

A framework for secure coding:

 real-time detection of custom secure

coding guideline violations

I.B.G.T.C. Bowala

2024

A framework for secure coding:

 real-time detection of custom secure

coding guideline violations

A dissertation submitted for the Degree of Master of

Computer Science

I. B. G. T. C. Bowala

University of Colombo School of Computing

2024

2

i

DECLARATION

Name of the student: Ihala Bowala Gedara Thilanka Chathurangi Bowala

Registration number: 2019/MCS/012

Name of the Degree Programme: Master of Computer Science

Project/Thesis title: A Framework for Secure Coding:

 Real-time detection of custom secure coding guideline violations

1. The project/thesis is my original work and has not been submitted previously for a
degree at this or any other University/Institute. To the best of my knowledge, it
does not contain any material published or written by another person, except as
acknowledged in the text.

2. I understand what plagiarism is, the various types of plagiarism, how to avoid it,

what my resources are, who can help me if I am unsure about a research or
plagiarism issue, as well as what the consequences are at University of Colombo
School of Computing (UCSC) for plagiarism.

3. I understand that ignorance is not an excuse for plagiarism and that I am
responsible for clarifying, asking questions and utilizing all available resources in
order to educate myself and prevent myself from plagiarizing.

4. I am also aware of the dangers of using online plagiarism checkers and sites that

offer essays for sale. I understand that if I use these resources, I am solely
responsible for the consequences of my actions.

5. I assure that any work I submit with my name on it will reflect my own ideas and

effort. I will properly cite all material that is not my own.

6. I understand that there is no acceptable excuse for committing plagiarism and that
doing so is a violation of the Student Code of Conduct.

Signature of the Student
Date

(DD/MM/YYYY)

 26-09-2024

Certified by Supervisor(s)
This is to certify that this project/thesis is based on the work of the above-mentioned
student under my/our supervision. The thesis has been prepared according to the
format stipulated and is of an acceptable standard.
 Supervisor 1 Supervisor 2

Name Prof. G.D.S.P. Wimalaratne Dr. Chaman Wijesiriwardana

Signature

Date 26-09-2024 26-09-2024

ii

This thesis is dedicated to my parents, family, teachers, lecturers, and friends.

For their endless love, support, and encouragement

iii

ACKNOWLEDGEMENTS

This prototype-based research is the result of my continuous commitment with great support

from various personnel who assisted me in numerous ways.

My very special gratitude goes to Prof. Prasad Wimalaratne, my main supervisor, for giving

me the idea of the project and providing the background and prior work and providing

guidance and necessary support to complete this project in a successful manner. He had been

a great motivator and an advisor for me to overcome major obstacles faced during this project.

I also appreciate the great support provided by Dr. Chaman Wijesiriwardana, my co-

supervisor, and lecturer at the University of Moratuwa for the assistance given to me, related

to the depth of theoretical and subject wise matters of this project.

I also appreciate the work of Dasanayake, S. L., Mudalige, A. & Perera, M. L. T., who started

the initial stage of this secure coding guideline prototype and appreciate the support given to

me by providing their previous work-related documents and the codebase. This research is

mainly based on their thesis (Dasanayake, et al., 2019).

This work builds upon the foundational research established by earlier scholars in the field. I

also appreciate their research work.

My special thanks are extended to the evaluating panel for providing important feedback and

for showing me the areas to improve.

Finally, I would like to extend my deepest gratitude to my beloved family members for

supporting me in achieving my goals during my academic years and overcoming unexpected

barriers in my life.

iv

ABSTRACT

Secure Software Development refers to the process of developing software applications with

minimized security vulnerabilities. In the release or maintenance phase of the Software

Development Life Cycle (SDLC), fixing specific bugs is more expensive than correcting

during the development phase. Therefore, it is essential to minimize software vulnerabilities

within the coding phase by adhering to a set of coding best practices that are referred to as

secure coding guidelines (SCG).

Following secure coding guidelines manually is challenging due to the lack of knowledge

among developers. Further, distributing and following a set of custom secure coding guideline

provided by the organization or the security expert of the development team is more

challenging and time consuming. Therefore, software developers tend to commit code with

secure coding guideline violations.

Currently there exist very few research studies which support detecting secure coding

guideline violations on the fly in an Integrated Development Environment (IDE) along with

custom rule generation. There is a research gap that needs to be addressed in this domain.

This research study focuses on addressing the gaps in the specified domain.

The research study proposes a prototype-based framework that focuses on providing a new

rule creation mechanism aiming to filling a gap in the rule creation domain. Further, focuses

on developing a mechanism to automate the process of detecting secure coding guideline

violations found in a source code of a software application, defined by the proposed rule

creation mechanism.

The prototype is an IntelliJ IDEA based plugin and sample rules created for the evaluation are

for java source code. The Artificial intelligence markup language (AIML) based proposed

rule creation mechanism was able to define secure coding rules filling the existing gap, and

the provided prototype-based framework was able to detect violations of these rules,

benefiting the software development research area.

Key phrases: Secure coding guideline violations, Secure coding rule creation, Artificial

intelligence markup language, Static code analysis, Software Development Life Cycle

v

TABLE OF CONTENTS

DECLARATION .. I

ACKNOWLEDGEMENTS .. III

ABSTRACT ... IV

TABLE OF CONTENTS .. V

LIST OF FIGURES ... X

LIST OF TABLES .. XII

LIST OF ABBREVATIONS ... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 STATEMENT OF THE PROBLEM ... 4

1.3 AIM AND OBJECTIVES .. 5

1.4 SCOPE .. 5

1.5 STRUCTURE OF THE THESIS ... 6

CHAPTER 2 LITERATURE REVIEW ... 7

2.1 BACKGROUND ... 7

2.1.1 Secure Software Engineering - Building Security In ... 8

2.1.2 Secure coding guidelines and practices .. 10

2.1.2.1 Awareness of people on software vulnerabilities ... 10

2.1.4 Knowledge distribution .. 11

2.2 ENSURING SECURITY IN SOURCE CODE - AUTOMATION .. 12

2.2.1 Available Commercial Static Analysis Tools ... 12

2.3 RELATED RESEARCH WORK ... 13

2.3.1 VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection .. 13

2.3.2 Recognizing lines of code violating company-specific coding guidelines using

machine learning... 14

2.3.3 VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase

for Python ... 14

2.3.4 Just-in-time software vulnerability detection: Are we there yet? 15

2.3.5 VulCNN: An Image-inspired Scalable Vulnerability Detection System 15

vi

2.3.6 Secure Application Development ... 16

2.3.7 Framework for Secure Coding ... 16

2.3.8 Sensei .. 17

2.3.9 Conclusion ... 20

2.4 CURRENT APPROACHES – TAXONOMIES AND LIMITATIONS .. 20

2.4.1 Existing tools and research studies: overall limitations .. 20

2.4.1.1 Commercial static analysis tools: limitations ... 20

2.4.1.2 Secure coding – research studies: overall limitations 22

2.4.1.3 Research gap that needs to address with compared to previous research

studies: 23

2.4.2 Rule creation mechanisms: limitations .. 24

2.4.3 Rule comparison/vulnerability verification methods .. 25

2.5 METHOD, CLASS, AND PACKAGE LEVEL VIOLATIONS ... 25

2.5.1 Method, class, and package level secure coding guidelines: examples................... 26

2.6 NATURE OF PACKAGE LEVEL AND COMPLEX SECURE CODING GUIDELINES 26

2.6.1 Nature of package level secure coding guideline violation 26

THI00-J. Do not invoke Thread.run() .. 26

2.6.2 Nature of a complex secure coding guideline ... 28

IDS01-J. Normalize strings before validating them; .. 28

2.6.3 Conclusion ... 30

2.7 XML AND YAML LIMITATIONS WHEN DEFINING COMPLEX AND PACKAGE LEVEL SECURE

CODING GUIDELINES .. 31

2.7.1 Dynamic Code or Logic .. 31

2.7.1.1 YAML .. 31

2.7.1.2 XML ... 31

2.7.2 Storing values in variables ... 31

2.7.2.1 YAML .. 31

2.7.2.2 XML ... 31

2.7.3 Wildcards ... 32

2.7.3.1 YAML wildcards: ... 32

2.7.3.2 XML wildcards: .. 32

2.8 CUSTOM RULE DEFINING: MARKUP LANGUAGES AND OTHER LANGUAGES 32

2.8.1 Rule Markup Language (RML) ... 33

2.8.2 Rule Markup Language for the Web (RuleML) .. 34

2.8.3 SCPL - A markup language for source code patterns localization 35

vii

2.8.4 Artificial intelligence markup language (AIML) ... 35

2.8.5 Conclusion ... 36

2.9 AIML (ARTIFICIAL INTELLIGENCE MARKUP LANGUAGE) ... 37

2.9.1 AIML Objects ... 37

2.9.2 AIML wildcards .. 39

2.9.2.1 Types of Wildcards: ... 39

2.9.2.3 Wildcard Priority: ... 39

2.9.2.4 Wildcards and Spaces: .. 39

2.9.2.5 Advanced Usage: .. 40

2.10 AVAILABLE AIML INTERPRETERS ... 40

2.10.1 Current interpreter usage of AIML in other domains .. 41

2.10.1.1 AIML interpreters written for ALICE .. 41

2.10.1.2 Program AB .. 41

2.10.1.3 Program Y .. 41

2.10.1.4 PyAIML .. 42

2.10.1.5 pyaiml21 ... 42

2.10.1.6 Development of a Framework for AIML Chatbots in HTML5 and JavaScript

 .. 42

2.11 AVAILABLE SECURE CODING GUIDELINES AND RULES ... 43

2.12 SUMMARY ... 44

CHAPTER 3 METHODOLOGY .. 45

3.1 INTRODUCTION .. 45

3.2 PROBLEM ANALYSIS .. 45

3.3 DESIGN ASSUMPTIONS AND DEPENDENCIES ... 46

3.4 PARTS OF THE SECURE CODING GUIDELINE PLUGIN FOR AN IDE 46

3.5 MAIN DESIGN CHOICE: INTERPRETER AND BOT ARCHITECTURE 47

3.5.1 Available methods for generating an AIML interpreter .. 47

3.5.2 Design of the AIML interpreter and the bot .. 49

3.5.2.1 Design ... 49

3.5.2.2 Implementation decisions ... 50

3.6 DESIGN CHOICE: THE PLUGIN BASE AND OUTPUT DISPLAYING .. 50

3.6.1 Plugin base ... 50

3.6.2 Interaction with users’ code and output display .. 50

3.7 OVERALL SYSTEM DESIGN .. 51

viii

3.7.1 Parts of the system prototype... 51

3.7.1.1 An IDE integration layer .. 51

3.7.1.2 Bot .. 52

3.8 SUMMARY.. 52

CHAPTER 4 EVALUATION AND RESULTS ... 54

4.1 INTRODUCTION .. 54

4.2 JUSTIFICATION: ACHIEVING THE GOAL OF THE RESEARCH STUDY 54

4.2.1 Solving the gap of package level secure coding guideline violation 55

THI00-J. Do not invoke Thread.run() .. 55

AIML coding guideline: THI00-J. Do not invoke Thread.run() 56

Results: Detected violation of THI00-J. Do not invoke Thread.run() 59

4.2.2 Solving the gap of complex secure coding guideline violation 60

IDS01-J. Normalize strings before validating them; .. 60

AIML coding guideline: IDS01-J. Normalize strings before validating them 62

Results: Detected violation of IDS01-J. Normalize strings before validating them 66

4.2.3 Summary of the justification ... 68

4.3 CUSTOM SECURE RULE-BASED EVALUATION.. 68

4.3.1 Evaluation .. 68

4.3.2 Summary .. 70

4.4 USER BASED EVALUATION ... 70

4.4.1 Introduction ... 70

4.4.2 Questionnaire ... 70

4.4.3 Analysis of results ... 72

4.4.4 Conclusion ... 75

4.5 SUMMARY.. 75

CHAPTER 5 CONCLUSION ... 76

APPENDICES ... I

APPENDIX A: SOURCE CODES OF THIS RESEARCH STUDY .. I

APPENDIX B: AVAILABLE GITHUB REPOSITORIES OF AIML INTERPRETERS............................. I

APPENDIX C: SOURCE CODES AND AVAILABLE PLUGINS OF PREVIOUS RESEARCH STUDIES I

APPENDIX D: JETBRAINS OFFICIAL PLUGIN DEVELOPMENT TEMPLATE AND OFFICIAL

DOCUMENTATION ... I

APPENDIX E: AVAILABLE COMMERCIAL STATIC ANALYSIS TOOLS II

ix

1. SpotBugs .. II

2. SonarQube .. III

3. SonarLint ... V

4. Fortify Static Code Analyzer (FSCA) .. VI

5. Tricorder ... VI

6. Veracode ... VII

7. Checkmarx Static Application Security Testing (CxSAST) VII

8. Snyk .. VII

9. The OWASP ASIDE/ESIDE ... VIII

APPENDIX F: TAXONOMY OF RULE COMPARISON/VULNERABILITY VERIFICATION METHODS

 ... VIII

APPENDIX G: METHOD, CLASS, AND PACKAGE LEVEL SECURE CODING GUIDELINES:

EXAMPLES ... IX

1. Method level secure coding guidelines example .. IX

NUM09-J. Do not use floating-point variables as loop counters. IX

2. Class level secure coding guidelines example .. IX

NUM03-J. Use integer types that can fully represent the possible range of unsigned

data: ... X

3. Package level secure coding guidelines example .. X

THI00-J. Do not invoke Thread.run() ... X

APPENDIX H: CLASSIFICATION OF SECURE CODING RULES .. XII

APPENDIX I: AIML SECURE CODING RULES CREATED FOR THE EVALUATION XVI

1. THI00-J: Do not invoke Thread.run() ... XVI

2. SEC01-J: Do not allow tainted variables in privileged blocks XVII

3. NUM10-J: Do not construct BigDecimal objects from floating-point literals XVIII

4. SEC07-J: Call the superclass's getPermissions() method when writing a custom class

loader .. XVIII

5. FIO02-J: Detect and handle file-related errors .. XIX

REFERENCES .. XXI

x

LIST OF FIGURES

Figure 1: Software security best practices applied to various software artifacts (McGraw,

2005, p. 48) ... 9

Figure 2: Sensei rule to detect insecure usage of Runtime.exec .. 17

Figure 3: Sensei YAML rule: checks the name of the reference (Secure Code Warrior, 2019-

2021) ... 18

Figure 4: Sensei YAML rule: checks the type of the parameter (Secure Code Warrior, 2019-

2021) ... 19

Figure 5: Sensei YAML rule: checks the type of the class that is being checked inside the

'instanceof' comparison (Secure Code Warrior, 2019-2021) .. 19

Figure 6: Sensei YAML rule: checks the declaration type of the variable............................... 19

Figure 7: Sensei YAML rule: checks the value that is being thrown (Secure Code Warrior,

2019-2021) ... 20

Figure 8: Sensei YAML rule: checks the type of the value that is being thrown (Secure Code

Warrior, 2019-2021) ... 20

Figure 9: Taxonomy of available static analysis tools and research studies 23

Figure 10: Nature of package level secure coding guideline violation 27

Figure 11: Nature of complex secure coding guideline violation .. 30

Figure 12: All the RML constructs (Jacob, 2008, p. 40) .. 34

Figure 13: AIML creating and accessing variables with <set> and <get> tags (Wallace, 2003)

 .. 36

Figure 14: <condition> Tag Usage Example in AIML (Marietto, et al., 2013) 36

Figure 15: Wildcards and <star> Tag example in AIML (Marietto, et al., 2013) 36

Figure 16: Diagram of a constructive research approach (Dagiene, et al., 2015) 45

Figure 17: Flow Diagram of Request and Response of a chatbot which uses AIML (Ahmed &

Singh, 2015) ... 49

Figure 18: Architectural overview of the system prototype ... 51

Figure 19: Ex1: A package level secure coding guideline violation .. 55

Figure 20: Ex 1: How AIML provide facilities to create package level secure coding

guidelines - part 1 ... 57

Figure 21: Ex 1: How AIML provide facilities to create package level secure coding

guidelines - part 2 ... 58

Figure 22: Ex 1: Detected violations of package level secure coding guideline 60

Figure 23: Ex2: A complex secure coding guideline violation .. 61

xi

Figure 24: Ex 2: How AIML provide facilities to create complex secure coding guidelines -

part 1 ... 64

Figure 25: Ex 2: How AIML provide facilities to create complex secure coding guidelines -

part 2 ... 65

Figure 26: Ex2: Plugin does not output anything for a correctly followed coding guideline .. 66

Figure 27: Ex2: Plugin shows the defined output for a coding guideline violation 67

Figure 28: Ex2: Plugin shows the defined output for a coding guideline violation 68

Figure 29: Responses for questionnaire: question 1 ... 72

Figure 30: Responses for questionnaire: question 2 ... 73

Figure 31: Responses for questionnaire: question 3 ... 73

Figure 32: Responses for questionnaire: question 4 ... 73

Figure 33: Responses for questionnaire: question 5 ... 74

Figure 34: Responses for questionnaire: question 7 ... 74

Figure 35: Responses for questionnaire: question 8 ... 74

Figure 36: Responses for questionnaire: question 9 ... 75

Figure 37: Responses for questionnaire: question 10 ... 75

Figure 38: Detection of bugs using SpotBugs plugin (Dasanayake, et al., 2019) III

Figure 39: OWASP / CWE security reports by SonarQube (SonarQube, 2008-2022) III

Figure 40: SonarQube – Rule template (Anon., 2008-2022) ... IV

Figure 41: SonarQube - Creating a custom rule using the existing template, by editing the

template (Anon., 2008-2022)... V

Figure 42: Detection of a code quality issue using the sonarLint plugin (Dasanayake, et al.,

2019) ... VI

Figure 43: NUM09-J: Noncompliant Code Example ... IX

Figure 44: NUM09-J: Compliant Solution ... IX

Figure 45: NUM03-J: Noncompliant Code Example .. X

Figure 46: NUM03-J: Compliant Solution .. X

Figure 47: THI00-J: Noncompliant Code Example ... XI

Figure 48: THI00-J: Compliant Solution ... XI

Figure 49: AIML example rule 1 ... XVI

Figure 50: AIML example rule 2 ... XVII

Figure 51: AIML example rule 3 .. XVIII

Figure 52: AIML example rule 4 ... XIX

Figure 53: AIML example rule 5 .. XX

xii

LIST OF TABLES

Table 1: Supported Secure coding guidelines of SEI CERT (Dasanayake, et al., 2019) 17

Table 2: Commercial static analysis tools - Ensure security in software code......................... 22

Table 3: Related research studies - Ensure security in software code 22

Table 4: Current research gap ... 24

Table 5: Rule creation mechanisms .. 25

Table 6: Classification of method level, class level and package level violations (Dasanayake,

et al., 2019) ... 26

Table 7: Comparison of secure coding guidelines (Dasanayake, et al., 2019) 43

Table 8: Custom secure rule based evaluation ... 70

Table 9: Rule comparison/verification methods ... IX

xiii

LIST OF ABBREVATIONS

AIML Artificial intelligence markup language

ALICE Artificial Linguistic Internet Computer Entity

ASA Automatic static analysis

ASIDE Application Security IDE

AST Abstract Syntax Tree

CI/CD Continuous Integration and Continuous Delivery

CVE Common Vulnerability and Exposures database

CWE Common Weakness Enumeration

CxQL extensive Query Language

CxSAST Checkmarx Static Application Security Testing

ENISA European Union Agency for Cybersecurity

FOD Fortify on Demand

FSA Fortify Security Assistant

FSCA Fortify Static Code Analyzer

ICS Industrial Control Systems

ICSE International Conference on Software Engineering

IDE Integrated Development Environment

NVD National Vulnerability Database

OWASP Open Web Application Security Project

RDF Resource Description Framework

RML Rule Markup Language

RuleML Rule Markup Language for the Web

SAAS Software as a service

SAFECode Software Assurance Forum for Excellence in Code

SCG Secure Coding Guidelines

SCPL Source Code Pattern Language

SDLC Software Development Life Cycle

SEI-CERT Java secure coding guidelines standards

US United States

USD United States Dollars

VG Veracode Greenlight

VSA Veracode Static Analysis

xiv

VUDENC Vulnerability Detection with Deep Learning on a Natural Codebase

XML Extensible Markup Language

YAML YAML Ain't Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

During the period from May 2001 to January 2014, lines of codes in the eclipse platform

project have grown from 283,229 to 2,674,685, thus in thirteen years, size has grown almost

10 folds (Tantithamthavorn, et al., 2014). In December 2019, it was 12,925,016 lines, thus the

size has increased approximately by 45 times since the start (Synopsys, 2019). This explosive

growth of eclipse has increased more rapidly than the ability of a human to maintain them and

therefore it has also increased the complexity of the software by a significant amount

(Tantithamthavorn, et al., 2014) (Synopsys, 2019).

