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ABSTRACT 

The garment manufacturing industry faces intensified competition, prompting the need for cost 

control and efficient inventory management. This research addresses the challenges of excess 

thread stock, leading to increased write-off expenses and environmental concerns. Focusing on 

predicting sewing thread consumption in underwear fullbrief styles, the study employs 

statistical and machine learning techniques, considering variables such as garment style, 

fabric/seam thickness, stitch length, stitch density/SPI, seam type, and estimated wastage. 

The development of a user interface using Streamlit integrates machine learning models for two 

types of threads, allowing users to input parameters through an intuitive layout. The user-

friendly interface facilitates informed decision-making based on predictions of total thread 

consumption. The application contributes to reducing write-off expenses, minimizing inventory 

costs, and aligning with environmental sustainability goals. 

The research highlights the effectiveness of machine learning models, particularly artificial 

neural network models, in predicting thread consumption. Overcoming challenges such as 

overfitting and enhancing generalization, the study emphasizes the need for refining model 

architectures and exploring additional features. The user interface development emerges as a 

crucial tool for achieving efficient cost control and sustainability in the garment manufacturing 

industry. 

Keywords: Garment Manufacturing, Thread Consumption Prediction, Machine Learning, 

Artificial Neural Network, User Interface, Streamlit, Cost Control. 
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CHAPTER 1 

INTRODUCTION 

The garment manufacturing industry is currently experiencing increased competition, which 

drives organizations to produce garments at the lowest possible cost (Sharma , et al., 2017). 

Therefore there is a need for strict cost control from the point of ordering raw materials to 

completing the orders. Raw material cost in the direct cost portion is the fundamental cost factor 

affecting the contribution margin (CM margin %). The raw material cost portion includes the 

cost of the material that is actually utilized in the production, the material that is wasted during 

the production and the material stock that remained unused at the completion of the order.  

The total leftover material at the author’s organization amounts to $ 1,479,457, with fabric 

accounting for the majority of this amount ($1,023,276) and sewing thread coming in second 

($75,059) (Emjay International (Pvt) Ltd., 2023). At the author’s organization, this remaining 

stock at the order completion is referred to as write-off stock. Write-off primarily refers to a 

business accounting expense reported to account for losses on inventory value, thus leading to 

a lower profit. Currently, upon completion of the production process, the author’s organization 

experiences a write-off of 4.1% of the materials that were originally allotted for the orders as 

shown in Figure 1.1 (Emjay International (Pvt) Ltd., 2023). This amount surpasses the company 

standard which dictates that the write-off rate should not be higher than 2% (Emjay 

International (Pvt) Ltd., 2023).  

 

Figure 1.1 Inventory Write-Off for Financial Year 2022/23 

2.6%
2.9%

2.0%

2.6%

1.8%
2.0%

3.0%

3.8% 4.0% 3.9%

4.6%
5.0%

4.10%

2%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

W
-o

ff
 P

er
ce

n
ta

ge

Financial Year 2022/23

Inventory Write-Off

W-off% Current Avg W-off% Std W-off%



2 
 

 

This discrepancy points out a critical issue as it increases production costs, lowers profitability 

and also causes an accumulation of an excess inventory. Therefore it is imperative to address 

and find ways to minimize the write-off percentage and improve the overall profitability of the 

organization. 

As an initiative, in this study, the author mainly focuses on minimizing the leftover thread stock 

valued at $75,059 which was not utilized during the production (Emjay International (Pvt) Ltd., 

2023). The reason to consider thread leftovers against fabric leftovers is that thread leftover 

stock arising from human errors, mistakes or the quality of the thread is significantly minimal 

whereas fabric leftovers often arise from damages, errors and mistakes done by the machine 

operators and the poor quality of the fabric received from suppliers. Therefore it is ideal to 

consider only the thread leftovers initially for the prediction model to be employed at the 

company so that the impact from the human-dependent factors and quality of the material is 

kept at a minimum. 

For this purpose, it is crucial to review the initial steps of determining the thread consumption 

thoroughly, especially given the considerable volume of stock that remains unused after the 

production process. Enhancing the accuracy in determining the required sewing thread 

consumption can lead to optimum quantities of thread needed for garment manufacturing 

avoiding any unused stock getting accumulated in the production floor.  

The amount of thread used in the manufacturing of garments varies not just across various styles 

of garments but even within the garments of the same style. Variations in sizes, styles and the 

fabric used in the garment heavily influence the amount of thread required to complete a 

garment. Furthermore, stitch length, stitch density and seam type all affect thread consumption 

(Ukponmwan, et al., 2000). Therefore to analyze these factors and precisely predict the amount 

of thread that will be used in a garment, a machine learning-based model will be developed and 

validated as part of this study. This will enable more effective resource utilization and a 

decrease in the amount of leftover thread stock thus contributing to the bottom line of the 

organization.  
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1.1 Motivation 

The heightened competition in the garment manufacturing sector necessitates a meticulous 

approach to minimize production costs and improve overall profitability. The author's 

organization currently faces a significant issue with a write-off rate of 4.1% on materials, 

surpassing the company standard of 2% (Emjay International (Pvt) Ltd., 2023). This 

discrepancy results in increased production costs, decreased profitability, and excess inventory 

accumulation. By specifically focusing on minimizing leftover thread stock, valued at $75,059, 

the research aims to enhance accuracy in determining thread consumption (Emjay International 

(Pvt) Ltd., 2023).  

Existing methods for estimating thread consumption, such as graphs, tables, and formulas, often 

lack flexibility and accuracy, leading to variations in predictions. The literature also explores 

mathematical, geometrical, and machine learning-based models, showcasing the limitations of 

traditional techniques and the superior performance of machine learning in predicting thread 

consumption. Developing a machine learning-based prediction model will enable a 

comprehensive analysis of various factors influencing thread usage, such as garment styles, 

sizes, fabric types, stitch length, density, and seam types. Ultimately, the research seeks to 

accurately predict thread quantities required for garment manufacturing, reduce unused stock, 

and contribute positively to the organization's bottom line. 

1.2 Research Problem 

The problem identified here is the accumulation of leftover sewing thread stock at the 

completion of the garment manufacturing process, implying potential overestimation of the 

required thread consumption in a garment than what is actually required in the manufacturing 

process, which ultimately affects various aspects of the organization. Listed below are some of 

the aspects. 

 

I. Increased inventory costs as the company needs to store and manage the leftover stock. 

This additional inventory management results in additional costs, including handling, 

storage and transport charges which have an immediate effect on the company’s 

profitability. 

II. The company’s sustainability goals are affected since the company needs to dispose the 

leftover thread stock which could have an adverse impact on the environment in terms 

of waste generation, pollution and increased carbon footprint. 
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1.3 Research Aims And Objectives 

The aims and objectives of conducting this study are presented in this section. 

1.3.1 Aims Of The Study 

The aim of this research is to analyze the various factors influencing sewing thread consumption 

in garment manufacturing and develop a precise machine learning-based prediction model. By 

exploring garment-related variables such as type, size, design, and fabric characteristics, along 

with stitch parameters, the goal is to improve the accuracy of estimating sewing thread 

requirements. Through the creation and validation of a machine learning model, this study aims 

to offer a practical solution for estimating thread consumption, addressing the challenges of 

exceeding write-off rates, and excess inventory accumulation, ultimately contributing to 

enhanced cost control and improved profitability. 

1.3.2 Objectives Of The Study 

The main objective of the study is to develop a model using machine learning techniques to 

predict sewing thread consumption for two thread types, across various sewing operations. The 

main objective is broken down as follows. 

1. Analyzing the key factors affecting thread consumption in a garment using regression 

analysis and exploratory data analysis. 

2. Applying different machine learning models to predict the thread consumption in a 

garment accurately. 

3. Evaluating the accuracy of the applied machine learning models. 

4. Developing a user friendly interface for the prediction of thread consumption.  

Upon successful completion of the project, above objectives are expected to be accomplished. 

1.4 Research Questions 

In this section, a set of research questions tailored to each objective mentioned under Section 

1.3.2 was presented, facilitating a comprehensive exploration of the factors influencing thread 

consumption and the effectiveness of machine learning models in prediction. The research 

questions are as follows. 

1. What are the primary factors influencing thread consumption in a garment production 

process? 

2. Which machine learning models are to be applied in predicting thread consumption? 



5 
 

3. How does the choice of features influence the performance of machine learning models 

in predicting thread consumption? 

4. What metrics are most appropriate for evaluating the accuracy of machine learning 

models in predicting thread consumption and are there specific machine learning models 

that outperform others in predicting thread consumption? 

1.5 Scope Of Work 

This study primarily focuses on developing a prediction model that can forecast the actual 

thread consumed for a certain garment style in the organization Emjay International (Pvt) Ltd., 

with a higher accuracy, using machine learning techniques. A higher accuracy level is 

considered for the study since if the accuracy is less, the amount of thread required for the 

production would have a significant difference between what is predicted and actual thread 

consumption. This could lead to under or overutilization of resources, thus increasing 

production costs and eventually having an impact on profitability.  Moreover, inaccurate 

predictions may also affect on-time delivery (OTD), leading to delays or longer lead times 

which may reduce the organization’s ability to compete in the market and customer 

dissatisfaction. This will evaluate historical data from the company’s ERP system and 

individual style-wise worksheets to discover patterns and trends in thread utilization.  

This study centers its attention on the prediction of thread consumption within the specific 

product category of underwear fullbrief styles with the size Medium. It is noteworthy that this 

research has evolved from its initial proposal, which outlined the inclusion of two distinct 

product categories, encompassing both underwear and shirts. The decision to narrow the 

research scope to a single product category is due to the intricacies and nuances associated with 

thread consumption prediction within each product category warrant dedicated and in-depth 

analysis. By focusing exclusively on underwear fullbrief styles, we are afforded the opportunity 

to explore these complexities comprehensively, ensuring a thorough examination of all relevant 

factors. Out of several underwear product categories, fullbrief styles have been chosen based 

on their high production volume and simple construction with less number of operations to 

complete the garment. Construction of a fullbrief usually includes operations such as; 

 Front and back gusset attach 

 Elastic attach to leg 

 Elastic attach to back waist 

 Side seam with label 

 Side tack x 4 
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 Cut lace 

 Lace attach to front waist 

The study will also concentrate on predicting the thread consumption in a garment for three 

commonly used stitch types for a particular fullbrief style. The 3 stitch types that will be 

evaluated are 301 (lockstitch), 406 (coverseam) and 514(four thread overedge). This research 

represents a modification from its original proposal, which outlined a broader spectrum of five 

stitch types, including Lockstitch, Overlock, Chainstitch, Bar tack, and Flat seam. In the course 

of the investigation, it became evident that fullbrief styles were inclusive of only below shown 

3 stitch types (Figure 1.2) with 2 different thread types as TKT 120 and TKT 160. TKT (Ticket) 

numbers are a numerical system used to measure the linear density or thickness of the thread. 

The TKT number indicates the length of thread (in thousands of yards) that would weigh one 

pound. Higher TKT numbers generally represent finer or thinner threads, while lower TKT 

numbers indicate thicker threads. Also the thread consumed for each stitch can be varied within 

the same stitch type due to the differences in needle widths in each stitch. 

 

Figure 1.2 Different types of Stitches used in the study 

The proposed model can be enhanced to include all the product categories manufactured at 

Emjay taking all the stitch types into consideration. This will allow a more heuristic 

understanding of actual thread consumption trends and make it easier to spot opportunities for 

cost and time saving throughout the whole product range. Nevertheless, doing so will 

necessitate collecting more data and training complex models. 
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1.6 Organization Of The Study  

The thesis is organized as follows. 

Chapter 1: Introduces the background, problem definition, and scope of the study, along with 

the objectives of the study. 

Chapter 2: Provides a clear and concise review of literature based on past studies on predicting 

the amount of thread consumed in a garment. 

Chapter 3: Describes the methodological background which includes a description regarding 

the source of the data, variables of interest, and pre-processing of the datasets and the theories 

applicable to the study 

Chapter 4: Presents the outputs of the descriptive analysis conducted on the selected variables 

Chapter 5: Provides the steps carried out when accomplishing the study's objectives and the 

final results. 

Chapter 6: Includes the discussion on the results obtained, the issues encountered, and the 

limitations of the study and provides suggestions for future work. The chapter ends with stating 

the conclusions arrived at from the study.  
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CHAPTER 2 

LITERATURE REVIEW 

This section outlines related research initiatives that are similar to the author’s study in 

examining the factors influencing sewing thread consumption in a garment and building up a 

machine learning-based model. 

Competition in the apparel industry is steadily rising, leading firms to prioritize cost efficiency 

(DOĞAN & PAMUK, 2014). They strive to minimize total costs by enhancing the supply 

process, expanding purchasing options, and reducing material expenses in response to increased 

competition. Maintaining optimal cost levels is crucial for firms to improve their competitive 

advantage. Consequently, accurately calculating the materials used in production is vital for 

cost control and ensuring a smooth workflow. Determining the precise amount of sewing thread 

consumed in an apparel product holds great importance for these reasons (DOĞAN & PAMUK, 

2014). 

2.1 Factors Affecting Thread Consumption 

The quantities of sewing thread used can vary based on the type of clothing as well as the size, 

design, and fabric of the same type of garment ( Ukponmwan, et al., 2000). Alongside these 

factors, the amount of thread used is also influenced by stitch length, stitch density, and the type 

of stitch employed. A more comprehensive elucidation of how every aspect influences the 

quantity of sewing thread consumption is given below. 

 Garment type: The amount of thread used will vary depending on the type of garment 

being sewn. For example, a trouser will use more thread than an underwear such as a 

boxer, and a dress will use even more thread. 

 Size: The size of the garment will also affect the amount of thread used. A larger 

garment will use more thread than a smaller garment. 

 Design: The design of the garment can also affect the amount of thread used. For 

example, a garment with a lot of details will use more thread than a garment with a 

simple design. 

 Fabric: The type of fabric used in the garment can also affect the amount of thread used. 

Heavier fabrics will use more thread than lighter fabrics. 

 Stitch length: The stitch length is the distance between each stitch. A longer stitch length 

will use more thread than a shorter stitch length. 
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 Stitch density: The stitch density is the number of stitches per inch (SPI). A higher stitch 

density will use more thread than a lower stitch density. 

 Stitch type: The stitch type is the type of stitch used to sew the garment. Some stitch 

types, such as overlock stitches, use more thread than other stitch types, such as straight 

stitches. 

It is important to consider all of these factors when estimating the amount of sewing thread 

needed for a garment ( Ukponmwan, et al., 2000) . By understanding how these factors affect 

the amount of thread used, you can ensure that you have enough thread on hand to complete 

the project. 

Yeşilpınar and Alkiraz (2005) investigated the effect of fabric thickness on sewing thread 

consumption. They analyzed 10 different woven fabrics with varying thicknesses and sewed 

each fabric with 4 different stitch types: lockstitch, chain stitch, three-thread overedge stitch, 

and four-thread overedge stitch. The results of the study showed that fabric thickness has a 

significant impact on sewing thread consumption. The amount of sewing thread consumed 

increased directly with the increase in fabric thickness (Yeşilpınar & Alkiraz, 2005). This is 

because thicker fabrics require more thread to create a strong and durable seam. The study also 

found that the type of stitch used had a smaller impact on sewing thread consumption than 

fabric thickness. However, lockstitch was found to consume the most thread, followed by chain 

stitch, three-thread overedge stitch, and four-thread overedge stitch. Overall, the study 

concluded that fabric thickness is the most important factor affecting sewing thread 

consumption. The type of stitch used also has a significant impact, but to a lesser extent than 

fabric thickness (Yeşilpınar & Alkiraz, 2005). 

Previous studies have shown that there are four tension peaks in the formation of a lockstitch 

301 seam. These peaks occur when the needle descends and penetrates the fabric, when the 

thread is wrapped around the bobbin, when the needle rises and the thread is pulled taut, and 

when the thread is tightened to form the final stitch (Rengasamy & Samuel, 2011). Thread 

tension is an important parameter that affects the quantity of thread used for the seam in garment 

construction. If the thread tension is too high, the seam can be puckered or the thread can break. 

If the thread tension is too low, the seam can be loose and the thread can unravel. These can 

lead to more thread being used, as the seamstress will need to rethread the needle more often. 

