
A Novel Textual Meta Modeling
Language for the Web

A Thesis Submitted for the Degree
of Master of

Science in Computer Science

Kasun Anupama H. Gamage

University of Colombo School of Computing

2024

Acknowledgement

I would like to express my sincere gratitude to the University of Colombo School of
Computing for providing me with the opportunity to pursue my Master of Science
degree. The knowledge and skills I have acquired during this program have been
invaluable.

My deepest appreciation goes to my MSc supervisor, Prof. Damitha Karunar-
atna, for his guidance and support throughout my study. His insights and advice
have been crucial to the completion of this thesis.

I am also grateful to my MSc project team, led by Dr. Kasun, for their assist-
ance with the administrative intricacies and their continuous encouragement. Their
support has been instrumental in navigating the complexities of this program.

Finally, I extend my heartfelt thanks to my family for their constant love, pa-
tience, and encouragement. Their support has been my greatest source of strength
throughout this journey.

Kasun Anupama H. Gamage

ii

Abstract

Model Driven Web Engineering (MDWE) has long relied on meta-modeling lan-
guages for the structured design, development, and maintenance of web applica-
tions through high-level abstractions and formal specifications. However, the rapid
evolution of web technologies has outpaced these languages, leading to shortcom-
ings such as outdated perspectives and a lack of alignment with modern industry
needs. This research investigates these issues and explores solutions through liter-
ature, focusing on meta-programming concepts.

The core of this research is the introduction of LMTH, a new Meta Modeling
Language designed to standardize and streamline web application design. LMTH
is a 4th Generation Meta Programming Language which is textual, less opinion-
ated and declarative yet turning developed as a superset of TypeScript, which is
well-established in the industry. The language’s grammar is presented in EBNF,
and it includes a "model of reality" standard library, providing a common ontology
vocabulary sharable among various solution applications. LMTH supports defining
solutions within data, process, UI, user, and state models in order to generate end-
to-end web application code complying with semantic web standards and WCAG
standards.

To demonstrate LMTH’s efficacy, a transpiler based on LLVM was developed,
and sample applications were generated using the MEAN stack. Evaluation covered
implementation of requirements, language expressivity and developer support, ad-
dressing limitations and extensibility of the standard library, performance bench-
marks and standard compliance, all yielding satisfactory results. Comparative ana-
lysis situates LMTH within the broader context of web development, highlighting its
implications for enhanced developer experience, maintenance efficiency and stand-
ardization and interoperability.

This research emphasizes the adoption of semantic web concepts, compliance,
and accessibility, paving the way for future-proof web development. Limitations
and potential avenues for future work have been identified, laying the foundation
for ongoing advancements in the field.

Keywords: Model Driven Web Engineering (MDWE), Meta-Modeling Languages,
LMTH, Semantic Web, Web 3.0, Web Accessibility, LLVM, Web Application Design,
Ontology Vocabulary, Standardization, Developer Experience, Web Engineering,
Future-Proof Web Development, Programming Languages, 4GL

iii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 1
1.3 Research Question . 2
1.4 Expected Outcomes . 3
1.5 Evaluation Scope . 4
1.6 Thesis Structure . 4

2 Literature Review 4
2.1 Foundations of the Web and Its Evolution 4
2.2 Model Driven Web Engineering . 5
2.3 Web 3.0 and the Semantic Web . 11
2.4 Meta Programming and Compiler Design 15
2.5 Alternatives including Artificial Intelligence(AI) based approaches . . . 16

3 Methodology 18
3.1 Language Design . 18
3.2 Language Specification . 21
3.3 The LMTH Ecosystem . 48
3.4 Implementation . 48
3.5 Development Environment . 55

4 Evaluation and Results 57
4.1 Objectives . 57
4.2 Scope . 58
4.3 Specific Evaluation Criteria . 58
4.4 Evaluation Tools and Resources . 59
4.5 Evaluation Methodology . 61
4.6 Evaluation Results . 62
4.7 Overall Analysis . 63

5 Conclusion and Future Work 63
5.1 Summary of Findings . 63
5.2 Implications . 66
5.3 Limitations . 67
5.4 Future Work . 69
5.5 Final Remarks . 70

iv

List of Figures

1 MDWE in Context . 8
2 Timeline of first generation MDWE approaches 8
3 Semantic Web Technology Stack . 13
4 Hierarchical Overlap of LMTH, TypeScript and JavaScript Syntax and

Features . 20
5 Domain model as a common basis . 22
6 The LMTH Eco System . 49
7 Rendered IDataSingle Unit . 52
8 Rendered IDataSingle Unit 2 . 52
9 Rendered IDataSingle Unit - Alternative Template 53
10 Rendered IDataSingle Unit . 53
11 Rendered Process Unit . 54
12 Process Unit after further styling . 54
13 Default Menu Rendering . 55
14 Menu after further styling . 55
15 Menu Rendering - Alternative Template 56
16 Sample Lighthouse Report on Scenario 2 Products Listing Page 62
17 Lighthouse Report Scenario 2 Individual Product Page 63
18 Compliance Testing - Sports News and Scores Application 64
19 Compliance Testing - E commerce application 65

v

List of Tables

1 Model to Code mapping with selected tech stack 51
2 Language Evaluation Criteria . 60

vi

Abbreviations

CASE : Computer-Aided Software Engineering

CPU : Central Processing Unit

IDE : Integrated Development Environment

LLVM : Low Level Virtual Machine

NPM : Node Package Manager

OQL : Object Query Language

PC : Personal Computer

RDF : Resource Description Framework

RDFa : Resource Description Framework in Attributes

S-P-O : Subject-Predicate-Object

TAG : Technical Architecture Group (in W3C)

URI : Uniform Resource Identifier

URN : Uniform Resource Name

VS Code : Visual Studio Code

W3C : World Wide Web Consortium

WCAG : Web Content Accessibility Guidelines

WebML : Web Modeling Language

XML : Extensible Markup Language

IR : Intermediate Representation

MEAN : Mongo-Express-Angular-Node

OWASP : Open Worldwide Application Security Project

AJAX : Asynchronous JavaScript and XML

WebRTC : Web Real-Time Communication

API : Application Programming Interface

CRUD : Create, Read, Update, Delete

vii

1 Introduction

1.1 Background and Motivation

Model Driven Web Engineering (MDWE) has long employed meta-modeling lan-
guages as a cornerstone for designing, developing, and maintaining web applica-
tions. These languages have traditionally provided a structured approach to model
web applications through high-level abstractions and formal specifications. How-
ever, the rapid evolution of web technologies and industry practices over recent
years has outpaced the development and adaptation of these meta-modeling lan-
guages. This discrepancy has led to several significant shortcomings in their cur-
rent application:

1. Outdated Perspectives: The existing meta-modeling languages are rooted
in older paradigms of the web, focusing primarily on static and server-driven archi-
tectures. Modern web applications, however, have shifted towards more dynamic
coentent with Web 3.0. Existing meta-models do not fully capture these contempor-
ary design patterns and technologies, leading to a gap between the models and the
actual implementation.

2. Developer Familiarity: Contemporary web developers are increasingly pro-
ficient in modern development tools, frameworks, and languages. The modeling
languages used in MDWE do not align well with the development practices and tool-
chains familiar to today’s developers. This misalignment creates a steep learning
curve and reduces the accessibility and adoption despite the fundamental benefits
of these modeling languages within the developer community.

3. Industry Needs: The needs of the web development industry have shifted
towards rapid prototyping, iterative development as well as various standard com-
pliance requirements. Modern development practices emphasize agility, collabor-
ation, and frequent delivery, which are not adequately supported by the existing
meta-modeling languages. These languages often lack the flexibility and respons-
iveness required to meet current industry standards and practices.

Given these shortcomings, there is a critical need to re-evaluate and update
the meta-modeling languages used in Model Driven Web Engineering. This thesis
aims to identify the specific deficiencies of these languages in the context of mod-
ern web development, explore how contemporary web practices and technologies
can be better integrated, and propose new paradigms that can bridge the gap
between MDWE methodologies and the current state of web application develop-
ment. The goal is to develop a more relevant, accessible, developer-centric and
industry-aligned approach to meta-modeling in web engineering that can effect-
ively support the development of modern web applications.

1.2 Problem Statement

The current meta-modeling languages used in Model Driven Web Engineering (MDWE)
are failing to meet the demands of modern web application development in areas
of developer experience, standard compliance and interoperability with established
standards and tools.

These existing meta modeling languages are based on outdated paradigms where
web content is not treated as data which results in them not being aligned with

1

contemporary development tools and practices, and lack the flexibility required
for rapid and iterative development processes. This gap between traditional meta-
modeling languages and current web technologies and industry practices results in
inefficiencies and barriers to adoption, necessitating a comprehensive re-evaluation
and update of these languages to better support the development of modern web
applications.

Given these issues, there is need to evolve the meta-modeling languages used in
MDWE. This update should address the deficiencies of current languages by incor-
porating modern web practices and technologies, and propose new paradigms that
align with the latest industry standards. The aim is to develop a meta-modeling lan-
guage that is relevant, accessible, and capable of effectively supporting the design
and development of modern web applications.

1.3 Research Question

How can we provide a standardized meta modeling language that allows for the
efficient and effective design of web applications adhering to accepted standards
and supporting model driven web development across various types of problem
domains while being rooted in a more data-centric perspective of the web?

1.3.1 Secondary Questions

The following dissects the above primary problem by breaking it into focused sub-
questions. Each sub-question is designed to investigate different aspects of the
primary question, offering insights into causes, current solutions, innovations, prac-
tical applications, and metrics for success. Together, these questions aim to com-
prehensively address the primary research problem and guide the exploration of its
resolution.

• What are the shortcomings of existing modeling approaches for the web, spe-
cifically in the context of model-driven engineering?

• How can these identified shortcomings be addressed with a novel language?

• What are the requirements and standards for modern web applications that
are not specifically addressed by existing modeling languages?

• What design principles should be adopted for creating a meta modeling lan-
guage tailored for the web?

• How can these principles be systematically applied to ensure the language
overcomes existing shortcomings while facilitating the enhancements?

• What are the possible implementation strategies for this meta modeling lan-
guage?

• How can these strategies be validated and tested for effectiveness?

• How to support the automatic generation of code from models developed with
this novel language?

2

• How can the new meta modeling language inter-operate with existing web
development tools and platforms?

• What challenges might arise during integration, and how can they be ad-
dressed?

• What are some practical case studies where the new meta modeling language
can be applied?

• How does the new language perform in real-world scenarios compared to ex-
isting approaches?

1.4 Expected Outcomes

The expected outcomes and deliverables of this research are listed below. This
outlines the overall scope of work in this research.

1. Design and implement a new meta modeling language as an extension of the
leading Model-Driven Web Engineering (MDWE) standards, incorporating rel-
evant advancements from other research in the field.

2. Ensure that the extended language syntax maintains support for semantic web
standards at the model level, facilitating the representation of semantic con-
cepts and relationships within web application models.

3. Ensure the expressiveness of the language to cover a broad range of aspects
necessary for generating web applications while effectively integrating se-
mantic web support, thereby enabling the representation of complex data
structures and semantic annotations within the models.

4. Develop a compiler capable of translating models constructed using the ex-
tended language into fully-fledged end-to-end web application code compliant
with semantic web standards specifically RDFa.

5. Validate the effectiveness and correctness of the generated web applications
by producing a series of moderately complex web applications as proof of
concept, demonstrating the practical application and utility of the developed
language and compiler.

6. Evaluate the degree to which semantic web standards and other chosen stand-
ards are correctly implemented in the generated web applications using val-
idators and other relevant assessment tools, ensuring compliance with estab-
lished standards and best practices in semantic web engineering.

7. Formally present the research findings within an academic context through
research publications, disseminating the insights gained from the study and
contributing to the body of knowledge in the field of semantic web engineering
and MDWE.

8. Conduct a comparative analysis to place the novel language within the broader
context of web development, highlighting its implications for enhanced de-
veloper experience, maintenance efficiency standardization and interoperab-
ility.

3

9. Identify limitations and potential avenues for future work, laying the founda-
tion for ongoing advancements in the field.

1.5 Evaluation Scope

The scope of this research includes the following key points:

• Produce the modeling language definition, providing primitives that are ex-
tensible and broad enough to cover most of the requirements of the sample
scenarios chosen.

• Code generation is limited to the MEAN stack and several limited chosen lib-
raries.

• Standard compliance, with a primary focus on Semantic Web Compliance
through RDFa.

• Optionally attempt to cover compliance for:

– Web Content Accessibility Guidelines & W3C standard 2.0 A level

– OWASP Application Security Verification Standard (ASVS)

1.6 Thesis Structure

Chapter 1 establishes the context of the thesis by presenting the background, mo-
tivation behind the research, objectives, and scope. In Chapter 2, the study ad-
vances with a comprehensive review of relevant literature, covering topics such as
model-driven web engineering, Web 3.0 and semantic web standards, and meta-
programming with 4th Generation Languages. Chapter 3 outlines the design prin-
ciples and specifications of the new language, followed by a detailed description of
its implementation process.

The evaluation section presents the methodology and criteria used for assess-
ment, including specific standards for compliance and the novel language’s position
within the broader context of meta-modeling languages through relative compar-
ison. It also includes results from validating the language against defined criteria
by generating three sample web applications, concluding with an analysis of the
findings.

Finally, in Chapter 5, the thesis summarizes the contributions, discusses broader
implications, acknowledges limitations, and suggests directions for future work.
This includes potential enhancements and extensions for the language as well as
areas for further research and development.

2 Literature Review

2.1 Foundations of the Web and Its Evolution

T. J. Berners-Lee (1989) has proposed the concept of a system for information man-
agement and sharing using "hypertext" to link and access documents across a de-
centralized network, which is the foundation of what we know today as the World
Wide Web.

4

Key points of this proposal include the need for a more effective way to manage
and share information, The use of "hypertext" as a method of linking documents
through "hyperlinks," allowing users to navigate between related pieces of inform-
ation easily and emphasizes decentralization. It also describes the client-server
architecture and introduces the concepts of Uniform Resource Identifier (URI), Hy-
pertext Markup Language (HTML), and Hypertext Transfer Protocol (HTTP), which
are the cornerstones of the web.

Later, as the web evolved and its potential became evident, T. Berners-Lee et
al. (2001) has proposed a new type of web content designed to be meaningful to
computers, enabling more intelligent and efficient web interactions, known as the
semantic web. This enables computers to understand and process the meaning
of information on web pages, unlike the web content available at the time (web
2.0), which was designed solely for human readability. With this new form of web
content, software agents can interpret and manipulate data meaningfully, facilitat-
ing tasks like cross-referencing schedules, verifying service provider details, and
managing preferences.

The Semantic Web holds the promise of revolutionizing web interactions by en-
abling computers to process and understand web content in a meaningful way,
thereby facilitating the development of more efficient and intelligent systems cap-
able of performing complex tasks with minimal human intervention. This public-
ation also highlights the potential role of the Resource Description Framework
(RDF), which had already been published as a standard, in achieving the goals
of the Semantic Web.

At the core of the Semantic Web is the idea of adding meaning and context to
web content. This is achieved through semantic markup, where data is annotated
with machine-readable metadata that defines its significance and relationships.
One of the key mechanisms enabling this understanding is the use of hyperlinks
to connect data to definitions and rules.

This represents an important paradigm shift, capturing a fundamental evolu-
tionary step of the World Wide Web. These foundational concepts have influenced
various practical applications.

2.2 Model Driven Web Engineering

Model-Driven Web Engineering (MDWE), which emerged from Model-Driven Engin-
eering (MDE), is a specialized approach for developing web applications through
high-level metamodels rather than traditional coding. It has been explored within
the literature in terms of various standards, application cases, as well as limita-
tions. This subsection presents extracts of such discussions, highlighting key con-
tributions and ongoing challenges in the field and applicability within this research.

The proposal by Ceri et al. (2000) on WebML as a modeling language for design-
ing web sites is one of the most influential works in this field, significantly con-
tributing to the research and development of MDWE methodologies. A significant
portion of research in MDWE directly or indirectly stems from this proposal. The
Essence of this proposal is summarized in the following paragraphs.

This proposal presents WebML along with several meta modeling primitives. It
would allow designers to outline the essential features of a website at a high level
without concerning about architectural specifics. The intuitive graphical repres-

5

entation would supports communication with non-technical team members and is
compatible with CASE tools. WebML also includes an XML syntax for generating
website implementations automatically. Core Models in WebML are as follows:

• Structural Model: Defines the site’s data content using entities and relation-
ships compatible with classic notations like E/R models and UML class dia-
grams. It includes a simplified OQL-like query language for specifying derived
information.

• Hypertext Model: Describes hypertexts published on the site, divided into:

– Composition Model: Specifies pages and their content units, such as data,
multi-data, index, filter, scroller, and direct units.

– Navigation Model: Defines how pages and content units are linked, dis-
tinguishing between non-contextual and contextual links based on the
structure schema.

• Presentation Model: Describes the layout and graphic appearance of pages
using an abstract XML syntax, allowing for both page-specific and generic
presentation specifications.

• Personalization Model: Models users and groups as predefined entities, sup-
porting the storage of personalized content and the use of high-level business
rules for reacting to site-related events.

The authors further point out that for simple web applications, stages of the de-
velopment process can be skipped, using defaults to produce simplified solutions
and enabling the creation of a default initial site view directly from the structural
schema. This concept of defaults has significant relevance to this research in sim-
plifying model definitions and thereby improving DX, which is a primary goal of this
study.

Gamage (2017) has presented a workflow focussing on the Separation of Con-
cerns which involves 3 models for code generation namely the data model, the
process model and a unified model for presentation and navigation.

Model-Driven Web Engineering (MDWE), a specialization of Model-Driven En-
gineering (MDE), focuses on the development of web applications using model-
driven techniques. This approach involves transforming models, typically expressed
in a Domain Specific Language (DSL), into fully functional web applications, cover-
ing backend data management, business logic implementation, and frontend web or
Rich Internet Application (RIA) components. MDWE enables the efficient creation
of large-scale enterprise applications and facilitates the evolution of data-intensive
web systems. Additionally, it employs model differencing techniques to assist in
the migration and ongoing development of web applications, as evidenced in the
exploration by Cicchetti et al., 2011.

Schauerhuber et al., 2006 note that within the context of Web Engineering,
prominent standards utilized for this purpose include WebML and its evolved form,
IFML, recognized as an OMG group standard. These models are then processed by
code generation tools like Web Ratio, which stands out as one of the most widely

6

employed tools in conjunction with WebML. Tools tailored for MDWE, such as Web
Ratio and RISE Editor, offer functionalities ranging from automatic interface com-
position and database generation to web service generation, aiming to streamline
the engineering process of information systems.