According to research studies, businesses spent an average of 380 million United States

Dollars (USD) in 2017 (Gasiba, et al., 2021) to recover and deal with the consequences of

Industrial Control Systems (ICS) incidents, and this value is still increasing. The total cost of

poor software quality in the United States (US) for the year 2020 has estimated as 2.08 trillion

USD and the large majority (75%, or an estimated $1.56 trillion) of it is due to software

failures caused by the failure to patch known vulnerabilities (Armerding, 2021). As per new

repots, in the year 2022, it was $2.41 trillion (Synopsys, 2022) (McGuire, 2022).

Software security is a critical need, therefore, the paradigm shift of Building Security In has

emerged in recent decades (Abeyrathna, et al., 2020) (Wijesiriwardana, et al., 2020). This

paradigm shift requires software security to be addressed in all phases of the software

development lifecycle (Abeyrathna, et al., 2020) (Wijesiriwardana, et al., 2020) (Khan, et al.,

2022) (Humayun, et al., 2022). This concept is called Secure Software Engineering.

There are different practices, methodologies, and tools to prevent the introduction of software

security vulnerabilities. Most security vulnerabilities result from defects that are

unintentionally introduced during the design phase and the implementation phase

(Abeyrathna, et al., 2020) (Wijesiriwardana, et al., 2020). Garry McGraw has identified code

reviews and architectural risk analysis as the top two best practices to minimize the software

security vulnerabilities (McGraw, 2005, p. 101) (Abeyrathna, et al., 2020). Most of the

companies in the software industry do not focus much on investing in making the code secure

2

but mainly consider penetration testing along with patching, after the development (McGraw,

2005, p. 182) (Dasanayake, et al., 2019) (Humayun, et al., 2022). It is important to detect

software vulnerabilities after development but making software developers follow secure code

practices (Synopsys Editorial Team, 2020) (Software Assurance Forum for Excellence in

Code (SAFECode), 2018) helps developers to prevent security vulnerabilities while coding.

There are secure coding practices well documented, such as Carnegie Mellon’s Software

Engineering Institute C, C++, and Java secure coding guidelines standards (SEI-CERT), the

Open Web Application Security Project (OWASP), checklists to follow while writing the

source code (Concea-Prisăcaru, et al., 2023) (Gasiba, et al., 2021) (Carnegie Mellon

University - Software Engineering Institute, 2018) (Software Assurance Forum for Excellence

in Code (SAFECode), 2018) (The OWASP Foundation, 2017). Making software developers

follow secure code practices while writing code will reduce the number of security

vulnerabilities in the application by a significant amount, and it outweighs the cost

(Wijesiriwardana, et al., 2020) (Abeyrathna, et al., 2020) (McGraw, 2005, pp. 273 - 295).

Though following a secure coding practice is a must, due to the complexity and length, it is

hard to even for an experienced developer to remember all of these. Further, studies show that

53.7% of software developers do not know secure coding guidelines and more than 50% of

software developers cannot spot security vulnerabilities in code (Gasiba, et al., 2021).

The most popular way to stop software security vulnerabilities in the development phase is

using static code analysis (Alenezi & Almuairfi, 2019). There are different static analysis

tools such as SonarQube, find-sec-bugs and Microsoft DevSkim (Software Assurance Forum

for Excellence in Code (SAFECode), 2018) (Dasanayake, et al., 2019). All these tools attempt

to highlight possible code issues within static (non-running) source code.

Static analysis tools that can plug directly into the Integrated Development Environment

(IDE) allows developers to find security vulnerabilities effectively without leaving their

native IDE environment, and this is an important feature for a static analysis tool (Software

Assurance Forum for Excellence in Code (SAFECode), 2018). Further, it is important to

detect vulnerability issues and notify developers in real time, to provide authoring time

guidance to developers as they write code, so they can fix the issue at the time of introduction

(Software Assurance Forum for Excellence in Code (SAFECode), 2018).

In most organizations, there are security experts as a separate team, or at least there are

3

developers within the project team, that might have expertise in security (Cremer, et al.,

2020). Security experts guide other developers by providing them with guidelines and

checklists. These instructions sometimes might not be clear to all developers, and even if they

are understood, that does not guarantee the developer will be able to apply them in practice.

To help improve this communication, it is important to provide a formal method to distribute

rules.

Therefore, according to the literature, one of the major requirements of the tool is to share

knowledge easily. Thus, customization and distribution of the secure code guideline rules are

important (Cremer, et al., 2020). The rules customization must be scalable. The tool should

not provide rules (Cremer, et al., 2020). The tool should allow security experts in the

organization to distribute their secure guidelines related to their concepts. Further, it should

allow developers to share project or team specific guidelines among them. Thus, there should

be a formal mechanism to convert the user-specific rules into algorithms (Cremer, et al.,

2020) (Dasanayake, et al., 2019). Furthermore, rule creation must be easy, fast, and versatile.

According to the literature, there are different drawbacks and weaknesses that arise when

using available static analysis tools. They are,

I. Though there are some tools to support static code analysis, most tools detect security

bugs only, and they do not provide a mechanism adhering secure coding guidelines

(Cremer, et al., 2020) (Dasanayake, et al., 2019).

II. Some tools require special training; therefore, it requires additional steps (Gasiba, et

al., 2021). Thus, hard to extend these tools for detecting violations of custom rules.

III. Static code analysis often generates false positives and false negatives. Thus, tools

may not be able to detect certain vulnerabilities (Gasiba, et al., 2021).

IV. Even though there are some commercial applications with IDE support; most of them

do not provide real-time solutions (Cremer, et al., 2020).

V. Tools with rule customization are limited (Cremer, et al., 2020).

Some research studies have been conducted to resolve the above issues, but still, existing

research studies have research gaps that must be filled.

I. Studies show that, in the current context, there exists no automated mechanism to

support software developers adhere to secure coding guidelines during the coding

phase, or automation levels of existing studies are very little (Cremer, et al., 2020)

(Dasanayake, et al., 2019).

4

II. Existing tools focus on detecting security vulnerabilities and source code quality

issues but do not detect secure coding guideline violations (Dasanayake, et al.,

2019).

III. Issues of rule generation - Even though there are few research studies to adhering

secure coding guidelines with IDE support; most of them do not provide custom

rule creation support. Certain guidelines or rules depend on the user. Custom rule

generation (Cremer, et al., 2020) and a formal mechanism to convert user-

dependent rules into algorithms (Dasanayake, et al., 2019) are still issues.

IV. Tools with rule customization still can’t provide support for complex rule creation

or package level rule creation due to limitations of rule creation mechanisms. The

reason is that currently available custom rule creation methods do not support

tracking of the control flow of the source code. Addressing limitations of custom

rule creation still exist.

It has also been found that most vulnerabilities found were caused by ignoring proper secure

programming practices by the developers because software developers lack the skills to judge

whether they comply with the secure coding guidelines (Gasiba, et al., 2021) (Khan, et al.,

2022) (Stefanovska, et al., 2022). Further, available custom rule creation methods have some

major limitations and therefore, cannot create complex or package level custom secure coding

guidelines using available systems (Cremer, et al., 2020) (YAML Org, 2021). In this research

project, the aim is to address this problem. If the tool can support creating any secure coding

guideline provided by the organization and can notify or warn a developer of possible

vulnerabilities or insecure coding practices in real time, he would commit while coding. This

will result in saving time and money that the company will need to fix these vulnerabilities

later (Khan, et al., 2022). Then the developers will also become aware of good coding

practices.

1.2 Statement of the problem

Following secure coding guidelines is the major solution to prevent software security

vulnerabilities, and providing tools to distribute and check secure coding guidelines is the way

to adhere. Though there are some research studies for on-the-fly detection of secure coding

guidelines, in the custom secure coding rule creation domain, there is a gap that needs to be

addressed. This research work concerns the problem of available on-the-fly detection

supporting systems do not support creating complex custom rules which need the tracking of

5

the control flow of the code and available on-the-fly detection supporting systems do not

support creating custom rules for package level secure coding guideline violations (Gasiba, et

al., 2021) (Cremer, et al., 2020) (Dasanayake, et al., 2019) and no proper mechanism to

convert user-dependent complex or package level rules into algorithms (Cremer, et al., 2020)

(Dasanayake, et al., 2019) in existing research studies.

1.3 Aim and Objectives

The goal of this research is to build a prototype with custom package level and custom

complex secure coding rule generation support and detect user defined complex secure coding

guideline violations in real-time to assist and encourage software developers to adhere to

these guidelines. The main objectives of this research are,

I. Conducting a literature review on secure coding (Gasiba, et al., 2021) (synopsys,

2019) and identification of existing approaches for detecting secure coding guideline

violations and, their limitations (Dasanayake, et al., 2019) (Gasiba, et al., 2021).

II. Study available secure rule define mechanisms (Cremer, et al., 2020) (Fernandez &

Mujica, 2011) of existing research studies, and based on the literature review, and by

comparing and evaluating existing approaches, finding an approach to define custom

complex secure coding guidelines.

III. Designing a methodology to integrate custom complex rule generation part into the

proposed framework.

IV. Implementation of the plugin – provide the support for creating complex and package

level secure coding guidelines and notify developers about potential violations of user-

defined secure coding rules while they are coding in a real-time manner.

V. Study secure coding guidelines (synopsys, 2019) and identify the most suitable set of

rules (Dasanayake, et al., 2019) (Carnegie Mellon University - Software Engineering

Institute, 2018) (The OWASP Foundation, 2017) that are to be used to verify the

prototype.

VI. Evaluate the capability of the plugin-based framework to create complex and package

level rules and capability of detecting specified secure coding rule violations.

1.4 Scope

The proposed framework in this dissertation is only focused on addressing the mentioned

limitations of the secure coding rule creation mechanisms of available research studies.

6

Therefore, focuses on achieving creations of complex and package-level custom secure

coding guidelines and violation detection of created rules. The research focuses on the coding

phase of the SDLC. The framework will focus on the selected Integrated Development

Environment and implementation depends on the developed interpreter for the selected rule

creation language.

Further, evaluation of the rule creation method and the prototype limited to a selected set of

secure coding guidelines as a verification and will be using projects which are developed

using Java Programming language.

1.5 Structure of the Thesis

The remaining sections of this thesis are as follows. Chapter 2 is associated with the literature

review and background study related to the project. Chapter 3 provides a detailed explanation

of the architecture of the project and the implementation of the project. Chapter 4 illustrates

the evaluation methodologies along with their results and Chapter 5 concludes the dissertation

along with a discussion regarding future work.

7

CHAPTER 2

LITERATURE REVIEW

This chapter provides the main theoretical background for this research work.

2.1 Background

During the period from May 2001 to January 2014, lines of codes in the eclipse platform

project have grown from 283,229 to 2,674,685, thus in thirteen years, the size of the Eclipse

Platform project has grown almost 10 folds (Tantithamthavorn, et al., 2014). In December

2019, it was 12,925,016 lines, thus the size of the code has increased approximately by 45

times since the start (Synopsys, 2019). This explosive growth of eclipse has increased more

rapidly than the ability of a human to maintain them. Therefore, recognizing where and how a

feature is implemented in the source code based on a given requirement, to implement new

features, to enhance existing features, or to fix bugs must be done very carefully and time-

consuming as well for developers (Tantithamthavorn, et al., 2014). Thus, this exponential

growth of code has also increased the complexity of the software by a significant amount

(Tantithamthavorn, et al., 2014) (Synopsys, 2019).

According to ‘Statista’, the number of software security vulnerabilities and exposes has grown

year over year, achieving its peak in 2022, which is 25,227 (Petrosyan, 2023). Both National

Vulnerability Database (NVD) and Common Vulnerability and Exposures (CVE) database,

recorded over 14,500 new vulnerabilities in 2017 compared with 6,000 from 2016 (ENISA -

European Union Agency for Cybersecurity, 2018). In 2018, 2,000 new vulnerabilities were

reported during the first two months of the year (Chiu, 2020), which is equal to the number

observed during the entire year of 2002 (ENISA - European Union Agency for Cybersecurity,

2018).

Some studies found that 96 percent of all scanned applications contain some open-source

components (Synopsys, 2023) (Veracode, n.d.). According to the Open-Source Security and

Risk Analysis Report 2023 by Synopsys, 84% of codebases contained at least one known

open-source vulnerability, and 48% of the codebases contained high-risk vulnerabilities

(Synopsys, 2023).

2020 was a challenging year for the software development industry with the pandemic. Within

8

days, companies were forced to adjust to remote work, which introduced new types of

security threats (Goldstein, 2021). According to the ‘WhiteSource’ database, the number of

published open-source software vulnerabilities in 2020 rose by over 50% compared to the

previous year (Goldstein, 2021).

According to research studies, businesses spent an average of 380 million USD in 2017

(Gasiba, et al., 2021) to recover and deal with the consequences of ICS incidents, and this

value is still increasing. A new report estimates the cost of poor software quality at 2.41

trillion USD for the U.S. in 2022 (McGuire, 2022). For the year 2020 this has been estimated

as 2.08 trillion USD and the large majority (75%, or an estimated $1.56 trillion) of it is due to

software failures caused by the failure to patch known vulnerabilities (Armerding, 2021).

These facts convey an important message regarding software security and the importance of

taking actions to prevent vulnerabilities. It could be concluded that the software industry

should take more actions to prevent vulnerability introduction in software, rather than

detecting after vulnerability introduction and correction. Furthermore, can conclude that open-

source software is a good point to initiate this.

2.1.1 Secure Software Engineering - Building Security In

The software security field is relatively new since it originated in the early 2000s (Lipner,

2014) and this is the major reason why secure software practices have not been widely

adopted by software developers. Today, security is a necessary part of most software

development projects. Software security best practices mainly involve incorporating security

early in the software life cycle, identifying and understanding common threats, designing for

security, and subjecting all software artefacts to thorough objective risk analyses and testing

(McGraw, 2005, p. 26) (Stefanovska, et al., 2022) (Humayun, et al., 2022) (Khan, et al., 2022)

(Concea-Prisăcaru, et al., 2023). According to literature, relative cost of fixing defects is

higher in the maintenance phase than the coding phase (Dawson, et al., 2010). In Eclipse, if

secure coding practices had not been used from the beginning when writing the code, it could

imply that a massive number of vulnerabilities may exist in the code and patching such

several vulnerabilities after following a testing phase would consume quite a lot of time. Even

the detection of vulnerabilities that would have risen due to insecure code may be extremely

difficult.

9

Having identified the critical need for software security, the paradigm shift of Building

Security In has emerged in recent decades (Abeyrathna, et al., 2020) (Wijesiriwardana, et al.,

2020) (McGraw, 2005, p. 47). A security problem is more likely to arise because of a problem

in a system's standard-issue part than in some given security feature. This is an important

reason why software security must be part of a full lifecycle approach (McGraw, 2005, p. 47).

This paradigm shift requires software security to be addressed in all phases of the software

development lifecycle (Abeyrathna, et al., 2020) (Wijesiriwardana, et al., 2020). This concept

is called Secure Software Engineering. Secure software mainly involves incorporating

software security into the software development process ensuring application confidentiality,

integrity, and availability (Alenezi & Almuairfi, 2019) (Khan, et al., 2022).

Figure 1: Software security best practices applied to various software artifacts (McGraw, 2005, p. 48)

Figure 1 specifies the software security touchpoints (a set of best practices) applied to various

software artifacts. Although in this picture the artifacts are laid out according to a traditional

waterfall model, most organizations follow an iterative approach today, which means that best

practices will be cycled through more than once as the software evolves (McGraw, 2005, p.

48).

The descending order of effectiveness of the seven touchpoints has been identified as follows

(Microsoft, 2024) (Dasanayake, et al., 2019) (McGraw, 2005, p. 101):

Code review Risk analysis Penetration testing Risk analysis

Abuse cases Security requirements Security operations

10

It could be seen from the above order of effectiveness, the importance of code reviews and

that they mainly involve examining the source code, identifying issues, and correcting them to

improve source code quality. Also, it could be concluded that source code plays a major role

in building secure software since code reviews are associated with the source code.

2.1.2 Secure coding guidelines and practices

The United States Department of Homeland Security estimates that most security incidents

can be attributed to defects in software design and code (Gasiba, et al., 2021) (Khan, et al.,

2022). Literature reveals that most security vulnerabilities result from defects that are

unintentionally introduced into the software during the design phase and the implementation

phase (Abeyrathna, et al., 2020) (Wijesiriwardana, et al., 2020). These facts convey an

important message regarding the significance of following secure coding practices while

writing the source code since it will reduce the time and cost of developing less vulnerable

software applications (Concea-Prisăcaru, et al., 2023) (Khan, et al., 2022) (Synopsys Editorial

Team, 2020) (Software Assurance Forum for Excellence in Code (SAFECode), 2018).

There are secure coding practices well documented, such as Carnegie Mellon’s Software

Engineering Institute C, C++, and Java secure coding guidelines standards (SEI-CERT)

(Carnegie Mellon University - Software Engineering Institute, 2018) (Gasiba, et al., 2021),

the Open Web Application Security Project (OWASP) (Gasiba, et al., 2021) (Software

Assurance Forum for Excellence in Code (SAFECode), 2018) in their checklist (The OWASP

Foundation, 2017) while writing the source code. Making software developers follow secure

code practices while writing code will reduce the number of security vulnerabilities in the

application by a significant amount (Wijesiriwardana, et al., 2020) (Abeyrathna, et al., 2020)

(McGraw, 2005, pp. 273 - 295), and it outweigh the cost. Out of above secure code

guidelines, some of the most popular secure coding practices are OWASP and SEI CERT

(Concea-Prisăcaru, et al., 2023) (Gasiba, et al., 2021).

2.1.2.1 Awareness of people on software vulnerabilities

However, according to surveys done by various parties, it is hard to even for an experienced

developer to remember all of these (Gasiba, et al., 2021). Further, studies show that 53.7% of

software developers do not know secure coding guidelines (Gasiba, et al., 2021) (GitLab,

2019). Furthermore, more than 50% of software developers cannot spot security

vulnerabilities in code (Gasiba, et al., 2021) (GitLab, 2019).

11

According to a survey conducted in 2021 (Gasiba, et al., 2021) most software developers

(76%) disagree that SCG should be overlooked to deliver software faster. Further, software

developers also disagree that secure coding guidelines should not be ignored to get a job done.

Furthermore, they show that, software developers might lack the skills to judge whether they

comply with the secure coding guidelines (Gasiba, et al., 2021).

Using tools to search the code to identify deviation from requirements helps verify that

developers are following secure code guidelines and helps identify problems early in the

software development cycle. This relieves developers of having to make special efforts to

ensure that coding standards are being consistently followed (Software Assurance Forum for

Excellence in Code (SAFECode), 2018).

Thus, literature conclude that, software industry should use automation tools to search the

code to identify deviation from requirements to verify that developers are following secure

code guidelines and to identify problems early in the software development cycle. Further,

literature conclude that this relieves developers of having to make special efforts to ensure

that coding standards are being consistently followed (Software Assurance Forum for

Excellence in Code (SAFECode), 2018).

