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ABSTRACT

This study addresses the persistent challenge of Intensive Care Unit (ICU) readmission,

focusing on the unique context of Lower and Middle Income Countries (LMICs). Despite

advancements in medical technology, ICU readmissions remain a critical issue, with

implications for healthcare resources and patient outcomes. To address the challenge of ICU

readmission, accurate prediction models are needed to identify patients at high risk of

readmission because the prediction of readmission before the patient is discharged, will help

physicians re-evaluate the discharge of the patient and reduce the immature discharges. The

existing literature predominantly stems from high-income countries (HICs), and this study

aims to fill the gap by developing a predictive model tailored to LMICs context. It utilizes the

Long Short-Term Memory (LSTM), known for its ability to capture temporal dependencies in

sequential patients’ data to predict the early ICU readmission (readmission within 48 hours

followed by index discharge) of the patients and feature ablation test to extract the important

factors associated with ICU readmission. 2.85% (306) of discharges to the wards were later

readmitted within 48 hours to the intensive care unit. The LSTM model with a cost-sensitive

training had significantly better performance (area under the receiver operating curve, 0.68)

compared to the baseline models with traditional machine learning approaches. It highlights

that the deep learning models improve the accuracy of decision-making in predicting ICU

readmission.
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CHAPTER 1

INTRODUCTION

While advancements in medical technology and the expertise of healthcare professionals have

improved patient outcomes in Intensive Care Units (ICUs), the issue of ICU readmission

remains a persistent challenge (Elliott, Worrall-Carter and Page, 2014). ICU readmission is

defined as a second admission to the same ICU from which the patient was originally

discharged during the same hospitalization (Brown, Ratcliffe and Halpern, 2013). Early ICU

readmissions refer to instances in which patients return to the ICU within 48 hours of their

initial discharge. Conversely, ICU readmissions, occurring between 3 and 14 days subsequent

to discharge within the same hospital encounter, are characterized as late readmissions (Aryal

et al., 2023).

Currently the incidence of ICU readmissions within the first 48 hours is widely used as a

performance metric reflecting the quality of intensive care medicine (Aryal et al., 2023; Lin et

al., 2018). High readmission rates not only strain healthcare resources but also have negative

implications for patient outcomes, including increased morbidity, mortality, and healthcare

costs (Aryal et al., 2023; Lin et al., 2018; Jo et al., 2015). Most of the available evidence

regarding the occurrence, features, related risk factors, and resulting outcomes of ICU

readmissions is derived from critical care populations and health systems in high-income

countries (HICs) (Aryal et al., 2023).

Low and middle income countries (LMICs) face distinct healthcare challenges compared to

HICs, including limited resources, inadequate infrastructure, higher mortality and a higher

burden of infectious diseases and non-communicable diseases (Getzzg, 2023; Miranda et al.,

2008). Consequently, the factors influencing ICU readmission in these regions may differ

significantly from those observed in HICs and continue to be largely lacking (Aryal et al.,

2023). Thus the development of prediction models tailored to these specific contexts is crucial

to enhance patient care and resource allocation.

Deep learning techniques such as Long Short-Term Memory (LSTM) can be applied to

develop such predictive models for ICU readmission because of their ability to effectively

capture temporal dependencies and make predictions based on the history of observations by

utilizing the sequential nature of the data (Lin et al., 2019). This capability makes deep

learning approaches particularly suitable for analyzing and predicting outcomes in ICU

1



patients over traditional statistical methods and machine learning techniques, where temporal

dynamics play a significant role in understanding their health status and identifying potential

risks including ICU readmissions (Cascarano et al., 2023).

1.1 Motivation
Due to the increased interest in the ICU readmission prediction, several predictor models have

been proposed using classical machine learning techniques (Rojas et al., 2018; Pakbin et al.,

2018; Veloso et al., 2014) and deep learning techniques (Lin et al., 2019; Barbieri et al., 2020;

Ashfaq et al., 2019). But the predictive models proposed using the data collected from the

patients of HICs, may not yield accurate predictions for ICU readmission in LMICs because

of the models' inherent limitations in capturing factors that are contextually specific to

readmission occurrences in LMICs. It provides a compelling basis for the development of a

dedicated model for LMICs, highlighting the necessity to consider factors that are distinctly

relevant to the healthcare settings in these regions.

