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Abstract

Landslides are one of the most recurrent and prominent natural disasters in Sri Lanka. An

area of nearly 20,000 sq. km encompassing 10 districts is prone to landslides. According to

statistics provided by the National Building Research Organization landslides have destroyed

over 800 lives in Sri Lanka over the last decade. In 2017 Kalutara district reported the max-

imum number of deaths of 101 due to landslides. Owing to haphazard, unplanned land use,

inappropriate construction methods, wanton human intervention and other other geological

and morphological causes, the trend of landslide occurrence will continue in the next eras.

Therefore prediction of landslide susceptibility is indispensable for disaster management and

ensure sustainability of developments.

The main focus of this study was to investigate the applicability of 12 landslide condi-

tioning factors including slope, aspect, hydrology, Stream Power Index(SPI), Topographic

Wetness Index(TWI), Sediment Transport Index(STI), geology, land form, land use, soil

type, soil thickness and rainfall in the prediction of landslide susceptibility in Kalutara

district using Random Forest machine learning algorithm. In order to achieve this a Ge-

ographical Information System(GIS) was used to manipulate and analyze the spatial data

while the implementation of the prediction model was carried out using python.

A pilot study was carried out to analyze the correlation between the landslide condition-

ing factors and landslide occurrence and to select the most appropriate set of conditioning

factors for the prediction. A landslide inventory of 84 landslides occurrences in Kalutara

district, was utilized along with randomly generated 84 non-landslide locations from the

landslide-free area of Kalutara district. Random Forest (RF), a non-parametric supervised

classification algorithm was employed to construct the prediction model. The efficiency of

the Random Forest model was evaluated using Receiver Operating Characteristic(ROC),

accuracy, sensitivity and specificity. The results indicated 76.92% specificity, 84.00% speci-

ficity, and accuracy of 80.39%. The area under the ROC curve demonstrated 79.46% of

predictive capability for the model.

Keywords: Landslide Susceptibility, Machine Learning, GIS, Random Forest
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Chapter 1

Introduction

A landslide is defined as the movement of a mass of rock, debris, or earth down a

slope [1]. Landslides occur throughout the world, under all climatic conditions and terrains,

cost billions in monetary losses, and are responsible for thousands of deaths and injuries

each year. Therefore the efforts in the prediction of landslide susceptibility have been a

major concern and important aspect in disaster management and ensure the sustainability

of developments in countries of the world.

The efficiency of the landslide susceptibility mapping and prediction methods depends

on the method employed and the quality of the conditioning factors [2]. The influence of the

conditioning factors varies from region to region based on varying environments in the area.

Different studies carried out in different parts of the world have employed various types

of quantitative and qualitative approaches in the prediction of landslides. Nevertheless,

quantitative methods have become very popular in recent years [2].

This study aims to investigate the applicability of 12 conditioning factors including slope,

aspect, hydrology, Stream Power Index(SPI), Topographic Wetness Index(TWI), Sediment

Transport Index(STI), geology, landform, land use, soil type, soil thickness and rainfall in

the prediction of landslide susceptibility in Kalutara district using Random Forest machine

learning algorithm. The conditioning factors were selected based on the knowledge acquired

through previous literature and consultation of geological scientists at the National Build-

ing Research Organization(NBRO). Further analysis of the conditioning factors was carried

out using the Frequency Ratio and Information Gain Ratio to select the most appropriate

conditioning factors for the study area. Out of three candidate machine learning algorithms

identified through the literature, Random Forest was used to implementing the landslide

susceptibility prediction model for the Kalutara district.
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1.1 Problem Statement

Landslides are considered the third critical natural disaster worldwide [3] causing mas-

sive destruction of lives and property. Landslides are among the natural disasters frequently

experienced in Sri Lanka. An area of nearly 20,000 sq. km encompassing 10 districts in Sri

Lanka is prone to landslides. It is about 30% of Sri Lanka’s land area and spread into several

districts, namely, Badulla, Nuwara Eliya, Kegalle, Ratnapura, Kandy, Matale, Kaluthara,

Mathara, Galle, and Hambantota. Among these 10 districts Kalutara district is among the

districts having the highest frequency [4] of landslides. According to the National Building

Research Organization (NBRO), Sri Lanka has faced more than 38 [4] landslides in 2017

causing an immense socio-economic impact [5]. In a personal interview with Dr. Gamini

Jayatissa, Director General of NBRO, he stated that there have been 101 deaths in Kalutara

district in 2017, which is the largest reported number of deaths in that year due to land-

slides. Considering the wide coverage of landslide damages, planners and decision-makers

would need to identify landslide-prone areas to plan mitigation actions. Hence, landslide

susceptibility prediction has become indispensable.

NBRO has prepared landslide zonation maps for the 10 landslide-prone districts employ-

ing six terrain causative factors of landslides including slope, geology, hydrology, landform,

land use, soil type, and thickness. They have not taken into account other possible condi-

tioning factors such as aspect, topographic wetness index, sediment transport index, rainfall,

etc. in the implementation of these maps. Previous studies carried out in the domain shows

the importance of considering both the terrain factors and triggering factors in the landslide

prediction. Therefore unavailability of a proper prediction mechanism considering both the

terrain factors and triggering factors for occurrence in landslides in Sri Lanka has adverse

effects on the prevention, mitigation, and preparedness over landslide disasters in Sri Lanka.

With soft computing approaches for landslide susceptibility prediction becoming popular

in the world, different models have been implemented using machine learning techniques

in different regions of the world showing better accuracy than statistical approaches [6].

When investigating the usage of machine learning approaches to predict landslides in Sri

Lanka, it can be identified that Sri Lanka still has not done a sufficient amount of research

in the domain. Since the conditioning factors differ from place to place, the applicability of

different conditioning factors differs in different regions [2]. Understanding the importance

of landslide susceptibility prediction with high accuracy by employing a suitable machine

learning algorithm in the Sri Lankan context is of utmost importance.

2



1.2 Motivation

As discussed above there have been many deaths reported in Kalutara district due

to landslides. Therefore this study was focused on implementing a landslide susceptibility

model for Kalutara district, Sri Lanka. The lack of studies carried out the landslide domain

in Sri Lanka employing both terrain and triggering factors with machine learning techniques

was highlighted as a timely concern when going through the previous literature.

When determining the landslide susceptibility, selecting the best set of conditioning fac-

tors and identifying the relationship between different conditioning factors and the landslides

occurrence is crucial. The main motivation of this study is to investigate the applicability

of 12 terrain and triggering conditioning factors identified for the study area and develop

a prediction model using Random Forest for efficient identification of landslide susceptible

areas in Kalutara District so that it would assist in issuing warnings and minimizing the

possible damages to human lives.

1.3 Research Questions

The research was directed to predict landslide susceptibility in Kalutara district in Sri

Lanka utilizing suitable landslide conditioning factors. With this intention, the main re-

search question how to predict landslide susceptibility using a machine learning

employing the data extracted from contour maps, geospatial statistical data, and

precipitation data? was formulated. Identification of a suitable methodology will assist

in the prediction of the occurrence of landslides with high accuracy to help better decision

making and thus plan risk mitigation actions in the future. Landslides can be a result

of a broad variety of landslide conditioning factors [7]. However, only certain classes of

conditioning factors will have a considerable impact on landslide occurrence [8] in a given

study area. The selection of the best set of conditioning factors for the study area is iden-

tified as crucial [9] as well. Therefore to address these, the sub research questions, how

to determine the spatial relationship between landslide conditioning factors and

landslide occurrence and how to eliminate landslide conditioning factors having

low or null predictive capability in the given study area? are answered through this

research.

Highly developed Geographic Information Systems together with mathematical and ma-

chine learning algorithms, have enabled effective landslide modeling [10]. The confusion on

3



which techniques or models will predict the landslide susceptibility with high accuracy [11]

still prevails. A suitable high performing landslide susceptibility model is expected to demon-

strate a rise in the prediction accuracy of about 1 or 2% [12] when compared to other models.

Thus the sub research question what are the machine learning algorithms that can

be used to predict landslide susceptibility? is answered through this research. The

evaluation of the prediction model assists in the identification of the model’s efficiency in

the prediction of landslide susceptibility. To address this the sub research question how to

evaluate the proposed approach and assess the accuracy of the proposed model?

was formulated.

1.4 Aims and Objectives

1.4.1 Aim

To investigate and develop a model to predict landslide susceptibility in Kalutara District

using a suitable machine learning technique.

1.4.2 Objectives

The objectives of this study include,

1. Study landslide prediction models implemented in other regions of the world and re-

lated literature.

2. Select landslide conditioning factors with the highest predictive capability and corre-

lation to the occurrence of landslides in the given study area

3. Determine the most suitable machine learning techniques to predict the susceptibility

of landslides.

4. Implement proof of concept to predict landslide susceptibility in the given study area

using the selected advanced machine learning technique.

5. To evaluate the success and failure of the implemented prediction model for landslide

occurrence in the given study area.

4



1.5 Significance of the Study

Many studies concerning the prediction of landslides using machine learning techniques

have been carried out in countries such as China, India, Iran, etc. But there is a lack of

studies carried out in the prediction of landslides using machine learning techniques in the Sri

Lankan context. Among the few types of research carried out in the domain include landslide

susceptibility mapping using Logistic Regression model for Badulla District, Sri Lanka [13],

predicting landslides in hill country using Decision Trees and Artificial Neural Networks [14]

and ensemble approach based on Support Vector Machine (SVM), Naïve Bayes model for

landslide prediction in Ratnapura District [15]. These studies possess capabilities to predict

landslides incorporating only three or four causative factors of landslides. There are several

conditioning factors of landslides including slope, aspect, stream power index, lithology,

bedding structure, etc. which have not been considered in these studies. According to

several studies [16], [25], [17] done in this domain it can be identified that it is important

to select the most appropriate conditioning factors for a study eliminating factors with low

or non-predictive capability in predicting landslides in the study area. Elimination of these

factors assists in coming up with a model with better predictive capabilities. But it has not

been considered in studies done in the Sri Lankan context.

Comparative studies [6], [18] carried out in other regions of the world using machine learn-

ing techniques and statistical approaches for prediction of landslides have emphasized that

machine learning approaches give better performance than statistical approaches. Benefits

of using advanced machine learning approaches such as Artificial Neural Networks, Naive

Bayes, Radial Basis Classifier, Random Forest, Decision Trees, etc. are not sufficiently

reaped by the minimal set of research carried out in prediction of landslides in Sri Lanka.

The landslide hazard zonation maps prepared by the NBRO also merely focuses on iden-

tifying the landslide susceptible zones in different districts using only six terrain conditioning

factors and provide warnings to the public based on the rain gauge readings in rainy seasons

considering a threshold rainfall value. This methodology does not employ both the terrain

and triggering factors in the construction of the susceptibility maps. To provide a more

reliable prediction of landslides all the influencing conditioning factors should be considered

which is lacking in the current methodology adopted by the NBRO.

5



1.6 Outline of Research Methodology

Many studies concerning the prediction of landslides using machine learning techniques

have been carried out in countries such as China, India, Iran, etc. But there is a lack of
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landslides incorporating only three or four causative factors of landslides. There are several

conditioning factors of landslides including slope, aspect, stream power index, lithology,

bedding structure, etc. which have not been considered in these studies. According to
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to select the most appropriate conditioning factors for a study eliminating factors with low

or non-predictive capability in predicting landslides in the study area. Elimination of these

factors assists in coming up with a model with better predictive capabilities. But it has not

been considered in studies done in the Sri Lankan context.

Comparative studies [6], [18] carried out in other regions of the world using machine learn-

ing techniques and statistical approaches for prediction of landslides have emphasized that

machine learning approaches give better performance than statistical approaches. Benefits

of using advanced machine learning approaches such as Artificial Neural Networks, Naive

Bayes, Radial Basis Classifier, Random Forest, Decision Trees, etc. are not sufficiently

reaped by the minimal set of research carried out in prediction of landslides in Sri Lanka.

The landslide hazard zonation maps prepared by the NBRO also merely focuses on iden-

tifying the landslide susceptible zones in different districts using only six terrain conditioning

factors and provide warnings to the public based on the rain gauge readings in rainy seasons

considering a threshold rainfall value. This methodology does not employ both the terrain

and triggering factors in the construction of the susceptibility maps. To provide a more

reliable prediction of landslides all the influencing conditioning factors should be considered

which is lacking in the current methodology adopted by the NBRO.
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1.7 Scope

The scope of this study include,

1. Investigate the machine learning algorithms that can be used in the prediction of

landslides in Kalutara district

2. Identification of the most appropriate conditioning factors to predict landslides in

Kalutara district

3. Implement a model to predict landslide susceptibility in Kalutara district using a ma-

chine learning algorithm

4. Evaluate the final model with real landslide occurrences in Kalutara district to deter-

mine the accuracy

One of the main concerns identified for landslide zonation maps prepared by the NBRO

was that they only consider the terrain factors in generating these maps using GIS tools.

Therefore this study focuses on incorporating both terrain and triggering factors of landslides

in the prediction of the landslide susceptibility using machine learning.

Contour maps, on-field data related to soil type, soil thickness, land use, landform, hy-

drology were obtained from NBRO while rainfall data were obtained from the Meteorology

Department of Sri Lanka.

1.8 Delimitations

The study was focused only on prediction landslides and do not accommodate the prediction

of other environmental hazards such as floods and earthquakes etc. Only contour data,

geospatial statistical data, and precipitation data were utilized in the implementation of the

model.

The model was implemented considering the initiation area of landslide and it did not

take the entire displacement area of the landslide into consideration. Prediction of landslide

susceptibility was carried out only for Kalutara District, Sri Lanka and was not focused on

any other districts.
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1.9 Contribution

An existing knowledge gap was filled by this research through providing the knowledge

on the applicability of 12 conditioning factors of landslides including slope, aspect, hy-

drology, Stream Power Index(SPI), Topographic Wetness Index(TWI), Sediment Transport

Index(STI), geology, landform, land use, soil type, soil thickness and rainfall for landslide

susceptibility prediction in Kalutara district to the research community.

To the best of our knowledge, this is the first landslide susceptibility prediction model

implemented for Kalutara District, Sri Lanka employing Random Forest as the machine

learning technique and taking a total of 12 landslide conditioning factors into consideration.

Further, one publication has been made to the research community as of the writing of

this thesis.

1. "Towards Prediction of Landslide Susceptibility using Random Forest for Kalutara

District, Sri Lanka" presented at 2019 IEEE R10 Humanitarian Technology Confer-

ence(HTC), Depok, Indonesia (R10’HTC).

The following deliverables have been made to the research community for future research

in this area.

1. A landslide inventory containing a detailed register of the distribution and character-

istics of past landslides occurred in Kalutara District from 1984 to 2018 with regard

to 12 conditioning factors.

