstname'];
lastname=responseDatal'lastname'];
email=responseDatal['email'];
userid=responseData['user id'];

// Check the user role
if (role == 4) {
// Redirect to the home page if role is 4
Navigator.pushReplacement (
context,
MaterialPageRoute (builder: (context) => const HomePage()),
)
// Show invalid login message if role is not 4
} else if(role!=4){
Fluttertoast.showToast (
msg: 'Invalid login',
toastLength: Toast.LENGTH LONG,
gravity: ToastGravity.BOTTOM,
timeInSecForIosWeb: 1,
backgroundColor: Colors.transparent,
textColor: Colors.red,
fontSize: 16.0,
) ;
}
telse(
// Show error message for failed login
showDialog (
context: context,
builder: (BuildContext context) {
return AlertDialog(
title: const Text('Login Failed'),
content: const Text('Invalid username or password.'),
actions: <Widget>|[
TextButton (
onPressed: () {
Navigator.of (context) .pop () ;
by
child: const Text ('OK'),
)
1y

// Define a method for navigating to the registration page
void performRegistration(BuildContext context) {
Navigator.push (
context,
MaterialPageRoute (builder: (context) => const RegisterOfficer()),

)7

// Build the login page UI
@override
Widget build(BuildContext context) {
return Scaffold(
body: Center (
child: SingleChildScrollView (
child: Padding(
padding: const Edgelnsets.all(30.0),
child: Column (
crossAxisAlignment: CrossAxisAlignment.center,
children: <Widget>][
Image.asset (
"lib/assets/logo.png",
width: 150.0,
height: 150.0,
)
const SizedBox (height: 30),
TextFormField (
controller: username,
decoration: const InputDecoration (
labelText: "Username",
prefixIcon: Icon(Icons.person),
)
)
const SizedBox (height: 30),

TextFormField (
controller: password,
obscureText: true,
decoration: const InputDecoration (
labelText: "Password",
prefixIcon: Icon(Icons.lock),
)I

)I
const SizedBox (height: 30),
ElevatedButton (
onPressed:
~login, // Call the login method when the button

pressed

is

child: const Text('Login'),
)I
const SizedBox (height: 20),
Row (
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>|[
Expanded (
child: Divider(
color: Colors.teal.shade300,
height: 10,
)y
)y
const Text ("or"),
Expanded (
child: Divider(
color: Colors.teal.shade300,
height: 10,

const SizedBox (height: 20),
Row (
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>|[
const Text (
'Don\'t have an account? ',
style: TextStyle (fontSize: 16),
)y
GestureDetector (
onTap: () {
performRegistration (context) ;
I
child: const Text (
"Register",
style: TextStyle(fontSize: 16, color: Colors.teal),

e Page for adding disaster data

import 'package:flutter/material.dart';

import 'package:fluttertoast/fluttertoast.dart';

import 'package:intl/intl.dart';

import 'package:myapp/Screens/Cultivation/SearchCultivation.dart';
import 'package:http/http.dart' as http;

import '../AgriOfficer/LoginPage.dart';

import '../Home/HomePage.dart';

class AddDisasterRecords extends StatefulWidget {
const AddDisasterRecords ({super.key});

@override
State<AddDisasterRecords> createState() => AddDisasterRecordsState();

}

class AddDisasterRecordsState extends State<AddDisasterRecords> {
String? selectedIssueValue;

TextEditingController cultivationInfold = TextEditingController();
TextEditingController damagedArea = TextEditingController();
TextEditingController damagedHarvestExtent = TextEditingController();
TextEditingController estimatedLoss = TextEditingController () ;
TextEditingController date = TextEditingController();

Future<void> performAddRecord() async{
const String apiUrl =
'https://bluebird-balanced-drum.ngrok-free.app/disaster/info';

final response = await http.post(

Uri.parse(apiUrl),

headers: <String, String>{
'Content-Type': 'application/json; charset=UTF-8',
'Authorization': 'Bearer S$token',

by

body: jsonEncode (<String, dynamic>{
'cultivation info id': int.parse(cultivationInfold.text),

'damaged area': int.parse(damagedArea.text),

'estimated damaged harvest': damagedHarvestExtent.text,
'estimated damaged harvest value': estimatedLoss.text,
'type': selectedIssueValue,

'date': date.text,

1)y
)7

// print ('Response body: ${response.body}');

if (!mounted) return;

if (response.statusCode == 200) {
Navigator.pushReplacement (
context,
MaterialPageRoute (builder: (context) => const HomePage()),
) ;
Fluttertoast.showToast (
msg: "Successfully added a new disaster record",
toastLength: Toast.LENGTH LONG,
gravity: ToastGravity.BOTTOM,
backgroundColor: Colors.blacklZ2,
textColor: Colors.green,
fontSize: 16.0,
)
// print (response.body
} else if (response.statusCode == 400) {
showDialog (
context: context,
builder: (BuildContext context) {
return AlertDialog(
title: const Text ('Failed to Add Record'),
content: const Text('Invalid Cultivation Info Id '),
actions: <Widget>|[
TextButton (
onPressed: () {
Navigator.of (context) .pop () ;
}y
child: const Text ('OK'),

);
} else {

Fluttertoast.showToast (
msg: "System Error! \nPlease Login & Try Again",
toastLength: Toast.LENGTH LONG,
gravity: ToastGravity.BOTTOM,
backgroundColor: Colors.blacklZ,
textColor: Colors.green,
fontSize: 16.0,

void performSearchCultivationInfold(BuildContext context) {
Navigator.push (
context,
MaterialPageRoute (builder: (context) => const
SearchCultivationPage()),
) ;

Future<void> selectDate (BuildContext context) async {
final DateTime? picked = await showDatePicker (
context: context,
initialDate: DateTime.now(),
firstDate: DateTime (2023),
lastDate: DateTime.now (),
) ;
if (picked != null) {
setState (() {
// print (DateFormat ('yyyy-MM-dd') .format (picked)) ;
date.text = DateFormat ('yyyy-MM-dd') .format (picked);
1)

}
List<DropdownMenultem<String>> get dropdownItems {
List<DropdownMenultem<String>> menultems = [
DropdownMenulItem (
child: Row (
children: <Widget>][
Icon (Icons.warning, color: Colors.orange), // Icon for Flood
SizedBox (width: 10), // Add some space between icon and text
Text ("Flood"),
1,
),
value: "Flood",
)
DropdownMenuItem (
child: Row (
children: <Widget>][
Icon(Icons.cloud, color: Colors.blue), // Icon for Drought
SizedBox (width: 10), // Add some space between icon and text
Text ("Drought"),
1,
)
value: "Drought",
)y
// Add similar DropdownMenultem entries for other options
DropdownMenuItem (
child: Row (
children: <Widget>][
Icon(Icons.bug report, color: Colors.green), // Icon for Pests &
Disease Outbreak
SizedBox (width: 10), // Add some space between icon and text
Text ("Pests & Disease Outbreak"),
1,
)I
value: "Pests & Disease Outbreak",
)
// Add similar DropdownMenultem entries for other options
DropdownMenuItem (
child: Row (
children: <Widget>][

Icon(Icons.storm, color: Colors.grey), // Icon for Storm
SizedBox (width: 10), // Add some space between icon and text
Text ("Storm"),
1y
)
value: "Storm",
)I
// Add similar DropdownMenultem entries for other options
DropdownMenulItem (
child: Row(
children: <Widget>|[
Icon(Icons.warning, color: Colors.red), // Icon for Chemical

Spills
SizedBox (width: 10), // Add some space between icon and text
Text ("Chemical Spills"),
1,
),
value: "Chemical Spills",

)
// Add similar DropdownMenultem entries for other options
DropdownMenuItem (
child: Row (
children: <Widget>][
Icon (Icons. landscape, color: Colors.brown), // Icon for Land
Degradation
SizedBox (width: 10), // Add some space between icon and text
Text ("Land Degradation"),
1,
)y
value: "Land Degradation",
)
// Add similar DropdownMenultem entries for other options
17

return menultems;

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar (
title: const Text(
"Add Disaster Records",
style: TextStyle(fontSize: 30.0),
)
backgroundColor: Colors.teal.shade200,
leading: IconButton (
icon: const Icon(Icons.home),
onPressed: () {
Navigator.pushReplacement (
context,
MaterialPageRoute (builder: (context) => const HomePage()),
) ;

body: SingleChildScrollView (
child: Padding(
padding: const EdgelInsets.all(20.0),
child: Column (

crossAxisAlignment: CrossAxisAlignment.center,
children: [
Row (
mainAxisAlignment: MainAxisAlignment.end,
children: [
const SizedBox (height: 100.0,),
ElevatedButton.icon (
icon: const Icon(Icons.search,color: Colors.green,),
label: const Text(
"Cultivation Info Record Id",
style: TextStyle (fontSize: 18.0),
)
onPressed: () {
_performSearchCultivationInfolId (context);
1)
1,
)
TextFormField (
controller: cultivationInfold,
keyboardType:
const TextInputType.numberWithOptions (decimal: true),
decoration: const InputDecoration (
labelText: "Cultivation Information Record Id",
prefixIcon:
Icon (Icons.indeterminate check box outlined,color: Colors.teal,),
hintText: "Eg:03",
hintStyle: TextStyle(color: Colors.blackl?2)),
autovalidateMode: AutovalidateMode.onUserInteraction,
validator: (value) {
if (value == null || value.isEmpty) {
return 'Please Fill';
}
return null;
}I
)I
const SizedBox (
height: 40.0,
)I
Row (
children: [
const Text (
"Disaster Type",
style: TextStyle(
fontSize: 18.0,

fontWeight: FontWeight.bold,
color: Colors.black),
)/
const SizedBox (width: 30,),
DropdownButton<String> (
value: selectedIssueValue,
items: dropdownItems,
onChanged: (String? choice) {

setState (() {
_selectedIssueValue = choice;
1)
by
hint: const Text("------------ Select-—-—--—------- "),

)y
1,
),
const SizedBox (height:30,),

const Row (
mainAxisAlignment: MainAxisAlignment
.start, // Aligns widgets to the start of the main axis
children: [
Text (
"Detailed Damage Assessment",
style: TextStyle(
fontSize: 18.0,
fontWeight: FontWeight.bold,
color: Colors.black),

1,
)
TextFormField (
controller: damagedArea,
keyboardType:
const TextInputType.numberWithOptions (decimal: true),
decoration: const InputDecoration (
labelText: "Damaged Area in Acre [Estimated]",
prefixIcon: Icon(Icons.landscape,color: Colors.teal,),
hintText: "Eg: 1.5 Acre",
hintStyle: TextStyle(color: Colors.blackl2)),
autovalidateMode: AutovalidateMode.onUserInteraction,
validator: (value) {
if (value == null || value.isEmpty) {
return 'Please Fill';
}
return null;
}I
)I

