
Performance on Virtualization
Environments with Virtual TAP

A dissertation submitted for the Degree of Master of
Computer Science

S C Senanayake
University of Colombo School of Computing

2024

ACKNOWLEDGEMENTS

I extend my deepest gratitude to my supervisor, Dr. CI Keppitiyagama, for his invaluable

guidance, support, and expertise throughout the course of this project. His patience and

encouragement have been fundamental to my success, serving as the cornerstone of my

journey through this research.

Equally, my sincere appreciation goes to my co-supervisor, Mr. TNB Wijethilake, whose

insightful advice and steadfast support have been instrumental in navigating the complexities

of my work. His contributions have not only enhanced the quality of my research but have

also enriched my personal growth and understanding of the subject matter.

I am also profoundly thankful to Dr. Udayanga Wickramasinghe and Mr. Wathsala Vithanage

from the UCSC Operating System Research Group. Their extensive knowledge and

dedication to the field of operating systems have not only been a significant source of

inspiration but have also greatly contributed to the depth and breadth of my research. Their

willingness to share their expertise and insights has been invaluable, and for that, I am

eternally grateful.

This project could not have reached its fruition without the collective wisdom,

encouragement, and support of these distinguished individuals. Their belief in my abilities

and their unwavering support have been pivotal in overcoming the challenges faced during

this research. I am honored to have worked under their guidance and am deeply thankful for

their contributions to both my academic and personal development.

I would finally like to express my profound gratitude to my parents and family, who have

been my pillar of strength and support throughout all my endeavors. Their unwavering faith in

me, unconditional love, and endless encouragement have been my constant source of

motivation and resilience. It is with their support that I have been able to pursue my passions

and navigate the challenges of my academic journey. Their sacrifices, understanding, and

patience have not only fueled my determination but have also imbued me with the courage

and confidence to strive for excellence in my research.

To my parents and family, I owe a debt of gratitude that can never be fully expressed in

words. Your belief in me and your selfless support have made all the difference. Thank you

for being my guiding light and for always standing by me. This achievement is not just mine

but also yours

Ⅱ

ABSTRACT

Network traffic monitoring is essential for maintaining the security and performance of

software-defined networks (SDNs). It enables administrators to swiftly identify and address

issues, optimize network performance, and protect sensitive data from cyber threats. With the

increasing prevalence of virtual networks, the need for effective traffic monitoring has grown

significantly. However, there is noticeable performance degradation (50% to 70%) when

monitoring network traffic in virtual environments.

This study investigates the performance reduction associated with virtualized environments

using virtual TAPs (Test Access Points) and proposes alternative methods to mitigate this

issue. Initially, we utilized the Open vSwitch (OVS) virtual switch and VirtualBox VMs to

construct the test network. However, due to inherent bottlenecks in VirtualBox, this approach

was unsuccessful. We then built a virtual network using OVS and Docker containers,

achieving a network speed between 30 Gbit/s to 35 Gbit/s, which provided a suitable

bandwidth for further testing.

Our experiments examined the relationship between network traffic and mirror count,

revealing no significant impact on network bandwidth. Subsequently, we analyzed network

traffic with and without mirroring across various packet sizes, discovering a correlation

between packet size and network performance. The most substantial performance drop,

approximately 20%, was observed with 1024-byte packets, though this was notably less

severe than findings reported by other researchers.

Using VTune Profiler and OS/Kernel Profile, we attempted to identify the root cause of the

performance drop but were unsuccessful. Further investigation revealed that the physical NIC

(Network Interface Card) was a bottleneck, as it struggled to handle mirrored traffic of 20–30

Gbit/s. High-capacity NICs are rare and expensive, prompting us to consider alternative

solutions.

We propose a preprocessing tool integrated with an OVS-Docker container virtual network

setup. This tool filters traffic by source and destination IP addresses and captures packet

samples at specified intervals. Additionally, it allows users to input tshark commands directly,

providing a flexible and efficient approach to network traffic monitoring.

Ⅲ

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ACRONYMS ix

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

1.2 Statement of the problem 2

1.3 Research Aim and Objectives 3

1.3.1 Aim 3

1.3.2 Objectives 3

1.4 Research Questions 3

1.5 Scope 3

1.6 Structure of the thesis 4

CHAPTER 2: LITERATURE REVIEW 5

2.1 Literature Review 5

2.2 Full virtualization 5

2.3 Paravirtualization 5

2.4 Docker 6

2.5 Docker Container As Virtual Machines 7

2.6 Data Plane Development Kit (DPDK) 7

2.7 Open vSwitch (OVS) 8

2.8 Other Research related to the research. 8

CHAPTER 3: METHODOLOGY 10

3.1 Simulate the Problem 10

Ⅳ

3.2 Clarify the Problem 11

3.3 Deep Study about the issue and design a solution 12

3.4 Create a prototype of the suggested solution 13

3.5 Evaluation 13

CHAPTER 4: EVALUATION AND RESULTS 14

4.1 Test Flow 14

4.1.1 OVS with Virtualbox VM’s 14

4.1.2 OVS with Docker Containers 14

4.1.3 Test One 15

4.1.4 Test Two 15

4.1.5 Test Three 16

4.2 Tests 16

4.2.1 OVS with Virtualbox VM’s 17

4.2.2 Test One 19

4.2.3 Test Two 26

4.2.4 Test Three 34

4.3 Proposed Solution 38

4.3.1 Propose Network Setup 39

4.3.2 Custom Tool 40

4.3.3 What is Tshark 40

4.3.4 Main Functions Proposed Custom Tool Support 41

4.3.5 Custom Tool UIs 42

4.3.6 Testing Custom Tool Functionality 43

4.3.6.1 Filter Traffic From Src ip and Dest Ip 44

4.3.6.2 Capture Sample data 45

CHAPTER 5: CONCLUSION AND FUTURE WORK 47

5.1 Reflection on the Research Problem. 47

Ⅴ

5.2 Significance of the Research 48

5.3 Future Work 48

REFERENCES 49

Ⅵ

LIST OF FIGURES

Figure 3.1: Methodology 10

Figure 3.2: OVS-VirtualBox and OVS-Docker Container network setup 11

Figure 4.1: Test Flow 14

Figure 4.2: OVS- VirtualBox 17

Figure 4.3: Test 1 Setup 19

Figure 4.4: OVS Switch Cycles and Instructions in each Test Case 23

Figure 4.5: OVS Switch CPI in each Test Case 24

Figure 4.6: Bitrate of VM1 to VM2 in each test case 25

Figure 4.7:Test 2 Setup 26

Figure 4.8: With Mirror and Without Mirror Network Speed over Data Rate 27

Figure 4.9: With Mirror and Without Mirror Network Speed over Packet Size 28

Figure 4.10:With Mirror and Without Mirror PPS over Packet Size 28

Figure 4.11: Performance Drop Over Packet size 29

Figure 4.12: Without Mirror Flame graphs of ovs-vswitchd 30

Figure 4.13 : With Mirror Flame graphs of ovs-vswitchd 30

Figure 4.14 : With Mirror Kernel profiler FlameGraph 32

Figure 4.15 : Without Mirror Kernel profiler FlameGraph 33

Figure 4.16 : Test Setup 3 37

Figure 4.17 : Mirror Data vs Wireshark Data in each test case 37

Figure 4.18 : Network Setup 39

Figure 4.19 : Proposed Solution 40

Figure 4.20 : Proposed Solution details view 40

Figure 4.21 : Proposed Solution After Deployment 42

Figure 4.22 : Custom Tool UI : Filter 43

Figure 4.23 : Custom Tool UI : Capturing Samples 43

Figure 4.24 : Custom Tool UI : Capturing packet when given cmd 43

Figure 4.25 : Test Setup for Custom Tool 44

Figure 4.26 : Packet Filter by IP 45

Figure 4.27 : Custom tool user perspective 46

Ⅶ

LIST OF TABLES

Table 2.1: Full Virtualization Vs Paravirtualization 6
Table 4.1: Test Setup 1 Result 22
Table 4.2: Test Setup 2 Results 37

Ⅷ

ACRONYMS
VM : Virtual machine

OVS : Open V Switch

VNI : Virtual Network Interface

VP: Virtual Port

eth0: Physical Network Interface of host 1

eth1: Physical Network Interface of host 2

SDN: software-defined networks

DPDK: Data Plane Development Kit

OVS: Open vSwitch

TAP: Test Access Point

SR-IOV:Single Root I/O Virtualization

LLC : Last Level Cache

GRE: Generic Routing Encapsulation

CPI: Cycles Per Instruction

Ⅸ

CHAPTER 1

INTRODUCTION

1.1 Motivation
Network traffic monitoring is critical in software-defined networks (SDNs) because it allows

network administrators to gain visibility into network activity and identify potential issues

before they become major problems. Here are some specific reasons why network traffic

monitoring is important in SDNs.

