
Enhancing Productivity in

Sri Lanka’s Agriculture Sector with

a Cloud-Based System for Data

Acquisition and Representation to

Facilitate Informed Decision Making

L.R.S.D. Rathnayake

2024

Enhancing Productivity in

Sri Lanka’s Agriculture Sector with

a Cloud-Based System for Data

Acquisition and Representation to

Facilitate Informed Decision Making

A dissertation submitted for the Degree of Master of

Information Technology

L.R.S.D. Rathnayake

University of Colombo School of Computing

2024

Declaration

Name of the student: L.R.S.D. Rathnayake

Registration number: 2020/MIT/083

Name of the Degree Programme: Master of Information Technology

Project/Thesis title: Enhancing Productivity in Sri Lanka’s Agriculture Sector with a Cloud-Based

System for Data Acquisition and Representation to Facilitate Informed Decision making

1. The project/thesis is my original work and has not been submitted previously for a degree at this or

any other University/Institute. To the best of my knowledge, it does not contain any material

published or written by another person, except as acknowledged in the text.

2. I understand what plagiarism is, the various types of plagiarism, how to avoid it, what my

resources are, who can help me if I am unsure about a research or plagiarism issue, as well as what

the consequences are at University of Colombo School of Computing (UCSC) for plagiarism.

3. I understand that ignorance is not an excuse for plagiarism and that I am responsible for clarifying,

asking questions and utilizing all available resources in order to educate myself and prevent myself

from plagiarizing.

4. I am also aware of the dangers of using online plagiarism checkers and sites that offer essays for

sale. I understand that if I use these resources, I am solely responsible for the consequences of my

actions.

5. I assure that any work I submit with my name on it will reflect my own ideas and effort. I will

properly cite all material that is not my own.

6. I understand that there is no acceptable excuse for committing plagiarism and that doing so is a

violation of the Student Code of Conduct.

Signature of the Student
Date

(DD/MM/YYYY)

 25.09.2024

Certified by Supervisor(s)

This is to certify that this project/thesis is based on the work of the above-mentioned student under

my/our supervision. The thesis has been prepared according to the format stipulated and is of an

acceptable standard.

 Supervisor 1 Supervisor 2 Supervisor 3

Name Prof. M.G.N.A.S. Fernando

Signature

Date 24.09.2024

iv

Acknowledgements

I extend my sincere gratitude to Prof. M.A.G.N.A.S. Fernando for his exceptional supervision

and unwavering support throughout every stage of this project's journey to successful

completion. His invaluable guidance and expertise played a pivotal role in ensuring its success.

I am deeply thankful to the University of Colombo School of Computing for providing me with

a remarkable opportunity and a robust platform to enhance my knowledge and skills in

Information Technology through its esteemed postgraduate degree program.

My heartfelt appreciation goes out to all the lecturers, visiting scholars, and non-academic staff

at UCSC who generously invested their time and efforts to equip us with the essential

knowledge, skills, and IT-centric mindset vital for success in the field of Information

Technology.

The invaluable assistance and guidance of numerous respected professionals significantly

contributed to the accomplishment of this project. Lastly, I express profound gratitude to my

husband, family, and colleagues for their unwavering support and encouragement. Without

their inspiration, this challenging endeavor would not have been possible.

v

Abstract

The agricultural sector is a major component in Sri Lanka economy, employing a significant

portion of country’s population and under the guidance and support of the department of

agriculture. Agriculture sector struggles due to unreliable decision-making, caused by a lack of

local data recording. This issue hampers effective management and strategy implementation

within the sector by today.

This project introduces "Ceylon AgriData", a cloud-based system designed to revolutionize the

agricultural sector in Sri Lanka. "Ceylon AgriData", aims to enhance operational efficiency by

transitioning from traditional paper-based data collection methods to a digital, cloud-based

approach. This transition is facilitated through a mobile application tailored for agricultural

officers, enabling streamlined data collection and management directly from the field.

By digitizing data collection, "Ceylon AgriData" significantly enhances data accuracy and

accessibility, storing it securely on a centralized cloud database. This database is accessible to

a wide range of stakeholders, including department administrators, field officers, researchers,

and other key stakeholders through user-friendly interfaces. The system's web application

features intuitive dashboards and tools, empowering stakeholders to make well-informed

decisions, develop effective policies, and provide superior support to farmers, thus promoting

sector-wide efficiency.

Besides, "Ceylon AgriData" encompasses a comprehensive webapp that allows for the

generation of detailed reports from the aggregated agricultural data, facilitating streamlined

operations and informed decision-making within the sector. A message broadcasting service is

also integrated, ensuring the timely dissemination of important information to enhance

information sharing and engagement across the sector. The system incorporates a free

advertising service, enabling farmers to directly market their products without intermediaries.

This feature not only facilitates better sales opportunities for farmers but also aids the

government in making informed decisions on price regulation. By analyzing the recorded data

on crop yields, products, and prices, the government can implement policies that ensure fair

pricing and market stability.

vi

The development of "Ceylon AgriData" utilized a robust technology stack, including Python

and Flask for backend services, JavaScript and React for the web platform, and the Flutter

framework for mobile application development. This combination has resulted in the creation

of a user-centric mobile app and a web-based system, both integrated via a REST API service.

An extensive testing workflow was employed to validate the system's functionality,

encompassing unit, integration, and user acceptance testing phases. These tests, conducted both

manually and automatically, highlighted the system's usability and identified areas for further

refinement.

The project was managed using the iterative waterfall model, ensuring structured progress and

adaptability throughout its development. This methodical approach guaranteed that "Ceylon

AgriData" not only met its initial objectives but also laid a foundation for ongoing

enhancements, setting a new standard for technological innovation in Sri Lanka's agricultural

sector.

vii

Table of Contents
Declaration--iii

Acknowledgements -- iv

Abstract --- v

List of Figures --- x

List of Tables--- xiv

List of Acronyms ---xv

Chapter 1 - Introduction -- 1

1.1 Project Overview -- 1

1.2 Background of Study -- 2

1.3 Motivation -- 3

1.4 Objectives --- 4

1.5 Scope of Study --- 5

1.6 Structure of the Dissertation-- 6

Chapter 2 – Background -- 7

2.1 Introduction --- 7

2.2 Literature Review and Similar Systems -- 8

2.3 Related Technologies --10

2.4 Existing System Processes and Functionalities ---11

2.4 Requirement Analysis --14

2.4.1 Introduction --14

2.4.2 Overall Description ---14

2.4.3 Functional Requirements ---16

2.4.4 Non - Functional Requirements ---19

2.5 Proposed Development Process Model --20

2.6 Summary ---21

viii

Chapter 3 – Design Architecture ---22

3.1 Introduction --22

3.2 Design Strategies Used --23

3.3 System Architecture --31

3.3.1 Frontend and Backend Module Overview within the System Architecture ---------33

3.4 Justification of selecting React and Flask in the project ------------------------------------35

3.5 UML Diagrams ---36

3.5.1 Use case analysis --36

3.5.2 Process Modelling ---39

3.5.3 Data Modelling --43

3.6 Summary ---45

Chapter 4 – Implementation --46

4.1 Introduction --46

4.2 Implementation Methodology --46

4.3 Implementation Environment ---46

4.3.1 Front-End Implementation Environment --46

4.3.2 Back-End Implementation Environment ---47

4.3.3 Data Persistent and Management Environment ---48

4.4 Utilized Pre-Built Libraries and Frameworks --51

4.5 Integration of Third-Party Services --52

4.6 Explanation of Key Code Sections ---53

4.6.1 Logging into the system --53

4.6.2 Inserting agriculture data into the system --62

4.6.3 Generating Reports --79

4.6.4 Message Broadcasting --91

4.7 Summary ---96

Chapter 5 – Testing and Evaluation ---97

ix

5.1 Introduction --97

5.2 Related Testing Types Utilized ---97

5.3 Testing Methodology ---97

5.3 Testing of Mobile Application --98

5.3.1 Unit testing – Mobile Application --98

5.3.2 Exploratory Testing – Mobile Application -- 101

5.3.3 Integration testing – Mobile Application -- 101

5.4 Testing of Back-end Services, REST APIs --- 109

5.5 Testing of Front-End (React Web Application) -- 116

5.5.1 Exploratory Testing – React web application --- 116

5.5.2 Cross-Browser Testing - React web application -------------------------------------- 118

5.5.3 End to end Testing - React web application --- 119

5.6 User Evaluation --- 121

5.6.1 Results of the Testing --- 122

5.7 Summary --- 124

Chapter 6 – Conclusion -- 125

6.1 Introduction -- 125

6.2 Critical Assessment --- 125

6.3 Lessons Learned -- 126

6.4 Problems Encountered During the Project -- 127

6.5 Potential Future Work -- 127

References --- 129

Appendixes -- 132

x

List of Figures

Figure 2.1 : Top level use case diagram of the system, “Agrimanager” (Agrimanager)…….12

Figure 2.2: Iterative Waterfall Model (Bhatnagar, 2015)….……………………..…….……20

Figure 3.1: High-level representation of modules in "Ceylon AgriData" Syste.……...……..24

Figure 3.2: Splash page designing of mobile application…………………………..………..25

Figure 3.3: Login page designing of mobile application……………………..……………...25

Figure 3.4: Home page designing of mobile application……………..…………….………..25

Figure 3.5: Dashboard page designing of mobile application………………………...…...…25

Figure 3.6: Farmer manager home page designing of mobile application…………...………25

Figure 3.7: Farm manager home page designing of mobile application………………...…...26

Figure 3.8: Cultivation manager home page designing of mobile application……………....26

Figure 3.9 : Aid manager home page designing of mobile application……………………...26

Figure 3.10: Register farmer page designing of mobile application……………………..…..26

Figure 3.11: Add farm page designing of mobile application…………………………….….27

Figure 3.12: Add cultivation page designing of mobile application…………………………27

Figure 3.13: Add cultivation page designing of mobile application………………………....27

Figure 3.14: Add disaster page designing of mobile application…………………...……….27

Figure 3.15: Search operation page of designing of mobile application………………….….27

Figure 3.16: Page for update / delete operations of designing of mobile application…….….28

Figure 3.17: Logout button at main menu in designing of mobile application…...………….29

Figure 3.18: designing of UI - landing page of react webapp……………….……………….29

Figure 3.19: Designing of UI of webapp for data managing related operations…………..…30

Figure 3.20: Report generating page design of webapp…………………………………..….30

Figure 3.21: Advertisement service page designing of webapp……………………………...31

Figure 3.22: High-level solution architecture of the "Ceylon AgriData" system……………33

Figure 3.23: Frontend and Backend overview of the "Ceylon AgriData" system………..….34

Figure 3.24: High level diagram of modules designed as per system architecture…………..34

Figure 3.25: Use case Diagram of the System "Ceylon AgriData"………………………..…40

Figure 3.26: Activity diagram for register a new farmer and adding his farm, cultivation

details into the system by Agri field officer………………………………………………….41

Figure 3.27: Activity diagram to generate agricultural reports by a agriculture field officer..42

xi

Figure 3.28: Activity diagram for publishing advertisements by farmer……………….……43

Figure 3.29: Database model of "Ceylon Agridata" system……………………………...….44

Figure 4.1: MYSQL database in WAMP Server……………………………………………..48

Figure 4.2 :SQL Alchemy used in the project with model class- User………………………49

Figure 4.3: SQL Alchemy query builder example…………………………………….……..49

Figure 4.4: Schemas using ‘Marshmallow’………………………………………………….50

Figure 4.5 (a):Code snippet of building the “Login Page” UI……………………………….54

Figure 4.5 (c): Login Page UI of mobile application………………………………………...54

Figure 4.5 (b): Code snippet of building the “Login Page” UI……………………………....55

Figure 4.6: Code snippet of Login function in mobile application………………………..…56

Figure 4.7(a): Code snippet of checking response status code and preview relevant

notifications………………………………………………………………………………….56

Figure 4.7(b): Code snippet of checking response status code and preview relevant

notifications………………………………………………………………………………….57

Figure 4.8 (a): Code snippet for Login endpoint of REST API……………………………...57

Figure 4.8 (b): Code snippet for Login endpoint of REST API……………………………..58

Figure 4.9(a): UI modal of Login in web application………………………………………..59

Figure 4.9(b): Code snippet of building login modal in web application (front end)………..59

Figure 4.10: Code snippet of login functionality in web application front end……………...60

Figure 4.11 (a) :Code snippet of validating the API response………………………………61

Figure 4.11(b):User validation code snippet of webapp (front end)…………………………61

Figure 4.12: Code snippet of validating the API response…………………………………..62

Figure 4.13:UI for add cultivation details in mobile application……………………………63

Figure 4.14:Code snippet represents a user interface in Flutter for adding cultivation

details………………………………………………………………………………………..64

Figure 4.15: Code snippet for get current location button in frontend UI in mobile

application…………………………………………………………………………………...65

Figure 4.16: Code sippet regarding the function that gets location…………………………65

Figure 4.17: UIs of get current location functionality in mobile application……………….66

Figure 4.18: Code snippet of sending post request to API to insert cultivation information

from mobile application front-end…………………………………………………………..67

Figure 4.19: Code snippet of flask route of add cultivation information in REST API…….68

xii

Figure 4.20: Code snippet of tab pane in manage cultivation information in web

application…………………………………………………………………………………....69

Figure 4.21: Tab pane of manage cultivation information functionality in web

application………………………………………………………………………………...….69

Figure 4.22: The code snippet for a single input text in web application……………………69

Figure 4.23:forms used for managing the "Add Cultivation" functionalities in web

application…………………………………………………………………………………....70

Figure 4.24: Handle submit function for calling 'Add Cultivation Information Function' that

sends request to REST API……………………………………………………………….…70

Figure 4.25: Code snippet of making a POST request to the specified endpoint…………….71

Figure 4.26: Preview map when “Use Map” button is clicked in add cultivation information

functionality in web application……………………………………………………………...77

Figure 4.27: Local storage saves the selected coordinates………………………………...…76

Figure 4.28(a): Code snippets of getting longitude and lattitude of cultivatin location in web

application using leaflet……………………………………………………………………....75

Figure 4..28(b): Code snippets of getting longitude and lattitude of cultivatin location in web

application using leaflet………………………………………………………………………76

Figure 4 .29: Preview of search results in search cultivation information in web

application……………………………………………………………………………………77

Figure 4.29: Preview map when “Use Map” button is clicked in add cultivation information

functionality in web application……………………………………………………………...78

Figure 4.30: Code snippet of display and interaction with harvest data in a specified time

range in web application……………………………………………………………………...80

Figure4.31: Preview of total harvest in selected timeframe………………………………….79

Figure 4.32: Function of sending API call to get harvest data to specified route in REST

API…………………………………………………………………………………………...81

Figure 4.33: Flask route that handles GET requests for fetching aggregated data on harvested

and estimated harvested amounts of crops for a specified agricultural year…………………81

Figure 4.34 (a): Code snippet for rendering a map interface related to crop yield…………..83

Figure 4. 34(b): Code snippet for JSX structure for rendering a form interface for selecting

various parameters related to crop yield reporting ………………………………………….84

Figure 4.35: displaying a map and filtering data based on user selections………………..…82

xiii

Figure 4.36: Code snippet for setting up map container using mapContainer from react-leaflet

library………………………………………………………………………………………...83

Figure 4.37: Flask route for fetching crop records with authentication. (REST API)……….84

Figure 4.38: frontend User interface of the Field map report form…………………………..85

Figure 4.39: Form of the field mapping reports with dynamic option update with the user

inputs…………………………………………………………………………………………86

Figure 4.40: UseEffect to Run once when the component is rendered………………………87

Figure 4.41: Setting district and officers of the selected district to the state variables to be

used in dropdowns……………………………………………………………………………87

Figure 4.42: Code snippet for Setting marker data to the map……………………………….88

Figure4.43: Code snippet of UseEffect hooks to retrieve data once input are filled, using API

service function “searchCultivationMapInfoByDistrictMonthlyOffice……………………...89

Figure 4.44: Markers shown in the map……………………………………………………...89

Figure 4.45: Backend service function…………………………………………………….....90

Figure 4.46: Email sending feature in "Ceylon AgriData " system………………………….91

Figure 4.47: UI of broadcasting emails feature………………………………………………91

Figure 4.48: Selection of recipients…………………………………………………………..92

Figure 4.49: API service function……………………………………………………………93

Figure 4.50: API calls that sends requests to backend API……………………………….…94

Figure 4.51: Backend API function that is called by frontend……………………………....95

Figure 5.1: Code snippet of user registration unit test function…………………………….112

Figure 5.2: Integration testing done using Postman for user login functionality - user login

end point in API…………………………………………………………………………….114

Figure 5.3 Integration testing for Aid Distribution…………………………………………115

Figure 5.4 Integration testing for sending emails…………………………………………...115

Figure 5.5 Microsoft Edge testing…………………………………………………………..118

Figure 5.6 Google Chrome testing……………………………………………………….....118

Figure 5.7 Locally deployed python flask backend interaction logs when testing………....120

Figure 5.8: Ngrok logs when exposed API with the database publicly for testing……...….120

Figure 5.9: System Feedback Survey……………………………………………………….122

xiv

List of Tables

Table 2.1 : Summarized comparison of commonly used agricultural aid software applications

in Sri Lanka……………………………………………………………………………..……13

Table 3.1: Modules designed for mobile application designing……………………………..24

Table 3.2: Modules designed for web application designing…………………………….…..28

Table 3.3: Justification of selecting React and Flask in the project………………………….35

Table 4.1: Summarization of hardware implementation environment of "Ceylon AgriData..50

Table 4.2: Summarization of software Environment of " Ceylon AgriData" system………..51

Table 4.3: Utilized pre-built libraries and frameworks in “Ceylon AgriData”………………52

Table 4.4: Third-party services utilized in "Ceylon AgriData" application………………….53

Table 4.5: code snippets for Update, delete, and search endpoints in the REST API………..72

Table 5.1:Test cases used in unit testing of mobile application……………………………...98

Table 5.2: Test cases for integration testing in mobile application and captured results…...101

Table 5.3:Test cases for user related functionalities in unit test of API…………………… 109

Table 5.4: Test Cases for User related functionalities of integration testing of API……….113

Table 5.5: Test Results of exploratory testing of web app…………………....…………….116

Table 5.6: Part of identified major issues in end-to-end testing………………………….…119

Table 5.7: Summarized results …………………………….…...……………………….….122

xv

List of Acronyms
REST API - Representational State Transfer Application Programming Interface

ORM - Object-Relational Mapping

CLI - Command Line Interface

NPM - Node Package Manager

CORS - Cross-Origin Resource Sharing

JSON- JavaScript Object Notation

DOM- Document Object Model

1

Chapter 1 - Introduction

The agriculture sector is important to Sri Lanka's economy and especially, most of the rural

population employs in farming. In 2021, agriculture contributed 8.7% to the country's

GDP(Aaron O'Neill, 2023). Sri Lanka primarily produces rice, vegetables, and fruits for

domestic consumption, while also exporting commodities such as tea, rubber, and coconut.

Many people in the country rely on agriculture as their primary occupation.

1.1 Project Overview

The project objective is to increase efficiency in Sri Lanka's agriculture sector by introducing

a cloud-based system, “Ceylon AgriData” for collecting and representing up-to-date

agriculture data. This system will enable informed decision-making in the agriculture sector

and improve its services.

A user-friendly mobile application will be implemented for agricultural field officers who usually

responsible in collecting farmer related data during field visits. This application will enable them

to effortlessly gather crucial data such as farmer details, farm details such that locations, cultivating

crop categories, yields, costs, pesticide and fertilizer usage, as well as occurring crop disease and

disaster details, if any. This will replace the current manual, paper-based method of agricultural

data collection with the proposed mobile and web applications, improving data accuracy and

accessibility.

The collected data will be securely stored in a centralized cloud database, accessible to relevant

stakeholders such as agricultural department administrators, agricultural field officers,

researchers, and other key players in the agricultural sector. The cloud platform will provide

user-friendly dashboards, report generating functionalities, user and agriculture data

management services assisting stakeholders to make informed decisions and develop policies

to support all stakeholders in agricultural sector.

Additionally, the project aims to launch a free advertising service within the system, assisting

farmers to expose to local and foreign markets. It will enable farmers to enter product details and

find potential buyers, ensuring fair pricing and better selling opportunities freely. Thereby,

government will have oversight in regulating prices and promoting fair market practices.

2

Furthermore, the project will establish a communication service to facilitate timely information

dissemination (meetings, notices of distributing fertilizers, etc.) among agricultural officers,

registered farmers. This will ensure the efficient broadcasting of messages, keeping all relevant

parties informed about important updates and initiatives.

By implementing this cloud-based system, “Ceylon AgriData”, aims to provide up-to-date and

comprehensive agricultural data, empowering stakeholders to make better decisions, support

farmers, and enhance overall efficiency in Sri Lanka's agriculture sector.

1.2 Background of Study

Agriculture plays a vital role in the country's economy, contributing to the GDP and providing

employment opportunities, particularly in rural areas. Currently, the agriculture sector is

undergoing various challenges such that a lack of knowledge on sustainable agriculture, lack of

financial support, lack of a proper management system, and proper ways to share knowledge and

information among agricultural parties, as a result, having low productivity and value for their

harvest can be stated. A key problem is the lack of detailed, trustworthy data, making it hard to

make informed decisions. Therefore, even though agriculture is a significant source of economic

growth in Sri Lanka, the sector's productivity remains low at the moment.

The Sri Lankan agriculture sector, heavily relies on government support, including free irrigation

and extension services, substantial fertilizer subsidies, support prices, and trade protection

measures (Manoj Thibbotuwawa, 2021).The lack of updated agricultural data has hindered the

government's efforts to enhance efficiency and productivity in the agriculture sector. Without

access to necessary and current information, it becomes challenging for the government to

implement effective measures to improve agricultural productivity.

One of the key challenges is the reliance on traditional and manual data collection methods.

Agricultural officers often rely on paper-based systems to gather information, which is time-

consuming, prone to errors and lacks real-time accessibility. This inefficiency in data collection

limits the ability to make informed decisions and develop effective policies to support the

agriculture sector

Many farmers in Sri Lanka face difficulties accessing market opportunities and receiving

reasonable product prices. Limited information and inadequate platforms for connecting farmers

3

with buyers result in market inefficiencies and reduced profitability, especially when they lack

awareness of the specific prices in the Colombo market.

Furthermore, there is a need for improved communication between agricultural departments,

officers, and farmers. Timely dissemination of information, updates, and important notifications is

crucial for effective decision-making and addressing challenges promptly.

The background of this study recognizes these challenges and aims to address them by proposing

the development of a comprehensive system consisting of a mobile application and a cloud-based

platform. This system will streamline data collection processes, provide real-time information

access, establish a marketplace for farmers, and enhance communication between stakeholders.

1.3 Motivation

The motivation for this project is to address challenges and unlock the potential in Sri Lanka's

agriculture sector, which plays a vital role in the economy but faces obstacles to its growth and

development.

One key motivation is the need for improved data acquisition and management. Traditional

manual methods of data collection in agriculture are time-consuming, error-prone, and lack

real-time accessibility. By developing a mobile application and a cloud-based platform, this

project aims to streamline the data collection process, enhance accuracy, and provide

stakeholders with timely and comprehensive information. This will enable informed decision-

making, effective resource allocation, and the formulation of evidence-based policies to

support the agriculture sector.

Another motivation is to address the market inefficiencies faced by farmers. Limited access to

market opportunities and a lack of information regarding fair prices undermine the profitability

of farmers. By establishing a free advertising service within the proposed system, this project

seeks to assist farmers to connect directly with buyers, ensuring efficiency in sales and

enhancing market transparency. The integration of government oversight will further enable

price regulation and market regulation, creating a favorable environment for farmers.

Timely and accurate communication is vital for addressing challenges promptly, providing

essential updates, and facilitating effective collaboration. The “Ceylon AgriData” system, will

4

serve as a communication tool, enabling the broadcasting of important messages and

notifications to relevant stakeholders, ultimately improving overall efficiency and productivity.

Overall, the motivation behind this thesis is to leverage technology and innovation to overcome the

limitations and inefficiencies within Sri Lanka's agriculture sector. By addressing data collection,

market access, and communication challenges, this study aims to enhance productivity, promote

sustainable agricultural practices, and ultimately contribute to the socio-economic development of

the country.

1.4 Objectives

1. To design and develop a mobile application system for agricultural field officers to collect

farmer related data during field visits.

This mobile system would assist regional agricultural field officers to collect essential

agricultural data such as details of farmers, farms, and its locations, encapsulated crop

categories, yields, costs, consumption of pesticides and fertilizers, and crop disease and disaster

details. The system will provide a more efficient data acquisition method compared to the

current manual process that relies on paper documentation. This mobile system will improve

data accuracy and accessibility, enabling agricultural departments to make informed decisions

and enhance overall agricultural services

2. To develop a cloud-based system to store, maintain and represent agricultural data.

This will enable easy access to and sharing of information for various stakeholders,

including agriculture departments, scientists, researchers, farmers, and other agricultural

stakeholders. The platform aims to facilitate the stakeholders with accurate and timely data that

can be used to make better decisions to support the country's agricultural sector.