Deep learning models can effectively model the temporal dependencies and sequential

patterns in time series data, which is crucial in ICU readmission prediction and it offers the

advantage of transfer learning, where models pretrained on specific datasets can be fine-tuned

to predict the ICU readmissions to a specific ICU in LMICs with limited data (Hosna et al.,

2022). By considering the need for a prediction model for ICUs in LMICs and the above

mentioned advantages of deep learning techniques, this study aims to develop a predictive

model for ICU readmission using LSTM in the setting of LMICs to support healthcare

providers in decision making.

1.2 Statement of the problem
To address the persistent challenge of ICU readmission, coupled with its impact on healthcare

resources, patient outcomes, and costs, accurate prediction models are needed to identify

patients at high risk of readmission because the prediction of readmission before the patient is

discharged, will help physicians re-evaluate the discharge of the patient and reduce the

immature discharges.

LMICs, confronting unique healthcare challenges, require tailored approaches to predict ICU

readmission and understand the factors influencing it. Existing predictive models often lack

specificity for LMICs compared to HICs as none of the studies have so far proposed a deep

learning predictive model capturing time series nature of the patients’ data for ICU
2



readmissions in LMICs.

This study will address this void by developing a predictive model that utilizes the LSTM

technique to capture the temporal nature of the patients’ data collected from ICUs in LMICs.

Further, this study will extract the risk factors associated with readmissions to ICUs in LMICs

using feature importance techniques. The ability of predicting the patients at high risk of

readmitting with related risk factors, will empower healthcare providers with the ability for

proactive interventions, resulting in improving patient outcomes, enhancing care quality,

facilitating care coordination, mitigating financial burdens and resource utilization within the

ICU setting and beyond.

1.3 Research Aims and Objectives

1.3.1 Aim
This study aims to develop a predictive model for ICU readmission for the regions of

LMICs utilizing LSTM technique and extract the key factors associated with ICU

readmissions in these regions.

1.3.2 Objectives
The primary objective of this study is to develop a robust and effective prediction

model using LSTM technique to forecast the likelihood of patients being readmitted to

the ICU within 48 hours following index discharge in the region of LMICs as longer

intervals between index discharge and readmission are less likely to be related to ICU

discharge circumstances (Brown, Ratcliffe and Halpern, 2013; Brown, Ratcliffe and

Halpern, 2015).

Specific objectives are,

● To build an early ICU readmission (within 48 hours following the discharge)

prediction model in the setting of LMICs by utilizing the LSTM technique

● To extract the key risk factors associated with ICU readmission in these region

● To compare the performance of the LSTM model to the baseline models and deep

learning models developed for HICs
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1.4 Scope
The scope of this study is to implement a predictive model using LSTM to predict early

readmissions of adult patients (age greater than 18) to ICUs in the same hospitalization and

extract the key features associated with early ICU readmission from the data collected from

the ICUs in the LMICs.

1.5 Structure of the dissertation
The rest of the dissertation is organized as follows,

Chapter 2: Literature review summarizes the previous works carried out in the field,

providing a comprehensive review of relevant literature to contextualize the current study.

This section critically examines existing studies, highlights key findings, identifies gaps, and

establishes the theoretical framework for the study.

Chapter 3: Methodology describes methodological approach adopted for the study,

encompassing description and preprocessing of the data source. It outlines the criteria and

rationale for feature selection, followed by the process of feature extraction. It further

explains the steps involved in model development and model training. Finally, it explains the

concept of feature ablation tests, providing insights into the methodology employed to assess

the impact of individual features on the model's performance.

Chapter 4: Evaluation and Results presents the outcomes of the study, detailing the results

obtained for patients characteristics of both readmitted and non-admitted groups, the

developed models compared to previously proposed models and the feature ablation tests. It

provides a comprehensive analysis of the model performances, highlighting key findings, and

discusses the implications of the results.

Chapter 5: Conclusion and Future work discusses the key findings of the study,

emphasizing the contributions made to the field. It provides a concise summary of the results,

discussing their implications and relevance to the research question. The section also reflects

on the limitations of the study and suggests avenues for future work
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CHAPTER 2
LITERATURE REVIEW

The literature surrounding ICU readmissions prediction techniques encompasses a diverse

array of studies, methodologies, and insights that collectively contribute to the advancement

of healthcare decision-making. This section reviews the key findings and trends within this

domain, highlighting both the progress achieved and the gaps that persist.