TextFormField (
controller: damagedHarvestExtent,
keyboardType:
const TextInputType.numberWithOptions (decimal: true),

decoration: const InputDecoration (
labelText: "Harvest Damage Extent [Estimation]",
prefixIcon: Icon(Icons.eco,color: Colors.teal,),
hintText: "Eg:340kg",
hintStyle: TextStyle(color: Colors.blackl2)),
autovalidateMode: AutovalidateMode.onUserInteraction,
validator: (value) {
if (value == null || value.isEmpty) {
return 'Please Fill';
}
return null;
b
)I
TextFormField (
controller: estimatedLoss,
keyboardType:
const TextInputType.numberWithOptions (decimal: true),
decoration: const InputDecoration (
labelText: "Estimated Loss",
prefixIcon: Icon(Icons.money,color: Colors.teal,),
hintText: "Eg:in Lkr",
hintStyle: TextStyle(color: Colors.blackl2)),
autovalidateMode: AutovalidateMode.onUserInteraction,
validator: (value) {
if (value == null || value.isEmpty) {
return 'Please Fill';
}
return null;
I
)y

const SizedBox (width: 50),
TextFormField (
readOnly: true,
controller: date,
decoration: InputDecoration (
labelText: "Date",
prefixIcon: const Icon(Icons.calendar today,color:
Colors. teal,),
suffixIcon: IconButton (
icon: const Icon(Icons.edit calendar rounded),
onPressed: () => selectDate (context),

)I
)I
)y
const SizedBox (height: 30.0,),

ElevatedButton (
onPressed: () {
_performAddRecord() ;

by
child: const Text(

'Submit’',
style: TextStyle(fontSize: 25.0),

e Code for get geo location
import 'package:flutter/material.dart';
import 'package:geocoding/geocoding.dart"';
import 'package:geolocator/geolocator.dart';
import 'package:google maps flutter/google maps flutter.dart';

class GetCurrentLocation extends StatefulWidget {

const GetCurrentLocation ({Key? key}) : super (key: key);
@override
State<GetCurrentLocation> createState() => GetCurrentLocationState();

}

class _GetCurrentLocationState extends State<GetCurrentLocation> {
String? currentAddress;

Position? currentPosition;

GoogleMapController? mapController;

void onMapCreated(GoogleMapController controller) {
_mapController = controller;

Future<void> getCurrentPosition() async {
final hasPermission = await handlelLocationPermission();

if (!'hasPermission) return;
await Geolocator.getCurrentPosition(desiredAccuracy:
LocationAccuracy.high)
.then ((Position position) {

setState (() {
_currentPosition = position;
_initialCameraPosition = CameraPosition(

target: LatLng(position.latitude, position.longitude),
zoom: 14,
) ;
// Move map camera to the new location
~mapController?.animateCamera (
CameraUpdate.newCameraPosition(_initialCameraPosition));
_getAddressFromLatLng (position);
1)
}) .catchError ((e) {
debugPrint (e) ;
1)

Future<bool> handleLocationPermission () async {
bool serviceEnabled;
LocationPermission permission;

serviceEnabled = await Geolocator.isLocationServiceEnabled() ;
if (!serviceEnabled) {

ScaffoldMessenger.of (context) .showSnackBar (const SnackBar (
content: Text (
'Location services are disabled. Please enable the
services')));
return false;
}

permission = await Geolocator.checkPermission();

if (permission == LocationPermission.denied) {
permission = await Geolocator.requestPermission();
if (permission == LocationPermission.denied) ({

ScaffoldMessenger.of (context) .showSnackBar (
const SnackBar (content: Text ('Location permissions are
denied'))) ;
return false;

}
if (permission == LocationPermission.deniedForever) {
ScaffoldMessenger.of (context) .showSnackBar (const SnackBar (
content: Text (
'Location permissions are permanently denied, we cannot
request permissions.')));
return false;
}

return true;

Future<void> getAddressFromLatLng (Position position) async {
await placemarkFromCoordinates (
_currentPosition!.latitude, currentPosition!.longitude)
.then((List<Placemark> placemarks) {
Placemark place = placemarks[0];
setState (() {
_currentAddress =
'S{place.street}, ${place.sublLocality},
${place.subAdministrativeArea}, ${place.postalCode}';
1)
}) .catchError ((e) {
debugPrint (e) ;
1)

@override
Widget build(BuildContext context) {
print ("in location page ");

return Scaffold(

appBar: AppBar (title: const Text ("Location Page")),

body: SafeArea (

child: Column (

children: [

Expanded (

child: GoogleMap (
onMapCreated: onMapCreated,

initialCameraPosition: initialCameraPosition,
markers: {
if (_currentPosition != null)
Marker (
markerId: const MarkerId("currentLocation"),
position: LatLng (
_currentPosition!.latitude,
_currentPosition!.longitude,
)y
)/
b
)
)I
const SizedBox (height: 20),
Text ('LAT: ${ currentPosition?.latitude 2?2 ""}'),
Text ('LNG: ${ currentPosition?.longitude 22 ""}'),
const SizedBox (height: 20),
Text ('ADDRESS: ${ currentAddress 2?2 ""}'),
const SizedBox (height: 20),
Row (crossAxisAlignment: CrossAxisAlignment.values[2], children:

ElevatedButton (
onPressed: getCurrentPosition,
child: const Text ("Get Current Location"),

)y

ElevatedButton (
onPressed: () {
if (_currentPosition != null) {

// Return the latitude and longitude back to the
previous screen

Navigator.pop(context, {
'latitude': currentPosition!.latitude,
'longitude': currentPosition!.longitude,

1)

}
by

child: const Text ("Confirm Location"),

Appendix E
Frontend implementation - React Web Application
Login component:

The following code - Login component is a reactjs function component that renders as a modal

when the sign in button is clicked.

j= * ‘&2 LoginModal > 60 constructor

import React from “react”

import { Buttonm, Modal, Form } from 'react-bootstrap’
import { usestate, useContext } from 'react’
import PropTypes from 'prop-types’

import { UserContext } from 'src’

import axios from "axios”

import { AwiosError } from "axios”

import { toast } from 'react-toastify’

import "react-gfpastify/dist/Reactlpastify.css’
import { ToastContainer } from 'react-tosstify’
import Register from " ../ pages/register/Register’
import { API_BASE_URL } from 'src/Config’

function LoginModal({ show, handleClose }} {

const [username, setl o o

const [password, Sete const setlsvValiduser: any

const { isvaliduser, setlsValiduser } = useContext(Userl{ontext)
const [» sethesponse] = useState(null)

const [isRegisterClicked, setlsRegisterClicked] = useState(false)
const handleRegister = (¢ t) =»

setlsRegisterd{licked(!isfegisterclicked)

24

a5k const handleSubmit = async () =» {

1@z ¥

183 return |

1w wdive

1e5 <ToastContainer />

186 {isHegis—_enLlickeV

1e7 <Modal

188 show={show}

1ed onHidegs{handleClose}

118 size="1g

111 aria-labelledby=" ained-modal-title-veenter”
11z centerad

113 > -
114 £Modal .Header clossButton: MOdaI VIeW
115 <Modal.Titlex2ign In</Modal.Titlex

116 </ Modal . Header:

117 <Modal. Body> ---

114 <« Modal . Body>

128 £Modal. Footers ---

138 «fModal . Footer:

131 < /Modals>

132 A

133 <Modal

134 show={s 3

135 onHide=ThandleClose}

136 size="1g"

137 aria-labelledby="contained-modal-title-vcenter”
138 centerad

139 >

148 €Modal .Header closeButton: ---

14z < /Modal . Header:

143 <Modal. Body> ---

185 «/Modal . Body >

16 <Modal. Footer:>

167 <Button variant="secondary”™ classMame="ml-zuto” onClick={handleRegister}:
168 Register

164 M Buttony

17a’ <Button wvariant="primary” onClick={handleSubmit}:>
171 Sign In

17z </ Button>

173 «fModal . Footer:>

174 </Modalx

1vs 1}

176 € fdivs

iz 1

178

17/

pE:c] LosinModal.orooTwoes = 1

Landing page component:
The following code shows the landing page of the Web App

import { DefaultReportSet, Agnipfisporiser)} from “src/views/reports/Reportset’
import Contact from 'src/components/landingpage/Contact’
import {

DatatdminCollection,

DataGenerictollection,

DatalfficerCollection,

} from 'srcfviews/pages/dataCollection/DataCollection”

import AdminReport from °../reports/AdminReport’

import Officerfeport from °../reports/Officerfeport’

import ProductListPage from 'srofviews/marketplace/forms/ProductlistPage’

function LandingPage() m
const { isvaliduser, setlsValiduser } = useContext|Userlontext)
const [selectedMavitem, sethelectedMavitem] = useitate('Home')
const [user, setUser] = useState(null})

const [“Hole, setUserRole] = wseState(null)

const [isAdmin, setlsAdmin] = useState(false)

const [isOfficer, setdlsOfficer] = useState(false)

f/UseEffect to check if the user is walid
usebffect(() =» {
if (isvaliduser) {
const user = J50N.parse(localStorage.getltem('user’)) ffGet the user from the local storage
if (luser) {
setlsvaliduser(false) //If the user is not walid, set the wvalid user to false
setlseruser)
setlserfole(user. role)
if (user.role === 1) {
setlsAdmin(trus)
1t else if (user.role === 4} {
set0IsOfficer(trus)

L] 1 :
}s [isvalidUser, setlsValiduser]) //The usefffect will run when the isValidUser changes

{fHandle the nawigation bar click
const handleContent = (navItem) =: {
setielectediavitem{naviten)

1
F

ff returns’ the landing page view
return [
wdivz
<Defaultlayoutis
«div classMame="App-header":
<NavigationBar handleMzvilick={handleContent} /»

< fdive
{selectediavitem "About’ &8 <lbout S}
{zelectediavitem "Home' && <MainContent /»}

{selectedMavitem === 'Latest_Reports’' L&
(isAdmin ? <AdminReport /> @ isOfficer ¥ <OfficerReport [» @ «<DefaultReportset ()}
{selectedMavitem === 'Contact’ &% «<Contact /»}
{selectedMavIitem === 'Datalollection’ && f/Check the user role and display the relevant data collection page
(istdmin ? |
<DatasdminCollection />
1 @ isOfficer ? (
<Datadfficertollaction />

yog
<DataGenericCollaction />

1)

{selectedMavitem === 'DatalfficerCollection’ B& // Check the wser role and display the relevant data collection page
(is0fficer ? «<DetadfficerCollection /> @ <x¢f2)}

{selectedMavitem === 'Free Advertising Support’ && <ProductListPage /»}

< /Defaultlayouts
< fdiv>

)
)

[/ Export the LandingPage component
export default LandingPage

The Report View component for Administrator role

f/admin report wiewer
const AdminfeportViewsr = ()} =» {
const [activeKey, setActivekey] = useState('')

ffHandle the item click
const handleltemClick = (key) =» {
setactivekey(key)

return {
<CCard:
<Clontainer:
<CROW>
<CCol>
<CListGroup>

<CListGroupltem classMame="blue-1ink"™ onClick={(} =» handleltemClick('User Reports")}:
Total Registered Users