3. Launch a free advertising service to help farmers access better market opportunities and

sell their products at favorable prices. This service will also enable exporters to buy directly

from farmers, improving the efficiency of sales and purchases. Additionally, the

government will monitor pricing to ensure fairness.

4. To provide efficient and on-time message conveying facilities from the Agriculture

Department to regional agricultural officers, and farmers.

5

1.5 Scope of Study

The project’s initial phase will focus on implementing the system as per the requirements in the

government agricultural regional office located in Dodangoda, Kalutara District, Sri Lanka.

The proposed project aims to enhance the agriculture sector in Sri Lanka through the development

of a comprehensive system consisting of a mobile app and a cloud-based platform. The mobile

app will replace traditional paper-based methods, allowing regional agricultural officers to

efficiently and accurately collect agriculture-related data in the field. This includes farmer

information, farm and cultivation details, aid distribution records, and disaster reports,

streamlining the data collection process for improved decision-making. The project also

includes the implementation of a field mapping facility, allowing agriculture field officers to

digitally enter field locations ensuring their field visits more transparent and efficient. The mobile

application will facilitate effective communication among the agriculture department, field

agriculture officers and farmers. Important information and updates can be broadcasted through the

application, ensuring that officers have the most up-to-date information to respond promptly. Also,

the app will assist in gathering data on crop damages in times of disasters such that flooding, crop

diseases etc., enabling the allocation of resources and support to affected farmers in a timely

manner. Furthermore, the application will collect farmer details, which can be utilized to inform

them about fertilizer distribution, donations, and other forms of assistance through broadcasting

service.

All collected data will be securely stored in a centralized cloud database, accessible to agricultural

department administrators, researchers, and other stakeholders through user-friendly dashboards.

This database will serve as a valuable resource for making informed decisions and developing

policies to support farmers. The database will provide up-to-date data for analysis, enabling

stakeholders to address agricultural challenges by identifying trends, patterns, and potential

solutions.

The project will also establish a free advertising service where farmers can conveniently enter the

details of their yields and connect with potential buyers. The goal is to accommodate farmers with

limited computer literacy by offering a user-friendly interface. By facilitating direct communication

between farmers and buyers, the marketplace promotes transparency and efficiency in the

agricultural supply chain.

6

The platform will enable the government to monitor pricing trends, allowing for real-time

regulation of prices and promotion of fair market practices under the supervision of agricultural

administrators. Government participation, especially for farmers registered with regional

agricultural offices, will facilitate timely interventions and support. This government-

supervised free advertising portal will ensure that farmers can sell their products at fair prices

and receive the assistance they need from authorities, creating a supportive environment for

agricultural commerce.

1.6 Structure of the Dissertation

Chapter 2, the Literature Review and Similar Systems examines the literature review (similar

systems) related to the agriculture sector in Sri Lanka, focusing on challenges and the

importance of data acquisition and informed decision-making. In Chapter 3, the Design

chapter, the system architecture, data acquisition methods, storage and processing techniques,

and user interface design are discussed. Chapter 4, Implementation, details the steps taken to

develop and implement the cloud-based system, including software and hardware components,

programming languages, and any challenges encountered. Chapter 5, Testing and Evaluation,

covers the testing procedures, results, and any identified limitations or areas for improvement.

The dissertation concludes with the Conclusion, summarizing key findings, discussing

implications, and suggesting future research directions. Also. the thesis includes a references

section and appendices that provide supplementary information, data, or materials that support

and enhance the project.

7

Chapter 2 – Background

2.1 Introduction

Agriculture serves as the foundational sector in a majority of nations across the globe. China,

India, Japan, Mexico, Brazil, Russia, USA, and France stand out as prominent examples of

countries that display great potential in this regard (FAO, 2023). According to the World Bank,

the advancement of agriculture emerges as a highly potent instrument for eradicating extreme

poverty, promoting inclusive economic growth, and ensuring sustenance for an estimated 9.7

billion individuals by the year 2050 (WorldBank, 2023). To achieve specified objectives,

people have adopted automation, precision farming, and smart agricultural practices utilizing

information technology to advance their agricultural sectors and attain desired results

(Jayathilake et al., 2010). However, a comprehensive data collection center is essential to

increase the productivity of agriculture.

Sri Lanka's economy heavily depends on agriculture, a sector pivotal for its development,

employment generation, and food security for all. It significantly contributes to the nation's

prosperity and sustains livelihoods, particularly in rural regions (Ministry of Agriculture,

2023). Agriculture in Sri Lanka encompasses crop cultivation, animal husbandry, fishing, and

forestry.

However, the agriculture sector in Sri Lanka faces challenges due to limited access to timely

and accurate agricultural data. This lack of information hampers decision-making and prevents

stakeholders from improving agricultural practices and resource allocation. Traditional data

collection methods, such as manual surveys and paper records, are slow, labor-intensive, and

vulnerable to errors, causing delays in analysis and response. Inefficient data representation

further complicates the integration and utilization of valuable insights. To address these

challenges, a centralized crop data management platform is needed. This platform would assist

administrators collecting, storing, analyzing and representation of agricultural data and farmers

to access agricultural information and market opportunities by directly finding vendors from

the system. It would also support decision-making and scenario planning in the agricultural

sector

8

2.2 Literature Review and Similar Systems

The agricultural sector has significantly adopted information technology (IT) to enhance the

effectiveness and productivity of farming practices. The latest advancements in IT have

introduced smart devices, sensor technologies, web services and applications, which offer

immense potential to promote sustainability and productivity in the agriculture industry

(Cheema and Khan, 2019). Precision farming and e-farming techniques have simplified

agricultural processes, while the availability of online databases containing comprehensive

agricultural data has created a valuable platform for policymakers and researchers to actively

contribute to the improvement of the agricultural sector worldwide.

Prominent cloud-based agricultural management software systems, such as 'Bushel', 'Granular',

'FieldView', 'AgriWebb', 'AgSense', 'Conservis', 'Agrible-Morning Farm Report', 'aWhere' and

‘Cropin’ (Agrible-Morning Farm Report, AgriWebb, AgSense, 2003, aWhere, BushelFarm,

Climate Corporation, Conservis, 2008, Cropin, 2010, Granular) are widely utilized in modern

farming practices to optimize and streamline operations. Also, they are utilized with crop

monitoring, analytics, crop information and advisory features. These systems offer a diverse range

of applications and advantages, encompassing crop and field management, inventory and supply

chain management, data analytics and decision support, financial management, compliance and

reporting, as well as remote monitoring and control. By integrating advanced technology and data-

driven insights, farmers can effectively enhance the efficiency, sustainability, and profitability of

their agricultural practices. Overall, these software applications can help farmers to streamline their

operations, optimize resource utilization, and improve their yields and profitability.

‘AgriWebb’ (AgriWebb) is a simple application that can be used for global cattle and sheep

production provenance, profitability and sustainability across the supply chain and it offers a user-

friendly interface that can be easily accessed and utilized by farmers, along with real-time data

entry and insights into crop management processes. One disadvantage of the ‘AgriWebb’

(AgriWebb) is that it requires a stable internet connection, which may be a challenge for farmers

working in rural areas with limited connectivity. ‘Farmforce’ (Farm Force) is a cloud-based crop

management system, developed in Kenya. The system offers tools for tracking crop activities,

monitoring yields and sales, and analyzing data to improve farm performance.

Various system applications have been identified in the literature as being utilized in Sri Lanka for

agricultural purposes, aiming to enhance relative productivity. These applications include ‘Cropin’,

9

'Agri Manager', 'Krushi Advisor', 'Govi Mithuru', 'Helawiru', 'Coconut App', 'MyAgri' and ‘Agri

Life’ (Agrimanager, Coconut Cultivation Board, 2023, Cropin, 2010, Department of Agriculture,

2021, Govi Mithuru, 2015, Helawiru, KOMA Labs, 2020, My Agri, 2021) . These applications are

utilized to enhance the relative productivity of agriculture in Sri Lanka. ‘Coconut App’ is an

Android application that is facilitated with services to establish a sustainable coconut cultivation

by providing necessary input and financial facilities to coconut growers island-wide through an

efficient extension & advisory service (Coconut Cultivation Board, 2023). ‘Agro life’ (KOMA

Labs, 2020) is a mobile app designed for Sri Lankan farmers and agricultural community which

provides complete information on crop production, crop protection, fertilizers, machinery, and

impact of climate, storage procedures and all relevant allied services.

The mobile-based Android application systems, such that, 'Krushi Advisor', 'Govi mithuru', and

'My Agri' (Department of Agriculture, 2021, Govi Mithuru, 2015, My Agri, 2021) serve as

comprehensive advisory platforms for farmers and relevant stakeholders, providing them with self-

guidance regarding crops, seeds, cultivation information, and appropriate fertilizers. By leveraging

these applications, farmers can access valuable knowledge and become more informed in their

agricultural practices.

'Helaviru', and 'Agrithing' (Agrithing, Helawiru) are dynamic digital marketplaces that facilitate

trading activities of agriculture-related products and harvests for small-scale collectors, retailers,

and large consumers. These platforms were developed to enable timely sales of products at

reasonable prices, thereby benefiting both sellers and buyers in the agricultural market. However,

the lack of maintenance, reliability have made these systems low productive and disqualified to be

used in accurate decision making by the government at the moment.

Table 2.1 provides a summarized comparison of commonly used agricultural aid software

applications in Sri Lanka. The table highlights that most of these applications are primarily

focused on knowledge delivery, offering information and guidance to farmers. Additionally,

some applications also provide real-time market information, allowing farmers to stay updated

on pricing trends and market conditions. Unfortunately, a limited number of agricultural aid

mobile applications are presently operational and functioning effectively in Sri Lanka.

Consequently, this situation has resulted in inefficiencies, inadequate tracking, and reduced

productivity within the agricultural sector of the country. However, considering the related

works it clearly shows the necessity of a system that provide accurate and updated information

10

among the farmers, traders and the department of agriculture for informed decision making to

improve the agriculture sector in Sri Lanka especially as a developing country amidst the

economic crisis. As a developing country, Sri Lanka is in need of an intelligent centralized

system for agricultural data and a mechanism for informed decision-making to enhance the

efficiency and productivity of its agricultural sector. The government has been actively

supporting the agricultural sector by providing substantial freely available facilities to farmers,

distinguishing Sri Lanka from other countries worldwide. Consequently, it is crucial for the

government to establish a mechanism that enables accurate insights of the current market

information of agricultural products for regulatory purposes and decision making.

2.3 Related Technologies

Understanding the underlying technologies is essential for comprehending the functionalities

and capabilities of these applications in supporting the agricultural sector. The aforementioned

technologies, namely cloud computing, sensor technologies, mobile application development,

data analytics, machine learning, database management systems, geospatial technologies, and

communication protocols, can be primarily classified as related technologies utilized in

agriculture management systems (Christine Zhenwei Qiang et al., 2012, Ojha et al., 2015,

Rathod et al., 2022).

Cloud computing enables the storage, management, and processing of agricultural data in cloud-

based platforms, allowing for scalable and accessible storage and collaboration among stakeholders

(Singh et al., 2020). Mobile applications are created specifically for agriculture management

systems to offer farmers convenient access to information, advisory services, market updates, and

communication channels while on the move (Jayathilake et al., 2010).

Combination of cloud-based software, mobile application development, communication protocols,

and database management systems forms a comprehensive technological framework for effective

agricultural software services. Cloud-based software provides a scalable and accessible platform

for agricultural data management, allowing for efficient storage, processing, and collaboration

among stakeholders. This technology enables the centralization of agricultural data, ensuring its

availability and security. Mobile application development is another significant technology that

empowers farmers by offering on-the-go access to vital information, advisory services, market

updates, and communication channels. These applications facilitate real-time decision-making,

enabling farmers to access relevant data and services directly from their mobile devices,

11

irrespective of their location. Communication protocols are essential for establishing secure and

efficient communication channels within agricultural management systems. These protocols enable

seamless data sharing, collaboration, and synchronization between different components of the

system. Real-time data exchange ensures timely and accurate information dissemination,

enhancing coordination and decision-making processes. Database management systems (DBMS)

are critical for efficient organization, storage, and retrieval of agricultural data. These systems

ensure data integrity, provide robust querying capabilities, and enable seamless access to relevant

information.

2.4 Existing System Processes and Functionalities

Existing system, ‘Agrimanager’(Agrimanager) closely aligns with the proposed system's

requirements and functionalities. User management, data collection, data storage and retrieval,

communication, market connectivity, and system administration, closely match the desired features

of the proposed system. By leveraging its capabilities, the new system can benefit from an

established framework and effectively incorporate and enhance existing functionalities. Figure 2.1

illustrates the top-level use case diagram of the existing system, showcasing its functionalities and

processes that align with the proposed system. The diagram presents an overview of the key

interactions and relationships between actors and use cases within the existing system, highlighting

the core functionalities and their corresponding actors.

12

Figure 2.1 : Top level use case diagram of the system, “Agrimanager” (Agrimanager)

13

Ta
bl

e
2.

1
:

Su
m

m
ar

iz
ed

 c
om

pa
ri

so
n

of
 c

om
m

on
ly

 u
se

d
ag

ri
cu

ltu
ra

l a
id

 s
of

tw
ar

e
ap

pl
ic

at
io

ns
 in

 S
ri

 L
an

ka

14

2.4 Requirement Analysis

2.4.1 Introduction

Requirement analysis provides a clear understanding of user needs, enabling the development of a

system that effectively addresses the requirements of agricultural officers, farmers, administrators,

and other stakeholders. The analysis helps in designing an intuitive and user-friendly mobile

application and a robust cloud-based platform, ensuring the system meets the specific needs of the

agriculture sector in Sri Lanka. Accurate resource estimation and scope management keep the

project on track and prevent budget and timeline issues. Identifying risks and challenges early on

helps us address and minimize their impact on the project. When stakeholders are aligned, their

expectations are taken into account, resulting in higher satisfaction. Additionally, the analysis

enables us to collect, store, and manage data efficiently, which supports making well-informed

decisions. Thus, it defines the design and development of a comprehensive cloud–based system for

data acquisition and representation to facilitate informed decision-making.

2.4.2 Overall Description

1. Product Perspective

The proposed system, “Ceylon AgriData” will be an implemented software solution that includes

third-party libraries and API services. For more details, see Chapters 4.

2. Product Features

The main features and functionalities of the system, including:

 Mobile application for agricultural field officers to collect farmer related data

efficiently during field visits

 Cloud-based system for securely storing and maintaining agricultural data efficiently

 Data representation via different dashboards to support stakeholders for informed

decision-making

 Broadcast message service among agriculture stakeholders

 A complimentary advertising platform designed to directly connect farmers with

vendors, eliminating intermediaries, while enabling government agencies to monitor

and regulate pricing effectively.

15

3. User Classes and Characteristics

The system will mainly cater to the following user classes:

 Agricultural Officers: Responsible for collecting farmer data using the mobile application

and will benefit in making reports.

 Farmers: Users who will benefit from the complementary advertising platform service and

receive broadcast messages on a timely manner.

 Administrators: Manage and maintain the system, including access control and will benefit

in generating reports.

 Researchers: Access agricultural up-to-date data to analyze data for research purposes.

4. Operating Environment

The system should be compatible with the following operating environment:

 Mobile Application: Android devices with the latest versions.

 Cloud Platform: Web browsers and internet connectivity

5. Design and Implementation Constraints

 The system should be user-friendly, ensuring ease of use for agricultural officers and

farmers with varying technical expertise.

 The cloud-based platform should be capable to handle a large volume of agricultural

data and concurrent user access.

 6. Assumptions and Dependencies

 It is assumed that mobile devices and internet connectivity will be available to

agricultural officers and farmers at least for a limited time period regularly in the target

areas.

 The system will depend on reliable network connectivity to synchronize data between

the mobile application and the cloud platform.

 The availability and accuracy of agricultural data depend on the timely input and

cooperation of agricultural officers.

16

2.4.3 Functional Requirements

1. User Authentication and Authorization

User authentication and authorization of the system will be handled by basic authorizations

(using user name and password); encrypted them and Bearer token to maintaining sessions.

 Login/Logout: Users, including agricultural officers, administrators, and farmers, must

securely log in and out of the system using username and password credentials.

 Role-Based Access Control: Depending on the user's role (e.g., regional agricultural

officer, admin, farmer), the system will grant different access levels, ensuring that

sensitive operations (such as data modification) are restricted to authorized personnel.

 Session Management: Sessions are maintained using encrypted bearer tokens,

ensuring continuous security without requiring frequent reauthentication.

2. Data Management

The software enables the storage, retrieval, and management of agricultural data in a cloud

database. It supports seamless integration with various data sources, ensuring data integrity,

reliability, and scalability. The cloud-based system provides secure storage for the collected

agricultural data.

Cloud Database Integration: The system integrates with a cloud-based database, ensuring

secure and scalable data storage for large volumes of agricultural data, including farmer

records, cultivation data, and disaster reports.

 Data Storage: All data collected through the mobile app and web app will be securely

stored in the cloud, with redundancy measures for data recovery in case of system

failures.

 Data Retrieval and Syncing: Users can retrieve and synchronize data in real-time

between the mobile app, web app and the cloud. The system automatically resolves

conflicts when data is updated simultaneously by different users.

3. Data Collection

The mobile application allows agricultural officers to collect farmer related data. webapp along

with cloud-based system allows officers to collect ad store almost all data related to farmers,

farms, cultivation, harvest details, aid information (fuel, fertilizer, pesticides, monetary etc.),

17

crop disasters and disaster occurring f agriculture farms. The application has validation checks

to ensure accurate and complete data entry.

Farmer Data Entry: Agricultural officers can enter detailed farmer profiles, including

demographic information (name, age, region), land size, and cultivation methods.

 Farm and Cultivation Details: Officers can collect specific data on the types of crops

grown, farm size, and location (using GPS data), irrigation methods, and expected yield.

 Aid Distribution Records: The system allows officers to record and track the

distribution of various types of aid, including monetary support, fuel, fertilizer, and

pesticides. The status of each distribution is updated in real time, ensuring transparency.

 Disaster Reporting: Officers can collect detailed information on agricultural disasters

(e.g., droughts, floods), including the scale of the disaster, affected farms, and the type

of damage sustained.

 Data Validation: Built-in validation checks ensure that required fields are completed,

data formats are correct (e.g., date fields, numeric values), and duplicate records are

minimized.

4. Data Representation

The system is designed to enhance user experience through interactive dashboards that feature

customizable charts, graphs, and maps. It offers advanced filtering capabilities, allowing users

to drill down into data based on specific criteria and parameters. Additionally, the system is

equipped to generate visualizations that are compatible across a variety of devices and screen

sizes, ensuring accessible and adaptable data representation.

 Customizable Dashboards: Different stakeholders (agricultural officers, regional

managers, farmers) will have access to personalized dashboards tailored to their

specific needs.

 Interactive Visualizations: The system supports the generation of dynamic charts,

graphs, and geographical maps to visualize agricultural data trends (e.g., yield data,

disaster impact, aid distribution).

 Data Filters: Advanced filtering options allow users to drill down into data by region,

crop type, aid type, or disaster impact, making it easier to identify patterns or issues.

18

5. Messaging and Notifications

The web service allows broadcast messages to regional agricultural officers, farmers, and

stakeholders when necessary.

 Broadcast Messaging: The system includes functionality to send urgent broadcast

messages to all users (agricultural officers, farmers) in cases of emergency, such as

natural disasters or sudden changes in aid policies.

 Message History: A log of sent messages is maintained for future reference.

6. Registering Users

The application enables the registration of farmers based on their regional location.

Additionally, it allows for the registration of agricultural officers into the system. Individuals

have the capability to self-register as generic users. Administrative personnel, including admins

and agricultural field officers, are empowered to assign specific roles to the users who have

registered, facilitating a structured and role-based access to the system's features.

Self-Registration: Generic users (e.g., farmers) can self-register via the web application by

entering basic details such as name, location, and contact information.

 Role-Based Registration: Agricultural officers and admins will have elevated

permissions to register new users within their jurisdiction or system. These officers can

add and verify farmers, assigning them to specific regions.

 User Verification: A verification process will be required for certain users, such as

agricultural officers, where admin approval is necessary to activate their account.

 User Role Assignment: Admins and field officers will be able to assign user roles (e.g.,

farmer, field officer, admin), with role-specific access and functionality.

7. Report Generating

Agricultural officers have the capability to generate necessary reports. Additionally, users have

access to publicly available reports, allowing for broader dissemination and reference of

important agricultural data and insights.

Customizable Reports: Agricultural officers can generate detailed reports based on the data

collected, such as farmer profiles, cultivation progress, disaster impacts, and aid distribution.

19

 Predefined Reports: Standardized reports are available for common use cases,

including monthly cultivation updates, disaster assessments, and resource distribution

logs.

 Dynamic Report Filters: Officers can apply various filters (e.g., time period, region,

aid type, crop type) to create customized reports, aiding in targeted decision-making.

 Publicly Accessible Reports: Certain reports (e.g., general agricultural trends or

disaster impact summaries) will be made available to the public for broader

transparency and insight-sharing.

 Export Functionality: Reports can be exported for offline analysis or presentation.

2.4.4 Non - Functional Requirements

1. Performance

The system should have fast response times for efficient data entry and retrieval. The system

should handle a large volume of data without performance degradation. The cloud-based

system should provide quick and reliable access to stored agricultural data.

2. Reliability

The system should be reliable and stable, minimizing crashes and errors. The system should

have backup and recovery mechanisms to prevent data loss. The cloud-based system should

ensure high availability and minimal downtime.

3. Usability and User Experience

The software should have an intuitive user interface, providing a seamless and user-friendly

experience. It should be accessible across different devices and platforms, ensuring a consistent

user experience. It should be accessible to users with varying levels of technological

proficiency

4.Scalability

The software should be capable of handling a large volume of concurrent users and data

processing tasks without compromising performance. It should scale effectively to

accommodate increasing user demands.

5. Security

The application should employ robust security measures to protect sensitive agricultural data.

It should ensure data confidentiality, integrity, and availability through secure data

transmission protocols and authentication mechanisms.

20

6.Integration

The mobile application and cloud-based system are designed to integrate flawlessly, facilitating

uninterrupted data synchronization and sharing. This integration may extend to include third-

party services, aiming to boost the system's functionality and improve data exchange processes.

For further details on this integration, including specific methodologies and technical

guidelines, Chapter 4 offers comprehensive insights.

2.5 Proposed Development Process Model

The iterative waterfall model is chosen for to adopt in the project; practical mobile app

development and web system development. Because, it provides clear project phases,

accommodates stable requirements, involves stakeholders, ensures integration and testing,

facilitates early risk mitigation, and enhances efficiency (Bhatnagar, 2015). In practical

software development, the iterative waterfall model addresses this by incorporating feedback

paths for error detection and correction within the same phase, rather than waiting until the

project's end. This model combines sequential steps with iterative design, allowing

improvements and changes at each stage. Iterative waterfall model includes stages such as

requirements gathering, design, implementation, testing, and deployment. This approach

ensures flexibility and progress throughout the development process. Figure 2.2 showcases the

Iterative Waterfall model i.e. a popular and traditional approach in practical software

development.

 Figure 2.2: Iterative Waterfall Model (Bhatnagar, 2015)

21

2.6 Summary

Chapter 2 provides the background information for the proposed system aimed at enhancing

the agriculture sector in Sri Lanka. It highlights the importance of agriculture for the country's

economy, job creation, and food security. The chapter emphasizes the challenges faced by the

agriculture sector due to limited access to timely and accurate data, which hampers decision-

making and resource allocation. The chapter further explores the related technologies used in

current agricultural software systems.

The chapter reviews similar systems and technologies that have been utilized in the agriculture

industry in Sri Lanka and globally. It mentions cloud-based agricultural management software

systems, mobile applications, and sensor technologies that have been used to optimize and

streamline farming practices.

The chapter discusses the existing system processes and functionalities, focusing on

'Agrimanager' (Agrimanager) as a closely aligned system with similar requirements and

highlights the features and capabilities of it that can be incorporated and enhanced in the

proposed system.

The chapter concludes with a requirement analysis, which emphasizes the need for a

comprehensive cloud-based system for data acquisition, representation, and informed decision-

making in the agriculture sector. It outlines the scope of the proposed system, including mobile

data collection, cloud-based data storage, market connectivity, communication, and data

analysis. The user classes and characteristics are also identified, including agricultural officers,

farmers, administrators, and researchers.

22

Chapter 3 – Design Architecture

3.1 Introduction

The agricultural sector plays a pivotal role in the livelihoods of the Sri Lankan population but

is currently impeded by significant decision-making challenges due to the lack of

comprehensive, island-wide agricultural data. This project aims to address these challenges by

leveraging technology to create a centralized agricultural database. By utilizing cloud

technology, along with mobile and web applications, the initiative seeks to modernize

traditional agricultural practices, thereby enhancing decision-making efficiency and boosting

productivity in farming. This technological integration promises to transform the agricultural

landscape in Sri Lanka, making it more data-driven and efficient.

