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ABSTRACT 
 

Detecting agricultural diseases, such as paddy brown leaf spot (BLS) and bacterial leaf blight 

(BLB), poses significant global challenges to crop management and food security. Leveraging 

the advancements in image processing and artificial intelligence, this research investigates the 

application of human-centred artificial intelligence (AI) techniques for interpretable disease 

detection in paddy fields. This study addresses the critical need for transparent and 

understandable AI models by integrating human-centred design principles with state-of-the-

art explainable AI (XAI) techniques. Through a comprehensive literature review, we explore 

the landscape of image processing algorithms, disease characteristics, and XAI 

methodologies, laying the groundwork for our research. 

The methodology section outlines an evaluation of the two trained models through XAI 

models tailored for object detection. Emphasis is placed on the ethical considerations and 

human-centric design choices guiding the implementation process. Theoretical frameworks 

elucidate the foundations of image processing algorithms, machine learning models, and 

human-centred design principles, providing a holistic understanding of the research context. 

Implementation details delve into dataset descriptions, XAI model configurations, and 

training procedures. The results and analysis section evaluates the performance and 

interpretability of the XAI models, incorporating user feedback and perception analysis to 

assess the system's usability. Case studies showcase the real-world application of the XAI 

system, including agricultural settings, and highlight its impact on disease detection and 

farming practices. Future directions outline potential enhancements and ethical considerations 

for further research and implementation. 

The Human Centred explainable AI (HCXAI) approach involves iterative analysis, including 

"why not" and "what if" questions, to refine the model. Insights from the first iteration 

highlight key findings, challenges, and opportunities, leading to actionable recommendations 

for improving model performance, data quality, interpretability, fairness, and robustness. 

These enhancements, prioritised based on potential impact and feasibility, are aligned with 

stakeholder objectives and resource constraints. Clear goals and performance metrics for 

subsequent iterations are established to measure success. This iterative, human-centred 

approach ensures responsible use of technology, promoting ethical, safe, and mindful 

engagement, ultimately leading to improved performance, transparency, and trustworthiness 

in the AI system's deployment and operation. 
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In conclusion, this research contributes to advancing interpretable AI in agriculture, bridging 

the gap between technological innovation and human-centred design principles. By 

empowering stakeholders with transparent and understandable AI models, we aim to 

revolutionise disease management practices and foster sustainable agricultural development. 
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Chapter 1. INTRODUCTION 

In the realm of modern agriculture, ensuring the health and vitality of crops is paramount to 

safeguarding food security and sustaining agricultural economies (Hu and Hillary, 2023). Two 

significant threats to paddy crops, namely brown leaf spot and bacterial leaf blight, have 

posed formidable challenges to farmers and researchers alike. These diseases can rapidly 

spread and devastate fields, resulting in significant yield losses (Deng et al., 2021). As a 

result, for efficient disease management and crop protection, proper and timely detection of 

these diseases is essential. 

Conventional approaches to disease identification in paddy fields frequently depend on 

labour-intensive, time-consuming, and susceptible to human error manual examination. The 

convergence of image processing and AI has recently opened up new possibilities for 

revolutionising how we detect and manage crop diseases (Rawat et al., 2023). This 

intersection of technologies allows us to harness the power of machine learning and computer 

vision to provide rapid, accurate, and scalable solutions for identifying paddy brown leaf spot 

and bacterial leaf blight. 

This introductory chapter serves as a gateway to understanding the transformative potential of 

image processing through human-centred artificial intelligence in addressing these 

agricultural challenges (Holzinger et al., 2022). It lays the foundation for comprehensively 

exploring the methods, tools, and applications discussed throughout this work. 

The problem is defined as the interpretability of detecting Paddy Brown Leaf Spot and 

Bacterial Leaf Blight diseases. 

Paddy brown leaf spot (BLS) and bacterial leaf blight (BLB) are two distinct yet equally 

devastating diseases that afflict paddy crops (Oryza sativa). 

Paddy Brown Leaf Spot (BLS): BLS primarily occurs in the fungus Bipolaris oryzae and is 

distinguished by the formation of minute, brown lesions on the rice plant's leaves. These 

lesions can coalesce and cover large portions of the leaf surface, resulting in decreased crop 

output, stunted growth, and reduced photosynthesis. Early detection of BLS is essential to 

implement timely disease management strategies, such as fungicide application or crop 

rotation, to mitigate its impact. 
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Bacterial Leaf Blight (BLB): BLB, on the other hand, occurs by the bacterium Xanthomonas 

oryzae pv. oryzae is known for its rapid spread and destruction of paddy leaves. Infected 

leaves exhibit water-soaked lesions that turn yellow and eventually wither, severely affecting 

the plant's ability to photosynthesise and produce grains. Effective management of BLB relies 

on early detection and resistant crop varieties. 

The dual challenge of timely detection and differentiation of these diseases in the vast 

expanses of paddy fields calls for innovative solutions that combine the strengths of image 

processing and human-centred artificial intelligence. By harnessing the interpretability of 

these technologies, we can empower farmers with accessible tools for early diagnosis and 

informed decision-making, ultimately safeguarding crop health and ensuring food security. 

This study embarks on a journey to explore the integration of image processing techniques 

and AI-driven interpretability in the context of paddy disease detection. In the following 

chapters, we will delve into the intricacies of image acquisition, feature extraction, machine 

learning algorithms, and user-centric interfaces, all working harmoniously to provide farmers 

and agricultural stakeholders with practical solutions to combat paddy brown leaf spot and 

bacterial leaf blight. Through this exploration, we aim to not only define the problem but also 

present a pathway toward its solution, one that is both innovative and human-centred. 

 

1.1. Motivation 

The motivation for conducting this research on "The Detection of Paddy Brown Leaf Spot and 

Bacterial Leaf Blight Through the Interpretability of Image Processing via Human-centred 

Artificial Intelligence" is rooted in the pressing need to address critical challenges in modern 

agriculture, enhance food security, and empower farming communities. 

Agriculture is the lifeblood of societies worldwide, providing sustenance, livelihoods, and 

economic stability. However, this vital sector faces increasingly complex challenges, 

including climate change, diminishing resources, and the relentless onslaught of crop 

diseases. Among these challenges, the threat posed by paddy brown leaf spot (BLS) and 

bacterial leaf blight (BLB) is a substantial impediment to agricultural sustainability and food 

production. 

Agricultural Sustainability: Sustainable agriculture maximises yield, minimises inputs such 

as pesticides and fertilisers, reduces environmental impact, and promotes biodiversity. The 

overreliance on traditional disease detection methods in paddy fields, often involving 
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indiscriminate pesticide use, threatens agriculture's ecological balance and long-term viability. 

Our study promotes sustainable practices by enabling precise, targeted disease management. 

Food Security: With the global population on the rise, ensuring food security is paramount. 

Crop diseases like BLS and BLB can lead to significant yield losses, exacerbating food 

shortages and affecting the livelihoods of millions of farmers. Our research aims to contribute 

to food security by providing a tool for early disease detection, which is fundamental to crop 

protection and yield optimisation. 

Empowering Farmers: Smallholder farmers, who make up a considerable proportion of the 

global farming community, frequently encounter barriers to obtaining sophisticated 

agricultural technologies. We intend to bridge this technology gap by developing human-

centred artificial intelligence solutions. Empowering farmers with accessible tools for disease 

detection allows them to make informed decisions, reduce losses, and enhance their economic 

well-being. 

Interdisciplinary Innovation: Integrating image processing and artificial intelligence in 

agriculture represents a promising intersection of disciplines. Our motivation is driven by a 

passion for innovation that leverages cutting-edge technologies to address real-world 

challenges, bringing together computer science, agriculture, and human-centred design. 

Interpretability and Trust: As AI systems become increasingly integral to decision-making, 

it is essential to ensure they are interpretable and transparent. By focusing on the 

interpretability of AI models in the context of disease detection, we aim to build trust among 

users and stakeholders, making the technology more accessible and user-friendly. 

 

In summary, this study is motivated by the urgent need to address the challenges posed by 

paddy brown leaf spot and bacterial leaf blight in agriculture. We aim to contribute to 

sustainable agriculture, enhance food security, empower farmers, foster interdisciplinary 

innovation, and promote transparent, user-centric technology by harnessing the potential of 

image processing and human-centred artificial intelligence. This research endeavours to 

catalyse positive change in the agricultural landscape, ultimately benefiting communities 

worldwide. 

 

1.2. Statement of the problem 

The paddy farming community faces a critical challenge in the timely and accurate detection 

of paddy brown leaf spot (BLS) and bacterial leaf blight (BLB), two devastating diseases that 

threaten crop health, food security, and the livelihoods of millions of farmers, necessitating 
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the development of a robust, accessible, reliable, safe, trustworthy and human-centred 

artificial intelligence-driven solution for disease identification and management. 

In addition to the chemical fertiliser challenge and the pandemic, water scarcity, unstable 

ground conditions, and diseases caused by fungi, bacteria, viruses, and nematodes all 

contributed to sluggish paddy crop growth. These diseases are recorded to be likely to occur 

in paddy fields, leading to epidemics and severe crop losses, causing financial and economic 

difficulties. Biological and non-biological factors, such as fungi, bacteria, viruses, and 

nematodes, have become the leading causes of paddy diseases. 

Manual detection of plant diseases is costly and time-consuming, often involving experts on 

large farms. This method has led to a decline in rice production due to poor management. 

Continuous improvement is crucial to reduce pesticide use, save costs, and improve quality 

(Sethy et al., 2020). Accurate early conclusions can help to reduce pesticide usage. 

Sometimes, the disease's appearance on the leaves is similar, so farmers cannot detect the 

correct disease. Usually, the symptoms are manually identified. However, manual detection is 

time-consuming, and the disease will likely not be seen promptly, resulting in delays in 

correct treatments. 

An efficient and effective Rice Leaf Disease Identification System is required to address this 

issue. Regarding crop disease management, the Rice plant disease recognition system 

primarily focuses on precise and timely illness prognoses. Various machine learning and 

image processing techniques (Daniya and Vigneshwari, 2022) are employed to identify and 

categorise rice diseases. 