< fCListGroupltem:

kCListGroupltem
classMame="blue-link"
onClick={{) =» handleltemClick(’Estimated Harvest vs Actual'}} f/item for estimated harvest vs actuaj

=
Estimated Harvest vs Actual

< /CListGroupltem:

<CListGroupItem---

<« fCListGroupltem:

<ClistGroupIltem---

< /CListGroupltem:

<CListGroupltem---

«/CListGroupltem:

<CListGroupItem---

«fCListGroupltem:

<CListGroupltem
classhame="blue-link"
onClick={{) =» handleItemClick(Tax Payer Report')}

Tax Prayer Report
«/CListGroupltem:
<CListGroupltem
classhame="blue-1ink"
onClick={{) =» handleltemClick{ Disaster Overview')} [/Change the key

Disaster Overview Report
< /CListGroupltem:
<ClistGroupltem
className="blua-1link"
onClick={() =»> handleItemClick(AdvertisementServiceReport')} /f/Change the key

Advertizement Owverview Report
<« fCListGroupltem:
</CListGroup>

<fClol>

«CCol className="viewsr"s:
{activekey "User Reports’' && <UsersGroupByRoleByadmin /) checks the actiwve key and display the relewvant re
{activekey "Estimated Harvest ws Actual” && <HarvestEstimatedVsActual =} checks the active k and display the relevant report
{activekey "AldDistribution’ B& <AidDistributionByAidTypeAdmin /»}
factivekey "Mew Aid distribution’ &R cAidFundingAdminTable [»}
{activekey "Crop Yield Reports' && «<LankaMapByCropYieldAdmin f»}
{activekey "Field Mapping® && <LankaMapByFieldMapping />»}
{activekey "Tax Payer Report” && <TotalTaxPayerfieport /:»}
{activekey ‘Disaster Overview' B& <AdminDizasterOverview /»}
factivekey AdvertisementServiceReport’ && cAdminAdvertisementServiceReport f»}

< fCCols

</CRow>
</Clontainer:
</Clard:

The following page shows the component code for navigation bar, where the role based
component is mainly handled in the web app.

ffMavigation bar component

function MavigationBar({ handleMawllick }} {
const { iswalidUser, setlsValidUser } = wseContext{Userlontext)
const [username, setUserpame] = useState(' ")
const [role, setRole] = useState(d)

useEffect(() == {
if (lisValiduser) {
console. log(isvaliduser)
localstorage.clear()
}

s [isValiduser])
const [show, setihow] = useState(false)

const handleSignin = ()} =» {
console. log("Sign In")
setShowtruea)
handleMavClick("Home")

h

f/f Handle the sign owt

const handleSignlut = () =» {
setlsvaliduser(false)
localStorage.clear()
setRoleB)
handleMawClick("Home")

}

ffuseEffect to check if the user is walid
usebfFfect () =» {
if (isvaliduser) {
const user = J50NW.parse|localStorage.getltem('user”)) S/Get the user from the local storage
if (user & user.first_name) {
setUsername{user.first_name) //set the username
sethole(user.role)
consale.logfuser)
} else {
handlesignOut()
}
e [isvalidUser]) //The useEffect will run when the isValidUser changes

return
<div classMame="NavigationBar":»
<Navbar expand="1g" className="bg-body-tertiary™:
<Navbar.Brand href="fthome" style={{ marginRight: '1eapx’ }}:
{7}
<Image s=rc={Llogo} rounded width={1e8} height={58} /=
< Navbar.Brand»
<Mavbar.Toggle aria-controls="basic-navbar-nav" />
<Mavbar.Collapse id="basic-navbar-nawv":
<Mav classMame="me-auto">»
<Mav.Link style={{ fontSize: "38px" }} onClick={{} =: hamndleNawClick{ 'Home"}}=>
Home
«/Nav.Link>»

<MavDropdown title="%ervices” id="basic-nav-dropdown” style={{ font3ize: "3@px" }}»
<NavDropdown . Item
onClick={{) = //Role based navigation
role === 1
¥ handleMawClick('DataCollection”}
: role ===
* handleMawClick(Datacfficerfollection”)
: role ===
* handleMawClick('DataCollection”)
» nll

Show-map component that used to view map on the given coordinations

import React, { usestate } from "react’
import { MapContainer, TileLayer, Marker } from 'react-leaflst’
import 'leaflet/dist/leaflet.css’

import { Icon } from °leaflet’

const ShowMap = () => |
const defaultLlongitude = parseFloat(localstorage.getltem(’ longitude’))
const defaultlatitude = parseflost(localstorage.getltem(’latitude’))
const coordinates = [defaultlatitude, defaultlongitude]

console. log('Longitude from local storage:’, defaultLongitude)
console. log('Latitude from local storage:', defaultlatitude)

const customlcon = new Lcon({
iconUrl: "https://cdn-icons-png.flaticon.com/128/8326/8326599.png’,;

icontize: [38, 38],

1Y
1)

return (
cdiva
<hlx53elect Map Area</hl>
<Maptontainer center={coordinates} zoom={38} style={{ height: '48@px', width: "188%" }}»
«Tilelayer url="https://{s}.tile.openstreetmap.org/{z}/{x}/ {¥}.png" />
«Marker position={coordinates} icon={customlcon} />
< /MapContainer:>
o fdive

export default ShowMap

e GeoJson used in showing Interactive Choropleth Map

e GeoJSON is a format for encoding geographical data structures. It's commonly used to
represent spatial data like points, lines, and polygons, along with their attributes, in a
simple and human-readable way. Essentially, it's a way to store and exchange
geographic information in a format that computers can understand easily.

https://geojson.org/

e GeoJson for Sri Lanka: https://github.com/MalakaGu/Sri-lanka-

maps/tree/master/discrict map

https://geojson.org/
https://github.com/MalakaGu/Sri-lanka-maps/tree/master/discrict_map
https://github.com/MalakaGu/Sri-lanka-maps/tree/master/discrict_map

e Using GeoJson for sri lanka, choropleth map was created for view island wide

agricultural informations

/{ for each feature in the geojson, add mouseover and mouseout event handlers
function onkachFeature(feature, layer) {
layer.on({
mouseover: function (e) {
const layer = e.target

layer.setStyle({
weight: 5,
color: #8666,
dasharray: "',
fillopacity: 8.9,

1)

if (!L.Browser.ie && !L.Browser.opera && !L.Browser.edge) {
layer.bringToFront()

(property) React.MutableRefObject<any>.current: any

info.current.update(layer.feature.properties) // pass the properties of the hovered layer

s

mouseout: function (e) {
geojson.rasetStyle(e.targat)
info.current.update()

I

1
}

/{ Add the geojson to the map
if (data) {
geojson = L.geolSON(data, {
style: function (feature) {
return { // style each feature
fillcolor: getColor(featurs.properties.total_harvested),
weight: 2,
opacity: 1,
color: 'white',
dasharray: "3',
fillopacity: 8.5,
s
oneachFeature: onkEachFeature, // add the event handlers to each feature
t).addTo(map)
¥

}, [map, datal]) // re-run this effect when the map or data changes

<MapContainer
key={mapKey}
center={center}
zoom={8}
style={{ height: "7@8px’, width: 'Seepx’ }}
dragging={false}
touchZoom={false}
doubleClickZoom={false}
scrolliheslZoom={false}
keyboard={false}
zoomControl={false}

«TilelLayer
url="https://{s}.tile.openstrestmap.org/{z}/{x}:/{y}.
attribution="© <a href="http://www.openstreetms
maxZoom={3}

>

<MapFeatureDataLayer formData={formData} />

</MapContainer>»

Chart component used in the system
1. Pie chart

import React from 'resct’

import PropTypes from 'prop-types’

import { CChart } from ‘@coreui/react-chartjs’
import { CContainer } from '@coreui/react’

const getRandomColor = () =» {
const letters = '9123456789ABCDEF’
let color = "#°
for {let i = 8; 1 < 6; i++) {
color += letters[Math.floor{Math.random() * 1&8)
h

return color

const PieChart = ({ deta }) =2 {
const labels = Object.keys(data)
const chartData = 4
labels: labels,
datasets: [
{
datas: Object.values(data),
backgroundColor: labels.map({} =»> getRandomCoclor()}},
borderColor: labels.map(()} => getRandomColor(}},
borderklidth: 1,

s

b

return
<CContainer fluid:
<CChart
type="pie"
deta={chartData}
options={{
plugins: {
legend: 1
labels: {
color: "#00220a8°,
}J
T
Ts
kY
>
</CContainers

h

PieChart.propTypes = {
data: PropTypes.object.isReguired,

T
export default PieChart

2. Bar chart

return (
<div>
<CFormSelect custom name="year" id="year" onChange={handleYearChange}>»
<option value="2828">2828</option>
<option value="2821">2821</option>
<option value="2822">2822</option>
<option value="2823">2823</option>
</CFormSelects
<CChartBar
style={{ height: '38@px', marginTop: '4&px" }} //Component for the bar chart
data={{
labels: harvestData.map((data) =» data.crop_name), // The labels for the x-axis
datasets: |[| // The data for the y-axis
{
label: "Harvest Amount®,
backgroundColor: ‘green’,
data: harvestData.map((data) =» data.total_harvested_amount),
T
1.
1
options={{ // The options for the chart
maintainAspectRatio: false,
scales: |
x:
grid: {
drawinChartArea: false,
b
s
yr i
ticks: { // The ticks for the y-axis
beginAtZero: ftrue,
maxTicksLimit: 5,
stepSize: Math.ceil(23e / 5),
max: 258,

b

/>
<fdivs

Appendix F

Backend code for Python Flask API
Init.py for flask application initialization with routes and database

app > % _init__py >

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |
30
31
32
33
34
35
36
37
38
39
4@
41
42
43
44
45
46

£

48
49
5@
51
52
53
54 §
55
56
57
58
59

from apﬁ.route.communicatiun_ruutea import com_routes
from app.route.aid_routes import aid_routes

from app.route.marketplace_routes import market_routes
from app.route.disaster_routes import disaster_routes
import string

from flask_mail import Mail, Messzages
from datetime import datetimes, timedeslta

app = Flask(__name__)
Set SQLite DB directory

basedir = os.path.abspath(os.path.dirname(___file)}
Set Flask sQLAlchemy config of the DB file location

app.config["SQLALCHEMY DATABASE _URI'] = 'mysql://root@localhost/agriInfo’

Configire JWT secret key
zpp.config["JWT_SECRET_KEY'] = 'super_key'

Initialize SQLAlchemy and Marshmallow
db.init_app(app)

ma.init_app(app)

jwt = JWTManager(app)

configure mail{app)

Register the app blueprint

app.register blueprint(app_blueprint)

app.register blueprint(user_routes, url prefix="/user')
app.register blueprint(farm_routes, url prefix="/farm')
app.register blueprint(crop_routes, url prefix='/crop')

app.register blueprint(cultivation routes, url prefix="/cultivation")

app.register blueprint(report_routes, url prefix='/report')
app.register blueprint({com _routes, url prefix='/communication')
app.register _blueprint(market_routes, url prefix='/market"')
app.register blueprint(disaster_routes, url prefix='/disaster')

(
(
(
(
app.register blueprint(azid routes, url prefix="/aid"')
(
(
(
(

if _name__ == '_main__":

app.run{)

// database seed
@app.cli.command('db_create')
def db_create():
db.create_all()
print{"DE created!")