Security
● Detection of Malicious Activities:

○ Network traffic monitoring in SDNs helps in identifying suspicious activities,

such as DDoS attacks, unauthorized data exfiltration, and intrusion attempts.

By analyzing traffic patterns, SDNs can detect anomalies that deviate from

normal behavior, enabling timely mitigation of potential threats.

● Policy Enforcement and Compliance:

○ SDNs can dynamically enforce security policies and compliance requirements

by monitoring and controlling the traffic flowing through the network. This

ensures that only authorized users and services have access to network

resources, enhancing the overall security posture.

● Data Privacy and Integrity:

○ Monitoring allows for the inspection of data packets to ensure that sensitive

information is encrypted and hasn't been tampered with during transmission.

This is vital in protecting data privacy and maintaining integrity across the

network.

Performance
● Traffic Analysis and Management:

○ By continuously monitoring network traffic, SDNs can analyze usage patterns,

identify bottlenecks, and optimize resource allocation to improve network

performance. This includes adjusting bandwidth allocations, rerouting traffic to

avoid congested links, and scaling network resources dynamically based on

demand.

● Quality of Service (QoS):

○ SDNs can prioritize traffic to ensure that critical applications receive the

1

necessary bandwidth and low-latency treatment. Network traffic monitoring is

essential for implementing effective QoS policies that meet service level

agreements (SLAs) and enhance user experience.

Troubleshooting
● Rapid Problem Identification:

○ Monitoring network traffic enables the quick identification of issues such as

packet loss, high latency, or connectivity problems. This allows network

administrators to promptly address and rectify issues before they impact

end-users.

● Root Cause Analysis:

○ By providing detailed insights into network operations, traffic monitoring in

SDNs helps in diagnosing the root causes of network issues. This can include

hardware failures, misconfigurations, or external factors affecting network

performance.

● Historical Data for Forensics and Planning:

○ Maintaining logs of network traffic enables historical analysis, which is useful

for investigating security incidents and planning future network upgrades or

expansions based on past usage trends and performance metrics.

In summary, network traffic monitoring is crucial for ensuring the security, performance of

software-defined networks. It allows network administrators to quickly identify and address

issues, optimize network performance, and keep sensitive data safe from cyber threats (Bird,

2023),(“What is Network Troubleshooting?,” 2023)

1.2 Statement of the problem
A virtualized Test Access Point (TAP) service provides monitoring capability in virtualized

networks. However, virtual TAPs can contribute to performance degradation in a virtualized

environment. (Wang et al., 2020) This research focuses on finding the root course to reduce

performance on virtualization environments with Virtual TAPs and suggesting an alternative

way to overcome the issue.

2

https://www.zotero.org/google-docs/?JgpumL
https://www.zotero.org/google-docs/?JgpumL
https://www.zotero.org/google-docs/?cNAOi6
https://www.zotero.org/google-docs/?uXJlC2

1.3 Research Aims and Objectives

1.3.1 Aim

Virtual TAPs are often implicated in causing notable performance degradation within these

networks. This research endeavors to meticulously investigate the underlying reasons behind

the performance issues. By doing so, it aims to propose an optimized virtual network

configuration that not only reduces the performance reduction but also enhances overall

efficiency. Furthermore, a significant part of this study is dedicated to developing a prototype

to minimize mirror traffic volume. The prototype is achieved by implementing sophisticated

preprocessing techniques, thereby addressing one of the critical challenges associated with

virtual TAP services and ensuring a more seamless and efficient network monitoring process.

1.3.2 Objectives

● Do a proper literature review on current solutions that have for this performance issue.

● To simulate the issue, implement VMs in a virtualization environment with virtualized

TAP and conduct deep investigations.

● Find the root course of the issue

● Design a solution

● Build prototype

● Evaluate the proposed network setup and prototype.

1.4 Research Questions
● How can we reduce the performance reduction of virtual networks when mirroring

traffic?

● How to send mirrored data through a physical NIC without increasing the NIC's

capacity?

● Why is there a performance reduction in virtual networks when mirroring traffic?

1.5 Scope
The scope of the project is to Implement two VM’s over a virtualization environment with

virtualized TAP and identify the root course for performance degradation and design and

implement a prototype. Following is considered as in scope for the proposed project.

● Do a proper literature review on current researchers that have to port mirroring and

performance analysis.

● Study techniques and technologies (Data Plane Development Kit (DPDK),

para-virtualization environment, Open V Switch (OVS), Single Root I/O
3

Virtualization (SR-IOV) that are used in those researches, finding strength and

weakness of those technologies,and Gather sufficient knowledge to accomplish the

desired task.

● Find the root cause of the issue.

● Design a solution.

● Build a prototype and measure performance using specialized tools.

1.6 Structure of the Thesis

● Chapter 2 of this report provides a detailed literature review of the current research

regarding virtualized networks, virtualized TAP services, and their limitations.

● Chapter 3 describes the methodology of the proposed solution in detail.

● Chapter 4 describes the evolution plan of the proposed solution.

4

CHAPTER 2
LITERATURE REVIEW

2.1 Literature Review
Virtualization mainly has two types: Full Virtualization and Paravirtualization which are two

techniques used in virtualization technology to create virtual machines (VMs) on physical

servers

2.2 Full virtualization

Full virtualization is a technique that allows multiple operating systems to run simultaneously

on a single physical server. Each operating system runs in its own virtual machine, which

emulates the underlying hardware of the physical server, including the CPU, memory, storage,

and network devices. The guest operating system running in the VM is not aware that it is

running in a virtualized environment, as it has its own virtual hardware resources. The

hypervisor, also known as the virtual machine monitor (VMM), manages the allocation of

physical resources to virtual machines.

2.3 Paravirtualization

Paravirtualization is a technique in which the guest operating system is aware that it is

running in a virtualized environment and has access to a special API (application

programming interface) provided by the hypervisor. The guest operating system

communicates with the hypervisor through this API to share resources and coordinate

operations. This allows the guest operating system to achieve better performance than full

virtualization, as it can directly access physical hardware resources rather than emulating

them.

5

Table 2.1 : Full Virtualization Vs Paravirtualization

Features Full Virtualization Paravirtualization

Definition It is the first generation of
software solutions for server
virtualization.

The interaction of the guest
operating system with the
hypervisor to improve
performance and productivity is
known as paravirtualization.

Security It is less secure than
paravirtualization.

It is more secure than full
virtualization.

Performance Its performance is slower than
paravirtualization.

Its performance is higher than
full virtualization.

Guest OS Modification It supports all the Guest OS
without any change.

The Guest OS has to be
modified in paravirtualization,
and only a few OS support it.

Guest OS hypervisor
independent

It enables the Guest OS to run
independently.

It enables the Guest OS to
interact with the hypervisor.

Potable and Compatible It is more portable and
compatible.

It is less portable and
compatible.

Isolation It offers optimum isolation. It offers less isolation.

Efficient It is less efficient than
paravirtualization.

It is more simplified than full
virtualization.

Characteristic It is software based. It is cooperative virtualization.

Examples It is used in Microsoft, VMware,
and Parallels systems.

It is mainly used in VMware and
Xen systems.

Table 2.1 explains and compares the main differences between Full Virtualization and

Paravirtualization.(“Difference between Full Virtualization and Paravirtualization in Operating

System - javatpoint,” 2023)

2.4 Docker

Docker is an open-source platform designed to make it easier to create, deploy, and run

applications by using containers. Containers allow a developer to package up an application

with all of the parts it needs, such as libraries and other dependencies, and ship it all out as

one package. By doing so, the developer can rest assured that the application will run on any

other Linux machine regardless of any customized settings that machine might have that

could differ from the machine used for writing and testing the code.

6

https://www.zotero.org/google-docs/?ZjbmJS
https://www.zotero.org/google-docs/?ZjbmJS

In a way, Docker is a bit like a virtual machine. However, unlike a virtual machine, rather

than creating a whole virtual operating system, Docker allows applications to use the same

Linux kernel as the system that they're running on and only requires applications to be

shipped with things not already running on the host computer. This gives a significant

performance boost and reduces the size of the application.The Docker platform is made up of

several components:

Docker Engine: A lightweight and powerful open source containerization technology

combined with a workflow for building and containerizing your applications.

Docker Hub: A cloud-based registry service which allows you to link to code repositories,

build your images, test them, store manually pushed images, and link to Docker Cloud so you

can deploy images to your hosts.

Docker Compose: A tool for defining and running multi-container Docker applications. With

Compose, you use a YAML file to configure your application’s services. Then, with a single

command, you create and start all the services from your configuration.