By understanding how thread tension works and how it is affected by different factors, garment 

manufacturers can ensure that they are using the correct thread tension to produce high-quality 

seams with the optimum thread consumption. 
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2.2 Graphs, Tables And Formulas 

The accurate measurement of thread lengths in stitches is achieved through careful unravelling 

under proper tension, following standardized methods like the French standard NF G07 101 

(Jaouadi, et al., 2006). While this approach provides accurate results, it requires multiple 

stitching attempts to optimize sewing parameters for enhanced precision. This process is time-

consuming and incurs testing costs for materials, equipment, and skilled labour. An experienced 

operator is essential to obtain precise yarn length values without subjecting them to excessive 

tension or distortions. 

Due to the limitations of physically measuring thread consumption, researchers have explored 

alternative prediction methods for rapid and practical solutions. Various techniques such as 

value prediction charts, mathematical formulas, thread length ratios, predictive algorithms 

based on historical data, learning algorithms, and software solutions have been used to forecast 

thread consumption (Jaouadi, et al., 2006). However, when comparing the prediction results of 

these methods for the same stitch length and input parameters in a consistent stitch setup, 

significant variations in predictions have been observed. 

Originally garment manufacturers often used a variety of graphs, tables and formulas to 

estimate thread consumption as shown in the Figure 2.1. (American & Efrid Inc, 2007; Amaan 

Group, 2010). However these graphs, tables and formulas are based on various assumptions 

and trial and error methods, providing less flexibility when used with varying fabric thickness 

and stitch densities, hence the accuracy of the predicted values was questionable. An alternate 

technique to calculate the thread consumption involved consumption ratios, which determine 

the thread amount relative to the stitch's geometry. Initially limited to one stitch density value, 

these ratios were customized for different stitches by thread suppliers, allowing accurate 

calculation of thread usage considering various stitch densities and fabric thicknesses (Amaan 

Group, 2010; American & Efrid Inc, 2007). 

Leading thread suppliers are currently utilizing software packages to enhance the accuracy of 

calculating thread consumption (Abeysooriya & Wickramasinghe, 2014). These packages 

employ various formulas and ratios and can compute thread usage for diverse parameters like 

stitch lengths, stitch densities, and fabric thicknesses. They include definitions for the majority 

of stitch classes commonly used in the apparel industry, incorporating details like seam widths 

and appropriate stitch types.Unlike previous methods, these software solutions compute thread 

consumption separately for needle threads, bobbin threads, and looper threads. While some 
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software solutions account for thread properties like ticket number in their consumption 

calculations, many do not address essential physical properties associated with stitch formation.  

Coats, a company specializing in threads, introduced a software called SEAMWORKS, which 

calculates the amount of sewing thread used (Coats Digital, 2023). This program factors in 

various parameters, including stitch types and color groups, to determine the number of bobbins 

required for the thread consumption. Furthermore, SEAMWORKS provides a result report that 

includes the total cost for the used sewing thread amount. 

Figure 2.1 AMANN and A&E sewing thread requirement tables 
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2.3 Mathematical And Geometrical Models 

To address the accuracy and flexibility issues in graphs, tables and ratios, researchers have 

suggested several theories and methods to precisely estimate thread consumption. These 

approaches usually entail developing mathematical and geometrical models to predict thread 

consumption based on an investigation of the variables that affect thread consumption, such as 

properties of thread and fabric and stitching parameters (Jaouadi, et al., 2006). 

Some researches had the base of considering the geometric shape of the stitch type to predict 

thread consumption. One such study was conducted for the stitch type 301 lockstitch (Rasheed, 

et al., 2014). The mean absolute error between the actual and predicted thread consumption was 

calculated at 3% and the R2 value of 0.97 showed that the actual consumption values were in 

good agreement with predicted consumption (Rasheed, et al., 2014). 

Geometric models were introduced to predict thread consumption of different lockstitch shapes 

of lockstitch class 300, by studying the geometric shapes and relationships (Sarah, et al., 2020). 

As evidenced by the results, the models’ accuracy was appreciably high with R2 ranging from 

93.91% to 99.1%. Moreover, stitch width, stitch density and the distance between two needles 

were discovered to be the most crucial factors influencing thread consumption, while yarn count 

and fabric thickness contributed less (Sarah, et al., 2020). Another geometrical model was 

developed for predicting thread consumption of stitch class 406 (Rehman, et al., 2021). Stitch 

class 400 use more thread than those of stitch class 300 but less amount of thread than those of 

stitch class 500. A total of 18 samples were sewed with various fabric types, SPIs (stitches per 

inch) and material thicknesses in order to validate the model. The model was found to have an 

accuracy of more than 97.18% in predicting sewing thread consumption (Rehman, et al., 2021).  

Most existing geometrical models for predicting thread consumption are founded on rectangular 

profiles (Ghosh & Chavhan, 2014; Jaouadi, et al., 2006). The proposed geometrical model by 

(Rasheed, et al., 2014) and (Sarah, et al., 2020) also follows the rectangular profile, while 

considering interlacement point space and fabric diameter thickness. However, these models 

exhibit notable prediction errors likely due to the reliance on the rectangular seam shape and 

unrealistic assumptions like yarn cylindrical nature and fabric incompressibility. 

In contrast, a more recent model proposed by (Chavan, et al., 2019) based on a realistic elliptical 

profile demonstrated comparatively lower error rates. A geometrical model for lockstitch seam 

301 based on an elliptical profile was proposed to predict thread consumption irrespective of 

fabric type (Chavan, et al., 2019). This model also acknowledges the impact of seam 
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compression on the initial fabric assembly thickness, which in turn influences thread 

consumption. In comparison to other recent rectangular profile-based models, the model was 

tested across a variety of fabric types, stitch densities, and the number of fabric piles and proven 

to be more accurate and have the ability to generalize with less error (Chavan, et al., 2019). 

Three geometrical models namely elliptical, racetrack and circular were put out in a study to 

predict the consumption of thread in lockstitch seams (Chauhan & Ghosh, 2021). By comparing 

actual and predicted consumptions for samples sewn at various feed rates to validate the 

elliptical and racetrack models, the racetrack model was proven to be the most precise and 

adaptable. Also, it was discovered that the circular model worked well for samples with equal 

stitch spacing and fabric assembly thickness. The presented models provided a considerably 

lower error% than previous models (Chauhan & Ghosh, 2021). 

A regression model was proposed to predict sewing thread consumption that included thread 

tension constraint and was evaluated on the lockstitch 301 and chain stitch 401 (Abeysooriya 

& Wickramasinghe, 2014). The study shows that thread tension plays a crucial role in 

determining thread consumption for both stitches. The combined impacts of thread tension, 

fabric thickness and stitch density in the case of chain stitch 401 determine precise sewing 

thread consumption taking the stitch’s properties into account. The lockstitch 301 demonstrates 

a combined effect of yarn count and thread tension on the consumption of thread. The proposed 

regression model is expected to be a superior technique to calculate thread consumption of the 

2 stitch types considered, as the inclusion of the thread tension parameter represented a 

reduction in error percentages (Abeysooriya & Wickramasinghe, 2014). 

The focus of another study of (Khedher & Jaouachi, 2015) was on modelling sewing thread 

consumption in the context of manufacturing classic jeans. To precisely determine the amount 

of thread used in different types of stitching, they considered the contribution of waste factors. 

Several factors impact thread usage in sewn garments, including seam length, stitch density, 

seam types, and material thickness. However, these factors can vary depending on the specific 

garment style, leading to differing thread consumption in products like jeans, shirts, and jackets. 

This implies that thread consumption isn't a standard measure for various sewn product 

categories. The results of the linear regression method suggested a strong correlation between 

waste factors and experimental sewing thread consumption. This discovery reinforces the 

significance of waste factors as a crucial parameter when studying thread consumption in 

seamed denim jeans. Figure 2.2 shows the linear regression analysis indicating a very high R-

squared (R2) value of 99.8%, suggesting that waste factors explain 99.8% of the variation in 

thread consumption (Khedher & Jaouachi, 2015). 
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Figure 2.2 Relationship between the waste factor and experimental consumption values 

Using stitch density, fabric assembly thickness and thread elongation another regression model 

has been created to predict the consumption of both types of sewing thread (cotton and 

polyester-cotton core spun threads) in chain-stitch stitch type (Sharma , et al., 2017). The 

proposed model can be utilized to predict thread consumption with an R2 of 0.956 and an ability 

to explain 95.6% of the variation. This eliminated the need to employ several models for various 

thread types. 

Another study by (Mariem, et al., 2020) introduced a multilinear regression model to predict 

thread consumption for women's undergarments. While regression models tend to be more 

accurate, they are highly specific to certain material types and sewing conditions. 

2.4 Machine Learning, Neural Network Models And Metaheuristic 

Optimization Models 

Another study was carried out involving three different analytical models namely, the 

theoretical model, regression model and artificial neural network model to predict the amount 

of sewing thread required for different stitch types, stitch densities and thread types (Jaouadi, 

et al., 2006). As per the study, the model using the artificial neural network model was the most 

reliable at estimating the sewing thread consumption in a garment. Parameters such as fabric 

thickness, stitch density (number of stitches per centimetre) and sewing thread count served as 

the basis for the development of the model. The study employed 4 different stitch types namely 

lockstitch, two-thread chain stitch, three-thread chain stitch and safety stitch along with 4 

different stitch densities ranging from 3 to 6 stitches per centimetre and 2 distinct cotton sewing 

threads. The study highlighted that the artificial neural network model performs best when it 

comes to estimating thread consumption with an accuracy of at least 95%. It further emphasized 

that as the artificial neural network approach is capable of retraining when new data from 
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another area of the training data domain become available, it is anticipated to perform 

substantially better (Jaouadi, et al., 2006). 

It was observed that for defining, analysing constraints, making predictions and modelling both 

complex and non-linear issues, a fuzzy theory-based analytical model allows significantly more 

flexibility than traditional techniques such as regression, neural network, mathematical and 

subjective (Jaouachi & Khedher, 2013). The results using the fuzzy theory show that the sewing 

thread consumption values are influenced by the thread composition, which is represented by 

the number of twisted yarns and the kind of fibre, the size of the needle and the fabric weight. 

The fuzzy forecast model was produced following the correlations between input and output 

parameters that were determined using Mandani’s min-max inference. A better understanding 

of the influence that input parameters have on the sewing thread consumption of jean pants was 

provided by the generated fuzzy rules (Jaouachi & Khedher, 2013). 

Another study by Jaouachi & Khedher focused on developing a fast and precise way to predict 

the amount of sewing thread needed for making a garment involving two modelling approaches: 

linear regression and artificial neural networks. The effectiveness of each model was assessed 

by comparing the predicted thread consumption to actual values obtained from unstitching 

garments, using the R-squared coefficient (Jaouachi & Khedher , 2015). Various statistical 

measures were analysed to enhance the linear regression model. However, it was found that the 

linear regression method falls short in accurately predicting the thread usage variation for jean 

trousers. On the other hand, the neural network technique proved to be effective in explaining 

consumption variation in our experimental setup. The trained neural network's performance 

was assessed by evaluating errors in training, validation, and test sets. Their findings indicate 

that the neural model achieved a regression coefficient of 0.973, closely approaching 1 as in the 

above (Jaouachi & Khedher , 2015). This high coefficient reflects the minimal mean error 

between actual and predicted consumptions. This suggests that the developed neural network 

model is effective in accurately predicting the thread consumption for jean trousers. Figure 2.3 

illustrates the accuracy of values obtained from the validation sample in testing the neural 

network model. These results align well with the conclusions of Jaouadi et al.'s study (Jaouadi, 

et al., 2006). 
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Figure 2.3 Post-training analysis of neural network results 

The study of (Chavhan, et al., 2021) introduced regression models and an Artificial Neural 

Network (ANN) model to predict how much thread is needed for the assembly of multiple 

layers of different fabrics using lock stitch 301. These predictions were compared with existing 

methods for the same type of stitch. Among the available methods, empirical predictions show 

a high 59% error, while geometric models exhibit errors ranging from 8% to 26% for different 

multilayer compositions. Regression models show more variation in prediction accuracy. The 

proposed quadratic regression model has an absolute percent error of 4.3%, and the ANN 

network 1 displays an overall absolute error of 2.1%, though it reaches 9.5% during testing 

(Chavhan, et al., 2021). Both the quadratic regression and neural network models offer more 

accurate predictions than other methods. They are also versatile, able to predict thread 

consumption for different types of fabric assemblies. In industries using various fabrics and 

assembly types, ANN models can be customized and trained accordingly. With more data and 

continuous training, their accuracy can improve further. 

A different approach to reducing the amount of sewing thread required to make a pair of jeans 

was followed by employing three different metaheuristic techniques namely particular swarm 

optimization (PSO), ant colony optimization (ACO) and genetic algorithm (GA) (Jaouachi & 

Khedher, 2022). Results revealed that PSO and ACO methods were more precise than 

experimental methods and the GA method, and had the lowest thread consumption with the 

optimal input parameter combinations to sew jeans. 

Nonetheless, the accuracy of estimating thread consumption has increased with the introduction 

of mathematical, geometrical and machine learning-based models. Regression models, artificial 

neural networks and fuzzy theory-based models have all been employed in the studies to predict 

thread consumption and the results demonstrate that machine learning-based models 

outperform conventional approaches (Jaouachi & Khedher, 2013).  
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Therefore, this study aims to analyse new variables that affect sewing thread consumption in a 

garment that is being manufactured at the author’s organization, in addition to those already 

studied, and subsequently develop a novel initiative to be employed at the organization, to 

accurately predict thread consumption in a garment with the aid of machine learning techniques.   

2.5 Chapter Summary 

The literature review explores various methodologies employed in estimating sewing thread 

consumption in garment manufacturing. The apparel industry's growing focus on cost 

efficiency to maintain competitiveness underscores the significance of accurately calculating 

material usage. The factors influencing thread consumption, such as garment type, size, design, 

fabric, stitch length, stitch density, and stitch type, are discussed comprehensively. 

Researchers have traditionally used graphs, tables, formulas, and consumption ratios, but these 

methods often lack flexibility and accuracy across different fabric types and stitch densities. 

Alternative approaches, including mathematical and geometrical models, have been proposed 

to enhance precision. Geometrical models based on realistic shapes, such as elliptical and 

racetrack profiles, have shown improved accuracy compared to rectangular profiles. 

Despite the accuracy improvements achieved with mathematical and geometrical models, the 

literature emphasizes that machine learning-based models, particularly artificial neural 

networks, provide superior accuracy, reaching at least 95%, by considering parameters like 

fabric thickness, stitch density, and sewing thread count. Therefore the study will delve into the 

evolution of predictive models, highlighting the transition from traditional techniques to 

machine learning and artificial neural network models. 
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CHAPTER 3 

METHODOLOGY AND THEORY 

This chapter serves as the guiding framework for the systematic exploration and understanding 

of the factors influencing sewing thread consumption in garment manufacturing. The first 

section will cover the steps of the research framework. The following sections will concentrate 

on the theoretical aspects elucidating the statistical and machine learning methods employed. 

The chapter consists with a few metrics that can be utilized to evaluate the performance of the 

models built. Finally the chapter comes to an end with a list of architectural decisions that have 

been made to design an effective and reliable solution, while addressing the complexities 

inherent in the apparel manufacturing process. Through a systematic approach, the 

Methodology and Theory chapter sets the stage for the subsequent analyses, evaluations, and 

the ultimate deployment of the predictive model in a real-world operational context. 

3.1 Methodology 

In this section, the intricate steps undertaken in the study were presented to develop a predictive 

model for sewing thread consumption in the garment manufacturing domain, focusing on TKT 

120 and TKT 160 thread types (Figure 3.1). 

 

Figure 3.1 Proposed Methodology 

3.1.1 Data Collection 

The data for this study was collected from Emjay International (Pvt) Ltd., a BOI-approved 

apparel manufacturing company which engages mostly in B2B (business-to-business) business 

serving the best high street retailers both in Europe and in the U.S.A (Emjay International and 

Penguin Sportswear, 2020). The organization has been recording thread consumption for each 

style they receive from the customers for many years, thus the amount of data accessible for 

this study is extensive.  

3.1.1.1 Data Sources 

The data is extracted from two primary sources. They are data from the ERP (Enterprise 

Resource Planning) System and style-wise thread consumption worksheets.  