2.1.4 Knowledge distribution

In most organizations, there are security experts as a separate team, or at least there are

developers within the project team, that might have expertise in security (Cremer, et al.,

2020). Security experts guide other developers by providing them with guidelines and

checklists. Coding guidelines are a result of knowledge sharing (Cremer, et al., 2020).

Take the case that some security-minded developers research a software security vulnerability

in the codebase. They may have identified it themselves or have been made aware through an

analysis or penetration test report. To fix the problem, they dig through documentation until

they can patch the vulnerability. To help other software developers in the same team to

recognize and avoid similar mistakes, it is usually easier to explain how to write the code to

prevent the vulnerability, rather than explaining how the prevented attack works. Therefore,

sharing secure coding guidelines with non-experts is easier than sharing an explanation of a

type of attack that needs to prevent (Cremer, et al., 2020).

Take the case that the organization security expertise distributes instructions to prevent

12

vulnerabilities in a code base. These instructions sometimes might not be clear to all

developers, and even if they are understood, that does not guarantee the developer will be able

to apply them in practice. To help improve this communication, it is important to provide a

formal method to distribute rules.

Therefore, according to the literature, one of the major requirements of the tool is to share

knowledge easily. Thus, customization and distribution of the secure code guideline rules are

important (Cremer, et al., 2020). The tool should allow security experts in the organization to

distribute their secure guidelines related to their concepts. Further, it should allow developers

to share project or team specific guidelines among them.

Thus, literature concludes that tools that are used to enforce secure coding guidelines should

provide support for custom rule generations. The rules customization must be scalable. The

tool should not provide rules (Cremer, et al., 2020) (Dasanayake, et al., 2019). Furthermore,

rule creation must be easy, fast, and versatile.

2.2 Ensuring security in source code - Automation

To ensure coding standards are being consistently followed, there are some tools already in

the industry. They differ in terms of usability, time taken to detect vulnerability, vulnerability

detection phase, IDE support, on fly detection, supporting languages, support for user-own

secure code rule generations and many more. Also, there are some previous research studies

done by researchers as well.

2.2.1 Available Commercial Static Analysis Tools

To ensure code quality, efficient tools are required to help them avoid the introduction of such

security bugs, and therefore write more secure code. Automatic static analysis (ASA) tools

have been proven effective in uncovering security-related bugs early enough in the software

development process (Siavvas, et al., 2018). Their main characteristic is that they are applied

directly to the source or compiled code of the system, without requiring its execution

(Siavvas, et al., 2018). A list of commercial static analysis tools is available under Appendix

E: Available Commercial Static Analysis Tools.

However, since the results of ASA tools comprise long lists of raw warnings (i.e., alerts) or

absolute values of software metrics, the literature concludes that they do not provide real

insight to the stakeholders of the software products (Siavvas, et al., 2018). In fact, a great

number of ASA tools have been proposed over the years providing a huge volume of such raw

13

data (Siavvas, et al., 2018), which may contain security-relevant information that may be

useful for secure software development. Hence, the literature concludes that appropriate

knowledge extraction tools are needed on top of the raw produced by ASA tools for

facilitating the production of secure software (Siavvas, et al., 2018).

As concluded in previous section, the coding phase of the Secure SDLC is extremely

important. To minimize the introduction of security vulnerabilities during the coding phase, an

automated mechanism to support software developers adhere to secure coding guidelines is

needed. According to the comparison in Appendix section, (Appendix E: Available

Commercial Static Analysis Tools), in the current context, tools mainly focus on detecting

security vulnerabilities and source code quality issues but do not detect secure coding

guideline violations. Thus, can further conclude that, currently, most commercial applications

do not provide a mechanism that adheres to secure coding guidelines. Furthermore, can

conclude that even though there are some commercial applications with IDE support, most of

them do not provide real-time solutions and they do not provide creating custom secure

coding guidelines. Thus, currently, there is no commercial application that adheres secure

coding guidelines with real-time IDE support and custom secure coding guideline generation

support. Therefore, currently there does not exist any commercial automated mechanism to

support software developers adhere to secure coding guidelines on fly, which supports

creating custom secure coding guidelines and converting user dependent rules into algorithms.

2.3 Related research work

2.3.1 VulBERTa: Simplified Source Code Pre-Training for Vulnerability

Detection

Hanif, et al. (Hanif & Maffeis, 2022-07), have conducted a research study, a deep learning

approach to detect security vulnerabilities in source code. Their approach pre-trains a

RoBERTa model with a custom tokenisation pipeline on real-world code from open-source

C/C++ projects. The model learns a deep knowledge representation of the code syntax and

semantics, which they leverage to train vulnerability detection classifiers. A significant and

unsolved problem with vulnerability detection datasets is that manual inspection reveals

occasional label inaccuracies. Deep learning should be resilient to label noise in training, the

presence of noise during testing undermines the quantitative performance results. Further, this

supports only for detect security vulnerabilities, not secure coding guideline violations.

14

Furthermore, according to them, although their models are relatively small, they are still

expensive to train. Thus, can conclude that, even if we try to extend this model to detect

secure coding guideline violations, using this in real time detection of custom secure coding

guideline violations is not practical due to the manual inspection, expensiveness of the

training process and the need of the training for each and every rule.

2.3.2 Recognizing lines of code violating company-specific coding guidelines

using machine learning

Ochodek, et al. (Ochodek, et al., 2020) have conducted a research study, to support code

reviews by automatically recognizing company-specific code guidelines violations in large-

scale, industrial source code. Researchers have constructed a machine-learning-based tool for

code analysis. Using this, software developers and architects can use a few examples of

source code lines of violating codes or design guidelines to train decision-tree classifiers to

find similar violations in their codebases. Researchers has developed this research for C/C++

languages. In this, they have trained the tool several rounds, for detection of one rule

violation, to achieve the desired accuracy level. The best results have obtained for the rules

requiring understanding the context of a single line. They have found that, rules requiring to

understand the context of multiple lines are far more difficult to train. Thus, can conclude that,

practically, when the rule set becomes larger and lines of code of a rule becomes higher, this

research doesn’t support scaling up the usage, due to the above reason and the multiple time

training.

2.3.3 VUDENC: Vulnerability Detection with Deep Learning on a Natural

Codebase for Python

Wartschinskia, et al. (Wartschinski, et al., 2022) have conducted a research study, to automate

vulnerability detection in Python source code, called VUDENC (Vulnerability Detection with

Deep Learning on a Natural Codebase). They have built a deep learning-based vulnerability

detection tool that automatically learns features of vulnerable code from a large and real-

world Python codebase. To create the basis for VUDENC, a large dataset of commits has

mined from GitHub and labelled according to the commit context. The raw source code has

pre-processed and the datasets for each vulnerability have built by taking every single code

token with its context. VUDENC applies a word2vec model to identify semantically similar

code tokens and to provide a vector representation. A network of long-short-term memory

cells (LSTM) is then used to classify vulnerable code token sequences at a fine-grained level,

15

highlight the specific areas in the source code that are likely to contain vulnerabilities, and

provide confidence levels for its predictions. VUDENC has achieved a recall of 78%-87%, a

precision of 82-96% and an F1 score of 80-90%. But there are few limitations of this research.

First, they have conducted this for vulnerability detection only, and not for secure coding

guideline violations. Thus, this research anyway doesn’t support detecting custom rules. Even

extending is hard, due to the long costly process such as mining GitHub repositories,

labelling, preprocess, training, etc.

2.3.4 Just-in-time software vulnerability detection: Are we there yet?

Lomio, et al. (Lomio, et al., 2022) has conducted a research study to investigate how currently

available machine learning-based vulnerability detection mechanisms can support developers

in the detection of vulnerabilities at the commit level. They have performed an empirical

study and have considered nine projects accounting for 8991 commits and experiment with

eight machine learners built using process, product, and textual metrics. By their study, they

have pointed out three main findings:

I. Basic machine learners rarely perform well.

II. The use of ensemble machine learning algorithms based on boosting can substantially

improve the performance.

III. The combination of more metrics does not necessarily improve the classification

capabilities.

Thus, they have concluded that further research should focus on just-in-time vulnerability

detection, especially with respect to the introduction of smart approaches for feature selection

and training strategies.

2.3.5 VulCNN: An Image-inspired Scalable Vulnerability Detection System

Wu, et al. (Wu, et al., July 5, 2022) have conducted a deep learning-based research study

aiming both scalability and accuracy on scanning large-scale source code vulnerabilities. They

have used an existing deep learning-based image classification approach to achieve this. They

have proposed a novel idea that can efficiently convert the source code of a function into an

image while preserving the program details. Then they have used it to implement a scalable

graph-based vulnerability detection system called VulCNN (An Image-inspired Scalable

Vulnerability Detection System). To evaluate, they have used large variety of functions and

have compared results of it with different other vulnerability detectors. But this is again for

vulnerability detection, and hard to extend this for detect violations of custom rules.

16

2.3.6 Secure Application Development

Alwan & Andersson (Alwan & Andersson, 2022) has conducted a research study and built a

plugin for Java IDEs to perform an advanced analysis of security flaws. First, researchers

have proposed a new algorithm to find the root cause of security violations. Reax is a

command-line application, which controls information flow in Java programs, predicts

information flow violations, and applies suitable countermeasures to prevent violations

(Khakpour, et al., 2018). But it is hard to be used by developers, due to its command-line

approach. Researchers have proposed a method to simplify the results of Reax and have

developed a graphical plugin by integrating Reax and the algorithm in the development

environment. Thus, this plugin performs advanced security analysis that detects and reacts

directly to security flaws, by simplifying the results of Reax. As a result of this plugin,

developers who use this plugin will be able to detect security violations and fix their code

during the implementation phase. But this research has a few limitations. First this research

study limits to detect security violations in software security flaws. Thus, not detecting secure

coding guideline violations. Further, they don’t support adhering to secure coding guidelines

and thus this research study doesn’t have a mechanism to convert user dependent secure

coding guidelines into algorithms.

2.3.7 Framework for Secure Coding

Dasanayake et al. (Dasanayake, et al., 2019) has conducted a research study, to detect real-

time secure coding guideline violations in the Java programming language. The plugin

provides real time detection with IDE integration. The plugin also provides relevant

countermeasures for the detected corresponding secure coding rule violations. This plugin

automates 15 main violations of the "SEI CERT Secure Coding Rules" cheat sheet. But the

plugin has a few drawbacks. The major drawback of this plugin is the user can’t extend the

framework to support their own rules. The user must use the plugin with the provided set of

rules, instead of writing rules. Thus, finding a formal mechanism to input user-dependent

rules and a formal mechanism to check the rule with secure coding guideline are highly

needed.

Supported Secure coding guidelines

NUM09-J

NUM10-J

ERR04-J

ERR07-J

ERR08-J

EXP02-J

MET09-J

OBJ05-J

OBJ01-J

OBJ10-J

DCL00-J

THI00-J

SER01-J

SEC07-J

FIO02-J

17

Table 1: Supported Secure coding guidelines of SEI CERT (Dasanayake, et al., 2019)

2.3.8 Sensei

Cremer, et al. (Cremer, et al., 2020) have conducted a research study called ‘Sensei’ to

enforce secure coding guidelines in the IDE (Secure Code Warrior, 2000-2022). They have

developed a plugin with a new rule generation approach. They have provided support for

fixing the rule violation, but the rule writer must define the code fragment that needs to be put

in place.

Figure 2: Sensei rule to detect insecure usage of Runtime.exec

They used a model-based rule creation method at the first stage of the plugin development. It

lets the user create new rules using predefined rule models, by filling in several fields. But

according to them, for more complex models the number of input fields grew rapidly to

accommodate a plethora of corner cases, and so did the number of models for multiple

scenarios. Thus, as per them, the model-based rule creation process is not flexible now

because currently there are over 40 different models. Thus, this concludes that the model-

based rule creation process is not flexible and intuitive enough.

18

They have used a creation-based rule-generation approach at the second stage of Sensei and

they have used YAML Ain't Markup Language as the language for the rule creation part.

Researchers have achieved writing rules to detect method level violations and class level

violations. But this research study doesn’t provide a way to create secure coding guidelines

for package level code. This is a major drawback of this research study, and this is a

considerable gap that needs to be addressed in future research studies. Further, even though

they have achieved writing simple rules, there is a gap that needs to be addressed when the

secure coding guidelines become complex.

The rule creation language, YAML is a data serialization language by its design, and uses

indentation to define structure (Eriksson & Hallberg, 2011) (Ben-Kiki, et al., 2009) (YAML,

2001-2009) (Ben-Kiki, et al., 2005). Here, YAML (YAML, 2009-2022) (YAML, n.d.)

(YAML, 2001-2009) has few major drawbacks.

YAML language does not support representing executable code or logic directly. YAML itself

doesn't have built-in features for conditional statements like programming languages (YAML

Org, 2021). Further, YAML itself doesn't have built-in "get" and "set" functionalities like

traditional programming languages (YAML Org, 2021). These two are the main reasons for

the limitations of this research study. Furthermore, the language does not have any built-in

support for wildcards (Ben-Kiki, et al., 2009) (YAML, 2009-2022). These are major

drawbacks which limit the rule creation functionality.

Figure 3: Sensei YAML rule: checks the name of the reference (Secure Code Warrior, 2019-2021)

19

Figure 4: Sensei YAML rule: checks the type of the parameter (Secure Code Warrior, 2019-2021)

Figure 5: Sensei YAML rule: checks the type of the class that is being checked inside the 'instanceof' comparison

(Secure Code Warrior, 2019-2021)

Figure 6: Sensei YAML rule: checks the declaration type of the variable

20

Figure 7: Sensei YAML rule: checks the value that is being thrown (Secure Code Warrior, 2019-2021)

Figure 8: Sensei YAML rule: checks the type of the value that is being thrown (Secure Code Warrior, 2019-

2021)

For the complex data set, the YAML output is larger than other languages, due to the amount

of whitespace needed (Eriksson & Hallberg, 2011). Thus, relying on indentation can be error-

prone and difficult to maintain, especially for large or complex rules. Thus, users must define

basics in a complex manner.

2.3.9 Conclusion

Therefore, to provide a rule customization which supports package level rule creation and

complex rule creations, finding a proper language is necessary and that is the major research

gap that needs to be addressed.

2.4 Current approaches – Taxonomies and limitations

2.4.1 Existing tools and research studies: overall limitations

2.4.1.1 Commercial static analysis tools: limitations

Related work Limitation

21

SpotBugs − Tool can detect relevant bugs in source code but not secure

coding rule violations.

− The rule creation provided through third party "detectors". But

these must be implemented through an API. Thus, it is not that

convenient.

− Tool provides IDE integration, but; it is mostly used to scan

after development, and it takes time up to 20 minutes.

SonarQube − The tool can detect supported secure coding rule violations.

But these are generating as reports, not as on-the-fly feedback.

− Tool provides custom rule generations for vulnerabilities but

using provided templates only. Adding desired rule is not

supported.

SonarLint − The tool cannot detect secure coding rule violations.

− On-the-fly feedback is provided only when the Java class is

saved not while the user types.

Fortify Static Code

Analyzer (FSCA)

− Provides over 1000 violation detections and custom rule

generations, but the tool takes few minutes to scan source code

and identify violations. Therefore, Can’t provide on-the-fly

feedback.

Tricorder − Data-driven program analysis platform integrated into the

workflow of developers at Google. Rule creation is provided

through programming languages.

− But results of Tricorder analyzers are shown in a review tool.

No mechanism to integrate with IDE. Doesn’t provide on-the-

fly IDE support.

Veracode − Provides both a Software as a service (SaaS) platform and an

IDE plugin.

− Veracode focuses heavily on not only detecting vulnerabilities

but also guiding remediation. A security expert can help the

developer determine whether the reported issue is a false

positive or what the best remediation is for the detected

vulnerability. Scheduling such a consultation will usually take

22

about three days.

− Doesn’t encourage sharing knowledge and custom rule

generation.

− The company claims most scans finish in under an hour. This

means the feedback cycle is rather long compared to the other

tools.

Checkmarx − Plugins do not perform any local scans but instead allow

uploading the source code and scanning it. No on the fly

feedback.

− Since the rule-writing tool is independent from the scanning

tool and the IDE, it requires long iterations to optimize rules

compared to the tools that provide instant feedback.

Snyk − A tool designed to monitor and fix insecure dependencies and

will not look for secure coding guideline violations.

The OWASP

ASIDE/ESIDE

− Scans for secure coding guideline violations need to be started

manually.

Table 2: Commercial static analysis tools - Ensure security in software code

2.4.1.2 Secure coding – research studies: overall limitations

Related work Limitation

Framework for Secure

Coding: An

algorithmic approach

for real-time detection

of secure coding

guideline violations

− Provides IDE integration and on-the-fly feedback but supports

a limited number of rules.

− No mechanism to create custom secure coding guidelines.

Finding a formal mechanism to input user-dependent rules and

a way to find violations of custom rules in the source code

needed.

Sensei: Enforcing

Secure Coding

Guidelines in the IDE

− They have used YAML as the rule defining language. But

YAML has a few major drawbacks which need to be addressed.

Addressing YAML limitations is needed.

− A mechanism to create rules and identify violations of complex

rules and package level secure coding guidelines is a gap that

needs a solution, due to limitations of YAML language.

Table 3: Related research studies - Ensure security in software code

23

Figure 9: Taxonomy of available static analysis tools and research studies

2.4.1.3 Research gap that needs to address with compared to previous research studies:

Thus, from the above comparison, it can be concluded that tools with real-time IDE support

are very less. Further, tools that adhere to secure coding guidelines in real-time are very less.

Furthermore, tools that support creating users’ own rules are also very less. Thus, with

respect to the combination of these three, there is a gap to address.

Out of the above research studies, Framework for secure coding (Dasanayake, et al., 2019)

and Sensei (Cremer, et al., 2020) can consider the research studies which support detection of

secure coding guideline violations on the fly in the IDE. But there are limitations that needs to

be addressed:

 Support

method

level secure

coding

guideline

violations

Support class

level secure

coding

guideline

violations

Support

package

level secure

coding

guideline

violations

Supports

custom rule

generations

Can create

complex secure

coding rules

which needs to

track the control

flow

Class

Provide on the fly feedback

Provide secure coding guideline violation
detections

Static analysis tools and research studies

Provide creation of custom rules and detection

for complex secure coding guidelines

Method

Package

Provide custom rule

generations

24

Framework

for secure

coding

Yes Yes Yes No No

Sensei Yes Yes No Yes No

Table 4: Current research gap

Therefore, can concludes that, None of the above support:

1. Custom rule creation for package level secure coding guidelines and

2. Custom rule generations for complex secure coding rules which need to track the

control flow of the source code of a project.

2.4.2 Rule creation mechanisms: limitations

Rule creation

mechanism

Related work Limitations / Conclusions of the study

Model based rule

creation

Sensei – 1st stage − Tool has provided an on-the-fly mechanism to

detect vulnerability violations, with suggested

solutions, but too many models to add.

− This study concludes that model-based rule

creation process is not flexible and intuitive

enough.

Template based

rule creation

(using provided

sets of models)

SonarQube − Limited to provided templates. User must use

templates to create the custom rules.

A trigger – way of

YAML Ain’t

Markup

Language

Sensei – 2nd stage − Another approach: split up the rule in two

parts: A trigger to identify the violation, plus

an optional quick fix to correct the

vulnerability consistently.

− The study concludes that, trigger provides

more flexibility than 1st approach.

− Need to address limitations of YAML.

Writing rules

through complex,

well documented

Sensei – lit

review (Cremer,

et al., 2020)

− Most comparable tools allow writing custom

rules or analyses in some way or another.

Writing rules for them is done through

25

APIs (SpotBugs,

Tricorder,

Checkmarx)

complex but well documented APIs

(SpotBugs, Tricorder, Checkmarx).

− None of the tools allow detecting violations of

created rules on-the-fly in the code.

XML Sensei – lit

review (Cremer,

et al., 2020)

− None of the tools allow detecting violations of

created rules on-the-fly in the code.