Docker simplifies and accelerates your workflow, while giving developers the freedom to

innovate with their choice of tools, application stacks, and deployment environments for each

project.(“Docker Compose overview”; “Docker Engine overview,” 100AD; “Overview of

Docker Hub,” 800; “What is Docker?,” 2023)

2.5 Docker Container As Virtual Machines

Using Docker containers as lightweight virtual machines (VMs) is a popular practice for

development, testing, and even production environments for certain use cases. While Docker

containers are not VMs in the traditional sense they share the host OS kernel and do not

require a hypervisor; they can be used to run isolated applications in environments that

closely resemble VMs. (“Docker vs. VM (Virtual Machine),” 2023)

2.6 Data Plane Development Kit (DPDK)

DPDK stands for Data Plane Development Kit. It is a set of libraries and drivers that provide

a high-performance framework for building packet processing applications. DPDK is

designed to run on x86 processors and supports various operating systems such as Linux,

FreeBSD, and Windows(currently a work in progress). DPDK provides a set of libraries and

drivers for developing high-performance packet processing applications. These applications

can be used in various use cases such as network function virtualization, cloud computing,

and software-defined networking. DPDK provides a number of performance optimizations

7

https://www.zotero.org/google-docs/?RzoPba
https://www.zotero.org/google-docs/?RzoPba
https://www.zotero.org/google-docs/?aJA3oP

that enable applications to achieve high packet processing rates with low latency.Some of the

key features of DPDK include:

● Support for a wide range of NICs

● Support for multi-core processors

● Support for different packet processing modes such as polling and interrupt-driven

● Low-latency packet I/O

● Support for various network protocols

● Support for virtualization technologies such as SR-IOV and Virtio

DPDK is widely used in the networking industry and is supported by various hardware and

software vendors. It is an open-source project that is maintained by the Linux Foundation.

(“Overview — Data Plane Development Kit 24.03.0-rc1 documentation,” 2023)

2.7 Open vSwitch (OVS)

Open vSwitch (OVS) is an open-source software switch designed to be used in virtualized

environments such as data centers and cloud computing. It allows network administrators to

create and manage complex virtual network topologies that can be used by virtual machines

and containers.

OVS is compatible with many virtualization platforms, including KVM, Xen, and VMware. It

is also supported by many cloud providers, including Amazon Web Services and Microsoft

Azure.

Some of the key features of OVS include:

● Support for standard networking protocols such as OpenFlow, NetFlow, and sFlow.

Support for virtual network interfaces, including VLANs and tunneling protocols such

as GRE and VXLAN.

● Integration with orchestration frameworks such as OpenStack and Kubernetes.

Fine-grained control over network traffic through the use of flow rules.

● Support Multiple tunneling protocols

(“What Is Open vSwitch? — Open vSwitch 3.3.90 documentation,” 2023)

2.8 Other Research related to the research.

In a paravirtualization system, inter-VM communication is expensive, and if used with a

virtual tap, it can result in a 70% performance decrease. Using a hybrid approach that allows

mirroring of VIRTIO port traffic to another VF (SR-IOV) via NIC hardware offloading, the

performance decrease can be reduced to up to 50%. (Wang et al., 2020)

8

https://www.zotero.org/google-docs/?z6H8WT
https://www.zotero.org/google-docs/?ZsQtjK
https://www.zotero.org/google-docs/?HR9EbO

By implementing a new virtual Tap using DPDK, OVS with OpenFlow could achieve an 8 to

25 times throughput improvement. DPDK can accelerate the overall packet processing

operations needed in vTAP, and an OpenFlow controller can provide a centralized and flexible

way to apply and manage TAP policies in an SDN network. (Jeong et al., 2018)

Traffic mirroring is a configuration option for virtual switches. The most popular and widely

used virtual switch alternative is Open vSwitch (OVS). Most current Linux distributions

include OVS, which is open source. However, OVS performance, particularly throughput for

smaller packets, is much lower than the line rate of the interface. To overcome this limitation,

OVS was ported to the Data Plane Development Kit (DPDK), namely OVDK. The latter

achieves an impressive line rate throughput across physical interfaces. (Shanmugalingam et

al., 2016)

The internal complexity of VMs mainly affects the network throughput of SDN. If

technologies like DPDK are used to bypass those internal complex layers, higher network

throughput can be achieved. (Kourtis et al., 2015)

In summary, according to the research findings mentioned above, in an SDN, OVS with

mirroring experiences significant performance reduction, and most attempts to find a solution

involve combining OVS with DPDK. In this research, we are focusing on finding a solution

with a virtual network that has OVS and Docker containers.

9

https://www.zotero.org/google-docs/?qQmbqk
https://www.zotero.org/google-docs/?lNviTf
https://www.zotero.org/google-docs/?lNviTf
https://www.zotero.org/google-docs/?6uhbiU

CHAPTER 3

METHODOLOGY

Figure 3.1 shows the methodology of this research, which has five steps.

1. Simulate the problem.

2. Clarify the problem.

3. Deep study about the issue and design a solution.

4. Create a prototype of the suggested solution

5. Evaluation

Figure 3.1 : Methodology

3.1 Simulate the Problem
In this research, it is necessary to simulate the virtual environment to study performance

degradation in virtual networks when mirror traffic occurs. In this research, we have planned

to use two different virtual environments for the experiments, such as Oracle VirtualBox and

Docker. Figure 3.2 shows the proposed experimental setup for the research, and either

10

VirtualBox or Docker can be used as the virtualization platform. Each virtual machine will be

connected using an OVS bridge.

Figure 3.2 : OVS-VirtualBox and OVS-Docker Container network setup

In this experiment, we have planned to use Oracle VirtualBox version 7, Docker version

24.0.6, and OVS version 3.0.0. The operating system of the host machine will be Ubuntu

22.04.3 LTS. The virtual machines VM1 and VM2 will also be installed with Ubuntu 22.04.3

LTS. The Docker containers will use Alpine Linux v3.18.

3.2 Clarify the Problem
In the second stage, the primary focus will be on identifying whether there is an actual

performance degradation when mirroring traffic in the virtual environment. We have planned

several experiments to test the performance of the network with and without mirrors under

multiple parameters. The parameters we planned to consider are as follows.

● Number of mirror counts.

● Data packet size.

● Multiple data transfer speeds.

In our experiments, we have planned to use the following tools to measure different aspects of

the network connection.

iperf3

Version : 3.9

The tool was mainly used to generate traffic between VMs, and it was also used to monitor

traffic. Using this tool, traffic was generated with different packet sizes and different

bandwidths.

perf

11

Version 6.5.8

This is a performance analyzer tool used to analyze LLC details, L1 cache details, task clock,

and cycle count.

Wireshark

Version 4.2.2

Wireshark is a free and open-source packet analyzer that is mainly used to check whether

mirror ports are working. Also, the Wireshark tool is used to analyze the capability of

physical NICs.

3.3 Deep Study about the issue and design a solution
This stage will be mainly focusing on identifying the root cause of the performance

degradation when mirroring traffic and designing a solution. There will be a requirement of

code modification in the OVS for implementing the proposed solution. The Hotspots Analysis

in the VTune profiler will be used to find the functions in the OVS switch that consume the

most CPU time. OS/Kernel profile analyses can be conducted using perf and the flame graph

tool. Based on the findings, the best virtual network setup will be proposed, and a solution

will address the physical network card bottleneck.

Following tools will be used in this stage of the research.

VTune profiler

Version 2023.2.0

The VTune Profiler is a performance analysis tool developed by Intel that helps optimize the

performance of applications, systems, and kernel code. Hotspots Analysis, which is designed

to identify the areas in your application where the most execution time is spent, was used.

This is crucial for performance optimization because it allows developers to focus their efforts

on optimizing the parts of the code that will yield the most significant performance

improvements.

Perf

version 6.5.8

The tool is used to analyze the OS/Kernel profile. Perf is also used to record performance data

system-wide. This data is saved in a file, which is not readily readable. The Flame Graph tool

to convert this less readable file into a flame graph.

Flame Graphs

Git : https://github.com/brendangregg/FlameGraph/tree/master

This is an open source tool.The GitHub repository "FlameGraph" is a tool for visualizing

stack traces. It turns profiled code into interactive, color-coded flame graphs that help in

identifying performance bottlenecks and understanding system behavior. The repository
12

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph/tree/master

includes scripts for generating these graphs from various profiling tools like Linux perf,

DTrace, and others

3.4 Create a prototype of the suggested solution
In this stage, the focus is on developing a functional prototype of the suggested solution and

testing its functionality. A prototype will be developed using Java-based web service. This

solution will have two main parts: frontend and backend. The frontend will be written using

React.js, and the backend will use SpringBoot.

3.5 Evaluation
At this stage, the goal is to evaluate the proposed virtual network setup and suggested

prototype.

Proposed virtual network Setup Evaluation

Mainly, the test focused on how performance drops when mirroring traffic. Traffic monitor

with and without mirroring while changing various parameters, which are mentioned below.

● Number of mirror counts.

○ Used the test setup and iperf3 to generate traffic from VM1 to VM2.