2. Proof of concept implementation to predict landslide susceptibility in Kalutara District

and an information system to visualize the susceptibility results obtained from the

prediction model.

3. Knowledge on the success or failure of the landslide susceptibility prediction model

constructed using Random Forest for Kalutara District.

1.10 Structure of the Thesis

The related literature surrounding the problem domain is studied and analyzed in Chapter

2. The design of research architecture and assumptions are included in Chapter 3. Chapter

4 describes the implementation process undertaken in the study and Chapter 5 describes the

experimental protocol, experimentation process, and the results gained in the study. Finally,

Chapter 6 concludes the research by providing the conclusion and future works.

8



Chapter 2

Background

2.1 What is a Landslide?

Landslide or mass movement is a phenomenon of denudation process, whereby soil, rock

or debris is displaced along the slope by mainly gravitational forces [1]. Research carried out

by the National Building Research Organisation(NBRO) indicates that haphazard and un-

planned land use, inappropriate construction methods and wanton human intervention have

to lead to an increase [19] in landslide susceptibility while other geological and morphological

causes also influence the occurrence of landslides. Figure 2.1 illustrates a classification of

causes of landslides [20].

Figure 2.1: Classification of Causes of Landslides [20]
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According to the U.S. Geological Survey(USGS), a landslide encompasses five modes of

slope movement [1] including falls, topples, slides, spreads, and flows. A fall begins with the

detachment of soil or rock, or both, from a steep slope along a surface on which little or

no shear displacement has occurred. A topple is recognized as the forward rotation out of

a slope of a mass of soil or rock around a point or axis below the center of gravity of the

displaced mass. A slide is a down-slope movement of a soil or rock mass occurring on surfaces

of rupture or relatively thin zones of intense shear strain. Spread is an extension of cohesive

soil or rock mass combined with the general subsidence of the fractured mass of cohesive

material into the softer underlying material. A flow is a spatially continuous movement in

which the surfaces of shear are short-lived, closely spaced, and usually not preserved.

A landslide can be a movement of either a sloping mass or the crest or the foot of a hill

or even the cut surface of a slope. Similarly, the material that flows down can also vary

according to circumstances. It could be a sliding huge soil mass at one time or a giant

mudslide at another. It may also be an instance of a falling mixture of rock and soil down

a slope. At times, it is possible for a large boulder resting unstably on higher ground to fall

down a slope. As such, a landslide can mean differently depending on the circumstances and

conditions.

Out of the different categories of landslides such as Rock Slides, Earth Flows, Debris

Slides, Debris Flows, and Rock Falls; Debris Flows and Rock Falls occur in Sri Lanka [21].

Rock Falls occur when rock material on a higher elevation falls freely as fragments, splinters,

etc and Debris Flows occur on escarpments with a very rapid downward flow of muddy water

and soil, stone, as well as clay and gravel. Landslides can occur almost anywhere on the land

from sloping terrain, valleys to even plains - even the seabed can be subjected. However, it

is usually believed that they commonly occur on hill slopes at an inclination ranging from

15° to 45° [19] to the horizontal. Although landslides are common at inclinations below 45°,

occurrences at inclinations above 45° are seldom for the obvious reason that soil layers will

not accumulate on such surfaces for sliding at such angles. Rockfalls may occur in such areas

instead, but it has been observed that the only terrain unduly tampered is subjected to such

landslides [19].

The methods and techniques that can be employed in the landslide research vary de-

pending on the use of simple expert knowledge to sophisticated mathematical procedures.

These techniques can be divided into as physically based and statistics-based correlation

analysis [9]. An outline of the physically-based methods and statistical methods [22], [23]

are given in figure 2.2
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Figure 2.2: Landslide Research Approaches

2.2 Impact of Landslides in Sri Lanka

Approximately 30% of Sri Lanka’s land area has been identified susceptible to landslide

occurrence including districts, namely, Badulla, Nuwara Eliya, Kegalle, Ratnapura, Kandy,

Matale, Kalutara, Matara, Galle, and Hambantota [21]. As per statistics provided by the

NBRO, more than 400 lives have been lost due to landslides during the past three years

in Sri Lanka. In 2016 and 2017, 151 [21] and 230 [21] lives were lost respectively with an

estimated 10,000 families being displaced. In 2018 due to cutting failures, six lives were

lost. Sri Lanka was affected by 38 severe landslides [21] in 2017 while the spread of disaster

situation was confined only to 15 districts compared to the 24 districts in the previous year.

Table 2.1 gives the number of deaths in six of the affected districts in 2017.
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Affected Districts Number of Deaths

Kalutara 101

Ratnapura 79

Matara 11

Hambantota 11

Galle 09

Kegalle 04

Source: NBRO

Table 2.1: Deaths Due To Landslides in 2017 [20]

When the above statistics were analyzed, it was seen that Kalutara district has reported

the largest number of deaths in 2017 due to landslides. Communities attribute many land-

slides in Kalutara District to the uprooting of rubber plantations to provide the raw materials

for Medium-Density Fibreboard(MDF) manufacturing and conversion of forest land for tea

cultivation in other areas.

Apart from the damage to life and property, several infrastructural, as well as econom-

ically important facilities, have also been affected due to these landslides, especially water

distribution pipes, hydroelectricity generating centers, and communication systems [19]. At

times, social interests such as education and health services are also severely disrupted [19].

According to statistics provided by the NBRO it was evident that the education sector suf-

fered damages and losses in Kalutara, Ratnapura, Galle, Matara, and Hambantota districts.

Moreover, frequent landslides have threatened the destruction to the environment, including

the flora and fauna of the areas concerned. Such damage caused to the environment, at

times is irreversible and therefore cannot be estimated and perhaps will never be known.

Due to deforestation and other human-related activities [29] the trend of landslide oc-

currence seem to continue to next era as well. Therefore, considering the wide coverage of

landslide damages, planners and decision-makers need to identify landslide-prone areas to

plan mitigation actions. Landslide susceptibility prediction has become indispensable in this

context in order to minimize the casualties and damages.
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2.3 Contributing Factors of Landslides in Sri Lanka

Landslides do not occur usually due to a single reason, but it is the net effect of several

processes and factors, persisting for long periods on the hilly terrain. No single cause can be

attributed to the occurrence of a landslide, or rockfall, but it is due to the interaction of a

multitude of factors [19], either natural or man-made. Some of the natural causes include,The

steepness of hillslope, type of rock material, deep weathering of rock material and the depth

of the weathered rock, density of the joint pattern and the structure of the rock, thickness

of colluvium deposits collected downslope due to gravity, poor drainage conditions leading

to excessive water seepage in sub-strata, high intensity of the precipitation, earthquake as a

triggering factor, flood and reservoirs in hilly areas etc.

It is very seldom for a landslide to occur off on a flat area or a plain, the reason being

that there is no space or opportunity for any soil mass in the area to fall or slide anymore.

However, landslides do occur in such terrain too, but that can only happen due to excessive

weight or pressure placed on top of the hill slope. Slope surfaces with thick soil layers and

slope angle between 15° and 45° [19] have been found to have a greater preponderance for

landslides with a maximum tendency of hill slope of angle 26° to 35° [19] to the horizontal.

Soil and rock types having different characteristics or less cohesive properties are the ones

most subjected to fall or slide. Various rock characteristics including the structure contribute

directly to this looseness of a rock or soil and consequently to such sliding. Rock is composed

of various minerals in different proportions. The rock is subjected to various natural elements

such as sunlight, rain, wind, hot and cold temperatures and also to the penetration of plant

root systems for long periods thus causing disintegration and weathering. Also, by the impact

of various pressures rock material can be subjected to splitting, which spreads and in various

quantities. The resulting material consisting of soil, clay etc., have their own characteristics.

The above processes finally cause the deposition and settling in various layers or strata on the

slopes thus leaving a conductive background for landslides. Similarly, the action of different

temperature and pressures on the rock also create fractures in the rock and these fracture

systems can be easily lead to separation of the boulders and rock fragments from the parent

rock. The separated rock fragment and weathered components can be later transported

to lower regions of the slope by erosion and rolling. The increase in the thickness of the

overburden deposits also can lead to landslides.

The background for a landslide to move down a slope is created by the action of various

environmental factors and undue human activities persisting for long periods. It is finally
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triggered by intensive rainfall which leads to a landslide. The heavy rainfall not only causes

water penetration into the subsoil layers, thereby losing the inter-layer cohesion but also

increases the weight of soil mass. The penetrated water also acts as an easy lubricant

flowing down-slope. The net effect of these processes is the sliding of the soil mass down

the slope as a landslide. According to preliminary investigations carried out by researchers,

it has been found that if a hill slope receives continuous rainfall of about 200 mm within a

period of 3 days [21], the susceptibility to land sliding in such an area increases. It has been

observed that as a result of the current poor, ill-planned land-use practices, even a rainfall

of 75-100 mm for a 2 day period [19] is sufficient to trigger a landslide.

Earthquakes can influence the occurrence of a landslide directly or indirectly. The vibra-

tions of an earthquake can break up the exciting bond between soil particles and similarly

the bond between rock layers can also be weakened considerably. Sri Lanka has felt some

tremors in the recent past and it is necessary to be alert about landslides that could be trig-

gered by earthquakes. Scientists believe that an earthquake of above 4.5 [19] on the Richter

scale can be considered as one that can cause a landslide. But the occurrence of landslides

due to earthquakes are very rare in Sri Lanka.

Flood and reservoirs in the hill areas can influence the incidence of a landslide in several

ways. One such instance is the failure of riverbanks scoured by the following of swollen

rivers after heavy rains. The bottom areas of the banks are eroded by the flowing river

water leaving the top areas of the riverbanks without the toe support, which can easily

cause the top mass to come down. Flood water can also contribute significantly to the

collapse of the hill slope. The groundwater level of the area usually rises after floods and

consequently, the natural drainage pattern of the area is charged. This causes an increase in

the internal water pressure within the slope subsurface while also blocking water from upper

soil layers along sub-soil passages resulting in accumulation of water in the slope. As a result

of the additional weight due to the water mass and the slope, susceptibility of landslides can

increase in a region.

Undue human intervention strongly influences the incidence of landslides. Examples of

some wanton land-use practices are denudation of forest areas, use of land without proper

planning, construction on hilly terrain without due investigation or design, quarrying for

metal without due investigation and adherence to norms, obstruction of natural water paths

and storage of water on high ground. These activities can expose the top soil, and affect

the stability of slope thereby causing soil cracks and when eroded with the rains they can

ultimately result in landslides.
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Other than the above-mentioned factors, several studies [6], [16], [30] have identified

that factors such as aspect, Stream Power Index(SPI), Topographic Wetness Index(TWI),

lithology, Normalized Difference Vegetation Index(NDVI), Sediment Transport Index(STI),

Distance to faults, distance to roads, distance to rivers, plan curvature, profile curvature,

etc. also contributes to landslides. Even though a wide variety of conditioning factors of

landslides exists the applicability of these factors differ from region to region [31]. Therefore

it is essential to identify the most suitable set of conditioning factors for a study area in the

prediction of landslide susceptibility.

2.4 Landslide Evaluation Tools and Technologies

According to U.S. Geological Survey there are three types [1] of tools and technolo-

gies involved in landslide evaluation. They are Mapping, Remote Sensing and Real-time

Monitoring.

2.4.1 Mapping

There are three types [1] of landslide maps that are useful for planners as well as general

public when considering about criteria for landslide maps. They are,

1. Landslide Inventory Maps

2. Landslide Susceptibility Maps

3. Landslide Hazard Maps

The inventories denote areas that are identified as having failed by landslide processes. They

range from simple inventories, which overview of the aerial extent of landslide occurrence,

to the complex inventories, where more detailed layers of information including landslide

classification,zone of depletion, active and inactive landslides, geological age, the rate of

movement and depth and kind of material involved in sliding can be found.

A landslide susceptibility map goes beyond inventory maps by predicting the areas that

have the potential for landsliding. As mentioned earlier, these areas are determined by

considering the conditioning factors for landsliding (such as slope,geology, soil, elevation,

etc.). The susceptibility maps are derived by overlaying data layers with an inventory map

to identify geological units which have landslide-prone features compared to the previous

landslides.
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Landslide hazard maps demonstrate the likelihood of landsliding in various areas in the

future. These maps are useful to predict the relative degree of hazard in a landslide area as

they provide detailed information of type of the landslide, extent of slope subject to failure

and probable maximum amount of ground movement etc.

Maps are useful and convenient for presenting information as they can present different

kinds and combinations of information at different levels of detail. There are main 3 stages [1]

involved in the preparation of maps.

1. Regional mapping: Synthesizes available data and identifies general problem area in

a small scale, which is normally performed by a provincial, state or federal geological

survey.

2. Community level mapping : A more detailed surface and subsurface mapping program

in complex problem areas.

3. Site-specific large scale mapping: Concerned with the identification, analysis, and

solution of actual site-specific problems, often presented in the size of a residential lot.

2.4.2 Remote Sensing

When the accessibility for the conditioning factors is difficult physically and those meth-

ods for in-field data gatherings are expensive to continue, the remote sensing methods came

in to the topic. Some of the remote sensing methods utilized in landslide prediction are

described below.

1. Aerial photography remote sensing : This technology can be used to identify the veg-

etation cover, topography,drainage pattern, soil drainage character, bedrock geology,

surficial geology, landslide type and as well as relationships among the factors. This

should be rely on a careful study of recent aerial photographs of the given area, as

older slides may not be evident on changing terrain factors than recent photographs.

2. LiDAR imaging : LiDAR stands for Light Detection and Ranging, which uses a narrow

laser beam to probe through dense ground cover and to produce accurate terrain maps.

It includes the ability to eliminate the interference of forest cover which is present in

traditional photography methods. The essential elements of LiDAR mapping system

include a laser rangefinder mounted in an aircraft, a Global Positioning System (GPS),

and an Internal Measurement Unit.
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2.4.3 Real-time Monitoring

The immediate detection of landslide activity that is provided by real-time systems can

be crucial in saving human lives and protecting property. The traditional on-field detection

techniques are failed to observe the changes at the moment they occur. Hence, the continuous

data provided by real-time landslides monitoring allows a better understanding of dynamic

landslide behaviour and enables engineers and specialists to create more effective designs to

prevent or halt landslides.

The monitoring process can be expensive and requires the experts knowledge in instal-

lation of monitoring systems and maintenance of them. These monitoring stations can be

coordinated with a warning system, which would generate warning alerts to the public in a

hazard event.