− Sensei paper has already concluded that, YAML

is better than XML.

Custom XML

formats

SecureAssist,

Fortify Static

Code Analyzer

(FSCA)

− Learning their syntax is needed.

− None of the tools allow creating rules and

detect on-the-fly secure code guideline

violations in the code.

− Sensei paper has already concluded that, YAML

is better than custom XML.

Programming

languages

Tricorder Integrated into the workflow. No mechanism to

integrate with IDE. This is a separate code review

tool.

Table 5: Rule creation mechanisms

It can be concluded that, out of the above methods, the most flexible method is using markup

languages. But currently used markup languages have a gap that needs to be addressed.

2.4.3 Rule comparison/vulnerability verification methods

A taxonomy of rule comparison and vulnerability verification methods are available under

Appendix F: Taxonomy of Rule comparison/vulnerability verification methods.

2.5 Method, class, and package level violations

As per the literature, source code fragments that trigger violations can classify into method

level, class level and package level based on the level at which they lie (Dasanayake, et al.,

2019).

Method Level Class Level Package Level

Focuses on the source code

fragments that belongs to the

java.lang package (default

Focuses on the source code

fragments of the java.lang

package(default package) that

Focuses on the source code

fragments that belongs to

classes outside the existing

26

package) and exist inside a

method of a class.

is inside a class but lies

outside a method.

class.

1. Method parameters in

method signature

2. Local variables

3. Loop controls (for, for

each, while, do while)

with no method calls

4. Exceptions belonging to

the java.lang package (eg-

NullPointerException)

5. Threads(That fall into

java.lang package)

6. Try, catch, Finally blocks

1. Names of class variables

2. Data types of class

variables

3. Access modifiers of class

variables

4. Method names in a

method signature

5. Return types of methods

in a method signature

6. Access modifiers of

methods in a method

signature

1. Methods belong to

packages outside

java.lang package

2. Extended classes outside

java.lang package

3. Library imports

4. Implemented interfaces

which are outside

java.lang package

5. Instances of classes

outside java.lang package

Table 6: Classification of method level, class level and package level violations (Dasanayake, et al., 2019)

2.5.1 Method, class, and package level secure coding guidelines: examples

Examples for secure coding guidelines of these three categories are available under Appendix

G: Method, class, and package level secure coding guidelines: examples

2.6 Nature of package level and complex secure coding guidelines

There are special characteristics a rule defining language must have, to be able to define

package level secure coding guidelines and complex secure coding guidelines.

2.6.1 Nature of package level secure coding guideline violation

Below is an example of package level secure coding guideline violation.

THI00-J. Do not invoke Thread.run()

This is a secure coding guideline from the SEI CERT list (Carnegie Mellon University -

Software Engineering Institute, 2023). This rule simply says, a programmer should avoid

invoking a Thread object's run() method. In the below example code, ‘Foo’ class is a custom

class, and that implements the ‘Runnable’ interface. Therefore, ‘Foo’ can be run as a thread.

27

But according to the guideline, a developer should not directly invoke the run method of a

thread.

To determine a violation of this kind of rule, first we should be able to define this rule using

the secure coding guideline rule defining language. To accomplish that rule defining language

should be able to provide few features.

Figure 10: Nature of package level secure coding guideline violation

1. To detect this kind of violation, a secure coding rule defining language first should be

able to track the custom class name. Therefore, the secure coding rule defining method

should be able to store variables/ should support getters and setters in order to save

custom data.

2. Then, to detect an instance of the ‘Foo’ class, when initializing any variable, the rule

defining language should be able to say; compare the stored class type with the object

type of the new variable. If matches, can say this is an object of the ‘Foo’ class.

2. Condition to check whether

the object type of the

variable matches with the

stored runnable class name

4. Conditions to check

whether the variable that

passes to Thread is a

stored runnable instance

1. A variable to

store class name

3. A variable to store

instance name

28

Therefore, the secure coding rule defining method should have a way to create

conditionals.

3. After identifying the ‘Foo’ instance, there should be a way to store the instance name

of the variable. Thus, again, the secure coding rule defining method should be able to

create and assign variables.

4. Then after detecting a run() invoke, the rule creation mechanism should be able to

compare the variable that passes to Thread is a stored runnable instance. To support

this also, again we need conditionals.

2.6.2 Nature of a complex secure coding guideline

Below is an example of a complex secure coding guideline violation, which needs to track

control flow of the code execution.

IDS01-J. Normalize strings before validating them;

This is a secure coding guideline from the SEI CERT list (Carnegie Mellon University -

Software Engineering Institute, 2023). This rule simply says, Applications that accept

untrusted input should normalize the input before validating it. Consider the below example.

Here, assume ‘strInput’ is a string variable from a user input. To prevent cross site scripting, a

developer should validate the input string for script tags. To accomplish this, a developer

might check for ‘<>’ parenthesis. But in the below example, parenthesis is in Unicode form.

Normalization is important because in Unicode, the same string can have many different

representations. When implementations keep strings in a normalized form, they can be

assured that equivalent strings have a unique binary representation. Therefore, the secure

coding guideline says, a developer should normalize a string before validating it.

1. To accomplish this, first, the rule creation language should be able to keep track of the

string variables (‘strInput’ in the below code example). Therefore, a rule creation

language should have support for store variables/ should support getters and

setters. Further, we might need another set of variables to keep track of the

execution order of the code. Because in the below example, even though the

‘strInput’ is normalized, it is normalized after validating it. Therefore, tracking code

execution order is very important. Checking for a normalization is not just enough.

2. A variable in the rule creation language to track whether the ‘strInput’ is normalized

might needed. At the beginning, the value of it might be ‘false’.

3. Then the rule might need to know the pattern instance name, and therefore, another

29

variable needed in the rule creation language.

4. There might be a lot of string variables in a program inside even a method. As an

example, can take the ‘str1’ variable in the below code. Condition to check whether

the name of the variable inside normalization matches with tracked variable name of

the ‘strInput’ might needed in the rule creation language.

5. This step is also very important in the rule creation. Even though ‘strInput’ is

normalized, it might be assigned to another new variable. Therefore, the rule must

check for the new variable name after the normalization, in the validation step. If a

developer uses a new variable to store the normalized string, and if the developer

accidentally validates the older string, that is again incorrect. Therefore, rule creation

language might need variables/ getters and setters again to keep track of this.

6. Final step is:

a. Check whether the input string is normalized (A condition needed, to compare

the stored track value is ‘true’, and a getter needed in the rule creation

language to access the stored variable value)

b. Check whether the string variable name inside the ‘matcher’ matches the string

variable name after the normalization (A condition needed, to compare the

stored string variable name after the normalization matches the string variable

name inside the ‘matcher’. A getter needed to access the stored variable value

after the normalization)

c. Another condition is needed, to check whether the execution of matcher has

happened after the string normalization. Here again, the rule creation language

might use getters of variables that are used to track the execution order of the

code.

7. If everything matches for a violation, then the rule creation language might output the

violation description, in order to display in the IDE.

30

Figure 11: Nature of complex secure coding guideline violation

2.6.3 Conclusion

Therefore, can conclude that a rule creation language must be able to keep track of the

execution order of the input source code, and that is an important feature for a rule creation

language. Therefore, to achieve this, can conclude that support for conditionals and support

for variables in the rule creation language are must features for a rule creation language.

3. A variable to

store pattern

instance name

2. A variable to track

whether this input is

normalized/not

4. Condition to check whether

the name of the variable

matches with tracked variable

name

5. A variable to store

string variable name,

after the normalization

1. Variables to store

string variable name,

to track the execution

order

6. Conditions to check whether

the string variable is normalized,

and the variable name matches

the name after the normalization,

and the execution of matcher has

happened after the normalization

31

2.7 XML and YAML Limitations when defining complex and package level

secure coding guidelines

XML and YAML are the currently used languages for the rule creation part. ‘Sensei’ paper

has already concluded that YAML is better than XML. But both YAML and XAL have a few

drawbacks and due to the below mentioned drawbacks, both YAML and XML cannot specify

package level secure coding guidelines and complex secure coding guidelines, which needs to

maintain the track of the control flow of the system. Therefore, existing solutions are not

capable of defining package level violations and complex rules which need to track the

control flow of the source code.

2.7.1 Dynamic Code or Logic

2.7.1.1 YAML

YAML is primarily for data serialization and doesn't support representing executable code or

logic directly. YAML itself doesn't have built-in features for true conditional logic like if-else

statements (YAML Org, 2021) (YAML, 2009-2022). While some extensions might allow code

snippets, it's not designed for complex programming tasks.

2.7.1.2 XML

Standard XML itself doesn't directly support conditional blocks or dynamic code in the way

programming languages do (W3C, 2013).

2.7.2 Storing values in variables

2.7.2.1 YAML

YAML is primarily for data serialization and YAML itself doesn't have built-in "get" and "set"

functionalities like traditional programming languages (YAML Org, 2021) (YAML, 2009-

2022).

2.7.2.2 XML

XML itself doesn't inherently offer built-in functionalities like "get" and "set" for directly

manipulating data within the document (W3C, 2013). To achieve this, external processing and

libraries are needed.

32

2.7.3 Wildcards

2.7.3.1 YAML wildcards:

YAML itself doesn't have built-in features for wildcards and therefore YAML doesn’t support

wildcards (YAML Org, 2021) (YAML, 2009-2022).

2.7.3.2 XML wildcards:

XML supports 2 main types of wildcards (W3C, 2013).

Asterisk (*): This wildcard matches any sequence of characters, including zero characters. It

can be used in element names, attribute names, and attribute values.

Question mark (?): This wildcard matches any single character. It can be used in element

names, attribute names, and attribute values.

2.8 Custom rule defining: Markup languages and other languages

‘Sensei’ research paper already concludes that using a trigger is more scalable than previous

approaches (Cremer, et al., 2020). Further, they conclude that using YAML over XML and

custom XML formats is better. But YAML has limitations that need to be addressed.

YAML (YAML, 2009-2022) (YAML, n.d.) (YAML, 2001-2009) is a data serialization

language by its design (Ben-Kiki, et al., 2009) (Ben-Kiki, et al., 2005). YAML is known to be

simple in terms of human readability, due to its limited data types. Thus, YAML produces the

most compact output for the simple data set.

The biggest disadvantages of YAML in the rule creation context are, the language does not

have any built-in support for conditionals, storing variables and wildcards (Ben-Kiki, et al.,

2009) (YAML, 2009-2022). Thus, users must define basics in a complex manner. This makes

the rule-generation process harder and more time-consuming. This adds extra complexity to

the work of a secure rule creator. Even researchers that have used YAML for other domains in

computer science have pointed out this wild card issue (McGhee, et al., July 2022, p. 7).

Further, as explained earlier, there is a major gap that cannot be filled using YAML.

Therefore, the secure coding rule defining domain needs a novel solution to this problem.

In YAML block styles, it uses indentation to define structure (Eriksson & Hallberg, 2011)

33

(Ben-Kiki, et al., 2009, p. 30) (YAML, 2001-2009) (Ben-Kiki, et al., 2005). Indentation is

zero or more space characters at the start of a line. As the document hierarchy gets more

complex, with deeper nesting being added, the amount of whitespace needed for YAML to

correctly indent everything grows noticeably (Eriksson & Hallberg, 2011). Thus, for the

complex data set, the YAML output is larger than other languages (Eriksson & Hallberg,

2011). Thus, relying on indentation can be error-prone and difficult to maintain, especially

for large or complex rules. Thus, using indentation makes the rule buggy if the rule writer

uses it in an incorrect way. Thus, this will result in incorrect secure coding violation

detections. Further, due to this indentation problem, YAML files can be hard to edit,

especially for large files. Accidentally getting the indentation wrong often isn’t an error for

YAML parsers; it will often just deserialize to something you didn’t intend. Thus, in terms of

the rule defining language context, there is a gap that needs to be addressed.

Since the introduction of YAML, remote code execution vulnerabilities have been reported for

YAML parsers (Rasheed, et al., 2019). Thus, YAML and YAML parsers are known to be

insecure. Even most libraries are known to be unsafe by default. Several remote code

execution vulnerabilities in YAML parsing libraries and deserializing YAML data have been

reported since 2013 (Rasheed, et al., 2019).

2.8.1 Rule Markup Language (RML)

RML is a general-purpose data mapping language, and it is used for rule-based

transformations of XML (Jacob, 2006). RML Focused on representing and managing rules in

general, not necessarily web specific. With RML the user can define XML wildcard elements.

Further, it supports defining variables containing parts of the XML such as variables for

element names or variables for lists of elements (Jacob, 2006).

RML can be used to specify semantics for state charts and class–diagrams in UML models.

Mostly, RML is only used to define transformation rules, while the input and output of a

transformation are pure problem domain XML. The RML tools are available as platform-

independent command–line tools. They can be used together with other tools that have XML

as input and output (Jacob, 2008). RML re-uses the problem domain XML, extended with

only a few constructs (Figure 12)

34

Figure 12: All the RML constructs (Jacob, 2008, p. 40)

The execution of a rule consists of binding variables in the matching process, and then using

these variables to produce the output. The part of the input that matches the rule antecedent is

replaced by the consequent of the rule (Jacob, 2008). This is because this language is for

logical foundations. Theoretically in our context, this is not what we need. Therefore, cannot

use RML.

2.8.2 Rule Markup Language for the Web (RuleML)

RuleML expresses the rules in XML syntax for the Web (RuleML, 2023) (Mehla & Jain,

2019). It can be used to transform structured data into RDF (Resource Description

Framework) triples. RDF is a standard for representing information on the web, enabling you

35

to describe resources and their relationships in a machine-readable format. RML re-uses the

problem domain XML, extended with only a few constructs (Figure 12) to define rules,

whereas RuleML superimposes a special XML vocabulary for rules (Jacob, 2008). This

makes the RuleML approach complex and thus difficult to use in certain cases. The idea of

using wildcard elements for XML has not been incorporated as such in the RuleML approach

(Jacob, 2008). This language is also for logical foundations. Theoretically in our context, this

is not what we need. Therefore, cannot use RuleML.

2.8.3 SCPL - A markup language for source code patterns localization

Silva, et al. have introduced a Source Code Pattern Language (SCPL), a pattern-finding

language which uses markups in code examples to facilitate development of custom static

analysis rules (Silva & Mendonça, 2021). SCPL provides a rich feature set and facilitates the

programming of custom static analysis rules by using markups directly in source code. But

this is still at the initial stage and still hasn’t been used in practical applications by other

researchers in the computer science domain.

2.8.4 Artificial intelligence markup language (AIML)

AIML is a markup language, that is widely used for chatterbots (Khin & Soe, 2020) (Satu, et

al., 2015). It has a more powerful pattern matching language, a built-in NLP engine, and a

larger community of developers. Further, this is a markup language that is widely used in the

pattern recognition area (Marietto, et al., 2013) (Khin & Soe, 2020 February). AIML

combines the technical and theoretical pattern recognition infrastructure in its development

(Wallace, 2003) (Marietto, et al., 2013).

Ease of implementation, since AIML is an XML-based markup language and it is tag-based

(Marietto, et al., 2013). Thus, when it comes to rule defining, we can use human readable tags

and patterns. This tag-based syntax allows to define complex rules and patterns. Thus, AIML

is more expressive than YAML. By its design, AIML is designed to support wildcards as well

(Khin & Soe, 2020 February) (Marietto, et al., 2013) (Wallace, 2003). AIML is a rich

language, is proven for using for complex chatbots, and thus, can be used to define complex

rules as well.

AIML is more modular than YAML. Further, when referring AIML documentation, can see

very rich features like conditions, loops, predicates and support for getters and setters

(variables) when compared to YAML (AIML Foundation, 2018) (Wallace, 2009) (Wallace,

2003) (YAML Org, 2021). Therefore, AIML is a good candidate for filling the gap in the rule

36

defining in secure coding guideline violation detection domain. Having support for modules

means can organize coding guidelines into reusable modules and this can be helpful when

defining large coding guidelines where you want to avoid repetition. Further, using a rich

language to define rules makes the process easy and smooth.

Figure 13: AIML creating and accessing variables with <set> and <get> tags (Wallace, 2003)

Figure 14: <condition> Tag Usage Example in AIML (Marietto, et al., 2013)

Figure 15: Wildcards and <star> Tag example in AIML (Marietto, et al., 2013)

2.8.5 Conclusion

Out of the above three methods, AIML is the method previous researchers have used in

pattern matching domain (Khin & Soe, 2020 February) (Ahmed & Singh, 2015). Further, it

37

supports conditionals, variables and wildcards by its design (Khin & Soe, 2020 February)

(Marietto, et al., 2013) (Wallace, 2009) (Wallace, 2003). Thus, this fills the existing gap of the

rule creation mechanism. Further by its design, it is rich when compared to other languages.

This makes the rule creation process easy and neat. Thus, it can easily conclude that, out of

the above methods, AIML is the best method. Thus, AIML is selected as the rule creation

method.

2.9 AIML (Artificial Intelligence Markup Language)

AIML is a custom form of XML. The most important parts of an AIML document are

(Ahmed & Singh, 2015) (Wallace, 2009) (Wallace, 2003):

a) <aiml>

b) <topic>

c) <category>

d) <pattern>

e) <template>

f) <condition>

g) <think>

h) <set>

i) <get>

There are many others tags in AIML which are used to describe a scene. The main objective

of a tag is to simplify pattern matching (Ahmed & Singh, 2015). AIML consists of AIML

objects. These AIML objects consist of topics and categories, which contain either parsed or

unparsed data from their information is extracted (Ahmed & Singh, 2015). Data consists of

characters and this character data is parsed by the AIML parser or interpreter. An AIML

interpreter is one who scan AIML objects and provides a response according to those

characters (Ahmed & Singh, 2015). An interpreter is the biggest part of an application. In this

research also, the interpreter plays a major role.

2.9.1 AIML Objects

Below are main AIML objects (Ahmed & Singh, 2015) (Wallace, 2003).

1. AIML Root: Initiation of the AIML document.

<aiml>….</aiml>

2. AIML TOPIC: First level optional item that specifies category of an elements. It

has the attribute ‘name’ to indicate the topic name.

38

<aiml:topic name=’topic name’>…</aiml:topic>

3. AIML Category: First level if topic not present. Else this is the second level

element. This contains only one pattern and only one template. This doesn’t

contain attributes.

<aiml:category>

……Content for category…

</aiml:category>

4. AIML Pattern: This is an element which contains mixture of a pattern. A pattern

should appear inside a category.

<aiml:pattern>

…..Pattern…..

</aiml:pattern>

5. AIML Template: This is an element which goes inside a category element.

<aiml:template>

…..Template…

</aiml:template>

6. Star: Indicates that AIML should replace value by a particular wildcard

<aiml:star index=’integer value to be stored’/>

7. That: Tell AIML to replace the previously produced output.

<aiml:that index=’single integer| comma separated integer value’/>

8. Set: Set a variable, and the variable name is specified by the ‘name’ attribute

<set name="name_of_the_variable">…. Value to set ….</set>

9. Get: Get the value of a variable. The variable name is specified by the ‘name’

attribute.

<get name = " name_of_the_variable "/>

10. Think: Tell AIML to process inside this, without generating output

<think>

…anything that needs to process. Ex: process and store variable…

</think>

11. Condition: Condition to check a match, with 2 attributes ‘name’ and ‘value’

<condition name=" name_of_the_variable " value="value_to_match">

… work to do, if the value to match matches with the value of the

variable specified by the ‘name’ attribute …

</condition>

12. Li: List item, with a value to match

<li value=" value_to_match ">

… work to do if the parent component value matches with the value to

match …

13. AIML wildcards

a. Asterisk (*): Matches any sequence of words, including zero words.

39

b. Underscore (_): Matches a single word.

2.9.2 AIML wildcards

2.9.2.1 Types of Wildcards:

Below are types of wildcards in AIML (batiaev, 2019).

1. Asterisk (*)

Matches any one or more sequence of words. This is the most common wildcard in

AIML.