Existing predictive models for ICU readmission often rely on traditional statistical methods or

classical machine learning techniques (Rojas et al., 2018; Pakbin et al., 2018; Veloso et al.,

2014). When discussing classical machine learning methods, the study by Rojas et al. (2018)

applied a gradient boosting technique and the study by Pakbin et al. (2018) applied the

extreme gradient boosting (XGBoost) technique to predict the readmissions. They both

utilized data from the last 24 hours prior to ICU discharge. Though these studies have

achieved some success in predicting ICU readmissions, they have limitations. For instance,

these studies often lack the ability to handle time-series data and capture temporal

dependencies, which are important in ICU readmission prediction (Cascarano et al., 2023).

Deep learning models are well-suited for handling sequential data, such as time-series data as

they have the ability to learn from the temporal patterns in the data and capture temporal

dependencies, making them a powerful tool for predicting ICU readmissions accurately. Thus

to overcome the above mentioned limitations in traditional methods and classical machine

learning techniques, the use of deep learning models has been explored in ICU readmission

prediction (Lin et al., 2019; Barbieri et al., 2020; Ashfaq et al., 2019) given deep learning

techniques have shown to outperform shallow machine learning models and traditional data

analysis approaches in many applications (Miranda et al., 2008). Ultimately they have shown

better performance compared to existing state-of-the-art models in predicting ICU

readmissions (Lin et al., 2019).

Studies introducing deep learning models for predicting ICU readmission have employed a

Recurrent Neural Network (RNN) as in the work by Barbieri et al. (2020), or an RNN with

LSTM as demonstrated by Lin et al. (2019) and Ashfaq et al. (2019). While studies by Lin et

al. (2019) and Barbieri et al. (2020) predict the readmission within a 30-day period following

ICU discharge, the study by Ashfaq et al. (2019) predicts the readmission within different

time intervals; 24 hours, 72 hours, 7 days, 30 days, and bounceback readmissions within the
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same hospital admission. However longer intervals between index discharge and readmission

are less likely to be related to ICU discharge circumstances (Brown, Ratcliffe and Halpern,

2013; Brown, Ratcliffe and Halpern, 2015).

Studies by Lin et al. (2019) and Barbieri et al. (2020) utilized longitudinal clinical data

obtained from the publicly accessible MIMIC-III dataset. In contrast, the study by Ashfaq et

al. (2019) relied on data gathered from more than 7500 congestive heart failure (CHF)

patients hospitalized between 2012 and 2016 in Sweden. The primary distinction in the

patient populations studied lies in the fact that the latter specifically concentrated on a

population afflicted with a specific disease (CHF), thereby narrowing the target population,

whereas the former two did not focus on any disease-specific population.

In the context of inclusion and exclusion criteria of patients, all three studies discussed above

share the common practice of including only adult patients and excluding those who died at

the time of discharge of index admission. However, a discrepancy arises in the inclusion of

patients discharged and subsequently deceased within 30 days, with varying approaches in the

studies conducted by Lin et al. (2019) and Barbieri et al. (2020). While Barbieri et al. (2020)

excluded these patients, Lin et al. (2019) included them and assigned them into the readmitted

class. Notably, the rationale behind the inclusion of these specific patients is not explicitly

justified or supported by an argument by Lin et al. (2019).

In terms of features used for the deep learning model training, the studies extracted the

features as follow,

1. Lin et al. (2019) extracted three distinct sets of features: chart events, ICD-9

embeddings, and patient demographic information.

2. Barbieri et al. (2020) incorporated the temporal dynamics of code embeddings

computed by neural ordinary differential equations (ODEs).

3. Ashfaq et al. (2019) extracted both human and machine derived features.

Among all three studies discussed above, only the study by Ashfaq et al. (2019) addresses the

class imbalance issue by introducing cost-sensitive classification.

All the aforementioned studies focused on predicting the readmissions through the utilization

of supervised machine learning techniques. In contrast, the study by Veloso et al. (2014)

adopted a clustering methodology to predict the readmissions. This study used the data
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collected at the time of discharge and applied different clustering algorithms that are k-means,

k-medoids, x-means and DBSCAN.

However, one of the main concerns of the deep learning models over the traditional statistical

and machine learning models is the complexity and interpretability (Amorim et al., 2020).