Semantic Web Technologies are increasingly being integrated with Model-Driven
Web Engineering to enhance software development and enterprise application de-
velopment. Pan et al., 2006; Álvarez et al., 2010 both highlight the potential of
model transformation in bridging the gap between ontology engineering and tra-
ditional software engineering, with Pan et al., 2006 specifically leveraging Model-
Driven Architecture (MDA) and Ontology Definition Metamodel (ODM). Kovalenko
et al., 2015 further explore the differences in model features and creation processes
between Semantic Web and Model-Driven Engineering, while ‘Model-driven design
and development of semantic Web service applications’ 2007 propose a model-
driven methodology for designing and developing semantic Web service applica-
tions. These studies collectively underscore the value of integrating Semantic Web
Technologies with Model Driven Web Engineering to improve the efficiency and
effectiveness of software development.

A range of studies have explored the use of model-driven web engineering to de-
velop semantic web technology compliant applications. Torres et al., 2006; ‘Model-
driven design and development of semantic Web service applications’ 2007 both
have proposed methodologies that integrate business processes and web engineer-
ing models to extract semantic descriptions and specify system data and function-
ality. Paydar and Kahani, 2015 extend this by introducing a semantic web-enabled
approach for reusing functional requirements models, which involves annotating
activity diagrams and measuring the similarity of use cases. Meliá and Gómez, 2006
further enhance these approaches by introducing the WebSA approach, which uses
model-driven development to integrate functional and architectural aspects of web
design, and provides transformations to platform-specific models. These studies
collectively demonstrate the potential of model-driven web engineering in generat-
ing semantic web technology compliant web applications.

However, while some leading modeling languages and their associated code gen-
eration tools have shown potential, their practical application has been limited.
Many of these proposals and explorations date back to the 2000s with limited to
none further explorations and implementations following up on them, and they of-
ten focus solely on specific aspects such as web services rather than addressing
the application as a whole. For instance, there has been promising research such
as the WebML-RDFizer project, Semantic Rule Language based on the proposal by
‘OWL rules: A proposal and prototype implementation’ 2005 and the proposal by
Der, 2012 which aimed to integrate semantic web standards into Model-Driven Web
Engineering (MDWE).

2.2.1 Reflection, Limitations and Recommendations

Rossi, Urbieta et al. (2016) has summarized several key findings based on a ret-
rospective reflection on MDWE technologies from 1990 to 2016. While this paper
could be considered somewhat dated in the rapidly evolving field of web engineer-
ing, its comprehensive analysis provides valuable insights. The paper discusses the
challenges faced by the MDWE discipline, which had to address new issues while

7

Figure 1: MDWE in Context

Figure 2: Timeline of first generation MDWE approaches

adapting existing solutions from software engineering and Model-Driven Software
Engineering (MDSE). These challenges included aligning the Model-Driven Archi-
tecture (MDA) approach with the diverse architectural requirements of web de-
velopment, the need for varied meta-models tailored to specific web application
concerns, and the influence of emerging paradigms like service-oriented, social,
and cloud computing on model development. The rise of multidisciplinary aspects
and new stakeholder roles further complicated the adoption and development of
MDWE approaches. Figures 1 and 2 in this paper by Rossi, Urbieta et al. (2016)
puts leading MDWE and other related technologies in context and the timeline of
first-generation MDWE approaches.

The evolution of early modeling languages into today’s sophisticated approaches
is also highlighted. This progression, driven by both technological needs and the
broader context in which these technologies were developed, reflects the com-
munity’s focus on understanding the rationale behind each step rather than merely
cataloging existing methodologies and languages. Some of these advancements

8

were driven by new user requirements or technological innovations, such as per-
sonalization, semantic web applications, and business process support. Others
aimed to enhance the software development lifecycle by improving requirements
specification, separating concerns more effectively, and advancing meta-modeling
and transformations.

Architectural issues in MDWE have also been a significant research focus. For
example, the Web Software Architecture (WebSA) approach sought to integrate ar-
chitectural concerns with functional models within the model-driven process, apply-
ing the necessary transformations to generate the running application. However,
early MDWE proposals often overlooked aspects such as testing and maintenance,
which were later addressed in subsequent approaches.

Specific advancements during this period included WebML’s enhancement of
its notation to support web services and OOWS’s incorporation of web services
into its design methodology. Additionally, there was a broader adoption of OMG
standards to support MDA, including the Meta-Object Facility (MOF) standard for
metamodels, the MOF Query/View/Transformation (QVT) language for model-to-
model transformations, and the MOF Model to Text Transformation (MOFM2T) lan-
guage for code generation. The existence of numerous competing methodologies
created confusion among potential users, educators, and students, complicating
the learning and application of MDWE techniques.

"The problem of the adoption of model-driven development (MDD) has been
widely discussed in the general software domain; specifically, many studies show
that the problem is more than technical and involves also cultural, organizational,
and other kind of issues. While UML has already more than 20 years of life and
has been practically the unique object-oriented modeling language since its birth,
the myriad of Web modeling languages (briefly presented in this paper) have in
some way hindered adoption. Despite the fact that WebML has been the most
popular MDWE approach being used in the industry, IFML is far from being main-
stream. Indeed, this standard still needs to gain a supporting community. Addi-
tionally, since the Web development activity is much more interdisciplinary than
general software development, there are a huge number of developers who barely
program, and of course do not model. Despite the empirical evidence presented
in several works about how software quality and team productivity improve when
using MDWE approaches than code-based ones, developers ignore the benefits of
adopting an MDWE approach. Also, the huge variety of programming languages
and frameworks make the adoption of MDWE approaches difficult since developers
tend to think about modeling techniques as to an obstacle for creativity, while in fact
it is the contrary. One can reasonably argue that the lack of good tool support and
the absence of user communities have an important place in this problem."(Rossi,
Urbieta et al., 2016)

Granada et al. (2015) presents an in-depth analysis of visual meta modeling lan-
guages and presents that one of the primary shortcomings of existing visual nota-
tions is the lack of scientific rigor in their design. As a result, proper communication
among stakeholders, including developers, designers, and business analysts, can
be hindered, leading to potential misinterpretations and errors. This issue is fur-
ther exacerbated by the increased complexity of modern web applications, making
visual modeling more challenging.

The complexity of modeling modern web applications is another significant is-

9

sue. As web applications have evolved, their complexity has increased, making
visual modeling more challenging. Existing notations often struggle to adequately
represent the intricate relationships and data flows in these applications. This com-
plexity can overwhelm users, making it difficult to create, interpret, and maintain
accurate models. Additionally, visual syntax elements in DSLs are not always stand-
ardized or consistently applied, resulting in symbol redundancy, overload, excess,
and deficit. For example, in WebML, there are instances of symbol redundancy
(multiple symbols for the same concept), symbol overload (one symbol for multiple
concepts), and symbol excess (unnecessary symbols). This inconsistency can lead
to confusion and misinterpretation of models, reducing their effectiveness.

Key recommendation of this work by Granada et al. (2015) includes integration
of the Principle of Semiotic Clarity, Semantic Transparency and the Principle of
Dual Coding recommends supplementing visual symbols with descriptive text to
provide additional context and improve overall readability.

This captures the shortcomings of visual notations in modeling languages like
WebML and further supports the premise of this research that visual notations can
become overcomplicated. Although the exact recommendations of this publication
are directly inapplicable to this research, the insights provide a strong founda-
tion. Implementing these principles can lead to better communication, reduced
misinterpretations, and more efficient modeling processes, ultimately supporting
the development of complex web applications.

The paper "MODE: A Tool for Conceptual Modeling of Web Applications" by
Bochicchio and Fiore (2005) introduces MODE, a conceptual modeling tool tailored
for web applications. It addresses the need for integrated design methods that
blend hypermedia’s navigation features with traditional information systems’ trans-
actional capabilities. MODE helps designers manage complex web application fea-
tures, from user navigation to transactional flows, through a structured approach.

Key Takeaways Relevant to a Meta Modeling Language Integration Challenge
from this work includes

Customization and Flexibility: Importance of user profiling and contextual ad-
aptation, essential in personalizing the experience. For a meta modeling language,
flexibility in accommodating different user types, access levels, and customization
preferences is crucial.

Structured Design Approach with modeling from the following perspectives:
Information Design: Defines data organization, with separate schemas for nav-

igation and access.
Navigation and Publishing Design: Focuses on user navigation paths and present-

ation structures.
Operational Design: Models all user-interactive functions, extending beyond

simple navigation to include complex transactional processes.
For a meta modeling language, structuring these different aspects is critical to

offer a coherent and unified approach that guides the user through each phase of
design and this approach shows a unified and simplified approach than the older
approaches mentioned above.

Another unique insights obtainable from this work is that meta modeling can
unify different design paradigms (e.g., data-centric, user-centric, transaction-centric)
into a flexible textual framework. This versatility would enables designers to adjust
models to suit complex web environments and evolving design methodologies.

10

The paper "Code Generator Development to Transform IFML (Interaction Flow
Modeling Language) into a React-based User Interface" by Rohma and Azurat (2024)
explores a model-driven approach to user interface (UI) development by employing
Model-Driven Software Engineering (MDSE) and Software Product Line Engineer-
ing (SPLE) principles. MDSE centers on using high-level models to drive the entire
development process, making abstractions like UI models pivotal. In this study, an
IFML-based UI generator was developed to transform Interaction Flow Modeling
Language (IFML) diagrams into React-based code. This transformation is facilit-
ated by Acceleo within Eclipse IDE, where specific transformation rules convert
platform-independent UI models into functional React components.

Key elements of IFML, such as ViewContainers (which represent website pages),
ViewComponents, DataBinding, and form elements, are mapped to their React
counterparts, thereby automating UI code generation. This enables developers
to focus on design and functionality at an abstraction level, with the generator
managing the code transformation. The UI generator also supports static page
management and customization, making it versatile for diverse UI needs.

Evaluation results highlight that the tool can produce a functional website and
was qualitatively rated based on six SPLE-relevant criteria. This approach points to-
ward a promising direction in meta-modeling, web engineering, and modern frame-
works by offering efficient pathways for creating adaptable, reusable UIs. Further
insights suggest that MDSE and IFML have strong potential in streamlining web ap-
plication development, particularly when integrated with modern JavaScript frame-
works like React.

2.3 Web 3.0 and the Semantic Web

Although this research does not focus on the implementation details and specific
standards of semantic web technologies, it is rooted in the underlying philosophy
and emphasizes ensuring compliance as specified in the scope. Therefore, the
foundational concepts of the semantic web have been explored in depth.

Halpin (2006) examines the increasing prevalence of philosophical concepts
such as reference, identity, and meaning on the Web. The author has explored
explores how the architecture of the Web converges with classical philosophical
problems, particularly through the Semantic Web initiative, which has sparked an
"identity crisis" by using URIs for both "things" and web pages. The paper discusses
solutions proposed by the W3C and analyzes the problem of reference through the
lenses of Russell’s direct object theory and Kripke’s causal theory, proposing new
URN spaces and Published Subjects.

It further posits that while a full notion of meaning, identity, and reference
may be achievable, practical implementations and standards remain challenging.
It evaluates the direct theory of reference and the potential benefits of content
negotiation and RDF to clarify the intended "real-world" domain of URIs citing
the original work on the semantic web by T. Berners-Lee et al. (2001). The pa-
per also addresses the evolving nature of identity and representation on the Web,
suggesting that the distinction between non-information resources and information
resources may diminish over time.

It suggests that the Semantic Web might naturally evolve from social software
as the need for open and machine-readable data increases. The notion of "semantic

11

holism" is briefly discussed, highlighting the challenges it poses for both machines
and humans. The paper concludes that philosophical engineering, grounded in a
deep understanding of logic and philosophy, could play a vital role in realizing a
"Web of Meaning," despite the open problems and human limitations involved.

This concept is further explored in response to an issue raised by the semantic
web community from T. Berners-Lee (2003) where it is stated that The URI spe-
cification defines URI syntax and establishes that each URI identifies a single re-
source. RDF documents use URIs to identify things and their relationships, where
an RDF statement Subject-Predicate-Object"S-P-O" indicates that the binary rela-
tion P holds between entities S and O, all represented by URIs. The HTTP spe-
cification supports URIs with delegated ownership, publication, and retrieval of
information resources which OWL provides a vocabulary for RDF documents to
describe RDF properties. Also, it is highlighted that W3C Technical Architecture
Group (TAG) advocates for dereferenceable URIs and the publication of relevant
information. This architecture ensures that recipients of an RDF statement can
dereference P to obtain human-readable or machine-readable information about the
asserted relation. The architecture mandates that each URI has a single meaning,
authoritatively defined by its owner, preventing misuse from altering its meaning.
Using a URI in RDF commits to its ontology. The following paragraphs dive into
more implementation-level technical aspects of the semantic web as presented in
the literature.

"At the heart of the Semantic Web are several core technologies: RDF, SPARQL,
and OWL. RDF (Resource Description Framework) provides a flexible way to rep-
resent information about resources in a graph structure using triples. SPARQL,
on the other hand, is a powerful query language designed specifically for querying
RDF data. Finally, OWL (Web Ontology Language) enables the creation of complex
ontologies, allowing developers to define relationships and constraints within their
data models."(Hebeler et al., 2009). This book offers an in-depth exploration of
implementation techniques for the said technologies, which are not covered in this
discussion.

The popular layer cake model of Semantic Web technologies, as illustrated by
Heitmann (2007) can be seen in figure 3. This model is a W3C accepted standard
and serves as a foundational reference in the understanding and development of
Semantic Web applications.

The work by Heitmann (2007) proposes several architectural patterns for Se-
mantic Web applications. These patterns include semantic viewer, semantic portal,
semantic annotation, semantic repository, semantic authoring, web application en-
vironment, and desktop application environment.

The theoretical capabilities of the Semantic Web has been identified through a
review of the influences, design principles, and standards related to the Semantic
Web. Complementing this theoretical basis, an empirical survey was conducted
on 50 applications that utilize Semantic Web technologies. This survey addressed
key challenges in software engineering for the Semantic Web, providing a practical
perspective on the proposed patterns.

Each pattern is described in terms of user interfaces and back-end components,
with examples from the survey demonstrating the implementation of the architec-
ture of each pattern. Additionally, a pattern language for Semantic Web applic-
ations is introduced. This language outlines how to assemble an application by

12

Figure 3: Semantic Web Technology Stack

13

combining patterns, components, and interfaces.
The various architectural patterns listed provide an excellent basis for semantic

web applications, though they are not directly relevant to the scope of this research.
However, the concepts of user interfaces and back-end components derived from
these patterns provide a useful framework for structuring and designing robust
web applications which is a goal of this research.

2.3.1 Semantic Web Vocabularies and Knowledge Bases

Schema.org represents a significant advancement in enhancing web pages with
machine-understandable information that can be processed by major search en-
gines to improve search performance. The work by Patel-Schneider (2014), offers
a comprehensive analysis and formal semantics for schema.org, addressing its in-
complete and sometimes contradictory definitions.

Schema.org is fundamentally a collection of schemas, which webmasters use to
mark up their pages in ways recognized by major search providers such as Bing,
Google, Yahoo!, and Yandex. This markup is critical because it allows search en-
gines to improve the display of search results, making schema.org a vital compon-
ent of the modern web. Unlike other languages used for representing information
on the web, such as RDF and OWL, schema.org provides a simpler taxonomy and
set of ontological specifications organized into a generalization hierarchy.

Schemas are primarily provided as English text on various web pages, with par-
tial mappings into RDF and OWL. However, RDF mapping uses non-RDFS proper-
ties like schema:domainIncludes, making it challenging to determine the full mean-
ing of schema.org constructs.

Patel-Schneider’s paper fills these gaps by offering a thorough basis for schema.org,
proposing a complete and coherent version of what schema.org should be as well. It
provides a pre-theoretic analysis, an abstract syntax, and a formal model-theoretic
semantics for schema.org.

For this research, adhering to schema.org’s framework provides an adequate
basis for ontologies. It ensures RDF compliance while maintaining a cohesive and
well-defined ontology vocabulary, which is crucial for the accurate representation
and retrieval of e-commerce data.

In the field of e-commerce, the annotation of products and services on the web
using Semantic Web technology has shown considerable promise. Further diving
into specific ontologies for e-commerce, according to Hepp (2008), there has been a
significant advancement in developing ontologies for various types of products and
services, such as eClassOWL. However, these advancements alone are not sufficient
to meet the representational requirements needed for e-commerce on the Semantic
Web.

Hepp (2008) further identifies the lack of an ontology that can describe the rela-
tionships between web resources, offerings, legal entities, prices, terms and condi-
tions, and product and service ontologies. He presents the GoodRelations ontology,
which addresses this gap by providing a comprehensive framework to describe typ-
ical business scenarios involving commodity products and services. For instance,
it allows for the specification that a particular website offers mobile phones of a
specific make and model at a given price, that a piano maintenance service is avail-
able for pianos under a certain weight, or that a car rental service operates from

14

multiple branches.
This ontology aims to enhance the ability of consumers and businesses to find

suitable suppliers by using detailed and structured product and service descrip-
tions. Despite the potential of the GoodRelations ontology, this research will focus
on using schema.org to maintain scope control. Schema.org provides a widely-
adopted vocabulary for structured data on the internet, which is essential for the
practical implementation of e-commerce applications. This ontology holds the po-
tential for future expansion of this research through the incorporation of more spe-
cific vocabularies.

2.4 Meta Programming and Compiler Design

This proposal on the Low-Level Virtual Machine (LLVM) by Lattner and Vikram S.
Adve (2004b) aims to standardize the complex process of translating source code
into machine code. In LLVM, high-level source code is represented in a language-
agnostic form known as Intermediate Representation (IR). This abstraction allows
different programming languages to share tools for analysis and optimization be-
fore being converted into machine code specific to a particular architecture.

A compiler built with LLVM can be divided into three main components: the
front-end, the middle-end, and the back-end. The front-end parses the source code
using lexical analysis, transforming it into IR. The middle end then analyzes and
optimizes this IR. Finally, the backend converts the IR into native machine code.

To build a compiler using this system with C++, the process involves several
steps. First, a lexer is created to scan the raw source code and break it into a
collection of tokens such as literals, identifiers, and keywords. Next, an Abstract
Syntax Tree (AST) is defined to represent the structure of the code and the relation-
ships between tokens. Each node in the AST is typically implemented as a separate
class.

Subsequently, relevant LLVM primitives are imported to generate the IR. Each
type in the AST is mapped to a public method called codegen, which returns an
LLVM value object. This object represents a single assignment register, a variable
that can only be assigned once by the compiler.

IR primitives, unlike assembly language, are independent of any specific ma-
chine architecture, which simplifies the process for language developers. The LLVM
optimizer performs tasks such as dead code elimination. Finally, the backend mod-
ule takes the optimized IR and emits object code, which is used for final machine
code generation.

While the initial focus of this promising compiler architecture was primarily on
machine code generation, the evolution of the architecture and its surrounding
ecosystem has expanded its capabilities. It is now feasible to implement a source-
to-source compiler, or more precisely, a transpiler by creating a custom backend as
documented by LLVM Documentation (2024). The development of such a transpiler
constitutes the objective of the proof-of-concept phase of this research.