2.5 Landslide Susceptibility Zonation Maps

Landslide Research and Risk Management Division of NBRO has implemented a land-

slide hazard zonation mapping programme within the 10 landslide prone districts of Kalu-

tara, Galle, Hambantota, Nuwara Eliya, Matale, Kandy, Kegalle, Ratnapura, Matara and

Badulla. The maps which display the distribution of the severity of landslide hazard poten-

tial in a given area, were intended to be used with associated guidelines as a decision making

tool for development of central highlands of the country. It is also used for identification of

elements at landslide risk and can be utilized in relocation, rehabilitation, allocation of relief

funds and insurance purposes also. Mapping is carried out at 1:50000 scale and at 1:10000

scale [20]. The process associated with the implementation of landslide hazard zonation

maps is discussed below.

NBRO has identified following 7 conditioning factors which cause occurrence of landslides

in Sri Lanka [21].

1. Slope

2. Geology

3. Hydrology

4. Land form

5. Soil Type & Thickness

6. Land Use

7. Rainfall
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Slope, Geology, Hydrology, Landform data for a particular district is extracted from the

respective district’s contour map. Land form, land use and Soil Type & Thickness are

extracted from field study in the region. Rainfall data is collected from the reading of the

rain gauge stations installed in different areas covering all the landslide prone districts in Sri

Lanka. After data relevant to these terrain factors are collected, following steps [32] will be

used to build the landslide susceptibility zonation map.

1. Generating the map of State of Nature(SON) for each identified factor separately
2. Converting the each SON map to a digitized version which is called Digital Elevation

Model (DEM)
3. The digitized coverage of these conditioning factors are integrated to create an inferred

map of landslide potential
4. The polygons of this inferred map is dissolved into different hazard zones using the

criteria given in table 2.2

Overall Hazard Rating (R) Hazard Zone Description

R < = 40 1 Safe slopes

40 < R < = 55 2 Landslides not likely to occur

R < = 70 3 Modest level of landslide

70 < R 4 Landslides are expected

Source: NBRO

Table 2.2: Criteria for Hazard Zonation [20]

NBRO uses factor weighing scale given in table 2.3 when generating the integrated

hazard zonation map relevant to a region.

Factor Weight

Slope 25%

Geology 20%

Hydrology 20%

Land form 10%

Soil Type & Thickness 10%

Landuse 10%

Source: NBRO

Table 2.3: Factor Weighing Scale [20]
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Real-time rainfall data from 105 automated rain-gauges implemented in 12 districts

are collected and used to issue early warning to vulnerable communities when rainfall inten-

sities reach certain threshold values. The threshold values [20] are described in the table 2.4

given below.

Rainfall Threshold Description

75 mm > continues within the next 24 hours
Possibility of landslides, rock falls,

subsidence and cut slope failure

100 mm > continues within the next 24 hours
Danger of landslides and cut slope

failures exist

150mm > continues within the next 24 hours

or exceed 75 mm within 1 hour
Evacuate to a safe place

Source: NBRO

Table 2.4: Rainfall Thresholds [20]

2.6 Review of Similar Research

Landslide susceptibility mapping approaches are classified into two as qualitative or

quantitative approaches [10]. Qualitative methods usually depend on expert opinions [33]

whereas quantitative methods depend on the relationships between landslide controlling

factors and landslides [34]. Figure 2.3 demonstrates a taxonomy of landslide susceptibility

mapping methods by Hamid Reza Pourghasemi et al. [6].
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Figure 2.3: Taxonomy of Landslide Susceptibility Mapping Methods

Physically based models require detailed site specific geological data [6]. These models are

expensive and not practical for large areas. Traditional statistical models, which assume an

appropriate structural model and then focus on parameterizing it, are widely used for analysis

of natural hazards such as landslides. Classification of each landslide conditioning factors in

traditional statistical models is a key point that affects the quality of landslide susceptibility

map [6]. In contrast, machine learning techniques, a powerful group of data driven tools,

use algorithms to learn the relationship between a landslide occurrence and landslide related

predictors, and avoids starting with an assumed structural model. ML-based models can

effectively overcome the limitation of data dependent bivariate and multivariate statistical

methods [6]. Machine learning techniques allow handle data from various measurement

scales, any type of independent variable (i.e. ratio, interval, nominal, or ordinal), and

without needing to define normally distributed transformed variables [10].

A comparison between four advanced machine learning techniques namely, Bayes’ Net(BN),

Radial Basis Function(RBF) Classifier, Logistic Model Tree(LMT) and Random Forest(RF)
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for landslide susceptibility modeling in Chongren County, China has been studied by Wei

Chen et al. [16]. The spatial database was constructed with 222 landslide locations. In the

initial phase, the researchers have considered 15 conditioning factors where 3 of them; land

use, plan curvature, and profile curvature were eliminated due to their non-predictive ability

identified through the calculation of the Information Gain. The predictive capability of the

BN. RBF Classifier, LMT and RF models were calculated and compared using the Receiver

Operating Characteristic (ROC) and statistical measures, including sensitivity, specificity,

and accuracy. The results showed that the RF model had the highest sensitivity, specificity,

and accuracy values of 0.787, 0.716, and 0.752, respectively, for the training dataset. RF

model yielded a high degree of fitting for both the training and validation datasets.

Coupling machine learning algorithms with spatial analytical techniques for landslide

susceptibility modeling is a critical issue prevalent in the world. To address this issue,

Hamid Reza and Omid Rahmati have presented with the comprehensive comparison [6]

among the performances of ten advanced machine learning techniques(MLTs) including Ar-

tificial Neural Networks(ANN), Boosted Regression Tree(BRT), Classification and Regres-

sion Trees(CART), Generalized Linear Model(GLM), Generalized Additive Model(GAM),

Multivariate Adaptive Regression Splines(MARS), Naive Bayes(NB), Quadratic Discrimi-

nant Analysis(QDA), Random Forest(RF) and Support Vector Machine(SVM) for modeling

landslide susceptibility. Area under the ROC curve(AUC-ROC) approach has been utilized

in evaluating the performance of the above-mentioned machine learning techniques and it

has been found that the RF and BRT have the best performances compared to other MLTs

with AUC values 83.7% and 80.7% respectively.

Another study conducted by Wei Chen et al. [30] has compared the landslide susceptibil-

ity predictive ability of Logistic Model Tree(LMT), Random Forest(RF), and Classification

and Regression Tree (CART) models considering 171 landslide locations in Long County,

China. The 12 landslide-related parameters used in the study are slope angle, slope aspect,

plan curvature, profile curvature, altitude, NDVI, land use, distance to faults, distance to

roads, distance to rivers, lithology, and rainfall. To obtain more accurate results, landslide

conditioning factors with low or null predictive capability have been removed using the Lin-

ear Support Vector Machine(LSVM) method. Since all twelve landslide conditioning factors

revealed positive predictive capability values, the twelve factors were used in the analysis for

building the three models. The results obtained in model performance evaluation and com-

parison using ACC values, ROC curves, AUC values, Std. error, CI at 95%, and significance

level P showed that the RF model has the highest predictive capability compared with the
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LMT and CART models with a success rate of 0.837 and a prediction rate of 0.781.

To assist in the evaluation of landslide susceptibility modeling techniques to enhance a

user’s decision on which method is most suitable for a particular application, J.N. Goetz

et al. [18] have conducted a study presenting a comparison of traditional statistical and

novel machine learning models applied for regional-scale landslide susceptibility modeling.

The modeling techniques applied were Generalized Linear Model(GLM), Generalized Ad-

ditive Models(GAM), Weights Of Evidence(WOE), Support Vector Machine(SVM), Ran-

dom Forest classification (RF), and Bootstrap aggregated classification trees(Bundling) with

Penalized Discriminant Analysis (BPLDA). Slope angle, elevation, profile curvature, plan

curvature, catchment area, catchment height, convergence index, topographic wetness in-

dex(TWI), slope aspect and surface roughness(SDS) were used as predictors in this study.

The study demonstrated that there was generally little differentiation in prediction per-

formance between statistical and machine learning landslide susceptibility modeling tech-

niques. The researchers suggest that SVM, RF, and BPLDA may be particularly useful for

high-dimensional prediction problems where a large number of highly correlated predictor

variables are present.

C. Zhou et al. [25] have used SVM, ANN and LR in landslide susceptibility modeling in

the Three Gorges Reservoir area in China. 12 landslide conditioning factors were considered

and unimportant factors were selected and eliminated using information gain ratio. The

performance of the models was evaluated using the ROC curve and the Friedman test. The

results showed that SVM and ANN outperformed LR while SVM was found ideal for the

case study area.

A study has been conducted combining the Adaptive neuro-fuzzy Inference System with

Frequency Ratio (ANFIS-FR), Generalized Additive Model (GAM), and Support Vector

Machine (SVM), for landslide susceptibility mapping in Hanyuan County, China [35]. A

collinearity test and correlation analysis were applied between the 12 conditioning factors

and landslides. The results of these analyses showed that there is no collinearity among

different factors. The accuracy of the models was validated using the ROC curve. The

results showed that the SVM model has the highest prediction rate of 0.875, followed by the

ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively.

Biswajeet Pradhan [36] compared the landslide susceptibility prediction performances of

three different approaches, namely as Decision Tree (DT), Support Vector Machine (SVM)

and Adaptive Neuro-Fuzzy Inference System (ANFIS) using 113 landslide locations in Penang

Hill area, Malaysia. The results showed success-rate results for using ANFIS (AUC-94.21),
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followed by SVM (AUC-91.67) and DT (AUC-88.36.). When considering prediction-rate re-

sults, eight landslide conditioning factors performed better in DT (83.07) SVM (81.46) and

ANFIS (82.80) models. Since the adaptive neuro-fuzzy inference system (ANFIS) has not

been applied commonly in the landslide susceptibility research, this research presented some

promising results over its viability as a satisfactory model.

An optimized neural architecture for automatic landslide detection from high-resolution

airborne laser scanning data, was proposed by Mustafa Ridha Mezaal, Biswajeet Pradhan

et al [37]. In their study they addressed the drawbacks of traditional, time consuming and

costly methods of analysis on landslide susceptibility; like field surveys, optical remote sens-

ing and synthetic aperture techniques. In a solution, they proposed using Recurrent Neural

Networks(RNN) and Multi-Layer Perceptron Neural Networks(MLP-NN) in landscape de-

tection based on high-resolution LiDAR data. They have stated the main advantages of this

approach are that it requires little or no prior knowledge compared to other traditional clas-

sification methods and its’ ability to perform the nonlinear mathematical fitting for function

approximation. The landslide inventory for the training process referred to the previously

produced inventory by Pradhan and Lee [38] and a total number of 21 landslides had an-

alyzed. The feature selection process had optimized by using a supervised approach and

to rank features from most relevant to less, the correlation-based selection algorithm had

utilized. The obtained models were evaluated using a 10-fold cross-validation method and in

advance, the model had tested in another part of the area. The results obtained for the two

models: RNN and MLP-NN are, 83.33% and 78.38% respectively. And the test accuracies

for RNN and MLP-NN were 83.33% and 74.56% which indicated that the proposed models

generated sufficiently accurate classification results.

Luo X et al. [39] evaluated a landslide inventory database of 493 landslides that occurred

in the Shangli County, China under three models, Artificial Neural Network(ANN), Support

Vector Machine (SVM) and one statistical model, Information Value Model (IVM). Initially,

16 conditioning factors were derived from Landsat 8 imagery and Global Digital Elevation

Model(ASTER GDEM), and statistical measures like VIF and tolerances were used under

multicollinearity analysis to filter out the best subset of conditioning factors. After running

through the three models, the results showed that the ANN model achieved higher prediction

capability which proves its capability of solving nonlinear and complex problems surpass-

ing the performance of SVM and the statistical model, IVM on landslide data set. Also

when the estimated landslide susceptibility map is compared with the ground-truth land-

slide map, the high-prone area was observed to be located in the middle area with multiple
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fault distributions and the steeply sloped hill.

Cheng Lian et al. [40] proposed an ANNs switched prediction scheme to construct Pre-

diction Interval(PI)s with a three-stage formulation to overcome the drawbacks of Artificial

Neural Networks (ANN) in predicting mutational displacement points with time lags in land-

slide susceptibility mapping. In the first stage, K-means clustering was applied to divide the

whole training dataset into two sub-training sets as stationary points and mutational points.

In the second stage, a weighted ELM classifier was applied to construct the switched rules

and in the third stage, bootstrap- and kernel-based ELMs were applied to construct can-

didate PIs for each sub-training set. The final PIs are constructed by switching between

these two candidate PIs. In this study, three real-world landslide datasets from the Three

Gorges region of China were used. In the final results, it was observed that the prediction

accuracy of the mutational points has been significantly improved indicating the ability of

the proposed method to construct the reliable quality PIs for landslide displacement.

Cheng Lian, Zhigang Zeng, Wei Yao, and Huiming Tang [41] conducted a study on

landslide susceptibility prediction using a novel artificial neural network technique, extreme

learning machine (ELM) with a kernel function. In this research, a convex combination of

Gaussian kernel function and polynomial kernel function in ELM was used as the general-

ization performance of ELM with kernel function depends closely on the kernel parameters

and kernel types. And a novel hybrid optimization algorithm based on the combination of

Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) was used

to avoid blindness and inaccuracy in parameter selection.

Haoyuan Honga et al. [42] done work on to investigate and compare the use of current

state-of-the-art ensemble techniques namely as AdaBoost, Bagging, and Rotation Forest, for

landslide susceptibility assessment with the base classifier of J48 Decision Tree (JDT). In this

study, a landslide inventory map with 237 landslide locations in Guangchang district, China

were evaluated under 15 conditioning factors. The results showed that all landslide models

had high performance (AUC > 0.8) while JDT with the Rotation Forest model showed

the highest prediction capability (AUC = 0.855), followed by the JDT with the AdaBoost

(0.850), Bagging (0.839), and the JDT (0.814). As a state-of-the-art technique, JDT with

the Rotation Forest delivered promising results.

Potential applications of two new models such as two-class Kernel Logistic Regression

(KLR) and Alternating Decision Tree (ADT) for landslide susceptibility mapping at the

Yihuang area, China was explored by Haoyuan Hong, Biswajeet Pradhan, Chong Xua and

Dieu Tien Bui in their study [43]. SVM has been used for comparison. The resulting models
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were validated and compared using the ROC, Kappa index, and five statistical evaluation

measures. The prediction capabilities were 81.1%, 84.2%, and 93.3% for the KLR, the SVM,

and the ADT models, respectively. The result showed that the ADT model yielded better

overall performance and accurate results than the KLR and SVM models.

The performance of five state-of-the-art hybrid machine learning techniques namely

Reduced Bagging based Reduced Error Pruning Trees(BREPT), MultiBoost based Re-

duced Error Pruning Trees (MBREPT), Rotation Forest-based Reduced Error Pruning

Trees(RFREPT), Random Subspace-based Reduced Error Pruning Trees(RSREPT), and

Reduced Error Pruning Trees(REPT) was evaluated and the results were compared [44] for

the selection of best landslide susceptibility model. ROC curve, Statistical Indexes, and Root

Mean Square Error methods were used to validate the performance of these models. Analy-

sis of model results indicated that the BREPT is the best model for landslide susceptibility

assessment in comparison to other models.