Data 

Collection

Data 
Preparation 

and 
Preprocessing

Model 
Training

Model 
Evaluation 
& Selection

Deployment



19 
 

The ERP system is a consolidated database that houses all the data required for business 

operations. This database will give users access to a multitude of data on the manufacturing 

process from costing and ordering to production-based operations such as cutting, sewing, 

packing and shipment. The relevant style details which are yet to be produced, was extracted 

from the ERP system and the parameter data that is used to derive the thread consumption was 

extracted from the thread consumption worksheets handled by the Product Development team 

The style-wise thread consumption worksheet format used in the organization was originally 

developed by A&E (American & Efird Inc.) (Inc, 2007) and altered by the Product 

Development team in order to align with the organization's processes and policies. These 

worksheets include specific parameters that are used to calculate the thread consumption of a 

garment such as the thread types and stitch types that should be used in each operation in a 

garment (Operation Breakdown – OB), fabric thickness and the machine types. 

3.1.1.2 Data Collection Process 

The data collection process is a critical phase in this study aimed at predicting thread 

consumption in garment manufacturing. It involves gathering, acquiring, and preparing the 

necessary data to develop accurate predictive models. Figure 3.2 outlines the key aspects of the 

data collection strategy. 

 

Figure 3.2 Data Collection Process Flow Diagram 
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Initially, the full brief styles which are to be produced was extracted from the ERP based on 

their production start dates and subsequently, acquired the corresponding thread consumption 

worksheets from the Product Development (PD) team (Figure 3.3). A collaborative effort was 

established with the Business Process (BP) team to conduct physical measurements for several 

critical parameters in the garment production process, specifically, focused on measuring and 

tracking wastages for each type of thread used in each operation. Moreover, the study had a 

human dimension which recognized the pivotal role of machine operators in shaping the 

outcome of the production processes. Operator skill levels were registered in a dedicated 

database named as Machine Operator (MO) Grading Report. This information was linked to 

the specific operators and the operations considered for the completion of full brief styles of 

medium-sized garments.  

3.1.2 Data Preparation And Preprocessing 

The data that was physically recorded during the measurements was systematically aggregated 

into a format consistent with the thread consumption worksheet received from the Product 

Development team (Figure 3.3). Additionally, certain variables were introduced to effectively 

represent the data obtained through physical measurements. This harmonization of data 

structures was undertaken with the specific purpose of facilitating a comprehensive 

comparative analysis between the estimated thread consumption, as determined by the Product 

Development team, and the actual thread consumption as recorded through physical 

measurements (Figure 3.4). This comparative assessment is integral to this study, enabling a 

thorough evaluation of the accuracy and alignment of estimations with real-world data. 

Afterwards, the collected data were pre-processed and prepared for the analysis. 

 

 
Figure 3.3 PD's Thread Consumption Worksheet 
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Figure 3.4 Harmonized Data Set 

The Thread Consumption Dataset is a comprehensive collection of data meticulously gathered 

and curated to facilitate the proposed research and analysis. The descriptions and the data types 

of the 26 variables are listed in the below table (Table 3.1). 

Table 3.1 Dataset Description 

Attribute 

index 

Attribute 

name 

Attribute description Attribute 

type 

1 Style 
The specific garment style or category to which each data point 

belongs. 
Categorical 

2 Buy 
The specific number of the repeated order received from the 

customer. 
Categorical 

3 
Name of 

Operation 

Specific sewing or manufacturing operation performed on the 

garments during production. 
Categorical 

4 
Operator 

Skill 

The skill level of the machine operator involved in the 

manufacturing process. 
Categorical 

5 
Machine 

Type 
The type of sewing machine used for a particular operation Categorical 

6 

Number of 

Machines 

Allocated 

The quantity or count of sewing machines used for a specific 

operation. 
Numerical 

7 Stitch type 
The type of stitch used in the operation, providing a 

standardized reference. 
Categorical 

8 Stitch ID A unique identifier associated with each type of stitch Categorical 

9 Needle 

A mathematical formula which helps to get the thread quantity 

per centimeter considering SPI and Seam thickness for the 

needle thread 

Numerical 

10 Bobbin 

A mathematical formula which helps to get the thread quantity 

per centimeter considering SPI and Seam thickness for the 

bobbin thread 

Numerical 

11 Looper 

A mathematical formula which helps to get the thread quantity 

per centimeter considering SPI and Seam thickness for the 

looper thread 

Numerical 
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12 
Rows of 

Stitch 
The number of rows of stitches within a given operation Numerical 

13 SPI The density of stitches per linear inch in the garment Numerical 

14 
Seam Length 

cm 

The length of the seam produced during a particular operation 

in centimeters 
Numerical 

15 

Seam 

Thickness 

mm 

The thickness of the seam or the fabric you are sewing together 

in milimeters 
Numerical 

16 
Needle 

Thread cm  

Needle thread consumption, measured in centimeters, reflects 

the quantity of thread used for the needle thread. (Seam Length 

* Number of Rows of Stitches * N) 

Numerical 

17 
Needle 

Thread  

Additional details about the needle thread, which may include 

information such as thread type, ticket number, and color 
Categorical 

18 
Bobbin 

Thread cm  

Bobbin thread consumption, in centimeters, reflects the amount 

of thread used for the bobbin threads. (Seam Length * Number 

of Rows of Stitches * B) 

Numerical 

19 

Bobbin 

Thread Tex 

/Type/Color  

Additional details on the Bobbin thread, which include 

information such as thread type, ticket number, and color 
Categorical 

20 
Looper 

Thread cm  

Looper thread consumption, in centimeters, reflects the amount 

of thread used for the looper threads 
Numerical 

21 

Looper 

Thread Tex 

/Type/Color  

Additional details on the Looper thread, which include 

information such as thread type, ticket number, and color 

(Seam Length * Number of Rows of Stitches * L) 

Categorical 

22 
Estimated 

Wastage % 

The estimated percentage of thread wastage during the 

production process 
Numerical 

23 
TKT 120 

COL 1  

The amount of TKT 120 thread used during the operation, 

measured in centimeters. This includes both needle thread and 

bobbin thread. 

Numerical 

24 
Total TKT 

120 COL 1  

The total consumption of TKT 120 thread, including both used 

and wasted thread, in centimeters 
Numerical 

25 
TKT 160 

COL 1  

The amount of TKT 160 thread used during the operation, 

measured in centimeters. 
Numerical 

26 
Total TKT 

160 COL 1  

The total consumption of TKT 160 thread, including both used 

and wasted thread, in centimeters 
Numerical 
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The data preparation and preprocessing phase in the study is a critical step to ensure that the 

collected data is accurate, complete, and suitable for analysis. This phase involves several key 

processes as follows. 

3.1.2.1 Data Cleaning And Handling Missing Data 

One of the initial steps is to eliminate duplicates in the dataset to avoid redundancy. 

Null values were present in the dataset which belonged to the “Cut Lace” Operation. Thus all 

the rows which had the "Cut Lace" operation were excluded from the dataset. This decision was 

made because this operation does not involve sewing and therefore does not require thread. 

Including it in the analysis would introduce noise and potentially skewed results. 

For fields where no threads from the bobbin and loopers were utilized (specifically, in the 

"Bobbin" and "Looper" columns), zero-imputation approach was employed thus replacing 

missing values with zeros, indicating that no thread was used in those cases. 

Symbols in the data, such as dashes, were transformed into numerical values (e.g., zeros). This 

transformation standardizes the data, making it suitable for mathematical operations and 

analysis.  

Two columns, "Number of Machines Allocated." and "Stitch ID," were omitted from the 

analysis. This decision was made because these columns are irrelevant to the final output of the 

study and including them would not contribute to the research objectives. 

3.1.2.2. Data Transformation 

Data is transformed into the format required by machine learning algorithms. Data pivoting, 

mapping, encoding, normalization, and integration are all examples of this. The categorical 

variables such as Operation, Machine Type and Operator skill are transformed to numerical 

variables with the aid of one-hot encoding and label encoding techniques. 

3.1.2.3 Feature Engineering 

In this research, feature engineering plays a pivotal role in enhancing the dataset's relevance 

and effectiveness for predicting sewing thread consumption across seven distinct sewing 

operations involving two different thread types. To accommodate this complex task, new fields 

have been derived by leveraging existing ones (Figure 3.5).  
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Figure 3.5 Feature Engineered Data set 

Here's a detailed breakdown of the feature engineering process. 

1. Thread Type Differentiation - The study involves two thread types, TKT 120 and TKT 

160, utilized for needle thread, bobbin thread, and looper thread. To facilitate separate 

tracking and analysis of thread consumption for each thread type, distinct fields have 

been created for each operation. 

 

2. TKT 120 Thread Fields - The TKT 120 COL 1 field represents the quantity of TKT 120 

thread consumed during an operation, measured in centimeters. This is derived by 

summing the values of the existing variables Needle Thread cm and Bobbin Thread cm. 

Additionally, the ‘Total TKT 120 COL 1’ field has been generated, which accounts for 

wastage. This is achieved by adding the ‘TKT 120 COL 1’ and ‘TKT 120 COL 1 

Wastage cm’ fields. 

 

3. TKT 160 Thread Fields - The TKT 160 COL 1 field corresponds to the amount of TKT 

160 thread utilized during an operation, also measured in centimeters. This is equivalent 

to the Looper Thread cm field. Similar to the TKT 120 thread, the Total ‘TKT 160 COL 

1’ field has been formulated to incorporate wastage. It is calculated by adding the ‘TKT 

160 COL 1’ and ‘TKT 160 COL 1 Wastage cm’ fields. 

These derived fields allow for a granular analysis of thread consumption for each thread type 

across the sewing operations. By distinguishing between TKT 120 and TKT 160 threads the 

dataset becomes more informative and suitable for the predictive modeling of sewing thread 

consumption in a comprehensive and accurate manner. 

After feature engineering was done few more columns such as "Bobbin" and "Looper Thread 

Tex / Type / Color" columns which did not add value to the study were omitted.  
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3.1.3 Model Training 

As the next step, different machine learning techniques will be applied to the cleaned, 

preprocessed data and subjected to training. As in the literature review provided, different 

machine learning and neural network models will be trained to assure that the best machine 

learning model is adopted for predicting the actual thread consumption with the desired level 

of accuracy of 95% or above. (Jaouadi, et al., 2006; Jaouachi & Khedher, 2013). 

The preprocessed thread consumption data will then be trained on below models and the 

performance measures were retrieved for both training and test data. 

 

3.1.3.1 Multivariate Linear Regression 

Multivariate Linear Regression is an extension of simple linear regression, capable of modeling 

relationships between multiple independent variables and a dependent variable. It seeks to find 

the best-fitting linear equation to predict the outcome based on the input features. 

 

3.1.3.2 Random Forest 

Random Forest is an ensemble learning method that constructs a multitude of decision trees 

during training and outputs the average prediction (regression) or the most frequent prediction 

(classification) of the individual trees. It excels in handling complex relationships in data. 

 

3.1.3.3 Gradient Boost 

Gradient Boosting is an ensemble learning technique that builds a series of weak models 

sequentially, with each model correcting the errors of the previous one. It aims to minimize a 

loss function, resulting in a strong predictive model. 

3.1.3.4 XGBoost 

XGBoost (Extreme Gradient Boosting) is a highly efficient and scalable implementation of 

gradient boosting. It incorporates regularization techniques and parallel processing, making it 

a popular choice for various machine learning tasks, known for its speed and performance. 

3.1.3.5 Multilayer Perceptron (Neural Network) 

Multilayer Perceptron, a type of artificial neural network, consists of multiple layers of 

interconnected nodes (neurons). It is a versatile and powerful model capable of learning 

complex patterns and relationships in data, often employed in tasks such as image recognition 

and natural language processing. 
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3.1.4 Model Evaluation and Selection 

After the models have been trained, the accuracy and effectiveness of the models will be 

evaluated using a test data set. The author will use various measures such as mean absolute 

error (MAE) and root mean square error (RMSE) between the predicted and actual thread 

consumption (Jaouadi, et al., 2006; Abher, et al., 2014). These evaluation metrics are generally 

acknowledged and employed in the machine-learning community for model evaluations. MAE 

and RMSE will measure the magnitude of errors in the model’s predictions. MAE provides the 

average error magnitude, whereas RMSE gives greater weight to large errors. Using these 

measures will enable benchmarking and comparison between different models. After the 

evaluation of the models, the best model will be selected based on the highest accuracy, thus, 

ensuring the selected model is robust and have the ability to generalize to new data which is 

essential for the model’s performance in the longer run. 

3.1.5 Deployment 

As the final step, the evaluated model will be introduced to the business’s operational 

environment. The author will collaborate with the Product Development team to assure that the 

model is incorporated into the thread consumption prediction process and used efficiently to 

output the optimum result. 
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3.2 Theory 

This section outlines the theories of statistical and machine learning methods used in 

carrying out the research. 

3.2.1 Statistical Models 

In the pursuit of understanding and predicting sewing thread consumption, the study employs 

various statistical models to capture the intricate relationships between key variables. In this 

section, three fundamental types of statistical models were introduced, each serving a unique 

purpose in uncovering patterns and dependencies within the dataset. 

3.2.1.1 Simple Linear Regression Model  

The relationship between a dependent variable 𝑌 and a single independent variable 𝑋 is 

quantified in simple linear regression (Olive, 2017). The simplest form of relationship between 

two variables is a straight line and the relationship between 𝑌 and 𝑋 should be defined in the 

form of a simple linear regression model as 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 

Here, 𝛽0 and 𝛽1 are called model regression coefficients or parameters, and 𝜀 is a random 

disturbance or error.  

It is assumed that this linear equation provides an acceptable approximation to the true 

relationship between 𝑌 and 𝑋 within the considered range of observations and 𝜀 measures the 

discrepancy in that approximation. In particular 𝜀 is assumed to contain no systematic 

information for determining 𝑌 that has not already captured in 𝑋.  

 

Standard regression assumptions 

 The response 𝑌 and the explanatory variables are linearly related. 

 𝜀 is a normally distributed random variable with mean zero (𝑖. 𝑒.  𝐸[𝜀𝑖] = 0) and 

constant variance 𝜎2 (𝑖. 𝑒.  𝑉𝑎𝑟[𝜀𝑖] = 𝜎2) for all 𝑖 = 1, 2, 3, … , 𝑛.  

 𝜀𝑖 and 𝜀𝑗 are uncorrelated so that the covariance between 𝜀𝑖 and 𝜀𝑗 is zero 

(𝑖. 𝑒.  𝐶𝑜𝑣[𝜀𝑖 , 𝜀𝑗  ] = 0) for all 𝑖𝑗; 𝑖 ≠ 𝑗.  

 

3.2.1.2 Multiple Linear Regression 

Similarly in Multiple regression, several predictors, independent or explanatory variables are 

used to model a single response (dependent) variable (Olive, 2017). The the model can be given 

in matrix form as , 

𝒀 = 𝑿𝜷 + 𝜺 
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Same assumptions of the linear regression models apply here.  

𝑬(𝜺) = 𝟎 

Here, 𝐸(𝜀𝑖) = 0  for each  𝑖 = 1, 2, … , 𝑛 can be given in a matrix form as above.  

𝑽(𝜺) = 𝝈𝟐𝑰𝒏 =





















2

2

2

0

0








 

Similarly to above  𝑉(𝜀𝑖) = 𝜎2  for each  𝑖 = 1, 2, … , 𝑛 can also be given as a diagonal matrix 

with 𝜎2 in the diagonal and zeros in off-diagonal elements as covariance between error terms 

are assumed to be zero in the model.    

𝜺~𝑵(𝟎, 𝝈𝟐𝑰𝒏) 

Overall, the errors follow a multivariate normal distribution with mean vector 0 and variance-

covariance matrix 𝝈𝟐𝑰𝒏.  (Here 𝐼𝑛 is the (𝑛 × 𝑛) identity matrix).   

3.2.1.3 Multivariate Linear Regression 

Multivariate linear regression is a technique of modeling multiple responses with a single set 

of predictors (Olive, 2017). The model have the following form, 

𝑌𝑛×𝑝 = 𝑋𝑛×(𝑘+1)𝛽(𝑘+1)×𝑝 + 𝜀  

The model is constructed based on following assumptions, 

 The variables of interest are linearly related with the response variables. 

 There are no outliers. 

 Error (𝜀) is normally distributed with zero mean and constant variance. 