The project design comprises several key components: a mobile application, a webapp, a cloud-

based platform, and databases. Together, these elements facilitate data collection, accessibility,

and decision-making support for users. The mobile app empowers regional officers to gather

agricultural data directly from farmers and update the system's database. The webpp serves as

a management tool for agricultural data and facilitates report generation. Additionally, a

broadcast message service enhances efficiency in the agricultural sector by ensuring timely and

reliable dissemination of information. All data is securely stored in a cloud database, enabling

informed decision-making through data representation. Reports aid users in visualizing and

strategizing based on agricultural data. The project also offers free advertising services for

farmers, enabling direct communication with buyers and government oversight of pricing and

regulation. This ensures fairness and informed decision-making regarding price changes.

Furthermore, researchers can leverage the centralized agriculture data to support informed

decision-making and contribute to the improvement of Sri Lanka's agricultural sector. Overall,

the project optimizes data utilization and fosters collaboration for the betterment of Sri Lankan

agriculture.

This chapter presents visual representations and it collectively provides a comprehensive

perspective of the system’s design. The design elements harmonize user requirements, system

functionality, and data management.

23

3.2 Design Strategies Used

Design strategies are methods that help to arrange sections of a program in a way that's simple

to create and modify. In this project, Object Oriented Design (Hillar, 2015) is used and, objects,

classes, encapsulation, inheritance, polymorphism are some major features which were

adopted. This means we focus on the things in the system (entities) and what makes them

unique, rather than just the tasks the software does. Object Oriented Design makes it easier to

manage complexity and create efficient and reusable implementation.

The top-down design approach (Münch, 2022), is used because it helps to understand and build

the system step by step. It highlights that systems consist of multiple sub-systems and

components, forming a hierarchical structure (Münch, 2022). Top-down design involves

initially considering the entire software system as one entity and breaking it down into sub-

systems or components based on certain characteristics. Each of these is then treated as its own

system and further broken down. This process continues until the lowest level of the system

hierarchy is reached. Starting from a generalized model, top-down design progressively defines

more specific parts of the system, culminating in the complete system once all components are

integrated (Münch, 2022). Multitier architecture is adopted in this project as it promotes

separation of concerns, modularity, and ease of maintenance. Each layer communicates with

adjacent layers through well-defined interfaces, and changes in one layer have minimal impact

on other layers.

Modularization involves breaking down a software system into smaller, self-contained

modules. Each module focuses on a specific aspect of functionality. Figure 3.1 illustrates

Modules in “Ceylon AgriData” System and it contains its own set of functions, logic. This

makes it easier to work on individual modules independently and allows for better code

organization, enhances reusability, minimize risks, error conflicts etc.

"Ceylon AgriData" comprises two primary components: a mobile application and a web app.

The following sections will provide detailed explanations of each component.

24

Figure 3.1: High-level representation of modules in "Ceylon AgriData" System

Table 3.1 outlines the design modules for the mobile application component, while Table 3.2

provides a summary of the design modules for the web application component within the

"Ceylon AgriData" system.

Table 3.1: Modules designed for mobile application designing

Module Name Description

User interface module (UI) All UI s of mobile application

User management module User management related functionalities of

users (basically CRUD operations of

farmers)

Data Collection module Data collection related functionalities (data

on agricultural entities such as farms,

25

cultivation, aids like fertilizer, pesticides, fuel,

and information of farmers etc.)

Message Broadcasting Service module Broadcasting messages to farmers by

agricultural field officers

Figures 3.2 – 3.17 represents the designed UI s of mobile application.

Figure 3.2: Splash page
designing of mobile application

Figure 3.3: Login page
designing of mobile application

Figure 3.4: Home page designing of mobile application

Figure 3.5: Dashboard page designing of mobile
application

Figure 3.6: Farmer manager home page
designing of mobile application

26

Figure 3.7: Farm manager home page
designing of mobile application

Figure 3.8: Cultivation manager home page
designing of mobile application

Figure 3.9 : Aid manager home page designing of
mobile application

Figure 3.10: Register farmer page designing
of mobile application

27

Figure 3.11: Add farm page
designing of mobile
application

Figure 3.12: Add cultivation page designing
of mobile application Figure 3.13: Add cultivation page

designing of mobile application

Figure 3.14: Add disaster page
designing of mobile application

Figure 3.15: Search operation page of designing of
mobile application

28

Table 3.2: Modules designed for web application designing

Module Name Description

User interface module (UI) All UI s of web application

User management module User management related functionalities of

users (CRUD operations of users: farmers,

agriculture officers, researchers etc.)

Data collection module Data collection related functionalities (data

on agricultural such as farms, crops,

cultivation, aids like fertilizer, pesticides, fuel,

monetary and information of farmers,

researchers etc.)

Data representation module Representation of collected agriculture data

in a comprehensive manner using tables,

graphics such as pie-charts, bar charts and

maps.

Figure 3.16: Page for update / delete
operations of designing of mobile
application

Figure 3.17: Logout button at main
menu in designing of mobile application

29

Report generate module Use filters to make reports to facilitate data

driven decision making. Filtered data can be

downloaded as .csv files.

Message broadcasting service module Broadcasting messages to farmers, officials

by agricultural field officers and admin.

Free advertising service module Functions related to advertising

advertisements of registered farmers.

Figures 3.18 to 3.21 depict the designed user interfaces (UIs) of the web application.

Figure 3.18: designing of UI - landing page of react webapp

30

Figure 3.19: Designing of UI of webapp for data managing related operations

Figure 3.20: Report generating page design of webapp

31

Figure 3.21: Advertisement service page designing of webapp

3.3 System Architecture

The layered architecture pattern arranges components into horizontal layers, each with a

distinct role in the application. While the number and types of layers can vary, a common setup

includes four layers: presentation, business, persistence, and database, which can be combined

based on needs, resulting in three to more than five layers in different applications (Richards,

2022).

In the project, service-oriented multi-tier architecture is employed, featuring distinct layers:

presentation (mobile and web applications), application logic (REST web service), and data

storage (database), ensuring effective separation of roles. This approach promotes scalability

and maintainability, as alterations in one layer and, do not impact the others, with REST APIs

facilitating communication between the presentation and application logic layers (Petrillo et

al., 2016).

The presentation layer handles user interaction and interface, the application logic layer

manages processing and business rules, and the data storage layer handles data management

32

and storage. This separation of concerns enhances scalability, maintainability, and reusability

by isolating different functionalities into well-defined layers (Richards, 2022).

Figure 3.22 depicts the high-level solution architecture of the system. Presentation layer

exposed interfaces for system consumers such that agriculture officers (admins, agriculture

field officers), Farmers, Researchers, generic users etc. Application logic layer includes the

API service and the web app which handles all the business processes and logic in the

considered domain such as agricultural data management (insert, update, delete agricultural

data, search options, authorization, login/logout functionality, report generating functions,

message broadcasting functionality, free advertising service functionality etc.). Data Layer

holds all the domain related data.

Python language is used to build the backend of the web application as it supports for building

scalable and maintainable web applications using different web frameworks/libraries like flask,

Django etc. Python is renowned for its high-level nature, readability, and extensive library of

modules and packages, which contribute to faster and more efficient development processes.

Flask is used as the web framework for building the application as it is flexible and easy to use,

making it a popular choice for building RESTful APIs. A relational database - MYSQL

database is used for the data storage requirement of the application. React is used to build Web

application front end. The mobile application is built using flutter for android. As the

application was built as a modular service, like react based web frontend application, python-

based flask API, and data persistence, any supportive cloud service can be used to deploy this

system in production convincing that the design of the project more flexible.

In addition, cloud-based systems, integrating APIs, web applications, and cloud-hosted

databases, yield scalable, cost-efficient solutions with global accessibility, fostering rapid

development and high reliability (Petrillo et al., 2016). This approach enables seamless

integration, ensures security and compliance, and streamlines maintenance, empowering

enterprises to innovate effectively and maintain competitiveness.

33

3.3.1 Frontend and Backend Module Overview within the System Architecture

The design of the “Ceylon AgriData” system is structured around two core separate services:

the frontend and the backend. The frontend serves as the GUI, encompassing both the mobile

and web application UIs, while the backend handles business logic, data persistence, and

communication scenarios as indicated in Figure 3.23. Integration with third-party services like

Gmail API and mapping tools enhances functionality.

Application Logic Layer

API Web App

Cloud

Data Layer

Internet

Mobile App UI

Representation Layer

Web UI (Dashboards)

Users

Figure 3.22: High-level solution architecture of the "Ceylon AgriData" system

34

In the frontend, the API service manages all HTTP requests centrally, using the Axios library

for efficiency. The React Components module maintains UI elements for a unified user

experience, ensuring clarity and modularity in development. The backend comprises key

modules including ‘Models’, ‘Schemas’, and ‘Routes’. Models define entity structure, while

Schemas provide structured data representation for consistency. Routes coordinate data flow

and operations, exposing endpoints for client interaction. High level diagram of modules

designed as per system architecture is in Figure 3.24.

Together, these modules form a robust system for agricultural management, facilitating

efficient data handling and functionality implementation. This structured approach ensures

coherence, scalability, and seamless communication between frontend and backend

components.

Figure 3.23: Frontend and Backend overview of the "Ceylon AgriData" system

Figure 3.24: High level diagram of modules designed as per system architecture

35

3.4 Justification of selecting React and Flask in the project

React and Flask were chosen for their strengths: React's component-based architecture

simplifies UI management, virtual DOM optimization ensures faster rendering, and state

management is enhanced with React Hooks. Flask's lightweight framework and support for

various ORMs streamline development. Both benefit from rich ecosystems of third-party

libraries for additional functionality, as outlined in Table 3.3.

Table 3.3: Justification of selecting React and Flask in the project

React Flask

Component-based architecture

React allows to build UIs using component-

based architecture, making it easier to

manage and reuse.

Framework

Flask uses Python, a dynamically typed

language. No need to declare types.

Flask is a lightweight web framework for

Python.

Virtual DOM

React’s virtual DOM implementation

optimizes performance by only updating the

parts of the DOM that have changed,

resulting faster rendering

Project Structure

Flask projects typically have a simpler

structure

State Management

React provides various options for managing

application state, such as React’s built-in

state management; React Hook functions

such as useState and useEffect.

Configuration

Flask uses Python code for configuration,

typically in the form of function decorators

or configuration files.

Third-party libraries

Axios – HTTP client for the browser and

handles responses in react applications,

React-Leaflet – Integrate maps in react

applications,

React-Bootstrap – pre-designed UI

components for rapid development etc.

ORM

Flask supports various ORMs (Object-

Relational Mappers) like SQLAlchemy for

interacting with databases.

36

3.5 UML Diagrams

Unified Modeling Language (UML) diagrams are essential tools in software development,

offering standardized visual representations for design, structure, and behavior aspects of a

system and these diagrams bring multiple advantages, facilitating comprehension,

communication, and implementation of intricate software systems (Dennis, 2012).

3.5.1 Use case analysis

Use cases are used to describe how users interact with a system to achieve tasks. They help to

understand the steps needed for users' goals and can lead to detailed functional requirements

stated in chapter 2. Use cases are important for various development methods and are especially

helpful for systems involving user interactions. Figure 3.25 represents the use case diagram of

the system, “Ceylon AgriData”.

Actors of the system are the persons who interact with the system;

 Admin : Person who has access to overall system “Ceylon AgriData”.

 Agricultural field officers: Person who has access only to privileged area.

 Farmer , researcher, generic user are the persons who interact with the system to have

services.

Use case descriptions of particular actors are as follows.

1. Admin:

 Admin logins/sign in the system

 Manage agricultural field officers and other users

 - Admin verify other users sign-up requests.

 - Assigns officers to specific fields as needed.

 Manage aid funds information

-Manages funding aids receives (fuel, fertilizer, pesticides, monetary etc.) by the

government in the system

 Generate Reports

-Generates various reports including officer details, crop cultivation, farmer details, aid

distribution, etc.

 Broadcast messages

 -Broadcasts messages to officers for reliable message dissemination

 View public reports

37

 View published advertisements on webapp

 Sending requested data to researchers and maintain its records

2. Agriculture Field Officer:

 Registration

-The agriculture field officer signs up via the mobile application or webapp, providing

necessary details.

 - A request is sent to the regional admin for verification and approval.

 - Upon approval, the agriculture field officer receives an email confirmation and gains

access to the system.

 Manage Farmers

- After logging in, the Agriculture Officer adds/updates/views farmer details through

mobile or web applications. (Using mobile application in field visits are more

convenient)

 Manage Farm Information

- logs in the system and adds/updates/views farm details via the mobile or web

application.

 - Geographical location can be added via the mobile application during field visits.

 - or, manually can be added using web application.

 Manage Cultivation information

 - Add/update/view cultivation details and upload them to the system.

 - Cultivation details can be updated at any time, and past records are accessible.

 - Eligible farmers must be registered in the system beforehand.

 Manage Fertilizer Distribution

 - Update the system with aid distribution details for their assigned area.

 - Eligible farmers must be registered in the system beforehand.

 Manage Fuel Distribution

 - Updates the system with aid distribution details for their assigned area.

 - Eligible farmers must be registered in the system beforehand.

 Manage Pesticides Distribution

 - Update the system with aid distribution details for their assigned area.

 - Eligible farmers must be registered in the system beforehand.

 Manage Monetary Distribution

38

-Update the system with aid distribution details for their assigned area.

 - Eligible farmers must be registered in the system beforehand.

 Manage miscellaneous aid distribution

 - Update the system with miscellaneous aid distribution details for their assigned area.

 - Eligible farmers must be registered in the system beforehand.

 Manage Disaster Information

 - Update disaster damage details for affected cultivations in their field area.

 Manage Disaster Information

 - Update disaster damage details for affected cultivations in their field area.

 Verify Advertisements of farmers in free advertising service portal

 Generate Reports

-Generate reports on cultivation, farmer, disaster damage, and aid distribution details

with various filters.

 View public reports on web application

 View published advertisements on webapp

 Broadcast messages to farmers

3. Farmer:

 Registration

 - Farmers are registered to a field area by the Agriculture Officer.

 - Upon registration, farmers create an account in the system for marketplace access.

 Publish advertisements

- Registered farmers publish/view/update/remove advertisements for their harvest in

the marketplace.

 - Advertisements are verified by the agricultural field officer before publishing.

 View public reports and dashboard

 - Farmers generate reports on cultivation and harvest information.

 View published advertisements on webapp

4. Researcher

 View Public Reports/Dashboard

 - Researchers view public reports and dashboard on agricultural data.

 View published advertisements on webapp

39

 Request data

- Researchers contact agriculture office by sending messages through "contact us"

feature to request data.

5. Generic User

 View Public Dashboard and Reports

 - Users view public dashboard and reports provided by the system.

 View published advertisements on webapp

 Request data

-Contact agriculture office by sending messages through "contact us" feature to request

data.

Admins and agriculture field officers have the capability to generate reports essential for

official tasks and informed decision-making within the sector. The system provides various

data representations and supports the download of agriculture data to facilitate this process.

Users can specifically generate reports using filters available in the report section. Appendix A

provides a comprehensive overview of the MIS reports that can be generated and visualized

within the "Ceylon AgriData" system.

3.5.2 Process Modelling

Process modeling is a technique used to visually represent and describe the sequence of

activities, tasks, and interactions within a system or a workflow. Process modeling helps in

understanding the flow of work, identifying potential bottlenecks or inefficiencies, and

improving the overall efficiency and effectiveness of a process (Dennis, 2012).

Manage users (registration, authenticate login),, manage Agri-Information (farms, cultivation,

disasters etc.), manage Agri-aid information (money, pesticides, fertilizer, fuel etc.), manage

free advertising service, data processing (upload and retrieve to cloud), data representation

(represent Agri-Information for decision making etc.), broadcasting message service are

included the main business processes in the "Ceylon AgriData" System.

Activity diagrams are the commonly used graphical representations to illustrate flow of

activities, actions and decisions in the system. Figure 3.26 represents the activity diagram for

registering a new farmer and add his farm and cultivation details using mobile application by

agriculture field officer.

40

Figure 3.25: Use case Diagram of the System "Ceylon AgriData"

41

Figure 3.26: Activity diagram for register a new farmer and adding his farm, cultivation
details into the system by Agri field officer

42

Figure 3.27 depicts the activity diagram illustrating the process of generating agriculture

reports by an agriculture field officer. And, Figure 3.28 illustrates the activity diagram outlining

the procedure for advertising reports by a farmer.

Figure 3.27: Activity diagram to generate agricultural reports by a agriculture field officer

43

3.5.3 Data Modelling

Data modeling in software design involves creating a structured representation of how data will

be organized, stored, and interacted with within a software system. It assists in designing a

database schema and ensuring that data is accurately captured and processed according to the

software's requirements. All data related to various business processes is stored in the data

layer. For a detailed description of the tables used in the database pertaining to these data layer

functionalities, please refer to Appendix B and Appendix C. Figure 3.29 illustrates the database

model of the “Ceylon AgriData” system.

Figure 3.28: Activity diagram for publishing advertisements by farmer

44

Figure 3.29: Database model of "Ceylon Agridata" system

45

3.6 Summary

Chapter 3 presents the comprehensive design architecture for the "Ceylon AgriData" system,

aimed at addressing decision-making challenges in Sri Lanka's agricultural sector through

technology integration. The design encompasses a mobile application, a website, a cloud-based

platform, and databases, facilitating data collection, accessibility, and decision-making

support. Utilizing Object-Oriented Design and a top-down approach, the system achieves

modularity and scalability. The architecture follows a service-oriented multi-tier approach,

with distinct layers for presentation, application logic, and data storage, ensuring effective

separation of concerns and promoting scalability and maintainability. Leveraging Python,

Flask, React, and MySQL, the system boasts a flexible and efficient backend, complemented

by a robust frontend. The chapter provides a detailed breakdown of system modules, frontend-

backend interactions, design strategies, justification for technology selection, UML diagrams,

and process modeling. Additionally, it outlines use cases for various user roles, including

admins, agriculture field officers, farmers, researchers, and generic users. Furthermore, the

chapter includes activity diagrams for key processes and a data model description for the

database schema. Together, these elements offer a comprehensive overview of the system's

design, emphasizing its potential to revolutionize Sri Lanka's agricultural landscape.

46

Chapter 4 – Implementation

4.1 Introduction

This chapter includes the implementation process of the project aimed at modernizing data

collection in Sri Lanka's agricultural sector. The objective is to create a comprehensive system

comprising a mobile application and a cloud-based platform. Transitioning to a cloud-based

system improves efficiency by replacing outdated paper methods, enhancing data accuracy,

accessibility, and collaboration among stakeholders. The project targets the Sri Lankan

agricultural sector focusing on efficient field data collection to facilitate decision-making.

4.2 Implementation Methodology

The "Ceylon AgriData" system utilizes a service-oriented multi-tier architecture, which

features separate layers for presentation, application logic, and data storage. The presentation

layer comprises both a mobile application and a wbapp, developed using Flutter and React,

respectively. The application logic is encapsulated in a REST API implemented using Python

Flask. Data storage is managed through a MySQL database.

The system integrates these components into a cohesive whole and utilized third-party

integrations to enhance the user experience, as detailed in section 4.5. The frontend components

are developed independently, while the backend is structured into schemas, models, and routes,

with connectivity to the database facilitated by an ORM (Object-Relational Mapping) tool such

as SQLAlchemy.

 Implementation, resulted in the creation of a mobile application and a React web application

designed for agricultural data acquisition and visualization. Detailed user manuals for mobile

application can be found in Appendix K and UIs of Webapp resides in Appendix L.

4.3 Implementation Environment

The "Ceylon AgriData" system was implemented on a machine running the Microsoft

Windows operating system and its software requirements are summarized in Table 4.1.

4.3.1 Front-End Implementation Environment

1. “Ceylon AgriData” Mobile ApplicationThe mobile application was ingeniously

crafted using the Dart programming language in conjunction with the Flutter

47

framework, enabling the development of natively compiled applications for mobile,

web, and desktop from a single codebase.

2. “Ceylon AgriData” Webapp

The web component of the project was developed with JavaScript – React framework,

leveraging its powerful in-built server capabilities to foster an agile development environment.

JavaScript served as the base for building the frontend components, facilitating functionalities

such as user input validation, data manipulation, and asynchronous communication with the

backend server. The utilization of React’s CLI commands, ‘$ npm build’ for compiling the

application's source code into a production-ready bundle, and ‘ $ npm start’ for launching a

development server.

To facilitate the development and deployment of the frontend components, an environment

powered by Node.js and NPM (Node Package Manager) was established. Node.js provided a

robust runtime environment for executing JavaScript code outside of a web browser, enabling

server-side rendering of React components and efficient dependency management. Meanwhile,

NPM served as a crucial tool for installing, managing, and updating the countless of third-party

libraries and dependencies required for frontend development. This comprehensive toolset

empowered developers to harness the full potential of modern web development practices,

ensuring the creation of a sophisticated and responsive user interface tailored to the unique

requirements of the agricultural data management system.

The system's diagrams were crafted using Draw.io, an open-source, cross-platform tool

renowned for its diagramming capabilities. Meanwhile, Canva, a versatile graphic design

platform, was employed to edit and design all images utilized within the mobile application

and website, offering a user-friendly interface and a plethora of design options for professional-

grade visuals.

4.3.2 Back-End Implementation Environment

A virtual machine was set up to host the backend services, with Flask, A lightweight and

versatile web application framework, installed to manage the REST API. The command ‘$

flask run’ was employed to initiate the Flask development server. Flask served as the backbone

of the backend system, providing a lightweight yet powerful foundation for handling HTTP

requests and responses. Leveraging Flask's modular design, developers were able to seamlessly

48

define routes, handle authentication, and integrate various middleware components to enhance

functionality and security.

Complementing the Flask framework, Flask-Cors version 4.0.0 played a pivotal role in

enabling cross-origin resource sharing (CORS) within the backend system. This crucial

extension facilitated seamless communication between the backend server and the frontend

client, allowing for the exchange of data across different domains without encountering

browser security restrictions. Flask-Cors helps to implement robust API endpoints and ensure

smooth interoperability between different kind of components of the agricultural data

management system.

To streamline dependency management and package installation within the backend

environment, ‘Pip’ was employed as the primary package manager. Pip facilitated the seamless

integration of third-party libraries and extensions, allowing developers to augment the

functionality of the Flask framework with ease.

4.3.3 Data Persistent and Management Environment

In this project, we used MYSQL as the database for data persistence. MySQL is an open-source

database that can handle large volumes of data and can scale to accommodate growing

applications with large data amounts, as we expect for AgriData. This is famous for its good

community support, reliability and security as a relational database. Further, it is relatively easy

to learn, install, configure and manage for developers. In the development environment,

WAMP server is used to host the MYSQL database. WAMP server seamlessly connects the

database to the backend API, facilitating efficient data exchange. Figure 4.1 illustrates the

MYSQL database in WAMP Server.

Figure 4.1: MYSQL database in WAMP Server

49

Figure 4.2 :SQL Alchemy used in the project with model class- User

Figure 4.3: SQL Alchemy query builder example

As We use SQLALchemy ORM - Object relational mapping library, a python SQL toolkit that

can be used to interact with relational databases using python. It helps to work with databases

in an object-oriented way and reduces the complexities of SQL queries to the databases to some

extent. One of the main benefits is that supporting multiple databases such as SQLite, MYSQL,

Oracle SQL etc. it supports SQL queries using query builder as shown in the code snippet in

Figure 4.2 and Figure 4.3. See Appendix B for other database models used in the project.

50

It was able to seamlessly integrate it with the Flask web application with SQLite & MYSQL

database in this project. SQLite was used only for development purposes in the initial stage of

implementation before switching to MYSQL. For Data serialization, we used a python library

called "‘Marshmallow’ a lightweight serialization library, which plays a key role in defining

data schemas and transforming complex data structures to and from JSON format in this

backend service of the system. See Figure 4.4 for Marshmallow schemas defined in the project

backend. See Appendix C for other schemas used in the project.

Figure 4.4: Schemas using ‘Marshmallow’

Summarized details regarding the frameworks, programming languages, IDEs, and other

essential tools that utilized in the project are provided in Table 4.1. And, the related hardware

implementation environment of “Ceylon AgriData” mobile application is as follows in Table

4.2.

Table 4.1: Summarization of hardware implementation environment of "Ceylon AgriData

 Hardware Environment

Mobile Application 12th Gen Intel(R) Core (TM) i5-1235U 1.30 GHz, RAM

16.0 GB (15.7 GB usable)

 Used, Android Mobile Phone instead of Virtual Emulator.

Samsung A30– with Android version 11, 4GB Ram

Website 12th Gen Intel(R) Core (TM) i5-1235U 1.30 GHz, RAM

16.0 GB (15.7 GB usable)

51

Table 4.2: Summarization of software Environment of " Ceylon AgriData" system

4.4 Utilized Pre-Built Libraries and Frameworks

The project is utilized with pre-built React components and layout structures, as well as Flask

libraries and extensions in Python. It also incorporates Material UI and Core UI: UI component

libraries for React applications, along with Python Google libraries for various functionalities

provided by Google's APIs. Table 4.3 summarizes its description and sources separately.