Looking into more relatively recent research with LLVM which aligns with the
goals of this research the following work is noteworthy. Zakai (2011) Emscripten,
an LLVM-to-JavaScript compiler, enabling the execution of code written in lan-
guages like C, C++, and Python on the web. These studies collectively highlight
LLVM’s versatility in code generation and optimization across different program-

15

ming languages, suggesting its potential applicability for generating TypeScript
code from custom languages. Nagaraj et al. (2020) has developed a compiler for
Scilla, a smart contract language, targeting LLVM-IR, achieving significant per-
formance improvements. Racordon (2021) has provided a tutorial paper on trans-
lating abstract syntax trees to machine code using LLVM, focusing on LLVM IR and
its transformation into optimized machine code with a sample language, named
Cocodol.

Darius (2010) in "Expectations for a Fourth Generation Language" paper notes
that many 4GLs process code through an interpreter that links to compiled code.
Code generators expand higher-level code into lower-level code for processing or
compiling.

Expectations from 4GLs can be categorized under productivity, system perform-
ance, ease of use, and functionality. The appropriate mix of language types in a
4GL depends on current hardware, software technology, and the developer’s ex-
perience. This author further suggests scoring a 4GL based on how well it meets
specific expectations, which should be weighted according to the needs of the pro-
gramming environment. Understanding the different types of 4GLs is essential for
making informed decisions when choosing a language, balancing your needs with
the available options.

Darius (2010) mentions that direct compilers for 4GLs are costly and complex,
which could be a barrier to when it comes to the evolution of the proposed language,
which could be taken into account in future research. However, with modern tools
like LLVM, this complexity could be significantly reduced.

2.5 Alternatives including Artificial Intelligence(AI) based ap-
proaches

The paper by Kaluarachchi and Wickramasinghe (2023) offers a systematic liter-
ature review on automatic website generation based on 68 sources, categorizing
the approaches into three primary strategies: example-based, mock-up-driven, and
artificial intelligence-driven. Each of these strategies represents a distinct meth-
odology in achieving the automation of web design, addressing different aspects of
the design and development process.

Mock-up-driven website generation revolves around transforming visual repres-
entations of a website, such as wireframes or mock-ups, into functional code. The
core challenge in this strategy is pointed out as the accurate translation of high-
fidelity web application designs into functional and responsive interfaces.

The example-based approach to website generation has gained popularity among
non-professional designers and developers who rely on pre-designed templates to
create websites. This approach is particularly appealing because it lowers the
barrier to web development, making it accessible to individuals with limited tech-
nical expertise. However, the authors note that the customization options available
within these templates are often limited.

Artificial intelligence (AI) has become a transformative force in web develop-
ment, driving the automation of website design through intelligent algorithms. AI-
driven website builders ask users a series of questions to determine their prefer-
ences regarding layout, color schemes, and content, then automatically generate
a website tailored to these preferences. However, the primary challenge in this

16

approach is identified to be the improvement of the AI’s ability to understand and
interpret user preferences accurately, especially in cases where the user’s require-
ments are complex or ambiguous. The conclusions drawn by the authors in this
regard appear to be significantly influenced by the findings of Muthazhagu and B
(2024).

In a subsequent work by Kaluarachchi and Wickramasinghe (2024) presents a
proof of concept utilizing the AI approach for webpage generation. This process
involves three main steps: GUI element detection, classification, and code gen-
eration. First, image processing techniques are used to detect atomic web GUI
elements from a mock-up design artefact of a real-world website. Then, a Convo-
lutional Neural Network (CNN) is trained to classify these extracted web GUI ele-
ments into domain-specific categories, such as headings, paragraphs, and images.
Typically, a Graphical User Interface (GUI) is represented in code as a hierarchical
tree, with nested elements constructing a tree structure. A recursive algorithm
is proposed in this approach to construct the appropriate Document Object Model
(DOM) hierarchy for a website by recursively grouping classified web GUI elements.
Finally, the constructed DOM is converted into "native code".

Although the direct applicability of the above work is beyond the scope of this
research, it sheds light on the potential for further automation that could be integ-
rated into building a more extensive and comprehensive ecosystem for automated
web application generation.

Moving ahead with the prospect of using AI-based codegeneration, in recent
years, many, especially those who are new to the industry have expressed concerns
about whether AI-driven code generation will replace developers and Model Driven
Engineering. The following literature provides insights that help address these
concerns and curiosity.

The analysis of AI-assisted code generation tools, specifically GitHub Copilot,
Amazon CodeWhisperer, and OpenAI’s ChatGPT, as presented by Yetiştiren et al.
(2023) demonstrates their role in enhancing productivity by automating code gen-
eration tasks. However, these tools are not yet fully dependable for producing
correct code consistently. The study reveals that ChatGPT, GitHub Copilot, and
Amazon CodeWhisperer generate correct code 65.2%, 46.3%, and 31.1% of the
time, respectively, indicating a significant margin for error even though the focus
is on code completion.

While GitHub Copilot and Amazon CodeWhisperer have shown improvements in
newer versions—18% for GitHub Copilot and 7% for Amazon CodeWhisperer—these
advancements do not entirely resolve their shortcomings. Additionally, the ana-
lysis shows that the average technical debt, considering code smells, varies slightly
across the tools: 8.9 minutes for ChatGPT, 9.1 minutes for GitHub Copilot, and 5.6
minutes for Amazon CodeWhisperer.

This data suggests that while these tools offer considerable productivity boosts
by automating parts of the coding process, they should not be solely relied upon.
Developers still need to review and refine the generated code, especially to address
issues related to correctness and maintainability. Burak Yetiştiren et al. argue
similarly, pointing out that although code generation tools can reduce time spent
on repetitive coding tasks, manual intervention is still essential to correct errors
and handle technical debt.

The analysis by Nguyen Duc et al. (2023) emphasizes the transformative role

17

of AI tools in software development, particularly highlighting how tools such as
GitHub Copilot, OpenAI Codex, DeepCode, Amazon CodeGuru, TabNine, Kite, and
IntelliCode assist developers in generating code, automating tasks, and improving
productivity

Nguyen Duc et al. (2023) further notes taht these AI tools excel at addressing
specific problems such as code completion, bug detection, and performance op-
timization, thus streamlining various aspects of software development. They serve
as productivity boosters by automating repetitive tasks, providing intelligent code
suggestions, and detecting vulnerabilities.

Furthermore, it is crucial to note that these tools primarily solve coding-related
problems as presented through the above analysis, rather than tackling more com-
plex challenges like knowledge modeling and meta-programming, which require
deeper contextual understanding and reasoning. The paper’s focus remains on gen-
erative AI’s capacity for enhancing code generation, but it also acknowledges that
broader issues, such as the accurate modeling of knowledge and the integration of
AI-generated code into larger systems, remain largely unaddressed.

The essence of the above works establishes that while AI-driven code generation
has significantly advanced, tools such as GPT models or automated code generat-
ors, serve primarily as assistive technologies. They help automate repetitive tasks,
optimize workflows, and even suggest possible solutions, but they lack the deep
contextual understanding and problem-solving abilities of a skilled developer. AI-
generated code still requires supervision, verification, and integration into larger
systems, tasks that demand human insight and expertise.

In the realm of model-driven engineering, the situation is similar. MDE by defin-
ition focuses on high-level abstractions to automate code generation from mod-
els, increasing productivity and reducing low-level programming efforts. However,
this approach complements the developer’s work rather than replaces it. Even be-
fore AI-based code generation became mainstream as explained by authors such as
Schmidt (2006), automation and AI may assist many aspects of software production,
yet developers and architects are still responsible for defining models, managing
system architecture, and ensuring that the generated code aligns with the inten-
ded functionality. However in the distant future, this may change with the rise of
Artificial General Intelligence and Artificial Super Intelligence.

Furthermore, most of these popular tools focus on addressing the problem of
code generation, whereas this research tackles knowledge modeling and meta-
programming challenges rather than code generation itself. For proof-of-concept
(PoC) implementation, LLVM is utilized to handle the code generation aspect. This
subsection addresses any curiosity readers may have regarding the distinction
between code generation tools and the broader scope of this research.

3 Methodology

3.1 Language Design

The proposed new language is inspired by the philosophy of Web 3.0 and Semantic
Web concepts in particular. It leverages many of the benefits derived from this
perspective, without being solely confined by existing standards and frameworks.

18

Instead, it draws inspiration from them to create a more flexible and innovative
approach. In terms of standards specific focus in given to RDF compliance through
RDFa.

The language introduced in this paper is named LMTH: Language for Modeling
Thematic Hyperstructures; a novel meta modeling language for the web.

The following sections provide a detailed overview of the nature and more spe-
cific definitions of the language.

3.1.1 Nature of the Language

The following definitions describe the nature and categorization of the language
LMTH as a Modeling Language: LMTH is a specialized language created to

describe web applications. It allows users to define and manipulate complex data
models, making it ideal for applications that require detailed representation of web
applications as solutions to real world problems.

LMTH as a Meta Programming Language: As a meta programming language,
LMTH allows for the creation of programs that can generate or manipulate other
programs or themselves. This capability provides a high degree of flexibility and
abstraction, enabling developers to write more efficient and reusable code.

LMTH as a Fourth-Generation Language (4GL): LMTH could be classified as
a fourth-generation language, which means it is designed to be more user-friendly
and closer to human language compared to third-generation languages (3GLs) such
as javascript. As a 4GL, this language offer higher-level programming constructs
and simplified syntax making it easier to create complex applications with less code.

LMTH as a Domain-Specific Language (DSL): The term DSL is sometimes used
to refer to languages addressing the needs of a narrower business domain. How-
ever, meta modeling languages such as WebML and WebDSL are identified as
domain-specific languages in the literature. Therefore, it is suitable to categorize
LMTH similarly.

Additionally, the following characteristics of LMTH are also noteworthy:
Textual Language: Unlike many meta modeling languages mentioned in the lit-

erature, which are predominantly visual, LMTH is a textual language. One of the
primary reasons for proposing this language is to leverage the benefits of text-based
programming, which is familiar to most programmers in their everyday work.

Declarative: All the rules defined in the LMTH grammar are declarative. This
means that the language focuses on what the outcome should be rather than how
to achieve it.

Turing Complete: Although the grammar defined in LMTH is declarative and
does not fulfil the requirements for Turing completeness, LMTH, being a superset
of TypeScript, includes rules that fulfil this. While this has no practical value for the
current discussion, it may have future implications, as there is a tendency for de-
clarative languages to evolve into the imperative paradigm over time, as observed
in the field of database query languages as presented by TypeDB (2024).

Less Opinionated: Being based on TypeScript, LMTH allows for multiple ways
to achieve the same outcome. For example, you could define a model directly as a
value or assign it to a named variable/constant and then assign it to the model. A
clear example of this flexibility can be seen in the user model example.

19

Figure 4: Hierarchical Overlap of LMTH, TypeScript and JavaScript Syntax and
Features

The following section details the language definitions. Built on top of TypeScript,
LMTH inherits all of TypeScript’s rules. Also note that although the rules are
presented in discrete snippets for clarity, they collectively describe a single, co-
hesive language.

3.1.2 Rationale for the choice of TypeScript

Initially, this research was planned to define the language as a superset of JSON.
However, the authors realized that many expressive capabilities, such as custom
typing, were already available in TypeScript, eliminating the need to reinvent the
wheel. This is illustrated alongside other related grammar in 6.

Defining LMTH as a superset of TypeScript, offers several advantages:
Familiarity: Although not a W3C standard, TypeScript is widely used in the

industry and well-known by many developers, which reduces the learning curve for
those adopting LMTH.

Reduced Development Effort: The availability of TypeScript grammar definitions
for LLVM as open source significantly lowers the development effort required for
the transpiler.

IDE Support: TypeScript has strong support from various IDEs, eliminating the
need to develop new syntax highlighting plugins. However, further enhancements
could be developed in the future to provide additional support in this regard.

Modular Code Organization: TypeScript allows developers to easily organize
code into modules across multiple files, which is beneficial for maintaining complex
projects with enhanced DX.

20

3.2 Language Specification

This section outlines the proposed grammar of LMTH, serving as a comprehensive
guide for developers building solution web applications, as well as for compiler
developers. Additionally, it functions as a reference for researchers who wish to
extend or derive new versions of the language. While the content is valuable to
both academics and practitioners, given that this work is a research thesis, there is
a stronger emphasis on its academic and research perspective. A separate public
website, dedicated exclusively to the technical aspects and future developments, is
available, with links provided under Appendix A.

When defining the grammar of the language, two leading established stand-
ards are considered, as presented by Sebesta (2018) in "Concepts of Programming
Languages": Backus-Naur Form (BNF) and Extended Backus-Naur Form (EBNF).
EBNF notation is chosen due to its relative simplicity, whereas BNF tends to be
more verbose. Additionally, it is important to note that various sources present dif-
ferent variants of EBNF notation. In this thesis, the conventions provided in the
aforementioned text have been adopted.

Since LMTH is a superset of TypeScript, the primitives and syntax of TypeScript
are not reiterated here. This document assumes the syntax of TypeScript major
version 5. Given that LMTH is dependent on the syntax of only a subset of well-
established TypeScript primitives, future major versions are less likely to introduce
breaking changes. However, if you are referencing this document a significant time
after its publication, it may be necessary to consider updates to account for any
changes in future TypeScript versions.

Two versions of the novel language are presented here: LMTH 1.0 and LMTH
1.1. The accompanying default transpiler is currently capable of compiling models
that are compliant with the LMTH 1.0 grammar. Additional specific rules, identified
as necessary, have been introduced in LMTH 1.1; however, the transpiler is not yet
able to generate code compliant with these updates. Given that LMTH is forward-
compatible within the major version, models developed based on LMTH 1.0 can be
extended to comply with LMTH 1.1 in the future. This versioning is based on the
defintions by Preston-Werner (2013).

Meta models created with LMTH consist of two major segments. One is the
common domain model, included as part of the standard library under the mod-
ule named ’model-of-reality.’ This component represents the problem space. The
other is the solution model, which developers are responsible for creating. This
represents the solution space. Each of these segments are discussed in detail in
the following sub sections.

3.2.1 Model of Reality

It is essentially an extensible type library written in typescript belonging to various
problem domains, which provides an ontology vocabulary.

The domain model represents a structured abstraction of reality, designed to
represent the problem space of various scenarios accurately, capturing complex
relationships and entities within a given context. Modeling such a comprehensive
representation of reality is inherently challenging due to the intricate and dynamic
nature of real-world systems.

21

Figure 5: Domain model as a common basis

This vocabulary of ontologies provides a standardized structure applicable to a
wide array of web applications. A key aspect of its efficacy lies in its adherence
to Schema.org schemas. Schema.org vocabularies are widely adopted by industry
leaders such as Google, Microsoft, Pinterest, and Yandex, enabling rich and extens-
ible user experiences across various platforms.

The domain model is included as a type library within the LMTH Standard Lib-
rary, in a module named ‘model-of-reality‘. This module encompasses a set of ex-
tensible types designed to facilitate broad applicability and customization.

Schema.org features approximately 1,000 schemas, but this model currently
implements 35 schemas as a proof of concept. This initial implementation demon-
strates the potential for scalability and extensibility, allowing for the incorporation
of additional schemas to further enhance the model’s comprehensiveness and utility
as the novel language evolves. For schemas which are not concretely implemented
as a type within ‘model-of-reality‘ module a placeholder type is defined that accepts
values of ’any’ type. This ensures consistency and forward compatibility as the
language evolves to include the definitions of more schema as types.

Attributes within this model are inheritable based on Object-Oriented Program-
ming (OOP) principles, contributing to a vast array of relevant attributes being
available for use in a cohesive standard. Developers utilizing the library can use
these type directly when defining the data model or extend them to better fit their
specific needs. This is demonstrated in the subsequent sections. Given that the
model is based on TypeScript, it allows developers to use existing classes of the
library and add additional attributes as required to suit particular scenarios. While
aliasing attributes is currently possible at the UI level, it is not supported at the
data modeling level.

22

None of the existing modeling languages provides a systematic method for dis-
tinctly separating the solution space from a shared problem space as an abstrac-
tion. While this concept is well-established within the field of knowledge engineer-
ing, model-driven web engineering lacks languages and tools that incorporate such
an approach. Even theoretical proposals in the literature often focus on applying
adapters or bridges rather than developing a unified model. This unified model is
a critical factor in achieving compliance with Web 3.0’s semantic web standards,
thereby facilitating the creation of more seamless and interoperable web applica-
tions.

In this context, the model is maintained as a type library rather than being
implemented through interfaces or classes. Importantly, no special new grammar
rules are required, as the approach leverages TypeScript. Although the model may
appear verbose due to its foundation in the schema.org library, it is important to
note that not all fields will be applicable in every scenario.

In the future, the compiler can be optimized to omit unused fields without com-
promising the essential semantic descriptions. This optimization would reduce the
size of the generated code, thereby enhancing efficiency.

Example of a Semantic Type for Event: ’Thing’ is also shown for reference

1 type SemEvent = Thing & {
2 about?: Thing
3 actor?: Person
4 aggregateRating?: AggregateRating
5 attendee?: Organization | Person
6 audience?: Audience
7 composer?: Organization | Person
8 contributor?: Organization | Person
9 director?: Person

10 doorTime?: DateTime | Time
11 duration?: Duration
12 endDate?: Date | DateTime
13 eventAttendanceMode?: EventAttendanceModeEnumeration
14 eventSchedule?: Schedule
15 eventStatus?: EventStatusType
16 funder?: Organization | Person
17 funding?: Grant
18 inLanguage?: Language | Text
19 isAccessibleForFree?: Boolean
20 keywords?: DefinedTerm | Text | URL
21 location?: Place | PostalAddress | Text | VirtualLocation
22 maximumAttendeeCapacity?: Integer
23 maximumPhysicalAttendeeCapacity?: Integer
24 maximumVirtualAttendeeCapacity?: Integer
25 offers?: Demand | Offer
26 organizer?: Organization | Person
27 performer?: Organization | Person
28 previousStartDate?: Date
29 recordedIn?: CreativeWork

23

30 remainingAttendeeCapacity?: Integer
31 review?: Review
32 sponsor?: Organization | Person
33 startDate?: Date | DateTime
34 subEvent?: Event
35 superEvent?: Event
36 translator?: Organization | Person
37 typicalAgeRange?: Text
38 workFeatured?: CreativeWork
39 workPerformed?: CreativeWork
40 }
41

42 type Thing {
43 additionalType?: Text | URL
44 alternateName?: Text
45 description?: Text | TextObject
46 disambiguatingDescription?: Text
47 identifier?: PropertyValue | Text | URL
48 image?: ImageObject | URL
49 mainEntityOfPage?: CreativeWork | URL
50 name?: Text
51 potentialAction?: Actios
52 sameAs?: URL
53 subjectOf?: CreativeWork | Event
54 url?: URL
55 }

The choice to use the intersection type (‘&‘) rather than union type (‘|‘) is based
on the fact that if there are any mandatory fields from a supertype as well as a sub-
type both must be enforced and the specific sports-related properties encapsulated
in the subtype. For instance in the given example it guarantees that any object
typed as ‘SportsEvent‘ will have a comprehensive set of attributes, encompassing
general event details like ‘id‘, ‘name‘, and ‘startDate‘, as well as sports-specific de-
tails such as ‘awayTeam‘, ‘competitor‘, ‘homeTeam‘, and ‘sport‘. This is crucial for
maintaining data integrity and completeness, as it prevents the creation of objects
that lack essential information.