 Two or more variables are not substantially correlated with each other which presence 

of the correlation refers to the multicollinearity. 

3.2.2 Machine Learning Models 

Artificial Intelligence is a continuously growing field in computer science and can be referred 

to as the ability of computers or machine in carrying out tasks which are associated with 

intelligent beings (Copeland, 2023). The entire space of artificial intelligence consists of many 

components. Machine and deep learning are two aspects within this space as depicted below. 
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Figure 3.6 Artificial Intelligence 

(Source: (Abhishek, 2022)) 

Machine Learning (ML) learns from data and experience to improve the performance of tasks 

and decision making using statistical methods whereas Deep Learning (DL) uses complex 

neural network structures. According to the Figure 3.6, deep learning can be considered a part 

of machine learning and is involved with the use of artificial neural networks. These have 

outperformed ML models in the instances where the accuracy is considered important over 

interpretability because neural networks are harder to interpret. 

3.2.2.1 Ensemble Models 

Ensemble modeling is the process of developing diverse amount of models to predict an 

outcome, either by using many different modeling algorithms or using different training 

datasets. The final prediction for the unseen data is then produced by the ensemble model by 

combining the predictions of all the base models. The goal of employing ensemble models is 

to lower the prediction's generalization error. Using the ensemble approach reduces the model's 

prediction error provided that the base models are independent and diversified. The method 

bases its predictions on the wisdom of the multitude. The ensemble model functions and 

behaves as a single model even when it has several foundation models. Random forest and 

boosting algorithms are such examples for ensemble modeling. 

Random Forest 

As mentioned above, random forest is an ensemble machine learning model that can be applied 

to both regression and classification problems. It is an advanced version of decision trees where 

multiple random trees are modelled to construct the final ensemble model. The final prediction 

is the mean or the majority vote of these individual predictions depending on whether it is a 

regression or a classification problem respectively. 
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Leo Breiman introduced random forest as a solution for the increase in variance caused by 

correlated trees when attempting bagging (Breiman, 2001)The solution was to take samples of 

the variables in each split which would result in reduced correlations because it reduces the 

chances of two trees being similar in each step.  

 

Mutual Information Criteria 

Mutual information (MI) is a nonlinear measure to quantify the statistical dependency between 

two or more variables. MI takes zero, if the two variables are independent and if they are 

dependent, it takes a positive value reflecting the strength of the relationship. (Barraza, et al., 

2018)state that it is more suitable than the cross correlation to quantify a dependency between 

variables that differ from linear relationships. 

Feature selection using random forest 

The methodology of this study was followed up by a feature selection since random forest 

provides the facility to plot the feature importance. Feature selection involves the selection of 

the most relevant features in a dataset used in predictions. It is important since it provides a 

platform where the model’s complexity could be reduced for the same level accuracy in 

predictions. The interpretability and reduced overfitting are two more benefits of conducting 

feature selection. 

 

The importance of a variable is defined by how much the feature reduces the impurity. The 

impurity in regression is measured by the variance. The more significant a feature is to the 

predictive model, the higher the reduction in impurity it causes. The importance of a feature 

can be assessed by averaging the decrease in impurity for that feature across all trees. 

 

Hyperparameter Tuning 

The parameters that were tuned in this study are as follows, the rest remained as their default 

values. 

 max_depth – The longest path between the leaf node and its root node. 

 n_estimators – The number of trees in the forest. 

 min_samples_split – The minimum number of samples required to split an internal 

node. 

 min_samples_leaf – The minimum number of samples required to be at a leaf node. 

Gradient Boosting 
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Gradient Boosting is a powerful boosting algorithm that combines several weak learners into 

strong learners, in which each new model is trained to minimize the loss function such as mean 

squared error or cross-entropy of the previous model using gradient descent (Natekin & Knoll, 

2013). Each time around, the algorithm calculates the gradient of the loss function in relation 

to the current ensemble's predictions, trains a new weak model to minimize this gradient, and 

repeats the process. The procedure is then continued until a stopping criteria is satisfied after 

the predictions of the new model have been added to the ensemble. 

 

The algorithm tries to learn the function 𝑓(𝑥) that maps the input features 𝑋 to the target 

variable 𝑌. 𝑓(𝑥) is the sum of the boosted trees. The loss function 𝐿(𝑓) is the difference between 

the actual and the predicted variables. 

𝐿(𝑓) = ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖))
𝑁

𝑖=1
 

The loss function is minimized with respect to 𝑓 as, 

𝑓0(𝑥) = argmin
𝑓

𝐿(𝑓) = argmin
𝑓

∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖))
𝑁

𝑖=1
 

If the gradient boosting algorithm is in 𝑀 stages then to improve the 𝑓𝑚 the algorithm can add 

some new estimator as ℎ𝑚 having 1 ≤ 𝑚 ≤ 𝑀 

�̂�𝑖 = 𝐹𝑚+1(𝑥𝑖) =  𝐹𝑚(𝑥𝑖) + ℎ𝑚(𝑥𝑖) 

For 𝑀 stage gradient boosting, the steepest descent finds ℎ𝑚 = −𝜌𝑚𝑔𝑚 where 𝜌𝑚 is constant 

and known as step length and 𝑔𝑚 is the gradient of loss function 𝐿(𝑓), 

𝑔𝑖𝑚 = [
𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]

𝑓(𝑥𝑖)=𝑓𝑚−1(𝑥𝑖)

 

Similarly, the gradient for 𝑀 trees is, 

𝑓𝑚(𝑥𝑖) = 𝑓𝑚−1(𝑥𝑖) + (argmin
ℎ𝑚∈𝐻

[∑ 𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖))
𝑁

𝑖=1
]) (𝑥) 

The solution will be, 

𝑓𝑚 = 𝑓𝑚−1 − 𝜌𝑚𝑔𝑚 

 

XGBoost 

XGBoosting is a more regularized version of gradient boosting. It uses advanced regularization 

(𝐿1 𝑎𝑛𝑑 𝐿2), which improves the model generalization capabilities. It is also known to deliver 

high performance as compared to gradient boosting and it trains faster and can be parallelized 

across clusters. 
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3.2.2.2 Multilayer Perceptron (Neural Network) 

An Artificial Neural Network (ANN) is a biologically inspired sub-field of artificial intelligence 

which attempts to mimic the human brain with less sophistication. It is a layered, feedforward 

and completely connected network of neurons. A fully connected multi-layer neural network is 

called a Multilayer Perceptron (MLP) (Noriega, 2005).  

The most basic MLP consists of three layers of which the initial layer is the input layer, and the 

final layer is the output layer. The layer in the middle is called the hidden layer. The decision 

of how many hidden layers to use in a model depends on the intuition of the architect of the 

neural network. Higher the number of hidden layers, the more the complexity of the network 

which results in slowing down the process. The number of nodes in the input layer depends on 

the number of features in the dataset and number of output nodes depends in the classification 

or prediction problem at hand. 

Each of these nodes are connected to every node in the adjacent layer. The connected neuron 

has an associated weight and a threshold that determines its activation or deactivation. Neuron 

activates itself, if the threshold is achieved. Framework of an Artificial Neural Network is 

shown below in the Figure 3.7. 

 

Figure 3.7 Framework of an Artificial Neural Network 

(Source: (Vasiliev, et al., 2019)) 
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3.2.3 Model Comparison 

The following error measures were used to compare the predictive power of the models 

predicting the closing prices and the returns of the individual US stocks employed in the study.  

1. RMSE – Root mean squared error 

This is calculated by taking the square root of the average squared difference between 

the actual and the predicted value. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

 

 𝑦𝑖 – Actual values 

 𝑦�̂� – Predicted values 

 𝑛 – Number of observations 

RMSE is relatively easy to compute but it can be affected by outliers or skewed data. 

2. MAE – Mean Absolute Error 

MAE is a measure of the average size of the error in a collection of predictions, without 

considering the error direction. It is computed as below, 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

3. MAPE – Mean Absolute Percentage Error 

MAPE is another commonly used performance metric in regression problems. It is 

computed as below, 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑛

𝑖=1

 

Compared to RMSE, MAE and MAPE are comparatively less sensitive towards outliers or 

extreme points. 
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3.3 Research/Solution Design 

Several architectural decisions have been made to design an effective and reliable solution. 

These decisions are grounded in the rationale of achieving accurate predictions while 

addressing the complexities inherent in the apparel manufacturing process. The decisions and 

the rationale behind them are listed in the Table 3.2. 

Table 3.2 Architectural Decisions & Rationale 

Decision Description Rationale 

Data 

Integration 

The solution integrates data from 

various sources, including ERP 

systems, Product Development 

teams for thread consumption 

worksheets, and Business Process 

teams for physical measurements of 

SPI and wastages and recording 

operator skill data. 

Thread consumption prediction relies on a 

multitude of parameters such as garment 

styles, machine types, operator skills, and 

thread types. Integrating data from diverse 

sources ensures a comprehensive 

understanding of the production process. 

Feature 

Engineering 

The solution involves extensive 

feature engineering to create new 

variables representing thread 

consumption for different thread 

types (e.g., TKT 120 and TKT 160) 

in each operation. 

By deriving new features from existing data, 

the model can capture the specific 

consumption patterns of different thread 

types, enhancing prediction accuracy. 

Multivariate 

Linear 

Regression 

Multivariate Linear Regression will 

be employed as one of the primary 

modeling techniques. 

Multivariate Linear Regression extends linear 

regression to predict multiple dependent 

variables (thread consumptions of TKT 120 

and TKT 160) simultaneously. 

Ensemble 

Models 

Ensemble modeling techniques like 

Stacking and Bagging will be 

adopted to combine predictions from 

multiple models. 

Ensemble methods are known for their ability 

to improve prediction accuracy by leveraging 

the strengths of different models. In the 

apparel industry, where thread consumption 

patterns can be complex, ensembles offer a 

robust solution. 

Operator 

Skill 

Incorporation 

Operator skill levels are integrated 

into the analysis, acknowledging 

their impact on production 

outcomes. 

Operator skill is a critical factor influencing 

thread consumption. Incorporating this data 

allows for a more nuanced understanding of 

the production process. 
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3.4 Chapter Summary 

The Methodology and Theory chapter lays the groundwork for accurate sewing thread 

consumption prediction in garment manufacturing. The chapter starts with a framework that 

explains the steps carried out in the study. The subsiding sections presents the theoretical and 

methodological background of the analysis. Leveraging a robust data integration approach from 

ERP systems, Product Development and Business Process teams, the study employs extensive 

feature engineering and adopts modeling techniques, including Multivariate Linear Regression, 

Ensemble Models and Neural Network models. Theory section brings attention to the 

theoretical aspects on the statistical measures and machine learning methods employed during 

the study.  
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CHAPTER 4 

EXPLORATORY DATA ANALYSIS 

In order to gain a better understanding of the data distribution and characteristics and to find 

trends and correlations in the data, exploratory data analysis (EDA) will be carried out. 

In the context of thread consumption analysis, the primary focus is on assessing whether the 

estimates for thread usage, specifically for two thread types, TKT 120 and TKT 160, obtained 

from the Product Development team might have been overestimated. Thus a hypothesis testing 

was conducted. 

In the conducted hypothesis test, the author aimed to assess whether there is a statistically 

significant difference between the estimated thread consumptions retrieved from the PD’s 

thread consumption worksheets (Estimated TKT 120 COL 1 & Estimated TKT 160 COL 1) 

and the actual thread consumptions (TKT 120 COL 1 & TKT 160 COL 1). Formulated 

hypotheses are as follows. 

 For TKT 120: Null Hypothesis (H0): Estimated TKT 120 COL 1 <= TKT 120 COL 1 

                              Alternative Hypothesis (Hα): Estimated TKT 120 COL 1>TKT 120 COL 1 

 For TKT 160: Null Hypothesis (H0): Estimated TKT 160 COL 1 <= TKT 160 COL 1 

                              Alternative Hypothesis (Hα): Estimated TKT 160 COL 1 > TKT 160 COL 1 

The statistical analysis employed a one-tailed t-test to compare the means of the Estimated 

thread consumptions for TKT 120 and TKT 160 and the actual thread consumptions from the 

dataset. Following the t-test and evaluation of the p-value, for both cases TKT 120 and TKT 

160, the null hypothesis is rejected. This means that there is robust statistical evidence 

indicating that the estimated thread consumption values (Estimated TKT 120 COL 1 and 

Estimated TKT 160 COL 1) are significantly greater than the actual thread consumption values 

(TKT 120 COL 1 and TKT 160 COL 1) for the operations or scenarios encompassed within the 

dataset.  

4.1 Buffer Wastage Inbuilt By The Product Development Vs Measured Wastage 

The comparison between the inbuilt wastages provided by the product development team and 

the measured wastages reveals a notable discrepancy (Figure 4.1). Across various operations 

and for both TKT 120 and TKT 160 thread types, the inbuilt wastages consistently appear 

significantly higher than the measured wastages. This observation suggests potential 

inaccuracies or overestimations in the wastage estimations provided by the product 

development team. Such discrepancies could lead to inefficiencies in resource allocation and 
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Figure 4.1 Buffer Wastage inbuilt by the Product Development vs Measured Wastage 

may impact the overall production process, including material management and cost estimation. 

Therefore it becomes imperative to reassess and refine the wastage estimations to align them 

more closely with the actual measured wastages, enabling better-informed decision-making and 

resource utilization throughout the production lifecycle. 

  

4.2 Influence Of Spi On The Consumed Thread Amount Behavior 

SPI (Stitches per inch) represents the density of stitches within a given length, and its influence 

on thread consumption is substantial. A higher SPI generally results in increased thread usage 

(Figure 4.2), as more stitches are packed into a fixed seam length. This is attributed to the fact 

that a greater number of stitches requires more thread to traverse the same distance. 

 

Figure 4.2 Influence of SPI on the thread consumption 
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4.3 Influence Of Seam Length On The Consumed Thread Amount Behavior 

Seam length refers to the measurement of the stitched line or joint formed by sewing two pieces 

of fabric together, that is the distance along the sewn line and is typically measured in linear 

units such as centimeters or inches. A longer Seam Length typically requires a greater amount 

of thread to secure the fabric, resulting in increased thread consumption as shown in Figure 4.3. 

The clusters observed in the Scatter Plot (Figure 4.3) depicting the relationship between Seam 

Length and thread consumption convey meaningful insights regarding the thread utilized across 

specific seam lengths within the seven distinct operations. Each cluster encapsulates a set of 

data points that share a similar pattern of thread consumption concerning the corresponding 

seam length. 

 

Figure 4.3 Influence of Seam Length on the thread consumption 

4.4 Influence Of Seam Thickness On The Consumed Thread Amount Behavior 

Seam thickness refers to the combined measurement of the layers of fabric joined together by 

a seam, representing a pivotal dimension in the creation of stitched structures within a garment. 

This parameter is particularly significant as it directly affects the mechanical properties of the 

seam, including its strength, durability, and overall integrity. The thickness of the seam is 

closely associated with the complexity of the sewing process, as thicker seams often demand a 

greater quantity of thread to ensure secure stitching. Additionally, variations in seam thickness 

can influence the tension and stress distribution along the seam, further impacting the overall 

thread consumption pattern. The correlation matrices obtained for each operation in Figure 4.4 

delves into the relationship between seam thickness and the thread consumption of both TKT 
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120 and TKT 160. Positive correlations signify that an increase in seam thickness is associated 

with a higher thread consumption. 

 

Figure 4.4 Correlations between Seam Thickness and thread consumption 

4.5 Influence Of Wastage On The Consumed Thread Amount Behavior 

Wastage in the thread consumption for a garment refers to the proportion of thread that is 

expected to be wasted during the manufacturing process. It represents the amount of thread that 

is used but does not contribute to the final stitched product. Positive correlations in the Figure 

4.5 indicate that as wastages increase, there is a corresponding elevation in thread consumption. 

 

 

 

 

 

 

 

 

 
Figure 4.5 Correlation between Wastage and thread consumption 
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4.6 Influence Of Operator Skill On The Consumed Thread Amount Behavior 

When it comes to thread consumption, operator skill describes the ability and knowledge of the 

people in charge of sewing duties in the apparel industry. The amount of thread used in various 

stitching operations can be greatly influenced by the operators' skill level. Higher grades, such 

an A+,A and B are often reserved for skilled operators who have a deeper knowledge on the 

sewing machinery, procedures, and specifics of the sewing operations they do. Their 

proficiency allows them to maximize the use of thread, reducing waste and guaranteeing 

effective sewing as evidenced from the Figure 4.6. 