2. Caret (^)

Matches any sequence of words (including zero words). This is the most common

wildcard in AIML.

3. Underscore with priority (_)

Matches any single word. At every node, the “_” has first priority, an atomic word

matches second priority, and a “*” matches next priority, and “^” matches lowest

priority.

Ex: <pattern>what is the _ capital of France?</pattern>

would match “what is the capital of France?” or “what is the economic capital of

France?”.

4. Hashtag (#)

Matches zero or more characters.

2.9.2.3 Wildcard Priority:

_ has the highest priority, followed by *, then #, and then ^. This means if a pattern contains

multiple wildcards, the higher-priority ones will be matched first (batiaev, 2019) (Wallace,

2003).

2.9.2.4 Wildcards and Spaces:

Wildcards does not separate text characters and spaces. To match spaces, you need to

explicitly include them in your pattern (batiaev, 2019).

Examples:

40

^hello^: Matches any input containing "hello", regardless of surrounding characters (e.g.,

"hello", "helloworld", "how are you doing hello").

_world: Matches any single character followed by "world" (e.g., "hello world", "good

world").

#bye: Matches "bye" or any input ending with "bye" (e.g., "bye", "goodbye", "see you bye").

2.9.2.5 Advanced Usage:

Can embed regular expressions inside AIML patterns as well.

Wildcard Sets: Enclose characters within [] to match any one of them (e.g., [hw]ello matches

"hello" or "wello").

Negation: Use ! before a wildcard to match anything except that character (e.g., !_ot matches

any word except "bot").

2.10 Available AIML interpreters

As we have already decided to go with AIML, this section focuses on previous methods

researchers used to generate interpreters for AIML language.

Since AIML is an XML dialect, it is not a programming language, it needs to be interpreted or

parsed to be of any computational use. The interpreter must guarantee the compliance of

properly formed AIML documents, perform all the necessary pre-processing duties for the

correct usage of the bot and ensure the correctness of both pattern matchings of users’ source

code and bot response (Malvisi, 2014).

Officially recognized interpreters have been developed using following programming

languages (Malvisi, 2014):

a) Lisp

b) Java

c) PHP

d) Ruby

e) Perl

f) Pascal

g) NET

h) C++

i) SETL

The AIML interpreter must implement a set of tasks to successfully implement the AIML

specification correctly (Malvisi, 2014):

1. Pre-processing: load optional files if there are any (substitution file, predicates file,

sentence splitting tokens). This is mostly for the chatbot domain, so that all incoming

41

inputs get translated according to it before pattern matching is initialized.

2. AIML file parsing: AIML files are loaded, categories might be translated into a data

structure to be easily readable by the interpreter.

3. Pattern matching: the interpreter needs to match incoming input to the loaded AIML

categories and provide the result according to template elements.

To develop an interpreter which works for the source code domain, it is important to study

existing interpreters even in other domains as well.

2.10.1 Current interpreter usage of AIML in other domains

2.10.1.1 AIML interpreters written for ALICE

The concept of chatterbot came into existence with A.L.I.C.E. (Artificial Linguistic Internet

Computer Entity). ALICE is a natural language processing chatterbot, the first chatterbot that

used AIML (Google, 2014) (Anon., 2011) (Wallace, 2009) (Wallace, 2003). It is used to

receive questions from users. It was based on pattern recognition. That pattern-matching

algorithm was simple as a string-matching technique. To parse and declaration of different

kinds of sentences easily, AIML has been used in this model (Ahmed & Singh, 2015)

(Wallace, 2003). ALICE takes the text as input and produces output as text. It acts like a

question-and-answer-based system. There are several AIML interpreters written with the

invention of ALICE.

2.10.1.2 Program AB

Program AB is a free and open-source reference interpreter for AIML, and this is written in

Java. This is widely used with chatterbots that uses AIML as the language (Google, 2013). It

serves as a reference implementation of the AIML 2.0 specification. Program AB contains

tree-walking interpreter and AIML source files for a chatbot ALICE 2.0 (Barnisin, 2022).

The current AIML version is AIML 2.1, and this supports AIML specification 2.0 (Barnisin,

2022) (Google, 2013). According to the literature, the project does not seem to be in the active

development, as the last commit was in 2014 (Barnisin, 2022).

2.10.1.3 Program Y

Program Y is a chatbot framework written in Python 3 by Keith Sterling (Barnisin, 2022)

(Sterling, 2021). It contains an AIML 2.1 compliant interpreter. The interpreter is flexible and

42

can be extended with custom coded tags and new pattern-matching constructs (Barnisin,

2022). It also supports non-standard extensions for list processing, dynamic sets and maps and

pattern matching based on regexes. This library comes with three different chatbots, and a set

of extensions – additional files with topic-specific categories. This project is actively

maintained, with the last recorded activity in 2021 (Sterling, 2021).

2.10.1.4 PyAIML

The original Python 2 implementation of an AIML interpreter, PyAIML, by Cort Stratton.

This is compliant with AIML 1.0.1. This offers a tree-walking interpreter, a simple interface to

work with the chatbot and an option to store the chatbot’s configuration into a file (Barnisin,

2022). The project will not be extended to support newer versions of AIML and is no longer

in development, as the last activity was recorded in 2005 (Barnisin, 2022).

2.10.1.5 pyaiml21

Michal Barnisin has built a new AIML 2.1 interpreter, pyaiml21, in Python (Barnisin, 2022)

(Barnišin, 2022, p. pyaiml21 documentation). The aim of this research is to provide a short

summary of AIML. This presents existing systems implementing its specification. They have

analyzed the requirements for a new interpreter, written in Python, compatible with the recent

AIML standards. Based on that, they have designed, implemented, evaluated, and published

the new interpreter, pyaiml21. In this research, considering the AIML code might contain

different non-AIML tags, the researcher has created a two-phase AIML parser, which includes

XML parsing separately and AIML validation separately. According to the researcher, this is

because AIML is an untyped, Turing-complete programming language. But this is written in

the Python language, and this is for chatbots.

2.10.1.6 Development of a Framework for AIML Chatbots in HTML5 and JavaScript

This research has focused on the implementation of an AIML interpreter written in JavaScript

to allow for web-based client-side specific usages of AIML chatbots (Malvisi, 2014). The goal

of the researcher is to assure the compliance of properly formed AIML documents, perform

all the necessary pre-processing duties for the correct usage for a chatbot and ensuring the

correctness of both pattern matchings of user input and chatbot response.

The implemented interpreter exploits the DOM tree manipulation functions of the jQuery

library to achieve above mentioned goals, treating AIML files as if they were normal XML

files. This AIML interpreter supports AIML 1.0 specification.

43

2.11 Available secure coding guidelines and rules

During the literature review, secure coding guidelines provided by 3 parties namely OWASP,

Oracle, and SEI CERT were identified (Dasanayake, et al., 2019) (Carnegie Mellon

University - Software Engineering Institute, 2018) (The OWASP Foundation, 2017).

According to the literature, the below are some of the parameter values to check before

identifying the most feasible set of secure coding guidelines to be used for the evaluation of

the proposed system along with the proposed rule generation mechanism.

Parameters SEI CERT

(Carnegie Mellon

University - Software

Engineering Institute,

2018)

Oracle (ORACLE,

2023)

OWASP (OWASP,

2010)

Number of

Resources /

References available

Significant Less Less

Code examples

provided

Significant Significant Less

Nature (language

specific/not)

Language specific Language specific Not language specific

Security domain

Coverage (Security

areas covered)

Significant coverage Low coverage Significant coverage

Table 7: Comparison of secure coding guidelines (Dasanayake, et al., 2019)

The aim of this research study is to provide custom secure rule generations. Based on the

analysis shown in Table 7 it could be concluded that the secure coding rules provided by SEI

CERT are the most suitable set of secure coding standards to be used for the evaluation

process of the rule creation mechanism and the overall system. Thus, a set of secure coding

guidelines from SEI CERT will be selected and secure coding guideline rules will be created

to detect violations of the selected set, to show the capability of the custom rule generation

mechanism and for the demonstration purposes.

44

2.12 Summary

There is a huge increase in remediation costs when software defects are detected and

corrected at post-implementation phase of the SDLC when compared with the development or

coding phase of the SDLC. Following secure coding guidelines while developing of software

applications, can be considered as the well-known and accepted method to overcome this

issue since these best practices primarily focus on vulnerabilities that may arise in the source

code level.

The review of existing approaches gives an idea that there exists no automated mechanism to

identify the violation of secure coding guidelines in the source code with a formal mechanism

to convert user dependent rules into algorithms. Further, existing tools gives only a raw set of

violations, and not a user-friendly dashboard. Developing a software product that can detect

these violations in the form of a plugin-based framework with a user-friendly user interface

could be considered as the best solution for the problem.

45

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter mainly describes the proposed design of the framework that was implemented to

provide a solution for the above-mentioned problem. Based on the literature review that was

carried out in the background study a design methodology was identified. The system

architecture and the system model were developed based on that design methodology. Several

parser selection criteria were also analyzed in this phase.

This research methodology falls under a constructive research methodology. The below

diagram explains the constructive research methodology type briefly. The research focuses on

solving the existing real-world problem. To achieve that, have done a theoretical literature

review, to understand the theoretical background. The output for the real world is a tool with

the resolved gap, and the output for the theoretical domain is, how AIML works beyond the

chatbot domain and the capability of it.

Figure 16: Diagram of a constructive research approach (Dagiene, et al., 2015)

3.2 Problem analysis

The goal of the project is building a framework to detect secure coding guideline violations in

real-time along with a new secure coding rule defining method to fill the existing gap. Currently,

most organizations and software project teams use cheat sheets to distribute their custom secure

coding guidelines, and developers do not follow these guidelines due to time constraints or

sometimes they do not understand these guidelines. To achieve the goal, an extensive background

study was conducted by referring relevant artifacts such as white papers, dissertations, existing

tools, etc.

46

The acquired knowledge from the background study was used to identify relevant

requirements, design system architecture and system model, identify related components of

the framework, etc. Since the solution involves creating AIML interpreter to support source

code domain, previous approaches of AIML interpreter creation were studied, and created a

new interpreter based on previous approaches.

Overall system architecture is proposed based identified theories to construct a solution, and

then implemented as a prototype. To validate the end user source code in real-time, used a

pattern matching technique. Further, to validate the proposed solution, identified set of

available complex and package level secure coding guidelines, and created AIML files to

represent these secure coding guidelines. Then created a sample project with violations of

above selected secure coding guidelines and checked for the plugin-generated output of the

end users’ IDE.

3.3 Design assumptions and dependencies

1. The end users side rule creator who writes custom secure coding guidelines is

responsible for writing secure coding AIML rules correctly. AIML rules should be

syntactically correct, to correctly interpret rules and generate output.

2. The user of this plugin would be a software developer who should be able to fix

security vulnerabilities shown by the secure coding framework, after referring to

countermeasures given.

3. This framework requires the user to have a compatible version of IntelliJ IDEA IDE or

any other supported JetBrains IDE up and running.

3.4 Parts of the secure coding guideline plugin for an IDE

According to the literature, secure coding guideline plugin mainly should provide features

such as:

Code scanning: Scans the code for potential security vulnerabilities. This can be done using a

variety of techniques, such as static code analysis, dynamic analysis, and fuzzing. Static code

analysis focuses on analyzing code without running it. Dynamic code analysis focuses on

analyzing code while running it. Fuzzy combines static and dynamic code analysis and uses

fuzzers to analyze the code. This research focuses on detection of custom secure coding

guidelines on the fly in the IDE. Therefore, static analysis is selected.

47

Customizable rule sets: Allows developers to add custom secure coding rules that the code

scanner uses. This is useful for developing custom security guidelines for the

organization/project or for focusing on specific security vulnerabilities.

Vulnerability reporting/Feedback: Provides feedback to the developer on the potential

vulnerabilities that have been identified. The feedback typically includes a description of the

vulnerability, and a recommendation for how to fix the vulnerability, if the rule creator has

specified.

Integration with the IDE: The plugin is integrated with the IDE, so that developers can get

feedback on their code as they write it. This helps developers to identify and fix potential

security vulnerabilities early on.

Thus, a plugin that enforces secure coding guidelines and that supports IDE integration should

mainly consists of:

I. An IDE integration layer: This allows the plugin to interact with the IDE and to

provide features such as code scanning and code refactoring.

II. Listener: A listener who listens to detect a change of the editor, to scan and detect

violations.

III. Rule store: A rule store to keep custom secure coding rules. This allows organizations

to tailor the plugin to their specific needs and to enforce their own security policies.

IV. Bot: A bot who reads and understands AIML rules, and who matches end users’ source

code along with defined AIML rules to detect violations.

V. Reporting layer: A reporting layer that can generate outputs on the security

vulnerabilities that were found in the code, to display in the IDE.

3.5 Main Design Choice: Interpreter and bot Architecture

As Identified and stated in Chapter 2, AIML was identified as the rule specifying language

through the literature. This section focuses on the AIML interpreter generation part, to be able

to understand AIML rules before the violation detection identification.

3.5.1 Available methods for generating an AIML interpreter

To be able to understand the AIML code, the plugin should be able to identify AIML code.

While parsing elements of the AIML language to identify patterns, categories, and templates

is involved, the goal is to interpret and execute the logic defined within the AIML. The plugin

48

should be able to process AIML patterns, match user input code files against them, and then

execute the corresponding actions defined in the templates. These actions could involve

assigning variables, checking for conditions, and generating responses. To be able to do this,

we need an AIML interpreter. The primary function of this interpreter is parsing the structure

of AIML but involves understanding the meaning and executing the intended actions.

The current AIML specification is AIML 2.1. According to the official site, in AIML 2.1 the

only newly added support is new tags which support multimedia features (AIML Foundation,

2018). But in our coding guidelines domain, support for multimedia features is not needed.

Therefore, in this context support for the AIML 2.0 specification is enough.

According to the literature, there are some AIML interpreters available for chatbots written in

different languages and they support different AIML specifications. These AIML interpreters

are built for chatbots, and there for simple natural language. But in the code matching context,

there can be different characters like new line characters, tab characters etc. Therefore, in this

interpreter implementation, per-processing of user input is needed before the matching part.

Currently there is no AIML interpreter which supports performing of all the necessary pre-

processing duties for code files, which supports latest AIML specification 2.1 or AIML 2.0

specification and written in Java (AIML Foundation, 2018). Therefore, in this research a new

interpreter will be developed and will be used in the implementation of the system.

In pyaiml21 (Barnisin, 2022), considering the AIML code might contain different non-AIML

tags, the researcher has created a two-phase AIML parser, which includes XML parsing

separately and AIML validation separately. According to the researcher, this is because AIML

is an untyped, Turing-complete programming language. This method is good in the domain of

chatbots. But in our context, as the initial stage, we do not have and focus on arbitrary AIML

tags. The interpreter will be created to parse pure AIML tags, which supports AIML 2.1

specification (AIML Foundation, 2018).

49

Figure 17: Flow Diagram of Request and Response of a chatbot which uses AIML (Ahmed & Singh, 2015)

The above diagram shows a data flow of requests and responses of a chatbot who uses AIML

(Ahmed & Singh, 2015). Here, TTS is text to speech system and STT is the speech to text

system. The interpreter loads the brain in the beginning and if it does not have a brain file, it

creates a default one. Also, the interpreter loads AIML files in the beginning. Then, when a

request comes, the system search for a match and generate an output according to AIML

templates and returns it. According to the literature, the below is the complete procedure of a

chatbot which uses AIML (Ahmed & Singh, 2015):

1. The first step is to create a brain file, it can be created by using AIML file.

2. If the brain file is not present, then create a brain.

3. If the brain file is present, then load the brain file in the model.

4. After loading the brain, BOT waits for the request from user or client.

5. A user can provide request either in format of voice or text.

6. Model receives request and forward to pattern manager.

7. Pattern matching algorithm is applied and sent to the brain.

8. The model uses the brain and gets appropriate response and forward to user.

3.5.2 Design of the AIML interpreter and the bot

3.5.2.1 Design

Therefore, can concludes that, the interpreter in his research should be responsible for:

1. Loading the brain in the beginning

2. Loading the end user defined AIML rule files in the beginning

50

Further, can concludes that, the bot in his research should be responsible for:

1. Pattern matching.

2. Generating outputs according to loaded AIML files.

3.5.2.2 Implementation decisions

When referring to the initial AIML interpreter for the A.L.I.C.E. chatbot, there are standard set

of conceptual words that uses in an AIML interpreter. They are:

1. ‘Graphmaster’: consists of a collection of nodes called ‘Nodemappers’.

2. ‘Nodemappers’: map the branches from each node. The branches are either single

words or wildcards.

3. Botmaster: the master (developer) of robot

Out of above, first two are the main important concepts.

When searching for available GitHub repositories for an AIML interpreter written in Java

there are a few which have developed for chatbots. Appendix B: Available GitHub

repositories of AIML interpreters) lists the currently available AIML interpreters, developers

have developed over the past years for chatbots. Out of the listed three, the first two have

followed the initial concepts, and are more comprehensive. Further, out of the first two, the

first one has followed more coding standards, and it is more readable. Therefore, re-used

some files of the first repository.

3.6 Design Choice: The plugin base and output displaying

3.6.1 Plugin base

IntelliJ platform is powered by a plugin generation template and an official documentation on

plugin development. Developed the base of the plugin using the template. Official plugin

template repository of JetBrains and official documentation links are available under

Appendix D: JetBrains official plugin development template and official documentation

3.6.2 Interaction with users’ code and output display

For the editor listening part and for display the newly generated output, some code files of the

previous research of secure coding plugin development are reused (Dasanayake, et al., 2019).

Original source code repository link is available under Appendix C: Source codes and

available plugins of previous research studies

51

3.7 Overall System Design

After identifying the whole process, a plugin is implemented and evaluated as stated in the

next chapter. The high-level architectural overview below explains the layers of the system

prototype (Figure 18: Architectural overview of the system prototype).

Figure 18: Architectural overview of the system prototype

3.7.1 Parts of the system prototype

3.7.1.1 An IDE integration layer

IDE integration layer allows the plugin to interact with the IDE. This consists of a ‘listener’, a

reporting layer, and a rule store.

User defined

AIML rules

Graph

master

AIML

Processor

Read

Generate AIML

categories

Preprocess &

generate regex,

and store

Split editor text

into lines

Detect

code

matche

s

Bot

Store

variables

Check

conditions

Generate

output

Source Code

Read editor

text

Pass to Bot

Display

output

Pass

validations

52

Listener: A one who listens to detect a change of the editor, then passes the opened code

editor file to the system, to scan and detect violations.

Reporting layer: A reporting layer that can generate user friendly outputs based on the

output of the bot on the security vulnerabilities that were found in the code, to display in the

IDE. This layer is responsible for displaying the violation on the opened code file and also

displaying the violation description under the plugin tab of the users’ IDE.

Rule store: A rule store to keep custom secure coding rules of the user. This is a folder of

anywhere inside the end users’ machine.

3.7.1.2 Bot

As explained in the section 3.5.2.1 Design) this bot is responsible for loading the brain in the

beginning, reading, and understanding user defined AIML rules, pre-processing code lines,

and comparing end users’ source code along with defined AIML rules to detect violations.

This bot consists of two main parts:

AIML processor:

AIML processor is responsible for parsing AIML tags as per the AIML specification. This

implements the AIML 2.0 specification as described in the official site (AIML Foundation,

2018). As described earlier, the only newly added feature for AIML 2.1 from 2.0 is the

support for multimedia tags. But in our context, we do not need it. This processor is

responsible for reading and understanding user defined AIML rules in the beginning.

Graph master:

This is the Brain of the bot. This holds data structures that store AIML sets and maps, and this

holds an instance of the AIML processor. This is responsible for pre-processing input code

lines. Further, this has AIML Pattern matching algorithms, and is responsible for detecting

violations according to the patterns matched. Furthermore, this is responsible for generating

outputs according to templates of matched categories in user defined AIML files.