One may compare the performance and computing requirements to those of conventional 

algorithms. Adopting AI-based methodologies across research, technology, and industry has 

resulted in more substantial evidence-based decision-making in agriculture and other sectors. 

As interest in the ethical dimensions of AI and machine learning has increased, emphasis has 

shifted to assuring the reliability of current and future activities. This emphasis reflects the 

awareness that sustaining trust (Toreini et al., 2020) in AI may be crucial for guaranteeing the 

acceptance and effective adoption of AI-powered services and products. 

The increasing integration of AI and advanced analytics into company operations and the 

subsequent automation of decision-making raises the need for transparency in the decision-

generating processes of these models. Diverse methods that generate explanations and seek to 
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increase user confidence in Deep Neural Network models have been proposed (Pugliese et al., 

2021). Nevertheless, the effect of machine learning-generated illustrations on trusting humans 

for complicated decision-making tasks in industries is not fully known. 

To attain this level of transparency, how might we leverage the efficiencies of AI? 

This is where Explainable AI (XAI) can be of use. In this study, we are attempting to model 

human-centred explainable AI. By placing humans at the core of AI efforts, human-centred 

AI attempts to alleviate fears of existential dangers and increase benefits for users and society. 

Human-centred Artificial Intelligence (HCAI) is an emerging field that aims to develop AI 

systems that enhance and improve human abilities rather than replace them. HCAI attempts to 

preserve human control to ensure that artificial intelligence fulfils our needs while operating 

transparently, giving equitable results, and protecting privacy. Human-centred artificial 

intelligence learns through human input and collaboration, concentrating on algorithms inside 

a broader system focused on humans. Human-centred artificial intelligence is characterised by 

systems that continually improve due to human input and facilitate a successful interaction 

between humans and robots. Human-centred AI surpasses the capabilities of earlier artificial 

intelligence solutions by striving to comprehend human language, emotion, and behaviour 

through the development of machine intelligence. This approach seeks to establish a 

connection between machines and humans. 

Well-designed technologies that provide substantial degrees of human control and computer 

automation will augment human performance rather than supplant them. Human-centred AI 

technologies are more likely to result in Reliable, Safe, and Trustworthy designs. Achieving 

these goals will dramatically improve human performance (Shneiderman, 2020b) while 

supporting human self-efficacy, mastery, creativity, and responsibility. 

In HCAI, model correctness is merely one criterion by which the AI model is evaluated. 

Conversely, other human-centric attributes warrant our attention, including, but not limited to, 

interpretability, engagement, and justice. This research intends to pursue the reliability, 

Safety, and trustworthiness of previous research studies conducted to detect paddy leaves and 

address the gaps by human-centred AI. 

1.3. Research Aims and Objectives 

Human-centred artificial intelligence (HCAI) aims to centre AI development on humans 

rather than technology. Nevertheless, the extent to which current HCAI principles and 
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procedures achieve this objective remains uncertain. An objective is to determine whether 

HCAI places adequate emphasis on people. 

1.1.1 Aim 

The primary aim of this research is to validate the interpretability of a comprehensive 

and effective solution for the early detection and management of paddy brown leaf 

spot (BLS) and bacterial leaf blight (BLB) in rice crops through the integration of 

image processing techniques and human-centred artificial intelligence. 

1.1.2 Objectives 

1. To validate and evaluate the current image acquisition system capable of 

capturing high-quality images of paddy leaves for disease detection. 

2. To validate and evaluate image processing algorithms that can accurately 

identify and differentiate symptoms of BLS and BLB in paddy leaves. 

3. To evaluate trained machine learning models for automated disease 

classification and severity assessment, focusing on interpretability. 

4. To establish confidence in AI systems, transparent rationales for their 

determinations are necessary. Understanding the rationale behind a particular 

decision increases users' propensity to trust AI. 

5. To help identify and mitigate bias in AI models, ensuring that decisions are fair 

and unbiased, especially in critical domains. 

6. Assessing the environmental and economic ramifications of disease detection 

system implementation concerning less pesticide application, increased 

agricultural output, and improved sustainability. 

7. To provide recommendations and guidelines for the widespread adoption of 

this technology in paddy farming communities, considering factors such as 

scalability, affordability, and ease of maintenance. 

By achieving these objectives, this research aims to offer a holistic solution that not 

only addresses the technical challenges of validating the interpretability of disease 

detection but also places a strong emphasis on usability and real-world applicability, 

ultimately benefiting farmers and contributing to the sustainability of paddy 

agriculture. 
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1.2 Scope 

Analysing this research's core functions and goals determines the key factors and non-focused 

areas of primary concern. 

• The proposed model will be based on existing classification algorithms. Therefore, 

existing HCAI models and XAI will be reviewed. 

• Review existing HCAI and XAI techniques. 

• To evaluate the model, object detection by image processing will be used. For that, the 

following boundaries will be taken. 

o The classification task is mainly based on the images of rice paddy leaf diseases 

because the same data set will be used during the evaluation. 

o Only selected rice paddy leaf diseases will be brought into this work. They are 

Bacterial blight and Brown spot. 
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2 LITERATURE REVIEW 

This literature review exhaustively investigates the current corpus of knowledge concerning 

the detection of paddy BLS and BLB via the interpretability of image processing utilising AI 

with a human-centred focus. This approach promises to expedite the identification process 

and empower farmers and agricultural stakeholders, who may have limited technical 

expertise, with accessible disease detection and management tools. 

Within the landscape of human-centred artificial intelligence research, several key themes 

emerge in the context of agriculture, machine learning and interpretability. 

 

2.1 Image Processing for Disease Detection 

Image processing methodologies, including feature extraction and image segmentation, are 

indispensable for the automated detection of disease symptoms on plant leaves. 

 

T. Islam et al. (Islam et al., 2018) have presented a research article on a faster rice disease 

detection technique. According to his study, he has used green pixel masking with Naïve 

Bayes’ classifier. He has identified that this technique can detect bacterial blight and rice 

brown spots with an accuracy of 89% and 90%, respectively. The present study employed the 

Naïve Bayes Classifier, marked by a notable drawback in its reliance on independent 

predictors. In its implicit assumption, Naïve Bayes considers each attribute mutually 

independent. However, it is unlikely that a definite set of independent predictors could be 

determined. 

Mohd Adzhar Abdul Kahar et al. (Kahar et al., 2015) presented a study about an integrated 

method for recognising disease in paddy plant leaves. The research has focused on three 

primary paddy diseases: Bacterial Leaf Blight. He has opted for the neuro-fuzzy expert 

system as the recognition method. The accuracy result for the recognition is 74.21%. 

However, the study elaborates on issues when applying the neuro-fuzzy expert system, such 

as noises and other lighting problems due to external forces. This study’s accuracy rate is too 

low to identify the Bacterial Leaf Blight on paddy leaves. 

Recent developments in automation have immensely improved the identification of paddy 

diseases. Khaing War Htun and Chit Su Htwe (Htun and Htwe, 2018) have presented an 

automated system to classify the four types of paddy diseases, including bacterial leaf blight 

and brown leaf spots. In this study, the researchers proposed Principal Component Analysis 
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(PCA), Colour Grid-centred Moment, GLCM for feature extortion, and SVM for 

classification technologies. The system accuracy was 90% for modified grayscale conversion. 

The author used the Support vector machine (SVM) for classification in this study. Several 

critical SVM algorithm parameters must be appropriately configured to produce optimal 

classification outcomes for a given problem. Therefore, more reviews must be conducted on 

the parameters to achieve the best results. 

Chowdhury Rafeed Rahman et al. (Rahman et al., 2020) illustrate using deep learning 

methodology to identify rice diseases and pests and propose a Convolutional Neural Network. 

This study’s results show that the proposed architecture can achieve the desired accuracy of 

93.3% with a significantly reduced model size. However, deep learning methodology contains 

several layers for classification. Hence, recognising the diseases will likely take longer than 

other diseases. 

Suman and Dhruvakuma (T and T, 2015) have presented a method to classify paddy leaf 

diseases using shape and colour. The research applied appropriate preprocessing techniques 

and a histogram to classify normal and diseased leaves. In the proposed method, the shape and 

colour features of the diseased leaves were extracted, and the combined features of colour and 

shape were used to classify bacterial leaf blight, brown spot, narrow brown spot and rice blast. 

The researcher has used a support vector machine classifier. According to the study’s 

findings, a 70% accuracy is achieved for four diseases. This study’s accuracy rate is too low 

to identify the four diseases. 

Shampa Sengupta et al. (Sengupta and Das, 2017) presented an article on particle Swarm 

optimisation-based incremental classifier design for rice disease prediction. The researchers 

used statistical measures and tests to establish their significance and effectiveness in this 

study. The results show that 84.02% accuracy is achieved for four diseases. The paper uses 

the Particle Swarm optimisation technique and Association Rule Mining concepts to design 

an incremental rule-based classification system that can be modified for better performance 

and accuracy. 

Various methods have been explored, from traditional computer vision approaches to 

advanced deep learning algorithms. In conclusion, image processing for disease detection in 

crops has demonstrated significant potential in improving agricultural practices. Through a 

comprehensive approach that combines advanced image processing techniques and machine 

learning algorithms, studies have provided valuable insights and practical tools for early and 
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accurate disease diagnosis. The implementation of convolutional neural networks (CNNs) for 

feature extraction and classification yielded high accuracy rates, leveraging the network’s 

ability to learn complex patterns directly from the images. Machine learning models, 

particularly CNNs, showed exceptional performance in classifying diseases with high 

precision, recall, and overall accuracy. 

The above studies highlight the transformative impact of combining image processing with 

artificial intelligence in agriculture. By improving disease detection and providing actionable 

insights, this technology holds promise for enhancing crop health management and ensuring 

food security in the face of growing agricultural challenges. 
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2.2 Artificial Intelligence and Machine Learning 

Support vector machines (SVMs), convolutional neural networks (CNNs), and decision trees 

are examples of machine learning models that have demonstrated potential in classifying and 

quantifying disease symptoms. The interpretability of these models is crucial for 

understanding their decisions and ensuring trust among users. 