They are often considered "black boxes" meaning that it can be challenging to understand the

underlying factors driving the predictions. Therefore very few studies have attempted to

understand and interpret the deep learning predictive model. Feature interpretation of the

machine learning models is crucial, and more imperative for clinical applications. This task is

much more complex for deep learning techniques, which has made recent works short of

explaining the decision making logic and model interpretation (Lin et al., 2019).

Summing up, the literature on the ICU readmissions prediction through classical machine

learning and deep learning approaches contributes to enhancing patient outcomes and

optimizing healthcare resources. However, while progress has been made, the following

remains unaddressed,

● Absence of LMICs oriented models: A noticeable gap is the absence of deep

learning models tailored for LMICs. These models would need to account for the

unique healthcare landscape, resource constraints, and patient demographics prevalent

in LMICs.

To address the lack of the representation of LMICs specific ICU readmission prediction

models, this study aims to implement a LSTM model specifically designed to predict ICU

readmissions among adult patients in the ICUs of LMICs and extract the key factors

associated with ICU readmissions in these regions.
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CHAPTER 3

METHODOLOGY
3.1 Dataset preparation
This multi-centre retrospective study uses the data submitted by a collaborating registry to the

CCAA repository. Data elements including demographics, admission diagnosis, pre-existing

comorbidity, route of admission, ICU outcome, physiological vital signs, laboratory

measurements, readmission status, admission and discharge summaries, are routinely reported

as part of the core dataset and daily dataset. Data is collected daily contemporaneous to

patient care and all data collectors are trained in definitions and data acquisition.

ICUs in the registry that collected daily data were only included in the study. From data

submitted between 2020-12-01 and 2023-11-30, patients were screened out based on the

following criteria to predict readmissions within 48 hours as longer intervals between

discharge and readmission are less likely to be related to ICU discharge circumstances

(Brown, Ratcliffe and Halpern, 2013; Brown, Ratcliffe and Halpern, 2015),

1. Patients under 18 years at the time of admission (Lin et al., 2019; Barbieri et al.,

2020)

2. Patients who died in the first ICU admission (Lin et al., 2019; Barbieri et al., 2020)

3. Patients discharged to ward and dead within 48 hours (Barbieri et al., 2020)

4. Patients who were discharged to home or transferred to another ICU/another hospital

as their readmission status wasn’t captured in the data (Rojas et al., 2018)

Then all the patients and their corresponding ICU stay records in the final dataset were

labeled as positive (readmitted) or negative (not-readmitted) based on their post-discharge

outcome as follow,

● Patients discharged to ward and not readmitted to ICU within 48 hours as negative

● Patients discharged to ward and readmitted to ICU within 48 hours as positive
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Figure 1: Consort diagram of inclusion and exclusion of admissions to the study

3.2 Features selection
Because of the availability of the variables in the dataset, various combinations of

completeness thresholds and the corresponding number of features were systematically

explored. Following the analysis, the completeness threshold for features selection was finally

chosen to be 80% as basen on the data quality literature, threshold of 0.8 could be chosen to

indicate good quality (Salati et al., 2011).

The selected set of features can be categorized based on their temporal nature into the

following,

1. Features that don’t change over time: From variables collected at admission and

discharge

2. Features that change over time: From variables collected during each day of the

entire ICU stay

All the features that were selected for model training are shown in Table 1 below. After

selecting the features, to handle the missingness of temporal features in the dataset, filling the

missing values based on the last known value known as backward filling was used (Lin et al.,
9



2019). Then to cope with the different length of ICU stay records of patients, the data of each

patient’s last ICU stay was padded up to the maximum length of ICU records of patients in

the dataset.

Table 1: Variables selected for model training

Feature Feature that
doesn’t change
over time

Feature that
changes over

time

Feature type

Age (years) ✔ Discrete

Gender ✔ Nominal

Source of admission ✔ Nominal

ICU length of stay (days) ✔ Discrete

Hospital length of stay prior to ICU
admission (days)

✔ Discrete

Admission type ✔ Nominal

Emergency surgery ✔ Nominal

Reason for admission ✔ Nominal

Mechanical ventilation ✔ Nominal

Cardiovascular support ✔ Nominal

GCS score ✔ Discrete

APACHE II score ✔ Discrete

Systolic blood pressure (mmHg) ✔ Continuous

Diastolic blood pressure (mmHg) ✔ Continuous

Heart rate (b/min) ✔ Continuous

Antibiotic use ✔ Nominal

Renal replacement therapy ✔ Nominal

Temperature (C) ✔ Continuous

Respiratory rate (/min) ✔ Continuous

Fraction inspired oxygen (/) ✔ Continuous

After hours discharge ✔ Nominal
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3.3 Feature extraction for reason for admission
Due to the high cardinality of the reason for admission variable, applying one-hot encoding

would lead to high dimensional sparse data, and would lead to a computational inefficiency