3.8 Summary

In this chapter, the design of the framework for secure coding plugin is presented along with

design choices and using the system architecture diagram. Design assumptions are listed

53

under the design assumptions section. The rationale for the need for an interpreter and the

approach followed when designing and implementing the interpreter is also presented under

this chapter.

54

CHAPTER 4

EVALUATION AND RESULTS

4.1 Introduction

The evaluation process was carried out to assess the solution of the rule creation mechanism

and the detection process of prototype to verify whether the intended requirements have been

met and are up to relevant standards. The focus is to ensure that the plugin-based framework

has achieved the expected research objectives.

In the evaluation process, custom rule-based evaluation method and a user-based evaluation

were selected to evaluate the ability to create custom secure coding guidelines, and to evaluate

the ability of the framework to detect a violation of the specified rule.

An evaluation is carried out using the below methods.

1. Custom secure rule-based evaluation:

a. Purpose: To evaluate the secure rules customization.

b. Materials: A selected set of secure rules from both package-level and complex

categories are used.

c. Method: Created a selected set of rules, using the rule defining method of the

framework. As the second step, reviewed results manually to identify false

positives, false negatives, true positives, and true negatives of the Secure

Coding Plugin.

2. User-based evaluation:

a. Purpose: Evaluated the extent to which developers are tended to not to commit

securely violated codes and evaluated a selected set of user-related aspects.

b. Materials: plugin-based framework, downloadable, with a questionnaire

4.2 Justification: achieving the goal of the research study

This section focuses on how AIML solves the gap in this domain. Under this section,

examples of AIML rules for package level secure coding guideline violation and a complex

secure coding guideline violation will be described mapping AIML features and how AIML

features solves the research gap.

55

4.2.1 Solving the gap of package level secure coding guideline violation

Let’s take the previously described example of package level secure coding guideline

violation again.

THI00-J. Do not invoke Thread.run()

Figure 19: Ex1: A package level secure coding guideline violation

Here, as described earlier in the section (2.6.1 Nature of package level secure coding

guideline violation), a secure coding guideline rule creation language should provide the

facilities below:

1. The secure coding rule defining language should be able to track the custom class

name, and therefore, it should be able to store variables/ should support getters and

2. Condition to check whether

the object type of the variable

matches with the stored

runnable class name

4. Conditions to check

whether the variable that

passes to Thread is a

stored runnable instance

1. A variable to

store class name

3. A variable to store

instance name

56

setters to save custom data.

2. To detect a ‘Foo’ instance, when initializing any variable, the rule defining language

should be able to say; compare the stored class type with the object type of the new

variable. If matches, can say this is an object of the ‘Foo’ class. Therefore, the secure

coding rule defining method should have a way to create conditionals.

3. After identifying the ‘Foo’ instance, should store the instance name of the variable.

Again, the secure coding rule defining method should be able to create and assign

variables.

4. Then after detecting a run() invoke, the rule creation mechanism should be able to

compare the variable that passes to Thread is a stored runnable instance. To support

this also, again we need conditionals.

The impact of lacking above mentioned things is, current secure coding guideline creation

languages cannot define the tracking of the code execution order; and therefore, cannot

define detecting object creations of the custom ‘Runnable’ class beyond the original

class. Below is the AIML rule created to detect a violation of this coding guideline.

AIML coding guideline: THI00-J. Do not invoke Thread.run()

The AIML rule defined for detection of THI00-J is in below (Figure 20: Ex 1: How AIML

provide facilities to create package level secure coding guidelines - part 1, and Figure 21: Ex

1: How AIML provide facilities to create package level secure coding guidelines - part 2).

The steps of the rule are described in step numbers.

1. A pattern matching, and this step is to detect a custom runnable class.

2. Custom runnable class name is accessed based on the wildcard index.

3. Store custom runnable class name in a variable (name: runnableClassName). Further,

variables to store a runnable instance name (name: runnableInstanceName), a variable

to keep track whether the ‘run’ method is executed or not (name: calledRun), a

variable to keep track whether the ‘run’ method is the run method of an instance of our

custom Runnable instance (name: invokedThreadRun) are declared and initialized

here. These setters and wildcard accessing in step 2 are in inside a think tag. Think tag

tells the interpreter to process inside it without create/display an output.

4. Inside another category, a pattern matching to detect an object creation is in this step.

57

Figure 20: Ex 1: How AIML provide facilities to create package level secure coding guidelines - part 1

5. The object type of the new object creation is accessed based on the wildcard index

(index: 3) and stored in a variable (name: className). Further, instance name is

accessed based on the wildcard index (index: 2) and stored in a variable (name:

instanceName). These are inside a ‘think’ tag.

6. A condition to compare the value of a variable with another variable value. This is to

check whether the custom Runnable class name matches the object type of the newly

created instance variable (variable names: className, runnableClassName). If

condition is true, then do the work inside it.

7. A ‘getter’, to access a stored value of a variable. This is to get the instance name of the

newly created variable (name: instanceName), to proceed further.

1. Pattern

matching, to detect

a runnable class

5. Access

wildcards, store

values in variables

2. Access value

based on the

wildcard index

4. Pattern

matching, to detect

an object creation

8. Store values

in variables

6. Condition, to

compare a variable

with another

variable

3. Store values in

variables

7. Access a

variable to get

a stored value

58

8. Change the variable value created to store runnable instance name to the value of the

above accessed variable (variable name to store: runnableInstanceName), to keep track

of the runnable instance name. Step 7 and this step are inside a ‘think’ tag.

Figure 21: Ex 1: How AIML provide facilities to create package level secure coding guidelines - part 2

9. A pattern matching, to detect the execution of Thread run method.

10. Access the 2nd wildcard, to access the custom class name, used to create Thread.

11. Store the used custom class name which used to create Thread; before checking

whether this matches our original custom Runnable instance name. Further changing

11. Store values

in variables

12. Condition, to

compare a variable

with another variable

15. Condition, to

compare a static value

with a variable

9. Pattern matching, to

detect the execution of

Thread run method

10. Access value based

on the wildcard index

14. Store values

in variables

13. Condition, to

compare a static

value with a variable

16. If matched, the

final output

59

the variable value created to keep track whether the run method executed/not, to true

(name: calledRun)

12. A condition to compare a variable value with another variable value. This is to check

whether the used variable name inside ‘Thread’ matches our original custom Runnable

instance name (variable names: threadRunnableName, runnableInstanceName). If this

is a success, the inner condition will be checked.

13. A condition to compare a static value with a variable value (variable name: calledRun,

static value: true). This is to check whether the run method has been executed. This

condition will be executed only if the variable used to create ‘Thread’ matches with

the custom runnable instance name as described in step 12. If this is a successful

match, inner steps inside the ‘think’ tag in ‘li’ tag will be executed.

14. Set the variable name value to true, to keep track of the successful match of the

invocation of the Tread.run() method along with the custom Runnable class (variable

name: invokedThreadRun, value to assign: true).

15. A condition to check for the invocation of the Tread.run() method along with the

custom Runnable class (variable name: invokedThreadRun, value to check: true). If

this is a success, do the work inside it.

16. Displaying the violation code and the description. This is not inside a ‘think’ tag,

because we need to display the output here.

Results: Detected violation of THI00-J. Do not invoke Thread.run()

Below shows the output of the secure coding guideline violation detection plugin (Figure 22:

Ex 1: Detected violations of package level secure coding guideline). The plugin has detected

violations of the above rule in both class scope and the package scope. In this screenshot,

cursor is on the 2nd highlighted violation and it displays the output as a popup. This is a true

positive.

60

Figure 22: Ex 1: Detected violations of package level secure coding guideline

4.2.2 Solving the gap of complex secure coding guideline violation

Let’s take the previously described example of complex secure coding guideline violation

again.

IDS01-J. Normalize strings before validating them;

Here, as described earlier in the section (2.6.2 Nature of a complex secure coding guideline), a

secure coding guideline rule creation language should provide below facilities:

1. The rule creation language should be able to keep track of the string variables

(‘strInput’ in the below code example). Therefore, a rule creation language should

have support for store variables/ should support getters and setters. Further, we

might need another set of variables to keep track of the execution order of the

code. Because in the below example, even though the ‘strInput’ is normalized, it is

normalized after validating it. Therefore, tracking code execution order is very

important. Checking for a normalization is not just enough.

2. A variable in the rule creation language to track whether the ‘strInput’ is normalized

61

might needed and initially this is ‘false’.

Figure 23: Ex2: A complex secure coding guideline violation

3. Another variable might be needed in the rule creation language to store the pattern

instance name.

4. There might be a lot of string variables in a program inside even a method. As an

example, can take the ‘str1’ variable in the below code. Condition to check whether

the name of the variable inside normalization matches with tracked variable name of

the ‘strInput’ might needed in the rule creation language.

5. Even though ‘strInput’ is normalized, it might be assigned to another new variable.

Therefore, the rule must check for the new variable name after the normalization, in

3. A variable to

store pattern

instance name

2. A variable to track

whether this input is

normalized/not

4. Condition to check

whether the name of the

variable matches with

tracked variable name

5. A variable to store

string variable name,

after the

normalization

1. Variables to store

string variable name,

to track the execution

order

6. Conditions to check whether

the string variable is normalized,

and the variable name matches

the name after the

normalization, and the execution

of matcher has happened after

the normalization

62

the validation step. If a developer uses a new variable to store the normalized string,

and if the developer accidentally validates the older string, that is again incorrect.

Therefore, rule creation language might need variables/ getters and setters again to

keep track of this.

6. Final step is:

a. Check whether the input string is normalized. A condition needed to compare

the stored track value is ‘true’, and a getter needed in the rule creation

language to access the stored variable value.

b. Check whether the string variable name inside the ‘matcher’ matches the string

variable name after the normalization. A condition needed, to compare the

stored string variable name after the normalization matches the string variable

name inside the ‘matcher’. A getter needed to access the stored variable value

after the normalization.

c. Another condition is needed, to check whether the execution of matcher has

happened after the string normalization. The rule creation language might use

getters of variables that are used to track the execution order of the code.

7. If everything matches for a violation, then the rule creation language might output the

violation description, to display in the IDE.

AIML coding guideline: IDS01-J. Normalize strings before validating them

The AIML rule defined for detection of IDS01-J is in below (Figure 24: Ex 2: How AIML

provide facilities to create complex secure coding guidelines - part 1, and Figure 25: Ex 2:

How AIML provide facilities to create complex secure coding guidelines - part 2). The steps

of the rule are described in step numbers.

1. A pattern matching, and this step is to detect a string variable initialization. If there is a

string variable creation, processes inside ‘think’ tag of ‘template’ tag will be executed.

2. The string variable name is accessed based on the wildcard index.

3. Store the string variable name in a variable (name: strVar). Further, a variable to keep

track of whether the string variable is normalized (name: strVarNormalized), a

variable to store the variable name after string normalization (name:

strVarAfterNormalize) are declared and initialized here.

4. Inside another category, a pattern matching to detect an object creation of the ‘Pattern’

class.

63

5. Access the pattern instance name, based on the wildcard index (index: 1) and stored in

a variable (name: patternVar). This is also inside a ‘think’ tag.

6. Inside another category, a pattern matching to detect a string normalization.

7. Store the string variable name before normalization in a variable (name:

strVarBeforeNormalize), based on the wildcard index (index: 2). Aim is to compare

the previously declared string variable name in the source code. Further, the variable

declared to keep track of the string variable name after normalization will be updated

based on the wildcard (variable name: strVarAfterNormalize, wildcard index: 1).

8. A condition to compare the value of a variable with another variable value. This is to

check whether the original string instance name matches the string variable name after

the normalization (variable names: strVarBeforeNormalize, strVar). If the condition is

a success, then do the work inside it.

9. If the condition is a success, change the value of the variable created to keep track of

whether a string normalization happens to ‘true’ (name: strVarNormalized).

10. Another pattern matching, to detect a Java pattern matcher. If a ‘matcher’ is detected,

proceed according to the ‘think’ tag of the ‘template’ tag.

11. Access the pattern instance name, based on the wildcard index (index: 2) and access

the string variable name inside the matcher based on the wildcard index (index: 3).

12. Store above values in variables, to track variable names used in the matcher (names:

patternInMatcher, strInMatcher) and initialize a new variable to keep track of whether

the correct normalized string variable after normalization is used inside the matcher

(name: correctStrVarNormalized) and the current value of this is ‘false’.

13. Conditions, to compare a variable with another variable (names: patternInMatcher,

patternVar) to check whether the matcher happens based on the detected correct

‘pattern’ object. If this is a success, another variable-with-variable condition to check

whether the correct string variable after normalization is used in the matcher (names:

strInMatcher, strVarAfterNormalize).

14. If the above two conditions are successful (in step 14), a condition, to compare a static

value with a variable value (variable: strVarNormalized, value to check: true). This is

to check whether the string normalization has happened on the correct string variable.

If this condition is a success, proceed ‘think’ tag inside it as per step 15.

15. Change the variable value created to keep track of whether the correct normalized

string variable after normalization is used inside the matcher (name:

correctStrVarNormalized) to ‘true’.

64

Figure 24: Ex 2: How AIML provide facilities to create complex secure coding guidelines - part 1

1. Pattern

matching, to detect

a strig variable

2. Access value

based on wildcard

index

4. Pattern

matching, to detect

a ‘pattern’ object

creation

6. Pattern matching, to

detect a strig normalization

7. Store value based

on wildcard index

9. If matched, set

another variable

3. Store values in

variables/ define

variables to track

execution order

5. Store the ‘pattern’

object name, based on

wildcard index

8. Condition, to compare a

variable with another

variable, to check whether the

normalization is completed,

and it has happened on the

correct string variable

65

Figure 25: Ex 2: How AIML provide facilities to create complex secure coding guidelines - part 2

12. Store values in

variables, to track

variable names used in

the matcher, and

initializing a variable to

track the normalization

of the exact string

variable

13. Conditions, to compare

a variable with another

variable, and with values,

to detect whether the

correct pattern variable,

correct string variable after

normalization is used in

matcher

10. Pattern

matching, to detect

the matcher

11. Access value

based on the

wildcard index

14. Condition,

to compare a

static value

with a variable

15. Store if the correct

string is normalized

and used

17. If matched, the

final output with

getters to show the

variable names

16. Condition, to

compare a static

value with a variable

66

16. Before the output generation, another condition, to check the variable value created to

keep track of whether the pattern matcher has used normalized string variable, and

it is the correct variable after normalization (name: correctStrVarNormalized) is

‘false’. If this is a success, proceed with step 17.

17. Final step to generate the output. The output consists of secure coding guideline rule

number, description and also the variable names associated with the violation of the

specified secure coding guideline rule.

Results: Detected violation of IDS01-J. Normalize strings before validating them

Scenario 1:

The correct string variable has normalized, before the matching (variable ‘strInput’ has

normalized, and the normalization has happened before the patter matching), also the pattern

matcher has used the correct string variable name after the string normalization (still the

variable is ‘strInput):

Figure 26: Ex2: Plugin does not output anything for a correctly followed coding guideline

Results:

No output because no violations. Therefore, a true negative.

67

Scenario 2:

The correct string variable has normalized (variable ‘strInput’) also the pattern matcher has

used the correct string variable name after the string normalization (still the variable is

‘strInput). But the normalization has happened after the pattern matching:

Figure 27: Ex2: Plugin shows the defined output for a coding guideline violation

Results:

Plugin shows the defined output because of the violation. Therefore, a true positive.

Scenario 3:

The correct string variable has normalized (variable: ‘strInput’) also the normalization has

happened before the pattern matching. But the normalized value has assigned to another string

variable (variable name: ‘str1’) and the pattern matcher has used the old string variable name.

Thus, incorrect string variable has used in the pattern matcher.

68

Figure 28: Ex2: Plugin shows the defined output for a coding guideline violation

Results:

Plugin shows the defined output because of the violation. Therefore, a true positive.

4.2.3 Summary of the justification

Therefore, can conclude that the proposed secure coding guideline rule defining language can

define both package level secure coding rules and complex secure coding rules which needs

the track of the control flow of the source code.

4.3 Custom secure rule-based evaluation

4.3.1 Evaluation

Secure coding guidelines research of Dasanayake et al. (Dasanayake, et al., 2019) has support

for five package level rules, and these rules are hard coded. To demonstrate the ability of the

selected rule creation mechanism of this research methodology, selected the same set of rules

and created AIML rules as a verification. The below table includes the result outputs of the

IDE. Created AIML rules are under the section Appendix I: AIML secure coding rules created

for the evaluation

Rule

name

Displayed output for a violation

69

THI00-J

SEC01-

J

NUM1

0-J

70

SEC07-

J

FIO02-

J

Table 8: Custom secure rule based evaluation

4.3.2 Summary

The above results give an indication that, even though the set of rules is not selective to the

rule creator, features of the proposed rule creation mechanism facilitate creation of secure

coding rules. Further, can conclude that the proposed plugin-based prototype can detect the

non-biased set of rules created by the rule creator.

4.4 User based evaluation

4.4.1 Introduction

The user-based evaluation was carried out to assess the ability of knowledge sharing of the

plugin-based framework and to assess other usability aspects. The evaluation was performed

allowing a set of users to download the plugin and then giving them a questionnaire.

4.4.2 Questionnaire

The below is the set of questions and provided options added to the questionnaire to analyze

the knowledge related to the awareness of secure coding guidelines, nature of secure coding

71

guidelines followed by users, rule creation ability of the suggested method, ability to detect

violations of created rules and the overall ability of the tool in terms of knowledge sharing.

1. Are you a software developer? How do you rate yourself with respect to your

experience?

a. Not relevant

b. Undergraduate/intern

c. Beginner

d. Intermediate

e. Experienced

2. Are you aware of secure coding guidelines?

a. Yes

b. No

3. Do you follow any secure coding guidelines while coding?

a. Yes

b. No

4. What nature of the secure coding guideline do you follow?

a. No

b. Standard guideline (ex: OWASP, Oracle, SEI CERT)

c. A guideline provided by the company/ A guideline you and your team created /

Any other custom guideline.

5. Were you able to create custom secure coding guidelines for the framework?

a. Didn't try it.

b. Yes

c. No

6. Did you encounter any issues while creating rules? If yes, kindly give a brief

description.

7. Did you try your created rules, with example violations?

a. Yes

b. No

8. Did the plugin detect violations correctly?

a. Yes

b. No

c. Not relevant

9. How do you rate this plugin in terms of Accuracy? (Whether mentioned violations

72

were detected)

a. Poor

b. Fair

c. Good

d. Excellent

10. How do you rate this plugin as a knowledge sharing tool? (Your team/organization can

distribute a set of custom secure coding guidelines using this, therefore everyone in it

can use that)

a. Poor

b. Fair

c. Good

d. Excellent

4.4.3 Analysis of results

Based on the feedback from several users, can see that a considerable number of developers

are not following a secure coding guideline, even though they are aware of guidelines.

Further, the analysis shows that most of the developers who follow a guideline follow a

custom guideline, and not a standard one. Below are the overall results of the user-based

evaluation, and this shows the plugin can create and detect custom secure coding guidelines,

and this can act as a knowledge sharing tool.

Figure 29: Responses for questionnaire: question 1

73

Figure 30: Responses for questionnaire: question 2

Figure 31: Responses for questionnaire: question 3

Figure 32: Responses for questionnaire: question 4

74

Figure 33: Responses for questionnaire: question 5

Figure 34: Responses for questionnaire: question 7

Figure 35: Responses for questionnaire: question 8

75

Figure 36: Responses for questionnaire: question 9

Figure 37: Responses for questionnaire: question 10

4.4.4 Conclusion

From the above user-based evaluation, it can be concluded that the overall usability aspects of

the proposed system are good and can this kind of tool can act as a knowledge sharing

medium.

4.5 Summary

This chapter focused on the evaluation of the proposed research methodology, along with the

implemented prototype. The Justification section proves that the proposed rule creation

mechanism can be used to create package-level and other complex secure coding guidelines

which needs the track of the code execution order. Custom rule-based evaluation seconds this.