On the other hand, using a union type would work however it would allow the
creation of objects that only fulfill one of the types, potentially leading to incom-
plete data structures that lack critical sports-specific or event-specific properties.
Therefore intersection type was chosen for subtyping within the type library.

1 type SportsEvent = SemEvent & {
2 awayTeam?: Person | SportsTeam
3 competitor?: Person | SportsTeam
4 homeTeam?: Person | SportsTeam
5 sport: string | URL
6 }

24

3.2.2 Solution Model

Background :
The solution model serves as the root level model for individual applications and

the aliases ’application’ or ’app’ can also be used to define this model. This model
represents the solution space. Nested within this model are sub models that cover
different aspects of the application solution. These nested models are discussed in
detail later in this section. Developers who intends to develop a web application as
a solution to a real world problem would get started by defining this model.

Model Definition : There are three types of attributes: Required, Optional,
and Custom.

Required Attributes:
By definition, required attributes must be initialized. For the solution model, the
required attributes include:

• name: The name of the solution application.

• vocabulary: There are various standards and vocabulary providers. This re-
search is primarily based on schema.org, but flexibility is provided to change
this in the future.

• language: Multiple languages are supported here, similar to the “inLan-
guage” definition in schema.org. This attribute can be a string or a language
code. Automatic translation is not considered; this attribute is mandatory to
ensure descriptiveness.

Optional Attributes:
Optional attributes may be initialized, but are not required. These include:

• title: A human-friendly title for the application.

• version: It is recommended to use semantic versioning standards. However,
this is not enforced by the grammar in versions 1.0 and 1.1.

• author: This could be an individual or an organization.

In addition to the explicitly defined attributes above, the following attributes,
based on schema.org/WebSite, are also included in the language with appropriate
code mapping templates. The data types and rules align with the Schema.org defin-
itions.

Once a solutionModel object is created, it should be set as solution, application,
or app in solution.ts. Compilation will start from this point and recursively ref-
erence the nested models, effectively building a parse tree during implementation.
Each rule may optionally end with a semicolon, although this is not explicitly spe-
cified for each rule. Also note that all primitive names are case-sensitive.

Grammar

⟨LMTH⟩ ::= SolutionModel = { FieldList }

⟨FieldList⟩ ::= Field (, Field)*

25

⟨Field⟩ ::= (GeneralField | AuthorField)

⟨name⟩ = name:, string;

⟨vocabulary⟩ = vocabulary:, string

⟨language⟩ = language:, (string | languageObject)

Rules for the optional fields

⟨title⟩ ::= title:, string;

⟨version⟩ ::= version:, (semVersionObject | string)

⟨author⟩ ::= author:, (organizationObject | personObject | string)

alias : SolutionModel == ApplicationModel, SolutionModel = App, Solution-
Model

Example :

const application = {
name: "Score Board" ,
t i t l e : "Optionally overrides name − ${{pagename}}",
version : "0.0.0" ,
vocabulary : "Schema. org" ,
author : {

name : ’ ’ ,
l ink : ’ ’

} ,
data : [] , / / including static
processes : [] ,
ui : [] ,
users : []

}

Special Notes : If custom attributes are defined, the corresponding templates
must be provided for code generation; otherwise, they will be ignored during the
compilation stage. This pattern recurs for nested sub-models within the application
model.

It is important to inform developers who may reference schema.org or WebML
that the exact models used here are not direct replicas but rather inspired by them.
Therefore, it is crucial to note the differences outlined below to avoid any confusion.

A notable deviation from the schema.org ontology for ’WebSite’ is the omission
of the "audience" attribute, which has been relocated to the user model. Permis-
sions are also associated with this attribute, as specific restrictions, such as age-
based filtering, are more logically placed within the user model. All other models
are nested within the solution model and adhere to the format of Required, Op-
tional, and Custom attributes.

These fields define the details necessary for generating the web application.
Every other model required for this purpose is nested within the solution model
and is part of the overall grammar. The following subsection discusses the sub-
models proposed in this version of the language and potential extensions for future
iterations.

26

3.2.3 Sub Models of the Solution Model

This section explores the sub-models that must be defined within the solution model,
which are then utilized to generate code for the web application solution. Each
sub-model addresses a distinct concern and may have interdependencies with other
models, which can be specified according to the applicable rules. These sub models
are :

• Data Model

• Process Model

• UI Model

• User Model

• State Model

In LMTH, certain models found in other alternatives are incorporated, though
in a modified form within the models described above. This includes

• Business Logic Model,

• Presentation Model

• Interaction Model

• Navigation Model

• Hypertext Model

However, the following models which are mentioned within literature on MDWE
are excluded from the scope of this thesis and could be considered for future re-
search:

• Internationalization and Localization Models

• Personalization Model

• Deployment Model

• Adaptation Model

• Context Model

• Security Model

• Integration Model

27

3.2.4 Data Model

Background
The data model is defined as an array of classes. It is crucial to emphasize that

this array consists of classes rather than objects; adding objects to the array will
result in a compilation error. Classes defined within the model-of-reality, custom
classes based on real-world model-of-reality as boilerplate, achieved through the
implements keyword as well as independent classes can be used in this data model.

For ensuring standard compliance, including semantic web standard compli-
ance, and to fully leverage the capabilities of the Linked Model of the Human
Thought (LMTH), it is strongly recommended that each class implements a cor-
responding type from the model of reality library. Any classes that are not based
on the types in the domain model are still valid and do not result in any error but
do not ensure full standard compliance at the code generation stage. Using the
type library of the domain model guarantees adherence to established standards,
promoting interoperability and maximizing the utility and effectiveness of the data
model within various applications and systems as intended.

Free Hanging Classes: This term refers to classes that do not implement any
class within the model of reality. Nominally, this can be avoided by implementing
the ’Thing’ class, which is the most generic root-level class of the entire library.
However, doing so may not add significant real value.

Since the default compiler for LMTH generates Angular framework code for
the frontend, the classes are directly mapped to classes in the frontend applica-
tion. The backend application generated by the default compiler is based on Ex-
press.js, where these classes are mapped to Mongoose schemas. If the backend
code were generated in a framework that supports TypeScript, such as NestJS, this
approach would be even more elegant. NestJS offers a robust, modular architec-
ture that aligns well with TypeScript, providing enhanced type safety and developer
productivity. Adopting NestJS for the backend would streamline the development
process but also enhance maintainability and scalability, offering a cohesive and ef-
ficient development experience across the entire stack. Researchers and contribut-
ors with exprience in Nest JS or other similar typescript based backend frameworks
are encouraged to look into this implementation.

Another meaningful and valuable future enhancement to this data modeling ap-
proach would be the development of a code generator capable of producing LMTH-
compatible data models directly from class diagrams or entity-relationship (ER)
diagrams.

Currently, there exists a plugin that facilitates the generation of TypeScript
classes, which can be adapted to fit the data model in an LMTH solution with min-
imal effort. Use of such tools in this context is encouraged and it would significantly
reduce manual coding efforts, minimize errors, and promote adherence to LMTH
standards, making it an invaluable asset for developers and data architects work-
ing within this framework. However efforts should be given to ensure compatibility
with the standardized types provided.

There are various proposals in the literature, some of which suggest using ER
diagrams in combination with WebML, while others recommend class diagrams.
These methods could be employed to automate database generation, with the data
model being a property of the solution model.

28

The data model is typically defined as classes, facilitating a natural represent-
ation that is familiar to developers. This approach can even encompass an entire
class diagram, which can be mapped accordingly.

Although not a one-to-one mapping, some parallels can be drawn where applic-
able. Class diagram to LHTH converters may be useful for those who wish to utilize
class diagrams in this context.

In this research, the authors experimented with several representations, includ-
ing custom JSON definitions for each and unique representations. However, these
experiences led to a shift toward a TypeScript-based grammar, allowing for the use
of existing classes and types without the need for redefinition.

Grammar

⟨data_model⟩ ::= data : [⟨classes⟩]

⟨classes⟩ ::= ⟨class⟩ , ⟨class⟩

⟨class⟩ ::= ⟨identifier⟩

Examples

class SpecializedOrder extends Order{
extra : string

}

const application = {
data : [Product , Order , SpecializedOrder] ,
. . .

}

3.2.5 Process Model

Background
The process model within LMTH defines a set of business processes that can

take zero or more inputs and produce zero or one output of specific data types.
This model intentionally excludes fundamental operations such as CRUD (Create,
Read, Update, Delete) operations, derived data, mapped data, and session-related
set and get operations. This exclusion is a key feature of LMTH’s simplicity, dis-
tinguishing it from its predecessors, which required detailed modeling of each of
these operations.

The process model in this context represents the operations or logic component
of the solution web application, offering a more abstract view of the various opera-
tions involved. However, it’s important to note that the detailed inner workings or
specific logic of each process are not generated within the scope of this research.
Instead, the process model serves as a framework that can be mapped to control-
lers and function or method stubs, guided by the input and output types required
for both backend and frontend execution, or a combination of both, depending on
the execution type. This mapping is carried out using predefined templates.

A BPMN-based code generator could potentially be adapted for this purpose.
Additionally, it’s important to note that the current approach is used to generate

29

process views that communicate with a REST API using AJAX. It generates a stub
for an Angular service on the frontend and corresponding endpoints within the Ex-
press.js application on the backend. The data types are consistently maintained
from end to end. Additionally, it is possible to exclude the backend endpoint and
the corresponding stub by marking the process as a frontend process, where ap-
plicable. Alternatives such as WebSockets, WebRTC, webhooks, and similar techno-
logies are not supported at this time. However, the language could be extended in
the future to represent these options and update the compiler accordingly, though
this would require substantial effort. It’s also worth mentioning that these features
are not included in LMTH 1.1, highlighting the significant amount of work involved
in such an extension. This extension could be an independent research on it’s own.

Model Definition :
The process representation includes the following key elements:

• Input: This represents the data required for the process as an array of data
types, which could include classes defined in the data model, such as a Person
or Product.

• Output: The process produces a single data type as output. This output is
returned from the controller and can be mapped to an Process type unit,
which is explained in the subsequent section. Similar to the input, this could
include classes defined in the data model, like a Person or Product.

• Precondition Function (preconditionF): A function that serves as a pre-
condition check before executing the process.

• Cacheable: This indicates whether the data should be cached. Currently,
if this is set to true, only 10% of interactions will trigger an API call. This
behavior could be customized in the future by defining custom caching rules.

• Controller: A string representing the categorization of the process. For ex-
ample, in the current implementation, if the value is set to "Billing", the gen-
erated function will be added to a controller named "BillingController".

Grammar (LMTH 1.0) :

⟨process_definition⟩ ::= process = { ⟨process_body⟩ }

⟨process_body⟩ ::= executionType : ⟨execution_type⟩
| in : [⟨input_list⟩]
| output : ⟨data_type⟩
| preconditionF = ⟨function⟩
| cacheable : ⟨boolean⟩
| controller : ⟨string⟩

⟨execution_type⟩ ::= ’frontend’ | ’backend’

⟨input_list⟩ ::= { ⟨io_type⟩ , ⟨io_type⟩* }

⟨io_type⟩ ::= ⟨class_type⟩ | ⟨data_type⟩

30

Grammar (LMTH 1.1) : Primary differences here is the addition of caching rules
function and named parameters.

⟨process_body⟩ ::= executionType : ⟨execution_type⟩
| in : [⟨named_param⟩]
| output : ⟨data_type⟩
| preconditionF = ⟨function⟩
| cacheable : ⟨boolean⟩
| cachingRules = ⟨function⟩

⟨named_param⟩ ::= { name : ⟨string⟩ , type ⟨io_type⟩ }

Example :

1 const checkoutProcess = {
2 executionType: ’backend’,
3 in: [Product[], User],
4 output: Invoice
5 preconditionF: function(cart: Cart, user: User): boolean { return

true },
6 cacheable: true
7 }

3.2.6 UI Model - Presentation

In LMTH, there is a sub-model called the UI model. This includes the elements of
presentation model and the navigation model from WebML, and it is also strongly
inspired by IFML. This section focuses on how the presentation aspects of the solu-
tion web application is represented within the meta-model. Following section will
focus on navigation aspects.

It is beneficial to consider presentation and navigation as a unified models as
they share the same ’concern’ as suggested by (Gamage, 2017). An integral part
of this model is the concept of a unit. The entire UI model is comprised of various
units placed inside views and pages. The concepts of views and pages, which are
concerned with the navigation part of this model, are discussed in detail in the next
chapter. LMTH proposes five types of units, namely:

• IData Units (three variants)

• Process Units

• Service Units

• CMS Units

• Link Units

• Menu Units

Following grammar rules define the structure of a common data unit. All the
data units are extension of UIUnit and therefore shares has the same.

31

⟨Unit⟩ ::= {, ⟨UnitType⟩, { ⟨UnitAttrib⟩ }, }

⟨UnitType⟩ ::= IDataSingle
| IDataMulti
| IDataIndex
| Process
| Link
| Menu
| Service
| CMS
| Static

⟨UnitAttrib⟩ ::= ⟨TemplateList⟩
| ⟨ClassList⟩
| ⟨StyleList⟩
| ⟨ContainerElementAttrib⟩

⟨ContainerElementAttrib⟩ ::= containerElement : ⟨String⟩ @v1.1

⟨TemplateLabel⟩ ::= templateLabel : ⟨String⟩

⟨ClassList⟩ ::= classes : ⟨StringArray⟩

⟨StyleList⟩ ::= styles : ⟨StringArray⟩

UnitType is a mandatory attribute for all units and would determine the manner
in which it is rendered on the frontend applcation.

Each unit is mapped to a template of an Angular component by default in the
compiler. It is essential to establish suitable mappings when integrating with new
frameworks or handling variations.

The template utilized can be overridden by specifying the optional templateLabel
attribute. A concrete example of this process is provided in the Implementation
chapter.

The classList attribute, which is optional, specifies a set of classes to be ap-
plied to the unit.

The styleList attribute, also optional, allows the application of specific styles
or a collection of styles to the unit. At the implementation level, this is typically
achieved by adding additional classes. However, presenting it as an alternative
attribute offers greater clarity.

In version 1.1, the optional containerElement attribute was introduced, per-
mitting the override of the default container type element of the component. By
default, this element is a <div> or any element specified in the template for unit
generation. This attribute enables the use of any semantic element type, such as
<header>, <footer>, <nav>, <article>, <section>, <aside>, <details>, <figure>,
<mark> or <summary>.

IData Units
Background
This would be the most common type of units on most web applications. In WebML

32

we find Data Units, Multi Data Units and Index Units as publish units and in IFML
we find «detail» and «list> units.>

In the context of LMTH, Interactive Data Units (IDUs) are categorized into three
distinct types: IData, IMultiData, and IIndex Units. These categories differ primar-
ily in their rendering methods and the content they display. Importantly, IDUs
integrate functions that, in WebML, would typically require multiple units. For ex-
ample, various operation units in WebML, such as those handling edit and delete
functionalities, have been streamlined into attributes of the IDUs.

User interactions within the system can trigger AJAX requests to the backend,
with the results subsequently displayed in a different unit on the frontend. This pro-
cess is straightforward, adhering to a simple request-response model without the
need for explicit data flow modeling. The system’s design is technology-agnostic,
with the default compiler automatically generating a corresponding function within
the Angular service and an endpoint on the Express backend. This backend code
facilitates querying or executing data operations on a MongoDB database. Addition-
ally, the data unit can be configured to render directly on the frontend, bypassing
the need for an AJAX request to the backend.

The IDUs in LMTH draw strong inspiration from Publish Units in WebML, par-
ticularly in their conceptual approach, though they have been named differently to
avoid confusion for those who are familiar with the terminology used in those other
meta modeling languages. This model serves to define the elements with which the
user interacts, highlighting opportunities for semantic web compliance and access-
ibility compliance. These aspects are vital in aligning with semantic web standards.
The following section outlines the grammar that governs this model.

Grammar (LMTH 1.0)

⟨conditions⟩ ::= ⟨string⟩

⟨model⟩ ::= ⟨string⟩

⟨oid⟩ ::= (⟨string⟩ | ⟨function⟩)

⟨param⟩ ::= ⟨string⟩

⟨fields⟩ := [dataFieldList]

⟨classes⟩ := [stringList]

⟨dataFieldList⟩ := (⟨fieldName⟩ | labeledField) (, (⟨fieldName⟩ | labeledField))*

⟨labeledField⟩ := { name : fieldName label : boolean }

⟨fieldName⟩ := string

⟨editMode⟩ := boolean

⟨preloadBehaviour⟩ := string

⟨preloadVolume⟩ := number

33

⟨editable⟩ := boolean

⟨deletable⟩ := boolean

⟨deleteModel⟩ := boolean

⟨searchable⟩ := boolean

⟨searchableFields⟩ := [stringArray]

⟨sortable⟩ := boolean

⟨sortableFields⟩ := [stringArray]

⟨filterable⟩ := boolean

⟨filterableFields⟩ := [stringArray]

⟨paginationMode⟩ := paginationModeChoice

⟨limit⟩ := number

⟨links⟩ := [linkUnitArray]

⟨typeChoice⟩ ::= IDataSingle | IDataMulti | IDataIndex

⟨dataSource⟩ ::= DB | API | SESSION

⟨paginationModeChoice⟩ ::= paginated | scrollable | none

⟨linkUnitArray⟩ ::= linkUnit (, linkUnit)*

Following are the extended grammar rules for future implementation. With
these new grammar rules the oid, params and conditions can be dynamically cal-
culated based on a function which allows for further processing of user input or
use additional logic in determining the data to be displayed. Additional data could
be passed to the data source such as configuration settings or personalization set-
tings. Custom definitions of preload animation and delete modal through a custom
function is also facilitated through this. Also custom templates can be defined at
the field level.