Farmer routes

L b L L e L L L e e L L B L N L R R R L R R R R R R R R EEE R

User:Farmer

L b L L e L L L e e L L B L N L R R R L R R R R R R R R EEE R

def add_farmer_to_system(data, user_id):

try:
Check if the current user is an admin (modify "admin' to your actual admin role)
current_user = User.query.filter_by(user_id=user_id).first{)
if current_user.role not in [1, 2, 4]:
message="Unauthorized to access this resource”
return False, message, |}
else:
Create a new instance of the Farmer model with the data
new_farmer = Farmer(**data)

new_farmer.added by = current_user.user_id
new_farmer.updated_by = current_user.user_id
new_farmer.registered date = parse date(datetime.datetime.now().strftime(%Y-%m-%d"))

Add the new farmer to the database session
db.session.add(new_farmer)

user = User.query.get{new_farmer.user_id)
data = {'role': 5}

Update User{data, user)

Commit the changes to the database
db.session.commit()
message="5Successfully added farmer”

Return the JSON representation of the new farmer
return Trus, message, new_farmer

except Exception as e:
db.session.rollback()
logging.errorie)
message=f"Farmer registration failure, please check this user is already registered, Ping
return False, message, {}

user_id = get_jwt_identity()

isSucceed, message, new farmer=add farmer to system(data, user_id)

if isSucceed:
return farmer_schema.jsonify{new_farmer), 208

elif not isSucceed and message=="Unauthorized to access this resource”:
jsonify(message=message), 483

else:
return jsonify(message=message), 508

Appendix G

This code creates a screen to obtain the current location of the device using the Geolocator and
Geocoding plugins. It displays a Google Map with the current location marker, latitude, longitude,
and address. Users can fetch the current location with a button and confirm it to return the latitude
and longitude to the previous screen.

import 'package:flutter/material.dart';

import 'package:geocoding/geocoding.dart';

import 'package:geolocator/geolocator.dart';

import 'package:google maps flutter/google maps flutter.dart';

class GetCurrentLocation extends StatefulWidget {
const GetCurrentLocation ({Key? key}) : super (key: key);

Qoverride
State<GetCurrentLocation> createState() => GetCurrentLocationState();

class GetCurrentLocationState extends State<GetCurrentLocation> {
String? currentAddress;
Position? currentPosition;
GoogleMapController? mapController;

// Initial camera position
late CameraPosition initialCameraPosition = const CameraPosition(
target: LatLng(
0, 0), // Default to a neutral location before getting actual
location
zoom: 14,

)7

void onMapCreated(GoogleMapController controller) {
_mapController = controller;

}

Future<void> getCurrentPosition() async {
final hasPermission = await handleLocationPermission();

if (!'hasPermission) return;
await Geolocator.getCurrentPosition (desiredAccuracy:
LocationAccuracy.high)
.then((Position position) {

setState (() {
_currentPosition = position;
_initialCameraPosition = CameraPosition (

target: LatLng(position.latitude, position.longitude),
zoom: 14,

) ;

// Move map camera to the new location

_mapController?.animateCamera (
CameraUpdate.newCameraPosition(initialCameraPosition));
_getAddressFromLatLng (position) ;
1)
}) .catchError ((e) {
debugPrint (e) ;
1)

Future<bool> handleLocationPermission() async {
bool serviceEnabled;
LocationPermission permission;

servicekEnabled = await Geolocator.isLocationServiceEnabled()
if (!serviceEnabled) {
ScaffoldMessenger.of (context) .showSnackBar (const SnackBar (
content: Text (
'Location services are disabled. Please enable the
services')));
return false;

}

permission = await Geolocator.checkPermission();

if (permission == LocationPermission.denied) {
permission = await Geolocator.requestPermission();
if (permission == LocationPermission.denied) {

ScaffoldMessenger.of (context) .showSnackBar (
const SnackBar (content: Text ('Location permissions are
denied'))) ;
return false;

}
if (permission == LocationPermission.deniedForever)

ScaffoldMessenger.of (context) .showSnackBar (const SnackBar (

content: Text (
'Location permissions are permanently denied, we cannot request
permissions.')));

return false;

}

return true;

Future<void> getAddressFromLatLng (Position position) async {
awailt placemarkFromCoordinates (
_currentPosition!.latitude, currentPosition!.longitude)
.then((List<Placemark> placemarks) {
Placemark place = placemarks[0];
setState (() {
_currentAddress =
'S{place.street}, S${place.sublocality},
S{place.subAdministrativeArea}, S${place.postalCode}';
1)
}) .catchError ((e) {
debugPrint (e) ;

@Qoverride
Widget build(BuildContext context) {
print ("in location page ");

return Scaffold(
appBar: AppBar(title: const Text ("Location Page")),
body: SafeArea (
child: Column (
children: [
Expanded (
child: GoogleMap (
onMapCreated: onMapCreated,

initialCameraPosition: initialCameraPosition,
markers: {
if (_currentPosition != null)
Marker (

markerId: const MarkerId("currentLocation"),
position: LatLng(
_currentPosition!.latitude,
_currentPosition!.longitude,
)I
)I

)I
)I
const SizedBox (height: 20),
Text ('LAT: ${ currentPosition?.latitude 2?2 ""}'),
Text ('LNG: ${ currentPosition?.longitude 22 ""}'),
const SizedBox (height: 20),
Text ('"ADDRESS: ${ currentAddress 2?2 ""}'),
const SizedBox (height: 20),
Row (crossAxisAlignment: CrossAxisAlignment.values[2], children: [
ElevatedButton (
onPressed: getCurrentPosition,
child: const Text ("Get Current Location"),

)y

ElevatedButton (
onPressed: () {
if (_currentPosition != null) {

// Return the latitude and longitude back to the previous

screen
Navigator.pop (context, {
'latitude': currentPosition!.latitude,
'longitude': currentPosition!.longitude,

)i
}
b

child: const Text ("Confirm Location"),

1)

Appendix H

Unittest sample code of backend for “User” related functionalities.

from datetime import datetime, timedelta

import datetime

from app import app

import jwt

import os

import unittest

from unittest.mock import patch

from flask import Flask

from flask import current_app # Use Flask's current_app for app context specific
configurations

from app.models import db, User

from app.service.users.user_service import Check_User_Token_Expiration,
Get_User_Information, Search_User, Update User, Validate User, deleteUser,
get_access_token, getUserBy Email, getUserBy Id, register_user, user_login,
isExistingUser

from app.service.users.util_service import parse_date

from flask jwt_extended import JWTManager

import xmlrunner

from app.route import user_routes

class TestUserRoutes(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.app = Flask(__name__)
cls.app.config['TESTING'] = True
cls.app.config["JWT_SECRET_KEY'] = 'super_key'
basedir = os.path.abspath(os.path.dirname(__file))
cls.app.config['SQLALCHEMY DATABASE URI'] = 'sqlite:///' +
os.path.join(basedir, 'test_agrilnfo.db')
cls.app.register blueprint(user_routes.user_routes)
db.init _app(cls.app)

with cls.app.app_context():
db.create_all()

@classmethod
def tearDownClass(cls):
with cls.app.app_context():
db.session.remove()
db.drop_all()

def setUp(self):
Ensure each test has a clean database
with self.app.app_context():

db.session.query(User).delete()
db.session.commit()

def test_user_registration(self):
with self.app.app_context():
user = User(
first _name='fName',
middle name='mName',
last_name='1lName',
nic="testNIC',
email="test@example.com’',
password="test"',
dob=parse _date('1990-01-01"),
role=1,
)
isSuccess, message = register_user(user)
self.assertTrue(isSuccess)
self.assertEqual(message, 'Registration success!')

def test_user_login(self):
with self.app.app_context():

user = User(
first_name='Jane',
middle_name="'Doe’,
last_name='Smith',
nic='987654321V"',
email="'jane@example.com’,
password="'password’,
dob=parse_date('1992-02-02"),
role=1,

)

db.session.add(user)

db.session.commit()

login_user = User(email='jane@example.com', password='password")
loggedInUser = user_login(login_user)
self.assertEqual(loggedInUser.email, 'jane@example.com')

def test_access_token_generation(self):
with self.app.app_context():
user = User.query.filter by(email='test@example.com').first()
if user:
token = get_access_token(user)
self.assertIsNotNone(token)

def test user _deletion(self):
with self.app.app_context():
user = User.query.filter_by(email='jane@example.com').first()
if user:
isDeleted, message, _ = deleteUser(user.id)
self.assertTrue(isDeleted)
self.assertEqual(message, "User successfully deleted.")

def test get user by id(self):
with self.app.app_context():
Setup: create two users, one as the 'current user' and another as
the target user

current_user = User(
user_id=1,
email='current@example.com’,
password="password',
role=1 # Assuming role 1 is allowed to fetch other users

)

target_user = User(
user_id=2,
email="target@example.com',
password="password’,
role=2

)

db.session.add(current_user)
db.session.add(target_user)
db.session.commit()

Test: Attempt to get the target user by ID using the current user's
ID
retrieved user = getUserBy Id(2, 1)

Verify: Check that the retrieved user is the target user
self.assertIsNotNone(retrieved_user)
self.assertEqual(retrieved user.user_id, target user.user_id)
self.assertEqual(retrieved_user.email, target_user.email)

def test get user by id unauthorized role(self):
with self.app.app_context():
Setup: create two users, one as the 'current user' with an unauthorized
role and another as the target user
current_user = User(

user_id=3,
email="unauthorized@example.com’,
password="'password’,
role=5 # Assuming role 5 is not allowed to fetch other users

)

target_user = User(
user_id=4,
email="another_target@example.com’,
password="'password’,
role=2

)

db.session.add(current_user)
db.session.add(target_user)
db.session.commit()

Test: Attempt to get the target user by ID using the unauthorized
current user's ID

retrieved user = getUserBy_Id(4, 3)

Verify: Check that the retrieved user is None or access is denied
based on your function logic
self.assertIsNone(retrieved_user)

def test_get_user_by email_authorized(self):
Test retrieving a user by email with an authorized current user.
with self.app.app_context():
Setup: create an authorized current user and another user to retrieve
authorized user = User(
user_id=10, # Ensure unique user_id
email="authorized@example.com’,
password="password',
role=1 # Assuming roles 1, 3, 4 are authorized
)
target_user = User(
user_id=20, # Ensure unique user_id
email="targetuser@example.com’,
password="'password’,
role=2
)
db.session.add(authorized_user)
db.session.add(target_user)
db.session.commit()

Act: Attempt to get the target user by email using the authorized
current user's ID
retrieved_user = getUserBy_Email('targetuser@example.com', 10)