Additionally, the perf tool was used to find CPU usage statistics of the OVS

switch.To collect statistics, iperf3 was also used.

● Data packet size.

○ In this test setup, the main difference from the previous is only using one

mirror.iperf3 generates traffic from VM1 to VM2 and OVS mirror forward

traffic from vp1 to mirror0-output.To collect statistics, iperf3 was also used.

● Network bandwidth

○ In this network test setup,using iperf3 generates different network traffic and

monitors generated traffic and actual network data transfer speed.

Suggested prototype Evaluation

This prototype works as a tool to reduce mirror traffic sizeThis tool will be evaluated using

Wireshark and custom tool output.

Finally, during the evaluation stage, when analyzing the results, certain network

configurations and testing methods had to be reversed, rejected, or accepted depending on the

situation. If reversal was necessary, it was required to revert to a previous stage, as indicated

by an arrow starting from the evaluation stage and pointing back to preceding stages.

13

CHAPTER 4
EVALUATION AND RESULTS

4.1 Test Flow
The main focus of this section is to provide some basic ideas before delving into a detailed

explanation of each test. It will outline the test setup and results at a high level, with Figure

4.1 illustrating how the test setup evolves from the start.

Figure 4.1: Test Flow

4.1.1 OVS with Virtualbox VM’s

Since OVS is one of the latest technologies used to build virtual networks, it has been utilized

along with VirtualBox to create virtual machines. The main intention was to simulate and

study the research problem. However, with VirtualBox VMs, the expected results could not be

achieved. With VirtualBox, the maximum network traffic achieved was 200 Kbits/s. With

OVS mirroring, no change in network performance was observed. Virtualbox Virtual machine

network traffic can be slower for several reasons. VMs emulate entire hardware systems,

including the network stack, which can introduce additional overhead. Each VM operates

with its own full instance of an operating system, leading to heavier resource usage and

slower network performance. Due to vms bottleneck hiding the performance reduction, that

happens due to mirrors. This occurs due to a bottleneck in VMs masking the performance

decline caused by mirrors. Because of the mentioned issues the VirtualBox option as the

virtual environment is not suitable for the experiment setup.

4.1.2 OVS with Docker Containers
Using Docker, the same OVS virtual network was utilized, and a maximum bandwidth of 33

Gbits/s was observed. However, even Docker has some issues when used as a VM. Docker

14

serves as a lightweight alternative to VMs because it employs operating system-level

virtualization to package and isolate applications in "containers." This leads to efficient

resource usage, as containers share the host system's kernel, rather than each virtual machine

requiring a full operating system.

Since high network bandwidth was observed, the decision was made to continue with Docker

containers instead of VMs. Consequently, the virtual network setup was finalized, involving

OVS with Docker containers. Testing then continued in Three main ways, aiming to

determine how network performance is affected by mirrors.

1. OVS, Docker Containers with Multiple Mirrors (Test One)

2. OVS, Docker Containers, single mirror when packet size changes (Test Two)

3. OVS, Docker Containers, Single Mirror Gre Tunnel (Test Three)

Those testing one by one explain according to the order.

4.1.3 Test One
To implement this configuration(Figure 4.3), simply include several mirror ports in the

suggested network setup. The primary objective was to examine the correlation between

network traffic and mirror count.In addition, the CPU utilization of OVS was measured while

concurrently monitoring the mirror count.

In general, a rise in mirror ports results in elevated (Last Level Cache)LLC loads, LLC

misses, and CPU branch activity. Monitoring results in additional costs or burdens. There are

variations in network bandwidth across situations with and without monitoring, although the

shift is just 2 Mbit/second. Consequently, as the correlation between the data rate and mirror

count could not be determined, an alternative approach was employed.

4.1.4 Test Two
The next test was conducted in the same OVS Docker container setup (Figure 4.7), with one

mirror, comparing different network bandwidths with and without a mirror. In this test, it was

observed that the maximum network bandwidth with a mirror is around 4 Gbit/s less than

without a mirror. For the first time, a considerable performance drop was observed.

After observing a performance drop, the next attempt was to determine whether there was a

relationship with packet size. Therefore, using the same setup as previously, network

performance was monitored with different data packet sizes. In this setup, the maximum

performance drop observed with a packet size of 1024 Bytes was around a 20%(compared to

without mirror traffic) drop.

15

Having observed a maximum 20% performance drop, the next focus was on identifying the

root cause of that issue. Using Vtune Profiler to analyze the OVS switch process, flame

graphs were generated with and without mirroring. However, despite some deviations,

unfortunately, no evidence could be found to explain the performance degradation.

Since nothing useful could be observed, an attempt was made to take an OS/Kernel profile.

For that kernel profile, flame graphs were also created with and without a mirror. Those two

graphs showed some changes, but no evidence could be found to explain the performance

degradation.

A maximum performance drop of 20% was found at the 1024-byte size, but the performance

degradation for all other packet sizes was lower than this. However, due to the limited amount

of time, further experiments to find the root cause of the 20% performance degradation were

ceased.

4.1.5 Test Three
Since the mirror traffic bandwidth was around 30 Gbit/s, there were doubts about mirroring

large traffic outside the host machine. Figure 4.16 shows the test setup. To test this, the

Generic Routing Encapsulation (GRE) tunnel was used to forward traffic to another machine.

However, since this physical NIC only supports 1 Gbit/s, we observed a bottleneck at the host

machine NIC.

4.2 Tests

In this section, provide a detailed explanation for each test that was explained in the Test

Flow.

16

4.2.1 OVS with Virtualbox VM’s
According to the literature review there are many researchers mention a performance drop in

virtual networks with virtual TAPs. In this research, I plan to start a test with an OVS virtual

switch.

Initially made a virtual network with OVS with VM’s that were made with virtual box.

Figure 4.2 : OVS- VirtualBox

Figure 4.2 illustrates how the OVS virtual network connects two VirtualBox VMs. In this

setup, the virtual network operates on a single host, with VM1 connected to VM2 via the

OVS bridge. VP1 and VP2 are Virtual Network Interfaces (VNI’s) that belong to VM1 and

VM2, respectively. The following are the specs of the host computer, OVS bridge, and VMs.

● Host machine configuration

○ Ram : 16 Gb

○ Processor : {Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz,Core Count: 4}

○ Ubuntu 22.04 Operating System

● OVS bridge

○ OVS Version : 3.0.0

○ Inside OVS, create a mirror.

● VM1(virtual machine)

17

○ This is created using virtualbox.

○ Ubuntu 22.04 Operating System

● VM2 (virtual machine)

○ This is created using virtualbox.

○ Ubuntu 22.04 Operating System

Using iperf3, traffic was generated from vm1 to vm2, but it did not exceed 200 Kbits/s. Didn’t

observe any performance difference with mirror and without mirror.

Doing various configuration changes (bellow mentions) tried to increase the network speed.

● Checked and adjusted the VMs' network adapter settings.

● Allocated more resources to the VMs.

● Reviewed the host system's network load and reduced unnecessary consumption.

● Temporarily disabled antivirus/firewall software to test if it was causing the

slowdown.

● Updated VirtualBox and the guest OS to the latest versions.

However, all attempts were unsuccessful. There can be various reasons for this low network

bandwidth.

Virtual machines run on top of a hypervisor (like VMware ESXi, Microsoft Hyper-V, or

Oracle VirtualBox), which emulates physical hardware. Each VM includes a full copy of an

operating system, the application, necessary binaries, and libraries, which consumes more

resources. They typically take a longer time to boot up because they need to load the entire

operating system and the virtualized hardware. The additional layer of the hypervisor in VMs

can lead to performance degradation. (Strydom, 2024; “Why is My Virtual Machine so Slow

(5 Tips to Speed up),” 2022)

So, the likely reason for not observing performance degradation with the mirror is that the

VM bottleneck is greater than the performance drop. Then we have to think of other solutions

that can be used instead of virtualbox VM’s. After doing some research Docker was chosen.

Docker, primarily known for containerization, allows applications to run in isolated

environments, ensuring consistency across different systems. Although not a virtual machine

(VM) in the traditional sense, Docker provides a lightweight alternative to VMs by enabling

applications to share the same operating system (OS) kernel, reducing overhead. Unlike VMs,

which emulate entire hardware stacks, Docker containers interact directly with the host OS,

offering faster startup times and lower resource usage. This makes Docker an efficient tool for

18

https://www.zotero.org/google-docs/?qs5nKa
https://www.zotero.org/google-docs/?qs5nKa

developers looking to deploy applications seamlessly across different environments, without

the need for full-fledged VMs.

Then, the VirtualBox VMs were changed to Docker containers on the same network setup.

With the new setup tested, the network bandwidth observed was around 33 Gbits/s, which was

a huge success. It was decided to go with this OVS-Docker container network setup. Then,

testing continued with this proposed network setup.