2.3 Human-centred Design 

The adoption of a human-centred design approach ensures that the tools developed are 

accessible, user-friendly, and aligned with the needs of farmers and local communities. This 

theme explores how technology can be tailored to be intuitive and effective for non-technical 

users. 

The study "Vision, challenges, roles and research issues of Artificial Intelligence in 

Education" by Yanqing Duan et al. states that artificial intelligence (AI) tries to enable 

computers to execute tasks by emulating intelligent human behaviours, such as inference, 

analysis, and decision making. (Duan et al., 2019). 

A detailed examination of the various components of AI Systems reveals that each 

architecture and algorithm has distinct qualities, strengths, and weaknesses: Some architects 

function better with more data, while others do better with less. Some configurations may 

support unlabelled data, while others might not. In addition, various Architectures require 

certain Input Data. At the same time, some approaches can be integrated as ensembles, while 

others cannot. 

Alfred Früh et al. have presented that the technical progress of AI and ML is rapid, and the 

state of the art is constantly evolving. Nonetheless, it is essential to have a comprehensive 

understanding of the present state of the art. Expanding on fundamental terms and elaborating 

on the particulars of this technology enable legal scholars to make credible legal statements 

and progress research in this sector (Früh and Haux, 2022). 

A non-profit public policy organisation based in Washington, DC., the Brookings Institution's 

former presidents, John R. Allen and Darrell M. West, conducted a report in 2018 and 

presented that Artificial intelligence and data analytics are on the verge of changing numerous 

industries worldwide. Significant deployments in banking, national security, health care, 

criminal justice, transportation, and smart cities have already modified decision-making, 

business models, risk mitigation, and system performance. These advancements have 
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significant economic and social benefits. Nevertheless, AI systems development has 

substantial ramifications for civilisation; it affects how policy difficulties are addressed, how 

ethical dilemmas are resolved, how legal realities are dealt with, and how much transparency 

is necessary for AI and data analytics solutions. How judgments are made and integrated into 

organisational procedures is influenced by the decisions made by humans about software 

development. How precisely these operations are carried out must be better comprehended, as 

they will significantly impact the public soon and in the foreseeable future (West and Allen, 

2018). 

Human users must be able to interpret and rely on the results and output generated by 

machine learning algorithms to bridge the gap between AI results and human understanding. 

The term "explainable AI" characterises an AI model, its anticipated impact, and any potential 

biases. 

Plamen P. Angelov at el. Illustrates in their study that artificial intelligence (AI) and machine 

learning (ML) have demonstrated their potential to revolutionise industries, public services, 

and society by achieving or even exceeding human levels of performance in terms of accuracy 

for a variety of problems, including image and speech recognition and language translation. 

However, their most effective deep learning (DL) product in terms of accuracy is frequently 

described as a "black box" and opaque. Indeed, such models contain a vast number of 

parameters that are intended to store the information learnt from training data. Not only are 

there many of these weights, but their connection to the problem's physical context is difficult 

to distinguish. This makes describing such AI extremely difficult for users. Since the 

applications of advanced AI and ML, including DL, are expanding rapidly throughout the 

digital health, legal, transportation, finance, and defence industries, the challenges of 

transparency and explaining ability are becoming increasingly recognised as crucial. 

Figure 1 demonstrates that explaining ability is an ongoing research question for some of the 

most accurate types of ML, such as SVMs, DL, and many other ANNs (Angelov et al., 2021). 

  



13 

 

 

Figure 1 Accuracy versus interpretability for different machine learning models. 

source: https://wires.onlinelibrary.wiley.com/ 

Since the beginning of AI research, scientists have argued that intelligent systems should 

explain AI outcomes, particularly concerning decisions. As a result of the fact that human 

experts establish and develop the knowledge and regulations within expert systems, these are 

straightforward for humans to comprehend and interpret. The decision tree is a standard 

method with an explicable structure (Xu et al., 2019). 

The current output of Deep Neural Networks (DNNs) cannot be explained without 

fundamentally new explanatory methods. This is true regardless of whether one considers the 

neural network, an external descriptive component, or the system's developer. CNN, RNN, 

and LSTM are all DNNs utilising distinct architectures to address problem classes and input 

data. All of them must be regarded as black boxes whose internal inference processes are 

neither visible nor interpretable to humans (Xu et al., 2019). 

The ability of a machine learning model is typically inversely proportional to its prediction 

accuracy; as it increases, explainability decreases. As illustrated in Figure 2, the DARPA 

Explainable AI (XAI) programme presents a visually appealing chart that draws attention to 

these noteworthy phenomena. Among the learning strategies enumerated, decision trees 

exhibit the highest capacity for explanation but the lowest accuracy in predictions. However, 
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regarding predictive ability, deep learning approaches are inferior to all other learning 

techniques; furthermore, they are the least likely to be explicable. (Xu et al., 2019). 

 

Figure 2 Explainability of machine learning models appear inverse to their prediction accuracy 

source: DARPA 

The Defence Advanced Research Projects Agency (DARPA) demonstrates that the explosion 

of Artificial Intelligence (AI) applications has resulted from the phenomenal success of 

machine learning. Continued advancements are expected to generate autonomous systems that 

can independently perceive, learn, decide, and act. However, the current inability of machines 

to explain their decisions and actions to human users hinders the effectiveness of these 

systems (DARPA, n.d.). 

 

Figure 3 The Need for Explainable AI 

source: DARPA 
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Upol Ehsan explains that AI systems' capabilities are vital for holding them accountable, as 

they increasingly impact our lives by driving high-stakes decisions in fields such as healthcare 

and law in the study "Human-Centred Explainable AI " (HCXAI): Beyond Opening the Black 

Box of AI”. Meanwhile the study explains the understanding who interacts with the black box 

of AI is at least as crucial as "opening" it when it comes to Explainable AI (XAI). 

Nevertheless, the discourse on XAI has been predominately centred on the black box, 

resulting in failures to address user needs and a worsening of algorithmic opaqueness. 

Researchers have called for human-centred methods to XAI to solve these concerns (Ehsan et 

al., 2022). 

Emmanuel Adjei Domfeh (Adjei Domfeh et al., 2022) presented a research article exploring 

the concepts of human-centred AI research and considered the various theoretical principles, 

theories, and paradigms. Additionally, the study investigates the multiple advancements and 

prospects in human-centred AI subsequent to conducting a systematic literature review across 

multiple online journal databases. The study screened and classified available literature into 

numerous categories using the PRISMA model. The paper concurs that a balance between 

increasing computer automation and human involvement is necessary. This is especially 

pertinent in the age of chatbots and other AI systems when achieving fair, just, and 

dependable systems. Additionally, the associated literature emphasises many applications that 

centre on AI, focusing on human needs. Among numerous other suggestions for future 

research, we propose that Shneiderman's two-dimensional human-computer autonomy be 

expanded. The study further suggests more commitment and attention to balancing human 

control over current intelligent systems. Ben Shneiderman (Shneiderman, 2020b) has 

illustrated the use of well-designed technologies that offer high levels of human power and 

that high levels of computer automation can increase human performance, leading to broader 

adoption. 

Understanding the circumstances in which complete human or computer control is required 

and designing for high levels of human power and high levels of computer automation to 

improve human performance are both objectives of the Human-Centred Artificial Intelligence 

(HCAI) framework. Prevent the risks associated with overbearing human or computer control. 

HCAI methods are more likely to generate Reliable, Safe, and Trustworthy (RST) designs. 

Accomplishing these objectives will significantly enhance human performance while 

fostering self-efficacy, mastery, originality, and accountability. 



16 

 

A study by Wei Xu et al. (Xu et al., 2019) remarked that while AI has benefited humanity, it 

can also be harmful if not developed properly. To uncover these obstacles, they conducted a 

comprehensive literature research and (Human Centred Interaction) HCI-oriented analysis of 

existing work in constructing AI systems. Their analysis and review shed light on the recent 

developments in AI technology and the challenges that HCI specialists face when attempting 

to implement the human-centred AI (HCAI) methodology for developing AI systems. 

Furthermore, the research identified seven notable obstacles in human interaction with AI 

systems that HCI specialists did not encounter during the development of non-AI computing 

systems. To aid in the execution of the HCAI strategy, the research identified novel HCI 

opportunities associated with distinct HCAI-driven design objectives, which HCI specialists 

could utilise to resolve these emerging challenges. Finally, their assessment of current HCI 

methodologies exposes the constraints related to their use in developing HCAI systems. 

Alternative strategies for overcoming these restrictions have been given in the study to aid 

HCI specialists in efficiently applying the HCAI methodology to developing AI systems. 

Andreas Holzinger et al. (Holzinger et al., 2022) have stated in the study "Digital 

Transformation in Smart Farm and Forest Operations Needs Human-Centred AI: Challenges 

and Future Directions" that ML models frequently respond to even slight perturbations, which 

can have profound implications on their outcomes. Consequently, the use of AI in critical 

human life domains (agriculture, forestry, climate, health, etc.) has increased the need for 

trustworthy AI with two key characteristics: explainability and resilience. Utilising expert 

knowledge is a means of enhancing the robustness of AI. Consequently, human-centred 

artificial intelligence (HCAI) is a blend of "artificial intelligence" and "natural intelligence" 

designed to empower, magnify, and augment human performance as opposed to replacing 

people. For HCAI to attain practical success in agriculture and forestry, this article identifies 

three crucial frontier research topics: 

1. Intelligent information fusion; 

2. Robotics and embodied their evaluation intelligence; 

3. Augmentation, explanation, and verification for trusted decision support. 

 

In the paper "Designing Theory-Driven User-Centric Explainable AI," Danding Wang, Qian 

Yang, Abdul Ashraf, and Brian Lim present a conceptual framework for developing XAI that 

is human-centric and rational, drawing from a comprehensive review of relevant literature 

(Wang et al., 2019). By utilising this paradigm, the research establishes the channels through 
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which prevalent cognitive biases can be mitigated by XAI and the human mental patterns that 

necessitate their development. 

 

Figure 4 Conceptual framework for Reasoned Explanations that describes how human reasoning processes inform XAI 

techniques 

A conceptual framework for Reasoned Explanations that describes how human reasoning 

processes (left) inform XAI techniques (right) (Wang et al., 2019). 