Assert: Verify that the correct user is retrieved
self.assertIsNotNone(retrieved_user)
self.assertEqual(retrieved_user.email, 'targetuser@example.com')

def test_get_user_by email_unauthorized(self):
Test retrieving a user by email with an unauthorized current user.
with self.app.app_context():
Setup: create an unauthorized current user and another user to
retrieve
unauthorized_user = User(
user_id=30, # Ensure unique user_id
email="unauthorized@example.com’,
password="'password’,
role=5 # Assuming this role is unauthorized
)
another_target_user = User(
user_id=40, # Ensure unique user_id
email="another_target@example.com’,
password="password’,
role=2

)

db.session.add(unauthorized _user)

db.session.add(another_target_

db.session.commit()

user)

Act: Attempt to get the target user by email using the unauthorized

current user's ID

retrieved_user = getUserBy_Email('another_target@example.com', 30)

Assert: Verify that the user is not retrieved due to unauthorized

access

self.assertIsNone(retrieved user)

def test update user(self):
Test updating user information.
with self.app.app_context():

Setup: Create a user to update

original_user = User(

email="update@example.com'

J

password='originalPassword"',

first_name='0Original’,
last_name='User',
nic='123456789V"',

dob=parse_date('1990-01-01"),

role=1,
middle_name="'Middle"’
)
db.session.add(original_user)
db.session.commit()

Define the update data
update_data = {

'password’': 'newPassword',
'first_name': 'Updated',
'last_name': 'User',

'nic': '987654321V',

'dob': '1995-05-05',

'role': 2,

'middle_name': 'UpdatedMiddle'

}

Act: Call the Update_User function with the update data

Update_User(update_data, original user)

Fetch the updated user from the database
updated user =

Assert: Verify the user's information has been updated

User.query.filter by(email="update@example.com"').first()

self.assertEqual(updated_user.
self.assertEqual(updated_user.
self.assertEqual(updated user.
self.assertEqual(updated user.
self.assertEqual(updated_user.
self.assertEqual(updated_user.

password, update_data['password'])
first_name, update_data['first_name'])
last _name, update_data['last name'])
nic, update_data['nic'])

dob, parse_date(update_data['dob']))
role, update_data['role'])

self.assertEqual(updated _user.middle_name, update_data['middle _name'])

def test search_user with_filters(self):
Test searching users with specific filters.
with self.app.app_context():
Setup: Add multiple users to test the filter and pagination
users to add = [
User(email="userl@example.com', first_name='Test',
last_name='User', role=1),
User(email="user2@example.com', first_name='Test',
last _name='User2', role=2),
User(email="user3@example.com', first_name='Another’,
last _name='User3', role=1),
1
for user in users_to_add:
db.session.add(user)
db.session.commit()

Define filters to search for users with a specific first name
filters = {'first_name': 'Test', 'page': 1, 'per_page': 2}
Act: Search users using the filters
result = Search_User(filters)
Assert: Check that the result matches expected structure and content
self.assertEqual(result['page'], 1)
self.assertEqual(result['per_page'], 2)
self.assertTrue(result['total_pages'] >= 1)
self.assertTrue(result['total_users'] >= 2)
self.assertEqual(len(result['users']), 2)

self.assertTrue(all(user['first_name'] == 'Test' for user in

result['users']))

def test validate user success(self):
Test user validation succeeds when email and user_id match.
with self.app.app_context():
Setup: Create a user to validate
user = User(
user_id=100, # Ensure a unique user_id
email="valid@example.com',
password="'password’,
role="'1"
)
db.session.add(user)
db.session.commit ()
Act: Attempt to validate the created user by user_id and email
is_valid, validated_user = Validate_User(100, ‘'valid@example.com')

Assert: Verify that validation succeeds
self.assertTrue(is_valid)
self.assertIsNotNone(validated_user)
self.assertEqual(validated_user.email, 'valid@example.com')

def test_validate_user_failure(self):
Test user validation fails when email does not match user_id.
with self.app.app_context():
Setup: Create a user to attempt to validate incorrectly
user = User(
user_id='101"', # Ensure a unique user_id
email="invalid@example.com’,
password="'password’,
role="1")
db.session.add(user)
db.session.commit()
Act: Attempt to validate the user with a correct user_id but incorrect
email
is_valid, validated_user = Validate_User(101, 'wrong@example.com')
Assert: Verify that validation fails
self.assertFalse(is_valid)
self.assertIsNone(validated_user)

def test get user_information(self):
Test retrieving information for a specific user.
with self.app.app_context():
Setup: Create a user whose information will be retrieved
new_user = User(
user_id=123, # Make sure this ID is unique or auto-generated
email="info@example.com’',
password="'securePassword',
first_name='Test',
last_name='User',
role=2, # Example role
Add any other required fields
)
db.session.add(new_user)
db.session.commit()
Get the user's ID (if not manually set)
user_id = new_user.user_id
Act: Retrieve the user information using the function under test
retrieved user = Get User Information(user id)
Assert: Verify that the retrieved information matches the created
user self.assertIsNotNone(retrieved_user)
self.assertEqual(retrieved user.email, 'info@example.com')
self.assertEqual(retrieved user.first _name, 'Test')
self.assertEqual(retrieved_user.last_name, 'User')
self.assertEqual(retrieved_user.role, 2)
Add any other assertions for fields you care about

if _name__ == '_main__':
unittest.main(verbosity=2, testRunner=xmlrunner.XMLTestRunner(output="test-
reports'))

Appendix I

Testing done with Postman are represented below for your reference.

Test Case EndPoint Method Integration
Type Test Pass/
Fail

RegisterUser http://127.0.0.1:5000/user/register POST Pass

UserLogin http://127.0.0.1:5000/user/login POST Pass

RetrieveUserByID http://127.0.0.1:5000/user/4 GET Pass

RetrieveUserByEmail | http://127.0.0.1:5000/user/find_by email?e GET Pass
mail=email2@example.com

GetAllUsers http://127.0.0.1:5000/user/all GET Pass

GetUserInformation http://127.0.0.1:5000/user/info?user id=2 GET Pass

RetrieveUsersbyRole | http://127.0.0.1:5000/user/find by role?role GET Pass
=5

retrieve password/ http://127.0.0.1:5000/user/find_by email?e GET Pass
mail=admin

UdateUser http://127.0.0.1:5000/user/update/9 PUT Pass

Search User http://127.0.0.1:5000/user/search?page=1& GET Pass
per_page=10

ValidateUser http://127.0.0.1:5000/user/validate POST Pass

UserTokenExpiration | http://127.0.0.1:5000/user/check token GET Pass

GetAllFarmers http://127.0.0.1:5000/user/farmer GET Pass

GetFarmerDetailsByld | http://127.0.0.1:5000/user/farmer/19 GET Pass

UpdateFarmer http://127.0.0.1:5000/user/farmer/1 PUT Pass

DeleteFarmer | http://127.0.0.1:5000/user/farmer/100 DELETE Pass
SearchFarmers | http://127.0.0.1:5000/user/search_farmers?a GET Pass

ssigned office 1d=3

AddFarmer http://127.0.0.1:5000/user/farmer POST Pass

GetFarmerDetailsAdv | http://127.0.0.1:5000/user/farmer/details/9 GET Pass

ance

AddFarm http://127.0.0.1:5000/farm POST Pass

SearchFarms http://127.0.0.1:5000/farm/search?pa GET Pass
ge=1&per page=10&type=crop&farm id=
1 &address

SearchCultivation http://127.0.0.1:5000/cultivation/search?far GET Pass
m_id=1

AddCultivation http://127.0.0.1:5000/cultivation/info POST Pass

SearchAidDistribution | http://127.0.0.1:5000/aid/aid- GET Pass

distribution/search

AddAidDistribution http://127.0.0.1:5000/aid/aid-distribution POST Pass

sendMail http://127.0.0.1:5000/communication/send GET Pass

AddAddress http://127.0.0.1:5000/communication/addres POST Pass
S

GEtAllAddress http://127.0.0.1:5000/communication/addres GET Pass
S

SearchAddressByld http://127.0.0.1:5000/communication/addres GET Pass
s/search?user id=100

DeleteAddressByAddr | http://127.0.0.1:5000/communication/addres | DELETE Pass

essID s/36

UpdateAddressByAdd | http://127.0.0.1:5000/communication/addres POST Pass

ress Id s/update/2

AddContacts http://127.0.0.1:5000/communication/contac POST Pass
ts

DeleteContactbyConta | http://127.0.0.1:5000/communication/contac | DELETE Pass

ctld ts/delete/2

SearchContact http://127.0.0.1:5000/communication/contac GET Pass
ts/search?user_id=2

Some screen shots are included for evidence.

POST ~ http://127.0.0.1:5000/user/farmer
Params Authorization Headers (11) Body ® Pre-request Script Tests @ Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON
1 4
2 "user_id":307,
3 "assigned_office_id":2,
4 "assigned_field_area_id":3,
5 "tax_file no":"taxtest"
6 §
Body Cookies Headers (6) Test Results (3/3) @ Status: 200 OK Time: 15
All Passed Skipped Failed C

m Response status code is 200
m Response has the required fields
m Registered Date is in a valid date format

Figure 1: Add farmer test

work v

Q Search Postman @ Q Upgrade v —
< dv DEL http:) ® POST http ® poOsT Vali ® posT sen @ pPOSTReg® GET GetU ® posT Adc ® GeT Untit ® peL http;; @ puT > + ~ No Environment ~
@ Agri project BE / User / User Registration / RegisterUser Eﬂ Save v f =
POST ~ http:f/127.0.0.1:5000/user/register
Params Authorization Headers (9) Body @ Pre-request Script Tests @ Settings Cookies
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON @ Postbot - X
1
2 “email": "ftest",
3 "first_name": “"ftest",
4 "middle_name": "ftest",
5 "last_name": "ftest",
["password": "ftest",
7 ‘nict: "ftest", Add tests to this request
a8 "dob": "1992-82-01"
9 Added tests to check for status code,
10 content type, message, user ID, and email
11 E format.
o & Just Now

Body Cookies Headers (6) TestResults (4/5)

All Passed Skipped Failed

c

LSSl Response status code is 201
LLESll Content-Type header is application/json
LBl Message in the response is not empty

[Z50 User ID is a non-negative integer

®@

Status: 201 CREATED Time: 20

Test for response...

[l Visualize response...

[2) Save a field from response
<% Fix tests

Add more tests

E Add documentation

Hi! How can | help?