Further, overall user-based evaluation also concludes that.

76

CHAPTER 5

CONCLUSION

As described in the chapter 1, this research work concerns the problem of available on-the-fly

detection supporting systems do not support creating complex custom rules which need the

tracking of the control flow of the code and available on-the-fly detection supporting systems

do not support creating custom rules for package level secure coding guideline violations

(Gasiba, et al., 2021) (Cremer, et al., 2020) (Dasanayake, et al., 2019) and no proper

mechanism to convert user-dependent complex or package level rules into algorithms

(Cremer, et al., 2020) (Dasanayake, et al., 2019) in existing research studies. We have

proposed a new AIML based solution to resolve the above issues. As a prototype, this solution

is implemented as a plugin, and it can be used offline once the user has the plugin installed.

Evaluation and results chapter concludes that the proposed AIML based secure coding

guideline rule defining language can define both package level secure coding rules and

complex secure coding rules which needs the track of the execution order of the source code.

However, there are a few areas a future researcher may focus on. Firstly, AIML variable

names are global. Therefore, if you accidentally use the same variable name for more than one

rule, this will give you an incorrect validation output. Further, when the complexity of the rule

becomes higher and when the number of steps of the code execution order becomes higher,

the AIML rule gets complex. Therefore, future work may focus on a method to easy

generation of rules, instead of writing in pure AIML. Furthermore, may focus on extending

interpreter with XML new tags to support custom tags along with AIML tags.

I

APPENDICES

Appendix A: Source codes of this research study

I. Source code of the framework:

https://github.com/ThilankaBowala/SecureCodingGuideline

II. Source code of the test project: https://github.com/ThilankaBowala/HelloWorld

III. JetBrains marketplace link: https://plugins.jetbrains.com/plugin/23904-

securecodingguideline

Appendix B: Available GitHub repositories of AIML interpreters

Below are the currently available AIML interpreters written in java, developers have

developed over past years for chatbots:

1. https://github.com/AIMLang/aiml-java-interpreter/tree/master

2. https://github.com/deepsarda/Aeona-Aiml/tree/main

3. https://github.com/karrarkazuya/aiml-java-interpreter/tree/master

Appendix C: Source codes and available plugins of previous research

studies

I. Framework for secure coding (Dasanayake, et al., 2019)

a. Idea plugin url:

https://plugins.jetbrains.com/plugin/11265-framework-for-secure-coding

b. Source code url:

https://bitbucket.org/lasithd2/seproject_framework_for_secure_coding/src/master/

II. Sensei (Cremer, et al., 2020)

a. Documentation: https://docs.sensei.securecodewarrior.com/intro.html

Appendix D: JetBrains official plugin development template and official

documentation

I. Official plugin template repository of JetBrains: https://github.com/JetBrains/intellij-

platform-plugin-template

II. Official documentation: https://plugins.jetbrains.com/docs/intellij/welcome.html

https://github.com/ThilankaBowala/SecureCodingGuideline
https://github.com/ThilankaBowala/HelloWorld
https://plugins.jetbrains.com/plugin/23904-securecodingguideline
https://plugins.jetbrains.com/plugin/23904-securecodingguideline
https://github.com/AIMLang/aiml-java-interpreter/tree/master
https://github.com/deepsarda/Aeona-Aiml/tree/main
https://github.com/karrarkazuya/aiml-java-interpreter/tree/master
https://plugins.jetbrains.com/plugin/11265-framework-for-secure-coding
https://bitbucket.org/lasithd2/seproject_framework_for_secure_coding/src/master/
https://docs.sensei.securecodewarrior.com/intro.html
https://github.com/JetBrains/intellij-platform-plugin-template
https://github.com/JetBrains/intellij-platform-plugin-template
https://plugins.jetbrains.com/docs/intellij/welcome.html

II

Appendix E: Available Commercial Static Analysis Tools

During the phase of literature review, studied available static analysis tools in the domain and

available research studies to identify available gaps in the domain. But to refrain from

changing the focus, added only a summary of available static analysis tools under CHAPTER

2

LITERATURE REVIEW, and added a descriptive version here.

1. SpotBugs

SpotBugs is a tool that uses the concept of “bug patterns” to detect bugs in Java (spobugs,

2016-2022). It can be considered as the successor of FindBugs tool (Lenarduzzi, et al., 2023)

(Dasanayake, et al., 2019). SpotBugs is a lightweight open-source analysis tool capable of

finding a wide range of software bugs, including a number of security bugs. The tool supports

more than 400 “bug patterns” with reference to the Open Web Application Security Project

(OWASP) Top 10 and Common Weakness Enumeration (CWE) (Dasanayake, et al., 2019).

This tool does not suggest any remediation but provides links to relevant Wikipedia articles

(Cremer, et al., 2020).

SpotBugs allows the creation of third-party "detectors" to detect additional security bugs.

These must be implemented through an API and then have to be compiled into a SpotBugs

plugin, which is not that convenient (Cremer, et al., 2020). FindSecBugs is a popular security

plugin for SpotBugs.

Despite its IDE integration, it is mostly used to scan after development due to its long scan

times, which can take up to 20 minutes (Cremer, et al., 2020). Thus, in practice, this tool is

integrated at later parts of the SDLC, which is again not that convenient.

III

Figure 38: Detection of bugs using SpotBugs plugin (Dasanayake, et al., 2019)

2. SonarQube

SonarQube is a tool in Sonar family. To help perform continuous code inspections of the

projects, the tool integrates into existing workflow and detects issues in code. The tool

analyses 30+ different programming languages (SonarQube, 2008-2022). Anyway, the

outcome of this analysis is reports of code quality measures and issues (instances where

‘coding rules’ were broken). Yet, what gets analyzed varies depending on the language. For

certain languages, a static analysis should be performed on compiled code. (SonarQube, 2008-

2022)

Figure 39: OWASP / CWE security reports by SonarQube (SonarQube, 2008-2022)

Only files that are recognized by that specific edition of the tool are loaded into the project

during analysis. Developer Edition can analyze branches of the project and pull requests.

(SonarQube, 2008-2022)

During analysis, the files provided to the analysis are analyzed, and then the resulting data is

sent back as a report, at the end. Then the report is analyzed asynchronously in server-side.

(SonarQube, 2008-2022) Tool provides dedicated reports to track Code Security against

OWASP Top 10 and CWE Top 25.

To generate issues, SonarQube executes rules on source code. SonarQube LTS 6.7.7 detects a

total of 413 rules which are grouped based on type and severity (Lenarduzzi, et al., 2023).

There are four types of rules:

IV

• Code Smell (Maintainability domain)

• Bug (Reliability domain)

• Vulnerability (Security domain)

• Security Hotspot (Security domain)

In the Rules page the user can discover all the existing rules or can create new rules based on

provided templates. (Anon., 2008-2022)

Figure 40: SonarQube – Rule template (Anon., 2008-2022)

V

Figure 41: SonarQube - Creating a custom rule using the existing template, by editing the template (Anon.,

2008-2022)

3. SonarLint

SonarLint is another tool recently introduced to the Sonar family. With this, Sonar family has

3 main tools namely SonarLint, SonarCloud, and SonarQube (SonarSource, 2008-2022).

SonarLint exists as plugins for currently existing major IDEs namely Eclipse, IntelliJ IDEA,

Microsoft Visual Studio, VS code and Atom (Anon., 2008-2022) (SonarSource, 2008-2022) It

provides on the fly detection of source code quality issues. These issues have been classified

into 3 categories as Vulnerabilities, Bugs and Code smells.

SonarLint comprises of several major features such as detecting common mistakes, tricky

bugs and known vulnerabilities, offers on the fly instant feedback when the bugs are detected,

gives guidance on countermeasures for such bugs, uncovering old issues, provides

descriptions for errors that have arose in the source code, etc (Dasanayake, et al., 2019). But

the on-the-fly feedback gives only after the Java class is saved and not while the user types

the code in the IDE (Dasanayake, et al., 2019). Same as SpotBugs, SonarLint also incapable

of detecting ‘secure coding rule violations’ (Dasanayake, et al., 2019) and thus cannot be

considered as a solution for adhere SCG.

VI

Figure 42: Detection of a code quality issue using the sonarLint plugin (Dasanayake, et al., 2019)

4. Fortify Static Code Analyzer (FSCA)

Fortify Micro Focus Fortify is an ecosystem that embeds application security testing into all

stages of the development chain. It has several tools. Some of the tools related to this area are:

Fortify Static Code Analyzer (FSCA), Fortify on Demand (FOD), and Fortify Security

Assistant (FSA) (Cremer, et al., 2020).

FSCA performs static code analysis on the source code. It can be built into continuous

integration and continuous delivery (CI/CD) tools. It supports 25 programming languages.

But scanning takes several minutes. The results can be shown in a web interface or in

integrations with many tools like bug tracking systems, ticketing systems, and code

repositories (Cremer, et al., 2020).

FSCA supports over 1000 vulnerability categories and more than one million APIs. Rule

creation should do using their custom Extensible Markup Language (XML) format in a text

editor (Cremer, et al., 2020). This requires learning their syntax.

FOD provides similar features to FSCA. But it provides through a web portal (Cremer, et al.,

2020).

FSA is a plugin for the IDE. The scan takes several minutes. Thus, during the scan, developer

cannot make any code changes (Cremer, et al., 2020). Thus, any of this cannot be taken as a

real time solution for adhering secure coding guidelines.

5. Tricorder

This is a program analysis platform integrated into the workflow of developers at Google

VII

(Sadowski, et al., 2015). They support enhancing existing analysis. However, instead of a rule

editor, rules must be written using programming languages. The results of this analyzer are

shown in a review tool. (Cremer, et al., 2020)

6. Veracode

Veracode has two tools, named Veracode Static Analysis (VSA) and Veracode Greenlight

(VG). VSA is a SaaS platform and VG is an IDE plugin. VSA performs static analysis scans

on compiled bytecode. This results in analyzing frameworks and libraries used in the project

as well. VSA provides integration with some tools and three main IDE namely IntelliJ, Visual

Studio, and Eclipse. The tool provides facilities to scan the code and download the results.

Scans will take up to an hour. They provide guiding remediation by providing consultation.

The consultant gives advice to the developer on whether the identified issue is a false positive

or not. This can take up to three days (Cremer, et al., 2020). This means the feedback cycle is

longer than other tools. Thus, this concludes that the tool cannot be taken as a solution for a

real-time system. Further, the tool does not support custom rule generations (Cremer, et al.,

2020).

7. Checkmarx Static Application Security Testing (CxSAST)

This tool supports a large variety of languages. This also has IDE plugins for Eclipse, Visual

Studio, and IntelliJ. Plugins do not perform any local scans. It only allows uploading the

source code to CxSAST and then providing the scan results in an interactive way with the

IDE.

The tool provides support for extending rules through its extensive Query Language called

CxQL (Checkmarx, n.d.). The rule writing tool is independent of the IDE and the scanning

tool. Thus, requires long iterations to optimize created rules (Cremer, et al., 2020). Thus, can

conclude that their rule-writing technique provides less support for new rules (Concea-

Prisăcaru, et al., 2023).

8. Snyk

This is a tool designed to monitor and fix insecure dependencies (Cremer, et al., 2020).

Though the tool will not look for vulnerabilities, it will mark dependencies with known

vulnerabilities. Thus, this doesn’t cover secure coding guidelines.

VIII

9. The OWASP ASIDE/ESIDE

This project consists of two branches. The Application Security IDE (ASIDE) branch focuses

on detecting software vulnerabilities. ESIDE branch focuses on helping fresh developers in

acquiring secure programming knowledge and practices. Though ASIDE performs fast coding

scans in Eclipse, the scans need to be started manually (Cremer, et al., 2020). Thus, can

conclude that this tool cannot take as a real-time solution.

Appendix F: Taxonomy of Rule comparison/vulnerability verification

methods

Rule verification

mechanism

Related work Limitations / Conclusions

AST with

provided limited

algorithms

Framework for Secure

Coding: An algorithmic

approach for real-time

detection of secure coding

guideline violations

− They have used Javaparser as the

parser and Abstract Syntax Tree (AST)

of the code after parsing.

IDE syntax

checking

features, with

analysis

techniques (taint

analysis, data

flow analysis,

and control flow

analysis)

Sensei - 2nd stage − To check the rules, their tool reuses the

IDE syntax checking features. When a

developer writes new code, the IDE

rebuilds the Abstract Syntax Tree (AST)

and computes the changes compared to

the previous version.

− A limited AST of the changes,

containing the necessary symbol

information, is then passed on,

allowing tools to only analyze the

changes.

− On this AST a combination of

specialized light-weight versions of

existing analysis techniques are used

such as taint analysis, data flow

analysis, and control flow analysis to

verify the rules in real time.

IX

Table 9: Rule comparison/verification methods

Appendix G: Method, class, and package level secure coding guidelines:

examples

1. Method level secure coding guidelines example

Consider the below example, from the SEI CERT guidelines.

NUM09-J. Do not use floating-point variables as loop counters.

Description: Floating-point variables must not be used as loop counters (Carnegie Mellon

University - Software Engineering Institute, 2018).

Noncompliant Code Example:

This noncompliant code example uses a floating-point variable as a loop counter. The decimal

number 0.1 cannot be precisely represented as a float or even as a double (Carnegie Mellon

University - Software Engineering Institute, 2018).

Figure 43: NUM09-J: Noncompliant Code Example

Compliant Solution:

This compliant solution uses an integer loop counter from which the desired floating-point

value is derived (Carnegie Mellon University - Software Engineering Institute, 2018):

Figure 44: NUM09-J: Compliant Solution

2. Class level secure coding guidelines example

Consider the below example, from the SEI CERT guidelines.

X

NUM03-J. Use integer types that can fully represent the possible range of unsigned data:

Description: The only unsigned primitive integer type in Java is the 16-bit char data type; all

of the other primitive integer types are signed. To interoperate with native languages, such as

C or C++, that use unsigned types extensively, any unsigned values must be read and stored

into a Java integer type that can fully represent the possible range of the unsigned data. For

example, the Java long type can be used to represent all possible unsigned 32-bit integer

values obtained from native code (Carnegie Mellon University - Software Engineering

Institute, 2018).

Noncompliant Code Example:

This noncompliant code example uses a generic method for reading integer data without

considering the signedness of the source. It assumes that the data read is always signed and

treats the most significant bit as the sign bit. When the data read is unsigned, the actual sign

and magnitude of the values may be misinterpreted. (Carnegie Mellon University - Software

Engineering Institute, 2018).

Figure 45: NUM03-J: Noncompliant Code Example

Compliant Solution:

This compliant solution requires that the values read are 32-bit unsigned integers. It reads an

unsigned integer value using the readInt() method. The readInt() method assumes signed

values and returns a signed int; the return value is converted to a long with sign extension.

(Carnegie Mellon University - Software Engineering Institute, 2018):

Figure 46: NUM03-J: Compliant Solution

3. Package level secure coding guidelines example

Consider the below example, from the SEI CERT guidelines.

THI00-J. Do not invoke Thread.run()

Description: Thread startup can be misleading because the code can appear to be performing

XI

its function correctly when it is actually being executed by the wrong thread. Invoking the

Thread.start() method instructs the Java runtime to start executing the thread's run() method

using the started thread. Invoking a Thread object's run() method directly is incorrect. When a

Thread object's run() method is invoked directly, the statements in the run() method are

executed by the current thread rather than by the newly created thread. Furthermore, if the

Thread object was constructed by instantiating a subclass of Thread that fails to override the

run() method rather than constructed from a Runnable object, any calls to the subclass's run()

method would invoke Thread.run(), which does nothing. Consequently, programs must not

directly invoke a Thread object's run() method. (Carnegie Mellon University - Software

Engineering Institute, 2018).

Noncompliant Code Example:

This noncompliant code example explicitly invokes run() in the context of the current thread

(Carnegie Mellon University - Software Engineering Institute, 2018):

Figure 47: THI00-J: Noncompliant Code Example

Compliant Solution:

This compliant solution correctly uses the start() method to tell the Java runtime to start a new

thread (Carnegie Mellon University - Software Engineering Institute, 2018):

Figure 48: THI00-J: Compliant Solution

XII

Appendix H: Classification of secure coding rules

Based on the literature, the secure coding rules of each main category have been classified as

follows, for the ‘level’ of the secure coding rule (Dasanayake, et al., 2019).

Main Category Sub category Level

Input validation and Data

Sanitization (IDS)

Declarations and Initialization

(DCL)

Expression (EXP)

Numeric Types and Operations

(NUM)

IDS01-J

IDS03-J

IDS04-J

IDS06-J

IDS07-J

IDS08-J

IDS11-J

DCL00-J

DCL01-J

DCL02-J

EXP00-J

EXP02-J

EXP04-J

EXP05-J

NUM01-J

NUM02-J

NUM03-J

NUM04-J

NUM07-J

NUM09-J

NUM10-J

NUM12-J

Package

Package

Package

Method

Method

Method

Method

Class

Package

Package

Method

Method

Package

Class

Method

Method

Class

Method

Method

Method

Package

Method

XIII

Characters and Strings (STR)

Object Orientation (OBJ)

NUM14-J

STR00-J

STR01-J

STR02-J

STR03-J

STR04-J

OBJ01-J

OBJ02-J

OBJ04-J

OBJ05-J

OBJ07-J

OBJ08-J

OBJ09-J

OBJ10-J

Method

Method

Method

Method

Method/ Package

Method

Class

Package

Class

Class

Package

Package

Class

Class

Methods (MET)

MET00-J

MET01-J

MET02-J

MET03-J

MET04-J

MET05-J

MET06-J

MET07-J

MET08-J

MET09-J

MET10-J

MET12-J

Method

Method

Package

Class

Package

Package

Package

Package

Class

Class

Package

Package

XIV

Exceptional Behavior (ERR)

Visibility and Atomicity (VNA)

Locking (LCK)

Thread APIs (THI)

Thread Pools (TPS)

ERR00-J

ERR01-J

ERR02-J

ERR03-J

ERR04-J

ERR05-J

ERR07-J

ERR09-J

VNA00-J

VNA02-J

VNA05-J

LCK00-J

LCK01-J

LCK02-J

LCK03-J

LCK04-J

LCK05-J

LCK08-J

THI00-J

THI03-J

THI05-J

TPS00-J

TPS01-J

Method / Package

Package

Method

Method

Method

Method

Method

Method

Class

Class

Class

Class

Class

Package

Package

Class

Class

Class

Package

Class or Package

Package

Class

Package
Thread-Safety Miscellaneous

(TSM)

TSM01-J

TSM02-J

TSM03-J

Method, class

Method

Method

XV

Input Output (FIO)

Serialization (SER)

Platform Security (SEC)

Runtime Environment (ENV)

FIO00-J

FIO01-J

FIO02-J

FIO03-J

FIO04-J

FIO05-J

FIO06-J

FIO07-J

FIO08-J

FIO09-J

FIO10-J

SER00-J

SER01-J

SER02-J

SER03-J

SER04-J

SER05-J

SER09-J

SEC02-J

SEC04-J

SEC06-J

SEC07-J

ENV02-J

ENV03-J

Method

Package

Package

Package

Package

Package

Package

Method

Package

Package

Package

Package

Package

Package

Package

Method

Package

Package

Package

Method

Package

Package

Method

Method

XVI

Appendix I: AIML secure coding rules created for the evaluation

The below SEI CERT secure coding rules are created for evaluation purposes (Carnegie

Mellon University - Software Engineering Institute, 2018).

1. THI00-J: Do not invoke Thread.run()

Figure 49: AIML example rule 1

XVII

2. SEC01-J: Do not allow tainted variables in privileged blocks

Figure 50: AIML example rule 2

XVIII

3. NUM10-J: Do not construct BigDecimal objects from floating-point

literals

Figure 51: AIML example rule 3

4. SEC07-J: Call the superclass's getPermissions() method when writing a

custom class loader

XIX

Figure 52: AIML example rule 4

5. FIO02-J: Detect and handle file-related errors

XX

Figure 53: AIML example rule 5

XXI

REFERENCES

[1]. The OWASP Foundation, 2017. OWASP Top Ten. [Online]

Available at: https://owasp.org/www-pdf-archive/OWASP_Top_10-

2017_%28en%29.pdf.pdf

[Accessed 23 09 2021].