(Kassymzhomart Kunanbayev, Islambek Temirbek and Amin Zollanvari, 2021). Additionally,

ordinal encoding would introduce an ordinal nature among unordered categorical options and

it can affect the performance of the predictive model (Kassymzhomart Kunanbayev, Islambek

Temirbek and Amin Zollanvari, 2021). To address these challenges, the approach proposed in

the study by Guo and Berkhahn (2016) named entity embedding for categorical variables was

employed for that variable, resulting in each unique option of the variable being represented

as a 128-dimensional vector.

3.4 Statistical features for baseline models
To compare the LSTM model to the classical machine learning methods, the statistical

features from the entire ICU stay were extracted. As linear regression approach has been

widely used in ICU readmission prediction (Lin et al., 2019), slopes and intercepts of the

linear regression line ( and in ) were extracted as additional features to𝑚 𝑐 𝑦 = 𝑚𝑥 + 𝑐

characterize the linear variation of temporal continuous data such as temperature. For the

categorical data such as mechanical ventilation, as in the study by Lin et al. (2019), the

majority value and number of times the values change over the entire ICU stay were

extracted. Figure 2 illustrates the extracted statistical features from both continuous and

categorical features for the baseline models.

Figure 2: Statistical features for baseline models

Figure (a) shows the statistical features extraction for continuous variable and Figure (b)

shows the statistical features extraction for categorical variable
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3.5 Models

3.5.1 Baseline models
As developed in the study by Lin et al. (2019), Logistic regression with L2

regularization penalty and Random Forest were chosen and trained as baseline models

of the study.

3.5.2 LSTM model
A recurrent neural network (RNN) with long-short term memory (LSTM), was chosen

for its capability to uncover intricate patterns within sequential data and to make

predictions based on them, especially for clinical measurements where there can be

lags of unknown duration and missing values in a time series (Lin et al., 2019). Figure

3 shows the architecture of the implemented LSTM model. Two LSTM layers,

followed by a dense decision layer with one output neuron activated by a sigmoid

function were built.

3.6 Model training
The final dataset was divided into training (75%), validation (12.5%), and testing (12.5%)

sets. Since the dataset is highly imbalanced (306 samples for positive class and 10436

samples for negative class), to address this, all the models were trained with and without

class-weights (cost-sensitive training). Then the model was trained on the training set,

validated on the validation set to fine-tune hyperparameters, and its performance was then

assessed on the testing set.

To optimize the model's performance, hyperparameter tuning was conducted. Adjustments to

the number of layers, units per layer, learning rates, and activation functions were explored

using a hyperparameter search space to achieve the best possible area under the receiver

operating characteristic curve (AUC-ROC) score. After training the model using the training

set, its performance was evaluated on the test set using AUC-ROC score and compared to

baseline models’ performance.
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Figure 3: LSTM architecture

It Includes 2 LSTM layers, and a dense layer. N is the number of neurons in each

LSTM layer. and are hidden activation states and cell memory states. is theℎ
𝑡

𝐶
𝑡

𝑥
𝑡

input time series, and Y is the predicted output.

3.7 Feature ablation test for feature importance
The feature ablation test on the features that change over time, was conducted to better

understand the underlying logic of the proposed model. By following the approach in the

study by Lin et al. (2019), each time by changing only one feature of features that change

over time, in the test set to its normal value in humans, the AUC-ROC score of that test set

was recorded.

The reduction in AUC-ROC score for each feature’s normal imputation was calculated by

comparing it with the AUC-ROC score of the original test data and if there was no reduction,

a value of 0 was assigned. Then all the features that change over time were ranked according

to the reduction in the AUC-ROC score. Figure 5 shows the results of the feature ablation test

based on the reduction of AUC-ROC score of the prediction results after replacing the

original feature with its normal value.
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Since this normal imputation approach can’t be applied to all the features that don’t vary over

time, the importance of them wasn’t evaluated using the feature ablation test with normal

imputation technique.