Figure 3: User Registration Testing

[Q Search Postman @ [;‘\ @ Upgrade v —
< GdO0vervic (JGettine posT http ® PoST fuse ® PUT Udat ® GET Sear(® GeT Sear ® GET Sear® oeL Delet ® GeT hell > + v No Environment v
A% Agriproject BE / User / UdateUser [E) save VA

PUT v http://127.0.0.1:5000/user/update/9 ‘
Params Authorization e Headers (11) Body e Pre-request Script Tests @ Settings Cookies
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON v Beautify
1
2 "middle_name”:"test”, rl
3 “password":"132324354"
a4

Body Cookies Headers (8) Test Results

Pretty Raw Preview Visualize o c

User updated successfully

@ sStatus: 200 0K Time: 19ms Size: 236 B [3) Save as example vee

Figure 2: Update user testing

ou

o w

>

ork v Q Search Postman & 0 Upgrade —

< el GET Searct = PosT AddV DEL http; ® POST http ® posT Vali ® PosT sen ® pPosTReg® GET GetU ® posT Adc ® GET > + v No Environment v
g @ Agri project BE / User | ValidateUser [save ~ Ve =
POST ~ http://127.0.0.1:5000/user/validate
Params Authorization Headers (10) Body @ Pre-request Script Tests » Settings Cookies
@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON Beautify
1
2
3
Body Cookies Headers () Test Results @ Status: 200 OK Time: 11 ms Size: 361B @ Save as example ooc
Pretty Raw Preview Visualize » c

305 admin admin admin 1 true

Figure 4: User validation Test

GET v http://127.0.0.1:5000/user/search?page=1&per_page=10 ‘

Params o Authorization Headers (8) Body Pre-reqguest Script Tests @ Settings

Cookies
Query Params

D Key Value Description eee Bulk Edit

D email a

page 1

per_page 10

Key Value Description
Body Cookies Headers (6) Test Results @ Status: 200 OK Time: 27 ms Size: 1.83 KB B Save as example oo
Pretty Raw Preview Visualize » c

1 Farmer1 Last1 farmer1@example.com
2 Farmer2 Last2 farmer2@example.com
3 Farmer3 Last3 farmer3@example.com
4 Farmer4 Last4 farmerd4@example.com
5 Farmerb Lastb farmerb@example.com
6 Farmer6 Last6 farmer6@example.com

Figure 5: Search User Testing

|

GET ~ http://127.0.0.1:5000/user/info?user_id=2
Params e Authorization Headers (8) Body Pre-request Script Tests @ Settings Cookies
Query Params
Key Value Description =« Bulk Edit
user_id 2 0}
Key Value Description

Body Test Results @ status: 200 OK Time: 7ms Size: 348B [3) Save as example oce

Cookies Headers (6)

Pretty Preview

Visualize » c

Raw

305 admin admin admin 1
Figure 6: Get User Info By user Id Test
GET ~ http://127.0.0.1:5000/user/all ‘ Sen ~
Params Authorization Headers (8) Body Pre-request Script Tests ® Settings Cookies
Accept @ ¥+
Accept-Encoding @ gzip, deflate, br
Connection @ keep-alive
Authorization Bearer eyJhbGciOiJlUzINilsInR5cCl6lkpXVCJ9.eyJmc...
Key Value Description
Body Cookies Headers (6) TestResults @ status: 200 0K Time: 16 ms Size: 5012KB [3) Save as example oo
Pretty Raw Preview Visualize ® c

_A

1 Farmer1 Last1 farmer1@example.com
2 Farmer2 Last2 farmer2@example.com
3 Farmer3 Last3 farmer3@example.com
4 Farmer4 Last4 farmer4@example.com
5 Farmer5 Last5 farmerS@example.com
6 Farmer6 Last6 farmeré@example.com
7 Farmer7 Last7? farmer7 @example.com
8 Farmer8 Last8 farmer8@example.com -
¥d Postbot [*] Runner «f Start Proxy (% Cookies il Trash F
Figure 8: Get All Users Test
GET v http://127.0.0.1:5000/user/find_by_email?email=email2@example.com
Paramse Authorization ~ Headers (8) Body Pre-requestScript Testse Settings

Accept © **

Accept-Encoding @ gzip, deflate, br

Connection @ keep-alive

Autharization Bearer eyJhbGciOiJIUzITNilsInR5cClBlkpXVCJ9.eyJmc...

Key Value Description

Body Cookies Headers (6) Test Results (4/4) @ status: 200 0K Time: 17

Al Passed Skipped Failed &}

Response status code is 200
Content-Type is application/json

Email is in a valid format

PASS

Role is a number within the expected range

Figure 7: Retrieve user by Email

GET ~ http://127.0.0.1:5000/user/find_by_role?role=5 ‘

Saramse Authorizatione Headers (8) Body Pre-requestScript Testse Settings Cookies

Query Params

Key Value Description eee Bulk Edit
role 5 i
Key Value Description
ady Cookies Headers (6) Test Results @ status: 200 OK Time: 16 ms Size: 32.72KB [J) Save as example oo
Pretty Raw Preview Visualize ® c

T = = I

1 Farmer1 Last1 farmer1@example.com 5

2 Farmer2 Last2 farmer2@example.com 5

3 Farmer3 Last3 farmer3@example.com 5

4 Farmer4 Last4 farmer4@example.com 5

5 Farmer5 Last5s farmer5@example.com 5

B Farmer6 Lasté farmeré@example.com 5

Figure 9: Retrieve user by role Test

GET ~ http://127.0.0.1:5000/user/4 ‘ Sen
Params Authorization Headers (8) Body Pre-request Script Tests @ Settings Cookies
Accept @ ¥+ £ Postbot - X
Accept-Encoding @ gzip, deflate, br
Visualize response
Connection @ keep-alive
Added table for visualizing the response
Authorization Bearer eyJhbGciOiJlUzITNilsInR5cCIBlkpXVCJ9.eyJme...
35 minutes agt
Key Value Description
Add tests to this request
Body Cookies Headers () Test Results (5/5) @ sStatus: 200 0K Time: 1€ Added tests to check for status code,
required fields, email format, date format,
All Passed Skipped Failed & and role as a non-negative integer.

dy &P Just Nov
Response status code is 200

Response has the required fields

Test for response...

Email is in a valid format [ul Visualize response...

[2) Save a field from response
Dob is in a valid date format
%% Fix tests

Role is a non-negative integer

Add more tests

Figure 10: Retrieve user by Id Test

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

Appendix J

"Ceylon AgriData" System Feedback
Survey

"Ceylon AgriData" is a cloud-based system aiding the government's agricultural sector by
efficiently managing data for informed decision-making.

Please take a moment to share your feedback through this user feedback survey, providing
honest insights on your experience with the prototype. Your contribution will greatly aid us
in shaping a more impactful solution. Thank you for your participation!

1. Email *

2. What is your role within the agricultural sector? *

Mark only one oval.

(") Administrator Skip to question 3
Q Agriculture Field Officer Skip to question 28
C} Farmer Skip to question 61

(") Researcher Skip to question 75

Q Other Skip to question 84

3. First Name *

4. Last Name *

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 1/26

User1
Highlight

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

5. Your District

6. Registration
How straightforward was user registration process on "Ceylon AgriData"?

Extremgly Challenging Neutral Straightforward E?<tremely
Challenging Straightforward

how

straightforward

was user

registration

process on

"Ceylon

AgriData™?

7. Were there any obstacles encountered during the registration process? If yes, *
please share details.

"Ceylon AgriData" WebApp

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 2/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

8. How seamless was the process of entering agricultural data into "Ceylon
AgriData"?

Poor Fair Average Good Excellent

Entering
agricultural
data into
"Ceylon
AgriData”

9. Were there any obstacles encountered during the entering data into system? If
yes, please share details.

10. How seamless was the process of updating agricultural data into "Ceylon
AgriData"?

Poor Fair Average Good Excellent

Updating
agricultural
data

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

3/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

11. Were there any obstacles encountered during the updating data into system? If *
yes, please share details.

12. How seamless was the process of deleting agricultural data into "Ceylon *
AgriData"?
Poor Fair Average Good Excellent
Deleting
agricultural
data

13. Were there any obstacles encountered during the deleting data into system? If *
yes, please share details.

14. How seamless was the process of searching agricultural data into "Ceylon *
AgriData"?
Poor Fair Average Good Excellent
Searching
agricultural
data

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 4/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

15. Were there any obstacles encountered during the searching data into system? If *
yes, please share details.

16. How seamless was the process of User Management "Ceylon AgriData"? *

Poor Fair Average Good Excellent

User
Management

17. Were there any obstacles encountered during the user management data into ~ *
system? If yes, please share details.

18. Effectiveness of Reporting *

Ineffective Limited Adequate Effective ngh!y
Effective
Efficacy
of
Reports
Feature

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 5/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

19. Did you face any difficulties *
while setting parameters for
reports? Please describe your
experience

20. Effectiveness of Free Advertising Feature *

Ineffective Poor Satisfactory Effective

Efficacy
of
Feature

21. Did you face any difficulties *
while engaging in the above service?
Please Describe your Experience.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

Highly
Effective

6/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

22. Effectiveness of Message Broadcasting Service *

Highl
Ineffective Limited Adequate Effective 9 .y
Effective
Effectiveness
of Service
23. Did you face any difficulties *

while engaging in the above service?
Please Describe your Experience.

24. How would you ratethe Ul *
design of "Ceylon AgriData" ?

Poor Fair Average Good Excellent

ul
Design

25. Suggestions for enhancing the Ul design. *
Your opinions are welcome!

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 7126

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

26. How would you rate your overall satisfaction with Ceylon AgriData's user-
friendliness?

Fairl
a|.ry Neutral Satisfied
Unsatisfied
overall O O O

satisfaction

27. If you have any suggestions, please specify.

28. First Name *

29. LastName*

30. Your District

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

8/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

31. Registration
How straightforward was user registration process on "Ceylon AgriData"?

Extremely .) Extremely
i Challenging Neutral Straightforward .
Challenging Straightforward
how
straightforward
was user
registration
process on
"Ceylon
AgriData™

32. Were there any obstacles encountered during the registration process? If yes, *
please share details.

"Ceylon AgriData" WebApp

33. How seamless was the process of entering agricultural data into "Ceylon *

AgriData"?

Poor Fair Average Good Excellent

Entering
agricultural
data into
"Ceylon
AgriData"

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 9/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

34. Were there any obstacles encountered during the entering data into system? If *
yes, please share details.

35. How seamless was the process of updating agricultural data into "Ceylon *
AgriData"?
Poor Fair Average Good Excellent
Updating
agricultural
data

36. Were there any obstacles encountered during the updating data into system? If *
yes, please share details.

37. How seamless was the process of deleting agricultural data into "Ceylon *
AgriData"?
Poor Fair Average Good Excellent
Deleting
agricultural
data

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 10/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

38. Were there any obstacles encountered during the deleting data into system? If *
yes, please share details.

39. How seamless was the process of searching agricultural data into "Ceylon *
AgriData"?
Poor Fair Average Good Excellent
Searching
agricultural
data

40. Were there any obstacles encountered during the searching data into system? If *
yes, please share details.

41. How seamless was the process of User Management "Ceylon AgriData"? *

Poor Fair Average Good Excellent

User
Management

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 11/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

42. Were there any obstacles encountered during the user management datainto *
system? If yes, please share details.

43. Effectiveness of Reporting *

Ineffective Limited Adequate Effective ngh!y
Effective
Efficacy
of
Reports
Feature

44. Did you face any difficulties *
while setting parameters for
reports? Please describe your
experience

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 12/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

45. Effectiveness of Free Advertising Feature *

Highl
Ineffective Poor Satisfactory Effective 9 .y
Effective
Efficacy
of
Feature
46. Did you face any difficulties *
while engaging in the above service?
Please Describe your Experience.
47. Effectiveness of Message Broadcasting Service *
Highl
Ineffective Limited Adequate Effective 9 .y
Effective
Effectiveness
of Service
48. Did you face any difficulties *

while engaging in the above service?
Please Describe your Experience.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

13/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

49. How would you rate the Ul *
design of "Ceylon AgriData" WebApp?

Poor Fair Average Good Excellent

ul
Design

50. Suggestions for enhancing the Ul design.
Your opinions are welcome!

51. How would you rate your overall satisfaction with Ceylon AgriData's user- *
friendliness of WebApp?

Fairly

. Neutral Satisfied
Unsatisfied

Overall
satisfaction

"Ceylon AgriData" Mobile Application

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 14/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

52. "How would you rate the effectiveness of data collection through the mobile
application of Agricloud?"