The study done by Wang et al. leads application developers to select XAI techniques 

pathways connecting to human reasoning goals. 

 

The study by Q. Vera Liao and Kush R. Varshney examines recent works in both our field 

and others within human-computer interaction (HCI) that adopt human-centred strategies in 

crafting, assessing, and offering conceptual and methodological resources for XAI. They pose 

the inquiry of how human-centred approaches contribute to XAI, pinpointing three key roles: 

guiding technical decisions based on users' demands for explainability, identifying 

shortcomings in current XAI techniques to inspire novel approaches, and furnishing 

conceptual structures for XAI that align with human needs and preferences (Liao and 

Varshney, 2022). 

Q. Vera Liao and Kush R. Varshney created a mapping tool that links categories of user 

inquiries from the XAI question bank to various XAI methods capable of addressing these 

questions. Each technique is accompanied by a description of its output, presented in the 
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"Explanations" column. XAI methods are selected based on their availability in open-source 

XAI toolkits. 

Question Explanations Example XAI 

techniques 

Global how 

(global 

model-wide) 

Describe the general model logic as feature impact, 

rules or decision trees (sometimes need to explain with a 

surrogate simple model) 

If the user is only interested in a high-level view, 

describe the top features or rules considered. 

ProfWeight, 

Global Feature 

Importance, 

PDP, DT 

Surrogate 

Why Describe how features of the instance, or what key 

features, determine the model’s prediction. 

Or describe rules that the instance fits to guarantee the 

prediction. 

Or show examples with the same predicted outcome to 

justify the model’s prediction. 

LIME, SHAP, 

LOCO, 

Anchors, 

ProtoDash 

Why not 

(a different 

prediction) 

Describe what features of the instance determine the 

current prediction and with what changes the instance 

would get the alternative prediction. 

Or show prototypical examples that had the alternative 

outcome. 

CEM, 

Counterfactuals, 

ProtoDash (on 

alternative 

prediction) 

How to be 

that 

(a different 

prediction) 

Highlight feature(s) that, if changed (increased, 

decreased, absent, or present), could alter the prediction 

to the alternative outcome, often requiring minimum 

effort. 

Or show examples with minimum differences but had 

the alternative outcome. 

CEM, 

Counterfactuals, 

DiCE 

How to still 

be this 

(the current 

prediction) 

Describe features/feature ranges or rules that could 

guarantee the exact prediction. 

Show examples that differ from the particular instance 

but still have the same outcome. 

CEM, Anchors 



19 

 

What if Show how the prediction changes corresponding to the 

inquired change of input. 

PDP, ALE 

Performance Provide performance metrics of the model. 

Show uncertainty information for each prediction. 

Describe the potential strengths and limitations of the 

model. 

Precision, 

Recall, 

Accuracy, F1, 

AUC, 

Uncertainty 

Quantification 

360, FactSheets, 

Model Cards 

Data Document comprehensive information about the 

training data, including the source, provenance, type, 

size, coverage of population, potential biases, etc. 

FactSheets, 

DataSheets 

Output Describe the scope of output or system functions. 

Suggest how the output should be used for downstream 

tasks or user workflow. 

FactSheets, 

Model Cards 

Table 1 Question, Explanations and Example XAI techniques 

 

2.4 Validation and Field Testing 

Rigorous field testing assesses the real-world applicability of disease detection systems. These 

studies consider environmental variability, lighting conditions, and data collection challenges.  

Explanation of the model is incorporated as a critical component of the machine-learning 

pipeline. The option of maintaining a machine learning model as a "black box" has been 

eliminated. The way these models or applications process to yield the results is still a mystery 

to both the developer and the user. Validating these kinds of systems is a challenge. This lack 

of interpretability of AI models and applications makes them hard to trust. 

The following researchers have developed several techniques to mitigate the validation issue. 

2.4.1 Local Interpretable Model-agnostic Explanations (LIME) 

The LIME approach is precisely engineered to furnish human-comprehensible and 

interpretable explanations for the predictions generated by intricate machine learning models, 

regardless of the underlying model architecture. 
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LIME was presented in the paper "Why Should I Trust You?": Explaining the Predictions of 

Any Classifier and aims to explain any black box model by creating such a local 

approximation the complex models are complete black boxes, and the internals are hidden for 

LIME (Ribeiro et al., 2016). So, it's just based on the inputs and outputs of a model it works 

on. Almost any input, such as text, tabular data, images or graphs. Usually, the domain 

experts in a particular field, medicine, have some prior knowledge about the problem. For 

example, sports have a positive impact on overall health. If the lime explanation tells us that 

sports increase the probability of a stroke, there's most likely something wrong in our 

developed model, which helps to build trust, and we can assess whether it makes sense. The 

paper also states that providing explanations improves the acceptance of a predictive 

algorithm for LIME. The only requirement is that the explanations are locally faithful, but 

they might not make sense globally, so we focus on that local area around our prediction. 

Critical characteristics of LIME include: 

• LIME is model-agnostic, meaning it can be applied to any machine learning model 

regardless of its type (e.g., decision trees, support vector machines, neural networks). 

This flexibility allows users to interpret the predictions of even the most complex 

models. 

• LIME focuses on explaining individual predictions at a local level. Instead of 

explaining the entire global behaviour of the model, it approximates the model's 

decision-making process near a specific data point of interest. 

• LIME generates local interpretations by perturbing the features of a given instance and 

sampling from the perturbed data. By creating variations of the input data, LIME aims 

to understand how feature changes impact the model's predictions. 

• LIME constructs interpretable surrogate models (often more straightforward and 

transparent than the original) based on the angry and sampled data. These surrogate 

models approximate the complex model's local decision boundary. 

• LIME assigns weights to the sampled instances based on their proximity to the 

original instance. Instances closer to the original point receive higher weights, 

reflecting their importance in approximating the local decision function. 

• The output of LIME is a set of weighted features, indicating their contribution to the 

prediction for the specific instance. This information is often visualised in ways 

humans can interpret, such as a bar chart or heatmap. 

• LIME is commonly used in various applications, including image classification, 
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natural language processing, and any scenario where the interpretability of individual 

predictions is crucial. It has been applied to improve understanding and trust in 

machine learning models' predictions. 

LIME has proven to be a valuable tool for enhancing the interpretability of complex models in 

real-world applications. It provides users, especially non-experts, with insights into why a 

model made a specific prediction for a given instance, contributing to increased transparency 

and trust in machine learning systems. 

2.4.2 SHapley Additive Explanations (SHAP) 

The paper “A Unified Approach to Interpreting Model Predictions”, authored by Scott 

Lundberg and Su-In Lee (Lundberg and Lee, 2017), presents a unified framework for 

interpreting predictions, SHAP (SHapley Additive exPlanations). 

The SHAP method explains the output of any machine learning model. It derives its name 

from the Shapley values in cooperative game theory and offers a technique for equitably 

allocating the impact of each feature on the prediction. SHAP originated from the desire to 

bring a consistent and fair approach to attributing a model's prediction across its input 

features. 

Critical Characteristics of SHAP: 

• SHAP applies to any machine learning model, including support vector machines, 

decision trees, neural networks, and other algorithms, as it is model-agnostic. 

• SHAP values provide individualised explanations for each prediction, breaking down 

the model's output into the contribution of each feature for a specific instance. 

• SHAP values satisfy consistency and fairness properties, ensuring that the sum of the 

feature contributions equals the difference between the model's prediction for the 

instance and the average prediction for all the cases. 

• SHAP values are based on Shapley values from cooperative game theory. They 

represent the average contribution of a feature across all possible combinations, 

considering all possible orders in which features could be added to the model. 

• SHAP values adhere to the additivity property, meaning the sum of the SHAP values 

for all features equals the difference between the model's prediction for a specific 

instance and the average prediction for all the cases. 
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By employing SHAP, users gain insights into how each feature influences model predictions, 

fostering transparency and aiding the understanding and trustworthiness of complex machine 

learning models. 

2.4.3 Counterfactual explanations and adversarial attacks 

Counterfactual explanations and adversarial attacks are two concepts often discussed in the 

context of machine learning and artificial intelligence. They represent two different aspects of 

model behaviour and security. This approach was presented in the paper “Counterfactual 

Explanations Without Opening the Black Box: Automated Decisions and the GDPR”, 

illustrated by Sandra Wachter, Brent Mittelstadt and Chris Russell (Wachter et al., 2018). In 

this paper, they have introduced the notion of unconditional counterfactual explanations as an 

innovative form of elucidating automated decisions, addressing numerous hurdles 

encountered in existing efforts towards algorithmic interpretability and accountability. 

Counterfactual Explanations 

Counterfactual explanations offer valuable insights into the hypothetical modifications to a 

model's prediction, assuming specific input features remained constant while altering others. 

It answers, "What changes would need to be made to the input for the model's prediction to 

change?". 

Key Points 

• Interpretability: Counterfactual explanations enhance the interpretability of machine 

learning models by showing users what features are critical for a particular prediction. 

• Applications: They are used in various domains, including finance (e.g., loan 

approval), healthcare (e.g., diagnosis), and recommendation systems, to provide 

transparent and actionable explanations for model decisions. 

• Use Cases: For example, in a loan approval scenario, a counterfactual explanation 

could show which features (e.g., income, credit score) would need to change for a 

rejected applicant to be approved. 

Adversarial Attacks 

Definition: Adversarial attacks involve intentionally perturbing input data so that a machine-

learning model makes incorrect predictions. These perturbations are often imperceptible to 

humans but can significantly alter the model's behaviour. 
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Key Points 

• Vulnerability: Adversarial attacks highlight vulnerabilities in machine learning 

models, showing that even state-of-the-art models can be susceptible to manipulation. 

• Security Concerns: They raise security concerns, especially in critical applications 

like autonomous vehicles, where a malicious actor could intentionally deceive the 

model to cause accidents. 

• Defence Mechanisms: Researchers develop defence mechanisms against adversarial 

attacks, such as negative training, input preprocessing, and robust optimisation 

techniques, to enhance model resilience. 

While counterfactual explanations focus on understanding model behaviour and providing 

transparent insights to users, adversarial attacks exploit weaknesses in models to deceive 

them. However, both concepts contribute to the broader understanding of model behaviour 

and security in machine learning and artificial intelligence. 