 Frameworks/

Database

Mgt

Software

Programming

Language

Web Servers IDE Other

Necessities

Mobile

Application

Flutter Dart - Android

Studio

Ngrok,

Canva

Draw.io

Website

(Front-

End)

React- version

18.2.0

JavaScript React Inbuilt

Server (Node.js

version 18.16.0

and npm version

9.5.1)

VS Code Canva

Draw.io

REST API

(Back-End)

Flask- version

3.0.0

Python Flask

Development

Server

VS Code Flask-Cors

version 4.0.0

Pip version

19.2.3

Database MySQL

version 8.0.31

Python Apache version

2.4.54.2 (Wamp

Server version

3.3.0 64 bit)

- SQLAlchemy

version 2.0.21

Marshmallow

version 3.20.1

52

Table 4.3: Utilized pre-built libraries and frameworks in “Ceylon AgriData”

Category Description Source/Reference

React Template

Pre-built React components

and layout structure for web

development

Custom development / Open-source

libraries

Flask Libraries

Libraries and extensions for

the Flask web framework in

Python Flask Documentation / PyPI

Material UI & CoreUI

UI component libraries for

React applications,

providing pre-designed

components Material-UI / CoreUI

Python Google Libraries

Python libraries provided by

Google for various

functionalities Google APIs Python Client Library

Flask JWT Token

Library for generating JSON

Web Tokens (JWT) for

authentication in Flask apps Flask-JWT-Extended

4.5 Integration of Third-Party Services

The project integrates third-party services to enhance its functionality and user experience. One

key integration involves leveraging the Leaflet.js library for interactive mapping on the web,

utilizing its API to customize maps and integrate with other web technologies. Additionally,

Google APIs, particularly the Gmail API, are utilized for seamless email integration, requiring

OAuth 2.0 authentication and API calls integration for secure access and efficient management

of email data within the application. See Table 4.4.

53

Table 4.4: Third-party services utilized in "Ceylon AgriData" application

Third-Party Service Description Provider

Leaflet Mapping JavaScript library for interactive

maps on the web

Leaflet.js (Volodymyr

Agafonkin, 2010)

Google APIs-Gmail APIs provided by Google for

integrating Gmail functionality into

applications

Google (Google Cloud

Console)

Google Auth

Playground

Tool Provided by Google for testing

and debugging OAuth authentication

flows

Google Developers

4.6 Explanation of Key Code Sections

To elucidate the coding flow in both the mobile application and web application, it is segmented

into two sections: the mobile app and the web app. Several major use cases to illustrate this:

logging into the system, inserting agriculture data, message broadcasting, representing

agricultural data using interactive ‘Choropleth Map’ of Sri Lanka. Specifically, the requisite

backend support with REST API and database integration will be discussed within. For further

insights into code explanations, please refer to Appendix E.

4.6.1 Logging into the system

1. Mobile application login functionality

The mobile application is exclusively designed for use by agriculture field officers. The Flutter

code snippet for implementing the login functionality is outlined below.

The code snippet of building the “Login Page” UI presents in Figure 4.5(a) and Figure 4.5(b).

It constructs a scaffold with a centered body, containing a single child scroll view and padding

for layout consistency. Within the scroll view, the UI elements for the login form are organized

vertically in a column. These elements include an image asset for the logo, text form fields for

username and password entry, an elevated button for submitting the login credentials, and

additional UI components for dividing the form sections and displaying options for registration.

54

Figure 4.5 (a):Code snippet of building the “Login Page” UI

The Login Page UI is in Figure 4.5 (c).

Figure 4.5 (b): Login Page UI of mobile
application

55

Figure 4.5 (b): Code snippet of building the “Login Page” UI

The code snippet in Figure 4.6 (a) and (b) defines a method named “_login()” responsible for

handling the login functionality in a Flutter application. Within this method, a constant string

“apiUrl” is declared, representing the endpoint URL for the login API. Then, an asynchronous

HTTP POST request is sent to this API URL using the “http.post()” method from the “http”

package. The request includes headers specifying the content type as JSON, and the request

body is encoded into JSON format using “jsonEncode()”. The body contains the user's email

and password obtained from text form controller “username” and “password”. The method

executes asynchronously and awaits the response from the API.

Figure 4.7 checks the response status code received from the login API. If the status code is

200 (indicating a successful response), the JSON response body is parsed into a map of string-

dynamic pairs using “jsonDecode()”. The role value is extracted from this map, along with

other user details like token, first name, last name, email, and user ID. Depending on the user's

56

role, if it equals 4, indicating an agriculture field officer, the application navigates to the home

page using “Navigator.pushReplacement()”. If the role is not 4, indicating an invalid login

attempt, a toast message displaying "Invalid login" is shown using “Fluttertoast.showToast()”.

If the response status code is not 200, indicating a failed login attempt, an alert dialog is

displayed with the title "Login Failed" and a message indicating "Invalid username or

password", prompting the user to dismiss the dialog by pressing the "OK" button.

Figure 4.6: Code snippet of Login function in mobile application

Figure 4.7(a): Code snippet of checking response status code and preview relevant notifications

57

Figure 4.7(b): Code snippet of checking response status code and preview relevant notifications

When the mobile application sends a POST request to the login API, it triggers the

corresponding endpoint in the REST API. The relevant code snippet for this API endpoint is

provided in Figure 4.8(a) and (b).

Figure 4.8 (a): Code snippet for Login endpoint of REST API

58

Figure 4.8 (b): Code snippet for Login endpoint of REST API

When a POST request is made to this route “/user/login”, the function “login()” is executed.

The function checks if the request is in JSON format or form data and extracts the email and

password accordingly. It then attempts to authenticate the user by querying the database with

the provided credentials using the “user_login()” function. If authentication is successful, an

access token is generated using “create_access_token()” function, and a JSON response is

returned with a success message, access token, user role, first name, last name, and user ID. If

authentication fails, a JSON response with an error message and HTTP status code 401

(Unauthorized) is returned. The “user_login()” function queries the database for a user with the

provided email and password and returns the user object if found. Finally, the

“get_access_token()” function generates an access token for the authenticated user, which is

then returned.

1. Web application Login Functionality

Code snippets pertaining to the frontend of the web application are detailed below. See Figure

4.9(a) for the UI in Web app. The React code snippet for implementing the login functionality

is provided in Figure 4.9(b). This code snippet represents a modal component for user login

functionality in a web application built with React. The modal includes input fields for the

user's email address and password, along with buttons for signing in and registering. The

“show” and “handleClose” props control the visibility of the modal and its closing action. The

user input for email and password is captured using the “Form.Control” component and stored

in the “username” and “password” state variables, respectively. The “password” function is

called when the “Sign In” button is clicked, while the “handleRegister” function is called when

59

the “Register” button is clicked. Figure 4.10 shows the modal built from the above explained

code snippet.

Figure 4.9(b): Code snippet of building login modal in web application (front end)

Figure 4.9(a): UI modal of Login in web application

60

Figure 4.10 shows the code snippet of the login function in web application front end. It

verifies if the username and password fields are filled, then sends a POST request to a login

endpoint with the provided credentials. If successful, it validates the user with the received

token for further authentication.

Figure 4.10: Code snippet of login functionality in web application front end

When the API sends a response, the frontend of the web application validates the response

status to display the relevant messages. This functionality is implemented in the code snippet

shown in Figure 4.11(a) and Figure 4.11(b). User validation code snippet is in Figure 4.12.

61

Figure 4.11 (a) :Code snippet of validating the API response

Figure 4.11(b):User validation code snippet of webapp (front end)

62

Figure 4.12: Code snippet of validating the API response

4.6.2 Inserting agriculture data into the system

The primary categories of agricultural data to be incorporated into the system include details

regarding farmers, farms, cultivations, aid distributions, and disasters. Among these, the code

snippets pertaining to "adding cultivation information" are integrated within following

sections.

Refer Appendix D, E and F for selected coding snippets of mobile application, web application

and REST API of the project.

63

1. Add cultivation information through mobile application

Code snippet represents a user interface in Flutter for adding cultivation details is in Figure

4.14. It consists of various input fields for entering information such as farm ID, location

details, crop details, cultivation area, estimated harvest, dates, agri year, quartile, and net yield.

Users can also retrieve location details and select dates using date pickers. Upon filling out the

required fields, users can submit the form, which triggers the function

“_performLogCultivation(). Additionally, users can navigate back to the home page using the

home button on the app bar. Thus built UI is in Figure 4.13.

Figure 4.13:UI for add cultivation details in mobile application

64

Figure 4.14:Code snippet represents a user interface in Flutter for adding cultivation details

65

Get Current location

This code in Figure 4.15 creates a button labeled "Get Current Location" with an edit location

icon. When pressed, it calls the _performGetLocation(context) function to retrieve the current

location. The code in Figure 4.16 defines that asynchronously retrieves the current location. It

opens a new screen using to get the location details. After receiving the result from the new

screen, it updates the latitude and longitude text fields with the obtained.

“GetCurrentLocation” in Figure 4.16 utilizes the geolocator and geocoding packages to fetch

the location coordinates and address details. See Appendix G for more information. The screen

includes a Google Map widget to visualize the location, buttons to fetch the current location

and confirm it, and text widgets to display latitude, longitude, and address information in Figure

4.17.

Figure 4.15: Code snippet for get current location button in frontend UI in mobile application

Figure 4.16: Code sippet regarding the function that gets location

66

When press the “Submit” button in Figure 4.13, it asynchronously sending a POST request to

a specific API endpoint to log cultivation details. It begins by defining the URL of the API.

Using the “http” package, it constructs and sends the POST request to the designated endpoint,

incorporating necessary headers like content type and authorization token. The body of the

request is formed by encoding cultivation details such as farm ID, crop ID, display name,

cultivation start date, estimated harvesting date, longitude, latitude, area of cultivation,

estimated harvest, agricultural year, and quarter as JSON. Before sending, it ensures

appropriate data types by parsing relevant text field inputs. After the request is made, the

function awaits the response. This process facilitates the inserting of cultivation information

via an external API. The relevant code snippet is in Figure 4.18.

Before Press “Get Current Location Tab” After Press

“Get Current Location Tab”

Figure 4.17: UIs of get current location functionality in mobile application

67

Figure 4.18: Code snippet of sending post request to API to insert cultivation information from mobile application front-end

The authorization token is used for authentication, ensuring that only authorized users can

access the cultivation information endpoint. It validates the identity of the client making the

request.

Figure 4.19 showcase the code snippet of Flask route for adding cultivation information. It

requires JWT authentication. It extracts data from the request, checks if farm and crop IDs

exist, creates a new cultivation record, adds it to the database, and returns a success message.

68

Figure 4.19: Code snippet of flask route of add cultivation information in REST API

2. Manage cultivation information through web application

The web application utilizes functions for inserting, updating, searching, and deleting

cultivation information. The Figures below display the relevant code snippets and UI elements

in the web application. See Appendix E for other selected agricultural data management code

snippets.

69

Figure 4.20 showcases the code snippet relevant to Tab pane, Figure 4.21. The code presents a

tabbed interface with three panes: one for adding new cultivation information, another for

searching existing information, and a third for updating details. This setup streamlines user

interaction, offering distinct functionalities for managing cultivation data efficiently within a

web application.

Figure 4.20: Code snippet of tab pane in manage cultivation information in web application

Each functionality: Add, search, and update-utilizes a designed form. The code snippet for a

single input text is depicted in Figure 4.22, while similar code structures for other

functionalities are present throughout. Specifically, Figure 4.23 illustrates the forms used for

managing the "Add Cultivation" functionalities.

Figure 4.22: The code snippet for a single input text in web application

Figure 4.21: Tab pane of manage cultivation information functionality in web application

70

After filling the form, when ‘Add Cultivation Info’ button pressed the ‘handleSubmit’ function

is triggered. It prevents the default form submission behavior, checks if any form field is empty

or null, and displays an alert message if any field is empty. If all fields are filled, it attempts to

add cultivation information by calling the ‘addCultivationInfo’ function asynchronously.

Depending on the response status, it sets a state variable to indicate successful addition or

displays an error message. The related code snippet is in Figure 4.24.

Figure 4.24: Handle submit function for calling 'Add Cultivation Information Function' that sends request to REST API

Figure 4.23:forms used for managing the "Add Cultivation" functionalities in web application

71

Figure 4.25 shows code snippet of making a POST request to the specified endpoint with the

provided form data. It first retrieves the authentication token from local storage, then sends the

POST request with the form data and includes the token in the request headers for

authentication purposes. If the request is successful, it returns the response object. If an error

occurs during the request, it checks the status code of the error response. If the status code is

400, it displays an alert message with the error message from the response data. Otherwise, it

logs the error to the console.

Figure 4.25: Code snippet of making a POST request to the specified endpoint

Update, delete, and search endpoints are invoked from the web application frontend using a

similar approach as described earlier. Below are the code snippets for these endpoints in the

REST API in Table 4.5.

72

Table 4.5: code snippets for Update, delete, and search endpoints in the REST API

Code Snippet Description

Search

Description

 Defines an endpoint for updating cultivation information

 Receives a PUT request with the ID of the cultivation information to be updated.

 Checks if the record exists and if the provided farm and crop IDs are valid.

 If everything is valid, it updates the cultivation information record with the provided data and

commits the changes to the database.

 Also handles optional fields like harvested date and amount if provided

73

Update

Description

 Defines an endpoint for searching cultivation information based on various filter parameters

such as farm ID, crop ID, agricultural year, and quarter.

 Receives a GET request with optional query parameters and constructs filter conditions based

on the provided parameters.

 Searches for cultivation information records matching the filter conditions.

 Paginates the results, and returns them along with pagination metadata.

74

Delete

Description

 Defines an endpoint for deleting cultivation information.

 Receives a DELETE request with the ID of the cultivation information to be deleted.

 Checks if the record exists, and if so, it deletes the record from the database and commits the

changes.

 Returns a success message upon successful deletion or a message indicating that the record

was not found if it does not exist.

Get cultivation location using Map in web application

When the "Use Map" button (in Figure 4.23) is clicked, the click event is handled by the

function "handleSetGPSLocation" with the parameter set to true. Inside this event handler

function, the state variable "isMapOpen" is changed using the "setOpenMap" useState function

in React. Subsequently, as "isMapOpen" is set to true, the map view of the "SelectArea"

component is opened. Within the "SelectArea" component, the map is loaded using React

Leaflet components, allowing the user to select a location using a marker icon as in Figure

4.29. After the user clicks on the save button, the coordinates are saved in the local storage

75

(Evidence in Figure 4.27). Finally, when the user clicks on the close button, the map view is

closed, and the saved coordinates are set to the "formData" state coordinates fields in the

"handleSetGPSLocation" function. Consider the code snippet in Figure 4.28 (a) and Figure

4.28(b).

Figure 4.28(a): Code snippets of getting longitude and lattitude of cultivatin location in web application using leaflet

76

Figure 4..28(b): Code snippets of getting longitude and lattitude of cultivatin location in web application using leaflet

Figure 4.27: Local storage saves the selected coordinates

Viewing the map

In the search result data cell, when the user clicks on the "View Map" button as depicted in

Figure 4.29, the event handler function alters the state of "isMapOpen" and sets the relevant

coordinates in the local storage for use in the ShowMap component. Subsequently, the

ShowMap component is rendered within the search form using an if condition and, previewed

77

Previewed map container when "View Map" , clicked in web application

map container is illustrated in Figure 4.30. The related code snippets are presented in Figure

4.31.

Figure 4.26: Preview map when “Use Map” button is clicked in add cultivation information functionality in web application

Figure 4 .29: Preview of search results in search cultivation information in web application

78

Figure 4.29: Preview map when “Use Map” button is clicked in add cultivation information functionality in web application

79

Figure4.31: Preview of total harvest in selected timeframe

4.6.3 Generating Reports

Different types of reports are available for generation within the "Ceylon AgriData" system.

Among these options, report generating of cultivation information is discussed here. For a

comprehensive list of reports that can be generated, refer to Appendix A.

Generating reports on cultivation information functionality

1. Report 1: Estimated harvest vs Actual harvest

 The code snippet in Figure 4.30, renders a card body that facilitates the display and interaction

with harvest data pertaining to a specified time range. It begins with a title indicating the total

harvest within the defined period, followed by a textual representation of the start and end dates

of the selected timeframe obtained from the ‘formData’ state. A dropdown menu allows users

to select the year, triggering the ‘handleYearChange’ function upon selection change. The

centerpiece of the component is a bar chart (‘CChartBar’) presenting expected and actual

harvest amounts for various crops. These datasets are dynamically populated using the

‘harvestData’ state, with each bar representing a different crop. The chart's colors distinguish

between expected and actual harvest amounts, offering users a clear visual representation of

cultivation performance over time. Figure 4.31 showcases the output of the above-described

code snippet.

80

Figure 4.30: Code snippet of display and interaction with harvest data in a specified time range in web application

The code snippet in Figure 4.32, ‘HarvestEstimatedVsActual’ component is a functional React

component responsible for fetching and displaying harvest data. It utilizes React's ‘useState’

hook to manage state variables such as harvestData, year, and formData. The ‘useEffect’ hook

is employed to trigger a data-fetching function when the component mounts or when the

selected year changes. This function, implemented using the axios library, fetches harvest data

from the server based on the selected year and updates the harvestData state variable

accordingly.

81

Figure 4.32: Function of sending API call to get harvest data to specified route in REST API

Code snippet in Figure 4.33 describes the REST API endpoint for the above-described scenario.

This code defines a Flask route that handles GET requests for fetching aggregated data on

harvested and estimated harvested amounts of crops for a specified agricultural year. It queries

the database to aggregate this data and returns it as JSON, including crop IDs, total harvested

amounts, estimated harvested amounts, and crop names.

Figure 4.33:Flask route that handles GET requests for fetching aggregated data on harvested and estimated harvested
amounts of crops for a specified agricultural year

82

Figure 4.35: displaying a map and filtering data based on user selections

2. Crop Yield Report
Code snippet in Figure 4.34(a), Figure 4.34(b) builds a React component called

‘LankaMapByCropYieldAdmin’ responsible for displaying a map and filtering data based on

user selections (see Figure 4.35). The component renders a form allowing users to select

various parameters such as crop type, year, month, province, district, and office. When it makes

selections, the component sends requests to the backend API using Axios to retrieve data based

on the chosen parameters. The received data is then used to update the map dynamically, on

the map based on the total harvested crops amount in different districts. The map is rendered

using the ‘MapContainer’ component from the ‘react-leaflet’ library (see Figure 4.36).

83

Figure 4.34 (a): Code snippet for rendering a map interface related to crop yield

Figure 4.36: Code snippet for setting up map container using mapContainer from react-leaflet library

API Call

84

Figure 4. 34(b): Code snippet for JSX structure for rendering a form interface for selecting various parameters related
to crop yield reporting

Code snippet in Figure 4.37 defines a Flask route to handle GET requests to the ‘/crops’

endpoint. The route is protected by JWT authentication, ensuring that only authenticated users

can access it. When a GET request is received, the function ‘crops()’ is executed. This function

retrieves all crop records from the database using SQLAlchemy's query interface and serializes

them into JSON format using a Marshmallow schema named ‘crops_schema’. The serialized

data is then returned as a JSON response to the client using Flask's ‘jsonify()’ function. In

essence, this route provides authenticated users with access to a list of crop data stored in the

database, facilitating interactions between the frontend and backend of the application.

Figure 4.37: Flask route for fetching crop records with authentication. (REST API)

85

Figure 4.38: frontend User interface of the Field map report form

3. Field Mapping Report

Among the various types of reports supported by the system, the field mapping report is used

to represent the geo location related data of the cultivations. According to the user input, Data

is filtered and retrieved from the backend and it is shown in the map using React-leaflet.

The following Figure 4.38 shows the frontend user interface of the report generating

form. Users can download the data for relevant filters in CSV format by clicking the download

icon as shown in the following.

86

Frontend User interface implementation

This Figure 4.39 shows the form input components used to build the above UI form. When it

is filled by the user, relevant dropdowns are loaded according to the previous user selection.

Figure 4.39 :Form of the field mapping reports with dynamic option update with the user inputs

As shown in the following Figure 4.40, Crop types are retrieved from the database. The first

time the component is rendered, data is retrieved by a REST API request. The react useEffect

function is used to send the request and set the data in crop dropdown only once when the

component is rendered.

87

Once the crops are set to the drop down, users can select the crop type with other filters from

the form. When the province is selected, the relevant districts are added to the dropdown using

API request to the backend API as shown in the following Figure 4.41)

Figure 4.40: UseEffect to Run once when the component is rendered

Figure 4.41: Setting district and officers of the selected district to the state variables to be used in dropdowns

88

Figure 4.42: Code snippet for Setting marker data to the map

Once the filters are added, users will receive data from the backend service by the function

shown in Figure 4.42 and Figure 4.43. Then, the markers will be added to the map, and the

map is zoomed automatically according to the filters given. The code related to this

functionality is as follows.

Map data is set by the markersData state
variable

Handles automatically
zooming to the markers

89

Once the valid filters are provided, the map will be loaded as in the following Figure 4.44.

Figure 4.44: Markers shown in the map

Figure4.43: Code snippet of UseEffect hooks to retrieve data once input are filled, using API service function
“searchCultivationMapInfoByDistrictMonthlyOffice

90

Figure 4.45: Backend service function

Backend service function for field report

There are several functions used to filter the data and send the response to the request sender

as shown in below Figure 4.45.

91

4.6.4 Message Broadcasting

One of the main use cases of the requirement was to introduce a feature to directly send

messages to agricultural field officers and to the farmers. System allows admins and officers

to send and keep information on sent messages. The Figure 4.46 explains the implementation

of sending emails to system administrative role officers to agricultural field officers.

Sender gets two options to send messages to all officers or sending officers by given filters.

This form in Figure 4.47, is generated by React form as shown above. It uses react core-ui radio

buttons to get the user input and the selection is set to declared state variables using React's

Figure 4.46: Email sending feature in "Ceylon AgriData " system

Figure 4.47: UI of broadcasting emails feature

92

‘useState’ hook in the functional component. According to the state variable value, the input

elements are disabled as shown in Figure 4.48.

The state variable

Radio Buttons

Figure 4.48: Selection of recipients

93

Figure 4.49: API service function

When the user selects “Select all officers option” then, the user needs to select the province

that all officers should select. Once the province is selected and the subject and the message is

added, the user can click on the send message that calls an API service function to send the

request to the backend API along with the user inputs. Related code snippet is in Figure 4.49.

Spinner to be shown
until backend
response comes

API service
function to send
message to all
officer at once

API service function
to send message with
filters for officers

94

The following code snippet in Figure 4.50 is the API function calls that send the request to

Backend API with the details of the email message.

Figure 4.50: API calls that sends requests to backend API

The following code snippet Figure 4.51 shows the function that is called by the front-end

application as explained above. First, it gets all the officers in the given province, then it iterates

the email list using a for loop and it sends the emails and finally saves the response with relevant

information of each message in the database. If something goes wrong with dispatching emails

to Google, then those details can be checked using the email table from the database, as it saves

the response, ensuring better message sending functionality to the system.

REST API calls are
sent using Axios library

Calling backend APIs with
Authorization header with

token of the users

95

Figure 4.51: Backend API function that is called by frontend

For Google API call authentication, the service is needed to set the client id, client secret and

access token, refresh token as configurations in the initialization of the system. Here, the

authorization grant type of OAuth2.0 is used as recommended by the google. These tokens can

be generated using the following link for google support docs.

Link:https://developers.google.com/gmail/api/auth/scopes#configure_oauth_20_for_authoriz

ation

Getting all officers in
the given province

Sending Email using
Google Gmail API with
provided google library
functions

Saving sms details in
the database

96

4.7 Summary

Chapter 4 explores the technical aspects of implementing the "Ceylon AgriData" system, which

aims to modernize data collection in Sri Lanka's agricultural sector. The chapter details the

adoption of a service-oriented architecture, employing Flutter and React for the frontend,

Python Flask REST API for the backend, and MySQL for data storage. The implementation

ensures efficiency, accuracy, and scalability. Third party libraries and services such as

Leaflet.js and Google APIs enhance functionality. Detailed explanations of code components

cover user authentication, routing, HTTP request handling, and business logic implementation,

highlighting best practices in software development. The integration of security measures like

JWT authentication and CORS configuration underscores the system's reliability. Overall, the

chapter provides a comprehensive guide to the technical implementation of "Ceylon AgriData,"

showcasing its innovative approach to agricultural data management.

97

Chapter 5 – Testing and Evaluation

5.1 Introduction

The ‘Ceylon AgriData’ platform is designed to enhance the efficiency and productivity of the

agricultural sector. It integrates various stakeholders, including administrators, agriculture

officers, farmers, vendors, and researchers, facilitating a seamless exchange of information and

resources. This chapter provides an overview of the rigorous testing process undertaken to

determine the reliability, functionality, and user-friendliness of the ‘Ceylon AgriData’ system.