. Somewhat . Highly
Ineffective] Neutral Effective i
Ineffective Effective
Data
collection
53. Did you face any difficulties *

while engaging in the mobile application?
Please Describe your Experience.

54. How would you rate the Ul
design of "Ceylon AgriData" mobile application?

Poor Fair Average Good Excellent

Ul design
of Mobile
Application

55. Suggestions for enhancing the Ul design (Mobile Application).
Your opinions are welcome!

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

15/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

56. How would you rate your experience with following features in "Ceylon AgriData" *

mobile application?

V V
. ery Dissatisfied Neutral Satisfied ‘ery
Dissatisfied Satisfied

Precisely
determine
cultivation
locations

Broadcast
messaging
service

57. Didyou face any difficulties
while engaging in above features of the mobile application?
Please Describe your Experience.

58. How would you rate your overall satisfaction with Ceylon AgriData's user-
friendliness of the mobile application?

Fairly

. Neutral Satisfied
Unsatisfied

Overall
satisfaction

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

16/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

59. "How would you rate your experience with registering in the 'Ceylon AgriData' *
system through the mobile application, if you did not have an account before

logging in?"

V V

) ery Dissatisfied Neutral Satisfied .ery

Dissatisfied Satisfied
Register
through
Mobile O -, @) @) @)
application

60. If you have any further suggestions, Please specify.

61. First Name *

62. Last Name*

63. Your District

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 17/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

64. "How would you rate your experience with the Free Advertising Service feature *
on "Ceylon AgriData" WebApp?

) Ve'ry Dissatisfled Neutral Satisfied Yery
Dissatisfied Satisfied
Free
Advertising () o O O O
Service

65. Are you experiencing any difficulties with the Free Advertising Service?

Mark only one oval.

O Yes Skip to question 66

Q No Skip to question 68

66. Could you please specify the difficulties you have faced with the Free *
Advertising Service?

67. If you have any suggestions, please specify

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 18/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

68. How effective do you find the broadcast message service for receiving
important updates such as fertilizer distribution and other essential messages

Not Somewhat . Very
) . Neutral Effective .
Effective Effective Effective
Effectiveness
of broadcast
messaging
service

69. "How do you feel about creating an account when you want to publish an
advertisement on "Ceylon AgriData" ? How effective and easy was the process

for you?
Ver Ver
) y Difficult Neutral Easy y
Difficult Easy

Process

is..

70. Did you face any difficulties in the process?
Please ,specify.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 19/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

71. "How effective do you find the content overview provided by the web appasa *
farmer?"

Not Somewhat) Very
)) Neutral Effective g
Effective Effective Effective

Row 1 O O C) C) O

72. How would you ratethe Ul *
design of "Ceylon AgriData" ?

Poor Fair Average Good Excellent

oo o O O

ul
Design

73. Suggestions for enhancing the Ul design .
Your opinions are welcome!

74. If you have any further suggestions, Please specify.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 20/26

3/7/24, 10:51 AM

75.

76.

77.

78.

79.

First Name *

Last Name *

Your District

Requesting Non Public Data

"What was your experience with using the 'Contact Us' feature in the web
application as a researcher to request non-publicly available data from the

'Ceylon AgriData' system?"

Very
Difficult

Sign Up as
a
Researcher

Difficult

"Ceylon AgriData" System Feedback Survey

Very

Neutral Easy Easy

Did you face any difficulties in the process?

Please ,specify.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

21/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

80. Content Overview of Web App
How effective do you find the content overview provided by the web app in

'Ceylon AgriData'?
Not Somewhat . Very
)) Neutral Effective]
Effective Effective Effective
Content
overview
of
WebApp

81. Ul Design How would you rate the Ul design of 'Ceylon AgriData'?"

Poor Fair Neutral Good Excellent

ul
Design

82. Suggestions for enhancing the Ul design .
Your opinions are welcome!

83. If you have any further suggestions, Please specify.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit

22/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

84. First Name *

85. Last Name *

86. District

87. WebApp content Engagement *
Has the content provided by the web app in 'Ceylon AgriData' offered you any
valuable services or information?

Mark only one oval.

D Yes Skip to question 88

O No Skip to question 93

88. Reasons for Engagement What motivates you to engage with the web app of *
'‘Ceylon AgriData'? Please select all that apply.

D Access to agricultural data
D News & updates

D Free Advertising service engagement

|| other:

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 23/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

89. Requesting non public data *
"What was your experience with using the 'Contact Us' feature in the web
application as a researcher to request non-publicly available data from the
'Ceylon AgriData’' system?"

Ver Ver
. y Difficult Neutral Easy y
Difficult Easy

Sign Up as

a

Researcher

90. Didyou face any difficulties in the process?
Please ,specify.

91. How do you find advertisements helpful to you on 'Ceylon AgriData'? Rate it. *

Not .
helpful Slightly Moderately Very Extremely
Ipful Ipful Ipful Ipful
At all helpfu helpfu helpfu helpfu
How
advertisements
helpful?

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 24/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

92. If you have suggestions, please specify.

93. Ul Design and Suggestions *
How would you rate the Ul design of ‘Ceylon AgriData'?

Poor Fair Neural Good Execellent

oo o o O

ul
Design

94. Suggestions for enhancing the Ul design .
Your opinions are welcome!

95. If you have any suggestions for the improvement of the web app in 'Ceylon
AgriData, please specify.

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 25/26

3/7/24, 10:51 AM "Ceylon AgriData" System Feedback Survey

This content is neither created nor endorsed by Google.

Google Forms

https://docs.google.com/forms/d/1CWHJjVqvazUbYm9dkFUw_tGyZ2Ju8WabxOwcs7maVRw/edit 26/26

Appendix K

7. | Ceylon
)| AgriData

User Manual for "Ceylon AgriData' Mobile Application

Ceylon AgriData is a mobile application designed for Agriculture Field Officers to efficiently
collect, manage, and report agriculture-related data of registered farmers, their farms,
cultivation activities, issues reporting, and aid distribution. This user manual provides detailed

instructions on how to use the Ceylon AgriData mobile application effectively.

Content
TechNiCal REQUITEIMENTS:ciiiieiieecie ettt te e ra et e e esnaesreeneeenes 2
L.GOING STAMEA:eeieeiece e st e et e e e e s e e te et e neenreereeneenres 2
2. User RegiStration and LOGINccueieiiiiiniesesiiseeeee ettt 2
3. HOME SCIBEN ...ttt b e ab e s b e s ab e e b e e e nbe e nbe e e nbeesbeeenbee e 3
D] T = T o USSR 3
5. Collecting AgriCUITUIE DAta.........ccveieiiiiieiie st 3
Farmer REGISIIALIONcoieii ettt e et a et e e e sreesbe e e e reenreens 5
o [0 I - 10 o USRS 5
Add CUltiVation DELAIIS.........ccveiiiiiiie et 5
Add Aid Distribution RECOIAScc.eiiiiiiiiiieieiee e 9
6. Broadcast MESSAQE SEIVICE.uiiiieierieiie ittt 11
7. MANAGE RECOTUS. ...ttt bbbttt bbbt 11
8. UPAate/DElEte RECOIUSc.viviiiieiiieieie et 13

AGAITIONAT THPS 1ottt bbbttt et bbbt e e 15

Technical Requirements:
e Mobile Platform: Android

e Android Version: Android 5.0 (and up) its dessert-themed code name: “Lollipop”.

1.Getting Started:
e Before using the "Ceylon AgriData" app, ensure that you have downloaded and
installed it on your mobile device.
¢ Once installed, launch the app by tapping on its icon. You will be directed to a splashing
page as Figure 1.

16325 O ¢ . ez Avall il 41%&

Agri Field Officer Registration

First Name

2 Middle Name Ceylon
AgriData
| 2 LastName
\ AgriData = i 2 Username
Email a Password
~
#** Password Lagln
Loading...
or
*** Confirm Password
Don't have an account? Register
[oos =
Register
| Ceylon
. Il O <
1 0 <) 1] @) < :
Figure 3; User Login Page
Figure 1: Splashing Page Figure 2: Agri Field Officer Registration Page

2. User Registration and Login
e Ifyou are a new user, you will need to register by providing your username, password,
and other required information as in Figure 2.
e After registration, your account will be pending approval from the admin.

e Ifyouare already registered, simply log in using your username and password as Figure

3.

1600 ¢ HEE @

AgriData Home

.. MEirstName1

Have a éood ba;I L

)

Explore Here >>>

Total AgriData Users: 306

Registered
Farmers

1l (@] <

Figure 4: Home Page

3. Home Screen

e Rl 39%&

)

Home
Register Farmer

Add Farms

Log Cultivation

Log Aid Distribution
Log Disaster
Broadcast Messages
Advance Search

Logout

11 @] S

Figure 5: Main Menu

[43

wusm@MSH -

AgriData DashBoard

f

&2 = ilull 43%&

Ceylon
AgriData

Empowering Agriculture,

One byte at a time.

Farmer Manager

Farm Manager

Cultivation Manager

Aid Distribution Manager

Disaster Records Manager

(®] < 4]

Figure 6: Dash Board

Upon successful login, you will be directed to the home screen of the app

From the home screen, you can access various features and functionalities of the app

clicking “Explore More” button as in Figure 4.

Or, you can use “Main Menu” for navigation to pages in Figure 5.

4.Dash Boad

5. Collecting Agriculture Data

You can see the buttons to enroll the functionalities that this application is included, as

in figure 6.

To collect agriculture data, navigate to the respective section within the app as described

in following table 1.

Enter the required information such as farmer details, farm details, cultivation details,

disaster records, aid distribution records etc.

You can search, update, or delete records as needed.

Dash Board Buttons

Buttons in Relevant pages to enroll

particular functionalities

[Farmer Manager

Register New
Farmer

Update/Delete

Farmer Record

[Farm Manager

s ™

Add New Farm

< Search Farm
(Update/Delete A

Records

Cultivation
Manager

TR
Add New

Cultivation
Record

(Search Cultivation)
Record

p.