2.4.4 Layer-Wise Relevance Propagation (LRP) 

LRP is an explanation technique used in eXplainable Artificial Intelligence (XAI) to 

understand the decision-making process of deep neural networks (DNNs). Grégoire 

Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert 

Müller authored the paper titled "Layer-Wise Relevance Propagation: An Overview," wherein 

they provide a brief overview of LRP. They discuss the ease and efficiency of implementing 

propagation rules, the theoretical justification of the propagation procedure as a 'deep Taylor 

decomposition,' strategies for selecting propagation rules to ensure high-quality explanations 

at each layer, and the adaptability of LRP to various machine learning scenarios beyond deep 

neural networks (Montavon et al., 2019). LRP aims to attribute the model's output to its input 

features, providing insights into which features are most relevant for a given prediction. 

Critical Components of Layer-Wise Relevance Propagation 

• LRP defines propagation rules that specify how relevance scores are propagated 

backwards through the network layers. These rules determine how much relevance 

from a neuron in the output layer is attributed to neurons in the preceding layers. 

• Given a prediction made by the neural network, LRP calculates relevance scores for 

each neuron in the network. The relevance scores indicate the individual contributions 

of each neuron towards the ultimate prediction. 
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• LRP redistributes relevance scores from the output layer back to the input layer, 

passing through intermediate layers. This redistribution process provides insights into 

the importance of different features at each network layer. 

• By propagating relevance scores layer by layer, LRP offers layer-wise interpretability, 

allowing users to understand how features at different layers contribute to the model's 

decision. 

Overall, Layer-wise Relevance Propagation is a powerful XAI technique that offers detailed 

insights into the decision-making process of deep neural networks, enabling users to 

understand and trust the predictions made by these complex models. 

2.5 Impact on Agriculture 

Research often investigates the economic, ecological, and social impacts of disease detection 

technology, including the potential reduction in pesticide usage, increased crop yields, and 

enhanced sustainability. 

 

The principal aim of this literature review is to consolidate current understanding, identify 

deficiencies, and furnish an all-encompassing synopsis of the research landscape concerning 

paddy BLS and BLB detection. By examining previous work, we aim to lay the foundation 

for our research and contribute to developing more effective, user-centric, and sustainable 

solutions for disease management in paddy crops.  
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3 METHODOLOGY 

The study will be conducted as Design Science Research (DSR). DSR is used to develop 

foundational knowledge about the design of artefacts such as software, methodologies, 

models, and concepts. Hence, the research will be conducted on DSR principles. 

Design Science Research (DSR) is a methodology that focuses on creating and evaluating 

innovative solutions to real-world problems. The research methodology can be structured as 

follows when applying DSR to developing eXplainable Artificial Intelligence (XAI) to detect 

paddy brown leaf spots and bacterial leaf blight. 

As mentioned in the objectives of this research, the problem is to provide interpretability on 

using HCAI in intelligent agriculture and model to get maximum yield and detect diseases in 

a Human-centric environment. The scope of the agriculture is as follows: research will be 

conducted on two central paddy leaf diseases: Bacterial Blight and Brown Spot. To ensure 

that this knowledge is elaborated understandably, scientific methods are used in the DSR. 

3.1 Overview 

This study defines the problem as the need for accurate and user-friendly disease detection in 

paddy crops. Understand the specific challenges and requirements of farmers, agricultural 

stakeholders, and the agricultural context. 

The literature helps develop theories and uncover research gaps. In addition, it helps DSR 

researchers comprehend the problem space by locating existing literature and flagging 

unexplored areas. Since that research will be conducting a literature evaluation, the literature 

will be shown on Paddy Leaf disease detection methods and their evaluation as Human-

centred Artificial Intelligence.  

If the interviewees are part of the problem's stakeholder group, interviews can be used to 

establish requirements for the solution space with a solid basis in the problem area. So, a few 

interview sessions will be held with the “National Institute of Plantation Management” 

(NIPM) members.  
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3.2 Design and Conceptualization 

Develop a conceptual framework for the Human Centred eXplainable Artificial Intelligence 

(HC-XAI) system, outlining the key components and design principles. Identify the system's 

essential features, such as interpretability, user-friendliness, and real-time disease detection. 

Implementing eXplainable Artificial Intelligence (XAI) in the context of "The Detection of 

Paddy Brown Leaf Spot and Bacterial Leaf Blight" involves combining techniques and 

approaches that prioritise human understanding, interpretability, and user-centred design. 

Below is a methodology for developing XAI systems for this specific application: 

3.2.1 Data Collection and Preprocessing 

Gather a diverse dataset of images of paddy leaves, including those affected by brown leaf 

spot and bacterial leaf blight. Annotate the dataset to label the presence and severity of 

diseases. Preprocess the images, removing noise, enhancing contrast, and standardising 

image sizes. 

3.2.2 Feature Extraction 

Use image processing techniques to extract relevant features from the images. These 

features may include colour, texture, shape, and lesion patterns. Apply strategies such as 

Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and colour 

histograms to capture discriminative characteristics. 

3.2.3 Model Selection 

Choose machine learning or deep learning models suitable for image classification. 

Convolutional Neural Networks (CNNs) are often effective for image analysis tasks. Train 

models to classify images: healthy, brown leaf spot, or bacterial leaf blight. 

Time and resources can be saved, and the three sections mentioned above can be omitted by 

getting a previously developed solution documented in the literature. The study aims to 

validate the interpretability of detecting and managing paddy brown leaf spot (BLS) and 

bacterial leaf blight (BLB) in rice crops by integrating image processing techniques and 

human-centred artificial intelligence. Since then, there hasn’t been system development. The 

study conducted by Junaid Iqbal, Israr Hussain, Ayesha Hakim, and Sami Ullah on "Early 

Detection and Classification of Rice Brown Spot and Bacterial Blight Diseases Using Digital 

Image Processing" the research system aims to detect symptoms of diseases on rice leaves. 

After identifying these disorders, they are initially classified through image processing. The 
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process involves capturing multiple images of both healthy and diseased leaves. Furthermore, 

features are extracted following image preprocessing. Subsequently, the rice leaf images are 

categorised as either beneficial or diseased. When there is an infection, the system accurately 

recognises and classifies it. In the study, classifiers such as Inception V3 and VGG19 were 

employed, with VGG19 demonstrating superior performance, achieving an accuracy of 

97.94% (Iqbal et al., 2023). 

 

 VGG19 InceptionV3 KNN 

Accuracy 97.94% 93.57% 97.23% 

V Accuracy 96.69% 90.43% 65.9% 

 

A YOLOv5 model trained by the study's author will be used for comparison. This study 

achieved 97.6% accuracy in identifying Bacterial Blight and Brown Spot diseases in 

PaddyLeaf. The above models will be mentioned in the study. 

  

Figure 5 Accuracy and the Validation Accuracy of the study 1 
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 YOLO v5 

Accuracy 97.6% 

 

Model 01: Early Detection and Classification of Rice Brown Spot and Bacterial Blight 

Diseases Using Digital Image Processing (Iqbal et al., 2023). 

Model 02: Authors trained the model by YOLO v5. 
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Figure 6 Accuracy of the study 2 
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3.2.4 Interpretability Techniques 

Incorporate XAI methodologies, such as Local Interpretable Model-agnostic Explanations 

(LIME), Shapley Additive Explanations (SHAP), Diverse Counterfactual Explanations 

(DiCE), and Layer-wise Relevance Propagation, to enhance the interpretability of models 

(LRP). Produce saliency maps or heat maps that emphasise the visual portions that impact 

the model's determination most. 

Let’s discuss how each XAI tool performs on the two studies selected.  In explainable 

artificial intelligence (XAI), various techniques have been developed to provide 

interpretable insights into the decision-making processes of machine learning models, 

particularly in image analysis. Methodologies such as Layer-wise Relevance Propagation 

(LRP), Local Interpretable Model-agnostic Explanations (LIME), and Counterfactual 

explanations and adversarial attacks (DiCE) are among those that are designed explicitly 

for image-based explanations. These methods aim to elucidate the contributions of 

different image regions or features to the model's predictions, facilitating a deeper 

understanding of how these models perceive and classify visual information. Through the 

application of these image-specific XAI technologies, stakeholders can gain transparent 

and actionable insights into the functioning of complex neural networks, enhancing trust, 

interpretability, and usability in various image-centric applications ranging from medical 

diagnosis to autonomous driving systems since that study has conducted the validation on 

those three technologies. 
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3.2.5 Local  Interpretable Model-agnostic Explanations (LIME) 

Original image Model 01 Model 02 

   

 
Explaining 

brown_spot = True 

Explaining 

brown_spot = True 

   

 
Explaining 

brown_spot = True 

Explaining 

brown_spot = True 

   

 
Explaining 

brown_spot = True 

Explaining 

brown_spot = True 

Table 2 LIME on Brown spot disease detection 

Observation: Both models can identify brown spot disease, even if the leaf is not a paddy leaf 

(third image). However, both models fail to recognise the leaf category. 

 
brown_spot 

Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE TRUE 

Model 2 TRUE TRUE TRUE 
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Original image Model 01 Model 02 

   

 
Explaining 

bacterial_leaf_blight = True 

Explaining 

bacterial_leaf_blight = True 

   

 
Explaining 

bacterial_leaf_blight = True 

Explaining 

bacterial_leaf_blight = True 

 

 

 

 No Detection 
Explaining 

bacterial_leaf_blight = True 

Table 3  LIME on Bacterial leaf blight disease detection 

Observation: Both models are capable of identifying the bacterial leaf blight disease. 