Grammar (LMTH 1.1)

⟨oid⟩ ::= (string | function)

⟨conditions⟩ ::= (string | function)

⟨param⟩ ::= (string | function)

⟨preloadBehaviour⟩ := (string | function)

34

⟨dataSource⟩ ::= { type : ’string’ }

⟨deleteModel⟩ := (string | function)

⟨dataSource⟩ ::= { ⟨keyValuePair⟩ , ⟨keyValuePair⟩ }

⟨labeledField⟩ ::= { nameField (, showLbl)? (, template)? (, mappingFunc-
tion)? }

⟨nameField⟩ ::= "name" : string

⟨showLbl⟩ ::= "label" : boolean

⟨template⟩ ::= "template" : string

⟨mappingFunction⟩ ::= function

⟨keyValuePair⟩ ::= ⟨key⟩ : ⟨value⟩

⟨key⟩ ::= ’string’

⟨value⟩ ::= ’string’ | ’number’ | ’boolean’ | ’null’

linkUnit ::= /* Define as per the structure of LinkUnit */
Exampless
The following LMTH code snippet shows the definition of a IData Unit displaying

a single item.

1 {
2 type: IDataSingle
3 model: "Product"
4 param : prodId
5 dataSource: {
6 type: DB
7 }
8 fields : [’image’, ’name’, ’vegan’, ’description’, ’volume’, ’size

’, ’weight’, { name : price, label : false }]
9 classes: ["tst"]

10 editMode : false
11 preloadBehaviour : "img/ProductSpinner.png"
12 }

The following LMTH code snippet shows the definition of a IData Unit displaying
a a list of item.

1 {
2 type: IDataSingle
3 model: "Product"
4 param : prodId
5 dataSource: {
6 type: DB

35

7 }
8 fields : [’image’, ’name’, ’vegan’, ’description’, ’volume’, ’size

’, ’weight’, { name : price, label : false }]
9 classes: ["tst"]

10 editMode : false
11 preloadBehaviour : "img/ProductSpinner.png"
12 }

The following LMTH code snippet shows the definition of a IData Unit displaying
a list of items with contexual link leading to a IDataSingle type unit. This is known
as an index unit.

1 {
2 type: IDataSingle
3 model: "Product"
4 param : prodId
5 dataSource: {
6 type: DB
7 }
8 fields : [’image’, ’name’, ’vegan’, ’description’, ’volume’, ’size

’, ’weight’, { name : price, label : false }]
9 classes: ["tst"]

10 editMode : false
11 preloadBehaviour : "img/ProductSpinner.png"
12 }

36

Process Units
These units adhere to the same structure as IDataUnits, with a key distinction

in their implementation. Instead of directing requests to a backend endpoint con-
nected to a database, these units send requests to an endpoint associated with
a process. While the underlying grammar rules remain consistent with those of
IDataUnits, the primary difference lies in the absence of an attribute for specifying
a data source. This divergence reflects the unique focus of these units on process-
oriented operations rather than data retrieval or manipulation from a database.

Whether or not these units call the backend depends on the process definition
within the model, rather than needing to be specified at the UI unit level. While this
distinction is noteworthy, it simplifies the modeling process by eliminating the need
to define backend interactions at the level of individual UI units. This approach
highlights a key difference in how these units function compared to IDataUnits,
emphasizing the process-driven nature of their operations.

Examples :
Process unit involving and end to end process can be seen below :

1 {
2 type: Process
3 process: "CartQtyUpdate"
4

5 classes: ["counter-btn"]
6 preloadBehaviour : "SmallBox.png"
7 }

Process unit involving front-end process can be seen below :

{
type : Process
process : "Checkout"
f ie lds : [’ success ’ , ’ total ’]

}

Link Units
Inspiration is taken from Lithium PHP defition of Link based on the works by

RAD (2024) in addition to WebML and IFML representations in this research. How-
ever, code generation with Lithium or other PHP frameworks is not possible at the
moment, although a new code generator could be developed in the future. This
representation was chosen because it is concise and covers the necessary aspects
for modeling a link.

Grammar :

⟨LinkUnit⟩ ::= ⟨lid⟩
| ⟨ltitle⟩
| ⟨ltext⟩
| ⟨lurl⟩
| ⟨canonical⟩
| ⟨options⟩
| ⟨target⟩
| ⟨rel⟩
| ⟨generateCode⟩

37

| ⟨context⟩
| ⟨icon⟩

⟨context⟩ := ⟨StringArray⟩

⟨icon⟩ := string

⟨lid⟩ := string

⟨ltitle⟩ := string

⟨ltext⟩ := string

⟨lurl⟩ := (string | object | null)

⟨canonical⟩ := boolean

⟨options⟩ := ({ ⟨linkOptionsList⟩ })?

⟨target⟩ := string?

⟨rel⟩ := string?

⟨generateCode⟩ := function

⟨linkOptionsList⟩ ::= ⟨linkOption⟩ (, ⟨linkOption⟩)*

⟨linkOption⟩ ::= ⟨key⟩ := any

1.1 grammar
enable carrying additional data along with the link.

⟨context⟩ := ⟨ObjectArray⟩

Menu Units
simply a collection of link units and submenus. submenus can recursively go in

any number of times. However templates should allow sensible rendering of those
in each recursive sub menu.

Predefined links.

⟨menu⟩ ::= { ⟨mTitle⟩ := string , ⟨links⟩ := [⟨menuItemList⟩] }

⟨menuItemList⟩ ::= ⟨menuItem⟩ (, ⟨menuItem⟩)*

⟨menuItem⟩ ::= ⟨linkUnit⟩ | ⟨menu⟩

CMS Units
A Headless CMS can be connected in a similar manner to data units, maintain-

ing a one-way data flow. While this integration is beneficial, especially for enhanced
configuration flexibility, it remains advantageous to keep the CMS separate from
the core data units. This separation allows for more refined and adaptable config-
urations, while still extending the functionality of data units during implementation.

Grammar :

38

⟨CMSUnit⟩ ::= { ⟨elementList⟩ }

⟨elementList⟩ ::= ⟨element⟩ (, ⟨element⟩)*

⟨element⟩ ::= ⟨source⟩
| ⟨contentType⟩
| ⟨script⟩
| ⟨config⟩
| ⟨model⟩
| ⟨params⟩

⟨source⟩ := string

⟨contentType⟩ := string

⟨script⟩ := string

⟨config⟩ := string

⟨model⟩ := string

⟨params⟩ := [⟨paramList⟩]

⟨paramList⟩ ::= ⟨param⟩ (, ⟨param⟩)*

⟨param⟩ ::= ⟨paramKey⟩ => ⟨paramValue⟩

⟨paramKey⟩ ::= string

⟨paramValue⟩ ::= string

3.2.7 UI Model - Navigation

Inspired by WebML’s and IFML’s approach, there are Views, then nested in views.
Containers called areas maybe inside pages for further organization.

3.2.8 Views

A SiteView or simply Views in LMTH is a structured representation of a specific
section or mode of a solution web application. It defines how various components,
pages, and common elements are organized and presented to the user.

Definition
name : This field defines the name of the site view. The name field determ-

ines the route or path of the site view. For example, if the name is "admin", the
default route of the view will be "site_url/admin" (all lower case for URI standard
compliance). If the name is guest or null, it will be set as the root view.

layout: This field specifies the layout template that will be used for this site
view. This is a pre-defined layout structure that dictates how the content will be
arranged on the page. The name "Fluid3" suggests a flexible, responsive design
with potentially three primary sections or columns.

39

pages: This field is an array that lists the pages included in this site view. Each
entry in the pages array represents a different page or component that is part of this
site view. These pages typically correspond to various sections or functionalities of
the web application.

Grammar:

⟨siteview⟩ ::= { ⟨siteview_fields⟩ }

⟨siteview_fields⟩ ::= ⟨siteview_field⟩ (, ⟨siteview_field⟩)*

⟨siteview_field⟩ ::= ⟨name_field⟩
| ⟨layout_field⟩
| ⟨pages_field⟩
| ⟨units_field⟩

⟨name_field⟩ ::= name: ⟨string⟩

⟨layout_field⟩ ::= layout: ⟨string⟩

⟨pages_field⟩ ::= pages: [⟨page_list⟩]

⟨page_list⟩ ::= ⟨page⟩ (, ⟨page⟩)*

⟨page⟩ ::= ⟨object_ref⟩

Examples : A sample site view can be seen below :

1 const guest : SiteView = {
2 name: "Guest"
3 layout : "Fluid3"
4 pages : [homePage, articleView, player, match, tournament,

venue, about]
5 units: [header, footer, menu]
6 }

3.2.9 Pages

In LMTH, pages are individual web pages that can be configured to create a com-
prehensive and interactive website. The configuration of pages involves defining
various attributes, themes, content units, and layout areas to deliver a structured
and cohesive user experience. Below are detailed explanations of different aspects
of pages in LMTH:

name: This specifies the name of the page. In this case, it is the "Home" page.
theme:

theme : This denotes the theme applied to the page. In the example below
"RoyalPurple" is the name of the theme, which would define the visual style and
aesthetics of the page. This is achieved by simply setting the container class.

home : A flag indicating whether this page is the home page of the website.
Setting this to true designates this page as the primary landing page.

40

landing:This flag indicates whether the page serves as a landing page. Landing
pages are typically the main entry points for users and may have specific content
or structure optimized for first impressions or navigation.

units: An array of unit configurations. Units are reusable components or wid-
gets that constitute the content and functionality of the page. Each item in the ar-
ray represents a different unit such as staticLogo, popularArticles, recentMatches,
mainMenu, readMoreLink, sponsorList, and monthEventCalendar. These units can
include static content, dynamic content, navigation elements, etc.

grammar : |

⟨page⟩ ::= { ⟨pagefields⟩ }

⟨pagefields⟩ ::= ⟨pagefield_list⟩

⟨pagefield_list⟩ ::= ⟨pagefield⟩ (, ⟨pagefield⟩)*

⟨pagefield⟩ ::= ⟨name_field⟩
| ⟨theme_field⟩
| ⟨home_field⟩
| ⟨landing_field⟩
| ⟨units_field⟩
| ⟨areas_field⟩

⟨name_field⟩ ::= name: ⟨string⟩

⟨theme_field⟩ ::= theme: ⟨string⟩

⟨home_field⟩ ::= home: ⟨boolean⟩

⟨landing_field⟩ ::= landing: ⟨boolean⟩

⟨units_field⟩ ::= units: [⟨unit_list⟩]

⟨areas_field⟩ ::= areas: [⟨area_list⟩]

⟨unit_list⟩ ::= ⟨unit⟩ (, ⟨unit⟩)*

⟨area_list⟩ ::= ⟨area⟩ (, ⟨area⟩)*

⟨area⟩ ::= { ⟨area_fields⟩ }

⟨area_field⟩ ::= ⟨area_name_field⟩
| ⟨area_units_field⟩

⟨area_name_field⟩ ::= name: ⟨string⟩

⟨area_units_field⟩ ::= units: [⟨unit_list⟩]

⟨unit⟩ ::= ⟨object_ref⟩

41

Examples : Following code shows a sample page with several units. The units will
be rendered in the given order

1 const homePage: Page = {
2 name: "Home"
3 theme : "RoyalPurple"
4 home: true
5 landing: true
6 units: [staticLogo, popularArticles, recentMatches, mainMenu,

readMoreLink, sponsorList, monthEventCalendar]
7 areas : [{
8 name : "Match Schedule"
9 units : [staticHeader, upcomingEvents, featuredMatch]

10 }]
11 }
12

13 /*The Units can be defined as follows. More on defining UI units
can be found above in the respective section above.*/

14

15 const popularArticles: UIUnit = {
16 type: "IDataMultiUnit",
17 model: "Article",
18

19 conditions: "{ interactionStatistic: { $max: 5 } }",
20

21 dataSource: {
22 type: "DB"
23 },
24

25 fields: ["datePublished", "title", "image", "articleBody"],
26

27 classes: ["article-list", "popular-articles"],
28

29 preloadBehaviour: "img/LoadingArticles.png",
30 preloadVolume: 5,
31 paginationMode: "none",
32 limit: 5
33 }

3.2.10 Areas

An optional array of area configurations set within pages. Each area is a defined
section of the page that groups related units together. Areas help organize the
layout and structure of the page.

name: The name of the specific area within the page. In this case, "Match
Schedule" indicates an area dedicated to displaying match-related information.

units: An array of unit configurations specific to the area. Each unit serves a
specific function within the area, contributing to the overall purpose of the area.

42

The following enhancement is proposed for LMTH 1.1 to customize the rendered
container type from div to another semantic type such as aside or footer.

⟨area_field⟩ ::= ⟨area_name_field⟩
| ⟨area_units_field⟩
| ⟨container_type⟩

⟨area_units_field⟩ ::= units: [⟨unit_list⟩]

⟨container_type⟩ ::= string

Examples for areas can be seen in the sub-section above on ’pages’.

3.2.11 User Model

Precedence Rules :
LMTH proposes the following precedence order for permissions. By default, all

permissions are restricted, meaning no access is granted unless explicitly allowed.
Here is a detailed explanation of the permission check precedence:

Default Denial:
By default, users do not have access to any data, processes, UI units, or site

views unless explicitly allowed. This ensures a secure baseline where access must
be explicitly granted. Class Reference Bypass:

If a reference to a class (representing data in the data model), a process, or a
site view is added, then no permission check is needed.

This means that certain essential or critical references bypass the normal per-
mission checks entirely, granting access as necessary.

Allowed Field Check:
If an item (data, process, UI unit, or site view) is in the allowedData, allowedPro-

cesses, allowedUnits, or allowedSiteviews field of the user role, access is granted.
This positive list explicitly states what a user can access, overriding the default
denial. If it is already allowed for guests, then no permission check is needed.

Denied Field Check:
If an item is not in the allowed fields but is found in the deniedData, deniedPro-

cesses, deniedUnits, or deniedSiteviews fields of the user role, access is explicitly
denied. This negative list takes precedence over allowed fields to ensure that cer-
tain critical or sensitive items remain inaccessible even if other permissions might
suggest otherwise.

Guest Role Exception:
If the user role is guest, even if an item is in the allowed fields, access is denied if

it is also listed in the denied fields. This ensures that guests have the most restrict-
ive access, adhering strictly to the denied fields despite any allowed permissions.

Grammar

⟨user_model⟩ ::= { ⟨fields⟩ }

⟨user_fields⟩ ::= ⟨field⟩ (, ⟨user_field⟩)*

43

⟨user_field⟩ ::= ⟨name_field⟩
| ⟨auth_field⟩
| ⟨allowedData_field⟩
| ⟨deniedData_field⟩
| ⟨allowedProcesses_field⟩
| ⟨deniedProcesses_field⟩
| ⟨allowedUnits_field⟩
| ⟨deniedUnits_field⟩
| ⟨allowedSiteviews_field⟩
| ⟨deniedSiteviews_field⟩

⟨name_field⟩ ::= name: ⟨string⟩

⟨auth_field⟩ ::= auth: ⟨boolean⟩

⟨allowedData_field⟩ ::= allowedData: [⟨data_list⟩]

⟨deniedData_field⟩ ::= deniedData: ⟨identifier⟩

⟨allowedProcesses_field⟩ ::= allowedProcesses: [⟨process_list⟩]

⟨deniedProcesses_field⟩ ::= deniedProcesses: ⟨identifier⟩

⟨allowedUnits_field⟩ ::= allowedUnits: [⟨unit_list⟩]

⟨deniedUnits_field⟩ ::= deniedUnits: ⟨identifier⟩

⟨allowedSiteviews_field⟩ ::= allowedSiteviews: [⟨siteview_list⟩]

⟨deniedSiteviews_field⟩ ::= deniedSiteviews: ⟨identifier⟩

⟨data_list⟩ ::= ⟨data⟩ (, ⟨data⟩)*

⟨data⟩ ::= { ⟨data_fields⟩ }

⟨data_fields⟩ ::= ⟨data_name_field⟩ , ⟨permission_field⟩

⟨data_name_field⟩ ::= name: ⟨string⟩

⟨permission_field⟩ ::= permission: { ⟨permission_fields⟩ }

⟨permission_fields⟩ ::= ⟨permission_field_item⟩ (, ⟨permission_field_item⟩)*

⟨permission_field_item⟩ ::= C: ⟨boolean⟩
| R: ⟨boolean⟩
| U: ⟨boolean⟩
| D: ⟨boolean⟩
| L: ⟨boolean⟩

⟨process_list⟩ ::= ⟨process⟩ (, ⟨process⟩)*

44

⟨unit_list⟩ ::= ⟨unit⟩ (, ⟨unit⟩)*

⟨siteview_list⟩ ::= ⟨siteview⟩ (, ⟨siteview⟩)*

⟨process⟩ ::= ⟨string⟩

⟨unit⟩ ::= ⟨string⟩

⟨siteview⟩ ::= ⟨string⟩

Examples :

1 const adminDataPerm = [
2 {
3 name: ’product’,
4 permission: { C: true, R: true, U: true, D: true, L: true }
5 },
6 {
7 name: ’order’,
8 permission: { C: true, R: true, U: true, D: false, L: true }
9 }

10]
11

12 const userModel = [
13 {
14 name: ’admin’,
15 auth: true,
16 allowedData: adminDataPerm,
17 deniedData: [],
18 allowedProcesses: processes,
19 deniedProcesses: [],
20 allowedUnits: uiUnits,
21 deniedUnits: [],
22 allowedSiteviews: siteViews,
23 deniedSiteviews: []
24 },
25 {
26 name: ’guest’,
27 auth: false,
28 allowedData: [
29 {
30 name: ’product’,
31 permission: { C: false, R: true, U: false, D: false, L

: true }
32 }
33],
34 deniedData: dataPermissions,
35 allowedProcesses: [checkout],
36 deniedProcesses: processes,
37 allowedUnits: [],

45

38 deniedUnits: uiUnits,
39 allowedSiteviews: [],
40 deniedSiteviews: siteViews
41 }
42]

Permissions
There could be other requirements such as dynamic generation and assignment

of roles to users. That is beyond the scope of this research.

3.2.12 State Model

The state model in this meta modeling language aims to abstract and encapsulate
the state management concerns of a web application. This model can be applied to
the entire application, individual views or pages, and specific UI units or compon-
ents, thereby providing a structured approach to state management. The focus is
entirely on the front end, reflecting the application’s UI state and behavior without
diving into backend logic or data persistence mechanisms.