(Update/ Delete)
Record

Aid Distribution
Manager

Add Records
Search Records
(Update/Delete A

s R

Records

Add Records

. ™

{ Search Records

Disaster Records
Mnager

L. -

(Update/Delete h
Records

Farmer Registration

Fill the required information and click “Next”, then fill the section 2. And , click “Submit
Button”. Figure 7 showcases the form. When you click sublit button, if the registration is
success, you will be navigation to “Add Farm” section automatically. Or, you can use main

menu at home page to navigate to “Register Farmer” section.

Add Fam
Fill the information and click “Submit” button. Figure 8 indicates the particular form. When
successfully added the record, you will be navigating to “Add cultivation information” Page.

Or, you can navigate it right from the main menu at Home Page.
Use “Search User 1d”, search button for your task gets completed.

Add Cultivation Details

Fill the form in Figure 9 and press “Submit button”. Use “Get Current Location” button to get

cultivation location. Refer Figure 10 for more information.

Section 1

First Name

Middle Name

Section 2

Home Name

Last Name

Home No

Street

NIC

Town

DOB

e

2 2> | 2 | 2 | 2

City

Email

r

Area Code

Contact No

Password

*x

Confirm Password

@i

Section 3

Assigned Office Id

Next

Il @)

@

Assigned Field Area Id

®

Tax File No

11 @]

Figure 7. Farmer Registration

-2

Insert User_Id as Farmer Id Q_ Ssearch User Id

Farm Details:

Farmer Id

Farm Name

Farm Address

Type

Field Area in Acre

Farm Owner Details:

2. Owner Full Name
2. OwnerNIC
Submit
(+.] 1 @) < 44
Figure 8: Add Farms Page
You can Choose relevant agriYear,

Quartile etc. by the drop down.

Also, “Get Current Location” button will

assist to get relevant location of the

cultivation.

Q FarmId

By rFarmid

Farm Location Details:

@ Get Current Location

° Longitude

9 Latitude

S% Farm Display Name

Crop Id

K

A\ Cultivated Area in Acre

@ Estimated Harvest Amount

Cultivation Started Date c.
Estimated Harvesting Date r,
 Agri Year Select an Option v
ol Quartile Select an Option v

(™ Net Yield

Submit

[+,] 11 @) <

Figure 9: Add Cultivation Information Page

[

Right after click “Confirm Location” button, you will be returned to “Add Cultivation Details”
page.

***Important: You should grant access to location fetching while using your mobile phone.

() ——> (G)

oo MM ¢ H - ez Rl all 43%&

Location Page

rv\.A FIVOLL O | VvaY v

Kosgas Handiya

Keells Super - Q (=]
Wakada, P ad
9 E"'"'#r"\\ 3 b
Panadur‘a
Noae -E}~ S
“&mw WEST “Panini HotBun&
MEND!SWATTA
8 0Bgg]

S
a
THALPITI
SOUTH
“WADI[
LAT: 6.6957714
LNG: 79.9157174
ADDRESS: 19/2A, , Kalutara,
Get Current L i Ci Locati
. 1] O < (&Y

Figure 10: Fetching current location

Add Aid Distribution Records

Use “Aid Id” as per your official documents. Fill the form in Figure 11 and click

“Submit” button. Use the drop-down options to select “Aid Type”.

@ aidid

B Agri-office Id

2 Agri Officer Id (incharged)

Q, FarmerId
a FarmerId Fertilizer
¢ Aid Type Selectan Aid > Fuel
1
Q cultivation Info Id Pesticides
In
A% Cultivation Info Id
—— Monetary

@ Amount Approved

Miscellaneous

@ Amount Received

Y |

Aid Received Date

Submit

+:] I @ < (44

Figure 11: Aid Distribution Page

Record Disaster Information

To complete the recording process, fill the form provided in Figure 12, and click the "Submit"
button to proceed. Utilize the search button if you need to find specific information.
Additionally, you may utilize the dropdown menus to select the type of disaster. You can

navigate to this particular page form main menu at home page.

leusmM@™M ¢ H - &2 e all all 43%8

A Add Disaster Records

Q_ cultivation Info Record Id

Flood
E Cultivation Information Record Id
@) Drought
9
Disaster Type - T -) d £ Pests & Disease Outbreak
Storm
Detailed Damage Assessment C

a4 Damaged Area in Acre [Estimated)] A Chemical Spills

et

@ Harvest Damage Extent [Estimation] - a\ Land Degradation i

Estimated Loss

m Date

Y |

Submit

(+;) I @) 4 &)

Figure 12: Add Disaster Records Page

6. Broadcast Message Service

With this feature, you have the ability to broadcast messages to registered farmers within the
accredited area of agriculture field officers. To initiate a broadcast, craft a message with a
suitable subject and body, then proceed by clicking the "Send" button. For reference, you can
view the page layout in Figure 13. Additionally, there is an option to fetch the relevant email

addresses of farmers by clicking the "All Farmer Emails" button.

16225 O @ ¢ . &2 Frall ll 41%&

A System Message Broadcast Service

Agriculture Officer Name: Fetch farmer Emails

FirstName1 LastName1 /
[;'. All Farmers Emails]

B3 To Emails List

Message Subject

Message Body

Send Message

Figure 13: Broadcast messages Page

7. Manage Records
You have the ability to manage all inserted records by utilizing the SEARCH, UPDATE, and
DELETE options provided. Figure 14 displays a group of pages dedicated to managing all

agriculture data discussed in Section 5. With these options, you can search for specific records,

update existing information, or delete records as necessary.

1624 O ¢ HA - & Al all 40%8 124 O@ ¢ HA - € Seallall 40%4 24 ©O@¢EHA - & el il 41%8

#A Farmer Manager # Farm Manager # Cultivation Manager

Register New Farmer Add New Farm Add New Cultivation Record

Search Farmer Search Farm Search Cultivation Records

Update/Delete Farmer Record Update/Delete Records Update/Delete Records
@ @] < 44 +.) 1] 0 < () +.) 1] @] < 44
e O@¢ A - & ol al 41%8 le2wO@¢HE - & Frallall 41%8

#A Aid Distribution Manager # Disaster Records Manager

Add Records Add Records
Search Records Search Records
Update/Delete Record Update/Delete Records
(] 11l (@] < [(*:] 1] @] < (o

Figure 14: Manage Records Pages

Table 2 showcases the distinct pages for search functionality.

Use “Search” buttons to process search. Use “Clear Result” button to clear the fields. For

example, see Figure 15. [available options: Search farmers, search farms, search aids, Search

cultivation information]

leusW@E™M¢H - &2 Rl ull 43%6

A Search Farmers

mj Office ID

[_s Tax File No

9 Field Area ID

o Userid

Clear Results Search

User Id First Name Middle Name Last Nar

[@) <

Figure 15: Search Farmers

8. Update/Delete Records

o update or delete records, simply click the "Update/Delete Records" button. Afterward, search
for the desired records and preview them. You can then proceed to update the records

accordingly. Alternatively, you can delete a record by clicking on the "delete" icon.

Figure 16 shows in detailed example. Enter a valid Farmer_id and tap the search icon q

Home

—= | AgriData Dashboard

— Farmer Manager |—

Update/ Delete
Farmer Record

n Please clear the current search before seeking a new

record.

Farmer ID

Clear

u Please clear the current search before seeking a new
record.

Clear

Farmer ID
100 Q

Delete Record Icon

First Name
Farmer100

Middle Name
Middle100

Middle Name
Middle100

Last Name

Last100

Email
farmer100@example.com

NIC
1990000001700

Tax File No
TAX00100

Assigned Field Area Id
264

Assigned Office Id
74

[] Update Farmer

[+ I @] < (41

You can make updates to the necessary section

and then click the button to save the changes.

Figure 16:Update / Delete Farmer Records

Additional Tips

e Ensure a stable internet connection for smooth operation of the app, especially when
submitting data or broadcasting messages.

e Familiarize yourself with the app's interface and features to maximize efficiency during
field visits.

e Contact the admin or technical support team for any assistance or issues related to the
app.

e With the "Ceylon AgriData" mobile application, you can effectively manage agriculture
data, report issues, distribute aids, and communicate with farmers, all from the

convenience of your mobile device.

HAPPY FARMING!

Appendix L

React WebApp Uls : Here some Uls are showcased,

Admin, Agriculture field officer, farmer etc. particular views and operations within the
system

Home Page
Ceylon " -
AgriData Home Services ¥ Reports ¥ About Us Contact Sign In

Agricultural Data Collection & Anélusls

. Empowering =
deﬁlswn making
with:fash

productnvity, and achieve s

Our Farmer Community

Free Advertising Agricultural Aid We connect farmer community with
WG B Supporting agricultural Aid the government by easier
s ek vk Yo distribution on time to the right communication methods.

place.

Contact Details:

Email: sandunidlishika@gmail. com
Phone: (+94) 750323397
Address: No 234, Neboda Road, Kalutara South Sri Lanka

Incalhact:3000/4

Signln form

Sign In

Email address

Enter email

Password

Password

Register form

Register

Create your account .
Signln successful toast

& First name message

& Middle name

R Last name

B NIC

mm/dd/yyyy [}
& Choose File No file chosen

@ Email

8 Password

© Repeat password

Create Account

Nav Bar drop Downs

Services ¥ Reports ¥ Abou

View All published Advertisements from Farmers

Data Analysis & Report Generation

s \

Free Advertisement Service

Reports ¥ Abo

Request Data

il

AgriData - Free Advertisement Service

Paddy

Description:
best pady

Price: 100
Amount: 1000

Telephone:
0756382932982

fsd

Description: fsd
Price: 0
Amount: 0

Telephone:
42342423

Publicly available some reports

(|Ag._ioa(a Home Services ¥ Reports ¥ About Us Contact

Request Data

Paddy Cultivation In District 2024

Distri& (;v;.rall Cultivation Info 2024 /h1
Hover over a dl!ﬂ

Admin reports types

‘ Sign In ‘

A armers by Destrct

.|| I
[
o
4
0

o f’w@mx At I LTS % e»“‘ S,

Total Registered Users

Estimated Harvest vs Actual

Monthly Aid Distribution to Farmers
Agricultural Aid Distribution Funding & Aids
Crop Yield by Maps

Field Mapping

Tax Prayer Report

Disaster Overview Report

Advertisement Overview Report

Types of Aids

Pesticides Fertilizers Monetary Aids Fuel Aids Aids Distributic

Admin Operations

Manage user accounts Add main fund details Add agricultural aid
for agricultural aid types with details Send emails to officers Manage Crop information

o) &=

\ /
| |

Register new Farmers Update Farmers Search Farmers & Actions Thus a” Operation has crUd

CRUD operation of farmer

Register new Users
g and rgiste 3 a farmer Update Farmer

9 Add user & farmer details
First name

A Middle name

& Lastname

B NC
© Select Role ~
o oy 2 Search Farmers
& ChooseFile No file chosen Filter farmer records
@ Email 8 User |d
8 Password
& TaxFile No

© Repeat password

Next B Office ld

Assigned Field Area Id

Clear