However, Model 2, even though it is not a paddy leaf (third image), identifies it as a disease. 

 
bacterial_leaf_blight 

Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE FALSE 

Model 2 TRUE TRUE TRUE 
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3.2.6 Diverse Counterfactual Explanations (DiCE) 

Counterfactual explanations and adversarial attacks 

Original Image Noise Model 01 Model 02 

 

 

  

 No Detection No Detection 

 
  

 Brown spot No Detection 

 

  

  No Detection No Detection 

Table 4 DiCE on Brown spot disease detection 

Observation: Both models cannot identify brown spot disease when noise is added to the 

image. Data image clarity and visibility are essential to identifying the disease. Both 

models fail to recognise the disease category. Model 1 has a slight improvement in 

identifying the disease due to the higher zoom level of the image. 

 
brown_spot  

Image 1 Image 2 Image 3 (Error) 

Model 1 FALSE TRUE FALSE 

Model 2 FALSE FALSE FALSE 
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Original Image Noise Model 01 Model 02 

 

 

  

 bacterial_leaf_blight No Detection 

   

 bacterial_leaf_blight No Detection 

   

 No Detection No Detection 

Table 5 DiCE on Bacterial leaf blight disease detection 

Observation: In identifying bacterial leaf blight disease, Model 1 can identify the disease 

in every scenario. Even in the wrong leaf category (third image). Model 2 has poor 

identification of the XAI method. 

 
bacterial_leaf_blight  

Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE FALSE 

Model 2 FALSE FALSE FALSE 
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3.2.7 Layer-wise Relevance Propagation (LRP) 

Original Image Model 1 Model 2 

   

 Brown spot Brown spot 

   

 Brown spot Brown spot 

   

 Brown spot Brown spot 

Table 6 LRP on Brown spot disease detection 

Observation: As presented in the heat map, Model 1 uses the disease spot to classify the 

disease. However, Model 2 also considers the background. As mentioned in the LIME 

scenario, neither model can categorise the leaf type. Because the third scenario does not 

involve a paddy leaf, both models detected the disease. 

 
brown_spot  

Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE TRUE 

Model 2 TRUE TRUE TRUE 
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Original Image Model 1 Model 2 

   

 bacterial_leaf_blight bacterial_leaf_blight 

   

 bacterial_leaf_blight bacterial_leaf_blight 

   

 No Detection bacterial_leaf_blight 

Table 7 LRP on Bacterial leaf blight disease detection 

Observation: As mentioned above, the same scenario is reflected here, but Model 1 neglected 

to detect the disease. 

 
bacterial_leaf_blight  

Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE FALSE 

Model 2 TRUE TRUE TRUE 
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3.3 Human-Centred Design 

So far, the study has proved that completed trained models have high accuracy. However, 

they lack trustworthiness, and these models are not human-centred in the real world. In 

addition, the work that has been done is all post-hoc explainability. This study aims to 

design a framework that integrates the XAI system and ensures it is user-friendly and 

accessible to domain experts or agricultural stakeholders. 

The study conducted by Danding Wang, Qian Yang, Abdul Ashraf, and Brian Lim, which 

was mentioned in the Literature, explains how to connect human reasoning theories to 

XAI techniques. The study can infer what types of explanations users need by 

understanding how users reason. According to the above research, it has been described 

that the contrastive and counterfactual, which come under casual explanation and causal 

attribution, mapped to XAI intangible queries; why not and what if, respectively (Wang et 

al., 2019). 

 

Figure 7 Extracted part of the Framework 

Q. Vera Liao and Kush R. Varshney created a mapping tool that links categories of user 

inquiries from the XAI question bank to various XAI methods capable of addressing these 

questions. From the mapping tool that links categories of user inquiries from the XAI 

question created by Q. Vera Liao and Kush R. Varshney, we can identify the necessary 

XAI methods capable of addressing the above questions (Liao and Varshney, 2022). 
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3.3.1 Why not 
 

When someone asks "Why not this output has come?" in explaining AI, they typically seek 

clarification or justification for the result produced by an AI system. This question suggests 

that the user expected a different outcome or is confused about why the AI generated a 

specific output. In response to this question, an explanation of the AI's decision-making 

process and the factors that influenced the output is necessary. This might involve the 

following attributes. 

 

Model Explanation 

Providing insights into how the AI model operates, including its architecture, training data, 

and algorithms used. Explaining which features the model considered most important in 

making its decision can explain why a particular output was generated. 

 

Input Analysis 

Examining the input data or user input that the AI processed to understand any biases, noise, 

or missing information that could have influenced the output. This helps identify potential 

reasons why the expected output did not occur. 

 

Confidence and Uncertainty 

Discussing the level of confidence or uncertainty associated with the AI's output. If the AI is 

unsure about its decision, it may produce unexpected results, which can be explained to the 

user. 

 

Error Analysis 

Explain any errors or limitations in the AI system that may have led to the unexpected output. 

These could include issues such as data quality, model complexity, or the inherent limitations 

of AI technology. 
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Feedback and Improvement 

Encouraging feedback from the user to improve the AI system's performance in the future. 

Understanding user expectations and concerns can help refine the AI model and enhance its 

accuracy and relevance. 

Overall, addressing the question, "Why does this output come?" requires a detailed 

explanation of the AI's decision-making process, input data analysis, confidence levels, 

potential errors, and opportunities for improvement. By providing clear and transparent 

explanations, AI designers can better understand the AI system and its outputs. 

 

 

 

 

3.3.2 What if 
 

When someone asks, "What if this output has come?" in explaining AI, they are typically 

interested in understanding the potential consequences or implications of a different output 

generated by the AI system. This question suggests that the user is exploring hypothetical 

scenarios and seeking insights into how alternative outcomes could impact the situation. In 

response to this question, an explanation of the possible implications of a different output can 

be provided. This might involve the following reasons. 

 

Alternative Scenarios 

Discuss different possible outputs the AI could have generated and explain how each would 

have affected the decision-making process or outcome. 

 

Risk Analysis 

Evaluating the risks associated with the alternative outputs, including potential benefits and 

drawbacks. This involves considering accuracy, fairness, ethical considerations, and 

stakeholder impact. 
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Sensitivity Analysis 

Examining how sensitive the overall outcome is to AI output variations. This helps assess the 

robustness of the decision-making process and identify potential areas of uncertainty or 

instability. 

 

Decision-Making Framework 

Explain the decision-making framework used by the AI system and how it weighs different 

factors to generate outputs. This provides insights into why specific outputs are favoured and 

helps users understand the rationale behind the AI's decisions. 

 

Mitigation Strategies 

Discuss strategies for mitigating the potential consequences of alternative outputs, such as 

adjusting input data, refining the AI model, or incorporating human oversight into the 

decision-making process. 

In summary, the question "What if this output has come?" in Explaining AI involves 

exploring hypothetical scenarios, evaluating potential risks and benefits, and providing 

insights into how alternative outputs could impact the situation. AI designers and developers 

can benefit from this discourse by acquiring a more profound comprehension of the AI 

system's decision-making mechanism and the ramifications that this has on the given task. 

 

The utilisation of "Why not" and "What if" in AI explanations clarifies and provides a more 

profound comprehension of the decision-making mechanism and possible consequences of 

the AI system. 

“Why not” suggests that the user expected a different output from the AI system and wants to 

understand the reasons behind the discrepancy. An explanation of the factors influencing the 

AI's decision-making process is necessary. This might involve discussing the input data, 

model architecture, training process, biases, and uncertainties contributing to the generated 

output. By providing transparency into the AI's decision-making mechanisms, users can 

understand why the expected output did not occur and how to interpret the results. 



40 

 

“What if” explores hypothetical scenarios and alternative outcomes that the AI system could 

have generated. Users may be interested in understanding different outputs' potential 

consequences and implications. Responding to this question involves discussing various 

possible outputs, evaluating their risks and benefits, and considering how they would impact 

the decision-making process or outcome. By engaging in this analysis, users can better 

understand the AI system's capabilities, limitations, and potential implications for the task at 

hand. 

In essence, answering the inquiries "Why not?" and "What if?" necessitates presenting clear 

and comprehensive elucidations of the decision-making mechanism employed by the AI, 

encompassing crucial determinants that impact the result and possible alternate situations. By 

fostering a dialogue around these questions, designers and ML developers can better 

understand the AI system's behaviour and its implications for their specific use case or 

application. 

However, these tools can still be applied at the end of the AI model's lifecycle. Can we 

use an AI's explainability at the beginning of a training model? This study, incorporating 

the above studies, introduces the following framework to answer that. 
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3.4 Proposed framework 
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Generally, the training model should be an incremental process and not a one-time 

training. After the evaluation, an interpretable output can be derived through an 

explainable AI. A person can verify that interpretable output. As a result of this new step, 

Reliability, Safety, & Trustworthiness can be included in the trained model. 

Cloud computing has evolved, and on-demand services have been expanded to training AI 

models. Leveraging this advancement of technology, training a small model reduces the 

cost of operation of computing power and time. 

Four individuals are needed in four separate stages for this framework. First, we identify 

the four individuals. 

• Designer: A person who gathers equipment and expectations for the AI system. 

• Developer: The person who develops the model (Person can be a data scientist). 

• Domain expert: A person who knows the Domain that AI is building. 

(Agriculture, construction) 

• User: End user who users the system. 

Below are the four stages involving the designer, developer, domain expert, and user. 

Stage 1 - Data collection 

Stage 2 - Performance of the model 

Stage 3 - eXplainability of the model 

Stage 4 - End-user experience 

The following is the mapping of the human factor at each stage. The proposed framework 

is illustrated in the diagram below.  
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Figure 9 illustration of the proposed framework  
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Figure 10 Stages mapped to the human interaction 

As per the above illustration, the Designer and Developer engage in data collection as the 

first step of the proposed framework. In the second stage, which is the model's 

performance, the Designer and Developer take responsibility for it, and the Domain expert 

also takes part in the model's performance if needed at this stage. The model's 

eXplainability is the third stage of the proposed framework. Designer, Developer and 

Domain expert are utilised at this stage. The final stage of the proposed framework is the 

End user experience. The designer, Domain expert and User are involved in this last stage. 

With a stage, many iterations of the training model will be trained. 
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3.4.1 Validation and Field Testing 

Validate the HC XAI framework on pilot training models. Evaluate the accuracy of and 

the usability of the HC XAI interface in a real-world context. 

This methodology emphasises an approach to HC XAI for disease detection in paddy crops. It 

combines advanced AI techniques with user-centred design principles to provide interpretable 

and actionable information to the end-users, contributing to the overall goal of agricultural 

sustainability and food security. 