 

Figure 4.6 Influence of Operator Skill on the thread consumption 

The Figure 4.6 suggests a positive relationship between operator skill levels and thread 

consumption, where higher skill grades (A+, A and B) tend to be associated with more efficient 

and optimized thread usage, while lower skill grade C exhibits a tendency towards increased 

thread consumption.  

4.7 Chapter Summary 

This chapter explores exploratory data analysis (EDA) to scrutinize thread consumption 

estimates, particularly for TKT 120 and TKT 160, provided by the Product Development team. 

The hypothesis test revealed a significant overestimation in the thread consumption. A 

comparison between inbuilt wastages and measured wastages underscored a substantial 

disparity, attributing potential inaccuracies. While factors like SPI, seam length, seam 

thickness, and operator skills remained stable, the critical factor elevating thread consumption 

is the addition of buffer wastage. This analysis emphasizes the need to refine estimations of 

buffer wastages and highlights buffer wastages as a key factor significantly impacting overall 

thread consumption in garment production. 
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CHAPTER 5 

EVALUATION AND RESULTS 

As the next step, different machine learning techniques were applied to the cleaned, 

preprocessed data and subjected to training. In light of the substantial buffer wastage inherent 

in the product development team's estimations, there arises a critical necessity to forecast 

wastages based on actual measured wastage data. Subsequently, leveraging these predicted 

thread wastages becomes integral in accurately forecasting thread consumptions. In the context 

of predicting the wastages and consumptions of two thread types (TKT 120 and TKT 160) for 

the same garment, several machine learning models could be employed. These models are 

designed to handle multi-thread type predictions simultaneously. This chapter provides a 

comprehensive view on the forecasting models carried out and the results obtained during the 

research. 

5.1 Multivariate Linear Regression  

Multivariate Linear Regression is an extension of the simple linear regression model, designed 

to handle multiple dependent variables concurrently. In this research, it can be applied to predict 

the consumptions of both TKT 120 and TKT 160 threads simultaneously. This model assumes 

a linear relationship between various independent variables (such as stitch length, stitch density, 

seam length, etc.) and the thread consumptions. It allows for the modeling of how changes in 

these independent variables affect the thread consumptions of both thread types. 

 

Before the multivariate linear regression model was fit, the preprocessing steps highlighted in 

the section 3.1.2, were carried out. For TKT 120, all the operations were considered for the 

training where as for TKT 160, the operation which had zero consumption from TKT 160 was 

excluded from training. The buffer wastage amount was predicted before arriving at the final 

consumptions for both thread types. Moreover a feature selection was carried out referring to 

the mutual information scores plot obtained (Figure 5.1).  
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Figure 5.1 Mutual Information Scores Plot for Linear Regression models 

The Table 5.1 and Table 5.2 show the results obtained for the RMSE, MAE and R-squared 

matrices for training and test data sets before and after the modification and feature selection 

for the wastage model and the consumption model respectively. 

Table 5.1 Evaluation matrices of Linear Regression Models - Wastage Model 

Metrics for 

Wastage 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 3.99 4.61 9.94 7.89 3.99 4.59 9.94 7.90 

MAE 2.65 2.99 6.96 5.81 2.67 2.97 6.97 5.79 

MAPE 57.97% 61.90% 60.28% 57.43% 58.33% 61.00% 60.28% 57.27% 

R-Squared 0.6175 0.4078 0.5183 0.5648 0.6160 0.4124 0.5174 0.5633 
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Table 5.2 Evaluation matrices of Linear Regression Models - Consumption Model 

Metrics for 

Consumption 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 15.61 16.29 29.57 25.42 15.61 16.28 29.55 25.39 

MAE 10.25 9.89 22.74 19.98 10.26 9.89 22.72 19.96 

MAPE 4.79% 4.18% 4.12% 4.07% 4.78% 4.17% 4.12% 4.06% 

R-Squared 0.9951 0.9946 0.9960 0.9966 0.9951 0.9946 0.9960 0.9966 

 

As per the tables 5.1 and 5.2, the model performance measured from each evaluation matric 

before and after the feature selection has not had a significant change in all evaluation matric 

values. However the error values obtained for the test data set have decreased by a slight amount 

in both wastage and consumption models. MAPE values for the wastage model are relatively 

high, suggesting a notable level of discrepancy between the predicted and actual values. 

Conversely, the consumption model exhibits lower MAPE values, indicating a closer alignment 

between predictions and actual observations. However, it's important to note that low MAPE 

values alone don't necessarily signify a superior model. 

The actual and the predicted values for thread consumptions of the thread types TKT 120 and 

TKT 160 obtained from the linear regression models were plotted and represented in the below 

Figure 5.2. Slightly high deviations in the actual thread consumptions values were observed 

against the predicted values for thread type TKT 120 when compared to actual vs predicted 

values deviations of thread type TKT 160.The deviations were observed for high consumption 

values. 

 
Figure 5.2 Actual vs Predicted values of Linear Regression model 
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5.2 Ensemble Models 

This approach involves combining predictions from multiple individual models to create a more 

accurate and robust prediction. By leveraging the strengths of different models, ensemble 

methods like Stacking and Bagging can significantly enhance the accuracy and reliability of 

thread consumption forecasts. 

5.2.1 Random Forest 

Random Forest is an ensemble learning method that can be adapted for regression tasks 

involving multiple dependent variables. It combines the predictions of multiple decision trees, 

making it robust, less prone to overfitting and accurate for predicting thread consumptions for 

both TKT 120 and TKT 160. Random forest regressor was used to train the thread consumption 

data for both types of thread TKT 120 and TKT 160. Hyperparameters that were mentioned in 

the section 3.2.2 under random forest were tuned using grid search approach for every model 

built. Further a mutual information scores plot (MI Scores plot) was generated to identify the 

features that are closely connected to the target variables.  

 

 

Figure 5.3 Mutual Information Scores Plot for Random Forest model 

 

First the models were trained considering all the variables then followed by a feature selection 

with the aid of the MI Scores plot in Figure 5.3. As indicated by the MI scores plot in Figure 

5.3, the thread consumptions of both thread types are less likely to be dependent on the Operator 

Skill levels. Therefore the model was trained excluding the operator skill feature. The results 
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obtained for the matrices taken into account before and after the feature selection are depicted 

in the table 5.3 and 5.4 below.  

 

Table 5.3 Evaluation matrices of Random Forest model - Wastage  Model 

Metrics for 

Wastage 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 3.50 5.91 8.94 10.50 2.53 5.97 6.57 10.29 

MAE 2.35 3.65 6.12 7.20 1.64 3.70 4.27 7.36 

MAPE 53.28% 75.29% 54.89% 70.29% 36.64% 75.55% 37.43% 70.01% 

R-Squared 0.7050 0.0250 0.6098 0.2301 0.8451 0.0050 0.7892 0.2592 

 

Table 5.4 Evaluation matrices of Random Forest model - Consumption Model 

Metric for 

Consumption 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 3.66 7.31 9.14 10.58 3.08 7.91 7.27 11.64 

MAE 2.43 4.22 6.27 7.31 2.01 4.51 4.80 8.13 

MAPE 0.88% 1.35% 0.90% 1.12% 0.70% 1.43% 0.68% 1.24% 

R-Squared 0.9997 0.9989 0.9996 0.9994 0.9998 0.9987 0.9997 0.9992 

 

As per the Table 5.3 and 5.4, the evaluation matrices of random forest algorithm shows 

significant reduction in error values than that of the multivariate linear regression model for 

both wastage and consumption models. However same behavior as the multivariate regression 

model was observed in the MAPE values generated for wastage prediction from the random 

forest model. The lowest MAPE value 37% was obtained only after feature selection for 

training datasets of both thread types. Moreover the evaluation matrices for training dataset are 

lower than that of the test dataset indicating very high performance on the training set, but there 

is a noticeable increase in error values that is a drop in performance on the test set. This suggests 

potential overfitting, as the models may have memorized the training data rather than 

generalizing well to new, unseen data. After the feature selection, where operator skill is 

removed, the results of the evaluation matrices of the test data set has increased more, indicating 

that the performance of the model to the unseen data after feature selection has degraded more. 
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However both RMSE and MAPE values of the training data set have decreased after the feature 

selection indicating the performance of the model on training data have increased. 

 

The actual and the predicted values for thread consumptions of the thread types TKT 120 and 

TKT 160 obtained from the random forest models were also plotted and represented in the 

below Figure 5.4. In both the consumption values belonging to the two thread types, no 

significant deviations were identified indicating that there is a possibility of overfitting nature. 

 

 
Figure 5.4 Actual vs Predicted values of Random Forest model 

5.2.2 Gradient Boosting 

Gradient Boosting is a powerful ensemble learning technique that enhances model performance 

by sequentially fitting weak learners, usually decision trees, to correct errors from the previous 

models. It iteratively minimizes a loss function, placing greater emphasis on instances with 

prediction inaccuracies. The wastages and the thread consumptions of both thread types TKT 

120 and TKT 160 were trained using the GradientBoostingRegressor with all the features and 

reduced number of features. The results of the performance measures pre and post feature 

selection are represented in the Table 5.5 and 5.6. 
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Table 5.5 Evaluation matrices of Gradient Boosting  model - Wastage Model 

Metrics for 

Wastage 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 3.71 5.25 9.27 9.33 3.53 5.45 8.45 9.15 

MAE 2.49 3.21 6.48 6.35 2.4 3.24 6.06 6.33 

MAPE 56.55% 64.43% 57.90% 61.17% 55.09% 64.85% 55.66% 59.97% 

R-Squared 0.6688 0.2307 0.5803 0.391 0.7002 0.1717 0.6513 0.4149 

 

Table 5.6 Evaluation matrices of Gradient Boosting  model - Consumption Model 

Metric for 

Consumption 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection 

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 5.68 7.33 12.63 13.41 5.66 7.29 12.90 13.91 

MAE 3.99 4.67 8.99 9.72 4.00 4.68 9.16 10.03 

MAPE 1.68% 1.66% 1.41% 1.76% 1.68% 1.65% 1.39% 1.71% 

R-Squared 0.9994 0.9989 0.9992 0.9990 0.9993 0.9989 0.9992 0.9989 

 

As per the Table 5.5 and 5.6, the model performance measured from each evaluation matric 

before and after the feature selection has not had a significant change in all the evaluation matric 

values. 

 

 

Figure 5.5 Actual vs Predicted values of Gradient Boosting model 
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Slight deviations were observed in the actual vs predicted values in the Gradient Boosting 

model for both thread types as demonstrated in the Figure 5.5. 

5.2.3 XGBoost 

XGBoost is renowned for its efficiency and effectiveness and excels in handling complex 

relationships within datasets. Its ensemble learning framework combines the strengths of 

multiple decision trees, making it adept at capturing intricate patterns and nuances in the data. 

XGBRegressor was used to train the thread consumption data of both the thread types TKT 120 

and TKT 160, followed by a feature selection via a featue importance plot for both the thread 

types (Figure 5.6) 

 

Figure 5.6 Feature Importance  Plot for XGBoost model 

The outcomes derived from the matrices considered both prior to and subsequent to the 

implementation of feature selection are elegantly presented in Table 5.5 below.  

Table 5.7 Evaluation matrices of XGBoost model - Wastage  Model 

Metrics for 

Wastage 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 3.46 6.5 8.89 11.49 2.23 6.82 5.77 11.68 

MAE 2.31 3.91 6.06 7.67 1.26 4.13 3.2 8.33 

MAPE 52.52% 78.69% 54.23% 74.05% 32.22% 79.68% 30.55% 75.32% 

R-Squared 0.7105 0.7098 0.6143 0.6032 0.8802 0.8652 0.8372 0.8067 
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Table 5.8 Evaluation matrices of XGBoost model - Consumption  Model 

Metric for 

Consumption 

Model 

Before Feature Selection  

(with all the variables) 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 2.26 7.03 5.82 11.81 2.21 6.50 5.46 10.12 

MAE 1.32 4.23 3.30 8.48 1.24 3.91 3.26 6.89 

MAPE 0.84% 1.30% 0.87% 1.17% 0.54% 1.28% 0.52% 1.15% 

R-Squared 0.9998 0.9989 0.9998 0.9992 0.9997 0.9991 0.9996 0.9992 

 

The evaluation metrics derived from the XGBoost model's training dataset exhibit markedly 

lower values compared to those of the test dataset in both pre and post-feature selection 

scenarios, as illustrated in Table 5.7 and Table 5.8. This discrepancy implies a potential 

overfitting phenomenon within the training data. However, after the feature selection the error 

values for both the training and test datasets exhibit a reduction. This shift suggests a mitigated 

overfitting tendency within the training set, indicating a positive impact of feature selection on 

model generalization. 

 

Figure 5.7 Actual vs Predicted values of XGBoost model 

Slight deviations were seen in the actual vs predicted values in the XGBoost model for both 

thread types as demonstrated in the Figure 5.7. 

 

 



50 
 

Comparison of the Ensemble Models 

The evaluation matrices retrieved from each ensemble model, post feature selection, have been 

consolidated in Table 5.9 below. A comparative analysis of each model's performance was 

conducted, revealing that XGBoost exhibited the lowest error values, indicating superior 

performance on the training dataset. Despite the notable proficiency demonstrated by XGBoost, 

a shared observation across all ensemble models studied suggests potential overfitting. This is 

evidenced by the discrepancy between low error values on the training dataset and 

comparatively higher error values on the test dataset, emphasizing the need for careful 

consideration of model generalization in future applications. 

Table 5.9 Consolidated Evaluation matrices of Ensemble model – Consumption Model 

Metrics Random Forest Gradient Boosting XGBoost 

TKT 120 TKT 160 TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test Train Test Train Test 

RMSE 3.08 7.91 7.27 11.64 5.66 7.29 12.9 13.91 2.21 6.5 5.46 10.12 

MAE 2.01 4.51 4.8 8.13 4.00 4.68 9.16 10.03 1.24 3.91 3.26 6.89 

MAPE% 0.70 1.43 0.68 1.24 1.68 1.65 1.39 1.71 0.54 1.28 0.52 1.15 

 

5.3 Multilayer Perceptron (Neural Network) 

Neural networks with multiple output nodes can be used to predict the consumptions of multiple 

thread types. By configuring the output layer to have two nodes (one for TKT 120 and one for 

TKT 160), the model can simultaneously predict the  wastages and consumptions of both thread 

types. Neural networks are known for their ability to capture complex patterns in data. 

Initially the model consisted of only 3 layers namely, input layer, one hidden layer and one 

output layer with two outputs. The model was developed so that artificial neural networks were 

trained for TKT 120, with all the operations while for TKT 160, the operation which had zero 

consumption from TKT 160 was excluded from training. Moreover an additional hidden layer 

was added and the performance prior to and subsequent was recorded as shown in the Tables 

5.10 and 5.11 for wastage prediction and consumption predictions respectively. 
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Table 5.10 Evaluation matrices of the ANN Models - Wastage Model 

Metric for 

Wastage 

Model 

With 1 hidden layer With 2 hidden layers 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 3.72 5.23 9.50 8.52 2.23 4.61 5.77 7.96 

MAE 2.44 3.28 6.51 6.21 2.33 2.98 6.27 5.86 

MAPE 52.43% 66.98% 56.86% 62.40% 53.89% 58.36% 61.14% 58.17% 

R-Squared 0.9995 0.9986 0.9975 0.9968 0.9995 0.9996 0.9989 0.9998 

 

 

Table 5.11 Evaluation matrices of the ANN Models - Consumption Model 

Metrics for 

Consumption 

Model 

With 1 hidden layer With 2 hidden layers 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 5.23 8.22 24.30 24.51 1.98 3.04 4.19 5.69 

MAE 3.61 5.31 16.03 16.64 1.16 3.22 3.08 4.75 

MAPE 1.45% 2.03% 2.60% 3.01% 1.15% 1.33% 1.99% 2.06% 

R-Squared 0.9995 0.9986 0.9975 0.9968 0.9995 0.9996 0.9989 0.9998 

 

As evidenced by the Table 5.10 and Table 5.11, incorporating an additional hidden layer has 

decreased the error values drastically hence enhancing the performance of the artificial neural 

network with 2 hidden layers additionally to the input and the output layers. Additionally, the 

low RMSE and MAPE values for training dataset suggest that models have trained well. MAPE 

values generated for the prediction of wastages lie around 52%-66% range which is 

comparatively a better indicator over the other models discussed. 