4.2.2 Test One
In this setup, just add multiple mirror ports to the proposed network setup. The main intention

was to check the relationship between network traffic and mirror count.

Figure 4.3 : Test 1 Setup

Figure 4.3 illustrates the test setup: build a virtual network that runs on a single host. VM1 is

connected to VM2 over the OVS bridge. VP1 and VP2 are VNIs that belong to VM1 and

VM2, respectively. All the traffic coming from the VP1 port is mirrored to mirror ports. The

following are the specs of the host computer, OVS bridge, and VMs.

● Host machine configuration

○ Ram : 16 Gb

○ Processor : {Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz,Core Count: 4}

○ Only allow to use 2 and 3 cores to host machine (“isolcpus” cmd use)
19

○ Ubuntu 22.04 Operating System

● OVS bridge

○ OVS Version : 3.0.0

○ Run on core 0 (“taskset -c 0”cmd use)

○ Vp1 port all traffic (ingress and egress) mirror to mirror-output port

○ Inside OVS create a mirror

● VM1(Docker Container)

○ This is created using a Docker container.

○ Vm1 run on core 0 (“taskset -c 0”cmd use)

○ Alpine Linux v3.18 Operating System

● VM2 (Docker Container)

○ This is created using a Docker container.

○ Vm2 run on core 1 (“taskset -c 1”cmd use)

○ Alpine Linux v3.18 Operating System

Initially, create a virtual network using OVS, and then create ports vp1 and vp2. Next, create

Docker containers vm1 and vm2 and connect them with the virtual network that was created

earlier. Set proper IP addresses for each, vp1 and vp2, and then create a number of mirrors as

required for each test. Generate traffic from vm1 to vm2 using iperf3.

Test case design

In this test, the data rate and CPU usage was measured with the number of mirror ports. The

test was initiated with 8 mirrors (VP1 port mirrored traffic to mirror0-output, mirror1-output,

mirror2-output, ..., mirror7-output). To achieve this, OVS mirrors were created for each

mirror-output port because an OVS mirror only allows one output port.

Traffic Generation

Use iperf3 , traffic generated from vm1 to vm2. To Capcher traffic also use iperf3

Mirror traffic

Using OVS mirror mirrored the vp1 port traffic to(mirror0-output, mirror1-output

,mirror2-output, mirror3-output, mirror4-output, mirror5-output, mirror6-output,

mirror7-output) Ports

Monitoring

20

Following cmd used to monitor each mirror port and used above cmd to save mirrored data.

The purpose of this command is to add listeners to each mirror port.

“timeout 120s ifstat -n -t -b -i mirror0-output -i mirror1-output -i mirror2-output -i mirror3-output -i

mirror4-output -i mirror5-output -i mirror6-output -i mirror7-output 1 >> testdata.csv ”

Following cmd used to generate traffic from VM1 to VM2. This can also be used to get

transfer data size and transfer data rate.this cmd run on VM1

“iperf3 -c 192.168.1.22 -l 64 -t 120 -p 5201”

Following cmd is used to measure cpu usage parametros of OVS switch.This cmd runs on

the host machine. Those data are in Table 4.1.

“perf stat -e

LLC-prefetches,LLC-loads,LLC-load-misses,LLC-stores,LLC-store-misses,L1-dcache-loads,L1-dcache-lo

ad-misses,L1-dcache-stores,task-clock,context-switches,cpu-migration

s,page-faults,cycles,instructions,branches,branch-misses -p 6251 sleep 140”In Test 1, 9 separate test
scenarios are used.

● Test 1: With 8 Mirror Ports. With monitoring of each mirror port.
● Test 2: With 8 Mirror Ports. Without monitoring each mirror port.
● Test 3: With 4 Mirror Ports. With monitoring of each mirror port.
● Test 4: With 4 Mirror Ports. Without monitoring of each mirror port.
● Test 5: With 2 Mirror Ports. With monitoring of each mirror port.
● Test 6: With 2 Mirror Ports. Without monitoring of each mirror port.
● Test 7: With 1 Mirror Ports. With monitoring of each mirror port.
● Test 8: With 1 Mirror Ports. Without monitoring of each mirror port.
● Test 9: With 0 Mirror Ports.

Results for Tests 1 to 9 are in Table 4.1 (The results came from the above command in each

test.).

21

Table 4.1 : Test Setup 1 Result

Mirror Ports 8 4 2 1 0

Monitoring Yes No Yes No Yes No Yes No N/A

Test No 1 2 3 4 5 6 7 8 9

Interval sec 120 120 120 120 120 120 120 120 120

Transfer GBytes 3.25 3.27 3.26 3.27 3.27 3.28 3.28 3.28 3.28

Bitrate Mbits/sec 233 234 234 234 234 234 235 234 235

Retr 0 0 0 0 0 0 0 0 0

PPS 455078.125 457031.25 457031.25 457031.25 457031.25 457031.25 458984.375 458984.375 458984.375

LLC-loads 1,939,796 1,872,257 2,001,652 1,834,107 1,988,224 1,959,110 2,036,004 1,933,427 1,892,003

LLC-load-misses 1,381,918 1,330,585 1,274,091 1,154,136 1,302,411 1,235,982 1,440,283 1,206,000 1,192,630

LLC-stores 170,210 186,115 184,771 178,626 158,013 128,018 154,785 153,901 160,988

LLC-store-misses 128,334 114,262 116,616 114,478 109,680 94,086 106,727 107,043 111,587

L1-dcache-loads 57,319,649 58,816,894 58,938,595 63,163,986 57,937,050 59,812,751 48,526,816 55,079,482 57,563,139

L1-dcache-load-miss
es 3,701,280 3,494,224 3,919,786 4,141,517 3,861,730 4,163,733 3,211,951 3,729,892 3,956,830

L1-dcache-stores 36,990,272 33,931,431 37,824,447 39,706,528 35,910,048 39,274,603 29,428,585 35,719,819 37,438,082

Task Clock (msec) 133.17 123.02 120.74 130.92 119.34 144.36 122.61 116.95 120.14

Context Switches 1,168 1,196 1,397 1,356 1,199 1,246 1,135 1,221 1,221

Cycles 337,225,517 297,320,917 346,294,664 337,222,176 320,840,017 334,099,218 267,877,872 346,202,619 346,202,619

Instructions 219,947,617 204,036,891 217,314,221 204,993,905 206,492,553 221,036,018 170,008,618 219,699,289 219,699,289

Branches 47,487,476 45,086,447 47,705,629 44,892,828 45,558,194 48,712,986 36,218,650 43,690,917 45,752,198

Branch Misses 1,284,138 1,241,560 1,383,192 1,286,884 1,274,958 1,268,057 1,059,110 1,254,779 1,324,651

CPI 1.53321 1.45719 1.59352 1.64504 1.55376 1.51151 1.57567 1.5758 1.5758

Table 4.1 lists many parameters, but the most important ones are cycles, CPI, and Bit Rate. To

observe how these parameters change with test numbers, refer to Graphs 4.4, 4.5, and 4.6.

22

Figure 4.4 : OVS Switch Cycles and Instructions in each Test Case
The number of cycles for the OVS switch in each test case is shown in Figure 4.4, and a

summary is explained as follows.

● There's significant variation in the Cycles count, ranging from 267,877,872 to

346,294,664.

● The lowest Cycles count is observed in Test 7 (with 1 Mirror Port and Monitoring

enabled), and the highest is in Test 3 (with 4 Mirror Ports and Monitoring enabled).

● This suggests that the number of Cycles might be influenced by the combination of

Mirror Ports and Monitoring status, but not in a straightforward linear relationship.

23

Figure 4.5 :OVS Switch CPI in each Test Case

The Cycles Per Instruction (CPI) count for the OVS switch in each test case is shown in

Figure 4.5, and a summary is explained as follows.

● The CPI values range from approximately 1.457 to 1.645. A lower CPI suggests more

efficient CPU usage.

● The lowest CPI (most efficient CPU usage) is observed in Test 2 (8 mirror ports, no

monitoring), while the highest CPI (less efficient CPU usage) is in Test 4 (4 mirror

ports, no monitoring).

24

Figure 4.6 : Bitrate of VM1 to VM2 in each test case

The data rate of the network for each test case is shown in Figure 4.6, and a summary is
explained as follows.

● The Bitrate is mostly consistent, hovering around 234 Mbits/sec, with only Tests 1 and

7 showing slight variations (233 and 235 Mbits/sec, respectively).

● This consistency in Bitrate across different Mirror Port settings and Monitoring

conditions may indicate stability or a lack of direct influence from these factors on the

Bitrate.

Test One summary

Generally, an increase in mirror ports leads to higher LLC loads, LLC misses, and CPU

branch activity. Monitoring incurs some overhead. There are network bandwidth differences

between scenarios with and without monitoring, but it is a 2 Mbit/second change. Therefore,

since the relationship between the data rate and mirror count could not be found, another

method was adopted.