3.5 Reflection and Learning 

This DSR methodology for HC XAI in the context of paddy brown leaf spot and bacterial leaf 

blight detection emphasises the development of an effective HC XAI system and its 

successful implementation for other disciplinary AI models. The iterative nature of DSR 

allows for ongoing improvements to the system based on real-world feedback, ultimately 

contributing not only to agricultural sustainability but also to other disciplinary advancements. 

3.6 Ethical Considerations 

Throughout the process, consider ethical aspects of data privacy, informed consent, and 

responsible AI use in agriculture. Ethical considerations are crucial in the development and 

deployment of image processing and AI technologies for disease detection in agriculture. 

Addressing these ethical issues helps ensure that the technology is used responsibly and 

equitably, providing benefits to all stakeholders involved while mitigating potential harm. By 

focusing on data privacy, fairness, transparency, accessibility, economic impact, 

environmental sustainability, consent, and inclusion, developers and policymakers can create 

a more just and effective technological ecosystem in agriculture. 
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4  EVALUATION AND RESULTS 

The Evaluation and Results chapter comprehensively analyses the outcomes obtained through 

the research methodology outlined in the preceding chapters. This section aims to critically 

evaluate the data collected, assess the effectiveness of the research methods employed, and 

elucidate the findings about the research objectives. This chapter seeks to uncover patterns, 

trends, and insights from the empirical investigation through meticulous analysis and 

interpretation, thereby contributing to a deeper understanding of the research topic. This 

chapter begins with an overview of the research design and methodology before delving into 

the presentation and discussion of the results obtained. Subsequently, the findings are 

analysed in light of existing literature, allowing for a nuanced evaluation of their significance 

and implications. Through this process, this chapter addresses the research questions posed at 

the outset, drawing meaningful conclusions that advance knowledge in the field. 

 

4.1 Results Analysis 

The study conducted three different XAI techniques to explain two other models: Early 

Detection and Classification of Rice Brown Spot and Bacterial Blight Diseases Using Digital 

Image Processing (Iqbal et al., 2023), and the authors trained the model using YOLO v5. 

Both of these models have gone through the following XAI methods and interpreted the 

explainability of the models. 

• Local Interpretable Model-agnostic Explanations (LIME) 

• Counterfactual explanations and adversarial attacks (DiCE) 

• Layer-wise Relevance Propagation (LRP) 

Within the validation, we used a similar but not a paddy leaf with the same disease 

characteristics. This helps evaluate the disease detection capability and the truthfulness of the 

outcome. 

 

4.1.1 Local Interpretable Model-agnostic Explanations (LIME) 

The given table shows a comparison or evaluation of the two different models (Model 1 and 

Model 2) in their ability to correctly identify or classify images as either "brown spot" or 

"bacterial leaf blight" explained through Local Interpretable Model-agnostic Explanations 

(LIME) [Table 2 LIME on Brown spot disease detection, Table 3  LIME on Bacterial leaf 

blight disease detection]. Each row represents a model, and each column represents a specific 

image. The values in the table indicate whether each model correctly identified the presence 
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of either "brown spot" or "bacterial leaf blight" in the corresponding image. 

There are three images labelled "Image 1," "Image 2," and "Image 3." The “Image 3” in both 

disease classes is a false image. Each image is evaluated for "brown spot" and "bacterial leaf 

blight." The values in the table are either "TRUE" or "FALSE," indicating whether the model 

correctly identified the presence of the respective disease in each image. 

 

 
brown_spot bacterial_leaf_blight 

 
Image 1 Image 2 Image 3 (Error) Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE TRUE TRUE TRUE FALSE 

Model 2 TRUE TRUE TRUE TRUE TRUE TRUE 

Table 8 LIME XAI result summary 

 

Image 1 and Image 2 in the two disease categories are accurate diseased Paddy leaf images. 

Image 3 in the two disease categories are False Leafs, which are also not Paddy Leafs. 

Model 1 and Model 2 have accurately identified "brown spot" and “bacterial leaf blight” 

diseases. This answers the question, "Why is brown spot disease not shown as bacterial 

leaf blight disease?” the trained model accurately identifies the two diseases separately. 

In the case of "Image 3," Model 1 successfully identified the presence of a "brown spot", 

while Model 2 also correctly identified it. In the case of "Image 3," Model 1 didn’t recognise 

the presence of "bacterial leaf blight," while Model 2 correctly identified it. This answers the 

“What if the diseased leaf is not similar to a paddy leaf?” question. Even though the leaf 

differs, models 1 and 2 identify it as a "brown spot” disease. 

This suggests that Model 1 and Model 2 have limitations in identifying the leaf type through 

the LIME XAI tool kit, even though they accurately identify "brown spot" and "bacterial leaf 

blight" in Image 3. 

 

4.1.2 Counterfactual explanations and adversarial attacks (DiCE) 

The table presents a comparative assessment of two distinct models (Model 1 and Model 2) 

regarding their accuracy in classifying or identifying images as "bacterial leaf blight" or 

"brown spot" [Table 4 DiCE on Brown spot disease detection, Table 5 DiCE on Bacterial leaf 

blight disease detection]. Each column corresponds to a distinct image, while each row 

represents a model. The value of "bacterial leaf blight" or "brown spot" that each model 

correctly identified in the corresponding image is denoted in the table. 
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There are three images labelled "Image 1," "Image 2," and "Image 3." Each image is 

evaluated for "brown spot" and "bacterial leaf blight." The values in the table are either 

"TRUE" or "FALSE," indicating whether the model correctly identified the presence of the 

respective disease in each image. 

 

 
brown_spot  bacterial_leaf_blight  

 
Image 1 Image 2 Image 3 (Error) Image 1 Image 2 Image 3 (Error) 

Model 1 FALSE TRUE FALSE TRUE TRUE FALSE 

Model 2 FALSE FALSE FALSE FALSE FALSE FALSE 

Table 9 DiCE XAI result summary 

 

In this scenario, both Model 1 and Model 2 failed to correctly identify the presence of "brown 

spot" or "bacterial leaf blight" in some images. 

Model 1 correctly identified "brown spot" in Image 2 and "bacterial leaf blight" in Image 1 

and Image 2. Model 2 did not identify either disease correctly in any of the images. Both 

Models didn’t recognise the disease in Image 3, which is a false image. 

Considering the above results, this answers the question, "Why were brown spot disease 

and bacterial leaf blight disease not detected while adding noise to the image?” the 

trained model considers the clarity of the disease representation in the leaf. 

To the question “What if the image has different representations?” because the model has 

been trained for clear image identification, both models fail to identify the disease when the 

image is unclear. 

Regarding counterfactual explanations and adversarial attacks, XAI shows that Model 2 

depends on image quality features. Even though the image is slightly disrupted, Model 1 can 

successfully identify the bacterial leaf blight disease. 

 

4.1.3 Layer-wise Relevance Propagation (LRP) 
 

The given table is a comparative analysis of two models (Model 1 and Model 2) assessing 

their performance in detecting the presence of "brown spot" and "bacterial leaf blight" in three 

different images labelled as Image 1, Image 2, and Image 3 on Layer-wise Relevance 
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Propagation (LRP) [Table 6 LRP on Brown spot disease detection, Table 7 LRP on Bacterial 

leaf blight disease detection]. 

Each cell in the table contains a boolean value indicating whether the respective model 

correctly identified the presence of the specified disease in the corresponding image. 

 

 
brown_spot  bacterial_leaf_blight  

 
Image 1 Image 2 Image 3 (Error) Image 1 Image 2 Image 3 (Error) 

Model 1 TRUE TRUE TRUE TRUE TRUE FALSE 

Model 2 TRUE TRUE TRUE TRUE TRUE TRUE 

Table 10 LRP XAI result summary 

 

Both models (Model 1 and Model 2) correctly identified the presence of a "brown spot" in all 

three images (Image 1, Image 2, and Image 3). Similarly, both models accurately detected the 

presence of "bacterial leaf blight" in Image 1 and Image 2. However, there's a discrepancy in 

Model 2's performance regarding "bacterial leaf blight" in Image 3, where it erroneously 

identified the disease (denoted by "TRUE"). 

Similar to LIME, in LRP, we are considering answering the same question from the XAI tool 

kit. Model 1 and Model 2 have accurately identified "brown spot" and “bacterial leaf blight” 

diseases. This answers the question, "Why is brown spot disease not shown as bacterial 

leaf blight disease?” the trained model accurately identifies the two diseases separately. 

In the case of "Image 3," Model 1 successfully identified the presence of a "brown spot", 

while Model 2 also correctly identified it. In the case of "Image 3," Model 1 didn’t recognise 

the presence of "bacterial leaf blight," while Model 2 correctly identified it. This answers the 

“What if the diseased leaf is not similar to a paddy leaf?” question. Even though the leaf 

differs, models 1 and 2 identify it as a "brown spot” disease. 

LRP XAI shows the same result as the LIME XAI outcome. Even this toolkit indicates that 

the error image is identified as a diseased paddy leaf.  

The above XAI toolkits show that the AI model that was trained has an issue. It identifies the 

brown spot and the bacterial leaf blight disease, even if the leaf is not a paddy leaf. 
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4.2 Lesson learned  
 

The questions we have answered from XAI tool kits show that the paddy leaf diseased image 

data that needs to be collected for training should include the leaf's diseased area and the 

whole leaf. Images of diseased paddy plants must be added to achieve a better outcome. It 

shows that “Why not” and the “What if” questions can effectively drive the XAI validations. 

This knowledge was captured through two domain experts: a data science analyst and a paddy 

disease expert at “The National Institute of Plantation Management (NIPM)”. 

Both parties' outcomes were that the trained data was mainly focused on the disease, not the 

whole paddy plant.  

 

 

So, the training data should be recollected according to the parameters suggested by the 

domain experts and added to the current data set. 

  

Figure 11 expected images 
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4.3 Next Step 
 

After evaluating the eXplainable AI (XAI) results from the first iteration and deriving insights 

from the "why not" and "what if" questions, the next step involves refining the AI system or 

the decision-making process through a second iteration. This iterative approach allows for 

continuous improvement and optimisation based on the feedback and insights gathered from 

the initial XAI analysis. 