 

The Artificial Neural Network model with 2 hidden layers was subjected to feature selection 

and excluded Operator Skill from the training. Evaluation matrices pre and post feature 

selection was included in the below Tables 5.12 and 5.13. 

 

Table 5.12 Evaluation matrices of the ANN Wastage model pre and post feature selection 

Metrics for 

Wastage 

Model 

With 2 hidden layers 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 2.23 4.61 5.77 7.96 1.95 2.98 3.89 4.79 

MAE 2.33 2.98 6.27 5.86 1.23 2.64 3.44 4.56 

MAPE 53.89% 58.36% 61.14% 58.17% 52.39% 57.71% 59.65% 59.95% 

R-Squared 0.9995 0.9996 0.9989 0.9998 0.9995 0.9996 0.9989 0.9998 
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Table 5.13 Evaluation matrices of the ANN Consumption model pre and post feature selection 

Metrics for 

Consumption 

Model 

With 2 hidden layers 

After Feature Selection  

(with selected variables) 

TKT 120 TKT 160 TKT 120 TKT 160 

Train Test Train Test Train Test Train Test 

RMSE 1.98 3.04 4.19 5.69 1.56 2.67 3.41 4.37 

MAE 1.16 3.22 3.08 4.75 1.08 2.98 2.82 3.95 

MAPE 1.15% 1.33% 1.99% 2.06% 1.12% 1.21% 1.76% 1.99% 

R-Squared 0.9995 0.9996 0.9989 0.9998 0.9995 0.9998 0.9999 0.9997 

 

Feature selection has narrowed the MAPE value range of the wastage predictions to 50%-60% 

range. It was observed that the error values have reduced further more after the feature selection 

(Table 5.12 and Table 5.13) providing insights for the better model to be used. The same results 

were shown in the Figure 5.8 where the predicted values are very closer the the actual values.  

 

Figure 5.8 Actual vs Predicted values of ANN model 

To avoid the overfitting phenomena, ‘Early Stopping’ technique was used in training artificial 

neural network models. Early stopping is a regularization technique used in machine learning 

and specifically in the training of iterative models, such as neural networks, to prevent 

overfitting and improve generalization. The fundamental idea behind early stopping is to track 

a model's performance on a validation set during training and halt the process when the model's 

performance starts to decline or stops getting better. The ANN model gave the best performance 

results among the other reviewed models as highlighted by the literature review. As per the 

studies ANN model was used to predict the thread consumption of only a single thread type to 

a specific stitch type where as in this study, ANN models were developed to predict the thread 

consumptions of two thread types in one whole operation as well as to predict the buffer wastage 

that should be incorporated to the operations inorder to balance any non-controllable wastages. 
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5.4 Development Of A User Interface 

The development of a user interface for the study involved creating an interactive platform that 

seamlessly integrates machine learning models. In this context, Streamlit emerges as a powerful 

tool, offering a straightforward approach to building web applications using python. In the 

initial phase, the development environment was set up, ensuring that Python and Streamlit were 

properly installed. Subsequently, the necessary libraries were imported, including pandas and 

numpy for data manipulation, scikit-learn for machine learning functionalities, and Streamlit 

for building the interface. 

The trained models which had best performances in predicting the thread consumptions (ANN 

models), specifically a model for TKT 120 and another for TKT 160, were loaded into the 

application. These models, implemented using libraries such as TensorFlow and Keras, were 

crucial for making predictions based on user inputs. This involved loading data from external 

sources, such as Excel files, and allowing users to input data through interactive forms in the 

Streamlit interface. Figure 5.9 is a prototype of the interface. The sewing operations were 

displayed using an expander for each operation to enhance the usability and the interactive 

nature of the application. 

 

Figure 5.9 Proposed Interface for predicting thread consumption 
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The heart of the application lay in the creation of the Streamlit user interface. Utilizing 

Streamlit's features, various interactive elements like buttons, sliders, and select boxes were 

incorporated to enable users to input the parameters necessary for making predictions. Handling 

user inputs became a critical component. The application was designed to capture user inputs 

from the interface and process them into a format suitable for consumption by the machine 

learning models. This step involved defining how different input types, such as sliders and 

select boxes, would be interpreted and passed to the models. Figure 5.10 displays the view when 

an operation is expanded. It includes all the features such as Rows of stitch, SPI, Seam Length 

and Seam Thickness that were considered when the artificial neural network models were 

trained. The users need to carefully input the values for those features using this interface 

(Figure 5.10). 

 

Figure 5.10 Expanded Operation - User Input Interface 

Once the user inputs were processed, the application made predictions using the loaded machine 

learning models. For each operation and thread type (TKT 120 and TKT 160), the respective 

model was employed to predict thread wastage and the consumption based on the provided 
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parameters. The results of the model predictions were then displayed back to the users through 

the Streamlit interface. This included presenting the predicted values for thread consumption 

and any other relevant information, allowing users to gain insights into the outcomes based on 

their inputs. 

During the development process, emphasis was placed on creating an intuitive and user-friendly 

interface. The layout was refined, and features were added based on feedback and usability 

testing. The goal was to ensure that users, regardless of their technical background, could easily 

interact with the application and comprehend the predictions generated by the machine learning 

models. 

5.5 Chapter Summary 

This chapter entailed training multiple models to forecast thread consumption in the apparel 

industry. The results indicate that the artificial neural network (ANN) model exhibited superior 

accuracy compared to other models and effectively addressed the problem of overfitting as 

evidenced by the literature. 

After the best performing model was selected, an interactive user interface was developed for 

the prediction of thread consumption in a garment. The development of the user interface for 

this research using Streamlit provided a seamless platform for users to engage with and benefit 

from the machine learning models. The application succeeded in delivering an accessible and 

interactive experience, enabling users to make informed decisions based on the predictions 

generated by the TKT 120 and TKT 160 models. 
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CHAPTER 6 

DISCUSSION, FUTURE WORK AND CONCLUSION  

6.1 Discussion 

The garment manufacturing industry is currently facing intensified competition, compelling 

organizations to prioritize cost control throughout the production process. A significant concern 

within this context is the accumulation of leftover stock, especially sewing thread, leading to 

increased write-off expenses. The increased inventory costs associated with storing and 

managing leftover thread stock pose financial challenges to the organization. The additional 

costs incurred for handling, storage, and transport directly affect profitability. Moreover, the 

organization's sustainability goals are at risk, as the disposal of leftover thread stock contributes 

to environmental concerns, including waste generation, pollution, and an elevated carbon 

footprint. Addressing these challenges is crucial for achieving efficient cost control and aligning 

with sustainability objectives.  

The research narrows its focus to predict sewing thread consumption accurately, particularly in 

underwear fullbrief styles. By concentrating on a specific product category and stitch types, the 

study aims to comprehensively analyze the complexities associated with thread consumption 

prediction. The decision to focus on underwear fullbrief styles is strategic, considering their 

high production volume and relatively simpler construction. This allows for a detailed 

examination of factors influencing thread consumption within a specific and manageable scope. 

To enhance the accuracy in predicting thread consumption, the research employs statistical and 

machine learning techniques. Recognizing the multifactorial nature of thread utilization, the 

study considers variables such as garment style, fabric/seam thickness, stitch length, stitch 

density/SPI and seam type. The application of regression analysis and various machine learning 

models aimed to capture intricate patterns and trends in thread consumption, leading to more 

precise predictions.  

Data required for the analysis were then collected and pre-processed to carry out a exploratory 

data analysis during which insightful findings were obtained. The hypothesis testing conducted 

focusing on whether the estimates for thread consumption, particularly for thread types TKT 

120 and TKT 160 obtained from the product development team were overestimated, revealed 

that there is a statistically significant difference between estimated and actual thread 

consumptions for both thread types. The estimates were higher than the actual values which 

further emphasized the importance of an accurate thread consumption estimated method. The 
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buffer wastage inbuilt from the Product Development team appeared significantly higher than 

the actually measured wastages for TKT 120 and TKT 160, requiring a better approach in 

predicting the buffer wastages to be added to the consumption. 

The explarotory data analysis of thread consumption data provided a solid foundation for the 

development of the predictive models considered in this study as the findings highlighted key 

operational parameters that significantly influence thread usage. As evidenced by the literature, 

the factors such SPI, Seam/fabric thickness, wastage and stictch type were identified as critical 

for the prediction of thread consumption from the findings of the explarotory data analysis. 

Additionally few more factors such as seam length, operator skill levels and operation type that 

appeared as influencial were considered as input parameters for the prediction models. Though 

seam length, wastages and stitch type were identified as factors affecting the thread 

consumption, none of the research work involved those factors in researches related to machine 

learning and neural network models to predict thread consumption. These have addressed the 

first research question under the Section 1.4 which inquired about the primary factors affecting 

the thread consumption in a garment and fulfilling the first objective under the section 1.3.2. 

Further in the analysis, the focus was shifted from predicting thread consumption based on 

specific stitch types to a more holistic approach. Instead of isolating predictions for individual 

stitch types, an operation wise context was focused. This departure from predicting thread usage 

for isolated stitches to predicting consumption for entire operations provided a more 

comprehensive consumption prediction for a specific product category. 

To address the second research question under Section 1.4 of which statistical and machine 

learning models best suited for predicting thread consumption in a garment,  the study analysed 

the performance of several statistical, machine learning and artificial neural network model 

predictions for the thread consumption. The insights to select the models were gained from the 

existing literature. The choice of the most suitable model depends on the characteristics of the 

dataset, the complexity of the relationships, and the specific requirements of the prediction task. 

It's essential to experiment with multiple models and evaluate their performance to determine 

which one provides the most accurate and reliable predictions for the thread consumptions of 

TKT 120 and TKT 160 in the given garment context. As in the literature review provided, 

different machine learning and neural network models will be trained to assure that the best 

machine learning model is adopted for predicting the actual thread consumption with the 

desired level of accuracy of 95% or above (Jaouadi, et al., 2006; Jaouachi & Khedher, 2013).  
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The exploration of various machine learning models, including Multivariate Linear Regression, 

Ensemble Models (Random Forest, Gradient Boosting, and XGBoost), and Multilayer 

Perceptron (Neural Network), revealed the influence of feature selection on predictive 

performance of both wastage prediction and consumption prediction. Through Multivariate 

Linear Regression, it became evident that separate models for each thread type and meticulous 

feature selection significantly enhanced predictive accuracy. Ensemble methods like Random 

Forest, Gradient Boosting, and XGBoost showcased significant responses to feature selection, 

with XGBoost emerging as the most adept yet susceptible to overfitting. The Multilayer 

Perceptron (Neural Network) model exhibited similar challenges but demonstrated remarkable 

improvement post-modification and feature selection, mitigating concerns of overfitting and 

enhancing overall predictive capability. These findings underscore the critical role of feature 

selection in refining model accuracy and generalization, addressing the third research question 

of how the choice of features influence the performance of machine learning models in 

predicting thread consumption. 

In-lining with the first part of the forth reseach question of what metrics are most appropriate 

for evaluating the accuracy of machine learning models in predicting thread consumption,   

RMSE, MAE, MAPE and R-squared matrics enlightened by the existing literature, were used 

in the study to evaluate the performance of the models. The evaluation matrics were obtained 

for both the training and test data sets comprehensive assessment. While training set evaluation 

gauges the model's ability to learn from data, the test set evaluation assesses its capacity to 

generalize and make accurate predictions on new, unseen data. This practice helped to identify 

potential issues such as overfitting or underfitting, guided the selection of well-performing 

models, aided in hyperparameter tuning, and ensured the model's reliability across diverse 

scenarios, contributing to its overall effectiveness in real-world applications. In every model 

assessed, the R-squared metric consistently hovered around 99%, indicating its ineffectiveness 

for distinguishing between the models. 

Multivariate Linear Regression 

The initial attempt involved Multivariate Linear Regression, an extension of the simple linear 

regression model capable of handling multiple dependent variables. Feature selection was also 

carried out, but its impact on model performance was minimal as indicated by the insignificant 

variations in RMSE, MAE and MAPE values.  
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Ensemble Models 

The exploration then extended to ensemble models, starting with Random Forest. While 

initially promising, there were signs of overfitting, emphasizing the need for careful 

consideration of generalization. Gradient Boosting and XGBoost were also employed, with 

XGBoost exhibiting the lowest error values but still showing signs of potential overfitting. 

Multilayer Perceptron (Neral Network) Models 

The application of Multilayer Perceptron (Neural Network) models for both wastage and total 

consumption prediction with one hidden layer outperformed the earlier models, multivariate 

linear regression and ensemble models. Moreover introducing an additional hidden layer and 

feature selection significantly improved the model's performance, reducing error values and 

providing valuable insights. The use of the 'Early Stopping' technique was also implemented to 

mitigate overfitting and showcase its effectiveness in enhancing model generalization.  

The comparative analysis which was done to compare various prediction methods that have 

been emphasized in the literature, against the predictability of the proposed ANN model is 

shown in the Table 6.1. The Mean Absolute Percent Error (MAPE) is used to assess the 

prediction accuracy. As per the Table 6.1, geometrical models and regression models generally 

have higher MAPE values whereas artificial neural network models have lower MAPE values. 

This indicates that ANN models perform better in predicting thread consumptions. Moreover 

the lower MAPE values of the proposed ANN model exhibit enhaced performance out of the 

ANN models developed thus far. 

Table 6.1 Comparison of different techniques of thread consumption prediction 

  Geometrical 

Models 

Regression 

Models 

Artificial Neural Network Models 

Matric M1 M2  M3  M4  M5  M6  M7 M8 Proposed Model  

TKT 120 TKT 160 

Train  Test Train  Test 

MAPE % 13.1 13.5 19.7 4.27 27.4 7.0 1.96 2.1 1.12 1.21 1.76 1.99 

Notes: M1 - Model by (Ghosh & Chavhan, 2014), M2 - Model by (Jaouadi, et al., 2006), M3 - 

Model by (Chavan, et al., 2019), M4 - Model by (Jaouadi, et al., 2006), M5 - Model by 

(Abeysooriya & Wickramasinghe, 2014), M6 - Model by (Chavhan, et al., 2021), M7 – Model 

by (Jaouadi, et al., 2006) and M8 - Model by (Chavhan, et al., 2021) 
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The study demonstrated the effectiveness of machine learning models in predicting thread 

consumptions, with the artificial neural network models showing superior accuracy as 

evidenced by the existing literature as well. This answers the second half of the fourth research 

question, which asks whether some machine learning models outperform others at predicting 

thread consumption. However, ongoing efforts are needed to address overfitting issues and 

enhance the generalization of these models in real-world garment industry applications. Future 

work should focus on refining model architectures, exploring additional features, and 

incorporating advanced regularization techniques to achieve more robust and reliable 

predictions. 

The development of the user interface process focused on refining the interface layout, 

incorporating feedback, and ensuring a seamless experience for users. The user interface 

became a crucial tool for users to make informed decisions based on the predictions generated 

by the machine learning models. The application provided a platform for accurate thread 

consumption predictions, contributing to reduced write-off expenses, minimized inventory 

costs, and improved environmental sustainability. 

6.2 Limitations 

There are some limitations that should be taken into account when conducting this study. They 

are as follows. 

I. Time constraint: This study is severely constrained by the 8 months time frame which 

restricts the amount of data that can be collected and examined. Due to the limited time, 

it may not be possible to gather a sufficient dataset to account for all possible variations 

in thread usage, which could have an influence on the accuracy and reliability of the 

model.  

II. Data limitations: The accuracy and reliability of the prediction model will be affected 

by the volume and the quality of the data collected. The thread consumption worksheet 

is done considering only one size among different sizes ranging from S, M, L, XL, and 

2XL. One base size is selected taking the size-wise quantities into account and the 

parameters for the relevant size of the particular style are measured, to avoid higher time 

consumption and workload involved in providing the thread consumption style-wise 

and size-wise. However, this would result in an overestimation of thread consumption 

for the sizes that are smaller than the base size and an underestimation for the sizes that 

are larger than the base size. To overcome this issue, a buffer wastage is added 
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considering the order quantities and size ratios and balances the thread consumption 

between sizes of the same style. This may result in an impact on the accuracy and 

reliability of the model. 