Shiluo Xu, RuiqingNiu proposed an LSTM based methodology [45] to solve the problem

of the hysteresis effects of triggering factors and landslide displacements in the rainfall-

induced landslide displacements prediction task. In this study, data collected from 73 data

points in the Baijiabao landslide site, China was used to research the total cumulative dis-

placement of the site by dividing it into a trend and periodic components using empirical

mode decomposition. The trend component was predicted using an S-curve estimation while

the total periodic component was predicted using a Long Short-Term Memory Neural Net-

work (LSTM). While the static deep learning approaches, such as BP and SVR, can only

learn information at the current time step they tend to lean rules from a timing point and

cannot make full use of historical data. As a result, the lag effect between trigger factors

and landslide displacements cannot be addressed very well. LSTM connects hidden layers

and obtains previous influences and information using a “state vector” and corresponds to

the hysteresis effects of landslides. The results obtained from LSTM were more accurate

than BP, SVR, and even the Elman method when the dataset is small. Most of the time

unavailability of landslide historical time data limits the use of time as a factor in landslide

susceptibility research.

A study was conducted by Liming Xiao, Yonghong Zhang and Gongzhuang Peng [46],

in using integrated deep learning algorithms to predict the landslide susceptibility in China

- Nepal highway. As for the concerned area, the study addresses the importance of hazard

assessments more accurately in real-time. The instability factors concerned were: elevation,

slope angle, slope aspect, plan curvature and vegetation index. The four machine learning
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algorithms used were: Decision Tree (DT), Support Vector Machine (SVM), Back Propaga-

tion neural network (BPNN) and Long-Short term Memory algorithm. The results obtained

from the experiments have compared and the prediction accuracy of BPNN, SVM, DT, and

LSTM are 62.0%, 72.9%, 60.4%, and 81.2% respectively. So they found that the LSTM has

outperformed with sufficient accuracy, as its capability to learn time series based patterns

along with temporal dependencies.

The study of Beibei Yang, Kunlong Yin, Suzanne Lacasse, Zhongqiang Liu [47], pre-

sented time series analysis and long short-term memory neural network to predict landslide

displacement in TGRA, a well-known as a landslide-prone area in China. They have identi-

fied the feature that landslide deformation patterns lead to accumulated displacement versus

time showing a stepwise curve. The study proposed a dynamic model to predict landslide

displacement based on time series analysis and Long-Short Term Memory network(LSTM).

The final accumulated model was composed of two components: trend tern analysis and

periodic term analysis in time series. The trend displacement was predicted using a cu-

bic polynomial function. The periodic term displacement was predicted using the LSTM

model based on landslide displacement factors. For the trend component, long-term defor-

mation controlling factors such as; lithology, geological structure, progressive weathering,

etc. have been considered causing landslide displacement as these factors were increased,

approximately, monotonically with time and usually on a long-time scale. The final model

was compared with Baishuihe and Bazimen landslide inventory to evaluate the success or

failure of the model. According to that LSTM network given a model with 7.11 RMSE (root

mean squared error) value while SVM based model given 21.83 of RMSE value. As a result,

it was concluded that the LSTM based prediction model has outperformed in the domain of

landslide susceptibility mapping rather than SVM based classifications.

Several statistical approaches [26], [27], [28] in landslide susceptibility mapping have

been followed by some of the researchers. Among them are Frequency Ratio(FR), Demp-

ster–Shafer, and Weights-of-Evidence. Y. Hsu et al. [24] explored the use of two physically

based approaches, rainfall threshold-based method and real-time simulation in landslide fore-

casting. Among the quantitative approaches, physically-based approaches [28] are expensive

and will not be practical for large landslides sites.

Qualitative studies [26], [48], [49] consider a set of conditioning factors and based on the

importance, factors are weighted using methods like Analytic Hierarchy Process(AHP).

Table 2.5 shows a comparison between different approaches followed in the studies de-

scribed above.
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Reference
Conditioning Factors

Used

Machine Learning

Techniques Used

Best

Performance

[16]

Slope, Aspect, Elevation,

Plan Curvature,

Profile Curvature, Lithology

Stream Power Index,

Sediment Transport Index,

Topographic Wetness Index,

Distance to Rivers, NDVI,

Distance to Roads, Land Use,

Distance to Faults, Rainfall

Bayes’ Net

Radial Basis Function

Classifier

Logistic Model Tree

Random Forest

Random Forest

[6]

Altitude, Slope Angle,

Slope Aspect,

Slope Length,

Plan Curvature,

Profile Curvature,

Driainage Density,

Distance from Rivers,

Distance from faults,

Land Use, Lithology,

Distance from Roads

Artificial Neural Networks

Boosted Regression Tree

Classification and Regression

Trees

General Linear Model

Generalized Additive Model

Multivariate Adaptive

Regression Splines

Naive Bayes

Quadratic Discriminant

Analysis

Random Forest

Support Vector Machine

Random Forest

Boosted Regression

Tree

[30]

Slope Angle, Slope Aspect

Plan Curvature, Altitude

Profile Curvature, NDVI

Land Use,

Distance to Faults,

Distance to Roads,

Distance to Rivers,

Lithology, Rainfall

Logistic Model Tree

Random Forest

Classification and Regression

Trees

Random Forest
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Reference
Conditioning Factors

Used

Machine Learning

Techniques Used

Best

Performance

[18]

Slope Angle, Elevation,

Profile Curvature,

Plan Curvature,

Catchment Area,

Convergence Index,

Slope Aspect, TWI

Catchment Height

Surface Roughness

Generalized Linear Model

Generalized Additive Models

Weights Of Evidence

Support Vector Machine

Random Forest

Bootstrap aggregated

classification trees(Bundling)

with Penalized Discriminant

Analysis

Support Vector

Machine

Random Forest

Bootstrap aggregated

classification trees

(Bundling) with

Penalized Discriminant

Analysis

[44]

Slope, Aspect,

Geomorphology,

Curvature, SFM,

Land Cover,

Distance to Roads,

Overburden Depth,

Distance to Rivers,

Valley Depth,

Reduced Bagging based

Reduced Error Pruning

Trees

MultiBoost based

Reduced Error Pruning

Trees

Rotation Forest-based

Reduced Error Pruning

Trees

Random Subspace-based

Reduced Error Pruning

Trees

Reduced Error Pruning

Trees

Reduced Bagging based

Reduced Error Pruning

Trees

[35]

Slope Aspect, Lithology

Altitude, Slope Angle,

TWI, Plan Curvature,

Profile Curvature,

Distance to Rivers,

Distance to Faults,

Distance to Roads,

Land Use, NDVI

Adaptive Neuro-Fuzzy

Inference System with

Frequency Ratio

Generalized Additive Model

Support Vector Machine

Support Vector Machine
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Reference
Conditioning Factors

Used

Machine Learning

Techniques Used

Best

Performance

[39]

Slope Angle, Slope

Aspect, Elevation,

Road Density, Plan

Curvature, Profile Curvature,

Annual Rainfall, River

Density, Distance to Rivers,

Lithology,

Distance to Faults,

Watery Degree,

Distance to Roads,

NDVI, NDWI,

Urban Land-use Index

Artificial Neural Networks

Support Vector Machine

Information Value Model

Artificial Neural Network

[43]

Slope, Aspect,

Altitude, TWI,

SPI, STI,

Plan Curvature,

Land Use, NDVI,

Distance to Faults,

Distance to Rivers,

Distance to Roads,

Lithology, Rainfall

Two-class Kernel Logistic

Regression

Alternating Decision Tree

Alternating Decision Tree

[46]

Elevation, Slope

Angle, Slope Aspect,

Plan Curvature,

Vegetation Index,

Built-up Index,

Stream Power, Lithology,

Precipitation Intensity,

Cumulative Precipitation

Index

Decision Tree

Support Vector Machine

Back Propagation Neural

Network

Long-Short Term Memory

Algorithm

Long-Short Term Memory

Algorithm

Table 2.5: Comparison of Results Obtained in Previous Research
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According to the literature review, it was identified that Support Vector Machine(SVM),

Artificial Neural Networks(ANN) and Random Forest(RF) have performed well in the pre-

diction of landslide susceptibility in various regions of the world. Initially, they were se-

lected as the three candidate machine learning algorithms for this study. The comparative

studies [6], [18] done considering SVM, ANN and RF have indicated that RF outperforms

other models in the prediction of landslide susceptibility. Therefore Random Forest machine

learning algorithm was selected to implement the landslide susceptibility prediction model

for Kalutara district employing the 12 conditioning factors identified.

Even though LSTM also has shown more than 80% accuracy in the prediction of land-

slides, since the dataset considered in this study did not contain the time aspect of the

landslide events LSTM was not chosen as a candidate algorithm for the implementation of

the landslide susceptibility model.

2.7 Summary

Landslides occur as a result of a combination of terrain factors and triggering events.

The predictive capability of the factors about occurrence of landslide will depend on the

particular landslide site and will differ from one terrain to another terrain. There are several

machine learning techniques used in the past literature to predict landslide susceptibility.

Selecting a suitable machine learning technique to build the model, that will yield high

predictive capability is crucial.
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Chapter 3

Methodology and Design

The methodology and design adopted in the implementation of the landslide suscepti-

bility prediction model is described in this chapter. The study employed a hybrid approach

that combined the design science research approach [31] and the quantitative research ap-

proach [50] to implement a landslide susceptibility prediction model for Kalutara District,

Sri Lanka.

3.1 Overview of the Methodology

The implementation of the landslide susceptibility prediction model was carried out

in six main steps. A detailed description of each step in the methodological approach is

provided in the following sub sections. The process flow of this study is illustrated in figure

3.1.

Figure 3.1: Process Flow of the Research
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3.1.1 Landslide Inventory Mapping and Preparation of Training

and Test Data Sets

The first important step in the prediction of landslide susceptibility would be to identify

landslide locations that occurred in the past and create the landslide inventory map. A

landslide inventory map depicts the spatial distribution of a single landslide event or multiple

landslide events in a specific region over time. In this study, a detailed reliable landslide

inventory map was created from the landslide database acquired from the NBRO. A total of

84 landslides were analyzed in this study. These points could not denote the entire regions

covered by the respective landslides. The landslide locations were presented by discrete

points placed at the centers of their head scarps. For the susceptibility analysis, the landslide

locations were randomly split into two subsets with a ratio of 70:30 for training and testing

respectively. In order to maintain the balance between all possible classifications for defining

the problem (landslide locations and non-landslide locations), the dataset was included with

the same number of (84) non-landslide locations randomly sampled from the landslide free

area in Kalutara district. During the implementation, the entire data set was randomly

split into 70:30 ratio where training dataset consisted of 117 instances while the test dataset

consisted of 51 instances.

3.1.2 Preparation of Landslide Conditioning Factor Maps

The quality and the scale of conditioning factors affect the efficiency of the landslide

susceptibility prediction [2]. Based on the knowledge obtained from the previous literature

and expert consultation from the NBRO, initially, 12 conditioning factors were selected for

the study, namely slope, aspect, hydrology, landform, land use, soil type, soil thickness,

geology, Stream Power Index(SPI), Topographic Wetness Index(TWI), Sediment Transport

Index(STI), and rainfall. A spatial database containing landslide related conditioning factors

was constructed using data extracted from the contour map of Kalutara district, geospatial

statistical data, and precipitation data acquired. The gathered raw data were processed

in QGIS environment to generate thematic maps and to extract the data for each of the

conditioning factors.

A Digital Elevation Model(DEM) generated using the contour map of the Kalutara Dis-

trict was utilized to extract the slope, aspect, SPI, STI, and TWI values for the area. The

slope is the rise or fall of a land surface while the aspect is the compass direction that a

slope faces. The slope map was reclassified into five equal interval classes ranging from 0° to
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78.5384°. Aspect values of the study area ranged from 7° to 359° and were divided into five

equal interval classes.

SPI is the amount of erosive power of water flow based on the presumption that discharge

is proportional to a specific catchment area. TWI is the degree of accumulation of water

at a site. STI describes the processes of slope failure and deposition. SPI and TWI were

calculated using equation 3.1,3.2 and 3.3 respectively.

SPI = Atan

(
β

b

)
(3.1)

TWI = loge

(
A

btanβ

)
(3.2)

STI =

(
As

22.13

)0.6(
sinβ

0.0896

)1.3

(3.3)

β (radian) is the slope at a given cell, b (m) is the cell width through which water flows, A

(m2) is the flow accumulation, and As is the upstream area.

STI values generated from DEM ranged from 0 to 20. Similarly, the values generated for

SPI ranged from -2477 to 1325 while TWI values ranged from 9 to 17. SPI, TWI and STI

values were also reclassified into five equal interval classes each.

Hydrology indicates the distance to waterways in the study area and it was divided into

six classes, ranging from 2.3399m to 694.9425m. The natural features and shapes existent

on the earth’s surface are identified as the land-forms. The study area is comprised of

seven types of land-forms including clay flats, clay swamps, scattered small hills, flat plains,

marches, wetlands, etc. The land use varies from crops, forests to other non-agricultural

uses distributed over ten classes. Alluvial, boulders, colluvium, residual, and rock exposure

are the most prominent soil types in Kalutara district. The thickness of the soil in these

types varies throughout the region. Geology varies within 7 classes, namely; Quartzite,

Granite Biotite Gneiss, Charnochite, Charnockitic Gneiss, Khondalite, Quartzo Feldspathic,

and Granulatic Gneiss.

Rainfall is considered as a triggering factor for the occurrence of landslides in this study.

Annual rainfall data collected through 26 rain gauge stations in Kalutara District from 1984

to 2018 were obtained from the Department of Meteorology, Sri Lanka. It was divided into

five classes for the analysis.
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3.1.3 Correlation Analysis between Landslides and Conditioning

Factors

To analyze the spatial relationship between the landslides and conditioning factors Fre-

quency Ratio3.4 was used in the study. The ratio of the probabilities of landslide occurrence

to non-landslide occurrence [51] for a given conditioning factor is indicated by the results ob-

tained for frequency ratio. FR>1 suggests a strong relationship between the landslide event

and conditioning factor while FR<1 suggests vice versa [52]. FR=1 represents an average

value.

FRi =
Npix(Si)/Npix(Ni)∑
Npix(Si)/

∑
Npix(Ni)

(3.4)

Npix(Si) is the number of landslide pixels in each conditioning factor class i. Npix(Ni) is the

total number of pixels that have class i in the study area.
∑
Npix(Si) is the total number of

landslide pixels in the study area.
∑
Npix(Ni) is the total number of pixels in the study area.