5.2 Related Testing Types Utilized

In the development of the "Ceylon AGriData" system, various testing types were employed to

ensure its robustness and reliability. These included unit testing, integration testing, end-to-

end testing, cross-browser testing, and user acceptance testing. Unit testing focused on

verifying individual units or components. Integration testing validated the interaction between

different modules for testing the backend API's connection with the database. End-to-end

testing ensured the seamless flow of both mobile and web applications to validate user interface

and backend functionality. Cross-browser testing ensured compatibility across different

browsers for the React web application. Finally, user acceptance testing, assessed the system's

compliance with user requirements. These testing types collectively ensured the quality and

effectiveness of the "Ceylon AGriData" system across its various components and

functionalities

5.3 Testing Methodology

The testing methodology for the "Ceylon AgriData" system was structured to ensure thorough

validation of its mobile application, web application, and backend API. Beginning with the

identification of test tasks and definition of corresponding test cases, the testing process

encompassed various phases. Unit testing involved both manual and automated approaches,

with automated tests specifically targeting user services. Integration testing verified the

interaction between components, utilizing Postman to test the backend API's connection with

the database. First we use locally hosted applications for testing, However, for facilitating end-

to-end testing of the mobile app, Ngrok, an open-source tool, was employed to establish a

secure tunnel between the mobile application and the backend API, which was running locally

on localhost 5000. This setup enabled the execution of API calls from the mobile application

98

for comprehensive validation. End-to-end testing ensured the seamless flow of both web and

mobile applications, conducted manually to validate user interface functionality and backend

processes. Next, Same approach was used to do the end-to-end tests of the web application.

Cross-browser testing was performed on the React web application to guarantee compatibility

across different browsers. Exploratory testing was employed to systematically explore the

application for unforeseen issues, while user acceptance testing, facilitated by a questionnaire,

assessed compliance with user requirements. Test execution predominantly occurred manually,

with comprehensive documentation of test cases and results provided in tables for analysis.

5.3 Testing of Mobile Application

5.3.1 Unit testing – Mobile Application

In the Unit Testing phase, some major test cases specified in Table 5.1 were rigorously

examined using the Android Studio emulator, tested manually. The primary focus during this

phase was on ensuring the accurate construction of widgets and the proper functioning of

associated functionalities within the Android application. By utilizing the Android Studio

emulator, it could assess the behavior of individual components and functions within the

application's codebase. This approach enabled thorough validation of the application's core

building blocks, ensuring their correctness and reliability before proceeding to subsequent

testing phases. Through Unit Testing, potential issues related to widget construction and

function execution were systematically identified and addressed.

Table 5.1:Test cases used in unit testing of mobile application

Test

Case

Id

Test Case Expected Result Actual Result

1 Splash page loading Splash page loading

successfully

Splash page loaded

2 Navigates to login page Successfully navigates to

login page automatically

after splash page

Login page loaded

automatically after splash

page

3 Building login page

widgets

Successfully built the login

page

All widgets were

displayed

99

4 Login function Login function working

well with button click

Login function worked

5 Register agriculture

officer function

Register function working

well with button click

Register function worked

6 Building Register page

widgets

Successfully built the

register page widgets

All widgets were

displayed

7 Build farmer manager

page

Successfully built the page

and preview all buttons

 Page was loaded and

buttons were previewed

8 Build farm manager

page

Successfully built the page

and preview all buttons

Page was loaded and

buttons were previewed

9 Build cultivation

manager page

Successfully built the page

and preview all buttons

Page was loaded and

buttons were previewed

10 Build aid manager page Successfully built the page

and preview all buttons

Page was loaded and

buttons were previewed

11 Build disaster manager

page

Successfully built the page

and preview all buttons

Page was loaded and

buttons were previewed

12 Input farmer details Working all textformfields Was able to insert details

through textformfields

13 Input farm details Working all textformfields Was able to insert details

through textformfields

14 Input cultivation details Working all textformfields Was able to insert details

through textformfields

15 Input aid details Working all textformfields Was able to insert details

through textformfields

16 Input disaster details Working all textformfields Was able to insert details

through textformfields

17 Functioning dropdown

in add cultivation page

Successfully working

dropdown

Dropdown was not

working well

18 Functioning dropdown

in add disaster page

Successfully working

dropdown

Dropdown was working

well

19 Register farmer function Register function working

well with button click

Register function worked

100

20 Add cultivation function Add cultivation function

working well with button

click

Add cultivation function

worked

21 Add aid function Add aid function working

well with button click

Add aid function worked

22 Get location button

functioning

Successfully functioning

get locations

Current locations were

fetched successfully

23 Logout function Logout function working

well with button click

Logout function worked

24 Building Main menu Building successfully Main menu successfully

previewed but the logo

was not previewed

25 Search function Successfully triggers when

button click

Searched and previewed

results

26 Update/Delete function Successfully triggers when

button-search and update or

delete clicked

Successfully listed search

result and could edit and

update it , Finally could

deleted the result.

27 Textformfields of

Update/Delete

Successfully Working all

textformfields

Was able to update details

through textformfields

28 Home icon When presses the icon,

successfully navigates to

home page

Successfully navigated to

home page

29 Get current location When press the button,

navigates to get location

page and fetch current

location successfully

Successfully fetched the

location (longitude and

latitude)

Overall, the unit testing results indicate a high level of success in building widgets,

implementing functions, and achieving expected behaviors within the Android application. The

majority of test cases aligned with their expected results, demonstrating effective construction

of pages, successful execution of functions such as login, registration, and data input, as well

as proper navigation and interaction with various elements. However, some discrepancies were

101

noted, such as the malfunctioning dropdown in the add cultivation page and the absence of the

logo preview in the main menu. These issues highlight areas for improvement to ensure full

functionality and consistency across all aspects of the application.

5.3.2 Exploratory Testing – Mobile Application

Exploratory testing was manually performed on the mobile application by navigating through

its pages and verifying the correct functioning of the mobile phone's back button for navigation.

The results indicated successful navigation, and it was confirmed that the application smoothly

facilitated movement between pages.

5.3.3 Integration testing – Mobile Application

Integration testing was conducted to verify the seamless connection between the mobile

application, REST API, and database. As outlined in the methodology, Ngrok was utilized to

facilitate this process as previously mentioned. Major test cases listed in Table 5.2 were

executed manually, and the results were captured for analysis.

Table 5.2: Test cases for integration testing in mobile application and captured results

Id Description Pre-

condition

Steps Expected

Results

Actual

Results

1 Valiate login user

with correct input

Need stable

internet

connection,

User should

be on Login

page, User

should be a

agriculture

field officer

Enter valid

email and

password

User logged

successfully

User logged

into system

2 Validate login user

with incorrect input

Need stable

internet

connection,

User should

be on Login

Enter either

invalid email or

password

Preview

dialog box

saying login

failed

Previewed

the message

102

page, User

should be a

agriculture

field officer

3 Validate login user

with incorrect role id

Need stable

internet

connection,

User should

be on Login

page,

User should

be a

agriculture

field officer

Enter correct

username or

password, but

user’s role not

be equal t 4

Preview

dialog box

saying

invalid login

Previewed

the message

4 Register a farmer Need stable

internet

connection,

User should

be logged in

Enter all details

correctly,

Click submit

button

Preview

toast

message

saying

registered

successfully

Previewed

the message

5 Register a farm Need stable

internet

connection,

User should

be logged in

Enter all details

correctly,

Click submit

button

Preview

toast

message

saying

registered

successfully

Previewed

the message

6 Add a cultivation Need stable

internet

connection,

User should

be logged in

Enter all details

correctly,

Click submit

button

Preview

toast

message

saying

registered

successfully

Previewed

the message

103

7 Add an aid

distribution

Need stable

internet

connection,

User should

be logged in

Enter all details

correctly,

Click submit

button

Preview

toast

message

saying

registered

successfully

Previewed

the message

8 Add a disaster

record

Need stable

internet

connection,

User should

be logged in

Enter all details

correctly,

Click submit

button

Preview

toast

message

saying

registered

successfully

Previewed

the message

9 Search Farmers Need stable

internet

connection,

User should

be logged in,

Should

available

farmer

records

Enter user id or

TaxFileNo or

Office Id or

Field Area Id,

Click search

button

Preview

search

results

Previewed

results

10 Search Farms Need stable

internet

connection,

User should

be logged in,

Should

available

farm records

Enter farm Id or

farmName or

Owner NIC or

Type,

Click search

button

Preview

search

results

Previewed

results

104

11 Search Cultivation Need stable

internet

connection,

User should

be logged in,

Should

available

cultivation

records

Enter farm Id or

farmName or

Owner NIC or

Type,

Click search

button

Preview

search

results

Previewed

results

11 Search aid

distribution records

Need stable

internet

connection,

User should

be logged in,

Should

available

records

Enter aid Id or

farmer id or

AgriOfficeId or

aidType or

In_charged

Agri_officer_Id,

Click search

button

Preview

search

results

Previewed

results

12 Search disaster

records

Need stable

internet

connection,

User should

be logged in,

Should

available

disaster

records

Enter type or

farm_id or

farmer_id or

Type,

Click search

button

Preview

search

results

Previewed

results

105

13 Update farmer

records

Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter userId,

Search for

results,

Update record,

Click Update

button

Previewed

searched

record and

preview

toast

message of

updated

successfully

Previewed

message

14 Update farmer

records

Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter userId,

Search for

results,

Update record,

Click Update

button

Previewed

searched

record and

preview

toast

message of

updated

successfully

Previewed

message

15 Update farm records Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter farmId,

Search for

results,

Update record,

Click Update

button

Previewed

searched

record and

preview

toast

message of

updated

successfully

Previewed

message

16 Update cultivation

records

Need stable

internet

connection,

Enter

cultivationId,

Previewed

searched

record and

Previewed

message

106

User should

be logged in,

Should

available

particular

record

Search for

results,

Update record,

Click Update

button

preview

toast

message of

updated

successfully

17 Update aid records Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter aidId,

Search for

results,

Update record,

Click Update

button

Previewed

searched

record and

preview

toast

message of

updated

successfully

Previewed

message

18 Update disaster

records

Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter disasterId,

Search for

results,

Update record,

Click Update

button

Previewed

searched

record and

preview

toast

message of

updated

successfully

Previewed

message

19 Delete farmer

records

Need stable

internet

connection,

User should

be logged in,

Should

Enter userId,

Search for

results,

Click delete

button

Previewed

searched

record and

preview

toast

message of

Previewed

message

107

available

particular

record

deleted

successfully

20 Delete farm records Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter farmId,

Search for

results,

Click delete

button

Previewed

searched

record and

preview

toast

message of

deleted

successfully

Previewed

message

21 Delete cultivation

records

Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter

cultivationId,

Search for

results,

Click delete

button

Previewed

searched

record and

preview

toast

message of

deleted

successfully

Previewed

message

22 Delete aid records Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter aidId,

Search for

results,

Click delete

button

Previewed

searched

record and

preview

toast

message of

deleted

successfully

Previewed

message

108

23 Delete disaster

records

Need stable

internet

connection,

User should

be logged in,

Should

available

particular

record

Enter disasterId,

Search for

results,

Click delete

button

Previewed

searched

record and

preview

toast

message of

deleted

successfully

Previewed

message

24 Broadcast messages Need stable

internet

connection,

User should

be logged in,

Should

available

farmer mail

addresses

Get recipient

list,

Enter Subject,

Enter message

body,

Click send

message button

Preview

successfully

sent toast

message

Previewed

message

successfully

25 Logout Need

internet

connection,

Navigate to

main menu

Click Logout in

main menu

Navigates to

login page

successfully

Navigated to

login page

All test cases were successfully passed, indicating that the mobile application effectively

triggered API calls to the backend API and accessed the database.

The "Ceylon AgriData" mobile app was smoothly installed and operated on Samsung A30

running Android 11, and Oppo F19 pro, running Android 13 showcasing its compatibility and

reliability on the latest Android version and device model. This underscores the importance of

109

thorough device compatibility testing in ensuring optimal performance and user experience

across diverse platforms.

5.4 Testing of Back-end Services, REST APIs

5.4.1 Unit Testing – Backend Services & APIs

The backend testing phase of the ‘Ceylon AgriData’ platform utilized Python's built-in module,

'unittest,' to execute unit tests across diverse scenarios. 'unittest' draws inspiration from the

xUnit architecture, a widely adopted framework for unit testing. The objective was to verify

the functionality of each component within the ‘Ceylon AgriData’ platform.

Creating a test environment for unit testing with Python's ̀ unittest` module involves organizing

the project structure with dedicated directories for source code and tests. Within the test’s

directory, Python files containing test cases are written, importing relevant modules and

defining test methods. Tests are executed using the ‘python -m unittest path for test file’

command, with results indicating the success or failure of each test case, aiding in debugging

and ensuring code reliability. The related test cases, input data, test steps, expected results and

test status for ‘User’ entity are summarized in Table 5.3. See the unittest sample code in

Appendix H.

Table 5.3:Test cases for user related functionalities in unit test of API

Test Case
Name

Input Data Test Steps Expected
Results

Actual
Results

User
Registration

User Details:
firstName,
MiddleName,
lastName,
NIC,
Email,
Password,
DOB, Role

1. Input relevant data into
the system. And commit
the data to the database.

2. Assert result

Registration
succeeds

Registration
succeeded

110

User Login Email
Password

1. Verify that the email and
password provided
correspond with the
entered input data.

2. Assert result

Login
succeeds

Login
succeeded

User Deletion User Id 1. Check if a user exists in
the system with the
provided email address.

2. If a user is found, delete
the user account.

3. Assert result

Deletion
succeeds

Deletion
succeeded

User update Data Need to
get updated
(User details)
and user_id

1. Check if a user exists in
the system with the
provided user_id.

2. If a user is found, update
the user account with
given input data

3. Assert result

Update
succeed

Update
succeeded

Search User Filters need
to filter the
result

1. Specify filters to search
for users with a specific
first name and define
pagination parameters

2. Perform the search
operation using the
defined filters.

3. Assert result

Search
succeed

Search
succeeded

Validate User Use_id
Email

1. Invoke the function with
predefined parameters
(user_id and email)

2. Assert the result

Validate
succeed

Validate
succeeded

Get User
Information
by Id

user_id 1. Invoke the function with
predefined parameters
(user_id)

2. Retrieve user information
3. Assert the result

Successfully
retrieving
user
information

Successfully
retrieved user
information

Get User
Information
by Email

Email 1. Invoke the function with
predefined parameters
(Email)

2. Retrieve user information

Successfully
retrieving
user
information

Successfully
retrieved user
information

111

3. Assert the result

Get user
access token

Email

1. Retrieves the user with the
specified email address
from the database, if it
exists

2. the test proceeds to
generate an access token
for the user

3. Asserts that the generated
token is not None

Successfully
get the access
token

Successfully
got the access
token

Unit testing code explanation

Following Figure 5.1 showcases the code snippet for unit test conducted by ‘Python unittest’,

for user registration functionality. The unit test method assesses the user registration process

by simulating the creation of a test user and invoking the registration function. It confirms the

success of registration based on the returned values, validating the system's ability to register

users effectively and provide the expected success message. The ‘test_user_registration’ test

method begins by accessing the application context to interact with the Flask application

environment. A test user object is then generated with simulated user data, encompassing

various fields such as first name, last name, NIC (National Identification Card), email,

password, date of birth, and role. Subsequently, the ‘register_user’ function is called with the

test user object, facilitating the user registration process. The function returns a tuple

comprising a Boolean value indicating registration success (isSuccess) and a descriptive

message. Assertions are utilized to validate the registration process: self.assertTrue(isSuccess)

verifies successful registration, while self.assertEqual(message, ‘Registration success!’)

ensures that the returned message aligns with the expected message for successful registration.

112

Figure 5.1: Code snippet of user registration unit test function

5.4.1 Integration testing - Backend Services & APIs

Integration testing was employed manually by connecting the system using Postman, focusing

on verifying the functionality of backend API endpoints while ensuring authorization and

SQLAlchemy connections. Postman served as a comprehensive platform for executing HTTP

REST API requests to the server, allowing for thorough testing of API endpoints. The testing

process involved validating the behavior of each endpoint, including the required authorization

mechanisms, to ensure secure access. Additionally, As the backend APIs and the locally hosted

MYSQL database was deployed, Postman facilitated the testing of Backend APIs,

SQLAlchemy functionalities with the database, ensuring seamless interaction with the

database. This integrated approach ensured that the API functions correctly within the broader

system context, covering both functional and non-functional aspects of the application.

The testing process involved defining API endpoints and request methods, organizing them

into a Postman collection. Testing was performed to verify the functionality of each API

endpoint, including proper authentication mechanisms to system backend using JWT bearer

token as the Authorization header. This provides valuable insights into the security and

reliability of the backend API functionality.

 'User' entity-related endpoints in the backend API, includes endpoints for user registration,

login, retrieval of user information, updating user details, and deleting user accounts and test

results are summarized in Table 5.4. Integration testing ensures that these endpoints function

113

correctly in a real-world scenario, handling various HTTP requests and responses

appropriately. Additionally, authentication and authorization mechanisms are thoroughly

tested to ensure that user access is securely managed. The testing process also involves

verifying the integration of the SQLAlchemy ORM with the database backend to ensure

seamless data operations. Through comprehensive integration testing, the 'User' entity

endpoints are evaluated to ensure reliability, security, and adherence to specified requirements.

Figures 5.2, 5.3 and 5.4 provide a visual representation of the testing conducted in Postman as

supporting evidence.

 Table 5.4:Test Cases for User related functionalities of integration testing of API

Test Case End Points Input Data Authorizatio
n

Expected
Result

Status

User
Registration

‘/user/register’ User Details:
firstName,
MiddleName,
lastName,
NIC,
Email, Password,
DOB, Role

None Registration
succeeds

Registration
succeeded

User Login ‘/user/login’ Email
Password

None Login
succeeds

Successfully
LoggedIn

User
Deletion

'/user/<int:userid>
'

User Id Bearer Token Deletion
succeeds

Successfully
Deleted

User update ‘/user/update/’ Data Need to get
updated (User
details) and
user_id

Bearer Token Update
succeeds

Updated
successfully

Search User ‘/user/search’ Filters need to
filter the result

Bearer Token Search
succeeds

Previewed
search results

Validate
User

‘/user/validate’ Use_id
Email

Bearer Token Validate
succeeds

Validated
Scuccessfully

Get User
Information
by Id

‘/user/info’ user_id Bearer Token Successfully
retrieving
user
information

Successfully
retrieved user
information

Get User
Information

‘/user/find_by_em
ail’

Email Bearer Token Successfully
retrieving

Successfully
retrieved user

114

Figure 5.2: Integration testing done using Postman for user login functionality - user login end point in API

by Email user
information

information

Get user
access token

/user/check_token Email Bearer Token Successfully
get the access
token

Successfully
got the access
token

As this backend supports a lot of API endpoints, The following figures shows some of them

are tested using Postman.

115

Figure 5.3 Integration testing for Aid Distribution

Figure 5.4 Integration testing for sending emails

116

All other major endpoints were meticulously tested to ensure seamless integration with the

database using Postman. For test results, refer to the Appendix I.

5.5 Testing of Front-End (React Web Application)

5.5.1 Exploratory Testing – React web application

This involved navigating through the website just like a regular user would. By clicking on

buttons, filling out forms, and interacting with different components, to ensure whether the all-

features function smoothly as expects. Table 5.5 showcases the major test results with

execution of this testing conducted manually.

Table 5.5: Test Results of exploratory testing of web app

Id Test case Steps Expected

Results

Actual result

1 Access Web app

as a generic user

Preview publicly available

dash board,

Navigating through the web

app,

See the public reports

Successfully

interact with

webapp as a

generic user

Pass

2 Access Web app

as a farmer

Preview publicly available

dash board,

Navigating through the web

app,

See the public reports,

Register in the system,

After validate by admin,

publish advertisements

Successfully

follow the steps

and publish

advertisements

Pass

3 Access Web app

as a researcher

Preview publicly available

dash board,

Navigating through the web

app,

Successfully

follow the steps

and request

data

Pass

117

See the public reports,

Ask for non-public data

through contact forum

4 Access Web app

as an agriculture

field officer

Preview publicly available

dash board,

Do login,

Preview Field-officer dash

board,

Manage agricultural data,

Generate reports,

Broadcast messages to

registered farmers,

Approve advertisements

Successfully

follow the steps

Pass

5 Access Web app

as an admin

Preview publicly available

dash board,

Do login,

Preview Admin dash board,

Insert Funding records,

Manage users,

Manage agricultural data,

Generate reports,

Broadcast messages,

Send requested data to

researchers and maintain its

records

Successfully

follow the steps

Pass

118

5.5.2 Cross-Browser Testing - React web application

 To guarantee compatibility and consistent behavior across various platforms, the website was

tested on different web browsers, including Chrome, Firefox, Edge as shown in the following

figures. This comprehensive testing approach ensured that users could access and interact with

the website seamlessly, regardless of their browser preference. See Figures 5.5 and 5.6.

Figure 5.5 Microsoft Edge testing

Figure 5.6 Google Chrome testing

119

5.5.3 End to end Testing - React web application

Complete End to end testing for the frontend along with locally hosted backend API was

conducted for each feature implemented manually, ensuring the expected behavior of the

frontend components of the react application with the backend API services. Finally, Backend

was deployed and exposed publicly using Ngrok as shown in Figure 5.8 and deployed the

frontend web application in another local machine after providing the correct configuration of

the publicly exposed backend API service. Next, A comprehensive End to end testing was done

starting from the User Authorization up to all features including report generation for each role

type (farmer, administrator, field officer, researcher, generic user), free advertising support,

email sending, data collection forms with geo location support and all data management

operations including inserting updates, deletions and searches. In this testing we were able to

identify the following issues shown in the Table 5.6 fixed them accordingly.

Table 5.6: Part of identified major issues in end-to-end testing.

Issue Identified Service Description Fix

When backend is not

deployed, failing to

handle the error

properly.

Frontend React Web

App

When user tries to

logging, no responses

from the system.

Added error handling

& alert messages.

Some reports were

shown regardless the

role-based access

Frontend React Web

App

When checking field

officer reports, admin

reports were shown

Fix the navigation

based on the user role

of the session of after

a user logged in

Some reports data

was not shown

partially

Frontend React Web

app - react charts

As we added

pagination for data

retrieval, only part of

the data retrieve to the

request.

Add mis-report API

endpoint for report to

process the data as in

required format to the

reports.

120

Some images are not

rendered as expected

Frontend React Web

app

Some images were

too large or small

when testing in

different screens.

Added proper image

sizes

Color combinations

were not appropriate

in the reports

Frontend React Web

app - react charts

Some colors were not

properly blend with

the other depending

on the place of

rendering.

Tried to add color to

make more user

friendly

Figure 5.7 Locally deployed python flask backend interaction logs when testing

Figure 5.8 : Ngrok logs when exposed API with the database publicly for testing

121

5.6 User Evaluation

The system "Ceylon AgricData" (Mobile application and Webapp) underwent user acceptance

testing (UAT) to gauge its reception among intended users. For UAT, commonly referred to as

beta or end-user testing. A representative sample of users was chosen based on their roles.

Administrators, agricultural field officers, farmers, and general users were targeted the testing

that performed. These selected participants conducted an evaluation of the system, identifying

both its strengths and weaknesses. Their assessments and feedbacks were captured through a

specifically designed questionnaire form in Figure 5.9. A sample of eleven personal were

participated in the evaluation and given their feedback through falling-out the questionnaire.

The table below showcases the summarized outcomes of this user evaluation process. See

Appendix J for the questionnaire.

With the limited resource and time allocated to this phase, the setup for the system built as in

the end-to-end testing, as discussed above section, and provided to the users to interact with

the system. Here, Mobile app was installed to android phones, a laptop with the locally

deployed frontend application and another separate laptop with locally deployed backend API

and exposed publicly using Ngrok static domain support to be used with the mobile apps and

the frontend web app separately.

I had to meet physically the different roles of the system and provide the system for test. After

presenting the system, provided the following survey form to the users. The different roles as

per the selected samples were physically met and provided the system for testing. Thus,

examined and interacted personas feedbacks were collected.

122

Figure 5.9 System Feedback Survey

5.6.1 Results of the Testing

The questionnaire was summarized to align with showcasing feedback from all roles together,

facilitating a comprehensive evaluation. (see Table 5.6)

 Total responded personas = 11

Admin – 1

Agriculture Field Officers -2

Others are Farmers, Researchers, Generic Users

Table 5.7 Summarized results

No Statement Strongly

Agree

Agree Neutral Disagree Strongly

Disagree

1 Registration Simplicity

Rating

How would you assess the

simplicity of the new user

registration process on "Ceylon

AgriData"?

5 4 2 0 0

123

2 Intuitiveness of Data

Management

How natural was the experience

of inputting agricultural data on

"Ceylon AgriData"

0 2 1 0 0

3 Intuitiveness of Data

Management

How natural was the experience

of updating agricultural data on

"Ceylon AgriData"

0 2 1 0 0

4 Intuitiveness of Data

Management

How natural was the experience

of deleting agricultural data on

"Ceylon AgriData"

0 2 1 0 0

5 Intuitiveness of Data

Management

How natural was the experience

of searching agricultural data

on "Ceylon AgriData"

2 1 0 0 0

6 Effectiveness of Reporting

Tool

How would you rate the

efficacy of the reporting feature

within "Ceylon AgriData" for

generating detailed reports?

4 3 3 0 0

7 Challenges in Report

Configuration

Did you face any difficulties

while setting parameters for

reports? Please describe your

experience

0 0 0 1 2

124

8 Effectiveness of Advertising

Advertisements

How would you rate the

efficacy of this feature within

"Ceylon AgriData"

1 6 4 0 0

9 General Satisfaction Level

How would you rate the UI

design of "Ceylon AgriData" ?