III. Model limitations: The use of the proper features and algorithms will determine how 

well the prediction models function. Certain factors that affect sewing thread 

consumption could be difficult to measure or identify which could reduce the model’s 

predictive power. For example tension of a thread is a significant factor that affects 

thread consumption but due to the unavailability of tension gauges in the factories, 

tension cannot be measured. Thus tension parameter is excluded from this study. 

6.3 Suggestions For Future Work 

First and foremost, addressing the limitations associated with data quality and volume is 

paramount. Enhancing the dataset by incorporating a broader array of sizes, styles, and product 

types can significantly bolster the accuracy and reliability of the prediction model. By 

considering size-wise and style-wise variations, the predictive model can offer more granular 

insights into the intricacies of different product configurations. 

Additionally, the method for calculating wastage percentages needs refinement to better 

account for size variations. Developing a sophisticated algorithm that incorporates order 

quantities, size ratios, and other pertinent factors can contribute to a more accurate 

representation of thread consumption across varying sizes. 

Further, it can be expanded beyond predictive models and delve into the development of thread 

optimization algorithms or models. While the current study has successfully tackled the 

challenge of predicting thread consumption, the next frontier lies in crafting algorithms that not 

only anticipate but also optimize the utilization of thread across different manufacturing 

products. 

6.4 Conclusion 

The main objective of this research was focused on predicting sewing thread consumption for 

two thread types, TKT 120 and TKT 160, across various sewing operations. In order to achieve 

this, the study meticulously addressed data preparation and preprocessing steps such as data 

cleaning, handling missing values, and data transformation and feature engineering. 
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The subsequent exploratory data analysis delved into the distribution and characteristics of the 

data. Hypothesis testing revealed that estimated thread consumption values were significantly 

greater than actual values, suggesting potential overestimation. Visualizations and statistical 

analyses, including scatter plots and regression, provided insights into the relationships between 

thread consumption, wastage percentages, stitches per inch (SPI), seam length, and seam 

thickness, unraveled insights to achieve the first sub objective of analyzing the key factors 

affecting thread consumption in a garment. 

Second and third objectives of the study were successfully accomplished by employing machine 

learning techniques for prediction and evaluating their performance. The Multivariate Linear 

Regression model initially showed challenges, leading to model modifications and feature 

selection. Ensemble models such as Random Forest, Gradient Boosting, and XGBoost were 

introduced, each demonstrating varying degrees of accuracy and potential overfitting. Hence 

Multilayer Perceptron (Neural Network) appeared to be the best model for predicting thread 

consumptions as stated in the literature.  

In summary, the research provides a comprehensive understanding of the complexities involved 

in predicting sewing thread consumption, incorporating meticulous data preparation, 

exploratory data analysis, and advanced analytics with machine learning techniques. The 

findings contribute valuable insights for industry practitioners aiming to optimize thread usage 

in garment manufacturing processes.  



 
 

I 
 

LIST OF REFERENCES 

 

Ukponmwan, J. O., Mukhopadhyay, A. & Chatterjee, K. N., 2000. Sewing Threads. Textile 

Progress, 30(3), p. 91. 

Abeysooriya, R. P. & Wickramasinghe, G. L. D., 2014. Regression model to predict thread 

consumption incorporating thread-tension constraint: study on lock-stitch 301 and chain-stitch 

401.. Fashion and Textiles , Volume 1, pp. 1-8. 

Abher, R. et al., 2014. Geometrical model to calculate the consumption of sewing thread for 

301 Lockstitch.. The Journal of the Textile , Volume 105, pp. 1259-1264. 

Abhishek, K., 2022. Introduction to artificial intelligence. [Online]  

Available at: https://www.red-gate.com/simple-talk/development/data-science-

development/introduction-to-artificial-intelligence/ 

[Accessed 25 12 2023]. 

Amaan Group, 2010. Determining your sewing thread requirements. s.l.:Amann Group. 

American & Efrid Inc, 2007. Technical bulletin estimating thread consumption.. s.l.:American 

& Efird Inc. 

Barraza, N., Moro, S., Ferreyra, M. & De La Peña, A., 2018. Mutual information and sensitivity 

analysis for feature selection in customer targeting: A comparative study. Journal of 

Information Science, 45(1), pp. 53-67. 

Breiman, L., 2001. Random Forests. Machine Learning, 45(1), p. 5–32. 

Chauhan, R. & Ghosh, S., 2021. Geometric model of lockstitch seam and prediction of thread 

consumption. The Journal of The Textile Institute, Volume 113:2, pp. 314-323. 

Chavan, M. V., Ghosh, S. & Naidu, M. R., 2019. An elliptical model for lockstitch 301 seam 

to estimate thread consumption.. The Journal of the Textile Institute, Volume 110(12), pp. 

1740-1746. 

Chavhan, M. V., Naidu, M. R. & Jamakhandi , H., 2021. Artificial neural network and 

regression models for prediction of sewing thread consumption for multilayered fabric 

assembly at lockstitch 301 seam. Research Journal of Textile and Apparel, 26(4), pp. 343-358. 



II 
 

Coats Digital, 2023. Coats SeamWorks. [Online]  

Available at: https://www.coats.com/en/solutions/coats-seamworks 

[Accessed 10 08 2023]. 

Copeland, B. J., 2023. Artificial intelligence | Definition, Examples, Types, Applications, 

Companies, & Facts.. [Online]  

Available at: https://www.britannica.com/technology/artificial-intelligence 

[Accessed 15 December 2023]. 

DOĞAN, S. & PAMUK, O., 2014. Calculating the amount of sewing thread consumption for 

different types of fabrics and stitch types. TEKSTİL ve KONFEKSİYON, 24(3). 

Emjay International (Pvt) Ltd., 2023. FY 22/23 Book w-off, s.l.: s.n. 

Emjay International and Penguin Sportswear, 2020. Emjay Penguin. [Online]  

Available at: http://www.emjayi.com/ 

[Accessed 02 April 2023]. 

Ghosh, S. & Chavhan, M. V., 2014. A geometrical model of stitch length for lockstitch seam. 

Indian Journal of Fibre and Textile Research,, 39(2), pp. 153-156. 

Jaouachi , B. & Khedher , F., 2015. Evaluation of Sewed Thread Consumption of Jean Trousers 

Using Neural Network and Regression Methods. FIBRES & TEXTILES in Eastern Europe, 

3(111), pp. 91-96. 

Jaouachi , B. & Khedher, F., 2013. Evaluating sewing thread consumption of jean pants using 

fuzzy and regression methods.. The Journal of the Textile Institute, Volume 104, pp. 1065-

1070. 

Jaouachi, B. & Khedher, F., 2022. Assessment of jeans sewing thread consumption by applying 

metaheuristic optimization methods. International Journal of Clothing Science and Technology, 

34(3), pp. 347-366. 

Jaouadi, M., Msahli , S., Babay , A. & Zitouni , B., 2006. Analysis of the modelling 

methodologies for predicting the sewing thread consumption. International Journal of Clothing 

Science and Technology, Volume 18, pp. 7-18. 

Khedher, F. & Jaouachi, B., 2015. Waste factor evaluation using theoretical and experimental 

jean pants consumptions. The Journal of The Textile Institute, 106(4), p. 402–408. 



III 
 

Mariem, B. et al., 2020. A Study of the Consumption of Sewing Threads for Women's 

Underwear: Bras and Panties. AUTEX Research Journal, 20(3), pp. 299-311. 

Natekin, A. & Knoll, A., 2013. Gradient boosting machines, a tutorial. Frontiers in 

Neurorobotics, Volume 7. 

Noriega, L., 2005. Multilayer Perceptron Tutorial. 

Olive, D., 2017. Linear regression. s.l.:Springer. 

Rasheed, A. et al., 2014. Geometrical model to calculate the consumption of sewing thread for 

301 Lockstitch.. The Journal of the Textile Institute, 105(12), pp. 1259-1264. 

Rehman, A. et al., 2021. Geometrical Model to Determine Sewing Thread Consumption for 

Stitch Class 406. FIBRES & TEXTILES in Eastern Europe , 29(6(150)), pp. 72-75. 

Rengasamy, R. S. & Samuel, W. D., 2011. Effect of thread structure on tension peaks during 

lock stitch sewing. AUTEX Research Journal, 11(1), pp. 1-5. 

Sarah, M., Boubaker, J., Faouzi, K. & Adolphe, D., 2020. Sewing thread consumption for 

different lockstitches of class 300 using geometrical and multi-linear regression models.. 

AUTEX Research Journal,, Volume 20, pp. 415-425. 

Sharma , S., Gupta, V. & Midha, V. K., 2017. Predicting Sewing Thread Consumption for 

Chainstitch Using Regression. Journal of Textile Science & Engineering, 7(2), p. 295. 

Vasiliev, V. A., Velmakina, Y. V. & Mayborodin, A. B., 2019. Using artificial neural networks 

when integrating the requirements of standards for management systems in QMS. IOP 

Conference Series: Materials Science and Engineering, 666(1), p. 012058. 

Wikipedia, 2023. Mutual information. [Online]  

Available at: https://en.wikipedia.org/wiki/Mutual_information 

[Accessed 8 December 2023]. 

Yeşilpınar, S. & Alkiraz, F., 2005. Kumaş kalınlığının dikiş iplik giderine etkisinin incelenmesi. 

The Journal of Textiles and Engineer, Volume 12(59-60), pp. 29-34.. 

 

  



IV 
 

APPENDICES 

 

Appendix A : Supported Documents  

 

  

  

  

  

  

A.1 Consent Letter   

  



V 
 

Appendix B: Samples of the Python Code  

B.1 Sample code used to import data  

  

B.2 Sample code used to execute pre-processing steps  
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B.3 Sample code used in Multivariate Linear Regression modelling  
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B.4 Sample code used in Random Forest modelling  

  

B.5 Sample code used in Gradient Boosting modelling  
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B.6 Sample code used in XGBoost modelling  

  

  

B.7 Sample code used in ANN modelling  
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B.8 Sample code used for Evaluation Matrics of Wastage Model  
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B.9 Sample code used for Evaluation Matrics of Consumption Model  
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B.10 Sample code used to create the User Interface  
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Appendix C: Drafted Research Paper  

  

Analyse Factors Affecting Thread Consumption in a Garment and 

Develop a Machine Learning-based Prediction Model  

Abstract  

The garment manufacturing industry faces intensified competition, prompting the need for cost 

control and efficient inventory management. This research addresses the challenges of excess thread 

stock, leading to increased write-off expenses and environmental concerns. Focusing on predicting 

sewing thread consumption in underwear fullbrief styles, the study employs statistical and machine 

learning techniques, considering variables such as garment style, fabric/seam thickness, stitch length, 

stitch density/SPI, seam type, and estimated wastage.  

The development of a user interface using Streamlit integrates machine learning models for two types 

of threads, allowing users to input parameters through an intuitive layout. The user-friendly interface 

facilitates informed decision-making based on predictions of total thread consumption. The 

application contributes to reducing write-off expenses, minimizing inventory costs, and aligning with 

environmental sustainability goals.  

The research highlights the effectiveness of machine learning models, particularly artificial neural 

network models, in predicting thread consumption. Overcoming challenges such as overfitting and 

enhancing generalization, the study emphasizes the need for refining model architectures and 

exploring additional features. The user interface development emerges as a crucial tool for achieving 

efficient cost control and sustainability in the garment manufacturing industry.  

Keywords: Garment Manufacturing, Thread Consumption Prediction, Machine Learning, Artificial 

Neural Network, User Interface, Streamlit, Cost Control.  

1. Introduction  

The garment manufacturing industry faces intensified competition, prompting organizations to 

minimize costs from material procurement to order completion. Raw material expenses significantly 

impact the contribution margin, including actual material usage, waste, and leftover stock. The 

organization subjected to this study, has excess material, termed as write-off stock, which amounts to 

$1,479,457, with fabric and sewing thread being major components. In the financial year 2022/2023, 

the organization’s write-off rate exceeded the company standard of 2%, hitting 4.1%, increasing costs, 

lowering profitability, and accumulating excess inventory.  

This research aims to minimize leftover sewing thread stock, valued at $75,059, through accurate 

thread consumption prediction. The problem identified lies in excessive leftover sewing thread stock 

postproduction, indicating potential overestimation of thread requirements, leading to increased 

inventory costs and environmental impact. The research seeks to address these challenges by 

analysing factors influencing thread consumption and developing an accurate prediction model. 

Enhancing accuracy in thread consumption prediction is vital for optimal resource usage and reducing 

unused stock on the production floor. Thread consumption varies based on garment styles, sizes, 

fabrics, stitch parameters, and seam types. Traditional estimation methods lack precision, prompting 

exploration into machine learning models. By developing a machine learning-based prediction model, 

the aim is to precisely estimate thread quantities, reduce unused stock, and enhance profitability. 

Objectives include analysing key factors affecting thread consumption, applying various machine 
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learning models, evaluating model accuracy, and developing a user-friendly interface for thread 

consumption prediction.  

2. Literature Review  

The literature review explores research initiatives related to the study, focusing on factors influencing 

sewing thread consumption in garment manufacturing and the development of machine learning-

based models.  

Factors affecting thread consumption include garment type, size, design, fabric, stitch length, stitch 

density, and stitch type (Ukponmwan, et al., 2000). These variables impact the amount of thread used, 

with considerations such as heavier fabrics and longer stitch lengths increasing consumption. 

Yeşilpınar and Alkiraz (2005) investigated the impact of fabric thickness on sewing thread 

consumption, revealing a direct correlation between fabric thickness and thread usage. Thicker fabrics 

demand more thread for a durable seam, with fabric thickness identified as the most significant factor 

influencing thread consumption. The type of stitch used also affects consumption, with lockstitch 

consuming the most, followed by chain stitch, three-thread overedge stitch, and four-thread overedge 

stitch (Yeşilpınar & Alkiraz, 2005). Rengasamy and Samuel (2011) highlighted the importance of 

thread tension in garment construction, impacting the quantity of thread used for seams. Incorrect 

thread tension can result in puckered seams, thread breakage, or unravelling, leading to increased 

thread usage. Understanding and managing thread tension are crucial for optimizing thread 

consumption and producing high-quality seams (Rengasamy & Samuel, 2011).  

Researchers have sought alternative prediction methods, including value prediction charts, 

mathematical formulas, thread length ratios, predictive algorithms, learning algorithms, and software 

solutions (Jaouadi, et al., 2006). Garment manufacturers traditionally used graphs, tables, and 

formulas based on assumptions and trial-and-error methods (American & Efrid Inc, 2007; Amaan 

Group, 2010). However, these methods lacked flexibility with varying fabric thickness and stitch 

densities, raising questions about predicted values' accuracy. Consumption ratios, initially limited to 

one stitch density value, were customized for different stitches by thread suppliers, allowing accurate 

calculation of thread usage considering various parameters (American & Efrid Inc, 2007; Amaan 

Group, 2010). Leading thread suppliers now use software packages to enhance accuracy, employing 

formulas and ratios for diverse parameters like stitch lengths, densities, and fabric thicknesses 

(Abeysooriya & Wickramasinghe, 2014). For instance, Coats introduced SEAMWORKS, a software 

calculating sewing thread amount based on parameters like stitch types and color groups, providing a 

detailed result report with the total cost for the used sewing thread (Coats Digital, 2023).  

Researchers have addressed issues with traditional methods like graphs, tables, and formulas by 

proposing mathematical and geometrical models. Some studies have considered the geometric shape 

of stitch types, such as the 301 lockstitch, and developed models with high accuracy, emphasizing 

factors like stitch width, density, and needle distance (Rasheed, et al., 2014).  

Geometric models based on rectangular profiles have been prevalent, but recent advancements include 

models with realistic elliptical profiles, demonstrating lower error rates and better generalization 

across fabric types and densities  (Chauhan & Ghosh, 2021). Regression models incorporating 

factors like thread tension, fabric thickness, and stitch density have been proposed, offering improved 

accuracy and reduction in error percentages for specific stitch types (Abeysooriya & 

Wickramasinghe, 2014).  