3.1.4 Selection of Conditioning Factors

The predictive capability of the employed model may be reduced by features with a

certain noise level. Therefore, the selection of conditioning factors with high predictive

ability is an important step in landslide susceptibility prediction [9]. To achieve these,

predictive abilities of the conditioning factors should be quantified and factors with low or

null predictiveness should be removed [9]. This will result in a more accurate prediction of

the resulting model.

Quantification of the predictive capability of the 12 landslide conditioning factors was

carried out using the Information Gain Ratio. Information Gain Ratio is the ratio of infor-

mation gain to the intrinsic information. Higher Information Gain Ratio indicates a higher

predictive ability for the models [9]. The Information Gain Ratio for a certain landslide

conditioning factor A is computed as follows using 3.5, 3.6, 3.7 and 3.8.

Info(S) = −
2∑

i=1

n(Li, S)

|S|
log2

n(Li, S)

|S|
(3.5)

Info(S,X) =
m∑
j=1

Sj

|S|
Info(S) (3.6)

SplitInfo(S,X) = −
m∑
j=1

Sj

|S|
log2
|Sj|
|S|

(3.7)

Information Gain Ratio(S,X) =
Info(S)− Info(S,X)

SpiltInfo(S,X)
(3.8)
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The training data set is denoted by S. n(Li,S) is the number of class Li samples in S. Info(S)

is the Information Gain. Info(S,X) is the amount of information required to split S into

m subsets related to X. Information generated by splitting S into m subsets is denoted by

SplitInfo.

After the selection of the best set of conditioning factors using the information gain

ratio, the feature values for landslide and non landslide points were extracted by employing

a variety of vector and raster analysis methods and tools available in QGIS. The incomplete

and null values resulted for some features, were eliminated from the dataset as a data pre-

processing step.

3.1.5 Construction of Landslide Susceptibility Prediction Model

Initially, three candidate machine learning algorithms were identified through the pre-

vious literature to implement the model. They are Support Vector Machine(SVM) [39], [46],

[53] Artificial Neural Networks(ANN) [39], [53] and Random Forest(RF) [6], [16], [18], [30],

[16]. SVM is a supervised classifier that separates the feature space obtained by the input

data set into classes, using a hyper-plane which creates the maximum margin [54]. ANNs

consist of a chain of nodes called "Artificial Neurons", that are interconnected and able

to identify the relationship patterns between input-output layers [55]. RF is an ensemble

classifier that uses multiple decision trees to make the final prediction. Out of the identified

candidate algorithms, Random Forest was selected to construct the model considering the

performance [6], [16], [18], [30], [16] of the RF models in previous studies. Random Forest

has also not been used in the prediction of landslides in Sri Lanka before the time of this

study.

RF builds multiple bootstrap samples, known as training sets and constructs a classifica-

tion rule (a tree) for each. In a random forest, each node is split using the best split among

a subset of predictors that are randomly chosen by the node. The random feature selection

at each node decreases the correlation between any pair of trees in the forest, decreasing the

forest error rate. RF includes two powerful ideas in machine learning algorithms: random

feature selection and bagging [30].

3.1.6 Evaluation of the Performance of the Model

For the evaluation of the model performance, initially, three evaluation approaches were

inferred from the literature review [6], [2], [30] that most of the landslide prediction studies
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have utilized these approaches to determine the model performance successfully.

1. Kappa Index

2. Receiver Operating Characteristic(ROC)

3. Statistical Evaluation Metrics: Specificity, Sensitivity, and Accuracy

The kappa Index is popularly used to quantify the magnitude of agreement between ob-

servers [56] in a study. The kappa value of 1 represents perfect agreement between true

values and the classification whereas, the value of 0 represents no agreement [57]. Kappa

value could be further quantified as follows: (0.81-1.0) Almost Perfect, (0.61-0.80) Substan-

tial, (0.41-0.60) Fair, (0.21-0.40) Fair, and (0.0-0.20) Slight [58]. Kappa Index (equation 3.9)

is used to measure the reliability of the classification approach.

K =
Pr(a)− Pr(e)

1− Pr(e)
(3.9)

Pr(a) indicate probability of success of classification. Pr(e) indicate probability of success

due to chance.

In an ROC curve,the sensitivity is plotted in the function of the 1-specificity for different

cutoff points. The area under the ROC curve(AUC) provides the overall measure of test

performance that reveals the capability of a model to predict landslide and non-landslide

pixels. An AUC value of 1 indicates a perfect model, while an AUC value of 0 indicates a

non-informative model [9] and a higher AUC value indicates a better predictive capability of

a model. According to Tien Bui et al. [9], correlation of predictive capability and AUC could

be quantified as follows: (0.9-1) Excellent, (0.8-0.9) Very Good, (0.7-0.8) Good, (0.6-0.7)

Average, and (0.5-0.6) Poor [59].

Furthermore, three statistical evaluation measures; accuracy, sensitivity, and specificity

were used to evaluate the performance of the trained landslide model. Accuracy(equation

3.10) is the proportion of landslide and non-landslide pixels that models correctly classified.

Sensitivity (equation 3.11) is the proportion of landslide pixels that are correctly classified

as landslide occurrences. Specificity(equation 3.12) is the proportion of the non-landslide

pixels that are correctly classified as non-landslide.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.10)

Sensitivity =
TP

TP + FN
(3.11)

Specificity =
TN

FP + TN
(3.12)
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TP(True Positive) indicate landslide instances classified as landslides. TN(True Negative) in-

dicate non-landslide instances classified as non-landslides. FP(False Positive) and FN(False

Negative) show non-landslide instances classified as landslides and landslide instances clas-

sified as non-landslides respectively.

3.2 Design Assumptions

The main scarp of the landslide represents the entire area covered by the respective

landslide. The terrain features of the study area remain constant from 1984 to 2018 during

which the occurrences of landslides were considered in this study. The rainfall measurement

of a particular location is considered equal to its average rainfall measurement throughout

the years from 1984 to 2018.

3.3 Random Forest Algorithm

RF is an ensemble classifier that uses multiple decision trees to make the final prediction.

Out of the identified candidate algorithms, Random Forest was selected to construct the

model considering the performance of the RF models in previous studies [6], [16], [18], [30],

[16]. To the best of our knowledge, Random Forest has also not been used in the prediction

of landslides in Sri Lanka before the time of this study.

RF implements a forest of random decision trees using the training set and assigns each

tree as a classification rule. RF employs a subset of predictors that are randomly selected

to perform the best possible split at each node. This random feature selection reduces the

correlation among two decision trees and reduces the out of bag error of any tree in the

forest. RF utilizes bagging to produce ensemble predictions from a forest of trees.

3.3.1 Mathematical Foundation

Random forest is an ensemble classifier which provides its final prediction based on the

most voted class from the class predictions carried out by its multiple decision trees. RF

employs two main decision tree algorithms [54] to define the rules and conditions to make

these predictions, evaluate the node impurity and iteratively divide the dataset.

1. Classification and Regression Tree(CART)

CART uses Gini Index[x6] to measure the quality of the split when splitting nodes
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of the decision tree. It measures the probability of a data sample being incorrectly

classified when it is chosen randomly. The following equation 3.13 is used to calculate

the gini index.

G =
k∑

k=1

Pk(1− Pk) (3.13)

k is the number of classes, which in this study was 2(landslide, non landslide) and

Pk is the proportion of the number of elements in class k. The purity of the node is

considered high when the value of the Gini index is small. This suggests that the node

primarily contains samples belonging to a single class [55].

2. Iterative Dichotomiser (ID3)

ID3 consists of an iterative structure which uses a decision tree formed using a subset of

the training dataset chosen at random to classify the remaining objects in the training

set [60]. ID3 uses Entropy and Information Gain to evaluate the node impurity or

the quality of the split at each node in the decision tree. The Entropy is defined by

equation 3.14

H(S) = −
k∑

k=1

PklogPk (3.14)

Pk is proportion of the number of elements in class k to the number of elements in

current dataset S. Entropy also takes a minimum value when the node purity is high,

similar to Gini index. Information Gain is the decrease in entropy calculated using

equation 3.15

Gain(S, a) = H(S)t1 −H(S|a)t2 (3.15)

a is the attribute evaluated to split, H is the entropy, t1 is the prior state and t2 is

the state after the split. The splits are carried out considering the decrease in entropy

between the parent node and the weighted average entropy of its children.

3.3.2 Bagging

In the training phase, each tree in the forest is grown by randomly selecting samples

(with replacement) from the training data set. This is known as “Bootstrapping”. This

results in training each model(tree) using different sets of samples from the training data

set. Therefore the ensemble prediction from the forest of trees tends to be more accurate

than an individual prediction from a single decision tree. In the testing phase, the final

prediction will be made by averaging the prediction of each decision tree. This process is

known as Bootstrap Aggregation in Random Forests. It is demonstrated in Figure 3.2.
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Figure 3.2: Boostrap Aggregation

Bagging improves accuracy when random features are used [61]. It also gives ongoing

estimates of the generalization error of the combined ensemble of trees, as well as estimates

for the strength and correlation [61].

3.3.3 Random Feature Selection

In Random Forest a node is split considering a random subset of all features available.

From the feature subset, the feature that produces the most separation between the data in

the left node and the right node is selected. Feature randomness minimizes the correlation

while maintaining strength [61]. From the 12 conditioning factors, a random subset of factors

is selected to split the nodes in each tree. Figure 3.3 demonstrates the random feature

selection carried out by the random forest algorithm with respect to landslide susceptibility.

Random forest algorithm has the ability to preserve its performance even when a large

proportion of data is missing and when the original data set presence with many outliers.

So in this study, these characteristics of RF were benefited as the nature of the original data

set used.
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Figure 3.3: Random Feature Selection in Random Forest

The effectiveness of Random Forest algorithm in landslide studies identified through

the investigation of past research was the principle reason behind the selection of Random

Forest algorithm to implement the prediction model. Random Forest algorithm also employs

two powerful concepts in machine learning which are bagging and random feature selection.

These concepts also play a huge role in improving the effectiveness of the application of

Random Forest in this study.

A summary of the research design used in the study is demonstrated in table 3.1.
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Research Design Aspect Type

Research Type Quantitative

Research Purpose Exploratory

Approach Design Science and Quantitative

Data Sources
NBRO

Department of Meteorology

Tools

QGIS 2.8.1

VS Code

Spyder

Result Evaluation
ROC

Accuracy, Sensitivity, Specificity

Result Visualisation Django based web application

Table 3.1: Summary of Research Design

3.4 Summary

Under this chapter, the six main steps followed to design and thus investigate the re-

search questions are discussed, namely; constructing landslide inventory map and preparation

of training and test data sets, preparation of landslide conditioning factor maps, correlation

analysis between landslides and conditioning factors, selection of conditioning factors, con-

struction of landslide susceptibility prediction model and evaluation of the performance of

the model.
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Chapter 4

Implementation

This chapter discusses the steps followed in the implementation of the prediction model.

Spatial analysis with respect to the landslide inventory was carried out using QGIS 2.8.1,

an open source Geographic Information System. Preparation of the dataset consisting of

landslide locations and their respective features took major portion of the time in the imple-

mentation phase due to heavy processing that had to be carried out to extract the necessary

features for each landslide location. The comprehensive set of tools and plugins provided by

QGIS assisted most part of the implementation. Python language was utilized in application

of the Random Forest algorithm on the dataset to predict landslide susceptibility. Visual

Studio Code, a free source-code editor developed by Microsoft for Windows and Spyder

which is an open source cross-platform integrated development environment for scientific

programming in the Python language were used for editing, refining and debugging the

python code.

4.1 QGIS

Quantum GIS or QGIS is a popular Geographic Information System available on all

major platforms with a steadily growing user base which easily exceeds 100,000 users even by

conservative estimates. The QGIS project provides one of today’s most popular applications

for working with spatial data. The multitude of user requirements has led to a diverse

ecosystem Quantum GIS is used all around the world for tasks as diverse as forestry and city

planning, bushfire mapping and paleontological surveys [62] etc. One feature that makes it

popular is its flexibility to scale with user requirements: from a simple data viewer, to data

collection, editing and analysis, to serving data on the web – on as many machines as needed

and without any licensing issues.
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QGIS Desktop application is considered the core of the QGIS ecosystem. It is a classic

desktop GIS application with powerful tools to view, edit and analyze spatial data. Addi-

tionally, there is an optional QGIS Browser application which acts as a data catalog and

viewer. It facilitates browsing through big data archives and lists of web services and of-

fers drag-and-drop of layers to QGIS Desktop. QGIS 2.8.1 desktop application was used to

manipulate maps in the study.

QGIS supports a wide variety of file formats, database systems (such as PostGIS, Oracle

Spatial, or MS SQL Server) and OGC standards compliant services such as WMS, WFS

and WPS. This ensures that Quantum GIS and other, even proprietary GIS can be used

side-by-side and complement one another.

QGIS is designed to be very modular. Users can both reduce and increase complexity

and functionality of the application by either removing unneeded user interface elements or

activating additional functionality via the plugin system.

4.2 Landslide Inventory

Preparation of landslide inventory is the basis for landslide prediction. A vector map

demonstrating 84 landslide locations in Kalutara district was provided by the NBRO and

QGIS was used to generate a landslide inventory map where landslide locations were depicted

using points. To identify landslide free area, symmetrical difference function under geopro-

cessing tools in QGIS vector analysis was used. Then the same number of non-landslide

locations were randomly sampled from the landslide free area. The final landslide inventory

map consisted of a total of 168 landslide locations and non-landslide locations. Figure 4.1

demonstrates the landslide inventory map prepared for Kalutara district with the landslide

and non landslide locations.

To extract the latitude and longitude of each of the landslide and non landslide points

several steps were followed. First, OpenStreetMap raster layer was added to QGIS map view

with EPSG:3857 coordinate system using OpenLayers Plugin. Then the landslide inventory

map was saved with EPSG:4326 as the CRS and added the map layer to the canvas. As the

final step the field calculator was used to generate latitude and longitude values from the

maps corresponding to each point.

For the landslide susceptibility prediction, inventory map was randomly split into two

subsets containing 118(70%) landslides and non landslide instances for training data set and

50(30%) landslide and non landslide instances for testing data set.
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Figure 4.1: Landslide Inventory

4.3 Thematic Maps of Conditioning Factors

In this study 12 conditioning factors were considered which are slope, aspect, geology, hydrol-

ogy, landform, land use, soil type, soil thickness, SPI, STI, TWI and rainfall. Thematic maps

were generated for all the conditioning factors using QGIS. Factors including slope, aspect,

SPI, STI, TWI, hydrology and rainfall having continuous values were divided into five equal

interval classes each. Geology, Landform, Land use and Soil Type & Thickness consisted of

several categorical classes each. The spatial distribution of each of these classes belonging

to the conditioning factors in the entire study area was visualized using the thematic maps.