0 10 1 0 0

10 General Satisfaction Level

How would you describe your

overall satisfaction with Ceylon

AgriData's usability?

0 10 1 0 0

There was a single administrator and two agricultural officers involved in the test, with the

remainder being farmers and researchers. As such, the key functions can be assessed based on

the contributions of these three officers, particularly in data management. The majority of

researchers express satisfaction with the system, while farmers appreciate the free advertising

service. Additionally, there was a suggestion to include language preferences, with Sinhala

proposed as a secondary language. Overall, reports indicate positive outcomes.

5.7 Summary

Chapter 5 details the testing and evaluation of the "Ceylon AgriData" system. Various testing

types were utilized, including unit testing, integration testing, end-to-end testing, and user

acceptance testing. The testing methodology involved identifying test tasks, defining test cases,

and conducting manual and automated testing. Results indicated success in building

components and functions, though some issues were identified for improvement. User

evaluation through acceptance testing gathered feedback from representative users. End-to-end

testing of the React web application ensured expected behavior with backend services. Overall,

the chapter showcases the system's reliability, functionality, and user satisfaction through

rigorous testing and evaluation processes.

125

Chapter 6 – Conclusion
This chapter provides an in-depth overview of the "Ceylon AgriData" cloud-based system,

detailing its constraints, achievements, and drawbacks. It encompasses a comprehensive

summary of the author's perspective and reflection on the system's development and

implementation process.

6.1 Introduction

The agriculture sector of Sri Lanka holds significant importance in the country's economy.

However, in recent times, various critical issues have emerged within the sector, leading to

challenges and impediments. One of the primary identified issues is the lack of reliable

availability of agriculture data. This absence of robust data-driven decision-making

mechanisms has exacerbated the problems faced by the sector. Therefore, the establishment of

a reliable and efficient data collection process aimed at supporting the agricultural sector

becomes imperative. This system endeavors to address this crucial need by facilitating a

streamlined data collection process.

6.2 Critical Assessment

The primary objective of the system is to facilitate informed decision-making within the

agriculture sector through the utilization of collected data. Starting from the requirement

analysis phase, all identified requirements were addressed to ensure comprehensive coverage.

Subsequently, the project was initiated in key phases, including system design,

implementation, and testing adopting iterative waterfall model.

The "Ceylon AgriData" system, operating as a cloud-based platform, is designed for the

collection and presentation of agricultural data to support stakeholders involved in decision-

making within the agriculture sector. Comprising a mobile application for field data collection

by agriculture field officers and a web application developed with React for stakeholders such

as agriculture officers, farmers, and researchers, the system aims to enhance efficiency and

accessibility and transparency in the agricultural sector by replacing conventional paper-based

methods of data acquiring and presentation.

126

Notably, the mobile application's major functionalities were integrated into the web

application, allowing agriculture field officers to efficiently engage in data collection

processes. They can utilize the mobile app during field visits for data collection, while the web

application serves as a tool for office use. In cases where farmers visit agriculture offices to

avail services, they can register with the system using the web application.

Although the system architecture was intentionally separated into distinct front-end and back-

end components to facilitate ease of maintenance and scalability, the mobile application

ensures operational efficiency for agriculture field officers. Additionally, registered farmers

are provided with a feature for free advertising to promote their productions. Furthermore,

governmental bodies can leverage the collected data for informed decision-making,

particularly regarding price regulation.

To enhance communication among stakeholders and promote sectoral productivity, a message

broadcasting service is employed for efficient dissemination of information. The

implementation phase involved crafting of both front-end and back-end components, while

testing procedures encompassed unit testing, integration testing, and user acceptance testing.

The latter focused on user perspectives and assessed usability aspects. Through these measures,

the system aims to fulfill its objective of supporting informed decision-making and enhancing

productivity within the agriculture sector.

6.3 Lessons Learned

As a student pursuing a degree program, this project provided me with a valuable opportunity

to apply theoretical knowledge in practical scenarios. Despite facing various challenges, I

endeavored to complete the project within the stipulated time frame, adhering strictly to the

Software Development Life Cycle (SDLC) methodology throughout the project duration.

Throughout the project, I gained invaluable insights into mobile application development, rapid

development of React web applications, and the implementation of APIs. Additionally, I

acquired proficiency in utilizing third-party libraries and conducting literature reviews in IT-

related projects. Managing time effectively emerged as a crucial skill that I honed during the

project, enabling me to navigate through the complexities of IT projects more efficiently.

127

Furthermore, I expanded my knowledge of different testing procedures applicable during the

testing phases. Writing the thesis enabled me to develop the ability to succinctly summarize

acquired knowledge and present it in an optimized flow, enhancing my communication and

organizational skills in the process. Overall, this project served as a comprehensive learning

experience, equipping me with valuable skills and insights that will undoubtedly prove

beneficial in my future endeavors.

6.4 Problems Encountered During the Project

During the requirement gathering phase, I visited the agriculture office in Dodangoda, Kalutara

district, and engaged in discussions with agriculture officers. However, as time passed, they

informed that it takes much time to provide the necessary data for the system. Therefore, had

to continue the project with a planned time frame with limited information gathered from the

agriculture office. And also, I had to use mock data in the system.

I had to do a limited user acceptance testing with just few identified roles without any

intervention to official connections.

Additionally, the project utilized updated technologies, which required a substantial amount of

time to learn before implementation could begin. This learning curve proved to be a major

hurdle, especially considering the limited time available for project completion. As someone

not coming from an IT background, acquiring proficiency in these new technologies took

longer than anticipated, further exacerbating the time constraints.

Despite planning to incorporate an SMS gateway into the project, the need to purchase such

gateways, coupled with the constraints of time and resources, presented significant challenges.

These obstacles were particularly daunting given the individual nature of the project.

6.5 Potential Future Work

1. Improve Security

Enhancing security measures is essential for safeguarding sensitive data. While the system

currently employs encrypted usernames and passwords, as well as JWT access tokens for user

128

validation and session maintenance, implementing OTP functionality could provide an

additional layer of security. Furthermore, integrating a separately available user management

system with an identity service can further fortify the security infrastructure of the system.

2. Enhance Frontend Usability

Improving frontend usability is crucial for enhancing user satisfaction and facilitating smoother

interactions. Utilizing advanced CSS techniques and incorporating user feedback can greatly

enhance the user experience, making the system more intuitive and user-friendly.

3. Expand Report Functionalities

Expanding the range of report types can provide users with more comprehensive insights and

analysis capabilities. By incorporating additional reporting functionalities, users can access a

wider range of data representations, enabling more informed decision-making within the

agriculture sector.

4. Implement News Updates

Keeping users informed with relevant news updates directly within the web application can

enhance user engagement and provide valuable insights into industry trends and developments.

Integrating a news update feature can help users stay up-to-date with the latest information,

enriching their overall experience with the system.

5. Agriculture Knowledge Sharing Portal

Integrating a knowledge-sharing portal within the system can facilitate the exchange of

valuable information and insights among stakeholders in the agriculture sector. By providing a

platform for knowledge dissemination, users can access and share expertise, fostering

collaboration and innovation within the agricultural community.

6. Robust Marketplace Integration

Incorporating a robust marketplace integration feature enables users to directly engage in

buying and selling agricultural products within the system. By seamlessly integrating

marketplace functionalities, users can leverage the platform for efficient and convenient

transactions, enhancing productivity and profitability within the agriculture sector.

129

References
Aaron O'Nell. 2023. Share of economic sectors in the GDP in Sri Lanka 2021 [Online].
Available: https://www.statista.com/statistics/728539/share-of-economic-sectors-in-the-gdp-
in-sri-lanka/ [Accessed 18-06-2023].

Agrible-Morning Farm Report. Agrible – Morning Farm Report [Online]. Available:
https://u.osu.edu/agsoftwarelibrary/2018/03/21/agrible-morning-farm-report/ [Accessed
2023].

Agrimanager. Agrimanager [Online]. Available: https://www.getapp.com/industries-
software/a/agrimanager/ [Accessed 18-06-2023].

Agrithing. AgriThing [Online]. Available: https://agrithing.com/ [Accessed 19-06-2023].

Agriwebb. AgriWebb [Online]. Available: https://www.agriwebb.com/ [Accessed 2023].

Agsense. 2003. AgSense [Online]. Available: https://www.agsense.com/ [Accessed 2003].

Awhere. aWhere [Online]. Available: https://www.climateshot.earth/awhere [Accessed 2023].

Bhatnagar, V. 2015. A comprative study of sdlc model. IJAIEM, 4, 23-29.

Bushelfarm. BUSHEL [Online]. Available: https://bushelpowered.com/ [Accessed 2023].

Cheema, M. J. M. & Khan, M. A. 2019. Information Technology for Sustainable Agriculture.
In: Farooq, M. & Pisante, M. (eds.) Innovations in Sustainable Agriculture. Cham: Springer
International Publishing.

Christine Zhenwei Qiang, Siou Chew Kuek, Andrew Dymond & Steve Esselaar 2012. Mobile
Applications for Agriculture and Rural Development. In: ICT SECTOR UNIT, W. B. (ed.).
World Bank

Climate Corporation. Climate FieldView [Online]. [Accessed 2023].

Coconut Cultivation Board. 2023. Coconut App [Online]. Available:
https://play.google.com/store/apps/details?id=zincat.net.cocoguru&hl=en&gl=US [Accessed
18-06-2023].

Conservis. 2008. Conservis [Online]. Available: https://conservis.ag/ [Accessed 2023].

Cropin. 2010. Cropin [Online]. Available: https://www.cropin.com/ [Accessed 19-06-2023].
Dennis, A. 2012. Systems Analysis and Design, Wiley Publishing.

Department of Agriculture. 2021. Krushi Advisor [Online]. Available:
https://play.google.com/store/apps/details?id=com.prasadbandra.krushiadvisor&hl=en&gl=U
S [Accessed].

FAO, F. A. A. O. O. T. U. N. 2023. The State of Food and Agriculture 2023. Rome.

130

Farm Force. Farm Force [Online]. Available: https://farmforce.com/ [Accessed 19-06-2023].
Govi Mithuru. 2015. Govi Mithuru [Online]. Available: https://www.dialog.lk/govi-mithuru/
[Accessed 19-06-2023].

Granular, I. Granular [Online]. Canada, US. Available: https://www.farms.com/agriculture-
apps/technology/granular [Accessed 17-06-2023 2023].

Helawiru. Helaviru Platform [Online]. Available: https://www.helaviru.lk/ [Accessed 19-06-
2023].

Hillar, G. C. 2015. Learning Object-Oriented Programming, Packt Publishing.
Jayathilake, H., Jayaweera, B. & Waidyasekera E. 2010. ICT Adoption and Its’ Implications
for Agriculture in Sri Lanka. Journal of Food and Agriculture, 1(2), 54-63.

KOMA LABS. 2020. Agro Life Sri Lanka [Online]. Available:
https://play.google.com/store/apps/details?id=io.ionic.prog5e986cedd814f9698bb3adac&hl=
en&gl=US [Accessed 16-06-2023].

Manoj Thibbotuwawa. 2021. Leveraging technological innovations can help overcome growth
constraints and increase agriculture’s economic contribution [Online]. Available:
https://development.asia/insight/why-transition-smart-farming-critical-sri-lanka [Accessed
20-06-2023].

Ministry of Agriculture , M. 2023. Overview [Online]. Available:
agrimin.gov.lk/web/index.php/en/about-us/overview123 [Accessed 2023].

MÜNCH, T. 2022. System Architecture Design. In: MÜNCH, T. (ed.) System Architecture
Design and Platform Development Strategies: An Introduction to Electronic Systems
Development in the Age of AI, Agile Development, and Organizational Change. Cham:
Springer International Publishing.

My Agri. 2021. My Agri [Online]. Available:
https://play.google.com/store/apps/details?id=com.Erlanggastudio.MyAgri&hl=en&gl=US
[Accessed 2023].

Ojha, T., Misra, S. & Raghuwanshi, N. 2015. Wireless Sensor Networks for Agriculture: The
State-of-the-Art in Practice and Future Challenges. Computers and Electronics in Agriculture,
118.

Petrillo, F., Merle, P., Moha, N. & Gueheneuc, Y.-G. 2016. Are REST APIs for Cloud
Computing Well-Designed? An Exploratory Study.

Rathod, M., Shivaputra, A., Umadevi, H., Kenchappa, N. & Selvakumar Periyasamy, D. 2022.
Cloud Computing and Networking for SmartFarm AgriTech. Journal of Nanomaterials, 2022,
1-7.

Richards, M. 2022. Software Architecture Patterns, O'Reilly Media, Inc.
Singh, S., Chana, I. & Buya, R. 2020. Agri-Info: Cloud Based Autonomic System for
Delivering Agriculture as a Service. Internet of Things, 9, 100131.

131

Volodymyr Ahafonkin. 2010. Leaflet - a JavaScript library for interactive maps [Online].
Available: https://leafletjs.com/ [Accessed].

Worldbank. 2023. Agriculture and Food [Online]. Available:
https://www.worldbank.org/en/topic/agriculture/overview#1 [Accessed 2023].

132

Appendixes

 Appendix A

 Appendix B

 Appendix C

 Appendix D

 Appendix E

 Appendix F

 Appendix G

 Appendix H

 Appendix I

 Appendix J

 Appendix K

 Appendix L

Appendix A

MIT3201 – Individual Project in MIT Degree Program

MIS Report

Name : L.R.S.D.Rathnayake

IndexNo 20550839

Supervisor Signature:

Supervisor Name: Prof. M.G.N.A.S. Feranando

Management Information System (MIS) Report Templates for ‘AgriCloud’

System

Executive Summary

The ‘AgriCloud’ System introduces a comprehensive suite of Management Information System

(MIS) report templates designed to facilitate data-driven decision-making in the agricultural

sector. These templates encompass a broad spectrum of functionalities, including user

registration, aid distribution, disaster analysis, tax compliance, communication effectiveness,

and marketplace engagement. Through detailed data collection, analysis, and representation,

these reports aim to enhance the efficiency of agricultural management and operations,

ensuring accountability, transparency, and informed strategic planning.

MIS Report Template 1 : Registered User Report

This report provides detailed information about registered users in the ‘AgriCloud’ system,

including agriculture officers and farmers. It includes user IDs, names, contact details,

registration dates, and assigned regions for agriculture officers. It aims to facilitate efficient

management of user data.

Data Summary:

• Total number of registered users

• Breakdown of registered users by role (agricultural officers, farmers)

• Profile information of each user (name, contact details, role, assigned region/area)

• Date of registration

Analysis:

• Comparison of user distribution across different regions or districts

• Identification of any discrepancies or irregularities in user data

Representation:

• Detailed tables containing user information

• Visualizations such as pie charts or bar graphs depicting user distribution by region or

role

Figure1:Total Registered Users in the system

Figure 2: Total Registered user details

MIS Report Template 2 : Aid Distribution Report

This report offers a detailed look at the distribution of various forms of aid provided to farmers.

It covers several types of assistance, such as fuel, fertilizer, pesticides, and financial support.

Key information included in the report comprises the date of distribution, the specific type of

aid given, the amount distributed, details of the recipients (including farmer ID), and the region

where the aid was distributed. The report assists in monitoring aid distribution activities and

evaluating the effectiveness of support programs. It ensures transparency and accountability in

aid allocation and distribution processes.

Data Summary:

• The overall quantity of aid provided, including fuel, fertilizer, pesticides, and financial

support.

• A detailed breakdown showing the type of aid and the quantities distributed.

• Distribution timeline and frequency

• Details about the recipients, including farmers' names, their locations, and the specific

aid they received.

Analysis:

• Assessment of aid distribution patterns and trends over time

• Evaluation of aid utilization effectiveness and impact on agricultural productivity

• Identification of areas or demographics with higher aid requirements

Representation:

• Comprehensive tables that lay out all the data related to the distribution of aid.

• Visual graphs to help show the trends and patterns in aid distribution, making it easier

to understand at a glance.

Figure 3: Aid Distribution

Figure 4: Aid Funding Report

MIS Report Template 3 : Crop Yield Analysis Report

This report offers an in-depth analysis of crop yield data, organized by crop type, geographical

region, and growing season. It encompasses vital details such as the specific type of crops, the

quantity of yield, the regions where these crops were grown, and the time of year they were

harvested. The primary goal is to uncover trends, patterns, and the key factors that affect crop

productivity, thereby aiding in making well-informed agricultural decisions.

Data Summary:

• The total amount of crop yield data gathered.

• A detailed division of crop yields according to the type of crop, the region it was grown

in, and the season it was harvested.

• The average yield per hectare for each type of crop.

• A comparative study examining how yields vary across different seasons and regions.

Analysis:

• Identification of high-performing and underperforming crops and regions

• Evaluation of seasonal variations and their impact on crop productivity

Representation:

• Comprehensive tables that organize crop yield data by type, region, and season,

providing a clear overview.

• Various charts and graphs that visually depict the trends and fluctuations in crop yields,

making it easier to spot patterns and anomalies.

Figure 5: Crop yields

Figure 6: Harvesting details

Figure 7: Crop Yield report

MIS Report Template 4 : Field Mapping Overview Report

This report provides an overview of field mapping activities conducted within the ‘AgriCloud’

system. It includes details such as field ID, location coordinates, assigned officer, and mapping

date. The report facilitates monitoring of field mapping progress and ensures accurate spatial

data management. It helps to Assessment of the impact of field mapping on resource allocation

and decision-making processes

Data Summary:

• The total count of fields that have been mapped.

• How these mapped fields are distributed across different regions and according to crop

types.

Analysis:

• Evaluation of field mapping coverage across different agricultural regions

• Identification of areas with incomplete or outdated mapping data

Representation:

• Maps and other visual aids that show the extent of field mapping coverage and how

mapped fields are distributed, helping to visualize the scope and scale of mapping

activities.

Figure 8: Field Mapping

MIS Report Template 5: Acre Tax Tracking Report

This report tracks acre tax payments recorded by farmers in the AgriCloud system. It includes

key details such as the farmer's unique identifier (farmer ID), the amount paid, the date of

payment, and the geographical region. The main objectives of this report are to oversee tax

compliance, enhance revenue collection, and improve financial management practices.

Additionally, it aims to promote transparency and accountability in the tax collection process.

Data Summary:

• A detailed breakdown of tax payees, categorized by farmers in regions

Analysis:

• Comparison of tax payees (farmers) distribution across different regions or districts

Representation:

• Comprehensive tables that detail acre tax payment information, facilitating easy review

and analysis.

• Visual representations, such as charts and graphs, that depict trends in tax payments and

highlight variations in compliance rates across different regions or times.

Figure 9: Acre tax payer tracking report

MIS Report Template 6: Broadcast Message Report

This report compiles and analyzes the broadcast messages sent within the AgriCloud system.

It captures essential information about each message, including its content, the sender's details,

the type of recipients targeted, and the time it was sent. The focus is on maintaining a

comprehensive record of messages broadcasted by agriculture officers to various stakeholders.

Data Summary:

The aggregate count of broadcast messages that have been sent.

A categorized summary of these messages, detailing the sender, the recipient group, and the

type of content shared.

Analysis:

• Evaluation of message content and relevance to target audience

Presentation:

• Comprehensive logs that detail the activities related to broadcast messages, including

sender, content, and recipient information, presented in detailed tables for clarity and

ease of analysis.

Figure 10:Message broadcasting logs

MIS Report Template 7: Disaster Analysis Report

This report delves into agricultural disaster data within the AgriCloud system, with the

objective of evaluating the impact of such disasters on crop yields and overall agricultural

productivity. It aims to provide valuable insights that can inform disaster preparedness and

response strategies effectively.

Data Summary:

• A catalog of the types of agricultural disasters encountered and their occurrence

frequency.

• Detailed assessments of the damage and losses incurred from each type of disaster.

• The geographical spread of areas affected by disasters.

Analysis:

• An examination of the agricultural systems' vulnerabilities and their resilience against

various disaster scenarios.

• Identification of high-risk areas and crops susceptible to disaster damage.

Representation:

• Detailed reports on disaster events, including damage assessments and response

activities

• Visual aids such as maps and charts to depict areas hit by disasters and the extent of

crop damage, facilitating a clearer understanding of the impact and scope.

Figure 0.1: Disaster overview generating filter form

MIS Report Template 8: Free Advertising Service Engagement Report

his report examines how registered users, including farmers and vendors, interact with the

marketplace feature on the AgriCloud system. It seeks to understand the marketplace's role in

bridging the gap between farmers and potential buyers, evaluating its efficiency and

effectiveness.

Data Summary:

• The count of farmers and vendors actively participating in the marketplace.

• The variety and distribution of products listed, including details on advertisements

posted.

Analysis:

• An analysis of how the marketplace is adopted and utilized by its users, identifying

patterns and trends in usage.

• An evaluation of the marketplace's success in ensuring fair pricing and efficient

transactions between sellers and buyers.

Representation:

• A detailed account of the advertisements posted, including information on the types of

products, their pricing, and the total volume of listings. This helps to provide a

comprehensive overview of the marketplace's activity and offerings.

Figure 0.1: Advertisement overview report

Conclusion

In conclusion, these Management Information System (MIS) Report Templates serve as

essential tools for the ‘AgriCloud’ system, offering structured and detailed insights into various

operational aspects. From tracking registered user engagement and analyzing crop yields to

monitoring disaster impacts and assessing marketplace dynamics, each template is designed to

facilitate informed decision-making and strategic planning. By systematically collecting,

analyzing, and representing data, these reports enable stakeholders to identify trends, evaluate

effectiveness, and identifying areas for improvement. Ultimately, the effective use of these

templates will enhance operational efficiencies, support sustainable agricultural practices, and

foster a more resilient and productive agricultural sector.

** Evidences were taken with several mock data inserted in database.

Appendix B
Database Models int the project are as follows.