25

4.2.3 Test Two

Figure 4.7 : Test 2 Setup

Figure 4.7 shows the Test Setup. Since the previous test couldn't observe any result, it was

decided to go with a single mirror. To determine whether mirroring can affect network

bandwidth, testing was extended to a few more aspects.

In the same test setup, the actual data transfer speed was measured over the data sending

speed. The data sending speed could be controlled using the iperf3 traffic generator, and the

actual data transfer speed was obtained from the result set that returned after the iperf3 run.

As mentioned before, data was transferred from VM 1 to VM 2. Using the following types of

Iperf3 cmds to control network traffic: “iperf3 -c 192.168.1.22 -b 1G”

26

Figure 4.8 : With Mirror and Without Mirror Network Speed over Data Rate

Figure 4.8 shows actual network traffic variation over configured traffic. The description of

the test result observed is provided as follows.

● The data rate ranges from 1 Gbit/second to 39 Gbit/second.

● The network traffic became saturated with mirrored traffic, unlike before without a

mirror.

● From this, it can be said that the mirror has some effect on network traffic.

Since performance discrepancies were observed, an investigation into the issue was

attempted. Therefore, an attempt was made to collect network speed and PPS data over

different packet sizes, with and without a mirror. To generate traffic in different packet sizes,

use the command “iperf3 -c 192.168.1.22 -l 100”

27

Figure 4.9 : With Mirror and Without Mirror Network Speed over Packet Size

Figure 4.10 : With Mirror and Without Mirror PPS over Packet Size

Figures 4.9 and 4.10 show network speed in Gbits/s and PPS over with and without mirror. It

is clear that there are some performance drops due to mirrors, so it would be better to

determine which packet size experiences the highest performance drop.

28

Figure 4.11 : Performance Drop Over Packet size

Figure 4.11 shows the performance drop percentage compared to without a mirror in each

packet size. The description of Figure 4.11 is as follows.

● In the range of 1 to 4 MPPS, when the packet size increases, the MPPS count

decreases.

● When packet size increases, data rate increases.

● When the packet size is 1024 bytes, the maximum performance drop is observed, and

it is less than 20%.

Since a maximum 20% performance drop was observed, the focus was on finding the root

cause of this performance drop. Perhaps the reason for this is the OVS switch or OVS source

code. Anyway, VTune Profiler was used to analyze the OVS switch.

Since the maximum performance drop recorded was with a 1024-byte packet size, OVS

performance was checked both with and without mirroring for 1024-byte packet size, using

the VTune Profiler.

29

Sample collection time 100 S.

Figure 4.12 : Without Mirror Flame graphs of ovs-vswitchd

Figure 4.13 : With Mirror Flame graphs of ovs-vswitchd

Compared to with mirror (Figure 4.13), the _start function takes a lot of CPU time without

mirror (Figure 4.12), but high CPU usage wasn't observed in ovs-vswitchd. Because of the

mirror CPU time that is used in the OVS switch (0.13 seconds) without the mirror (0.1

seconds), the OVS switch does not use much CPU power. So these two graphs did not show

any direct relation to performance degradation.

Low CPU utilization is a good sign for network performance; however, in this case, there is a

difference in performance patterns between the two scenarios. Since this flame graph didn't

show kernel symbols, the decision was made to look at the OS/kernel profile as well.

Following cmd is used to capture OS/kernel profile data samples.

cmd : perf record -F 99 -a -o ./perf.my.data -g -- sleep 65

Using the aforementioned command, it monitors the system's performance during a 65-second

sleep period. Data was captured on the host machine. This can be useful for capturing a

30

snapshot of system activity and performance issues that occur in a relatively idle state or to

compare with more active system states during other operations.

Performance data was collected using the above command on a host machine, both with and

without mirroring.

The aforementioned command output was a perf.my.data file, which is somewhat unreadable,

so it has to be converted to a readable form. “FlameGraph” is a tool that can convert it to.

SVG flamegraph from

OS/kernel profile is analyzed by applying the command with and without mirror to the host

machine, then using the FlameGraph tool. data file converted to the SVG flamegraph, as

shown in Figures 4.14 and 4.15.

31

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph

Figure 4.14 : With Mirror Kernel profiler FlameGraph

32

Figure 4.15 : Without Mirror Kernel profiler FlameGraph

33

The explanation of Figures Figure 4.14 and Figure 4.15's observations is provided as
follows.

● I saw clearly swapper function used more cpu time with mirror

● with mirror swapper function usage :24.1 %

● without mirror swapper function usage : 5.99%

● iperf3 is the most significant CPU consumer.

The Linux kernel's'swapper' process, sometimes referred to as process 0, is an essential

component. When the system has no runnable processes, the scheduler executes the idle

process. The primary function of the swapper is to control CPU idle time rather than, as its

name may imply, "swap" processes in and out of memory. Therefore, we could not find a

direct correlation between the swapper function and the observed performance decline. I made

the decision to cease looking into the core reason for the 20% maximum performance loss

because of the time constraints on my research assignment.

Test 2 summary

I observed a 20% drop in Atmos performance at a packet size of 1024 bytes, which is a far

smaller performance drop compared to what the research papers explained in the literature

review. Therefore, the test OVS Docker container network setup can be considered a good

network setup. However, I have tried to find the root cause of the 20% performance drop.

Despite continuing testing after a certain level.

4.2.4 Test Three

Since the mirror traffic bandwidth was around 30 Gbit/s, there were doubts about mirroring

traffic outside the host machine. To test this, the GRE tunnel was used to forward traffic to

another machine.

GRE Tunnel

A GRE (Generic Routing Encapsulation) tunnel is a protocol used to encapsulate a wide

variety of network layer protocols inside virtual point-to-point links over an Internet Protocol

network. Developed by Cisco Systems, GRE allows for the encapsulation of packets from a

wide range of network protocols, making it versatile for various kinds of data

transport.(“What is GRE tunneling?,” 2023)

Figure 4.16 shows the setup. We built a virtual network that runs on host 1. VM1 is connected

to VM2 over the OVS bridge. VP1 and VP2 are VNIs that belong to VM1 and VM2,

34

https://www.zotero.org/google-docs/?LZE0pl

respectively.

All the traffic came from the VP1 port mirror to the ETH0 port. Using the GRE tunnel,

forward all the traffic to host 2 ETH1. In this setup, we forward mirror traffic to another

physical host. This is the main difference between test 2 and test 3. The following are the

specs of the host computers, OVS bridge, and VMs.

● Host 1 machine configuration

○ Ram : 16 Gb

○ Processor : {Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz,Core Count: 4}

○ Only allow to use 2 and 3 cores to host machine (“isolcpus” cmd use)

○ Ubuntu 22.04 Operating System

● OVS bridge

○ OVS Version : 3.0.0

○ Run on core 0 (“taskset -c 0”cmd use)

○ Vp1 port all traffic (ingress and egress) mirror to mirror-output port

○ Inside OVS create a mirror vp1 mirrored to eth0

○ Create Gre Tunnel

● VM1(Docker Container)

○ This is created using a Docker container.

○ Vm1 run on core 0 (“taskset -c 0”cmd use)

○ Alpine Linux v3.18 Operating System

● VM2 (Docker Container)

○ This is created using a Docker container.

○ Vm2 run on core 1 (“taskset -c 1”cmd use)

○ Alpine Linux v3.18 Operating System

● Host 2 machine configuration

○ Ram : 16 Gb

○ Processor : {AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz}

○ Windows Operating System

● Monitor

○ Wireshark used to capture packets

● Network Interface Card

○ Host 1

■ Link Speed : 1Gbs
35

○ Host 2

■ Link Speed : 1Gbs

Initially, create a virtual network using OVS. Then, create ports vp1 and vp2. Next, create

Docker containers named vm1 and vm2, and connect them to the previously created virtual

network. Assign appropriate IP addresses to each port, vp1 and vp2. After that, create a mirror

and use a GRE tunnel with its destination set to the Eth1 NIC IP address. Finally, generate

traffic from VM1 to VM2 using iperf3.

The command used to create a GRE tunnel

“ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre options:remote_ip=<IP of eth0 on

host2> “

The command utilizes the Open vSwitch command-line utility, ovs-vsctl, to configure a

Generic Routing Encapsulation (GRE) tunnel interface. It starts by adding a port named gre0

to the bridge br0. Following this, it specifies that the interface gre0 should be configured as a

GRE tunnel interface using the set command. Additionally, it sets the remote IP address for

the GRE tunnel to be the IP address of the eth0 interface on host2. This is achieved through

the option options:remote_ip=<IP of eth0 on host2>. The double dash (--) separates the

options for ovs-vsctl from those for the set command. This command is typically used in

networking configurations to establish GRE tunnels between network devices.