3.8 External validation
To evaluate the impact of the number of patient records and data points on model

performance, an external validation was conducted using the MIMIC-III dataset (Johnson et

al., 2016). The MIMIC-III dataset, which contains electronic health records (EHRs) from

intensive care unit (ICU) patients, is a widely used, de-identified and publicly available

collection of medical records.

The same patient inclusion and exclusion criteria described in section 3.1 were applied to the

MIMIC-III dataset to prepare the final dataset. All patients and their corresponding ICU stay

records in the final dataset were then labeled based on their post-ICU discharge outcomes.

Patients who were discharged to the ward and not readmitted to the ICU within 48 hours were

labeled as negative (not readmitted), while those readmitted to the ICU within 48 hours were

labeled as positive (readmitted). In total, 26,179 patients were classified as negative, and 857

patients were classified as positive.

Given the differences in data collection between the original dataset (LMIC dataset that

contains one vital sign measurement per day) and MIMIC-III dataset (which contains higher

temporal resolution data), two distinct datasets were prepared from final MIMIC-III dataset,

1. Daily MIMIC III (one vital sign per day): To replicate the data collection pattern in

the LMIC dataset, the vital sign measurements in MIMIC-III were aggregated to one

value per day by selecting the worst recorded value for each day. This dataset allows

the impact of patient count and data resolution on model performance in a

lower-resolution setting, mirroring the LMIC data collection environment, to be

validated.

2. Hourly MIMIC III (hourly vital signs per day): In contrast, the original hourly vital

sign measurements from MIMIC-III were used to create a higher temporal resolution

dataset. The effect of having more points in the temporal data on model performance

was evaluated, particularly in comparison to the LMIC dataset with its lower

frequency of vital sign data collection.
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To ensure consistency in feature representation, the similar set of features included in the

LMIC dataset was selected from the MIMIC-III dataset. The selected set of features can be

categorized into the following,

1. Demographics (features that don’t vary with time)

2. Chart events (features that vary with time)

3. ICD-9 embeddings (features that don’t vary with time)

After selecting the features, the same approach outlined earlier in section 3.2 for handling

missing values and varying ICU stay lengths was applied. Specifically, backward filling was

used to address missing temporal data, and patient stays were padded to ensure uniformity in

the length of ICU stays, consistent with the method previously described.

For each of the two datasets (daily MIMIC-III, and hourly MIMIC-III), a LSTM model was

implemented, and then trained, validated and tested. By comparing model performance across

these three datasets, the impact of number of features and data resolution on readmission

prediction was quantified, and the robustness of the model across different settings was

validated.

3.9 Further exploration on Transformer-based model
In addition to the primary focus on the LSTM model for ICU readmission prediction, the

performance of a Transformer-based model was also explored on the same datasets to assess

its suitability for this task. While LSTMs are well-suited for sequential data processing, recent

advancements in deep learning have highlighted the efficacy of transformer models in

capturing long-range dependencies and handling sequential data more effectively in some

cases (Reza et al., 2022).

To ensure a comprehensive comparison between the two architectures, the transformer models

were trained, validated and tested on the three datasets described earlier,

● LMIC dataset

● Daily MIMIC III

● Hourly MIMIC III
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The Transformer model was adapted for time-series prediction by employing a

sequence-to-sequence framework, with multi self-attention mechanisms utilized to capture the

temporal patterns of vital signs across different time resolutions. The high-level architecture

of the transformer-based model implemented is shown in Figure 4.

Figure 4: High-level architecture of transformer-based model

Transformer-based models were compared to LSTM models, in addition to the baseline

models, to obtain insights into which model was more appropriate for readmission prediction

under different data conditions. Additionally, it was evaluated whether modern transformer

models offered any significant advantages over traditional recurrent neural networks, such as

LSTMs, in this context.
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3.10 Ethics
Since this study uses only the data previously collected (secondary data) de-identified data,

and no individual can be traced back using this data, this study does not need ethical approval.

Thus a waiver of ethical review was obtained from Oxford Tropical Research Ethics

Committee (OxTREC) (Appendix A).
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CHAPTER 4

EVALUATION AND RESULTS
4.1 Patient characteristics
During the study period, 10742 ICU admissions were eligible for readmission and early ICU

readmission rate was 2.85% (n=306) (Figure 1). Patient characteristics of the whole eligible

population are described in detail in Table 2. Readmitted admissions had older patients

compared to non-readmitted admissions (68 IQR 41-72 vs. 58 IQR 52-78). Though there is a

small percentage difference in the organ support during the first 24 hours between the

readmitted and non-readmitted admissions, a higher difference can be observed in the organ

support during the entire ICU stay. Also a higher APACHE II severity score was reported in

readmitted admissions (13 IQR 8.25-19 vs. 10 IQR 6-15).