Definitions
name: The name of the state model, in the example case below, "cart".
initialState: An array of objects that describe the initial state variables, the

action types that affect them, and the handlers that modify the state.
reducers: An array of objects that define the action types and their correspond-

ing creators for the state model.
actions: An array of objects that define the names and functions for creating

actions to interact with the state.
grammar :

⟨statemodel⟩ ::= { ⟨statemodel_fields⟩ }

⟨statemodel_fields⟩ ::= ⟨field⟩ (, ⟨field⟩)*

⟨field⟩ ::= ⟨name_field⟩
| ⟨initialState_field⟩
| ⟨reducers_field⟩
| ⟨actions_field⟩

⟨name_field⟩ ::= name: ⟨string⟩

⟨initialState_field⟩ ::= initialState: [⟨initialState_list⟩]

⟨reducers_field⟩ ::= reducers: [⟨string_list⟩]

⟨actions_field⟩ ::= actions: [⟨string_list⟩]

⟨initialState_list⟩ ::= ⟨initialState_item⟩ (, ⟨initialState_item⟩)*

⟨initialState_item⟩ ::= { ⟨initialState_fields⟩ }

⟨initialState_fields⟩ ::= ⟨initialState_name_field⟩ , ⟨initialState_actionType_field⟩

46

⟨initialState_name_field⟩ ::= name: ⟨string⟩

⟨initialState_actionType_field⟩ ::= actionType: ⟨string⟩

example :

1 const shoppingCartStateModel: StateModel = {
2 name: "cart",
3 initialState: [
4 {
5 name: "items",
6 actionType: "ADD_ITEM"
7 },
8 {
9 name: "items",

10 actionType: "REMOVE_ITEM"
11 },
12 {
13 name: "items",
14 actionType: "UPDATE_QUANTITY"
15 },
16 {
17 name: "total",
18 actionType: "ADD_ITEM"
19 },
20 {
21 name: "total",
22 actionType: "REMOVE_ITEM"
23 },
24 {
25 name: "total",
26 actionType: "UPDATE_QUANTITY"
27 },
28],
29 reducers: ["ADD_ITEM", "REMOVE_ITEM", "UPDATE_QUANTITY"],
30 actions: ["ADD_ITEM", "REMOVE_ITEM", "UPDATE_QUANTITY"]
31 }

Note for extension : In LMTH 1.2, the concept of state binding is to be intro-
duced to facilitate the mapping of code generation, ensuring that states are accur-
ately bound to the relevant sub-models. This approach is crucial for maintaining
the integrity of the application structure. However, it is important to note that this
binding process is not applicable to the application model, as there exists only one
global state.

Application Level: At the application level, there is a single global state that
governs the overall behavior and configuration of the application. This state is not
bound to any specific sub-model but rather operates across the entire application.

Page Level: At the page level, individual pages may have their own states, which
are distinct from the global state. These states are specific to each page and are
used to manage the behavior and presentation of that particular page.

47

Unit Level: At the unit level, states such as Currency may be defined, which
can be reused across multiple units. Each unit, however, maintains its own local
state, allowing for customized behavior within the context of that unit. This local
state may interact with the broader application state but remains independently
managed.

Implementation: In implementation, these states are simply component states,
where each component creates and manages its own state. The state can be altered
as a result of binding to a data unit. When a state change occurs, it may be com-
municated with the data units or processes, leading to different UI outcomes. For
instance, certain components may be shown or hidden, or styled differently, based
on the state changes. This dynamic interaction between states and data units is a
common practice, enabling a more responsive and adaptable user interface.

3.3 The LMTH Ecosystem

Figure 6 illustrates the various components of the LMTH language and its encom-
passing ecosystem, which facilitate future extensions. A key insight from the re-
flection on MDWE by Rossi, Urbieta et al. (2016), as discussed in the literature
review, is that building a community around MDWE tools and technologies is es-
sential for their adoption and evolution. The MDWE tools and technologies that
were not prominently successful in being adopted by the industry has lacked this
crucial aspect of community building.

3.4 Implementation

3.4.1 The Transpiler

Creating a code generator that translates a custom language into TypeScript code
using LLVM involves several steps.

Based on the literature and standard practices the follwoing typecial compiler
devlopment steps are followed.

Lexical Analysis: Write a lexer to convert the input source model into tokens.
Each token represents a basic elements in the language definition

Syntax Analysis: Write a parser to analyze the sequence of tokens and construct
an Abstract Syntax Tree (AST). The AST represents the hierarchical structure of
the source code.

Semantic Analysis: Traverse the AST to perform semantic checks (like type
checking) and gather additional information required for code generation. This can
be achieved through semantic analysis libraries. However omitted in this work.

Intermediate Representation (IR): Convert the AST into an intermediate repres-
entation that is easier to manipulate for code generation. LLVM IR is used for this
purpose. This is the critical step leading upto code generation.

Code Generation: In the process of code generation, the intermediate repres-
entation is traversed to produce TypeScript code according to predefined custom
rules. These rules facilitate the translation of constructs from the custom lan-
guage into corresponding TypeScript constructs. The implementation relies on
templates, which are discussed in greater detail in the subsequent subsection.

48

F
ig

u
re

6
:

T
h

e
L

M
T

H
E

co
S

ys
te

m

49

Although this phase is the most time-consuming, the availability of several open-
source TypeScript libraries, with only minor modifications required, made the task
more manageable and allowed for simplification of the overall process. This also
reveals that the choice of TypeScript as a foundational grammar was a prudent
decision.

Using LLVM for Optimizations (Optional): Although LLVM is primarily used for
compiling to machine code, you can leverage LLVM’s optimization passes on your
intermediate representation before generating TypeScript code.

3.4.2 Code Generation Templates and Mapping

In this research work the generated code is based on the following technologies,
frameworks and libraries:

• Angular 18

• NGPrime Component Library

• Next Js

• Auth0

• Redux

• MongoDB

• Mongoose

• Expressjs

The selection of these particular technologies was not prescriptive but rather
tailored to the scope of this research demonstration, primarily influenced by the
author’s familiarity and prior exposure. This choice was made to effectively illus-
trate the concepts under consideration, though other technologies could have been
equally valid depending on the context and objectives. The following table lists the
specific mappings from the model to the resultant code using these technologies.

Based on the aforementioned mapping, several components generated corres-
ponding to various UI units, are illustrated below. It is important to note that these
components are also compliant with RDFa standards and WCAG guidelines, which
is a critical aspect of this research. Further details on this compliance are provided
in the evaluation chapter. These units are based on the example code presented
above under each unit the language definition section above.

The figure 7 show a raw generated component based on IDataSingle type unit.
In 9 an intersting observation can be made. It is generated based on the same
templates however maintains the RDFa compliance based on the different RDF at-
tributes for ’weight’ and ’volume’ for the two separate products. 9 is generated
with a custom template where instead of displaying ’vegan : true’, a leaf icon is
shown and the price is associated with a currency pipe in angular. 10 shows the
rendering of IDataulti based on the same data from a mongo database.

11 shows a process unit that is generated based on default templates. However,
a limitation here is that it is generated separately although associated with the

50

Table 1: Model to Code mapping with selected tech stack
Frontend Backend Database

Data Model Classes in Angular
model

ORM mapping
with Mongoose
and Express en-
dpoints. NestJS
and GraphQL
would particularly
suit this for future
implementation.

Achieved with
Mongoose snip-
pets within Ex-
press. In the case
of a relational
database, this
would require its
own templates.

Process Model Angular Ser-
vice calling the
backend

Express Endpoint,
Controller with
method stub

N/A

Process Model
(Frontend)

Angular Service
with method stub

N/A N/A

UI Model -
IDataSingle

Call the relevant
endpoint via ser-
vice

N/A N/A

UI Model -
IDataMulti

Call the relevant
endpoint via ser-
vice

N/A N/A

UI Model -
IDataIndex

Link to alternative
link, parameter
capturing on
second unit

N/A N/A

UI Model - : Link
- Contextual

Link to alternative
link, parameter
capturing on
second unit

N/A N/A

UI Model - : Link
- Non Contextual

Anchors N/A N/A

51

Figure 7: Rendered IDataSingle Unit

Figure 8: Rendered IDataSingle Unit 2

52

Figure 9: Rendered IDataSingle Unit - Alternative Template

Figure 10: Rendered IDataSingle Unit

53

Figure 11: Rendered Process Unit

Figure 12: Process Unit after further styling

54

Figure 13: Default Menu Rendering

Figure 14: Menu after further styling

IDataSingle Unit above. With additional styling applied post code generation this
could be overcome as shown in figure 12.

13 shows a menu generated based on a MenuUnit, and 14 shows the same menu
with post-code generation styling. 15 displays a vertical menu generated using an
alternative code generation template for menus within the same solution applica-
tion. This demonstrates a key strength of this proposal and of model-driven engin-
eering in general, as it allows flexibility beyond a set of preset designs.

3.4.3 Sample Models

Three sample models have been created based on the real needs of projects for
evaluating the capabilities and performance of the novel language and the accom-
panying transpiler. These models can be downloaded via the links mentioned in
Appendix A. The models cover all LMTH models and unit types. Information per-
taining to client-specific details has been omitted from these samples. An extract
of the models can be seen below.

3.5 Development Environment

3.5.1 Tools and Extensions Used

For the development of the compiler, along with the associated templates, standard
library, and sample models, VS Code was utilized.

55

Figure 15: Menu Rendering - Alternative Template

Developers who intends to create custom solution applications using the new
meta models, which are TypeScript compatible, can employ the same tools. Ad-
ditionally, developers who wish to author new templates or extend the standard
library can utilize the same resources. The following extensions were applied in
this development process and are recommended for use:

• TypeScript Language Basics (Built-in extension): This extension is included
with any new version of VS Code by default and provides basic TypeScript
language support.

• Node.js: Node.js is necessary to run JavaScript/TypeScript code outside of the
browser. It is essential for tasks such as running scripts, building projects, and
using package managers primarily npm.

• TypeScript: TypeScript should be installed globally project. Although local in-
stallation for each project is possible, it’s convenient in testing out generated
solutions if it is installed globally. It is used to write and compile TypeScript
code.

• ESLint (Optional but Recommended): ESLint helps in identifying and fixing
problems in your TypeScript code. The ESLint extension for VS Code can be
installed and configured for TypeScript.

In addition to the previously mentioned tools the following tools and extensions
were employed, for compiler development. These extensions would be beneficial
for developers looking to further develop the compiler, enhance it or even create
their own LMTH compiler:

• CMake Tools : CMake is a cross-platform build system that allows developers
to define the build process in a compiler-independent manner. It is the main
primary system used by LLVM and therefore essential for managing the build
process of the compiler project.

• Ninja : Ninja is another build system which is lightweight and prioritizes
speed. It is also a dependency of LLVM and is required for managing the
build process of the compiler.

56

• C++ extension for VS code by Microsoft: This extension provides essential
support for C++ development within Visual Studio Code. It includes fea-
tures such as IntelliSense (code completion), debugging, and code navigation,
which are critical for writing and maintaining the C++ code that forms the
backbone of the compiler.

• LLVM extention for VS code: This extension enhances the development exper-
ience by providing syntax highlighting and other features specific to LLVM.
It aids developers in writing and understanding LLVM-specific code, ensuring
that the code adheres to LLVM conventions and standards, which supports
the seamless integration and functionality of the compiler with the LLVM in-
frastructure.

3.5.2 System Specification

It is recommended to have high RAM, 32GB or above. While this is not a system
requirement of any tools used, it is practically useful because of the following con-
cerns:

• Code Generation: Generating code, especially for large and complex projects,
can be memory-intensive.

• Loading Templates: Working with extensive libraries and templates can con-
sume significant memory.

• Recursive Processes: Recursive algorithms and processes used in compiler
development can quickly consume available memory, potentially leading to
slower performance or crashes if sufficient RAM is not available.

The specific environment on which testing was done and specific challenges faced
in this regard can be found under the evaluation chapter.

4 Evaluation and Results

4.1 Objectives

This chapter focuses on presenting the comprehensive assessment strategy, the
results and the analysis of LMTH and the accompanying compiler. This evaluation
ensures that the language and compiler functioned as intended, offered usability
benefits, and performed efficiently and scalably and presents to what extent those
goals have been achieved along with the shortcomings encountered. Additionally,
the evaluation ascertains the language’s compliance with relevant selected stand-
ards and its comparative standing against existing alternatives for modeling web
applications. The specific objectives of this evaluation are as follows:

Functionality Assessment : To verify that the new meta modeling language
and its compiler meet all specified functional requirements and perform the tasks
it was designed to accomplish.

Usability Evaluation(DX) : To assess the ease of use and learning curve as-
sociated with the new language. This includes evaluating the intuitiveness of the

57

language’s syntax and the efficiency of the compiler’s error messaging and debug-
ging tools as well as the completeness and distribution of documentation.

Scalability Analysis : To determine the scalability of the language and com-
piler, ensuring they can handle large meta models and efficiently without significant
degradation in performance.

Performance Testing : To measure the performance of the new language and
compiler, including compilation speed, overall execution time and resource utiliza-
tion.

Standard Compliance : To ensure that the new meta modeling language ad-
heres to relevant industry standards and protocols, which is a key aspect of its nov-
elty and potential for widespread adoption. Specific standards listed in subsequent
sections.

Comparative Analysis : To compare the new meta modeling language against
existing alternatives in terms of language quality. This will help identify the unique
strengths and potential areas for improvement of the new language.

4.2 Scope

There are three versions of the language defined in this research. The evaluation
will focus on version 1.0 for functionality, usability, and standard compliance, as it is
the only version that compiles at the moment. Scalability and comparative analysis
of language quality will involve both version 1.0 and version 1.1 as these aspects
are based on qualitative analysis of the language syntax.

Three real projects based on real client requirements are chosen for the evalu-
ation. By selecting real projects, any biases and forced controls in demonstrating
the usage of the language are eliminated. The project that will be used for evalu-
ation are:

1. A sports score and news web application based in UAE

2. An e-commerce store for cosmetic products

These tests would cover a wide variety of requirements, demonstrating the broad
applicability of the language. Limitations discovered, if any, will be categorized as
follows:
Critical Limitations : If certain requirements are permanently unattainable, they
will be documented. This means if you use this language, you will never be able to
accomplish these tasks.
Mitigable Limitations : Any requirements not directly met, which require manual
effort, will be documented. This includes limitations in the language’s expressivity,
templates, or other aspects.

4.3 Specific Evaluation Criteria

4.3.1 Standard Compliance

Ensuring Web 3.0 Semantic Web standard compliance is essential as it is a key
novel contribution of the new language.

58

• RDFa Standard Compliance : ensuring the language adheres to Web 3.0
Semantic web standards for RDF.

• Schema.org Schema Compliance: Ensuring the RDFa schema is compliant
with Schema.org schemas, facilitating structured data in a cohesive manner
across web applications.

4.3.2 Optional Compliance:

• WCAG 2.0 Level A Compliance: The Web Content Accessibility Guidelines
(WCAG) 2.0 are a set of recommendations for making web content more ac-
cessible to people with disabilities. Level A is the minimum level of compli-
ance, addressing the most basic web accessibility features. Example case:
Ensuring that all images of beauty products have descriptive alt text so that
visually impaired users can understand the content using screen readers.

• OWASP Application Security Verification Standard (ASVS): The OWASP
Application Security Verification Standard (ASVS) is a framework for testing
the security of web applications. It provides a basis for assessing application
security controls and identifying areas for improvement.

Example case: Running security tests to ensure that the store’s checkout pro-
cess is secure, preventing vulnerabilities such as SQL injection or cross-site
scripting (XSS) attacks that could compromise user data.

4.3.3 Performance

While performance evaluation is not the primary focus, as the main goal is to estab-
lish standards and demonstrate functionality, documenting performance metrics is
valuable for future improvements and optimization efforts. The time taken for com-
piling each of the three applications will be the measured metric. Additionally, the
details of the environment in which the compilation was run, including hardware
specifications, operating system, and compiler version, will be recorded and repor-
ted.

4.3.4 Comparative analysis

This would be a qualitative comparison based on definitions from literature and se-
lected instances from the sample applications being compared with their respective
representation in other meta modeling languages.

This is not an exhaustive analysis of each rule but rather an attempt to place the
novel language in a comparative context within the body of knowledge. The follow-
ing criteria presented by Sebesta (2018) are used as a guideline in the comparison.

This comparison will include equivalent solutions such as WebML and WebDSL
as well as narrower solutions such as GRPC, Ballerina, BPMN and IFML.

4.4 Evaluation Tools and Resources

All evaluation tests were conducted on a PC with the following specifications, which
is a fairly standard and readily available setup:

59

Characteristic READABILITY WRITABILITY RELIABILITY
Simplicity • • •
Orthogonality • • •
Data types • • •
Syntax design • • •
Support for abstraction • •
Expressivity • •
Type checking •
Exception handling •
Restricted aliasing •

Table 2: Language Evaluation Criteria

Processor: 11th Gen Intel Core i7-11700 @ 2.50GHz
RAM: 32.0 GB (31.7 GB usable)
System Type: 64-bit operating system, x64-based processor
Operating System: Windows 11
Browsers: Google Chrome + Wave Plugin and OpenLink Structured Data Sniffer
Plugin, Mozilla Firefox, Microsoft Edge

Custom Parser with LLVM: A custom parser created with LLVM is used for
parsing the three meta models for each scenario. This serves as a part of the
functionality testing.

Custom Code Generator with LLVM: A custom code generator created with
LLVM is used for generating the final solution source code based on the intermedi-
ate code from the parser.

Browser Based Testing: The resulting source code, with necessary depend-
encies added, is placed on a local node server to ensure it works in the browser.
This setup allows verification of whether each business requirement is met. Ideally,
end-to-end tests should be written; however, due to time restrictions and the fact
the application does not evolve within duration of the study, requirements will be
visually verified by running the application.

4.4.1 Validation Tools

In order to verify the standard compliance of the generated code, the following
validators were identified as suitable.

1. OpenLink Structured Data Sniffer by OpenLink Software (2024): This tool is
particularly useful for identifying rich data marked with RDFa, making it ideal
for this evaluation. Its availabiilty as a browser plugin is especially advant-
ageous as it allows for the testing of local applications.

2. Lighthouse: Utilized to evaluate various performance metrics and ensure
overall quality of the web application including WCAG 2.0 compliance.

3. WAVE: Used for checking WCAG 2.0 compliance, ensuring accessibility stand-
ards are met.

60

Additionally, the following tools are also relevant for testing the chosen compliance
requirements but have certain limitations.

1. Rich Results Test and Schema Markup Validator by Google for Developers
(2024) are particularly useful in testing RDF Compliance. This tool allows
copy pasting as well as testing compliance of hosted web applications. Al-
though these tools cannot be applied within this work, it could be useful in
testing further work.

2. W3C RDF Document Validator : Used to check Web 3.0 Semantic web stand-
ard compliance. However, it has a limitation in that it only allows copy-pasting
code, making it impractical for validating Angular frontend code.

3. Schema.org Free Validator: However, it also has a limitation in that it only al-
lows copy-pasting code, making it impractical for validating Angular frontend
code.

4. OWASP ZAP: Employed for compliance with the OWASP Application Security
Verification Standard (ASVS) ensuring the security of the application. OWASP
compliance which was selected as a potential optional criterion in the scope
was not covered within the research.

4.5 Evaluation Methodology

Functionality Assessment : This will involve testing a series of predefined use cases
with models for each of the selected sample scenarios that the language is expected
to handle. The aim is to ensure that the language correctly models and processes
information according to its design specifications.

Usability Evaluation from developer perspective : Metrics such as time taken to
complete specific tasks and the number of errors encountered will be recorded
and analyzed. If time permits conduct user studies and surveys with developers to
gather qualitative data on their experiences using the language and compiler.