Mirror traffic

Using an OVS mirror mirrored the vp1 port traffic to eth0 Port and created a Gre tunnel to

Host 2

Monitoring

Using wireshark monitor the traffic

Traffic Generation

“iperf3 -c 192.168.1.22 -b 100M -t 60” CMD used to generate traffic and also used to find data rate

transfer data size. also run this command on VM1. Using ”-b 100M” can change the traffic.

Test case design

Data is transferred from VM1 to VM2 using iperf3 on host 1, and the mirrored data is

measured on host 2 using Wireshark at different bandwidths (data can be sent using

different bandwidths with iperf3). For test results, check Table 4.2.

36

Following, Figure 4.16 shows the high-level diagram of Test Setup 3.

Figure 4.16 : Test Setup 3

Test No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfer GBytes 0.715 1.4 2.1 2.79 3.49 4.19 4.89 5.59 6.29 6.98 7.68 8.38 9.08 9.78 10.5

Bitrate Mbits/Second 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Wireshark Reserved Data GBytes 0.783 1.566 2.337 2.921 3.922 4.704 5.317 7.131 6.777 7.359 6.802 6.678 7.325 6.722 7.098

Table 4.2 : Test Setup 2 Results

Figure 4.17 : Mirror Data vs Wireshark Data in each test case

Table 4.2 dataset capture using wireshark and iperf3 was also used to generate graphs in

Figure 4.17 using the table data. Transfer GByte capture using an iperf3 report that runs on

37

VM1 Wireshark Reserved Data (Capture Data) gets from Wireshark that runs on Host 2. The

result of Test Three is shown in Figure 4.17. The Wireshark Reserved Data also increases

with the Mirror Data, but the trend is not as linear or smooth as the Mirror Data. when

reaching the maximum data rate of the network interface card, 1000 Mbits/second.

Summary

When the data rate approaches 1000 Mbits/second, it reaches the maximum capacity of the

network card of the hosts. Therefore, the bottleneck is the network interface card. If someone

wants to monitor mirrored network traffic from outside the host machine, they have to

consider preprocessing.

Overall Summary

In Test 1, an increase in the mirror count leads to higher LLC loads, LLC misses, and CPU

branch activity. Additionally, a network performance drop of 2 Mbit/s (0.85%) is observed.

However, since no considerable performance drop was observed with an increase in the

mirror count, there appears to be no relationship between mirror count and network

performance.

From Test 2, I observed a maximum performance drop of 20%, which is significantly smaller

compared to the performance drops discussed in the research papers I have read. This test

used Docker containers instead of virtual machines and recorded a maximum network

performance of around 30 Gbit/s.

From Test 3, the network was able to communicate at a speed of 30 Gbit/s with a mirror, even

with a performance drop of less than 20%. But NIC that supports only 1 Gbit/s, for our test

setup, the main bottleneck is the NIC.

4.3 Proposed Solution
Even with a noticeable 20% performance drop in OVS with Docker containers' virtual

network setup, which still maintains higher network bandwidth even after the performance

drop, a 20% decrease is favorable. This is because, according to most research papers, they

observed a 50% to 70% performance degradation. Therefore, I propose OVS with a Docker

container network setup as the best network setup.

38

4.3.1 Propose Network Setup

Figure 4.18 : Network Setup

Figure 4.18 above illustrates how the OVS virtual network connects two Docker containers.

In this setup, the virtual network operates on a single host, with VM1 connected to VM2 via

the OVS bridge. VP1 and VP2 are VNIs that belong to VM1 and VM2, respectively. All the

traffic came from the VP1 port mirror to the mirror-output port.

● Host machine configuration

○ Ram : 16 Gb

○ Processor : {Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz,Core Count: 4}

○ Operating System Ubuntu 22.04.3 LTS

● OVS bridge

○ OVS Version : 3.0.0

○ Vp1 port all traffic (ingress and egress) mirror to mirror-output port

○ Inside OVS create a mirror

● VM1(Docker container)

○ This is created using a Docker container.

○ Alpine Linux v3.18 Operating System

● VM2 (Docker container)

39

○ This is created using a Docker container.

○ Alpine Linux v3.18 Operating System

4.3.2 Custom Tool

As previously explained, even mirroring traffic to route it outside the host is problematic due

to NIC bottlenecks. The function of this custom tool is to perform some preprocessing and

somehow reduce the filtered traffic.

Figure 4.19 : Proposed Solution

Figure 4.19 explains a high-level diagram of the custom tool. From mirror output, take all the

traffic from the mirror port, then filter the data using the given instructions, and the user of the

tool can see filtered traffic through the UI.

Figure 4.20 : Proposed Solution details view

Figure 4.20 provides a detailed view of the custom tool, which is built as a web service with

both a backend and frontend. It is hosted on a machine that has a virtual network it monitors.

The backend servers handle all processing tasks, including reading network data from any

given port and filtering it. Users can view filtered data live by accessing the client server. For

packet processing, I used the Tshark tool inside the backend server.

This is designed as a web service so that when a user provides instructions and conducts

filtered traffic monitoring, both can be done from anywhere. This web service should be

deployed on the host machine.

4.3.3 What is Tshark

TShark is a network protocol analyzer that enables capturing and displaying the contents of

network packets. It is the command-line or terminal-based version of Wireshark, one of the

most popular and powerful tools used for network analysis and troubleshooting. TShark is

40

part of the Wireshark suite and offers much of the same functionality but is designed for use

in a non-graphical environment. (“tshark,” 2023)

Features and uses of TShark include:

Capturing Network Packets: TShark can capture live packet data from a network interface

in real-time or read packets from a previously saved capture file.

Filtering: It allows users to apply capture and display filters to only show packets that match

specific criteria. This is useful for isolating relevant data from a large set of network traffic.

Protocol Analysis: TShark can analyze packets for hundreds of protocols and can decode

protocol information, making it easier to inspect the details of network communications.

Exporting Data: Users can export the output of TShark to various formats for further

analysis, including text files, CSV, XML, or even the pcap format used by other network

analysis tools.

Automation and Scripting: Because it is a command-line tool, TShark is well-suited for

automation through scripts or batch processing, making it a powerful tool for network

diagnostics, security analysis, and automated monitoring tasks.

TShark is used by network administrators, security professionals, developers, and anyone who

needs to analyze network traffic or diagnose network issues. Its command-line interface

makes it particularly useful for headless environments, remote analysis, or integration into

automated processes.

4.3.4Main Functions Proposed Custom Tool Support

Two primary functionalities were originally supported in the prototype.

1. Filter network traffic by source IP and destination IP.

2. Capture samples of data packets given a time interval.

Since only the two functions mentioned above were provided, a new feature was added that

enables users to enter custom Tshark commands via the UI, allowing them to capture packets

and view them live.

The proposed solution is a web server that has a frontend and a backend.

Frontend

Developed using React 18.2.

41

https://www.zotero.org/google-docs/?h9RyKt

Main Functions

● Get the user cmd and send it to the back-end server.

● Display captured data packets.

Backend Server

The server is written using spring boot. Spring boot version 3.2.2

Main Functions

● Communicate with the client server.

● Communicate with the Tshark tool.

Figure 4.21 : Proposed Solution After Deployment

Figure 4.21 explains in detail how the work proposes a solution. Once it is deployed on.and
how a user accesses the custom tool from a different machine.

4.3.5 Custom Tool UIs

The figures below display the UI for each main function of the custom tool.

42

Figure 4.22 : Custom Tool UI : Filter

Figure 4.22 explains a customer UI for filtering traffic by source IP and destination IP.

Figure 4.23 : Custom Tool UI : Capturing Samples

Figure 4.23 explains a customer UI for capturing network packet samples every 10 seconds.

Figure 4.24 : Custom Tool UI : Capturing packet when given cmd

Figure 4.24 explains and displays a customer UI designed for capturing network packets using

a custom tshark command.

4.3.6 Testing Custom Tool Functionality

In this section, we discuss how to evaluate custom tool functions.
43

1. Filter traffic from the SRC IP and the DST IP.

2. Capture sample data for the given interval.

4.3.6.1 Filter Traffic From Src ip and Dest Ip Function

In this test, monitor the filter function. Previously, we only tested with two Docker containers.

In this test, we added one more Docker container, but the network setup is as explained in

Test 2, so I am not going to repeat the same configuration process.

Figure 4.25 : Test Setup for Custom Tool

Figure 4.25 shows the test setup for filtering traffic from the Src IP and the Dest IP tests.

Traffic was generated using iperf3 from VM1 to VM2 at a rate of 1 Gbit/s and we also created

another traffic stream from VM3 to VM1 at the same rate of 1 Gbit/s. All VMs were created

using Docker containers, similar to Test Two. In this setup, VP1's port is mirrored to another

port called Mirror0 output. Assume you only need to monitor traffic from VM3 to VM1 (for

this test).