[2]. Abeyrathna, A. et al., 2020. A security specific knowledge modelling approach for

secure software engineering. Journal of the National Science Foundation of Sri Lanka,

48(1), pp. 93-98.

[3]. Ahmed, I. & Singh, S., 2015. AIML Based Voice Enabled Artificial Intelligent

Chatterbot. IJUNESST, 28 02, Volume 8, pp. 375-384.

[4]. AIML Foundation, 2018. AIML Docs. [Online]

Available at: http://www.aiml.foundation/doc.html

[Accessed 11 11 2023].

[5]. Alenezi, M. & Almuairfi, S., 2019. Security Risks in the Software Development

Lifecycle. International Journal of Recent Technology and Engineering (IJRTE), 8(3),

pp. 7048-7055.

[6]. Alwan, A. & Andersson, J., 2022. Secure Application Development. s.l.:s.n.

[7]. Anon., 2008-2022. SonarQube docs 9.6 - Rules. [Online]

Available at: https://docs.sonarqube.org/latest/user-guide/rules/

[Accessed 8 9 2022].

[8]. Anon., 2011. Google Code Archive - Free A.L.I.C.E. AIML Set. [Online]

Available at: https://code.google.com/archive/p/aiml-en-us-foundation-alice/

[Accessed 14 11 2022].

[9]. Armerding, T., 2021. What is the cost of poor software quality in the U.S.?, s.l.:

Synopsis.

[10]. Barnisin, M., 2022. AIML 2.1 Chatbot Design Language Interpreter in Python.

Brno, Spring: Department of Machine Learning and Data Processing - Faculty Of

Informatics - Masaryk University.

XXII

[11]. Barnišin, M., 2022. pyaiml21 documentation. [Online]

Available at: https://pyaiml21.readthedocs.io/en/latest/

[Accessed 12 11 2023].

[12]. batiaev, 2019. AIMLang - aiml-java-interpreter. [Online]

Available at: https://github.com/AIMLang/aiml-java-

interpreter/blob/master/core/src/main/java/org/aimlang/core/consts/WildCard.java

[Accessed 28 01 2024].

[13]. Baxter, I. D. et al., 1998. Clone detection using abstract syntax trees.

Bethesda, Mayland, IEEE Computer Society, pp. 368-377.

[14]. Ben-Kiki, O., Evans, C. & Ingerson, B., 2005. YAML Ain’t Markup Language

(YAML™) Version 1.1. 18 1.

[15]. Ben-Kiki, O., Evans, C. & Net, I. d., 2009. YAML Ain’t Markup Language

(YAML™). [Online]

Available at: https://www.earthdata.nasa.gov/s3fs-

public/imported/YAML%201.2%20Spec.pdf

[Accessed 20 10 2022].

[16]. Carnegie Mellon University - Software Engineering Institute, 2018. SEI CERT

Oracle Coding Standard for Java. [Online]

Available at:

https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standar

d+for+Java

[Accessed 04 05 2022].

[17]. Carnegie Mellon University - Software Engineering Institute, 2023. IDS01-J.

Normalize strings before validating them. [Online]

Available at: https://wiki.sei.cmu.edu/confluence/display/java/IDS01-

J.+Normalize+strings+before+validating+them

[Accessed 09 02 2024].

[18]. Checkmarx, n.d. Attachments. [Online]

Available at:

https://checkmarx.atlassian.net/wiki/pages/viewpageattachments.action?pageId=54067

33

[Accessed 13 10 2022].

XXIII

[19]. Chiu, T., 2020. How to Find Additional Hidden Vulnerabilities During DAST

Testing. [Online]

Available at: https://www.k2io.com/how-to-find-additional-hidden-vulnerabilities-

during-dast-testing/

[Accessed 5 5 2022].

[20]. Concea-Prisăcaru, A.-I., Nițescu, T.-A. & Sgârciu, V., 2023. SDLC and the

importance of software security. U.P.B. Sci. Bull., Series C, 85(1), pp. 117-130.

[21]. Cremer, P. D., Desmet, N., Madou, M. & Sutter, B. D., 2020. Sensei:

Enforcing Secure Coding Guidelines in the IDE. Software: Practice and Experience,

50(9), p. 1682–1718.

[22]. Dagiene, V., Gudoniene, D. & Burbaite, R., 2015. Semantic Web Technologies

for e-Learning: Models and Implementation. Informatica (Netherlands), 26(2), pp.

221-240.

[23]. Dasanayake, S. L., Mudalige, A. & Perera, M. L. T., 2019. Framework for

Secure Coding: An algorithmic approach for real-time detection of secure coding

guideline violations, Colombo: University of Colombo School of Computing.

[24]. Dawson, M., Burrell, D. N., Rahim, E. & Brewster, S., 2010. Integrating

software assurance into the software development life cycle (SDLC). Journal of

information systems technology & planning, 3(6), pp. 49-53.

[25]. ENISA - European Union Agency for Cybersecurity, 2018. ENISA - European

Union Agency for Cybersecurity. [Online]

Available at: https://www.enisa.europa.eu/publications/info-notes/is-software-more-

vulnerable-today

[Accessed 5 May 2022].

[26]. Eriksson, M. & Hallberg, V., 2011. School of Computer Science and

Engineering - Royal Institute of Technology. [Online]

Available at:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=636a2b04d98c0af8

e9d6f59148352dd63af4f0c1

[Accessed 8 11 2023].

[27]. Fernandez, E. B. & Mujica, S., 2011. Model-based development of security

requirements. CLEI Electronic Journal - On-line ISSN 0717-5000, 14(3).

XXIV

[28]. Gasiba, T. E., Lechner, U., Pinto-Albuquerque, M. & Fernandez, D. M., 2021.

Awareness of Secure Coding Guidelines in the Industry - A first data analysis. arXiv,

6 1.1(2101.02085).

[29]. Gasiba, T. E., Lechner, U., Pinto-Albuquerque, M. & Mendez, D., 2021. Is

Secure Coding Education in the Industry Needed? An Investigation Through a Large

Scale Survey. s.l., Software Engineering Education and Training (ICSE-SEET).

[30]. Gedeon, T. et al., 2019. Code Summarization with Abstract Syntax Tree.

Neural Information Processing, Volume 1143, pp. 652-660.

[31]. GitLab, 2019. 2019 Global Developer Report: DevSecOps finds security

roadblocks divide teams. [Online]

Available at: https://about.gitlab.com/blog/2019/07/15/global-developer-report/

[Accessed 12 10 2022].

[32]. Goldstein, A., 2021. All About WhiteSource’s 2021 Open Source Security

Vulnerabilities Report. [Online]

Available at: https://www.whitesourcesoftware.com/resources/blog/2021-state-of-

open-source-security-vulnerabilities-cheat-sheet/#

[Accessed 5 May 2022].

[33]. Google, 2013. Google Code Archive - Program AB. [Online]

Available at: https://code.google.com/archive/p/program-ab/

[Accessed 14 11 2022].

[34]. Google, 2014. Google Code Archive - ALICE 2.0. [Online]

Available at: https://code.google.com/archive/p/aiml-en-us-foundation-alice2/

[Accessed 14 11 2022].

[35]. Hanif, H. & Maffeis, S., 2022-07. VulBERTa: Simplified Source Code Pre-

Training for Vulnerability Detection. s.l., IEEE, pp. 1-8.

[36]. Humayun, M., Jhanjhi, N., Almufareh, M. F. & Khalil, M. I., 2022. Security

Threat and Vulnerability Assessment and Measurement in Secure Software

Development. Computers, Materials & Continua, 71(3), pp. 5039-5059.

[37]. Jacob, J., 2006. A Rule Markup Language and Its Application to UML. Berlin,

Heidelberg, Springer, pp. 26-41.

XXV

[38]. Jacob, J. F., 2008. Chapter 2 - RML and its application to UML. In: Domain

specific modeling and analysis. s.l.:s.n., pp. 23-40.

[39]. Khakpour, N. et al., 2018. Synthesis of a Permissive Security Monitor. Cham,

Springer International Publishing, p. 48–65.

[40]. Khan, R. . A., Khan, S. U., Khan, H. U. & Ilyas, M., 2022. Systematic

Literature Review on Security Risks and Its Practices in Secure Software

Development. IEEE Access, 14 January, Volume 10, pp. 5456-5481.

[41]. Khin, N. N. & Soe, K. M., 2020 February. University Chatbot using Artificial

Intelligence Markup Language. Yangon, Myanmar, IEEE, pp. 1-5.

[42]. Khin, N. N. & Soe, K. M., 2020. University Chatbot using Artificial

Intelligence Markup Language. 2020 IEEE Conference on Computer Applications,

ICCA 2020, 27-28 February.

[43]. Lenarduzzi, V. et al., 2023. A critical comparison on six static analysis tools:

Detection, agreement, and precision. Journal of Systems and Software, April.Volume

198.

[44]. Lipner, S., 2014. The trustworthy computing security development lifecycle.

Annual Computer Security Applications Conference, ACSAC, pp. 2-13.

[45]. Lomio, F. et al., 2022. Just-in-time software vulnerability detection: Are we

there yet?. Journal of Systems and Software, 01 06, Volume 188, p. 111283.

[46]. Malvisi, F., 2014. Development of a Framework for AIML Chatbots inHTML5

and Javascript. s.l.:s.n.

[47]. Marietto, M. d. G. B. et al., 2013. Artificial Intelligence MArkup Language: A

Brief Tutorial. [Online]

Available at: http://arxiv.org/abs/1307.3091

[Accessed 21 10 2022].

[48]. McGhee, E., Krobatsch, T. & Milton, S., July 2022. NetInfra - A Framework

for Expressing Network Infrastructure as Code. Boston, MA, USA, ACM Digital

Library, pp. 1-7.

XXVI

[49]. McGraw, G., 2005. Chapter 1. Defining a Discipline. In: G. McGraw, ed.

Software Security - Building security in.. Cambridge, MA: Addison-Wesley

Professional, pp. 24-58.

[50]. McGraw, G., 2005. Chapter 12. A Taxonomy of Coding Errors. In: G.

McGraw, ed. Software Security - Building security in. Cambridge, MA: Addison-

Wesley Professional, pp. 273 - 295.

[51]. McGraw, G., 2005. Chapter 3. Introduction to Software Security. In: G.

McGraw, ed. Software Security - Building security in. Cambridge, MA: Addison-

Wesley Professional, pp. 100-118.

[52]. McGraw, G., 2005. Chapter 6. Software Penetration Testing. In: G. McGraw,

ed. Software Security - Building security in. Cambridge, MA: Addison-Wesley

Professional, pp. 180-192.

[53]. McGuire, M., 2022. What is the cost of poor software quality in the U.S.?.

[Online]

Available at: https://www.synopsys.com/blogs/software-security/poor-software-

quality-costs-us/

[Accessed 28 02 2023].

[54]. Mehla, S. & Jain, S., 2019. Rule Languages for the Semantic Web. Singapore,

Springer, pp. 825-834.

[55]. Microsoft, 2024. Security Engineering. [Online]

Available at: https://www.microsoft.com/en-us/securityengineering/sdl/about

[Accessed 04 03 2024].

[56]. Neamtiu, I., Foster, J. S. & Hicks, M., 2005. Understanding Source Code

Evolution Using Abstract Syntax Tree Matching. 17 May.

[57]. Ochodek, M. et al., 2020. Recognizing lines of code violating company-

specific coding guidelines using machine learning. Empirical Software Engineering,

01 01, 25(1), pp. 220-265.

[58]. ORACLE, 2023. Secure Coding Guidelines for Java SE. [Online]

Available at: https://www.oracle.com/java/technologies/javase/seccodeguide.html

[Accessed 03 03 2024].

XXVII

[59]. OWASP, 2010. Secure Coding Guidelines. [Online]

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://owasp.org/www-pdf-

archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf

[Accessed 03 03 2024].

[60]. Petrosyan, A., 2023. Common IT vulnerabilities and exposures worldwide

2009-2023, s.l.: Statista.

[61]. Rasheed, S., Dietr, J. & Tahir, A., 2019. Laughter in the Wild: A Study into

DoS Vulnerabilities in YAML Libraries. s.l., IEEE, pp. 342-349.

[62]. RuleML, 2023. RuleML. [Online]

Available at: https://www.ruleml.org/

[Accessed 23 02 2024].

[63]. Sadowski, C. et al., 2015. Tricorder: Building a Program Analysis Ecosystem.

s.l., s.n.

[64]. Satu, M. S., Parvez, M. H. & Shamim-Al-Mamun, 2015. Review of integrated

applications with AIML based chatbot. s.l., IEEE Xplore, pp. 87-90.

[65]. Secure Code Warrior, 2000-2022. Sensei by Secure Code Warrior - IDE

plugin. [Online]

Available at: https://plugins.jetbrains.com/plugin/14015-sensei-by-secure-code-

warrior-/

[Accessed 14 10 2022].

[66]. Secure Code Warrior, 2019-2021. Targets. [Online]

Available at: https://docs.sensei.securecodewarrior.com/ref/targets.html

[Accessed 21 02 2024].

[67]. Shippey, T. J., 2015. Exploiting Abstract Syntax Trees To Locate Software

Defects. 7 May.

[68]. Siavvas, M., Gelenbe, E., Kehagias, D. & Kehagias, D., 2018. Static Analysis-

Based Approaches for Secure Software Development. s.l., Springer, Cham, pp. 142 -

157.

XXVIII

[69]. Silva, D. & Mendonça, D., 2021. SCPL: A Markup Language for Source Code

Patterns Localization. New York, NY, USA, Association for Computing Machinery,

p. 127–132.

[70]. Software Assurance Forum for Excellence in Code (SAFECode), 2018.

Fundamental Practices for Secure Software Development: Essential Elements of a

Secure Development Lifecycle Program Third Edition Fundamental Practices for

Secure Software Development, s.l.: Software Assurance Forum for Excellence in Code

(SAFECode).

[71]. SonarQube, 2008-2022. Code Security,. [Online]

Available at: https://www.sonarqube.org/features/security/

[Accessed 8 9 2022].

[72]. SonarQube, 2008-2022. SonarQube docs 9.6 - Analyzing source code -

overview. [Online]

Available at: https://docs.sonarqube.org/latest/analysis/overview/

[Accessed 8 9 2022].

[73]. SonarQube, 2008-2022. SonarQube docs 9.6 Language overview. [Online]

Available at: https://docs.sonarqube.org/latest/analysis/languages/overview/

[Accessed 8 September 2022].

[74]. SonarSource, 2008-2022. SonarLint - What's new. [Online]

Available at: https://www.sonarsource.com/products/sonarlint/whats-new/

[Accessed 13 10 2022].

[75]. SonarSource, 2008-2022. SonarSource static code analysis. [Online]

Available at: https://rules.sonarsource.com/

[Accessed 13 10 2022].

[76]. spobugs, 2016-2022. spotbugs documentation - Introduction. [Online]

Available at: https://spotbugs.readthedocs.io/en/stable/introduction.html

[Accessed 12 10 2022].

[77]. Stefanovska, Z., Jakimoski, K. & Stefanovski, W., 2022. Optimization of

Secure Coding Practices in SDLC as Part of Cybersecurity Framework. Journal of

Computer Science Research, 01 04, Volume 4, pp. 31-41.

XXIX

[78]. Sterling, K., 2021. Program-Y. [Online]

Available at: https://github.com/keiffster/program-y/wiki/

[Accessed 12 11 2023].

[79]. Synopsys Editorial Team, 2020. What is the secure software development life

cycle (SDLC)? | Synopsys. [Online]

Available at: https://www.synopsys.com/blogs/software-security/secure-sdlc/

[Accessed 29 04 2022].

[80]. Synopsys, 2019. Eclipse IDE for Java. [Online]

Available at: https://www.openhub.net/p/eclipse/analyses/latest/languages_summary

[Accessed 24 9 2021].

[81]. synopsys, 2019. Secure Coding Guidelines. [Online]

Available at: https://www.synopsys.com/content/dam/synopsys/sig-

assets/datasheets/secure-coding-guidelines-datasheet.pdf

[Accessed 14 January 2022].

[82]. Synopsys, 2022. [Analyst Report] 2022 The Cost of Poor Quality Software.

[Online]

Available at: https://www.synopsys.com/software-integrity/resources/analyst-

reports/cost-poor-quality-software.html

[Accessed 03 09 2023].

[83]. Synopsys, 2023. Open Source Security and Risk Analysis 2023. Open Source

Security and Risk Analysis report, April.

[84]. Tantithamthavorn, C., Ihara, A., Hata, H. & Matsumoto, K., 2014. Impact

Analysis of Granularity Levels on Feature Location Technique. In: D. Z. a. Z. Jin, ed.

Requirements Engineering. New York: Springer-Verlag, pp. 135-149.

[85]. Tantithamthavorn, C., Ihara, A., Hata, H. & Matsumoto, K., 2014. Impact

Analysis of Granularity Levels on Feature Location Technique. Berlin, Heidelberg,

Springer, pp. 135-149.

[86]. Tricentis, 2017. The Software Fail Watch: 2016 in Review. [Online]

Available at: https://www.tricentis.com/blog/1-1-trillion-in-assets-impacted-by-

software-defects-a-software-testing-fail/

[Accessed 14 January 2022].

XXX

[87]. Veracode, n.d. Open Source Risk. [Online]

Available at:

https://www.veracode.com/sites/default/files/pdf/resources/ipapers/everything-you-

need-to-know-open-source-risk/index.html

[Accessed 08 11 2023].

[88]. W3C, 2013. W3C Recommendation 26 November 2008. [Online]

Available at: https://www.w3.org/TR/xml/

[Accessed 22 02 2024].

[89]. Wallace, R. S., 2003. The Elements of AIML Style, s.l.: ALICE A. I.

Foundation.

[90]. Wallace, R. S., 2009. The Anatomy of A.L.I.C.E.. In: R. Epstein, G. Roberts &

G. Beber, eds. Parsing the Turing Test: Philosophical and Methodological Issues in

the Quest for the Thinking Computer. Dordrecht: Springer Netherlands, pp. 181-210.

[91]. Wartschinski, L. et al., 2022. VUDENC: Vulnerability Detection with Deep

Learning on a Natural Codebase for Python. Information and Software Technology, 01

04, Volume 144, p. 106809.

[92]. Welty, C., 1997. Augmenting abstract syntax trees for program understanding.

Incline Village, NV, USA, IEEE Computer Society, pp. 126-133.

[93]. Wijesiriwardana, C. et al., 2020. Secure Software Engineering: A Knowledge

Modeling based Approach for Inferring Association between Source Code and Design

Artifacts. International Journal of Advanced Computer Science and Applications,

11(12), pp. 708-716.

[94]. Wu, Y. et al., July 5, 2022. VulCNN: an image-inspired scalable vulnerability

detection system. New York, NY, USA, Association for Computing Machinery.

[95]. YAML Org, 2021. YAML Ain’t Markup Language (YAML™) version 1.2

revision 1.2.2. [Online]

Available at: https://yaml.org/spec/1.2.2/

[Accessed 11 11 2023].

[96]. YAML, 2001-2009. YAML Ain’t Markup Language (YAML™) version 1.2 -

Revision 1.2.2 (2021-10-01). [Online]

XXXI

Available at: https://yaml.org/spec/1.2.2/

[Accessed 14 10 2022].

[97]. YAML, 2009-2022. YAML: YAML Ain't Markup Languag. [Online]

Available at: https://yaml.org/

[Accessed 14 10 2022].

[98]. YAML, n.d. A New YAML Specification. [Online]

Available at: https://yaml.com/blog/2021-10/new-yaml-spec/

[Accessed 4 10 2022].