4.3.1 Raster Maps

Using the contour lines extracted from the topographic map of 1:10000 scale, the Digital

Elevation Model(DEM) was created with a grid size of 10X10 m. Since contour map was
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available in the vector format it was converted to raster format using Rasterize function in

QGIS and DEM was generated using the DEM function available under Raster Analysis

in QGIS. DEM data was used to construct maps of the geomorphometric factors analyzed

in the study; slope, aspect, SPI, STI, and TWI. Figure 4.2 shows the DEM generated for

Kalutara district.

Figure 4.2: Digital Elevation Model(DEM)

Figure 4.3 demonstrates the thematic maps generated for slope, aspect, SPI, TWI and

STI. Slope, SPI, TWI and STI maps were reclassified into five classes while Aspect map was

reclassified into 9 classes. The colors represented by each class is given in the legend for each

map.
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Figure 4.3: Slope, Aspect, SPI, TWI, and STI Thematic Maps

The rainfall dataset provided by the Meteorological Department of Sri Lanka contained
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location(latitude and longitude) information and annual rainfall data collected from the 26

rain gauge stations in Kalutara district from 1984 to 2018. To generate a map for rainfall,

the average rainfall values were calculated for each station. Using the location information

and the calculated average rainfall values a map was generated in vector format where the

26 rain gauge stations were depicted as points on the map.

In order to visualize and get the rainfall distribution in the entire district, interpolation

of the point map was carried out using Inverse Distance Weighting method where the final

output was a raster map as shown in figure 4.4.

Figure 4.4: Rainfall Thematic Map

Since the generated rainfall map was following WGS 84 coordinate reference system

(CRS) which was different from the previous maps having WGS 84/UTM zone 44N CRS,

the map was reprojected to follow the same CRS as the others. This reprojection was

essential to get rainfall values corresponding to each landslide and non landslide point in the

construction of the feature pool.

47



4.3.2 Vector Maps

The thematic maps generated in vector format for geology, hydrology, land form, land use,

and soil type and soil thickness are given in figure 4.5.

7 Geology categories, 11 Hydrology categories, 19 Land Form categories, 35 Land Use

categories, and 28 Soil Type and Thickness categories were identified to be distributed

through out Kalutara district and was visualized using the following maps.

(a) (b)

(c) (d)
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(e)

Figure 4.5: (a)Geology, (b)Hydrology, (c)Land Form, (d)Land Use, and (e)Soil Type and

Thickness Thematic Maps

The conditioning factor maps which were in vector format were converted into a pixel(raster)

format with a spatial resolution of 10X10 m in order to get the pixel counts corresponding

to the classes of each landslide conditioning factor to calculate Frequency Ratio in the pre-

liminary study.

4.4 Frequency Ratio and Information Gain Ratio Calcu-

lation

Using the raster maps generated for the 12 conditioning factors as discussed in the previous

section, pixel counts were calculated using raster functionalities available in QGIS. The

number of landslide pixels in each class of the conditioning factors, total number of pixels

belonging to each class, number of landslide pixels in study area, and total pixel count in

the study area were obtained.

Using Clip by Mask Layer raster extraction available in GDAL, each raster layer was

clipped by providing the landslide polygon map as the mask. In GIS, clip is to overlay

a polygon on one or more target features (layers) and extract from the target feature (or

features) only the target feature data that lies within the area outlined by the clip polygon.

The clipped raster layer was then reclassified using r.reclassify, a Grass GIS geo-algorithm
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available in QGIS to obtain the classes for each conditioning factor. The reclassified raster

was used to report landslide pixel counts for each class of the respective conditioning factor

using r.report function. For example the clipped slope map was reclassified into five classes

as 0-16, 16-32, 32-48, 48-64 and 64-80 and the number of landslide pixels in each of these

classes were generated. The original raster map of the slope was reclassified in the same

manner to obtain the total number of pixels in each class.

These values were assigned to the frequency ratio equation and the frequency ratio values

were obtained for each class of the conditioning factors. The results obtained for frequency

ratio is given in the Results Chapter. From the results obtained from the correlation analysis

it was evident that only certain classes of conditioning factors have a high correlation to

landslide occurrence.

Similarly, pixel counts were generated from QGIS to get values for Information Gain and

Intrinsic Information for each conditioning factor. Information Gain and Intrinsic Informa-

tion values were used to calculate the Information Gain Ratio. The results obtained for

information gain ratio is discussed in the Results Chapter. Information Gain Ratio values

indicated that all the 12 conditioning factors initially considered in the study have a positive

landslide predictive capability there by demonstrating the relevance of their usage in the

prediction. Therefore 12 conditioning factors and the identified classes of the factors were

considered in the preparation of the feature pool.

4.5 Feature Pool

Landslide conditioning factors are the features considered in the landslide susceptibility

prediction. To extract features for each landslide and non landslide point, raster and vector

functions in QGIS was used. The vector maps of Geology, Landform, Land use, Soil Type

& Thickness were intersected with the landslide inventory map separately to generate a new

points map containing feature values for each point. Figure 4.6 demonstrates a sample of

the attribute table generated for vector map containing geology values for each landslide and

non landslide point. This attribute table values were saved to a CSV file in order to prepare

the feature pool. Similarly, using the maps generated for land form, land use, soil type and

thickness features corresponding to each point were extracted to a CSV file.
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Figure 4.6: Attribute Table - Geology

Since Slope, Aspect, SPI, TWI, STI, and Rainfall maps were available in raster format

and landslide inventory map was available in vector format, a raster-vector processing was

carried out to extract the features. A geo-algorithm available in QGIS to add grid values

to points was utilized. A sample of the attribute table of the output vector map generated

by the algorithm for slope is shown in figure 4.7. The same process was carried out to get

values of aspect, SPI, TWI, STI and rainfall for all landslide and non landslide points.

Figure 4.7: Attribute Table - Slope

In order to get the distance from waterways to each landslide and non landslide point
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using the Hydrology vector map, "Distance to nearest hub" function under vector analysis in

QGIS was used. It created a new vector map with the distances utilizing a geo algorithm to

calculate the distance in meters . Figure 4.8 demonstrates the attribute table of the output

vector map.

Figure 4.8: Attribute Table - Hydrology

Considering the continuous values obtained for Slope, Aspect, SPI, TWI, STI, Hydrology

and Rainfall at each landslide and non-landslide point, they were divided into equal interval

classes and labeled into categories. Then the labeled categories were included in the feature

pool as the Slope, SPI, TWI, STI, Hydrology, and Rainfall values for each landslide and non

landslide point. Table 4.1 shows the classes and the labels given to each class of Slope, SPI,

TWI, STI, Hydrology and Rainfall respectively.

Conditioning Factor Class Label

Slope

0 <= Slope < 15.7077 Slope Category1

15.7077 <= Slope < 31.4153 Slope Category2

31.4153 <= Slope < 47.1230 Slope Category3

47.1230 <= Slope < 62.8307 Slope Category4

62.8307 <= Slope < 78.5384 Slope Category5

78.5384 <= Slope Slope Category6
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Conditioning Factor Class Label

SPI

-1382.9666 <= SPI < 204.0868 SPI Category1

204.0868 <= SPI < 1791.1402 SPI Category2

1791.1402 <= SPI < 3378.1936 SPI Category3

3378.1936 <= SPI < 4965.2469 SPI Category4

4965.2469 <= SPI < 6552.3003 SPI Category5

6552.3003 <= SPI SPI Category6

TWI

7.7498 <= TWI < 9.1141 TWI Category1

9.1141<= TWI < 10.4784 TWI Category2

10.4784 <= TWI < 11.8427 TWI Category3

11.8427 <= TWI < 13.2069 TWI Category4

13.2069 <= TWI < 14.5712 TWI Category5

14.5712 <= TWI TWI Category6

STI

0 <= STI < 6.1262 STI Category1

6.1262 <= STI < 12.2524 STI Category2

12.2524 <= STI < 18.3786 STI Category3

18.3786 <= STI < 24.5049 STI Category4

24.5049 <= STI < 30.6311 STI Category5

30.6311 <= STI STI Category6

Hydrology

2.3399 <= Hydrology < 140.8605 Hydrology Category1

140.8605 <= Hydrology < 279.3810 Hydrology Category2

279.3810 <= Hydrology < 417.9015 Hydrology Category3

417.9015 <= Hydrology < 556.4220 Hydrology Category4

556.4220 <= Hydrology < 694.9425 Hydrology Category5

694.9425 <= Hydrology Hydrology Category6

Rainfall

3215.7876 <= Rainfall < 3465.4297 Rainfall Category1

3465.4297 <= Rainfall < 3715.0718 Rainfall Category2

3715.0718 <= Rainfall < 3965.7139 Rainfall Category3

3965.7139 <= Rainfall < 4214.3560 Rainfall Category4

4214.3560 <= Rainfall < 4463.9980 Rainfall Category5

4463.9980 <= Rainfall Rainfall Category6

Table 4.1: Reclassification of Slope, SPI, TWI, STI, Hydrology and Rainfall

53



To include these labels in the attribute tables of the previously generated vector maps,

field calculator in QGIS was used where an expression was defined to add respective labels

of the categories to each point in a new column. Figure 4.9 demonstrates the field calculator

parameters given to add the categories for slope. Similar expressions were defined to generate

the categories of aspect, SPI, TWI, SPI, Hydrology and Rainfall in their respective attribute

tables.

Figure 4.9: Field Calculator for Slope

This categorization was carried out to assist in the visualization of the decision trees in

the random forest. Rather than taking the distinct continuous values of each of the above-

mentioned attributes(features) as labels, considering the categories as labels stand to reason

when the nodes are split in the decision tree. Once the above steps were completed and

all the corresponding features were obtained at each landslide and non landslide point, a

separate CSV file was created to include these values so that the entire feature pool was

maintained in a single file. Figure 4.10 contains a sample of the final csv file used in the
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random forest classification.

Figure 4.10: Final Dataset

4.6 Prediction Model

Random Forest Classifier available in Scikit Learn which is a free software machine learning

library for the Python programming language was used to execute random forest algorithm

on the final data set prepared using the steps discussed above.

4.6.1 Preprocessing

As the initial step in fitting the data for random forest classification, categorical data was

normalized such that they contain only values between 0 and n_classes-1. LabelEncoder

utility class available in sklearn was used to carry our this task. The python function written

to achieve this given in listing 4.1.

1 from sklearn import preprocessing

2 def encodeDataset(data):

3 encode_data = preprocessing.LabelEncoder ()

4 dataset[’LandUse ’] = encode_data.fit_transform(data.LandUse.astype(str

))

5 dataset[’LandForm ’] = encode_data.fit_transform(data.LandForm.astype(

str))

6 dataset[’SoilTypeAndThickness ’] = encode_data.fit_transform(data.

SoilTypeAndThickness.astype(str))

7 dataset[’Geology ’] = encode_data.fit_transform(data.Geology.astype(str

))

8 dataset[’Slope ’] = encode_data.fit_transform(data.Slope.astype(str))

9 dataset[’Aspect ’] = encode_data.fit_transform(data.Aspect.astype(str))

10 dataset[’SPI’] = encode_data.fit_transform(data.SPI.astype(str))

11 dataset[’TWI’] = encode_data.fit_transform(data.TWI.astype(str))

12 dataset[’STI’] = encode_data.fit_transform(data.STI.astype(str))
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13 dataset[’Rainfall ’] = encode_data.fit_transform(data.Rainfall.astype(

str))

14 dataset[’Hydrology ’] = encode_data.fit_transform(data.Hydrology.astype

(str))

15 data=data.fillna (-999)

16 return data

Code Listing 4.1: Encode Data

4.6.2 Training and Testing

The 12 features were assigned to X while the class(landslide or non landslide) was assigned

to Y. The data set was split in the ratio of 70:30 for the training and testing respectively

using the code snippet given below(Listing 4.2).

1 from sklearn.model_selection import train_test_split

2

3 X_train ,X_test ,y_train ,y_test=train_test_split(X,y,test_size =0.3,

4 random_state =1,shuffle=’true’)

Code Listing 4.2: Split Data

X and y train sets were utilized in the training phase to fit to random forest classifier in

sklearn. There are several hyper parameters taken by the classifier as inputs. Some of them

are,

1. n_estimators: Number of decision trees.

2. criterion: The function to measure the quality of a split. Supported criteria are “gini”

for the Gini impurity and “entropy” for the information gain.

3. max_depth: The maximum depth of the tree. If None, then nodes are expanded until

all leaves are pure or until all leaves contain less than min_samples_split samples.

4. min_samples_split: The minimum number of samples required to split an internal

node

5. min_samples_leaf: The minimum number of samples required to be at a leaf node.

6. max_features: The number of features to consider when looking for the best split.

7. bootstrap: Whether bootstrap samples are used when building trees.
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8. oob_score: Whether to use out-of-bag samples to estimate the generalization accuracy.

9. random_state: Controls both the randomness of the bootstrapping of the samples

used when building trees and the sampling of the features to consider when looking for

the best split at each node

10. class_weight: Weights associated with classes in the form class_label: weight.

In order to get the model with the best predictive performance a set of these hyper

parameters were tuned. The optimal values were experimentally obtained by testing different

possible combinations. An example of a combination tried during the training phase is

demonstrated in code listing 4.3

1 #accuracy =74.51%

2 classifier=RandomForestClassifier(n_estimators =50, criterion=’entropy ’,

max_depth =10, min_samples_split =4, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

Code Listing 4.3: RF Classifier Hyper-Parameters

There were differences in accuracy of the model when the values of the hyper-parameters

were changed. Considering these differences in the model performance the optimal set of

hyper-parameters were selected for the model. Further analysis on the hyper-parameters

and the optimal set of hyper-parameters selected for the classifier is discussed in Chapter 5.

After providing the parameters to the classifier, it was fit to x and y training sets.

Once the random forest classifier was fit to x and y training sets, x test set was used to

carry out the prediction using the classifier in the testing phase. Listing 4.4 provides the

code snippet used for model fitting and prediction of landslide susceptibility.

1 classifier.fit(X_train ,y_train)

2 y_pred=classifier.predict(X_test)

Code Listing 4.4: Model Fitting and Prediction

4.6.3 Model Assessment

In order to assess the performance of the landslide susceptibility prediction model confusion

matrix and the ROC curve was generated. Using the confusion matrix values for accuracy,

sensitivity, and specificity were calculated. ROC curve was used to calculate the AUC value.