Performance Testing : Perform benchmarking tests using a variety tasks of increas-
ing complexity. Compare the results with established performance benchmarks for
similar tasks performed using other meta modeling languages.

Scalability Analysis : Test the language with progressively larger and more complex
models to observe how the compiler performs under varying loads. Considering
that templates are injected recursively the performance level should be adequate
to generate the sample applications within a reasonable time. Record and analyze
performance metrics to identify any potential bottlenecks or limitations. Extensib-
ility aspects of the language should be evaluated as well.

Standard Compliance : Conduct a thorough review of the language’s design and
implementation against established standards in the field of meta modeling. This
will include both automated and manual verification processes to ensure full com-
pliance using the tools identified above.

61

Figure 16: Sample Lighthouse Report on Scenario 2 Products Listing Page

Comparative Analysis : Identify key alternative meta modeling languages and per-
form a comparative study. This will involve implementing the same set of tasks in
both the new language and the alternatives, followed by a detailed analysis of the
results across various metrics.

4.6 Evaluation Results

Implementation of Requirements The following scenarios were tested.
Scenario 1: Sports News and Scores Application
Scenario 2: Cosmetics Store with Next.JS (pivoted and switched to angular)
Scenario 2.1: Cosmetics Store

Requirement Coverage A significant portion of the customer requirements were
covered in the generated code while maintaining compliance. Some post-code gen-
eration modifications were required; however, these were mostly related to styling.
It could be concluded that this is a good coverage.

Language Expressivity and Developer Support The language provides com-
prehensive solutions for complex web applications. Where limitations were en-
countered, new rules have been introduced in LMTH 1.1. Overall, it could be con-
sidered a highly expressive language.

Performance Benchmarks and Future Improvements The average compile
time for Scenario 1, based on an average of five compilations, was 43 minutes and
29 seconds, while for Scenario 2, the average was 27 minutes and 9 seconds.
This compile time could be considered acceptable for generating an entire applic-
ation. However, even after a minor change, the compile time remains lengthy,
indicating that optimization is necessary—a consideration that was omitted in this
work.

Given the standard setup with 32GB RAM documented in the Evaluation Re-
sources sub-section, the compiler encountered an "LLVM Error: Out of Memory"
error several times but was able to execute on subsequent runs. This reveals the
need for compiler optimization if developers are expected to use this regularly, as
repeated errors may lead to frustration.

62

Figure 17: Lighthouse Report Scenario 2 Individual Product Page

Standard Compliance Figure 16 and 17 shows sample lighthouse reports and
the scenario-wise tables summarize overall standard compliance of the genereated
code.

Comparative Analysis LMTH has a greater number of primitives compared to its
visual alternative, with these primitives being more specialized yet orthogonal at
a similar level. However, its power lies in the simplicity of overall expression and
developer familiarity.

Empirical Analysis Empirical assessment of this novel language’s performance
across diverse user profiles and environments, including factors such as learnab-
ility, was beyond the scope of this research due to time constraints. Currently,
professionals and industry experts are evaluating the language, and their feedback
will be collected using the survey form provided in Appendix C. This feedback will
be analyzed and publicized as a separate study to inform further development and
refinement of the language.

4.7 Overall Analysis

Based on the aforementioned methodology, comprehensive results would be ob-
tained that provide a clear assessment of the new meta modeling language. The
analysis would indicate the overall success or failure of the research, whether the
language has met its design goals and standard compliance to the specified levels
based on the selected tools and place the novel language in the context of model
driven engineering paradigm. The limitations that arose do not indicate any fun-
damental flaws with the proposed language. They are primarily implementation-
specific issues, such as those related to the compiler and templates.

5 Conclusion and Future Work

5.1 Summary of Findings

The literature and practical applications reveal a gap in model-driven web engin-
eering in terms of adaptation to the Web 3.0 paradigm, enhanced developer experi-

63

F
ig

u
re

1
8

:
C

o
m

p
li

a
n

ce
T
e
st

in
g

-
S

p
o
rt

s
N

e
w

s
a
n

d
S

co
re

s
A

p
p

li
ca

ti
o
n

64

F
ig

u
re

1
9

:
C

o
m

p
li

a
n

ce
T
e
st

in
g

-
E

co
m

m
e
rc

e
a
p

p
li

ca
ti

o
n

65

ence, and addressing the complexities of modern web applications. While numerous
standards and tools for model-driven web engineering are well-established and ma-
ture, this research leverages these foundations and integrates core semantic web
concepts to produce a novel and promising approach for representing complex web
applications as meta models.

This research demonstrates that, when combined with a suitable transpiler,
these meta models can generate web application code that is agnostic of spe-
cific backend and frontend frameworks and libraries, addressing the ever-evolving
nature of web technologies. The default compiler, although still improvable, suc-
cessfully generates code within acceptable parameters, serving as a proof of concept
for the approach.

Primarily, due to the approach in representing the web application solutions,
maintaining cohesive identities with the help of ontology vocabularies specifically
Schema.org allows for the seamless generation of rich data, which is also compli-
ant with WCAG accessibility guidelines. This establishes the potential for further
extension and enhancement of this approach, paving the way for more accessible,
efficient, and future-proof web application development.

5.2 Implications

The implications of this work for the field of programming languages are profound,
particularly in how it can shape development practices and industry standards. By
introducing a language that stays on par with existing meta-modeling languages in
terms of characteristics such as simplicity, orthogonality, data types, syntax design,
support for abstraction and expressivity while also comparatively improving in sev-
eral of these aspects leading to better developer-friendliness, this research hopes
to set a new standard for model-driven web engineering.

5.2.1 Impacts on Development Practices

1. Enhanced Developer Experience: The focus on improving developer exper-
ience means that the language and its associated tools are easier to learn
and use, reducing the learning curve for new developers and increasing pro-
ductivity for experienced ones. This would lead to faster development cycles
and more consistent code quality in the long run.

2. Efficiency in Maintenance: Organizations, especially those with stringent com-
pliance requirements, stand to benefit significantly. The ability to generate
code that adheres to standards such as the WCAG accessibility standards
means that less manual intervention is required post-code generation. This ef-
ficiency becomes crucial when standards change or new technologies emerge.
Instead of rewriting large portions of code, developers only need to update the
meta model, which simplifies the maintenance process, minimizes technical
debt as new changes are introduced and reduces the potential for errors.

3. Standardization and Interoperability: As the language matures and gains trac-
tion, it could drive the adoption of new industry standards, promoting greater
interoperability between different tools and frameworks. This can lead to

66

a more unified approach to web application development, where developers
and organizations can rely on consistent methodologies and best practices.

5.2.2 Impacts on Industry Standards

1. Adoption of Semantic Web Concepts: By integrating semantic web concepts
at its core, this work encourages the adoption of these principles across the
industry. This could lead to more intelligent and interconnected web applic-
ations, enhancing the overall user experience and enabling more advanced
functionalities such as automated reasoning and data integration.

2. Compliance and Accessibility: The built-in support for WCAG accessibility
guidelines and strong compliance features means that this language can help
organizations meet regulatory requirements more easily. As compliance be-
comes increasingly important, especially in sectors like education, finance,
healthcare and government, the adoption of this language could set a new
standard for accessibility and legal compliance in web development.

3. Future-Proof Web Development: The flexibility to generate code that is ag-
nostic to backend and frontend frameworks means that applications developed
using this language are more resilient to changes in the technological land-
scape. This future-proofing aspect is critical as it allows organizations to ad-
apt quickly to new trends and technologies without the need for extensive
rewrites, thereby protecting their investments in software development.

Overall, the implications of this research suggest a shift towards more efficient,
compliant, and adaptable web development practices. By addressing the current
gaps in model-driven web engineering and offering a more developer-friendly ap-
proach, this work has the potential to significantly influence both the practice and
standards of web application development in the future.

5.3 Limitations

Despite the promising advancements and potential implications of this research,
several limitations have been identified that need to be addressed to enhance its
applicability and robustness further.

1. Dynamic Menu Generation: While not required in the sample scenarios tested
in this work, dynamic menu generation is a requirement for many web ap-
plications. The defined meta models do not adequately capture this feature,
limiting its use in applications where menus need to adapt based on user in-
teractions or context.

2. Dynamic Roles: LMTH currently works with a predefined set of user roles,
which restricts its flexibility. This limitation arises because of the tightly
coupled implementation that does not accommodate dynamically created roles,
making it less adaptable in environments with frequently changing user role
requirements.

67

3. Technology Coupling: Certain parts of the implementation are too closely
coupled with specific technologies. For instance, MongoDB queries are dir-
ectly written within the models, filter parameters are based on Angular style
and state management functions are closely aligned with Redux. This tight
coupling necessitates updates to the language rules or existing implementa-
tions to allow for greater abstraction and adaptability to different technolo-
gies. This is a rather relatively simpler limitation to overcome with the expan-
sion of the syntax to accommodate one more level of abstraction where such
coupling is identified.

4. Post Code Generation Work: Although the goal is to minimize work after code
generation, achieving fully generated styles and complete functionality re-
mains complex. The current language syntax and templates must be updated
to prevent developers having to introduce breaking changes. Until this is re-
solved, the advantage of minimal maintenance effort cannot be fully realized,
even though it is theoretically possible.

5. Manual Dependency Management:The generated code, with any modern web
development frameworks and libraries, requires numerous dependencies. While
the generated code includes a package.json file with with relevant depend-
ency list added, developers must manually install these dependencies with
a package manager. Any issues arising from dependencies must be handled
separately, adding to the manual workload.

6. Version Dependence: Although the approach is overall technology-agnostic
and future-proof, library or framework version updates necessitate corres-
ponding updates to the templates to stay current. This version dependence
can introduce additional maintenance overhead as well as compatibility con-
flicts.

7. Limited Interoperability: The current system is compatible with class dia-
grams and ER diagram-based code generation tools for data models. How-
ever, it lacks compatibility potential standards, such as with BPMN to process
model mapping, which would be beneficial for broader application scenarios.

8. Data Integration Limitations: The current implementation supports data in-
tegration through a database, REST API calls and session-based data hand-
ling. However, modern data integration often involves technologies such as
message queues, WebRTC, WebSockets or webhooks, which are not currently
supported.

9. Event-Triggered Actions: Modeling event-triggered actions, such as user in-
teractions, timers, or system events, is not supported. These actions need to
be manually added, limiting the automation and completeness of the gener-
ated code.

10. Omitted Models: To keep the research scope manageable, certain models such
as personalization, internationalization, and deployment models were deliber-
ately omitted. Including these models would enhance the applicability and
utility of the language for a broader range of scenarios.

68

11. Support for Architectural Design: The proposed language focuses on developer-
centric features rather than architectural design. For architectural design
tasks, visual modeling languages like WebML, IFML and UML remain more
suitable. These alternative methods are better suited for defining system
structure and behavior, which is outside the scope of the proposed language.

12. No Legacy Support: LMTH is primarily useful for developing new web applic-
ations rather than for maintaining or upgrading existing ones. It lacks reverse
engineering capabilities, meaning it cannot extract models from existing web
applications for analysis or modification. This limitation makes it less suit-
able for projects that require understanding and updating legacy systems, as
developers cannot use the language to generate models from existing code-
bases.

5.4 Future Work

Language Enhancements

• Expressivity: Enhance the language to address current limitations, such as
the ability to handle dynamic menus and roles.

• Interoperability: Improve interoperability with additional standards by de-
veloping converters, particularly for BPMN (Business Process Model and Nota-
tion).

• Design Patterns & Architectures: Expand the language to include vari-
ous design patterns and architectures, beyond the currently supported MVC
(Model-View-Controller) framework.

• Web API Support: Extend support for Web APIs. Currently, session APIs are
supported; this should be expanded.

• Ontology Library: Broaden the ontology library by incorporating additional
ontologies.

Compiler and Code Generation

• Performance Optimization: Enhance performance through optimization fea-
tures available in LLVM and explore alternative approaches.

• Framework and Library Support: Add support for more front-end and back-
end frameworks, libraries, and DBMSs, with the inclusion of more code tem-
plate libraries.

• Automated Dependency Management: Implement automated dependency
management for improved efficiency.

Community Building

• Networking & Forums: Create provisions for networking channels and for-
ums to foster community building.

69

• Community Feedback: Actively seek community feedback for continuous
improvement.

• Open Source Collaboration: Encourage community involvement in further
developing the codebases as open-source projects.

5.5 Final Remarks

The work presented in this thesis builds upon the long lineage of theoretical and
emperical research on Model Driven Web Engineering, Meta Programming and
Semantic Web Technologies. These contributions are profound in that they not only
address existing gaps in language and tool development but also introduce new
paradigms for state binding and abstraction in web development.

Reflecting on the overall project, it is clear that the proposed approaches and
extensions have the potential to make a lasting impact on the ever-evolving field of
web development. This work contributes to the ongoing development of languages
and tools, aiming to empower developers and enrich the broader community.

It is our hope that these advancements will catalyze further innovation and col-
laboration, ultimately leading to a more robust and interconnected web ecosystem
built on a ’web of data’. The contributions made here are intended not just to
solve immediate challenges, but to pave the way for future developments that will
continue to shape the web development landscape.

70

Appendix A : Additional Resources and Links

This thesis is written from an academic perspective, with a focus on researchers and
those who intend to study and extend the LMTH language. For a more developer-
centric perspective, focusing on building application solutions, please visit:

• LMTH Developer Resources: https://www.semwei.org/lmth

Source Code

The source code for the LLVM-based compiler for LMTH can be obtained via the
following links:

• LMTH Compiler on SemWEI: https://www.semwei.org/lmth-compiler

• LMTH Compiler on GitHub: https://github.com/SemWEI/lmth-compiler

Instructions for setting up the compiler locally can be found at these repositor-
ies.

Sample Models

Sample models are available at:

• LMTH Sample Models on GitHub: https://github.com/SemWEI/models

Core Library

The core library for the ’model-of-reality’ based on schema.org is available at:

• Model-of-Reality Library on GitHub: https://github.com/SemWEI/reality

I

Appendix B : Disclaimer

The technologies, frameworks, and libraries mentioned in this research work, in-
cluding but not limited to Angular, NGPrime Component Library, Auth0, Redux,
MongoDB, Mongoose, NextJS and Expressjs are utilized solely for testing and demon-
stration purposes. The use of these technologies is not an endorsement or recom-
mendation of any particular product, service, or practice.

The authors of this research work do not claim any ownership or proprietary
rights over the mentioned technologies and have not extracted or copied any pro-
prietary content from them. Any issues, problems, or defects discussed or identified
in this research work are solely for illustrative purposes and do not necessarily re-
flect the actual performance or reliability of the mentioned technologies.

The authors disclaim any responsibility or liability for any harm, loss, or dam-
age arising from the use, reference to, or reliance on the technologies mentioned
herein. This disclaimer extends to any direct, indirect, incidental, consequential, or
punitive damages arising out of or related to the use or performance of the techno-
logies discussed in this research work.

By reading or utilizing this research work, you acknowledge and agree to the
terms of this disclaimer. If you have any concerns or require further information
about the technologies mentioned, it is recommended that you seek professional
advice or consult the official documentation of the respective technologies.

For specific open-source licenses and related information, please refer to the
source code repositories mentioned in Appendix A.

II

Appendix C : Sample Survey Form

Expert Feedback on a Novel Meta Modeling Language

for the Web

Thank you for participating in this survey. Please provide feedback based on your
experience with trying LMTH. Your insights will help shape the development of
LMTH. The survey should take approximately 10-15 minutes to complete.

Part 1: Participant Profile

1. What is your area of expertise? (Select all that apply)

• Web Development

• Software Engineering

• Systems Design

• Data Modeling

• Front-end Development

• Back-end Development

• Other (Please specify):

2. How many years of experience do you have in web or software development?

• Less than 5 years

• 5-10 years

• More than 10 years

3. What is your familiarity with meta modeling/4th Generation languages?

• Never used

• Aware of the concept but never used

• Have used them occasionally

• Frequently use them in my work

Part 2: Feedback on Meta Modeling Aspects

4. How intuitive is the syntax of this new meta modeling language?
(1 = Not intuitive at all, 5 = Very intuitive)

5. How well does the language support common web development tasks?
(1 = Not well at all, 5 = Very well)

6. Do you find LMTH to be flexible enough to extend or customize for different
web architectures?

• Yes

• No

III

• Unsure

Please elaborate your answer

7. Does the language provide sufficient abstraction while maintaining control
over lower-level details?

• Yes

• No

If not, please suggest improvements:

8. How does this language compare to existing modeling languages you’ve used?
(1 = Much worse, 5 = Much better)

Why?

Part 3: Performance and Efficiency

9. How would you rate the performance of the meta modeling language in terms
of:

• Modeling speed and ease of use
(1 = Very slow/difficult, 5 = Very fast/easy)

• Rendering or compiling models into "native code"
newline (1 = Very slow/inefficient, 5 = Very fast/efficient)

Part 4: Usability and Documentation

10. How clear and comprehensive is the language’s documentation?
(1 = Very unclear, 5 = Very clear)
Suggestions for improvement

11. What additional features, if any, would you suggest to improve the usability of
this language?

• More tutorials

• More examples

• A more detailed reference guide

• Interactive online playground

• Other (Please specify):

12. On a scale of 1-5, how likely are you to adopt this meta modeling language in
your work?
(1 = Not likely at all, 5 = Extremely likely)

Why or why not?

IV

Part 5: Open Feedback

13. What are the primary strengths of this meta modeling language for web tech-
nologies?

14. What are the most significant weaknesses or challenges with this language?

15. Do you see any specific areas where this language could provide a unique
advantage compared to existing alternatives?