Table 2: Comparison of case-mix, organ support and severity of illness between non-

readmitted and readmitted admissions

Variable Non-readmitted
admissions

Readmitted
admissions

Patients N (%) 10436 (97.15) 306 (2.85)

Gender N (%)
Male
Female
Intersex

5865 (56.2)
4561 (43.7)
10 (0.1)

182 (59.48)
124 (40.52)
0 (0)

Age (years) Median (IQR) 58 (41 - 72) 68 (52 - 78)

Admission type N (%)
Non-operative
Post-operative

Elective surgery
Emergency surgery

8232 (78.88)
2204 (21.12)

1571 (71.28)
633 (28.72)

244 (79.74)
62 (20.26)

46 (74.19)
16 (25.81)

Source of admission N (%)
Ward
Emergency department
ICU/HDU
Operating theater
Missing

1800 (17.25)
6197 (59.38)
634 (6.08)
1762 (16.88)
43 (0.41)

72 (23.53)
171 (55.88)
19 (6.21)
44 (14.38)
0 (0)

Reason for admission
Pneumonia
Emphysema/bronchitis
Sepsis, other
CVA, cerebrovascular accident/stroke
GI medical, other

1494 (14.32)
573 (5.49)
517 (4.95)
422 (4.04)
391 (3.75)

46 (15.03)
31 (10.13)
12 (3.92)
12 (3.92)
15 (4.9)
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Organ support during first 24 hours of admission
Mechanical ventilation
Cardiovascular support
Renal replacement therapy
Antibiotics

1698 (16.27)
959 (9.19)
418 (4.01)
7932 (76.01)

50 (16.34)
34 (11.11)
16 (5.23)
245 (80.07)

Organ support during ICU stay
Mechanical ventilation
Cardiovascular support
Renal replacement therapy
Antibiotics

2273 (21.78)
1636 (15.68)
686 (6.57)
8714 (83.5)

89 (29.08)
63 (20.59)
40 (13.07)
277 (90.52)

Apache ii score* Median (IQR) 10 (6 - 15) 13 (8.25 - 19)

* Normal imputation was done to handle the missingness

4.2 Models
The LSTM model was trained on 75% and validated on 12.5% of the LMIC dataset. The

training process was performed with and without a cost-sensitive approach to address the

class imbalance issue. After the model was trained, to evaluate the model’s performance on

the unseen data, the trained model was tested on the rest of the 12.5% of the data. Figure 5

shows the obtained AUC curve of the LSTM model trained with a cost-sensitive approach for

the train and test sets. The same approach was applied for the baseline models as well.

Figure 5: AUC curve of LSTM model for LMIC dataset
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Both LSTM model and baseline models for the LMIC dataset achieved a slightly higher AUC

score with cost-sensitive training (Table 3). Among baseline models, LR model with

cost-sensitive training obtained a higher AUC score of 0.635 and LSTM with cost-sensitive

training obtained the highest AUC score of 0.675 compared to the baseline models.

When evaluating the performance of this model by comparing to other deep learning models

proposed based on the regions of HICs, this LSTM model has a lesser AUC score. Table 4

compares the AUC score of the LSTM model to previously proposed deep learning models.

Table 3: AUC score comparison between baseline models and LSTM

Model Cost-sensitive training AUC score

Baseline models

LR No 0.612

LR Yes 0.635

RF No 0.568

RF Yes 0.573

Deep learning model

LSTM No 0.649

LSTM Yes 0.675

Table 4: Results comparison to previous deep learning models developed for patients in HICs

Study by Model Dataset AUC score

Lin et al., 2019 LSTM MIMIC-III 0.791

Barbieri et al., 2020 RNN MIMIC-III 0.739

Ashfaq et al., 2019 LSTM CHF patients hospitalized in
sweden

0.770

This study LSTM A registry of CCAA data
repository

0.675
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4.3 Ranking of features
Figure 6 visualizes the ranking of features that vary with time resulting in the feature ablation

test. Y-axis shows the reduction in ROC score after imputing normal values for each feature

that varies with time and X-axis shows the corresponding feature.