Listing 4.5 was used to calculate the above mentioned performance measures.
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1 from sklearn import metrics

2 from sklearn.metrics import roc_curve

3

4 cm=confusion_matrix(y_test ,y_pred)

5

6 Accuracy=float(cm[0 ,0]+cm[1,1])/float(cm[1 ,0]+cm[1,1]+cm[0,0]+cm[0 ,1])

7 Sensitivity = float(cm[0,0])/float(cm[0 ,0]+cm[0,1])

8 Specificity=float(cm[1 ,1])/float(cm[1,0]+cm[1 ,1])

9

10 probs = classifier.predict_proba(X_test)

11 probs = probs[:, 1]

12 fper , tper , thresholds = roc_curve(y_test , probs)

13 AUC_value=metrics.auc(fper ,tper)

14

15 print(’kappa index: ’, metrics.cohen_kappa_score(y_test ,y_pred ,weights=’

quadratic ’))

Code Listing 4.5: Performance Measures

4.7 Summary

This chapter elaborates the implementation of the research design in terms of technicality

associated. The topics discussed in the chapter includes the use of QGIS as a geographic

information system tool, to generate thematic maps for conditioning factors, manipulation of

the maps to extract the required features and implementation of the landslide susceptibility

prediction model using python.
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Chapter 5

Evaluation and Results

This research was aimed at identifying the applicability of 12 conditioning factors to predict

landslides in Kalutara district using Random Forest machine learning technique. Spatial

analysis of the data acquired from the National Building Research Organization and Meteo-

rological Department of Sri Lanka was carried out using QGIS from which the feature pool

for the random forest classifier was prepared. After the data preparation, implementation

and training of the model was carried out using scikitlearn.

This chapter unravels the results of the entire work process of the study. It provides

detailed description of the thematic maps generated from the initial data set, analysis on

the results of the pilot study and assessment on the performance of Random Forest based

prediction model.

The pilot study was carried out to identify the spatial relationships between each class

of conditioning factors and landslide events and to quantify the predictive capability of

individual conditioning factors. Analysis on the prediction model include discussion on

different approaches adopted in implementing the model and performance evaluation using

statistical measures and Area Under the ROC curve.

5.1 Evaluation of the Thematic Maps

As discussed in the previous section thematic maps were generated in vector format for

geology, land form, land use, hydrology, soil type and soil thickness. An analysis on each of

those maps are given below.
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Figure 5.1: Geology Thematic Map

Kalutara district consists of 7 types of geologies as depicted in figure 5.1. They are

Quartzite(Qtz), Granite Biotite Gneiss(GtBtGn), Charnochite(Ch), Charnockitic Gneiss(ChGn),

Khondalite(Kh), Quartzo Feldspathic(Qtzfd), and Granulatic Gneiss (GrGn). The spatial

distribution of the geology demonstrates that the study area mostly consists of lithologies

containing Charnockitic Gneiss followed by Khondalite.
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Figure 5.2: Land Form Thematic Map

The thematic map(Figure 5.2) generated for land form indicate five types of Erosion

Landforms and eight types of Slope Landforms in Kalutara. Colluvial benches(A11), river/stream

capture zones(A12), dissected gullied surfaces(C11), fault fracture zones(C13), and land-

slide scars(C16) are among the erosion landforms. Slope landforms present in the study

area include dissected plateaus(C22), straight slopes(C23), undulating land(D11), isolated

hillocks(D21), complex slope (D32), corrugated slope(D33), drainage basins(D34), corru-

gated and complex slope (D35), straight mountain slope(D36), mountain slopes(D37), and

talus/screen slopes (D38), complex hill(E32), dissected hill slope(E34), and complex cor-

rugated and dissected slope(E38). Dissected plateaus, drainage basins, and talus/screen

slopes are the most common land forms found in the region. Complex hills have the least

61



significance in the land form of the area.

Figure 5.3: Land Use Thematic Map

The land use in Kalutara, is rapidly changing from rubber plantation to other commercial

crops. According to the land use thematic map(Figure 5.3) it can be seen that mixed tree

crops, paddy and rubber cover a major part of land use in Kalutara district. Other types

of crops such as coconut, tea, annual crops and vegitable crops are also present. Forest

cover in the area mainly consists degraded forests and scrublands. Densed mixed forests,

patana\grasslands, erosional remnants, swamps, and lakes\ponds can also be found. Land

is also being used for other miscellaneous purposes, non-agricultural uses, estate settlements

and village homelets.
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Figure 5.4: Hydrology Thematic Map

Figure 5.4 demonstrated the hydrology map with 11 categories of water sources dispersed

in the study area. They are lake streams(STRML), rivers(STRMV), channels(CHNLL),

ground water sources(GNDBL), tanks(TANKL), watersheds(WTRHL), lake bunds (BUNDL),

lake anicuts(ANCTL), river basins(HYDRV), lagoons(LUSEL), and artificial tanks (TNKAL).

Significant portion of the hydrology of the district constitute of lake streams.
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Figure 5.5: Soil Type and Thickness Thematic Map

Since Kalutara belong to the wet zone of Sri Lanka, the climatic influences have affected

the dominance of red-yellow podzolic soil types [63] in the study area. Thematic map(Figure

5.5) generated for soil type comprises of five types of soil which are alluvial, boulders, collu-

vium, residual and rock exposure. Residual soils cover major part of the study area. Alluvial

soils have 1m thickness, colluvium soils have 1-5m of thickness and residual soils have 1-8m

of thickness while boulders and rock exposure having no thickness in the district.

Thematic maps generated in raster format for slope, aspect, SPI, TWI, STI and rainfall

demonstrated continuous values. Therefore they were reclassified into equal interval classes.

Analysis on the above mentioned raster maps are given below.
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Figure 5.6: Slope Thematic Map

Slope ranged from 0°-80°and it was classified into five classes as 0°-20°, 20°-40°, 40°-60°,

60°-80°, >80°. It was evident that larger part of the study area consisted of slope ranging

from 0° to 20° followed by slopes ranging from 60° to 80° and 40° to 60°.
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Figure 5.7: Aspect Thematic Map

Aspect map was grouped into nine classses as Flat(0°-22.5°), NorthEast(22.5°-67.5°),

East(67.5°-112.5°), SouthEast(112.5°-157.5°), South(157.5°-202.5°), SouthWest (202.5°-247.5°),

West(247.5°-292.5°), NorthWest(292.5°-337.5°), and North (337.5°-360°). The aspect distri-

bution indicated that Kalutara district mostly has West, East, South West and North East

aspects.
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Figure 5.8: SPI Thematic Map

SPI map consisted of five equal interval classes including (-2477)-(-1527), (-1527)-(-577),

(-577)-373, 373-1323, and >1323. Stream power index values generated for the study area

mostly belonged to 373-1323 class.
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Figure 5.9: TWI Thematic Map

TWI values were classified into five classes as 8-10, 10-12, 12-14, 14-16, and 16-18 in the

map. From the distribution of TWI vaues in the map, it was evident that the degree of

water accumulation in the district was between 10 to 12 and 12 to 14.
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Figure 5.10: STI Thematic Map

As shown in figure 5.10 0-5, 5-10, 10-15, 15-20, >20 were the classes used for the reclas-

sification of the STI thematic map. Predominant extent of the study area consisted of STI

values ranging from 0 to 5.

Figure 5.11 demonstrates the thematic map generated for rainfall in Kalutara district.

It was classified into 4 classes as 2490mm-2940mm, 2940mm-3390mm, 3390mm-3840mm,

and 3840mm-4290mm. Rainfall distribution indicated that average rainfall of the study area

mostly ranges from 3390mm to 4290mm. South West monsoon season contribute to 73% [64]

of the annual rainfall in Kalutara district. The minimum rainfall values experienced in the

study area was between 2490mm and 2940mm.
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Figure 5.11: Rainfall Thematic Map

Through evaluation of the thematic maps as discussed above, a comprehensive under-

standing of the topographical, geological, morphological and hydrological features of the

study area was obtained.

5.2 Pilot Study

An initial study was carried out to analyse the spatial relationship between each class of

landslide conditioning factors and landslide occurrence and to quantify the predictive capa-

bility of conditioning factors. The results obtained in the pilot study assisted in identifying

the highly correlated classes of conditioning factors with landslide occurrence and elimina-

tion of conditioning factors having null predictive capability in the study area. It paved way

in improving the quality of the constructed feature pool thereby enhancing the reliability
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of the prediction model. Following subsections provide the results and description of the

evaluation of results of the pilot study.

5.2.1 Correlation Analysis

Correlation between landslide locations and conditioning factors were revealed using Fre-

quency Ratio(Equation 3.4). Table 5.1 demonstrates the frequency ratio values obtained for

each class of conditioning factors. When FR>1 it indicates a higher correlation, while FR<1

indicates a lower correlation. An average value is informed by FR=1.

Conditioning Factor Class Frequency Ratio

Slope

0-16 0.242

16-32 1.908

32-48 2.179

48-64 1.739

64-80 1.265

Aspect

Flat 0.971

NorthEast 0.948

East 1.012

SouthEast 0.974

South 1.123

SouthWest 1.058

West 1.046

NorthWest 0.929

North 0.828

SPI

(-2480)-(-1719) 0.378

(-1719)-(-958) 2.144

(-958)-(-197) 1.933

(-197)-564 0.970

564-1325 0.918

TWI

8-10 2.039

10-12 1.682

12-14 0.502

14-16 0

16-18 0
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Conditioning Factor Class Frequency Ratio

STI

0-5 0.887

5-10 1.287

10-15 1.690

15-20 1.739

20-25 2.579

Soil Type

Colluvium 2.99

Alluvial 2.76

Residual 1.02

Boulders 0.68

Rock Exposure 0.35

Soil Thickness

Rs t=4-5 0.597

Rs t=3-4 0.140

Rs t=2-3 0.132

coll t=1 0.108

coll t=2 0.024

Landform

D38 0.107

D32 0.082

D37 0.069

C22 0.043

C23 0.036

C16 0.028

D34 0.022

Land Use

Mixed Tree Crops 0.005

Paddy 0.002

Annual Crops 1.524

Scrub Land 0.053

Rubber 0.006

Tea 0.052

Degraded Forest 0.051

Dense Mixed Forests 0.058

Village Home-lets 10.583

Rubber/Scrub Land 1.253
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Conditioning Factor Class Frequency Ratio

Geology

QtzFd 2.29

Qtz 1.55

ChGn 1.07

GrGn 0.07

GtBtGn 0

Ch 0

Kh 0

Hydrology

33-270 4.235

270-573 1.447

573-843 0.548

843-1113 0.115

1113-1383 0

Rainfall

2490-2940 0

2940-3390 0

3390-3840 0.489

3840-4290 3.094

Table 5.1: Frequency Ratio values for Conditioning Factors

For slope angles between 0 to 16, the frequency ratio was 0.242, which indicates low

probability of landslide occurrence. Since all other slope classes depict FR values greater

than 1, it can be concluded that they have high correlation to landslide events. The maximum

ratio value is obtained for slope angle between 32 and 48.

The probability of landslide occurrence in aspects facing south, south east, west and east

is the highest with frequency ratio values of 1.123, 1.058, 1.046 and 1.012 respectively. North

facing aspects(FR=0.828) demonstrates the least susceptibility to landslides. Other types

of aspects including flat, north east, south east and north west also have FR values close to

1, which may suggest a considerable probability of occurring landslides in such aspects.

It can also be seen that SPI values(FR=0.378) ranging from (-2480) to (-1719) are least

susceptible to landslides. The highest correlation with landslide occurrence is indicated by

SPI values between (-1719) to (-958) with a FR value if 2.144. When SPI is between (-958)

to (-197) also the probability of landslide occurrence can be considered high due to its FR

value(1.933).
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The results indicate that TWI between 8 and 12 has highest susceptibility to landslides

in the study area with FR values 2.039 and 1.682. TWI greater than 14 show the least

probability of landslide occurrence. When STI values are between 20 and 25, it demonstrates

an FR value of 2.579 suggesting a high probability of landslides. Classes of STI including 5-

10(FR=1.287), 10-15(FR=1.690) and 15-20(1.739) also have a considerably high correlation

to landslide events since they have FR values greater than 1.

In terms of soil type, colluvium has the highest FR(2.99). Therefore, the probability of

landslides occurring with colluvium soil type is greater than that of the other soil types.

The relationship between landslides and landform shows that the landform classes of D38

and D32 have FR values of 0.107 and 0.082 and the greatest potential for landslide occurrence

among the landform classes. The results also showed that land use for village home-lets has

the highest(FR=10.583) probability for landslide occurrence. Residual soil thickness in the

range of 4-5m and colluvium soil type with 2m thickness have the highest(FR=0.597) and

lowest(FR=0.024) susceptibility to landslide incidence, respectively.

Resulting FR values indicate that Quartzo Feldspathic geology class demonstrates an

increased susceptibility (FR = 2.29) to landslide occurrence compared with the other classes

of geology. Moreover, geology with GraniteBiotite Gneiss, Charnochite, and Khondalite, has

the lowest FR (0.000), indicating a low probability of landslide occurrence.

Frequency Ratio values calculated for hydrology indicate that here is high probability of

landslide occurrence when the distance to waterways is between 33m to 270mm(FR=4.235).

The least correlation(FR=0) between landslide occurrence is for distance to waterways from

1113m to 1383m. Rainfall between 3840mm to 4290mm demonstrate the highest probability

of landslides with frequency ratio of 3.094. Rainfall values between 2490mm and 3390mm

have the least susceptibility to landslides as indicated by the FR value of 0.

5.2.2 Attribute Relevance Analysis

In landslide modeling, as all the conditioning factors in the initial dataset may not have

the equal predictive ability and in some scenarios the presence of noisy parameters may

cause reduction of model performances. Therefore it is important to quantify the predictive

capabilities of conditioning factors and remove factors having null predictiveness. In order to

achieve this the Information Gain Ratio(IGR) was utilized. It is calculated using equation

3.5, 3.6, 3.7 and 3.8 as discussed in Chapter 3. Table 5.2 shows the calculated entropy

values, Information Gain, Split Information Gain values and Information Gain Ratios for
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the selected 12 parameters.

Conditioning Info(S) Info(S,A) Split.Info(S,A) Info.Gain(S,A)

Factor

Geology 0.1562 0.0272 0.8858 0.1456

Soil Thickness 0.1562 0.0418 0.7294 0.1568

Soil Type 0.1562 0.0964 1.7069 0.0035

Landform 0.1562 1.5762 14.5067 0.1010

Land use 0.1562 0.0941 2.4816 0.0250

Hydrology 0.1562 0.0241 1.8320 0.0721

Rainfall 0.1562 0.0035 2.3333 0.0654

Slope 0.1562 0.0121 2.341 0.0615

Aspect 0.1562 0.0881 1.8765 0.0362

SPI 0.1562 0.0144 1.0916 0.1299

TWI 0.1562 0.0552 1.7336 0.0582

STI 0.1562 0.1103 2.4816 0.0184

Table 5.2: Information Gain Ratio for Conditioning Factors

It can be observed that highest information gain ratio was given by soil thickness(0.1568)

followed by geology (0.1456), SPI(0.1299), landform(0.1010), hydrology (0.0721), rainfall(0.0654)

and slope(0.0615). The minimum information gain ratios were demonstrated by TWI(0.0582),

land use(0.0250), aspect(0.0362), STI(0.0184) and soil type(0.0035).