Machine learning, neural network models, and metaheuristic optimization models have gained 

prominence. Artificial neural network models, in particular, have shown high reliability in predicting 

thread consumption, achieving an accuracy of at least 95%  (Jaouadi, et al., 2006). Fuzzy theory-
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based models offer flexibility, considering parameters like thread composition, needle size, and fabric 

weight (Jaouachi & Khedher, 2013). Studies comparing analytical models, regression models, and 

artificial neural network models highlight the superior performance of the artificial neural network 

model in estimating thread consumption.  

Additionally, metaheuristic optimization techniques, including particular swarm optimization (PSO), 

ant colony optimization (ACO), and genetic algorithm (GA), have been explored to minimize thread 

consumption (Jaouachi & Khedher, 2022). Results indicate that PSO and ACO methods are more 

precise than experimental methods, showcasing the potential for optimization in thread usage.  

The literature review underscores the evolution from traditional methods to more sophisticated 

models, emphasizing the superior performance of machine learning-based approaches in accurately 

predicting sewing thread consumption. The study aims to contribute to this progress by analysing new 

variables affecting thread consumption and developing a novel initiative using machine learning 

techniques to enhance accuracy in predicting thread consumption in garment manufacturing.  

3. Methodology and Theory  

In particular, the research focuses on predicting thread consumption in the fullbrief styles of 

underwear in size Medium. Fullbrief styles were selected due to their high production volume and 

simpler construction with fewer operations. The study will evaluate three commonly used stitch types 

(301, 406, and 514) for a particular fullbrief style (Figure 3.1), using two different thread types (TKT 

120 and TKT 160). TKT (Ticket) numbers is used to determine the thread's thickness or linear density. 

The TKT number is the number of thousands of yards (or length of thread) needed to weigh one 

pound. In general, thinner or finer threads are indicated by higher TKT values, whereas thicker threads 

are indicated by lower TKT numbers.   

  

Figure 3.1 Different types of Stitches used in the study  

In order to measure and track the amount of wastage for each type of thread used in each operation, a 

cooperative effort was formed with the Business Process (BP) team. Additionally, the study included 

a human component that acknowledged the critical role that machine operators have in determining 

how production processes turn out. Machine Operator (MO) Grading Report, a dedicated database, 

was used to help record operator skill levels in the thread consumption database. The collected data 

were then pre-processed and subjected to feature engineering for further analysis.  

4. Exploratory Data Analysis  

Exploratory data analysis demonstrates how various factors affect the thread consumption of the two 

thread types and how actually measured wastages are substantially lower than the buffer wastage that 

is included into the thread consumption worksheets. Measured wastages for TKT 120 and TKT 160 

thread types throughout a range of operations are compared to the inbuilt buffer wastages, and the 

results show a continuous difference with the inbuilt buffer wastages being larger (Figure 4.1).  



XV 
 

  

Figure 4.1 Buffer Wastage inbuilt by the Product Development vs Measured Wastage    

The stitches per inch (SPI) or the stitch density has an immense influence on how much thread the 

machine operators use. Since more stitches are tightly packed into a certain seam length, a higher SPI 

is linked to higher thread utilization. More thread is required to travel the same distance with more 

stitches, demonstrating the significant impact of SPI on thread consumption (Figure 4.2).  

  

Figure 4.2 Influence of SPI on the thread consumption  

The measurement of the stitched line or connection, known as the seam length, has a major impact on 

how much thread is used. As Figure 4.3 shows, a longer seam length usually necessitates using more 

thread to bind the fabric, increasing the thread consumption. The clusters that are visible in the scatter 

plot (Figure 4.3) that illustrates the correlation between seam length and thread consumption provides 

significant information about the thread that is used at different seam lengths in each of the seven 

different sewing operations. Every cluster comprises a collection of data points that exhibit a 

comparable thread consumption trend with respect to the relevant seam length.  
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Figure 4.3 Influence of Seam Length on the thread consumption  

The amount of thread used during the manufacturing of a garment is greatly influenced by seam 

thickness, which refers to the layers of cloth connected together by a seam. Often, more thread is 

needed to secure stitching on thicker seams, which is a sign of a more intricate sewing process. 

Different seam thicknesses affect tension and stress distribution, which in turn affects general thread 

consumption patterns. The link between seam thickness and thread consumption for TKT 120 and 

TKT 160 is depicted in the correlation matrices in Figure 4.4. Increased thread consumption in a 

variety of activities is correlated positively with higher seam thickness.  

  

Figure 4.4 Correlations between Seam Thickness and thread consumption  

The amount of thread that is expected to be wasted during the production process and contributes to 

the thread that is utilized but not included into the finished product is referred to as waste in thread 

consumption during the garment manufacturing process. Positive relationships are seen in Figure 4.5, 

which indicates that higher thread consumption is correlated with higher wastes.  
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 Figure 4.5 Correlation between Wastage and thread consumption  

  

Thread consumption is mostly dependent on operator skill, which is a measure of sewing personnel's 

competence in the garment manufacturing process. Higher graded skilled operators (A+, A, B) show 

improved machine and operation knowledge, which results in optimal thread usage, decreased waste, 

and efficient sewing (Figure 4.6). The results point to a positive relationship between operator skill 

levels and optimal thread use, with a trend toward higher thread utilization being indicated by lower 

skill grade C.  

  

Figure 4.6 Influence of Operator Skill on the thread consumption  

5. Evaluation Of Different Techniques Of Thread Consumption Prediction  

The research shifted from using specific stitch types to estimate thread consumption to taking a more 

comprehensive approach. The emphasis changed to operation-wise predictions rather than isolated 

estimates for individual stitch types, offering a more thorough outlook on consumption for complete 

operations within a certain product category. Experimentation with multiple models, including 

Multivariate Linear Regression, Ensemble Models (Random Forest, Gradient Boosting, and 

XGBoost), and Multilayer Perceptron (Neural Network), was initiated due to having multiple 

predictions as the output rather than experimenting with single output prediction.  
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5.1 Multivariate Linear Regression  

As an extension of the simple linear regression model, multivariate linear regression is used to jointly 

forecast the thread consumptions for TKT 120 and TKT 160. The model takes into account variables 

such as stitch length, density, seam length, etc. and assumes a linear relationship between various 

independent variables and thread consumptions. Tables 5.1 and 5.2 display the evaluation matrices 

(RMSE, MAE, MAPE, R-squared) for the wastage and consumption models.   

Table 5.1 Evaluation matrices of Linear Regression Models - Wastage Model  

Metrics for  

Wastage  

Model  

Before Feature Selection  (with 

all the variables)  

After Feature Selection  (with 

selected variables)  

TKT 120  TKT 160  TKT 120  TKT 160  

Train  Test  Train  Test  Train  Test  Train  Test  

RMSE  3.99  4.61  9.94  7.89  3.99  4.59  9.94  7.90  

MAE  2.65  2.99  6.96  5.81  2.67  2.97  6.97  5.79  

MAPE  57.97%  61.90%  60.28%  57.43%  58.33%  61.00%  60.28%  57.27%  

R-Squared  0.6175  0.4078  0.5183  0.5648  0.6160  0.4124  0.5174  0.5633  

  
Table 5.2 Evaluation matrices of Linear Regression Models - Consumption Model  

Metrics  for  

Consumption  

Model  

Before Feature Selection  (with 

all the variables)  

After Feature Selection  (with 

selected variables)  
 

TKT 120  TKT 160  TKT 120  TKT 160   

Train  Test  Train  Test  Train  Test  Train  Test  

RMSE  15.61  16.29  29.57  25.42  15.61  16.28  29.55  25.39  

MAE  10.25  9.89  22.74  19.98  10.26  9.89  22.72  19.96  

MAPE  4.79%  4.18%  4.12%  4.07%  4.78%  4.17%  4.12%  4.06%  

R-Squared  0.9951  0.9946  0.9960  0.9966  0.9951  0.9946  0.9960  0.9966  

  

After feature selection, the test dataset's error values dropped slightly, but the model's overall 

performance stayed the same. The MAPE values show a significant difference between the expected 

and actual values, particularly for the wastage model. On the other hand, the consumption model 

shows lower MAPE values, indicating a tighter match between the forecasts and the real observations. 

Figure 5.1 provides a visual representation of the actual vs. predicted values. It shows that TKT 120 

has slightly bigger deviations than TKT 160, especially for high consumption rates.  
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Figure 5.1 Actual vs Predicted values of Linear Regression model  

 

5.2 Ensemble Models  

A thorough summary of the ensemble models' evaluation matrices following feature selection is 

shown in Table 5.3. Based on the investigation, it can be shown that XGBoost performs better on the 

training dataset, as evidenced by its lowest error values. All ensemble models, including Random 

Forest and Gradient Boosting, share a common observation, though, which suggests that overfitting 

may have occurred. The discrepancy between very high error values on the test dataset and low error 

values on the training dataset makes this clear. This emphasizes how crucial it is to carefully evaluate 

model generalization for future applications in order to guarantee reliable performance in real-world 

situations.  

Table 5.3 Consolidated Evaluation matrices of Ensemble model predictions for consumption  
Metrics  Random Forest  Gradient Boosting  XGBoost   

TKT 120  TKT 160  TKT 120  TKT 160  TKT 120  TKT 160  

Train  Test  Train  Test  Train  Test  Train  Test  Train  Test  Train  Test  

RMSE  3.08  7.91  7.27  11.64  5.66  7.29  12.9  13.91  2.21  6.5  5.46  10.12  

MAE  2.01  4.51  4.8  8.13  4.00  4.68  9.16  10.03  1.24  3.91  3.26  6.89  

MAPE%  0.70  1.43  0.68  1.24  1.68  1.65  1.39  1.71  0.54  1.28  0.52  1.15  

  

5.3 Artificial Neural Network (ANN)  

The Artificial Neural Network (ANN) model with 2 hidden layers underwent feature selection, 

excluding Operator Skill from training. Evaluation matrices were compared pre and post feature 

selection, with results detailed in Tables 5.4 and 5.5.  

Table 5.4 Evaluation matrices of the ANN Wastage model pre and post feature selection  

Metrics for  

Wastage  

Model  

With 2 hidden layers  

After Feature Selection  (with 

selected variables)  

TKT 120  TKT 160  TKT 120  TKT 160  

Train  Test  Train  Test  Train  Test  Train  Test  

RMSE  2.23  4.61  5.77  7.96  1.95  2.98  3.89  4.79  

MAE  2.33  2.98  6.27  5.86  1.23  2.64  3.44  4.56  

MAPE  53.89%  58.36%  61.14%  58.17%  52.39%  57.71%  59.65%  59.95%  

R-Squared  0.9995  0.9996  0.9989  0.9998  0.9995  0.9996  0.9989  0.9998  

  

Table 5.5 Evaluation matrices of the ANN Consumption model pre and post feature selection  

Metrics  for  

Consumption  

Model  

With 2 hidden layers  

After Feature Selection  (with 

selected variables)  

TKT 120  TKT 160  TKT 120  TKT 160  

Train  Test  Train  Test  Train  Test  Train  Test  

RMSE  1.98  3.04  4.19  5.69  1.56  2.67  3.41  4.37  
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MAE  1.16  3.22  3.08  4.75  1.08  2.98  2.82  3.95  

MAPE  1.15%  1.33%  1.99%  2.06%  1.12%  1.21%  1.76%  1.99%  

R-Squared  0.9995  0.9996  0.9989  0.9998  0.9995  0.9998  0.9999  0.9997  

  

With a smaller MAPE range of 50%–60%, feature selection significantly decreased error values for 

the Wastage Model (Table 5.4). A high R-Squared value indicates a well-fitting model. Similar post-

feature selection improvements were shown by the Consumption Model (Table 5.5), which 

demonstrated lower error values and improved performance. Figure 5.2 displays similar results, with 

the predicted values being much closer to the actual values for both thread types TKT 120 and TKT 

160.  

  

Figure 5.2 Actual vs Predicted values of ANN model  

During ANN model training, the 'Early Stopping' approach was used to reduce overfitting nature. The 

outcomes demonstrated the ANN model's improved performance, outperforming other evaluated 

models in terms of predicting thread consumptions for two thread types in a single operation, taking 

buffer waste into account. This design offers a novel use of ANN models for thread consumption 

prediction, offering insightful information for streamlining processes in the apparel sector.  

A comparison of different thread consumption prediction techniques designed by several researchers, 

against the proposed Artificial Neural Network (ANN) model is presented in Table 5.6. When MAPE 

is employed for evaluation, it becomes apparent that, while ANN models including the suggested 

model show lower MAPE values, geometrical and regression models typically have larger MAPE 

values. The table 5.6 further illustrates the reduced MAPE values, indicating that, the proposed ANN 

model performs better than other models in predicting thread consumptions for both TKT 120 and 

TKT 160.  

Table 5.6 Comparison of different techniques of thread consumption prediction  

   Geometrical 

Models  

Regression 

Models  

Artificial Neural Network Models  

Matric  M1  M2   M3   M4   M5   M6   M7  M8  Proposed Model   

TKT 120  TKT 160  

Train   Test  Train   Test  

MAPE %  13.1  13.5  19.7  4.27  27.4  7.0  1.96  2.1  1.12  1.21  1.76  1.99  
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Notes: M1 - Model by (Ghosh & Chavhan, 2014), M2 - Model by (Jaouadi, et al., 2006), M3 - 

Model by (Chavan, et al., 2019), M4 - Model by (Jaouadi, et al., 2006), M5 - Model by 

(Abeysooriya & Wickramasinghe, 2014), M6 - Model by (Chavhan, et al., 2021), M7 – Model 

by (Jaouadi, et al., 2006) and M8 - Model by (Chavhan, et al., 2021)  

 

6. Development Of A User Interface  

Streamlit, a Python web application development tool, was used to create an interactive platform as 

the main focus of the study's user interface development. In particular, the proposed ANN models of 

the TKT 120 and TKT 160 thread types to be integrated together with the development environment 

setup and necessary libraries. These models were imported into the application using TensorFlow and 

Keras to create predictions based on user inputs received through interactive forms in the Streamlit 

interface. Figure 6.1 is a prototype of the user interface.  

 

Figure 6.1 Proposed Interface for predicting thread consumption  

Developing an intuitive and user-friendly interface was given top priority during the development 

process, and features were added and the layout was improved in response to user feedback and 

usability testing. Regardless of their level of technical expertise, users should be able to readily engage 

with the application and comprehend the predictions made by the machine learning models.  
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7. Conclusion  

The aim of this study was to forecast the amount of sewing thread used in various sewing operations, 

with a specific focus on the thread types TKT 120 and TKT 160. The study meticulously worked 

through several critical phases of data preparation, such as feature engineering, cleaning, and 

addressing missing values, providing a strong basis for further studies. Important findings emerged 

from the exploratory data analysis, which suggested that estimated buffer wastages may have been 

overestimated in comparison to real wastage values. The study effectively handled its first objective, 

which was to determine the factors impacting thread consumption, including buffer wastage, stitches 

per inch (SPI), seam length, seam thickness and operator skill through the use of visualizations and 

statistical analyses  

The proposed ANN models were found to be more accurate in prediction as compared to other 

techniques.  The ANN network of thread type TKT120 shows mean absolute percentage errors 1.12%  

and 1.21% for training and testing whereas the ANN model of thread type TKT160 shows slightly 

higher mean absolute percentage errors 1.76% and 1.99% for training and testing. Other than the 

accuracy in prediction the proposed models are generalized, since the early stopping technique was 

implemented to mitigate overfitting nature of the model. For a specific apparel industry based on the 

varieties of fabric types and multiple thread types used, the ANN can be designed and trained 

accordingly.  

Additionally, with ongoing training and historical data from a larger number of data samples, 

predictability can be raised to a maximum degree. Although the existing Artificial Neural Network 

(ANN) models show remarkable accuracy in anticipating thread consumption, further improvements 

can be made. The current models only consider thickness among fabric properties, relying on 

fundamental stitching settings and basic fabric properties. But other fabric characteristics, such as 

compression and shear, as well as the tension of the thread, might affect seam deformation and, in 

turn, thread consumption. These variables can be added to the models to help them better reflect the 

nuances of the sewing process. The desired enhancement entails going beyond simple prediction and 

toward optimization. This means designing models that predict thread consumption as well as seek to 

maximize thread utilization across a range of manufacturing products. Such advances would 

contribute for improving the estimation of thread consumption for a particular style, facilitating 

inventory management by reducing the amount of leftover stock and reducing significant costs to the 

organizations.  
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