16. Any additional comments or feedback?

V

References

[1] Timothy J Berners-Lee (1989). Information management: a proposal. March
1989 version includes the annotations from Mike Sendall, Tim Berners-Lee’s
supervisor. URL: https://cds.cern.ch/record/369245

[2] Tim Berners-Lee et al. (May 2001). ‘The Semantic Web : A new form of Web
content that is meaningful to computers will unleash a revolution of new
possibilities’. In: Scientific American, pp. 35–43

[3] Robert W. Sebesta (2018). Concepts of Programming Languages. 12th.
Boston: Pearson. ISBN: 978-0134997186

[4] Harry Halpin (May 2006). ‘Identity, Reference, and Meaning on the Web’. In:
Proc. WWW 2006 Workshop on Identity, Reference, and the Web. Edinburgh,
United Kingdom. URL:
http://www.ibiblio.org/hhalpin/irw2006/hhalpin.pdf

[5] Tim Berners-Lee (July 2003). Re: URIs, Addressability, and the use of HTTP
GET and POST. Online. URL:
https://lists.w3.org/Archives/Public/www-tag/2003Jul/0022.html

[6] John Hebeler et al. (2009). Semantic Web Programming. Indianapolis, IN:
Wiley Publishing, Inc. ISBN: 978-0-470-41801-7. URL: https:
//www.wiley.com/en-us/Semantic+Web+Programming-p-9780470418017

[7] Stefano Ceri et al. (2000). ‘Web Modeling Language (WebML): a modeling
language for designing Web sites’. In: Computer Networks 33.1,
pp. 137–157. ISSN: 1389-1286. DOI:
https://doi.org/10.1016/S1389-1286(00)00040-2. URL: https:
//www.sciencedirect.com/science/article/pii/S1389128600000402

[8] Benjamin Heitmann (Dec. 2007). ‘Transitioning Web Application Frameworks
Towards the Semantic Web’. Supervised by Prof. Dr. Stefan Decker and Dr.
Ir. Eyal Oren; 2nd supervisor: Prof. Dr. Rudi Studer. PhD Thesis. Galway,
Ireland: National University of Ireland, Galway. URL:
https://www.researchgate.net/publication/237021317_Transitioning_

web_application_frameworks_towards_the_Semantic_Web (visited on
06/08/2024)

[9] Google for Developers (2024). Schema Markup Testing Tool. URL: https:
//developers.google.com/search/docs/appearance/structured-data

[10] OpenLink Software (2024). OpenLink Structured Data Sniffer. URL:
https://chromewebstore.google.com/detail/openlink-structured-
data/egdaiaihbdoiibopledjahjaihbmjhdj

[11] TypeDB (2024). Imperative Querying. URL:
https://typedb.com/fundamentals/imperative-querying

[12] David Granada et al. (Jan. 2015). ‘Analysing the cognitive effectiveness of the
WebML visual notation’. In: Software Systems Modeling 16. DOI:
10.1007/s10270-014-0447-8

VI

[13] Martin Hepp (2008). ‘GoodRelations: An Ontology for Describing Products
and Services Offers on the Web’. In: Proceedings of the 16th International
Conference on Knowledge Engineering and Knowledge Management (EKAW
2008). E-Business and Web Science Research Group, Bundeswehr University
Munich, Germany. Acitrezza, Italy: Springer, pp. 329–346

[14] Peter F. Patel-Schneider (2014). ‘Analyzing Schema.org’. In: The Semantic
Web – ISWC 2014. Ed. by Peter Mika et al. Cham: Springer International
Publishing, pp. 261–276. ISBN: 978-3-319-11964-9

[15] ‘WebML Modeling in UML’ (Feb. 2007). In: Software, IET. URL: https://
www.researchgate.net/publication/237331381_WebML_Modeling_in_UML

[16] ‘Model-driven design and development of semantic Web service applications’
(Nov. 2007). In: ACM Transactions on Internet Technology 8 (1), p. 3. ISSN:
1533-5399. DOI: 10.1145/1294148.1294151

[17] Weijun Sun et al. (2009). ‘A Model-Driven Reverse Engineering Approach for
Semantic Web Services Composition’. In: IEEE, pp. 101–105. ISBN:
978-0-7695-3570-8. DOI: 10.1109/WCSE.2009.403

[18] Madhushi Bandara and Fethi A. Rabhi (Apr. 2020). ‘Semantic modeling for
engineering data analytics solutions’. In: Semantic Web 11 (3). Ed. by
Oscar Corcho, pp. 525–547. ISSN: 22104968. DOI: 10.3233/SW-190352.
URL: https://www.medra.org/servlet/aliasResolver?alias=iospress&
doi=10.3233/SW-190352

[19] GEYLANI KARDAS et al. (June 2009). ‘MODEL DRIVEN DEVELOPMENT OF
SEMANTIC WEB ENABLED MULTI-AGENT SYSTEMS’. in: International
Journal of Cooperative Information Systems 18 (02), pp. 261–308. ISSN:
0218-8430. DOI: 10.1142/S0218843009002014

[20] Manuel Álvarez Álvarez et al. (2010). ‘Bridging together Semantic Web and
Model-Driven Engineering’. In: pp. 601–604. DOI:
10.1007/978-3-642-14883-5_76

[21] Olga Kovalenko et al. (Sept. 2015). ‘Modeling AutomationML: Semantic Web
technologies vs. Model-Driven Engineering’. In: IEEE, pp. 1–4. ISBN:
978-1-4673-7929-8. DOI: 10.1109/ETFA.2015.7301643

[22] R. Groenmo and M.C. Jaeger (2005). ‘Model-driven semantic Web service
composition’. In: IEEE, 8 pp. ISBN: 0-7695-2465-6. DOI:
10.1109/APSEC.2005.81

[23] Claus Pahl (Aug. 2007). ‘Semantic model-driven architecting of service-based
software systems’. In: Information and Software Technology 49 (8),
pp. 838–850. ISSN: 09505849. DOI: 10.1016/j.infsof.2006.09.007

[24] Jin Song Dong (2004). ‘Software modeling techniques and the semantic
Web’. In: IEEE Comput. Soc, pp. 724–725. ISBN: 0-7695-2163-0. DOI:
10.1109/ICSE.2004.1317506

VII

[25] Marco Brambilla and Federico M. Facca (2009). ‘Building Semantic Web
Portals with a Model-Driven Design Approach’. In: IGI Global, pp. 46–106.
DOI: 10.4018/978-1-60566-112-4.ch004

[26] Enrique Chavarriaga and José A. Macías (Dec. 2009). ‘A model-driven
approach to building modern Semantic Web-Based User Interfaces’. In:
Advances in Engineering Software 40 (12), pp. 1329–1334. ISSN: 09659978.
DOI: 10.1016/j.advengsoft.2009.01.016

[27] Antonio Vallecillo et al. (Feb. 2007). ‘MDWEnet: A Practical Approach to
Achieving Interoperability of Model-Driven Web Engineering Methods’. In

[28] Chris Lattner and Vikram S Adve (2004a). ‘LLVM: a compilation framework
for lifelong program analysis transformation’. In: International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pp. 75–86. URL:
https://api.semanticscholar.org/CorpusID:978769

[29] Jorge Cardoso (Feb. 2007). ‘The Semantic Web Vision: Where Are We?’ In:
Intelligent Systems, IEEE 22, pp. 84–88. DOI: 10.1109/MIS.2007.4338499

[30] Ian Horrocks (Dec. 2008). ‘Ontologies and the semantic web’. In:
Communications of the ACM 51 (12), pp. 58–67. ISSN: 0001-0782. DOI:
10.1145/1409360.1409377

[31] Ivan Herman (2013). Publications of the W3C Semantic Web Activity —
w3.org. [Accessed 17-01-2024]

[32] John Domingue et al. (2011). Handbook of Semantic Web Technologies.
Springer

[33] Abderahman Rejeb et al. (2022). Charting Past, Present, and Future
Research in the Semantic Web and Interoperability. DOI:
10.3390/fi14060161

[34] Kasun Anupama Gamage (2017). ‘Separation of Concerns for Web
Engineering Projects’. In: Proceedings of the Second Asia-Pacific Conference
on Multidisciplinary Research. Asia-Pacific Conference on Multidisciplinary
Research. Colombo, Sri Lanka, pp. 216–221. ISBN: 978-955-4543-42-3

[35] Automation of Web services development using model driven techniques
(Mar. 2010). Vol. 3, pp. 190–194. DOI: 10.1109/ICCAE.2010.5452059

[36] Antonio Cicchetti et al. (Feb. 2011). ‘Managing the evolution of
data-intensive Web applications by model-driven techniques’. In: Software
and System Modeling - SOSYM 12, pp. 1–31. DOI:
10.1007/s10270-011-0193-0

[37] Marco Brambilla and Piero Fraternali (Feb. 2014). ‘Large-scale Model-Driven
Engineering of web user interaction: The WebML and WebRatio experience’.
In: Science of Computer Programming 89, pp. 71–87. DOI:
10.1016/j.scico.2013.03.010

VIII

[38] Andrea Schauerhuber et al. (Feb. 2006). ‘Bridging existing web modeling
languages to model-driven engineering: A metamodel for WebML’. in:
vol. 155, p. 5. DOI: 10.1145/1149993.1149999

[39] Alvis Fong et al. (Feb. 2012). ‘Generation of Personalized Ontology Based on
Consumer Emotion and Behavior Analysis’. In: Affective Computing, IEEE
Transactions on 3, pp. 1–1. DOI: 10.1109/T-AFFC.2011.21

[40] K.A.M. Sluijs Van Der (2012). ‘Model driven design and data integration in
semantic web information systems’. In: DOI: 10.6100/IR732193. URL:
https://doi.org/10.6100/IR732193

[41] ‘OWL rules: A proposal and prototype implementation’ (2005). In: Journal of
Web Semantics 3 (1). Rules Systems, pp. 23–40. ISSN: 1570-8268. URL:
https:
//www.sciencedirect.com/science/article/pii/S1570826805000053

[42] Yue Pan et al. (2006). ‘Model-Driven Ontology Engineering’. In: pp. 57–78.
DOI: 10.1007/11890591_3

[43] Victoria Torres et al. (2006). ‘Building Semantic Web Services Based on a
Model Driven Web Engineering Method’. In: pp. 173–182. DOI:
10.1007/11908883_21

[44] Samad Paydar and Mohsen Kahani (June 2015). ‘A semantic web enabled
approach to reuse functional requirements models in web engineering’. In:
pp. 241–288. DOI: 10.1007/s10515-014-0144-4

[45] Santiago Meliá and Jaime Gómez (2006). ‘The WebSA Approach: Applying
Model Driven Engineering to Web Applications’. In: J. Web Eng. 5,
pp. 121–149. URL: https://api.semanticscholar.org/CorpusID:2113605

[46] et al. (2007). ‘Semantic Web: A state of the art survey’. In: International
Review on Computers and Software. URL:
https://api.semanticscholar.org/CorpusID:8225359

[47] H. Agius (Mar. 2004). ‘Review: The Semantic Web’. In: The Computer
Bulletin 46 (2), pp. 31–31. ISSN: 0010-4531. DOI:
10.1093/combul/46.2.31-a

[48] F. van Harmelen (Mar. 2004). ‘The semantic web: what, why, how, and when’.
In: IEEE Distributed Systems Online 5 (3), pp. 1–4. ISSN: 1541-4922. DOI:
10.1109/MDSO.2004.1285880

[49] World Wide Web Consortium (2011). W3C Validator - Semantic Web
Standards. URL: https://www.w3.org/2001/sw/wiki/SWValidators

[50] D Miles (Feb. 2017). ‘ARTICLE: "Research Methods and Strategies
Workshop: A Taxonomy of Research Gaps: Identifying and Defining the
Seven Research Gaps"’. In: 1, p. 1

[51] P Gottgtroy et al. (Feb. 2003). ‘An ontology engineering approach for
knowledge discovery from data in evolving domains’. In

IX

[52] Tom Preston-Werner (June 2013). Semantic versioning 2.0.0. URL:
https://semver.org/

[53] Pradeepa Somasundaram (Jan. 2024). Top 20 software documentation tools
of 2024. URL:
https://document360.com/blog/software-documentation-tools/

[54] Egon Willighagen (Feb. 2014). Accessing biological data in R with semantic
web technologies. DOI: 10.7287/peerj.preprints.185v2

[55] Stefan Biffl and Marta Sabou (Feb. 2016). Semantic Web Technologies for
Intelligent Engineering Applications. ISBN: 978-3-319-41488-1. DOI:
10.1007/978-3-319-41490-4

[56] Deniztan Ulutaş Karakol et al. (May 2016). ‘Semantic definition and
matching for implementing national spatial data infrastructures’. In: Journal
of Spatial Science 61, pp. 1–19. DOI: 10.1080/14498596.2016.1142397

[57] Reinaldo França et al. (Feb. 2021). ‘An Overview and Technological
Background of Semantic Technologies’. In: pp. 1–21. ISBN: 9781799866992.
DOI: 10.4018/978-1-7998-6697-8.ch001

[58] Alexander Maedche and Steffen Staab (Feb. 2002). ‘Applying Semantic Web
Technologies for Tourism Information Systems’. In: DOI:
10.1007/978-3-7091-6132-6_32

[59] Gustavo Rossi, Oscar Pastor et al. (Feb. 2008). Web Engineering: Modelling
and Implementing Web Applications. ISBN: 978-1-84628-922-4. DOI:
10.1007/978-1-84628-923-1

[60] Nathalie Moreno et al. (Feb. 2008). ‘An Overview Of Model-Driven Web
Engineering and the Mda’. In: pp. 353–382. ISBN: 978-1-84628-922-4. DOI:
10.1007/978-1-84628-923-1_12

[61] Kevin Vlaanderen et al. (Feb. 2008). ‘Model-Driven Web Engineering in the
CMS Domain: A Preliminary Research Applying SME’. in: vol. 19,
pp. 226–237. ISBN: 978-3-642-00669-2. DOI:
10.1007/978-3-642-00670-8_17

[62] Ali Fatolahi et al. (2011). Model-Driven Web Development for Multiple
Platforms

[63] Pedro Valderas and Vicente Pelechano (Feb. 2011). ‘A Survey of
Requirements Specification in Model-Driven Development of Web
Applications’. In: TWEB 5, p. 10. DOI: 10.1145/1961659.1961664

[64] José Rivero et al. (Feb. 2011). ‘Improving Agility in Model-Driven Web
Engineering.’ In: vol. 734, pp. 163–170

[65] J A Garcia-Garcia et al. (Feb. 2013). ‘NDT-Driver: A Java Tool to Support QVT
Transformations for NDT’. in: pp. 89–101. ISBN: 978-1-4614-4950-8. DOI:
10.1007/978-1-4614-4951-5_8

X

[66] Thisaranie Kaluarachchi and Manjusri Wickramasinghe (2023). ‘A systematic
literature review on automatic website generation’. In: Journal of Computer
Languages 75, p. 101202. ISSN: 2590-1184. DOI:
https://doi.org/10.1016/j.cola.2023.101202. URL: https:
//www.sciencedirect.com/science/article/pii/S2590118423000126

[67] Thisaranie Kaluarachchi and Manjusri Wickramasinghe (2024). ‘WebDraw: A
machine learning-driven tool for automatic website prototyping’. In: Science
of Computer Programming 233, p. 103056. ISSN: 0167-6423. DOI:
https://doi.org/10.1016/j.scico.2023.103056. URL: https:
//www.sciencedirect.com/science/article/pii/S0167642323001387

[68] Gustavo Rossi, Matias Urbieta et al. (Dec. 2016). ‘25 Years of Model-Driven
Web Engineering: What we achieved, What is missing’. In: CLEI Electronic
Journal 19.3. Special issue devoted to CIbSE 2016. DOI:
10.19153/cleiej.19.3.1. URL:
https://doi.org/10.19153/cleiej.19.3.1

[69] Veera Harish Muthazhagu and Surendiran B (2024). ‘Exploring the Role of AI
in Web Design and Development: A Voyage through Automated Code
Generation’. In: 2024 International Conference on Intelligent and Innovative
Technologies in Computing, Electrical and Electronics (IITCEE), pp. 1–8.
DOI: 10.1109/IITCEE59897.2024.10467409

[70] Chris Lattner and Vikram S. Adve (2004b). ‘LLVM: a compilation framework
for lifelong program analysis & transformation’. In: International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pp. 75–86. URL:
https://api.semanticscholar.org/CorpusID:978769

[71] LLVM Discussion Forums (Aug. 2018). Transpiler Question. Accessed:
2024-08-10. URL:
https://discourse.llvm.org/t/transpiler-question/49589/4

[72] LLVM Documentation (Aug. 2024). Writing an LLVM Backend.
https://llvm.org/docs/WritingAnLLVMBackend.html. Writing an LLVM
Backend - LLVM 20.0.0git documentation. LLVM Project

[73] Vaivaswatha Nagaraj et al. (2020). ‘Compiling a Higher-Order Smart
Contract Language to LLVM’. in: CoRR abs/2008.05555. arXiv: 2008.05555.
URL: https://arxiv.org/abs/2008.05555

[74] Dimitri Racordon (2021). ‘From ASTs to Machine Code with LLVM’. in:
Companion Proceedings of the 5th International Conference on the Art,
Science, and Engineering of Programming. URL:
https://api.semanticscholar.org/CorpusID:237246533

[75] Alon Zakai (2011). ‘Emscripten: an LLVM-to-JavaScript compiler’. In:
Proceedings of the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications Companion.
OOPSLA ’11. Portland, Oregon, USA: Association for Computing Machinery,
pp. 301–312. ISBN: 9781450309424. DOI: 10.1145/2048147.2048224. URL:
https://doi.org/10.1145/2048147.2048224

XI

[76] Baer Darius (2010). ‘Expectations for a Fourth Generation Language’. In:
Proceedings of the Conference on Fourth Generation Languages (4GL). URL:
https://api.semanticscholar.org/CorpusID:8164685

[77] Brijender Kahanwal (Oct. 2013). ‘Abstraction Level Taxonomy of
Programming Language Frameworks’. In: International Journal of
Programming Languages and Applications (IJPLA) 3.4, pp. 1–12. DOI:
10.5121/ijpla.2013.3401

[78] Union of RAD (2024). Documentation. https:
//li3.me/docs/api/lithium/1.0.x/lithium/template/helper/Html::
link/. lithium::link() – Framework API v1.0.x – Documentation – li3
PHP-Framework. Union of RAD

[79] Angular Team (2024). Angular Documentation. Available at:
https://angular.io/docs

[80] Express Team (2024). Express Documentation. Available at:
https://expressjs.com/en/starter/installing.html

[81] Mongoose Team (2024). Mongoose Documentation. Available at:
https://mongoosejs.com/docs/

[82] Auth0 Team (2024). Auth0 Documentation. Available at:
https://auth0.com/docs

[83] Redux Team (2024). Redux Documentation. Available at:
https://redux.js.org/introduction/getting-started

[84] Douglas Schmidt (Jan. 2006). ‘Model-driven engineering’. In: IEEE
Computer, Computer Society 39, pp. 41–47

[85] Burak Yetiştiren et al. (2023). ‘Evaluating the code quality of ai-assisted code
generation tools: An empirical study on github copilot, amazon
codewhisperer, and chatgpt’. In: arXiv preprint arXiv:2304.10778

[86] Anh Nguyen Duc et al. (Oct. 2023). Generative Artificial Intelligence for
Software Engineering -A Research Agenda. DOI: 10.2139/ssrn.4622517

[87] Mario Bochicchio and Nicola Fiore (2005). MODE: A Tool for Conceptual
Modeling of Web Applications. Via per Arnesano – 73100 – Lecce, Italy:
Department of Innovation Engineering, University of Lecce

[88] Ilma Ainur Rohma and Ade Azurat (June 2024). ‘Code Generator
Development to Transform IFML (Interaction Flow Modelling Language) into
a React-based User Interface’. In: Jurnal Ilmu Komputer dan Informasi 17,
pp. 109–120. DOI: 10.21609/jiki.v17i2.1178

XII

.

XIII