The results obtained for the information gain ratio indicated that none of the features

have zero information gain. It informs that none of the conditioning factors show null

predictiveness to the landslide occurrence. Therefore the set of 12 landslide conditioning

factors initially considered in the study was utilized in the implementation of the machine

learning model using Random Forest.

5.3 Results of Landslide Susceptibility Prediction Model

Based on the results obtained for the correlation analysis and analysis of the predictive

capability of conditioning factors in the pilot study, a total of 12 factors were selected and

used to implement the Random forest based prediction model.
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When fitting the random forest classifier to the data, one of the most important factor

that needs to be considered is tuning the hyper-paramters so that the best performance of

the model is achieved. In order to find the optimal set of hyper-paramters for the classifier,

model performance was tested for different combinations of the paramters. Following code

listing 5.1 demonstrates a sample of such combinations tried during the training phase and

the model accuracy achieved in each of those instances.

1 from sklearn.ensemble import RandomForestClassifier

2 #accuracy =64.71%

3 classifier=RandomForestClassifier(n_estimators =35, criterion=’entropy ’,

max_depth =10, min_samples_split =2, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

1 #accuracy =66.67%

2 classifier=RandomForestClassifier(n_estimators =35, criterion=’entropy ’,

max_depth =20, min_samples_split =4, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

1 #accuracy =68.63%

2 classifier=RandomForestClassifier(n_estimators =40, criterion=’entropy ’,

max_depth =10, min_samples_split =4, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

1 #accuracy =70.59%

2 classifier=RandomForestClassifier(n_estimators =20, criterion=’entropy ’,

max_depth =20, min_samples_split =2, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

1 #accuracy =72.55%

2 classifier=RandomForestClassifier(n_estimators =50, criterion=’entropy ’,

max_depth =20, min_samples_split =4, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)
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1 #accuracy =74.51%

2 classifier=RandomForestClassifier(n_estimators =50, criterion=’entropy ’,

max_depth =10, min_samples_split =4, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

1 #accuracy =76.47%

2 classifier=RandomForestClassifier(n_estimators =30, criterion=’entropy ’,

max_depth =20, min_samples_split =2, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

1 #accuracy =80.39%

2 classifier=RandomForestClassifier(n_estimators =35, criterion=’entropy ’,

max_depth =20, min_samples_split =2, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

Code Listing 5.1: RF hyper-parameters

Initially the the parameters were set to n_estimators:10, criterion:’gini’, max_depth:2

and the observed sensitivity, specificity and accuracy values were 64.0%, 57.69%, 61.53%

respectively. Then the depth of the decision trees were increased by setting max_depth:10

and a sensitivity of 64.0%, a specificity of 84.0% and an accuracy of 74.0% were recorded.

With criterion:’entropy’, depth with max_depth:20 and n_estimators:25, the overall per-

formance of the model could improved further with a sensitivity of 74.5%, a specificity

of 80.0% and an accuracy of 69.23%. The performance of the model decreased when the

value of n_estimators were decreased or increased to a value less than 35 without changing

values of other parameters. When the value of max_depth and min_samples_split was in-

creased it also affected the model performance to drop. It was identified that the best model

performance was achieved when n_estimators =35, criterion=’entropy’, max_depth=20,

min_samples_split=2, min_samples_leaf =1, max_features=’sqrt’, class_weight =’bal-

anced’, bootstrap=’true’, random_state =0, and oob_score=’true’. Therefore the following

set of optimal hyper parameters given in table 5.3 was used for the random forest classifier.
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Hyper-parameter Final Value

n_estimators 35

criterion entropy

max_depth 20

min_samples_split 2

min_samples_leaf 1

max_features sqrt

class_weight balanced

bootstrap true

random_state 0

oob_score true

Table 5.3: Optimal hyper-parameters

The classifier with optimal hyper-parameters was used fit the training data, it was used

to predict the landslide susceptibility using the test data. Figure 5.12 demonstrates the

confusion matrix generated from predictions obtained through the application of random

forest classification on the test data set.

Figure 5.12: Confusion Matrix

Sensitivity, specificity and accuracy values calculated using the confusion matrix for the

final model are given in table 5.4.
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Performance Measure Value Obtained

Accuracy 80.39%

Sensitivity 84.00%

Specificity 76.92%

Kappa Index 0.61

Table 5.4: Confusion matrix for prediction model

the confusion matrix included the values generated for the true positives(TP),true neg-

atives(TN),false positives(FP) and false negatives(FN).The values obtained from the confu-

sion matrix used to calculate various statistical indices,such as accuracy, sensitivity, speci-

ficity etc. The model showed 80.39% accuracy on testing data, while total of true positive

classifications were 21 which indicated the correctly classified pixels as landslide class. Out

of 51 test instances 20 of true negative classifications were given, indicating correctly clas-

sified non-landslide points to the non-landslide class.This indicates that the model was able

to correctly identify the potential landslide pixels out of non-landslide pixels in the study

area with a confidence of over 80% accuracy. Meanwhile, a total of 10 instances were miss-

classified including, of 4 false positives and 6 false negatives out of 51. An important fact

about these indicators are that, depending on the application domain and the risk carried

out in each prediction,sometimes the cost of false positives can be higher than the cost of

false negatives. this is because,the cost of emergency preparation activities that need to

be executed is relatively high in such disaster mitigation strategies.So maintaining a lower

false negative(FN) rate is also as important as maintaining a high TP and TN values in the

model.

As indicated by the Kappa Index value of 0.61, the the proposed approach shows a

nearly substantial reliability. However, landslide points classified as false negatives and false

positives are relatively low. There is a possibility of field data collection errors in the study

area as the reliability of the model not being excellent (Kappa > 0.81).
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Figure 5.13: Receiver Operating Characteristic

The prediction capability of the model was evaluated using the area under the ROC

curve, plotting the true positive rate(Sensitivity) against the false positive rate(1-Specificity)

values referring to the confusion matrix as shown in the figure 5.13. The area under the

curve obtained a value of 0.7946 (79.46%) which indicated a substantial agreement between

the observed landslide points and the predicted landslide points. The higher AUC value

was given along with the highest probability given by the model for the correctly classified

landslide points to the classified none-landslide points. So the AUC value was closer to 1 (or

100%) in the final model, which proves the high predictive capability of the model.

The results obtained from RF based landslide prediction model, were used to implement

a "Landslide Susceptibility Map"(LSM) for the study area, Kalutara district.The landslide

susceptibility indices(LSIs) were generated and reclassified the mapping area according to

different susceptibility classes.The LSIs were calculated based on the values obtained from

the RF model and the indices were classified into five classes using natural breaks method.

The identified classes are: very high, high, moderate, low and very low as shown in the figure

5.14.
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Figure 5.14: Landslide susceptibility map -Kalutara District

5.4 Summary

This chapter provides a comprehensive analysis of the results obtained in the study. It

evaluates the maps generated in the implementation process, results obtained in the pilot

study and finally assesses the performance of the landslide susceptibility prediction model

implemented using Random Forest. The results indicate that the model provides an accuracy

of 80.39% by employing the 12 conditioning factors in the prediction. Since the model has a

considerable accuracy it can be concluded that the applicability of slope, aspect, SPI, TWI,

STI, hydrology, geology, land form, land use, soil type, soil thickness and rainfall in the

prediction of landslide susceptibility in Kalutara district is successful.
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Chapter 6

Conclusion

In this study, the primary focus was to investigate a suitable approach to predict landslides

occurrences in Sri Lanka making use of both terrain and triggering factors of landslide causa-

tion. In the process of tackling the research question, ‘How to predict landslide susceptibility

using a machine learning employing the data extracted from contour maps, geospatial sta-

tistical data, and precipitation data?’, a sound understanding of how the existing landslide

prediction system works at NBRO, limitations and possible improvements were identified

first. Due to the increase in the reported landslide incidents in Kalutara district over the

last three years, it was selected as the case study. The related contour maps data and geo-

spatial statistical data were obtained from NBRO and average rainfall data was obtained

from the Department of Meteorology, Sri Lanka. In order to capture, store, manipulate, in-

terpret and analyze the geospatial data and the relationships between the data, capabilities

of a geographical information system was employed. In this study an open source GIS tool,

QGIS was used to achieve this.

According to past literature, it was identified that the role of conditioning factors over

landslide occurrence is crucial and not the same set factors affect the occurrence of landslides

throughout the world but site-specific. When tackling with the sub research questions ‘How

to determine the spatial relationship between landslide conditioning factors and landslide oc-

currence’ and ’How to eliminate landslide conditioning factors having low or null predictive

capability in the given study area’, with the use of Frequency Ratio and Information Gain

Ratio, it was deduced that only certain classes of the initial set of landslide conditioning fac-

tors were having an impact over landslide occurrence while none of the factors demonstrated

null predictiveness. These classes were considered during data pre-processing operations.

The need to explore on ‘What are the machine learning algorithms that can be used
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to predict landslide susceptibility with high accuracy?’ was fulfilled by reviewing similar

research work done in the landslide prediction domain and Random Forest was identified

to be demonstrating promising performance as a machine learning algorithm when several

factor classes have an impact on the final prediction.

The model showed 80.39% accuracy on test data. Out of 25 instances of true landslide

occurrences in the test data, 21 were correctly predicted as landslides and out of the 26 non-

landslide instances, 20 were correctly predicted as non-landslide occurrences. Depending on

the application domain and the risk carried out in each prediction, the cost of false positives

may be higher than the cost of false negatives.

Furthermore, to answer ‘How to evaluate the proposed approach and assess the accuracy

of the proposed model’, area under the ROC curve(AUC), specificity and sensitivity measures

were calculated. AUC value was 0.7946 (79.46%) indicating a substantial agreement between

the observed landslide instances and the predicted landslide instances. Since the value of

AUC is closer to 1 (or 100%) in the final model, it proved a high predictive capability of the

model.

Understanding and prediction of landslide susceptibility with high accuracy will help for

better decision making and thus plan risk mitigation actions in the future. It will also assist

in the reduction of the destruction of human lives and property.

6.1 Future Work

As future work, a natural extension of this study entails working to improve the accuracy on

the current model using other parameter fine tuning methods. Continuous investigating on

novel suitable machine learning algorithms to give out better prediction accuracy with high

true positive rate is also a viable research scope left to uncover.

In this study, only 12 factors were considered for predicting landslide susceptibility. In-

vestigating the possibility of using more than 12 landslide conditioning factors, to build the

model to predict the landslide susceptibility on the given study area is important as well.

Another possible avenue would be application of the existing model to detect new land-

slides distributed in other landslide-prone districts in Sri Lanka and include them as part

of the training samples. A higher number of landslides will increase the robustness and

generalization of the model.
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Appendix A

Prediction Model

1 import numpy as np

2 import pandas as pd

3 import seaborn as sns

4 import matplotlib.pyplot as plt

5 from sklearn import preprocessing

6 from sklearn import metrics

7 from sklearn.model_selection import train_test_split

8 from sklearn.metrics import confusion_matrix

9 from sklearn.ensemble import RandomForestClassifier

10 from sklearn.metrics import roc_curve

11

12 features_list =[’LandUse ’,’LandForm ’,’SoilTypeAndThickness ’,’Geology ’,’

Slope’,’Aspect ’,’SPI’,’TWI’,’STI’,’Rainfall ’,’Hydrology ’]

13

14 dataset = pd.read_csv(r’C:\Users\Dell\Desktop\FeaturesForAllPoints.csv’,

usecols=fields)

15

16 def encodeDataset(data):

17 encode_data = preprocessing.LabelEncoder ()

18 dataset[’LandUse ’] = encode_data.fit_transform(data.LandUse.astype(str

))

19 dataset[’LandForm ’] = encode_data.fit_transform(data.LandForm.astype(

str))

20 dataset[’SoilTypeAndThickness ’] = encode_data.fit_transform(data.

SoilTypeAndThickness.astype(str))

21 dataset[’Geology ’] = encode_data.fit_transform(data.Geology.astype(str

))

22 dataset[’Slope ’] = encode_data.fit_transform(data.Slope.astype(str))
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23 dataset[’Aspect ’] = encode_data.fit_transform(data.Aspect.astype(str))

24 dataset[’SPI’] = encode_data.fit_transform(data.SPI.astype(str))

25 dataset[’TWI’] = encode_data.fit_transform(data.TWI.astype(str))

26 dataset[’STI’] = encode_data.fit_transform(data.STI.astype(str))

27 dataset[’Rainfall ’] = encode_data.fit_transform(data.Rainfall.astype(

str))

28 dataset[’Hydrology ’] = encode_data.fit_transform(data.Hydrology.astype

(str))

29 data=data.fillna (-999)

30 return data

31

32 dataset=encodeDataset(dataset)

33

34 X = dataset.iloc[:, 0:11]. values

35

36 y=dataset.iloc [: ,11]. values

37

38 X_train ,X_test ,y_train ,y_test=train_test_split(X,y,test_size =0.3,

random_state =1,shuffle=’true’)

39

40 classifier=RandomForestClassifier(n_estimators =35, criterion=’entropy ’,

max_depth =30, min_samples_split =2, min_samples_leaf =1, max_features=’sqrt’

,class_weight=’balanced ’,bootstrap=’true’,random_state =0, oob_score=’

true’)

41 classifier.fit(X_train ,y_train)

42 y_pred=classifier.predict(X_test)

43

44 cm=confusion_matrix(y_test ,y_pred)

45 print(cm)

46

47 Accuracy=float(cm[0 ,0]+cm[1,1])/float(cm[1 ,0]+cm[1,1]+cm[0,0]+cm[0 ,1])

48 Sensitivity = float(cm[0,0])/float(cm[0 ,0]+cm[0,1])

49 Specificity=float(cm[1 ,1])/float(cm[1,0]+cm[1 ,1])

50

51 def plot_roc_cur(fper , tper):

52 plt.plot(fper , tper , color=’orange ’, label=’ROC’)

53 plt.plot([0, 1], [0, 1], color=’darkblue ’, linestyle=’--’)

54 plt.xlabel(’False Positive Rate’)

55 plt.ylabel(’True Positive Rate’)

56 plt.title(’Receiver Operating Characteristic (ROC) Curve’)
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57 plt.legend ()

58 plt.show()

59

60 probs = classifier.predict_proba(X_test)

61 probs = probs[:, 1]

62 fper , tper , thresholds = roc_curve(y_test , probs)

63 plot_roc_cur(fper , tper)

64

65 print(’Kappa Index: ’, metrics.cohen_kappa_score(y_test ,y_pred ,weights=’

quadratic ’))
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