Now, there are 2 traffic flows through VP1:

1. VM1 to VM2
44

2. VM3 to VM1

Since we only want traffic from VM3 to VM1, it's not necessary to capture the entire traffic.

Using the tool, create a pcap file and then, using wireshark, analyze the captured packet. The

user also see live filter packers on his UI, as explained in Figure 4.22.

Figure 4.26 : Packet Filter by IP

Red Color : vm3 to vm1 traffic
Blue Color : vm3 to vm1 and vm1 to vm3 traffic

In Figure 4.26 The red color shows low traffic clearly. That is the traffic going out of the tool.

Since two 1 Gbit/s traffic streams are created over VP1, the total network traffic amounts to 2
Gbit/s. If only VM3 to VM1 traffic is required, there's no need to forward all traffic; it is an
unnecessary resource allocation. Utilizing filtered packets (via a networking tool) can cut
down 50%.

In this test, the main focus is to assess the tool's capability to filter traffic from the source IP

and destination IP. According to this test setup, the custom tool can reduce 50% of the

unnecessary traffic.

Since the Tshark tool is used inside the custom tool, there is a huge scope, if necessary, to

extend the custom tool's functionality.

4.3.6.2 Capture Sample data Function (Every 10 seconds for this test, and

this can change based on user requirements.)

The test setup used in Figure 4.21 was utilized to evaluate this functionality. There was

45

network traffic (1 Gbit/s for 30 seconds) from VM1 to VM2, and the traffic from the vp1 port

was mirrored to the mirror0 port. The traffic from mirror0 was then captured by a custom tool

for filtering. Additionally, Wireshark was used to determine the total number of packets sent

through mirror0.

Figure 4.27 : Custom tool user perspective.

Every 10 seconds. 10 packets of samples are gathered and sent to the user. In that 30-second

period, 143,739 packets reportedly passed through mirror0, but the custom tool only managed

to capture 30 of them, representing a reduction of more than 99%. This rate can change

according to user input. Figure 4.27 shows how the custom tools display captured packets.

46

CHAPTER 5

CONCLUSION AND FUTUREWORK

This chapter presents the conclusions of the research project, reflections on the research

problem, auxiliary findings, and directions for future work.

5.1 Reflection on the Research Questions

How can we reduce the performance reduction of virtual networks when mirroring

traffic?

Even with a noticeable 20% performance drop in OVS with Docker containers' virtual

network setup, it still maintains higher network bandwidth compared to other setups. This

20% decrease is favorable because, according to most research papers, a 50% to 70%

performance degradation is typically observed (explained in section 2.8 Literature Review).

Therefore, I propose using OVS with a Docker container network setup to reduce the

performance reduction of virtual networks when mirroring traffic.

How to send mirrored data through a physical NIC without increasing the NIC's

capacity?

Due to the higher network bandwidth of mirror traffic (20–30 Gbits/s), a normal NIC finds it

hard to manage the traffic. Finding a NIC that supports that much traffic is difficult and very

expensive. Therefore, I proposed a preprocessing tool that can further reduce the traffic

according to the user's requirements.

Why is there a performance reduction in virtual networks when mirroring traffic?

Under Test 2, we tried to find the root cause. We noticed a performance reduction of up to

20%, which is far less than what has been observed in research papers. We attempted to

identify the root cause of this maximum 20% performance drop using Vtune Profiler, the perf

tool, and flame graph tools. However, due to time limitations, we couldn't find the root cause.

47

5.2 Significance of the Research

This research project evaluates the answers to the research problem defined in the research

proposal, and during that process, the following contributions were made.

As a result of this research, two outcomes emerged: network setup and a prototype

preprocessing tool.

Proposed an efficient network setup

OVS-Docker container network setup is the proposed network setup. According to the test

results, this network setup has a maximum performance drop of only 20%. In the literature

review, it was discussed that using a virtual TAP in a network with OVS can lead to

performance degradation by up to 70%.

Prototype of a solution

The prototype is a custom tool designed to filter network traffic, allowing the monitoring of

network traffic without forwarding the entire traffic outside of the machine. Even with the

proposed network setup, which incurs a maximum performance drop, there is still network

traffic exceeding 23 Gbit/s. Without tools like this, it is harder to monitor traffic from outside

the host machine.

5.3 Future Work

We noticed a performance reduction of up to 20%, which is far less than what has been

observed in research

papers. An attempt was made to identify the root cause of this maximum 20% performance

drop using Vtune Profiler, the perf tool, and flame graph tools. However, due to time

limitations, further investigation must be considered as future work, as discussed in the

literature review. Most researchers have attempted to address this issue by combining OVS

with DPDK. According to the results of this research, there is a chance to further reduce the

performance drop if OVS, DPDK, and Docker containers are used together; therefore, this is

also considered future work.

48

REFERENCES

Bird, J., 2023. Software Defined Networking (SDNs) - Benefits, Challenges & Applications.
Deliv. Soc. URL
https://deliveredsocial.com/software-defined-networking-sdns-benefits-challenges-app
lications/ (accessed 3.2.24).

Difference between Full Virtualization and Paravirtualization in Operating System -
javatpoint [WWW Document], 2023. . www.javatpoint.com. URL
https://www.javatpoint.com/full-virtualization-vs-paravirtualization-in-operating-syste
m (accessed 3.3.24).

Docker Compose overview [WWW Document],. . Docker Doc. URL
https://docs.docker.com/compose/ (accessed 3.3.24).

Docker Engine overview [WWW Document], 100AD. . Docker Doc. URL
https://docs.docker.com/engine/ (accessed 3.3.24).

Docker vs. VM (Virtual Machine): Key Differences You Need to Know | Simplilearn [WWW
Document], 2023. . Simplilearn.com. URL
https://www.simplilearn.com/tutorials/docker-tutorial/docker-vs-virtual-machine
(accessed 3.3.24).

Jeong, S., Lee, D., Li, J., Hong, J.W.-K., 2018. OpenFlow-based virtual TAP using open
vSwitch and DPDK, in: NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium. Presented at the NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–9.
https://doi.org/10.1109/NOMS.2018.8406232

Kourtis, M.-A., Xilouris, G., Riccobene, V., McGrath, M.J., Petralia, G., Koumaras, H.,
Gardikis, G., Liberal, F., 2015. Enhancing VNF performance by exploiting SR-IOV
and DPDK packet processing acceleration, in: 2015 IEEE Conference on Network
Function Virtualization and Software Defined Network (NFV-SDN). Presented at the
2015 IEEE Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), pp. 74–78. https://doi.org/10.1109/NFV-SDN.2015.7387409

Overview — Data Plane Development Kit 24.03.0-rc1 documentation [WWW Document],
2023. URL https://doc.dpdk.org/guides/prog_guide/overview.html (accessed 3.3.24).

Overview of Docker Hub [WWW Document], 800. . Docker Doc. URL
https://docs.docker.com/docker-hub/ (accessed 3.3.24).

Shanmugalingam, S., Ksentini, A., Bertin, P., 2016. DPDK Open vSwitch performance
validation with mirroring feature, in: 2016 23rd International Conference on
Telecommunications (ICT). Presented at the 2016 23rd International Conference on
Telecommunications (ICT), pp. 1–6. https://doi.org/10.1109/ICT.2016.7500387

Strydom, M., 2024. Why Are Virtual Machines So Slow? - Computer Info Bits [WWW
Document]. URL https://computerinfobits.com/why-are-virtual-machines-so-slow/
(accessed 3.7.24).

tshark [WWW Document], 2023. URL
https://www.wireshark.org/docs/man-pages/tshark.html (accessed 3.6.24).

Wang, L.-M., Miskell, T., Fu, P., Liang, C., Verplanke, E., 2020. OVS-DPDK Port Mirroring
via NIC Offloading, in: NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium. Presented at the NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–2.
https://doi.org/10.1109/NOMS47738.2020.9110293

What is Docker? | IBM [WWW Document], 2023. URL https://www.ibm.com/topics/docker
(accessed 3.3.24).

49

https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN

What is GRE tunneling? | How GRE protocol works [WWW Document], 2023. . Cloudflare.
URL https://www.cloudflare.com/learning/network-layer/what-is-gre-tunneling/
(accessed 3.6.24).

What is Network Troubleshooting? - The Ultimate Survival Guide [WWW Document], 2023.
. Obkio. URL
https://obkio.com/blog/network-performance-monitoring-network-troubleshooting/
(accessed 3.2.24).

What Is Open vSwitch? — Open vSwitch 3.3.90 documentation [WWW Document], 2023.
URL https://docs.openvswitch.org/en/latest/intro/what-is-ovs/#overview (accessed
3.3.24).

Why is My Virtual Machine so Slow (5 Tips to Speed up), 2022. URL
https://www.softwarehow.com/virtual-machine-slow/ (accessed 3.7.24).

50

https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN
https://www.zotero.org/google-docs/?uWMmMN