Role table

class Role(db.Model):

 __tablename__ = 'role'

 role_id = Column(Integer, primary_key=True)

 role_name = Column(String(100))

 role_description = Column(String(100))

Contact table

class Contact(db.Model):

 __tablename__ = 'contact'

 contact_id = Column(Integer, primary_key=True)

 user_id = Column(Integer, ForeignKey('user.user_id'))

 number = Column(String(100))

 area_code = Column(String(100))

 user = relationship("User", backref="contacts")

Address table

class Address(db.Model):

 __tablename__ = 'address'

 address_id = Column(Integer, primary_key=True)

 user_id = Column(Integer, ForeignKey('user.user_id'))

 city = Column(String(100))

 town = Column(String(100))

 street = Column(String(100))

 home_no = Column(String(100))

 home_name = Column(String(100))

 user = relationship("User", backref="addresses")

AgricultureOfficer table

class AgricultureOfficer(db.Model):

 __tablename__ = 'agriculture_officer'

 user_id = Column(Integer, ForeignKey('user.user_id'), primary_key=True)

 employee_id = Column(Integer)

 managed_by_employee_id = Column(Integer)

 agri_office_id = Column(Integer)

 service_start_date = Column(Date)

 field_area_id = Column(Integer)

 user = relationship("User", backref="agriculture_officers")

AgriOffice table

class AgriOffice(db.Model):

 __tablename__ = 'agri_office'

 agri_office_id = Column(Integer, primary_key=True)

 name = Column(String(100))

 city = Column(String(100))

 province = Column(String(100))

 district = Column(String(100))

FieldArea table

class FieldArea(db.Model):

 __tablename__ = 'field_area'

 field_area_id = Column(Integer, primary_key=True)

 agri_office_id = Column(Integer,

ForeignKey('agri_office.agri_office_id'))

 name = Column(String(100))

 agri_office = relationship("AgriOffice", backref="field_areas")

Reports table

class Reports(db.Model):

 __tablename__ = 'reports'

 report_id = Column(Integer, primary_key=True)

 category = Column(String(100))

 date = Column(Date)

 time = Column(String(100))

 user_id = Column(Integer, ForeignKey('user.user_id'))

 user = relationship("User", backref="reports")

Farmer table

class Farmer(db.Model):

 __tablename__ = 'farmer'

 user_id = Column(Integer, ForeignKey('user.user_id'),primary_key=True)

 assigned_office_id = Column(Integer,

ForeignKey('agri_office.agri_office_id'))

 assigned_field_area_id = Column(Integer,

ForeignKey('field_area.field_area_id'))

 updated_by = Column(Integer)

 added_by = Column(Integer)

 registered_date = Column(Date)

 tax_file_no = Column(String(100))

 user = relationship("User", backref="farmers")

 assigned_office = relationship("AgriOffice",

foreign_keys=[assigned_office_id])

 assigned_field_area = relationship("FieldArea",

foreign_keys=[assigned_field_area_id])

Login table

class Login(db.Model):

 __tablename__ = 'login'

 user_id = Column(Integer, ForeignKey('user.user_id'),primary_key=True)

 username = Column(String(100))

 encoded_pw = Column(String(100))

 user = relationship("User", backref="logins")

Researcher table

class Researcher(db.Model):

 __tablename__ = 'researcher'

 user_id = Column(Integer, ForeignKey('user.user_id'),primary_key=True)

 institute = Column(String(100))

 user = relationship("User", backref="researchers")

Advertisement table

class Advertisement(db.Model):

 __tablename__ = 'advertisement'

 ad_id = Column(Integer, primary_key=True)

 published_by = Column(String(100))

 type = Column(String(100))

 title = Column(String(100))

 category = Column(String(100))

 description = Column(String(100))

 date = Column(Date)

 time = Column(String(100))

 user_id = Column(Integer, ForeignKey('user.user_id'))

 unit_price = Column(Integer)

 crop_id = Column(Integer)

 amount = Column(Integer)

 telephone_no = Column(String(100))

 verified_officer_id = Column(Integer)

 image_link = Column(String(100))

 user = relationship("User", backref="advertisements")

Farm table

class Farm(db.Model):

 __tablename__ = 'farm'

 farm_id = Column(Integer, primary_key=True)

 farm_name = Column(String(100))

 farmer_id = Column(Integer, ForeignKey('farmer.user_id'))

 address = Column(String(100))

 type = Column(String(100))

 area_of_field = Column(String(100))

 owner_nic = Column(String(100))

 owner_name = Column(String(100))

 recorded_by = Column(Integer)

 office_id = Column(Integer, ForeignKey('agri_office.agri_office_id'))

 field_area_id = Column(Integer, ForeignKey('field_area.field_area_id'))

 farmer = relationship("Farmer", backref="farms")

Crop table

class Crop(db.Model):

 __tablename__ = 'crop'

 crop_id = Column(Integer, primary_key=True)

 crop_name = Column(String(100))

 breed = Column(String(100))

 description = Column(String(100))

 updated_by = Column(Integer)

 added_by = Column(Integer)

 added_date = Column(Date)

DisasterInfo table

class DisasterInfo(db.Model):

 __tablename__ = 'disaster_info'

 disaster_info_id = Column(Integer, primary_key=True)

 cultivation_info_id = Column(Integer

Appendix C
All the related schemas are as follows

Farm schema

class FarmSchema(ma.Schema):

 class Meta:

 fields = ('farm_id', 'farm_name', 'address', 'type', 'farmer_id',

'area_of_field', 'owner_nic', 'owner_name')

Contact schema

class ContactSchema(ma.Schema):

 class Meta:

 fields = ('contact_id', 'user_id', 'number', 'area_code')

Address schema

class AddressSchema(ma.Schema):

 class Meta:

 fields = ('address_id', 'user_id', 'city', 'town', 'street',

'home_no', 'home_name')

SuperAdmin schema

class SuperAdminSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'employee_id', 'role_type')

RegionalAdmin schema

class RegionalAdminSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'employee_id', 'managed_by_employee_id',

'district', 'province', 'agri_office_id', 'service_start_date')

AgricultureOfficer schema

class AgricultureOfficerSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'employee_id', 'managed_by_employee_id',

'agri_office_id', 'service_start_date', 'field_area_id')

AgriOffice schema

class AgriOfficeSchema(ma.Schema):

 class Meta:

 fields = ('agri_office_id', 'name', 'city', 'province', 'district')

FieldArea schema

class FieldAreaSchema(ma.Schema):

 class Meta:

 fields = ('field_area_id', 'agri_office_id', 'name')

Reports schema

class ReportsSchema(ma.Schema):

 class Meta:

 fields = ('report_id', 'category', 'date', 'time', 'user_id', 'link')

Farmer schema

class FarmerSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'assigned_office_id', 'assigned_field_area_id',

'updated_by', 'added_by', 'registered_date', 'tax_file_no')

Login schema

class LoginSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'username', 'encoded_pw')

Vendor schema

class VendorSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'business_reg_no', 'tax_file_no')

Researcher schema

class ResearcherSchema(ma.Schema):

 class Meta:

 fields = ('user_id', 'institute')

Advertisement schema

class AdvertisementSchema(ma.Schema):

 class Meta:

 fields = ('ad_id', 'published_by', 'type', 'title', 'category',

'description', 'date', 'time', 'user_id', 'unit_price', 'crop_id', 'amount',

'telephone_no', 'verified_officer_id', 'image_link')

Crop schema

class CropSchema(ma.Schema):

 class Meta:

 fields = ('crop_id', 'crop_name', 'breed', 'description',

'updated_by', 'added_by')

DisasterInfo schema

class DisasterInfoSchema(ma.Schema):

 class Meta:

 fields = ('disaster_info_id', 'cultivation_info_id', 'date', 'time',

'damaged_area', 'estimated_damaged_harvest',

'estimated_damaged_harvest_value', 'type')

Aid schema

class AidSchema(ma.Schema):

 class Meta:

 fields = ('aid_id', 'aid_name', 'aid_batch', 'year',

'in_charged_office_id', 'description')

Fertilizer schema

class FertilizerSchema(ma.Schema):

 class Meta:

 fields = ('fertilizer_id', 'aid_id', 'manufactured_date', 'brand',

'batch_no', 'expiry_date', 'name', 'type', 'description')

Pesticides schema

class PesticidesSchema(ma.Schema):

 class Meta:

 fields = ('pesticides_id', 'aid_id', 'manufactured_date', 'brand',

'batch_no', 'expiry_date', 'name', 'type', 'description')

MonetaryAid schema

class MonetaryAidSchema(ma.Schema):

 class Meta:

 fields = ('monetaryAid_id', 'aid_id', 'description', 'reason')

Fuel schema

class FuelSchema(ma.Schema):

 class Meta:

 fields = ('fuelAid_id', 'aid_id', 'reason', 'description',

'fuel_type')

MiscellaneousAids schema

class MiscellaneousAidsSchema(ma.Schema):

 class Meta:

 fields = ('miscellaneousAids_id', 'aid_id', 'type', 'reason',

'description')

AidDistribution schema

class AidDistributionSchema(ma.Schema):

 class Meta:

 fields = ('distribution_id', 'aid_id', 'agri_office_id', 'date',

'time', 'in_charged_officer_id', 'cultivation_info_id', 'farmer_id',

'amount_received', 'amount_approved', 'description')

Appendix D

Mobile Application Code

• Login page

// Import necessary packages

import 'package:flutter/material.dart';

import 'package:fluttertoast/fluttertoast.dart';

import 'package:http/http.dart' as http;// Import http package for making

HTTP requests

import 'dart:convert';// Import 'dart:convert' for JSON decoding//provides

encoders and decoders for converting between JSON and Dart objects.

import '../Home/HomePage.dart';

import 'RegisterAgriOfficer.dart';

// Define variables to keep user information who logged in the app

String? token;

String? firstname;

String? lastname;

String? email;

int? userid;

// Define the LoginPage widget

class LoginPage extends StatefulWidget {

 const LoginPage({super.key});

 @override

 State<LoginPage> createState() => _LoginPageState();

}

// Define the state for the LoginPage

class _LoginPageState extends State<LoginPage> {

 // Create controllers for username and password text fields

 TextEditingController username = TextEditingController();

 TextEditingController password = TextEditingController();

 // Define a method for login functionality

 Future<void> _login() async {

 const String apiUrl =

 'https://bluebird-balanced-drum.ngrok-free.app/user/login'; // API

Url:Login

 // Send a POST request to the login API

 final response = await http.post(

 Uri.parse(apiUrl),

 headers: <String, String>{

 'Content-Type': 'application/json; charset=UTF-8',

 },

 body: jsonEncode(<String, String>{

 'email': username.text,

 'password': password.text,

 }),

);

 if (!mounted) return;

 // Check the response status code

 if (response.statusCode == 200) {

 // Parse the JSON response

 final Map<String, dynamic> responseData = jsonDecode(response.body);

 // Extract the role value from the JSON response

 final int role = responseData['role'];

 token=responseData['token'];

 firstname=responseData['firstname'];

 lastname=responseData['lastname'];

 email=responseData['email'];

 userid=responseData['user_id'];

 // Check the user role

 if (role == 4) {

 // Redirect to the home page if role is 4

 Navigator.pushReplacement(

 context,

 MaterialPageRoute(builder: (context) => const HomePage()),

);

 // Show invalid login message if role is not 4

 } else if(role!=4){

 Fluttertoast.showToast(

 msg: 'Invalid login',

 toastLength: Toast.LENGTH_LONG,

 gravity: ToastGravity.BOTTOM,

 timeInSecForIosWeb: 1,

 backgroundColor: Colors.transparent,

 textColor: Colors.red,

 fontSize: 16.0,

);

 }

 }else{

 // Show error message for failed login

 showDialog(

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 title: const Text('Login Failed'),

 content: const Text('Invalid username or password.'),

 actions: <Widget>[

 TextButton(

 onPressed: () {

 Navigator.of(context).pop();

 },

 child: const Text('OK'),

),

],

);

 },

);

 }

 }

 // Define a method for navigating to the registration page

 void performRegistration(BuildContext context) {

 Navigator.push(

 context,

 MaterialPageRoute(builder: (context) => const RegisterOfficer()),

);

 }

 // Build the login page UI

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 body: Center(

 child: SingleChildScrollView(

 child: Padding(

 padding: const EdgeInsets.all(30.0),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Image.asset(

 "lib/assets/logo.png",

 width: 150.0,

 height: 150.0,

),

 const SizedBox(height: 30),

 TextFormField(

 controller: username,

 decoration: const InputDecoration(

 labelText: "Username",

 prefixIcon: Icon(Icons.person),

),

),

 const SizedBox(height: 30),

 TextFormField(

 controller: password,

 obscureText: true,

 decoration: const InputDecoration(

 labelText: "Password",

 prefixIcon: Icon(Icons.lock),

),

),

 const SizedBox(height: 30),

 ElevatedButton(

 onPressed:

 _login, // Call the _login method when the button is

pressed

 child: const Text('Login'),

),

 const SizedBox(height: 20),

 Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Expanded(

 child: Divider(

 color: Colors.teal.shade300,

 height: 10,

),

),

 const Text("or"),

 Expanded(

 child: Divider(

 color: Colors.teal.shade300,

 height: 10,

),

),

],

),

 const SizedBox(height: 20),

 Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 const Text(

 'Don\'t have an account? ',

 style: TextStyle(fontSize: 16),

),

 GestureDetector(

 onTap: () {

 performRegistration(context);

 },

 child: const Text(

 "Register",

 style: TextStyle(fontSize: 16, color: Colors.teal),

),

)

],

)

],

),

),

),

),

);

 }

}

• Page for adding disaster data

import 'package:flutter/material.dart';

import 'package:fluttertoast/fluttertoast.dart';

import 'package:intl/intl.dart';

import 'package:myapp/Screens/Cultivation/SearchCultivation.dart';

import 'package:http/http.dart' as http;

import '../AgriOfficer/LoginPage.dart';

import '../Home/HomePage.dart';

class AddDisasterRecords extends StatefulWidget {

 const AddDisasterRecords({super.key});

 @override

 State<AddDisasterRecords> createState() => _AddDisasterRecordsState();

}

class _AddDisasterRecordsState extends State<AddDisasterRecords> {

 String? _selectedIssueValue;

 TextEditingController cultivationInfoId = TextEditingController();

 TextEditingController damagedArea = TextEditingController();

 TextEditingController damagedHarvestExtent = TextEditingController();

 TextEditingController estimatedLoss = TextEditingController();

 TextEditingController date = TextEditingController();

 Future<void> _performAddRecord() async{

 const String apiUrl =

 'https://bluebird-balanced-drum.ngrok-free.app/disaster/info';

 final response = await http.post(

 Uri.parse(apiUrl),

 headers: <String, String>{

 'Content-Type': 'application/json; charset=UTF-8',

 'Authorization': 'Bearer $token',

 },

 body: jsonEncode(<String, dynamic>{

 'cultivation_info_id': int.parse(cultivationInfoId.text),

 'damaged_area': int.parse(damagedArea.text),

 'estimated_damaged_harvest': damagedHarvestExtent.text,

 'estimated_damaged_harvest_value': estimatedLoss.text,

 'type': _selectedIssueValue,

 'date': date.text,

 }),

);

 // print('Response body: ${response.body}');

 if (!mounted) return;

 if (response.statusCode == 200) {

 Navigator.pushReplacement(

 context,

 MaterialPageRoute(builder: (context) => const HomePage()),

);

 Fluttertoast.showToast(

 msg: "Successfully added a new disaster record",

 toastLength: Toast.LENGTH_LONG,

 gravity: ToastGravity.BOTTOM,

 backgroundColor: Colors.black12,

 textColor: Colors.green,

 fontSize: 16.0,

);

 // print(response.body

 } else if (response.statusCode == 400) {

 showDialog(

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 title: const Text('Failed to Add Record'),

 content: const Text('Invalid Cultivation Info Id '),

 actions: <Widget>[

 TextButton(

 onPressed: () {

 Navigator.of(context).pop();

 },

 child: const Text('OK'),

),

],

);

 },

);

 } else {

 Fluttertoast.showToast(

 msg: "System Error! \nPlease Login & Try Again",

 toastLength: Toast.LENGTH_LONG,

 gravity: ToastGravity.BOTTOM,

 backgroundColor: Colors.black12,

 textColor: Colors.green,

 fontSize: 16.0,

);

 }

 }

 void _performSearchCultivationInfoId(BuildContext context) {

 Navigator.push(

 context,

 MaterialPageRoute(builder: (context) => const

SearchCultivationPage()),

);

 }

 Future<void> _selectDate(BuildContext context) async {

 final DateTime? picked = await showDatePicker(

 context: context,

 initialDate: DateTime.now(),

 firstDate: DateTime(2023),

 lastDate: DateTime.now(),

);

 if (picked != null) {

 setState(() {

 // print(DateFormat('yyyy-MM-dd').format(picked));

 date.text = DateFormat('yyyy-MM-dd').format(picked);

 });

 }

 }

 List<DropdownMenuItem<String>> get dropdownItems {

 List<DropdownMenuItem<String>> menuItems = [

 DropdownMenuItem(

 child: Row(

 children: <Widget>[

 Icon(Icons.warning, color: Colors.orange), // Icon for Flood

 SizedBox(width: 10), // Add some space between icon and text

 Text("Flood"),

],

),

 value: "Flood",

),

 DropdownMenuItem(

 child: Row(

 children: <Widget>[

 Icon(Icons.cloud, color: Colors.blue), // Icon for Drought

 SizedBox(width: 10), // Add some space between icon and text

 Text("Drought"),

],

),

 value: "Drought",

),

 // Add similar DropdownMenuItem entries for other options

 DropdownMenuItem(

 child: Row(

 children: <Widget>[

 Icon(Icons.bug_report, color: Colors.green), // Icon for Pests &

Disease Outbreak

 SizedBox(width: 10), // Add some space between icon and text

 Text("Pests & Disease Outbreak"),

],

),

 value: "Pests & Disease Outbreak",

),

 // Add similar DropdownMenuItem entries for other options

 DropdownMenuItem(

 child: Row(

 children: <Widget>[

 Icon(Icons.storm, color: Colors.grey), // Icon for Storm

 SizedBox(width: 10), // Add some space between icon and text

 Text("Storm"),

],

),

 value: "Storm",

),

 // Add similar DropdownMenuItem entries for other options

 DropdownMenuItem(

 child: Row(

 children: <Widget>[

 Icon(Icons.warning, color: Colors.red), // Icon for Chemical

Spills

 SizedBox(width: 10), // Add some space between icon and text

 Text("Chemical Spills"),

],

),

 value: "Chemical Spills",

),

 // Add similar DropdownMenuItem entries for other options

 DropdownMenuItem(

 child: Row(

 children: <Widget>[

 Icon(Icons.landscape, color: Colors.brown), // Icon for Land

Degradation

 SizedBox(width: 10), // Add some space between icon and text

 Text("Land Degradation"),

],

),

 value: "Land Degradation",

),

 // Add similar DropdownMenuItem entries for other options

];

 return menuItems;

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: const Text(

 "Add Disaster Records",

 style: TextStyle(fontSize: 30.0),

),

 backgroundColor: Colors.teal.shade200,

 leading: IconButton(

 icon: const Icon(Icons.home),

 onPressed: () {

 Navigator.pushReplacement(

 context,

 MaterialPageRoute(builder: (context) => const HomePage()),

);

 },

),

),

 body: SingleChildScrollView(

 child: Padding(

 padding: const EdgeInsets.all(20.0),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 Row(

 mainAxisAlignment: MainAxisAlignment.end,

 children: [

 const SizedBox(height: 100.0,),

 ElevatedButton.icon(

 icon: const Icon(Icons.search,color: Colors.green,),

 label: const Text(

 "Cultivation Info Record Id",

 style: TextStyle(fontSize: 18.0),

),

 onPressed: () {

 _performSearchCultivationInfoId(context);

 }),

],

),

 TextFormField(

 controller: cultivationInfoId,

 keyboardType:

 const TextInputType.numberWithOptions(decimal: true),

 decoration: const InputDecoration(

 labelText: "Cultivation Information Record Id",

 prefixIcon:

Icon(Icons.indeterminate_check_box_outlined,color: Colors.teal,),

 hintText: "Eg:03",

 hintStyle: TextStyle(color: Colors.black12)),

 autovalidateMode: AutovalidateMode.onUserInteraction,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return 'Please Fill';

 }

 return null;

 },

),

 const SizedBox(

 height: 40.0,

),

 Row(

 children: [

 const Text(

 "Disaster Type",

 style: TextStyle(

 fontSize: 18.0,

 fontWeight: FontWeight.bold,

 color: Colors.black),

),

 const SizedBox(width: 30,),

 DropdownButton<String>(

 value: _selectedIssueValue,

 items: dropdownItems,

 onChanged: (String? choice) {

 setState(() {

 _selectedIssueValue = choice;

 });

 },

 hint: const Text("------------Select------------"),

),

],

),

 const SizedBox(height:30,),

 const Row(

 mainAxisAlignment: MainAxisAlignment

 .start, // Aligns widgets to the start of the main axis

 children: [

 Text(

 "Detailed Damage Assessment",

 style: TextStyle(

 fontSize: 18.0,

 fontWeight: FontWeight.bold,

 color: Colors.black),

),

],

),

 TextFormField(

 controller: damagedArea,

 keyboardType:

 const TextInputType.numberWithOptions(decimal: true),

 decoration: const InputDecoration(

 labelText: "Damaged Area in Acre [Estimated]",

 prefixIcon: Icon(Icons.landscape,color: Colors.teal,),

 hintText: "Eg: 1.5 Acre",

 hintStyle: TextStyle(color: Colors.black12)),

 autovalidateMode: AutovalidateMode.onUserInteraction,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return 'Please Fill';

 }

 return null;

 },

),

 TextFormField(

 controller: damagedHarvestExtent,

 keyboardType:

 const TextInputType.numberWithOptions(decimal: true),

 decoration: const InputDecoration(

 labelText: "Harvest Damage Extent [Estimation]",

 prefixIcon: Icon(Icons.eco,color: Colors.teal,),

 hintText: "Eg:340kg",

 hintStyle: TextStyle(color: Colors.black12)),

 autovalidateMode: AutovalidateMode.onUserInteraction,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return 'Please Fill';

 }

 return null;

 },

),

 TextFormField(

 controller: estimatedLoss,

 keyboardType:

 const TextInputType.numberWithOptions(decimal: true),

 decoration: const InputDecoration(

 labelText: "Estimated Loss",

 prefixIcon: Icon(Icons.money,color: Colors.teal,),

 hintText: "Eg:in Lkr",

 hintStyle: TextStyle(color: Colors.black12)),

 autovalidateMode: AutovalidateMode.onUserInteraction,

 validator: (value) {

 if (value == null || value.isEmpty) {

 return 'Please Fill';

 }

 return null;

 },

),

 const SizedBox(width: 50),

 TextFormField(

 readOnly: true,

 controller: date,

 decoration: InputDecoration(

 labelText: "Date",

 prefixIcon: const Icon(Icons.calendar_today,color:

Colors.teal,),

 suffixIcon: IconButton(

 icon: const Icon(Icons.edit_calendar_rounded),

 onPressed: () => _selectDate(context),

),

),

),

 const SizedBox(height: 30.0,),

 ElevatedButton(

 onPressed: () {

 _performAddRecord();

 },

 child: const Text(

 'Submit',

 style: TextStyle(fontSize: 25.0),

• Code for get geo location

import 'package:flutter/material.dart';

import 'package:geocoding/geocoding.dart';

import 'package:geolocator/geolocator.dart';

import 'package:google_maps_flutter/google_maps_flutter.dart';

class GetCurrentLocation extends StatefulWidget {

 const GetCurrentLocation({Key? key}) : super(key: key);

 @override

 State<GetCurrentLocation> createState() => _GetCurrentLocationState();

}

class _GetCurrentLocationState extends State<GetCurrentLocation> {

 String? _currentAddress;

 Position? _currentPosition;

 GoogleMapController? _mapController;

 void _onMapCreated(GoogleMapController controller) {

 _mapController = controller;

 }

 Future<void> _getCurrentPosition() async {

 final hasPermission = await _handleLocationPermission();

 if (!hasPermission) return;

 await Geolocator.getCurrentPosition(desiredAccuracy:

LocationAccuracy.high)

 .then((Position position) {

 setState(() {

 _currentPosition = position;

 _initialCameraPosition = CameraPosition(

 target: LatLng(position.latitude, position.longitude),

 zoom: 14,

);

 // Move map camera to the new location

 _mapController?.animateCamera(

 CameraUpdate.newCameraPosition(_initialCameraPosition));

 _getAddressFromLatLng(position);

 });

 }).catchError((e) {

 debugPrint(e);

 });

 }

 Future<bool> _handleLocationPermission() async {

 bool serviceEnabled;

 LocationPermission permission;

 serviceEnabled = await Geolocator.isLocationServiceEnabled();

 if (!serviceEnabled) {

 ScaffoldMessenger.of(context).showSnackBar(const SnackBar(

 content: Text(

 'Location services are disabled. Please enable the

services')));

 return false;

 }

 permission = await Geolocator.checkPermission();

 if (permission == LocationPermission.denied) {

 permission = await Geolocator.requestPermission();

 if (permission == LocationPermission.denied) {

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text('Location permissions are

denied')));

 return false;

 }

 }

 if (permission == LocationPermission.deniedForever) {

 ScaffoldMessenger.of(context).showSnackBar(const SnackBar(

 content: Text(

 'Location permissions are permanently denied, we cannot

request permissions.')));

 return false;

 }

 return true;

 }

 Future<void> _getAddressFromLatLng(Position position) async {

 await placemarkFromCoordinates(

 _currentPosition!.latitude, _currentPosition!.longitude)

 .then((List<Placemark> placemarks) {

 Placemark place = placemarks[0];

 setState(() {

 _currentAddress =

 '${place.street}, ${place.subLocality},

${place.subAdministrativeArea}, ${place.postalCode}';

 });

 }).catchError((e) {

 debugPrint(e);

 });

 }

 @override

 Widget build(BuildContext context) {

 print("in location page _");

 return Scaffold(

 appBar: AppBar(title: const Text("Location Page")),

 body: SafeArea(

 child: Column(

 children: [

 Expanded(

 child: GoogleMap(

 onMapCreated: _onMapCreated,

 initialCameraPosition: _initialCameraPosition,

 markers: {

 if (_currentPosition != null)

 Marker(

 markerId: const MarkerId("currentLocation"),

 position: LatLng(

 _currentPosition!.latitude,

 _currentPosition!.longitude,

),

),

 },

),

),

 const SizedBox(height: 20),

 Text('LAT: ${_currentPosition?.latitude ?? ""}'),

 Text('LNG: ${_currentPosition?.longitude ?? ""}'),

 const SizedBox(height: 20),

 Text('ADDRESS: ${_currentAddress ?? ""}'),

 const SizedBox(height: 20),

 Row(crossAxisAlignment: CrossAxisAlignment.values[2], children:

[

 ElevatedButton(

 onPressed: _getCurrentPosition,

 child: const Text("Get Current Location"),

),

 ElevatedButton(

 onPressed: () {

 if (_currentPosition != null) {

 // Return the latitude and longitude back to the

previous screen

 Navigator.pop(context, {

 'latitude': _currentPosition!.latitude,

 'longitude': _currentPosition!.longitude,

 });

 }

 },

 child: const Text("Confirm Location"),

),

])

],

),

),

Modal view

Appendix E

Frontend implementation - React Web Application

Login component:

The following code - Login component is a reactjs function component that renders as a modal

when the sign in button is clicked.

Landing page component:

The following code shows the landing page of the Web App

The Report View component for Administrator role

The following page shows the component code for navigation bar, where the role based

component is mainly handled in the web app.