The insights from analysing the "why not" and "what if" questions are integrated into the AI 

system's development process. This includes incorporating feedback on model performance, 

data quality, decision factors, and potential risks or benefits associated with alternative 

outputs. 

Based on the insights derived, adjustments may be made to the AI model architecture, 

algorithms, or parameters to address identified limitations or improve performance. This 

could involve fine-tuning the model, optimising training data, or exploring alternative 

techniques to enhance accuracy, fairness, or interpretability. 

Efforts are made to improve the quality, diversity, and relevance of the input data used by the 

AI system. This may involve collecting additional data, preprocessing existing data to remove 

biases or inconsistencies, or augmenting the dataset with synthetic or external sources to 

better represent real-world scenarios. 

Following this iterative approach, the AI system evolves, becoming more effective, reliable, 

and trustworthy. Each iteration builds upon the insights gained from the XAI analysis and 

addresses identified gaps or opportunities for improvement, ultimately enhancing the system's 

value and impact in its intended application domain. 
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5 CONCLUSION AND FUTURE WORK 
 

Human-centred explainable artificial intelligence (XAI) transforms technical environments by 

prioritising human needs, preferences, and experiences. This approach shifts the focus from 

purely technical solutions to creating systems that are intuitive, accessible, and user-friendly. 

By engaging directly with users, human-centred AI aims to design spaces that are functional 

and enhance the overall user experience. This re-framing emphasises the importance of 

empathy and understanding in technology design, striving to improve quality of life and 

inclusivity. When organisations prioritise human-centric design, they create more inclusive 

and accessible environments, ultimately leading to better outcomes for all stakeholders. 

The iterative process of XAI begins with a critical evaluation of the initial results, using "why 

not" and "what if" questions to identify areas for improvement. This involves synthesising 

insights gained from the first iteration and highlighting key findings, challenges, and 

opportunities. Actionable recommendations for refining the AI system are then developed, 

focusing on aspects such as model performance, data quality, interpretability, fairness, and 

robustness. These recommendations should be prioritised based on their potential impact, 

feasibility, and alignment with stakeholder objectives, considering factors like resource 

constraints, timeframes, and dependencies. 

Clear goals and objectives must be established for the next iteration, defining what the AI 

system aims to achieve and how success will be measured. Performance metrics and 

benchmarks are crucial for evaluating the effectiveness of the enhancements. By 

systematically refining the AI system through these iterative evaluations, stakeholders can 

ensure improved performance, transparency, and trustworthiness in the AI's deployment and 

operation. 

Promoting the responsible use of technology involves fostering ethical, safe, and mindful 

engagement with technological tools. Organisations and communities must collaborate to 

mitigate potential risks, ensuring that technology drives positive change and societal progress. 

Expanding practitioners' toolboxes with XAI tools enhances AI systems' transparency, 

interpretability, and trustworthiness. This empowers data scientists, machine learning 

engineers, and domain experts to develop and maintain AI technologies that are not only 

effective but also understandable and reliable. By integrating XAI tools, organisations can 

foster greater understanding and acceptance of AI technologies across various domains. 
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5.1 Integrating a human-centred approach into Explainable AI (XAI) 

Human-centred explainable artificial intelligence (XAI) represents a paradigm shift in 

designing and implementing technical systems, foregrounding the human experience in every 

aspect of technological development. Unlike traditional approaches, which prioritise technical 

efficiency and performance, human-centred XAI emphasises user intuition, accessibility, and 

overall experience. This reorientation demands a comprehensive understanding of user needs 

and preferences, ensuring that the resulting environments are functional and enhance user 

satisfaction and quality of life. 

The dataset used in this study consisted of complex image data, which presented unique 

challenges and opportunities for developing a robust AI framework. However, this framework 

is not limited to image data alone. It can be adapted and verified using other types of datasets, 

such as tabular or frequency data, to evaluate its versatility and effectiveness across different 

data modalities. 

By embedding empathy and user-centric principles into the design process, organisations can 

create more inclusive and accessible technological solutions, improving outcomes and broader 

societal benefits. 

 

5.2 Iterative refinement from explainable AI educated outcome 

The iterative nature of XAI involves a rigorous and ongoing evaluation and improvement 

process. The first iteration is foundational, where initial outcomes are scrutinised through 

critical "why not" and "what if" questions. This reflective analysis is essential for identifying 

shortcomings and areas for enhancement. Insights gleaned from this process form the basis 

for actionable recommendations to refine the AI system in subsequent iterations. 

The study by Q. Vera Liao and Kush R. Varshney raises additional questions that need further 

exploration to validate XAI outcomes. These questions highlight the complexity and depth 

required to understand and implement Explainable AI (XAI) comprehensively. 

Critical areas for improvement typically include model performance, data quality, 

interpretability, fairness, and robustness. Recommendations should be prioritised based on 

their potential impact, feasibility, and alignment with stakeholder objectives. This 

prioritisation must also account for practical constraints such as resource availability, 

timeframes, and interdependencies among different enhancements. 

From this study, it shows that setting clear goals and performance metrics for each iteration is 

crucial. These benchmarks serve as indicators of success, guiding the evaluation of the AI 

system's effectiveness post-enhancement. By adopting this iterative and reflective approach, 
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stakeholders can systematically improve the AI system, enhancing its performance, 

transparency, and trustworthiness. 

 

5.3 Responsible use of technology 

Promoting the responsible use of technology is critical in ensuring that advancements in AI 

and other technological fields are ethically and safely integrated into society. Organisations 

and communities must collaborate to address potential risks and ensure that technology 

contributes positively to societal progress. 

Different domain experts bring unique perspectives, which can significantly enhance the 

training and trustworthiness of an AI model. This study employs the insights of several 

individuals from diverse backgrounds to capture a broad range of perspectives during the 

model training process. Integrating these varied viewpoints makes the training model's 

outcome more reliable and trustworthy. This involves creating frameworks and guidelines that 

encourage ethical behaviour and mindful engagement with technological tools. 

 

5.4 Expanding practitioners' toolbox with XAI 

Integrating XAI tools into practitioners' toolbox is vital for enhancing AI systems' 

transparency, interpretability, and trustworthiness. These tools empower data scientists, 

machine learning engineers, and domain experts to develop, deploy, and maintain 

comprehensible and reliable AI systems. The proposed framework represents a significant 

step towards semi-automated processes in the domain of HCAI. However, there is ample 

room for further research and development to transition this framework into a fully automated 

system. 

 

In conclusion, the re-framing of technical spaces through human-centred XAI and the iterative 

refinement process represent significant advancements in making AI systems more user-

friendly, transparent, and trustworthy. By addressing ethical considerations and promoting 

responsible technology use, organisations can foster a more inclusive and positive 

technological landscape, ultimately enhancing the societal impact of AI innovations. 
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APPENDICES 

Use LIME with a custom-trained model for image classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

import numpy as np 

from skimage.segmentation import mark_boundaries 

from lime import lime_image 

from keras.preprocessing import image 

from keras.models import load_model 

 

# Load your custom-trained model 

custom_model = load_model('path_to_your_custom_model.h5') 

 

# Define a function to preprocess input images for your model 

def preprocess_input_img(img_path): 

    img = image.load_img(img_path, target_size=(299, 299)) 

    x = image.img_to_array(img) 

    x = np.expand_dims(x, axis=0) 

    x = x / 255.0  # Normalize pixel values 

    return x 

 

# Sample image path 

img_path = 'path_to_your_image.jpg' 

 

# Preprocess the input image 

img = preprocess_input_img(img_path) 

 

# Create LIME explainer 

explainer = lime_image.LimeImageExplainer() 

 

# Define a function to predict with your custom model 

def custom_predict(images): 

    # Assuming custom_model.predict() returns the prediction probabilities 

    return custom_model.predict(images) 

 

# Explain prediction 

explanation = explainer.explain_instance(img[0], custom_predict, top_labels=5, hide_color=0, num_samples=1000) 

 

# Show explanation 

temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True) 

plt.imshow(mark_boundaries(temp / 2 + 0.5, mask)) 



II 

 

Use DiCE with a custom-trained model for image classification. 

 

 

 

 

 

  

pip install dice-ml 

from dice_ml.explainer_interfaces.dice_gaussian import DiceGaussian 

from dice_ml.utils import helpers # Import helper functions 

 

# Load your trained model 

# Replace "your_model" with the code to load your trained model 

# For example: 

# from keras.models import load_model 

# model = load_model('path_to_your_model.h5') 

 

# Initialize DiceGaussian explainer 

explainer = DiceGaussian(dice_expansion_method='uniform') 

 

# Sample data point for which counterfactuals are to be generated 

# Replace "sample_point" with your actual data point 

sample_point = {'feature1': value1, 'feature2': value2, ...}  

 

# Define the outcome you want the counterfactual to achieve 

# Replace "desired_outcome" with the desired outcome 

desired_outcome = value 

 

# Generate counterfactuals 

counterfactuals = explainer.generate_counterfactuals(sample_point, total_CFs=5, desired_class=desired_outcome) 

 

# Print counterfactuals 

for cf in counterfactuals.final_cfs_df: 

    print(cf) 



III 

 

Use LRP with a custom-trained model for image classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

import numpy as np 

import matplotlib.pyplot as plt 

from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions 

from keras.preprocessing import image 

import innvestigate 

 

# Load the custom model 

model = (“include the custom model”) 

model.summary() 

 

# Select the image to explain 

img_path = 'path_to_your_image.jpg' 

 

# Load and preprocess the image 

img = image.load_img(img_path, target_size=(224, 224)) 

x = image.img_to_array(img) 

x = np.expand_dims(x, axis=0) 

x = preprocess_input(x) 

 

# Create an analyzer for Layer-wise Relevance Propagation (LRP) 

lrp_analyzer = innvestigate.analyzer.relevance_based.relevance_analyzer.LRPZ(model) 

 

# Apply LRP to the image 

explanation = lrp_analyzer.analyze(x) 

 

# Plot the explanation 

plt.imshow(explanation.squeeze(), cmap='jet', alpha=0.5) 

plt.imshow(img, alpha=0.5) 

plt.axis('off') 

plt.show() 



IV 
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