Figure 6: Feature ranking chart

4.4 External validation
For the external validation of high resolution of temporal data on the performance of the

model, since the LSTM model and the baseline models trained on the LMIC dataset achieved

higher accuracy with cost-sensitive training, the LSTM models for both daily MIMIC III and

hourly MIMIC III datasets were trained with a cost-sensitive approach as well.

The LSTM models for the LMIC dataset and daily MIMIC III dataset (Figure 7) obtained

approximately similar AUC scores, while the LSTM model for hourly MIMIC III dataset

achieved higher AUC score than the models for the other two datasets (Table 5).
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Table 5: AUC score of the LSTM models on different datasets

Dataset AUC score

LMIC dataset 0.675

Daily MIMIC III 0.681

Hourly MIMIC III 0.712

Figure 7: AUC curve of LSTM model for daily MIMIC III dataset

4.5 Comparison with transformer-based model
Figure 8 shows the AUC score obtained for training and test data of LMIC dataset using the

transformer-based model. For the LMIC dataset, compared to the transformer based model,

the LSTM model obtained higher accuracy than it. Additionally, though the result is the same

for daily MIMIC III dataset, it achieved higher accuracy for hourly MIMIC III dataset (Table

6). The reason could be that transformer-based models are designed to capture the

dependency of longer sequence, the number of datapoints in both the LMIC dataset and daily

MIMIC III might not be enough to train the transformer model.
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Table 6: Comparison of AUC scores between the LSTM models and the transformer-based

models on different datasets

Dataset AUC score

LSTM model Transformer-based model

LMIC dataset 0.675 0.659

Daily MIMIC III 0.681 0.662

Hourly MIMIC III 0.712 0.709

Figure 8: AUC curve of transformer-based model for LMIC dataset
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CHAPTER 5

CONCLUSION AND FUTUREWORK
5.1 Conclusion
In this study the LSTM model outperformed the chosen baseline models (traditional machine

learning approaches) for this dataset (LMIC dataset) from the ICUs of LMICs as similar to

the study by Lin et al. (2019) based on data from ICUs of HICs. It further supports the

statement that capturing the temporal data from patients’ ICU stay would improve the

predictive ability of the model. From the feature ablation test, it can be seen that respiratory

rate is the important factor learned by the model followed by renal replacement therapy,

ventilation, temperature and antibiotics, while vasoactive and fraction inspired oxygen don’t

have significant influence on the model’s decision. However, using this feature ablation test,

the important features that influenced the prediction of one given sample can not be

explained.

When compared to the proposed deep learning models for HICs (Lin et al., 2019; Barbieri et

al., 2020; Ashfaq et al., 2019), the AUC-ROC score of the proposed model is comparatively

lower. However, external validation on the daily MIMIC III dataset, with a similar feature

representation, suggests that the limited number of selected features due to the constraints of

the LMIC setting, negatively impacts model performance. Furthermore, the external

validation on the hourly MIMIC III dataset highlights that having data with higher temporal

resolution improves the model's ability to capture nuanced patient trends, which, in turn,

could lead to better predictive performance in settings with more granular data collection.

Additionally, the results of the exploration on the transformer-based models indicate that both

the transformer and LSTM models performed similarly when more temporal data was

available, likely due to the transformer’s ability to capture long-range dependencies

effectively through its self-attention mechanism (Wahid et al., 2023). However, when less

temporal data was available, the LSTM outperformed the transformer. This suggests that

LSTMs, which are designed to process sequential data in a stepwise manner, may be better

suited to learning from smaller, more sparse time series datasets (Reza et al., 2022).
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In addition to the limited number of features and temporal data points, another limitation of

the study is generalizing the model for LMICs. As the model was built on the subset of the

data repository of LMICs, the model can not be generalized for all LMICs. This will be

addressed in the future work.

5.2 Future work
Because of the time limitation, the importance of features that don’t vary over time wasn’t

explored and this will be addressed in the future work. The importance of all the features in

the model’s prediction, irrespective of their temporal nature i.e. vary over time or not, would

be explored using appropriate techniques and the features that influence on the prediction of a

given sample will also be investigated by applying relevant techniques.

In addition to that, to generalize the model for LMICs, the representative ICU patients’ data

for LMICs from CCAA data repository will be extracted and its representativeness will be

validated. Then an ICU readmission prediction model will be developed on the representative

ICU patients’ data to generalize the model for LMICs.
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