Show-map component that used to view map on the given coordinations

• GeoJson used in showing Interactive Choropleth Map

• GeoJSON is a format for encoding geographical data structures. It's commonly used to

represent spatial data like points, lines, and polygons, along with their attributes, in a

simple and human-readable way. Essentially, it's a way to store and exchange

geographic information in a format that computers can understand easily.

https://geojson.org/

• GeoJson for Sri Lanka: https://github.com/MalakaGu/Sri-lanka-

maps/tree/master/discrict_map

https://geojson.org/
https://github.com/MalakaGu/Sri-lanka-maps/tree/master/discrict_map
https://github.com/MalakaGu/Sri-lanka-maps/tree/master/discrict_map

• Using GeoJson for sri lanka, choropleth map was created for view island wide

agricultural informations

Chart component used in the system

1. Pie chart

2. Bar chart

Appendix F

Backend code for Python Flask API

Init.py for flask application initialization with routes and database

Farmer routes

API function for farmer registration

Appendix G
This code creates a screen to obtain the current location of the device using the Geolocator and

Geocoding plugins. It displays a Google Map with the current location marker, latitude, longitude,

and address. Users can fetch the current location with a button and confirm it to return the latitude

and longitude to the previous screen.

import 'package:flutter/material.dart';

import 'package:geocoding/geocoding.dart';

import 'package:geolocator/geolocator.dart';

import 'package:google_maps_flutter/google_maps_flutter.dart';

class GetCurrentLocation extends StatefulWidget {

 const GetCurrentLocation({Key? key}) : super(key: key);

 @override

 State<GetCurrentLocation> createState() => _GetCurrentLocationState();

}

class _GetCurrentLocationState extends State<GetCurrentLocation> {

 String? _currentAddress;

 Position? _currentPosition;

 GoogleMapController? _mapController;

// Initial camera position

 late CameraPosition _initialCameraPosition = const CameraPosition(

 target: LatLng(

 0, 0), // Default to a neutral location before getting actual

location

 zoom: 14,

);

 void _onMapCreated(GoogleMapController controller) {

 _mapController = controller;

 }

 Future<void> _getCurrentPosition() async {

 final hasPermission = await _handleLocationPermission();

 if (!hasPermission) return;

 await Geolocator.getCurrentPosition(desiredAccuracy:

LocationAccuracy.high)

 .then((Position position) {

 setState(() {

 _currentPosition = position;

 _initialCameraPosition = CameraPosition(

 target: LatLng(position.latitude, position.longitude),

 zoom: 14,

);

 // Move map camera to the new location

 _mapController?.animateCamera(

 CameraUpdate.newCameraPosition(_initialCameraPosition));

 _getAddressFromLatLng(position);

 });

 }).catchError((e) {

 debugPrint(e);

 });

 }

 Future<bool> _handleLocationPermission() async {

 bool serviceEnabled;

 LocationPermission permission;

 serviceEnabled = await Geolocator.isLocationServiceEnabled();

 if (!serviceEnabled) {

 ScaffoldMessenger.of(context).showSnackBar(const SnackBar(

 content: Text(

 'Location services are disabled. Please enable the

services')));

 return false;

 }

 permission = await Geolocator.checkPermission();

 if (permission == LocationPermission.denied) {

 permission = await Geolocator.requestPermission();

 if (permission == LocationPermission.denied) {

 ScaffoldMessenger.of(context).showSnackBar(

 const SnackBar(content: Text('Location permissions are

denied')));

 return false;

 }

 }

 if (permission == LocationPermission.deniedForever) {

 ScaffoldMessenger.of(context).showSnackBar(const SnackBar(

 content: Text(

 'Location permissions are permanently denied, we cannot request

permissions.')));

 return false;

 }

 return true;

 }

 Future<void> _getAddressFromLatLng(Position position) async {

 await placemarkFromCoordinates(

 _currentPosition!.latitude, _currentPosition!.longitude)

 .then((List<Placemark> placemarks) {

 Placemark place = placemarks[0];

 setState(() {

 _currentAddress =

 '${place.street}, ${place.subLocality},

${place.subAdministrativeArea}, ${place.postalCode}';

 });

 }).catchError((e) {

 debugPrint(e);

 });

 }

 @override

 Widget build(BuildContext context) {

 print("in location page _");

 return Scaffold(

 appBar: AppBar(title: const Text("Location Page")),

 body: SafeArea(

 child: Column(

 children: [

 Expanded(

 child: GoogleMap(

 onMapCreated: _onMapCreated,

 initialCameraPosition: _initialCameraPosition,

 markers: {

 if (_currentPosition != null)

 Marker(

 markerId: const MarkerId("currentLocation"),

 position: LatLng(

 _currentPosition!.latitude,

 _currentPosition!.longitude,

),

),

 },

),

),

 const SizedBox(height: 20),

 Text('LAT: ${_currentPosition?.latitude ?? ""}'),

 Text('LNG: ${_currentPosition?.longitude ?? ""}'),

 const SizedBox(height: 20),

 Text('ADDRESS: ${_currentAddress ?? ""}'),

 const SizedBox(height: 20),

 Row(crossAxisAlignment: CrossAxisAlignment.values[2], children: [

 ElevatedButton(

 onPressed: _getCurrentPosition,

 child: const Text("Get Current Location"),

),

 ElevatedButton(

 onPressed: () {

 if (_currentPosition != null) {

 // Return the latitude and longitude back to the previous

screen

 Navigator.pop(context, {

 'latitude': _currentPosition!.latitude,

 'longitude': _currentPosition!.longitude,

 });

 }

 },

 child: const Text("Confirm Location"),

])

Appendix H

Unittest sample code of backend for “User” related functionalities.

from datetime import datetime, timedelta
import datetime
from app import app
import jwt
import os
import unittest
from unittest.mock import patch
from flask import Flask
from flask import current_app # Use Flask's current_app for app context specific
configurations

from app.models import db, User
from app.service.users.user_service import Check_User_Token_Expiration,
Get_User_Information, Search_User, Update_User, Validate_User, deleteUser,
get_access_token, getUserBy_Email, getUserBy_Id, register_user, user_login,
isExistingUser
from app.service.users.util_service import parse_date
from flask_jwt_extended import JWTManager
import xmlrunner
from app.route import user_routes

class TestUserRoutes(unittest.TestCase):
 @classmethod
 def setUpClass(cls):
 cls.app = Flask(__name__)
 cls.app.config['TESTING'] = True
 cls.app.config['JWT_SECRET_KEY'] = 'super_key'
 basedir = os.path.abspath(os.path.dirname(__file__))
 cls.app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' +
os.path.join(basedir, 'test_agriInfo.db')
 cls.app.register_blueprint(user_routes.user_routes)
 db.init_app(cls.app)

 with cls.app.app_context():
 db.create_all()

 @classmethod
 def tearDownClass(cls):
 with cls.app.app_context():
 db.session.remove()
 db.drop_all()

 def setUp(self):
 # Ensure each test has a clean database
 with self.app.app_context():

 db.session.query(User).delete()
 db.session.commit()

 def test_user_registration(self):
 with self.app.app_context():
 user = User(
 first_name='fName',
 middle_name='mName',
 last_name='lName',
 nic='testNIC',
 email='test@example.com',
 password='test',
 dob=parse_date('1990-01-01'),
 role=1,
)
 isSuccess, message = register_user(user)
 self.assertTrue(isSuccess)
 self.assertEqual(message, 'Registration success!')

 def test_user_login(self):
 with self.app.app_context():
 user = User(
 first_name='Jane',
 middle_name='Doe',
 last_name='Smith',
 nic='987654321V',
 email='jane@example.com',
 password='password',
 dob=parse_date('1992-02-02'),
 role=1,
)
 db.session.add(user)
 db.session.commit()

 login_user = User(email='jane@example.com', password='password')
 loggedInUser = user_login(login_user)
 self.assertEqual(loggedInUser.email, 'jane@example.com')

 def test_access_token_generation(self):
 with self.app.app_context():
 user = User.query.filter_by(email='test@example.com').first()
 if user:
 token = get_access_token(user)
 self.assertIsNotNone(token)

 def test_user_deletion(self):
 with self.app.app_context():
 user = User.query.filter_by(email='jane@example.com').first()
 if user:
 isDeleted, message, _ = deleteUser(user.id)
 self.assertTrue(isDeleted)
 self.assertEqual(message, "User successfully deleted.")

 def test_get_user_by_id(self):
 with self.app.app_context():
 # Setup: create two users, one as the 'current user' and another as
the target user
 current_user = User(
 user_id=1,
 email='current@example.com',
 password='password',
 role=1 # Assuming role 1 is allowed to fetch other users
)
 target_user = User(
 user_id=2,
 email='target@example.com',
 password='password',
 role=2
)
 db.session.add(current_user)
 db.session.add(target_user)
 db.session.commit()

 # Test: Attempt to get the target user by ID using the current user's
ID
 retrieved_user = getUserBy_Id(2, 1)

 # Verify: Check that the retrieved user is the target user
 self.assertIsNotNone(retrieved_user)
 self.assertEqual(retrieved_user.user_id, target_user.user_id)
 self.assertEqual(retrieved_user.email, target_user.email)

 def test_get_user_by_id_unauthorized_role(self):
 with self.app.app_context():
 # Setup: create two users, one as the 'current user' with an unauthorized
role and another as the target user
 current_user = User(
 user_id=3,
 email='unauthorized@example.com',
 password='password',
 role=5 # Assuming role 5 is not allowed to fetch other users
)
 target_user = User(
 user_id=4,
 email='another_target@example.com',
 password='password',
 role=2
)
 db.session.add(current_user)
 db.session.add(target_user)
 db.session.commit()

 # Test: Attempt to get the target user by ID using the unauthorized
current user's ID

 retrieved_user = getUserBy_Id(4, 3)

 # Verify: Check that the retrieved user is None or access is denied
based on your function logic
 self.assertIsNone(retrieved_user)

 def test_get_user_by_email_authorized(self):
 # Test retrieving a user by email with an authorized current user.
 with self.app.app_context():
 # Setup: create an authorized current user and another user to retrieve
 authorized_user = User(
 user_id=10, # Ensure unique user_id
 email='authorized@example.com',
 password='password',
 role=1 # Assuming roles 1, 3, 4 are authorized
)
 target_user = User(
 user_id=20, # Ensure unique user_id
 email='targetuser@example.com',
 password='password',
 role=2
)
 db.session.add(authorized_user)
 db.session.add(target_user)
 db.session.commit()

 # Act: Attempt to get the target user by email using the authorized
current user's ID
 retrieved_user = getUserBy_Email('targetuser@example.com', 10)

 # Assert: Verify that the correct user is retrieved
 self.assertIsNotNone(retrieved_user)
 self.assertEqual(retrieved_user.email, 'targetuser@example.com')

 def test_get_user_by_email_unauthorized(self):
 # Test retrieving a user by email with an unauthorized current user.
 with self.app.app_context():
 # Setup: create an unauthorized current user and another user to
retrieve
 unauthorized_user = User(
 user_id=30, # Ensure unique user_id
 email='unauthorized@example.com',
 password='password',
 role=5 # Assuming this role is unauthorized
)
 another_target_user = User(
 user_id=40, # Ensure unique user_id
 email='another_target@example.com',
 password='password',
 role=2
)
 db.session.add(unauthorized_user)

 db.session.add(another_target_user)
 db.session.commit()

 # Act: Attempt to get the target user by email using the unauthorized
current user's ID
 retrieved_user = getUserBy_Email('another_target@example.com', 30)

 # Assert: Verify that the user is not retrieved due to unauthorized
access
 self.assertIsNone(retrieved_user)

 def test_update_user(self):
 # Test updating user information.
 with self.app.app_context():
 # Setup: Create a user to update
 original_user = User(
 email='update@example.com',
 password='originalPassword',
 first_name='Original',
 last_name='User',
 nic='123456789V',
 dob=parse_date('1990-01-01'),
 role=1,
 middle_name='Middle'
)
 db.session.add(original_user)
 db.session.commit()

 # Define the update data
 update_data = {
 'password': 'newPassword',
 'first_name': 'Updated',
 'last_name': 'User',
 'nic': '987654321V',
 'dob': '1995-05-05',
 'role': 2,
 'middle_name': 'UpdatedMiddle'
 }

 # Act: Call the Update_User function with the update data
 Update_User(update_data, original_user)

 # Fetch the updated user from the database
 updated_user = User.query.filter_by(email='update@example.com').first()

 # Assert: Verify the user's information has been updated
 self.assertEqual(updated_user.password, update_data['password'])
 self.assertEqual(updated_user.first_name, update_data['first_name'])
 self.assertEqual(updated_user.last_name, update_data['last_name'])
 self.assertEqual(updated_user.nic, update_data['nic'])
 self.assertEqual(updated_user.dob, parse_date(update_data['dob']))
 self.assertEqual(updated_user.role, update_data['role'])

 self.assertEqual(updated_user.middle_name, update_data['middle_name'])

 def test_search_user_with_filters(self):
 # Test searching users with specific filters.
 with self.app.app_context():
 # Setup: Add multiple users to test the filter and pagination
 users_to_add = [
 User(email='user1@example.com', first_name='Test',
last_name='User', role=1),
 User(email='user2@example.com', first_name='Test',
last_name='User2', role=2),
 User(email='user3@example.com', first_name='Another',
last_name='User3', role=1),
]
 for user in users_to_add:
 db.session.add(user)
 db.session.commit()

 # Define filters to search for users with a specific first name
 filters = {'first_name': 'Test', 'page': 1, 'per_page': 2}
 # Act: Search users using the filters
 result = Search_User(filters)
 # Assert: Check that the result matches expected structure and content
 self.assertEqual(result['page'], 1)
 self.assertEqual(result['per_page'], 2)
 self.assertTrue(result['total_pages'] >= 1)
 self.assertTrue(result['total_users'] >= 2)
 self.assertEqual(len(result['users']), 2)
 self.assertTrue(all(user['first_name'] == 'Test' for user in
result['users']))

 def test_validate_user_success(self):
 # Test user validation succeeds when email and user_id match.
 with self.app.app_context():
 # Setup: Create a user to validate
 user = User(
 user_id=100, # Ensure a unique user_id
 email='valid@example.com',
 password='password',
 role='1'
)
 db.session.add(user)
 db.session.commit()
 # Act: Attempt to validate the created user by user_id and email
 is_valid, validated_user = Validate_User(100, 'valid@example.com')

Assert: Verify that validation succeeds
 self.assertTrue(is_valid)
 self.assertIsNotNone(validated_user)
 self.assertEqual(validated_user.email, 'valid@example.com')

 def test_validate_user_failure(self):
 # Test user validation fails when email does not match user_id.
 with self.app.app_context():
 # Setup: Create a user to attempt to validate incorrectly
 user = User(
 user_id='101', # Ensure a unique user_id
 email='invalid@example.com',
 password='password',
 role='1')
 db.session.add(user)
 db.session.commit()
 # Act: Attempt to validate the user with a correct user_id but incorrect
email
 is_valid, validated_user = Validate_User(101, 'wrong@example.com')
 # Assert: Verify that validation fails
 self.assertFalse(is_valid)
 self.assertIsNone(validated_user)

 def test_get_user_information(self):
 # Test retrieving information for a specific user.
 with self.app.app_context():
 # Setup: Create a user whose information will be retrieved
 new_user = User(
 user_id=123, # Make sure this ID is unique or auto-generated
 email='info@example.com',
 password='securePassword',
 first_name='Test',
 last_name='User',
 role=2, # Example role
 # Add any other required fields
)
 db.session.add(new_user)
 db.session.commit()
 # Get the user's ID (if not manually set)
 user_id = new_user.user_id
 # Act: Retrieve the user information using the function under test
 retrieved_user = Get_User_Information(user_id)
 # Assert: Verify that the retrieved information matches the created
user self.assertIsNotNone(retrieved_user)
 self.assertEqual(retrieved_user.email, 'info@example.com')
 self.assertEqual(retrieved_user.first_name, 'Test')
 self.assertEqual(retrieved_user.last_name, 'User')
 self.assertEqual(retrieved_user.role, 2)
 # Add any other assertions for fields you care about

if __name__ == '__main__':
 unittest.main(verbosity=2, testRunner=xmlrunner.XMLTestRunner(output='test-
reports'))

Appendix I
Testing done with Postman are represented below for your reference.

Test Case EndPoint Method

Type

Integration

Test Pass/

Fail

RegisterUser http://127.0.0.1:5000/user/register POST Pass

UserLogin http://127.0.0.1:5000/user/login POST Pass

RetrieveUserByID http://127.0.0.1:5000/user/4 GET Pass

RetrieveUserByEmail http://127.0.0.1:5000/user/find_by_email?e

mail=email2@example.com

GET Pass

GetAllUsers http://127.0.0.1:5000/user/all GET Pass

GetUserInformation http://127.0.0.1:5000/user/info?user_id=2 GET Pass

RetrieveUsersbyRole http://127.0.0.1:5000/user/find_by_role?role

=5

GET Pass

retrieve_password/ http://127.0.0.1:5000/user/find_by_email?e

mail=admin

GET Pass

UdateUser http://127.0.0.1:5000/user/update/9 PUT Pass

Search User http://127.0.0.1:5000/user/search?page=1&

per_page=10

GET Pass

ValidateUser http://127.0.0.1:5000/user/validate POST Pass

UserTokenExpiration http://127.0.0.1:5000/user/check_token GET Pass

GetAllFarmers http://127.0.0.1:5000/user/farmer GET Pass

GetFarmerDetailsById http://127.0.0.1:5000/user/farmer/19 GET Pass

UpdateFarmer http://127.0.0.1:5000/user/farmer/1 PUT Pass

DeleteFarmer http://127.0.0.1:5000/user/farmer/100 DELETE Pass

SearchFarmers http://127.0.0.1:5000/user/search_farmers?a

ssigned_office_id=3

GET Pass

AddFarmer http://127.0.0.1:5000/user/farmer POST Pass

GetFarmerDetailsAdv

ance

http://127.0.0.1:5000/user/farmer/details/9 GET Pass

AddFarm http://127.0.0.1:5000/farm POST Pass

SearchFarms http://127.0.0.1:5000/farm/search?pa

ge=1&per_page=10&type=crop&farm_id=

1&address

GET Pass

SearchCultivation http://127.0.0.1:5000/cultivation/search?far

m_id=1

GET Pass

AddCultivation http://127.0.0.1:5000/cultivation/info POST Pass

SearchAidDistribution http://127.0.0.1:5000/aid/aid-

distribution/search

GET Pass

AddAidDistribution http://127.0.0.1:5000/aid/aid-distribution POST Pass

sendMail http://127.0.0.1:5000/communication/send GET Pass

AddAddress http://127.0.0.1:5000/communication/addres

s

POST Pass

GEtAllAddress http://127.0.0.1:5000/communication/addres

s

GET Pass

SearchAddressById http://127.0.0.1:5000/communication/addres

s/search?user_id=100

GET Pass

DeleteAddressByAddr

essID

http://127.0.0.1:5000/communication/addres

s/36

DELETE Pass

UpdateAddressByAdd

ress_Id

http://127.0.0.1:5000/communication/addres

s/update/2

POST Pass

AddContacts http://127.0.0.1:5000/communication/contac

ts

POST Pass

DeleteContactbyConta

ctId

http://127.0.0.1:5000/communication/contac

ts/delete/2

DELETE Pass

SearchContact http://127.0.0.1:5000/communication/contac

ts/search?user_id=2

GET Pass

Some screen shots are included for evidence.

Figure 1: Add farmer test

Figure 3: User Registration Testing

Figure 2: Update user testing

Figure 4: User validation Test

Figure 5: Search User Testing

Figure 6: Get User Info By user Id Test

Figure 8: Get All Users Test

Figure 7: Retrieve user by Email

Figure 9: Retrieve user by role Test

Figure 10: Retrieve user by Id Test

Appendix J

User1
Highlight

Appendix K

User Manual for "Ceylon AgriData" Mobile Application

Ceylon AgriData is a mobile application designed for Agriculture Field Officers to efficiently

collect, manage, and report agriculture-related data of registered farmers, their farms,

cultivation activities, issues reporting, and aid distribution. This user manual provides detailed

instructions on how to use the Ceylon AgriData mobile application effectively.

Content

Technical Requirements: ... 2

1.Getting Started: ... 2

2. User Registration and Login .. 2

3. Home Screen .. 3

4.Dash Boad ... 3

5. Collecting Agriculture Data ... 3

Farmer Registration .. 5

Add Fam ... 5

Add Cultivation Details .. 5

Add Aid Distribution Records ... 9

6. Broadcast Message Service.. 11

7. Manage Records... 11

8. Update/Delete Records .. 13

Additional Tips .. 15

Figure 3; User Login Page

Technical Requirements:

• Mobile Platform: Android

• Android Version: Android 5.0 (and up) its dessert-themed code name: “Lollipop”.

1.Getting Started:

• Before using the "Ceylon AgriData" app, ensure that you have downloaded and

installed it on your mobile device.

• Once installed, launch the app by tapping on its icon. You will be directed to a splashing

page as Figure 1.

2. User Registration and Login

• If you are a new user, you will need to register by providing your username, password,

and other required information as in Figure 2.

• After registration, your account will be pending approval from the admin.

• If you are already registered, simply log in using your username and password as Figure

3.

Figure 1: Splashing Page Figure 2: Agri Field Officer Registration Page

Figure 5: Main Menu Figure 4: Home Page
Figure 6: Dash Board

3. Home Screen

• Upon successful login, you will be directed to the home screen of the app

• From the home screen, you can access various features and functionalities of the app

clicking “Explore More” button as in Figure 4.

• Or, you can use “Main Menu” for navigation to pages in Figure 5.

4.Dash Boad

• You can see the buttons to enroll the functionalities that this application is included, as

in figure 6.

5. Collecting Agriculture Data

• To collect agriculture data, navigate to the respective section within the app as described

in following table 1.

• Enter the required information such as farmer details, farm details, cultivation details,

disaster records, aid distribution records etc.

• You can search, update, or delete records as needed.

Dash Board Buttons Buttons in Relevant pages to enroll

particular functionalities

Farmer Registration

Fill the required information and click “Next”, then fill the section 2. And , click “Submit

Button”. Figure 7 showcases the form. When you click sublit button, if the registration is

success, you will be navigation to “Add Farm” section automatically. Or, you can use main

menu at home page to navigate to “Register Farmer” section.

Add Fam

Fill the information and click “Submit” button. Figure 8 indicates the particular form. When

successfully added the record, you will be navigating to “Add cultivation information” Page.

Or, you can navigate it right from the main menu at Home Page.

Use “Search User Id”, search button for your task gets completed.

Add Cultivation Details

Fill the form in Figure 9 and press “Submit button”. Use “Get Current Location” button to get

cultivation location. Refer Figure 10 for more information.

Figure 7: Farmer Registration

Figure 8: Add Farms Page

Figure 9: Add Cultivation Information Page

You can Choose relevant agriYear,

Quartile etc. by the drop down.

Also, “Get Current Location” button will

assist to get relevant location of the

cultivation.

Right after click “Confirm Location” button, you will be returned to “Add Cultivation Details”

page.

***Important: You should grant access to location fetching while using your mobile phone.

Figure 10: Fetching current location

Add Aid Distribution Records

Use “Aid Id” as per your official documents. Fill the form in Figure 11 and click

“Submit” button. Use the drop-down options to select “Aid Type”.

Figure 11: Aid Distribution Page

Record Disaster Information

To complete the recording process, fill the form provided in Figure 12, and click the "Submit"

button to proceed. Utilize the search button if you need to find specific information.

Additionally, you may utilize the dropdown menus to select the type of disaster. You can

navigate to this particular page form main menu at home page.

Figure 12: Add Disaster Records Page

6. Broadcast Message Service

With this feature, you have the ability to broadcast messages to registered farmers within the

accredited area of agriculture field officers. To initiate a broadcast, craft a message with a

suitable subject and body, then proceed by clicking the "Send" button. For reference, you can

view the page layout in Figure 13. Additionally, there is an option to fetch the relevant email

addresses of farmers by clicking the "All Farmer Emails" button.

7. Manage Records

You have the ability to manage all inserted records by utilizing the SEARCH, UPDATE, and

DELETE options provided. Figure 14 displays a group of pages dedicated to managing all

Figure 13: Broadcast messages Page

Fetch farmer Emails

agriculture data discussed in Section 5. With these options, you can search for specific records,

update existing information, or delete records as necessary.

Figure 14: Manage Records Pages

Figure 15: Search Farmers

Table 2 showcases the distinct pages for search functionality.

Use “Search” buttons to process search. Use “Clear Result” button to clear the fields. For

example, see Figure 15. [available options: Search farmers, search farms, search aids, Search

cultivation information]

8. Update/Delete Records

o update or delete records, simply click the "Update/Delete Records" button. Afterward, search

for the desired records and preview them. You can then proceed to update the records

accordingly. Alternatively, you can delete a record by clicking on the "delete" icon.

Figure 16 shows in detailed example. Enter a valid Farmer_id and tap the search icon

You can make updates to the necessary section

and then click the button to save the changes.

Delete Record Icon

Figure 16:Update / Delete Farmer Records

Additional Tips

• Ensure a stable internet connection for smooth operation of the app, especially when

submitting data or broadcasting messages.

• Familiarize yourself with the app's interface and features to maximize efficiency during

field visits.

• Contact the admin or technical support team for any assistance or issues related to the

app.

• With the "Ceylon AgriData" mobile application, you can effectively manage agriculture

data, report issues, distribute aids, and communicate with farmers, all from the

convenience of your mobile device.

Happy farming!

Appendix L
React WebApp UIs : Here some UIs are showcased,

Admin, Agriculture field officer, farmer etc. particular views and operations within the

system

Home Page

SignIn form

Register form

SignIn successful toast

message

Nav Bar drop Downs

Free Advertisement Service

Publicly available some reports

Admin reports types

Types of Aids

Admin Operations

Thus all operation has crud

CRUD operation of farmer

