

UrbanAgro : Application to Support Sri

Lankan Urban Farmers to Detect and

Control Common Diseases in Tomato

Plants

W.L.V. Fernando 16000471

H.A.D.D. Navodi 16000943

Supervisor: Dr. Thilina Halloluwa

Co-Supervisor: Ms. Hiruni Kegalle

March 2021

Submitted in partial fulfillment of the requirements of the

B.Sc(Hons) in Software Engineering 4th Year Project (SCS4123)

i

Declaration

I certify that this dissertation does not incorporate, without acknowledgment, any

material previously submitted for a degree or diploma in any university and to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person or myself except where due reference is made in the text. I

also hereby give consent for my dissertation, if accepted, be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Candidate Name: Ms. W.L.V. Fernando

………………………………………………

Signature of Candidate Date: 26.03.2021

Candidate Name: Ms. H.A.D.D. Navodi

………………………………………………

Signature of Candidate Date: 26.03.2021

This is to certify that this dissertation is based on the work of Ms. W.L.V. Fernando and

Ms. H.A.D.D. Navodi under my supervision. The dissertation has been prepared

according to the format stipulated and is of the acceptable standard.

Supervisor’s Name: Dr. Thilina Halloluwa

………………………………………………

Signature of Supervisor Date:

Co-Supervisor’s Name: Ms. Hiruni Kegalle

………………………………………………

Signature of Co-Supervisor Date:

ii

Abstract

Plant diseases cause many significant damages and losses in crops around the world.

Some appropriate measures should be introduced on identification of plant diseases to

prevent damages and minimize losses. With Covid-19 lockdowns many Urban dwellers

are encouraged to grow their own foods. As most urban farmers do not tend to use

pesticides in their farms there is a high chance for the crops to get caught of various

diseases. Comparatively, identifying the plant diseases visually is expensive, difficult

and inefficient. And also getting expertise knowledge is very expensive and practically

impossible to reach them whenever they need. As such this might be a difficult task for

urban farmers or newcomers to this field to decide which disease can be attached to the

crops. Early detection of diseases helps in increasing the productivity of crops as well

as in minimizing expenses. Technical approaches using machine learning and computer

vision are actively researched to achieve intelligence farming by early detection on plant

diseases. The accuracy of object detection and recognition systems has been drastically

improved by the recent development in Deep Neural Networks. The system proposed

presents a practical, applicable solution for the identification of the type and location of

5 different types of diseased and healthy leaves of tomato plant, which is a significant

difference from the conventional methods for plant disease classification. In this context

we have used YOLOv3 model which is a method based on transfer learning to diagnose

tomato plant diseases using images taken in-place by camera devices on smartphones

instead of using the procedure to collect, test and analyze physical samples (leaves,

plants) in the laboratory. The trained model achieved an average accuracy of 92 percent,

which is exceptional in comparison to previous studies in this context. The target group

of users are urban farmers who request a quick diagnosis on common tomato leaf

diseases at any time of the day as they lack knowledge on diseases that are attached with

plants.

iii

Acknowledgements

We take this opportunity to gratefully acknowledge the assistance and contribution

supervisors and advisors who have been helping throughout the project.

First and foremost we would like to express gratitude to our Supervisor Dr. Thilina

Halloluwa and our Co-supervisor Miss. Hiruni Kegalle for their guidance,

encouragement and immense knowledge to do a better quality project. They were always

there whenever we needed their help and ideas. We are really thankful for them who

made our concepts clearer.

At last we would like to acknowledge all the assistance and contributions of the

University of Colombo School of Computing for supporting us with all that is needed

starting from the knowledge, and ending with the full care that it is provided with, to

help us to be professionals in the field of Software Engineering.

iv

Table of Contents

Declaration i

Abstract …… .. ii

Acknowledgements .. iii

Table of Contents ... iv

List of Figures .. vii

List of Tables .. ix

List of Acronyms ... x

Chapter 1 - Introduction ... 1

1.1 Introduction and Motivation ... 1

1.2 Problem Statement ... 2

1.3 Aim ... 3

1.4 Objectives ... 3

1.5 Scope of the Project .. 3

1.6 Novelty .. 3

1.7 Limitations .. 4

1.8 Justification for a Product Based Project .. 4

1.9 Outline of the Dissertation .. 5

Chapter 2 - Literature Review ... 6

2.1 Pre-processing ... 6

2.2. Feature Extraction .. 6

2.3 Machine Learning ... 7

2.4 Deep Learning ... 8

2.4.1 Classification .. 9

v

2.4.2 Object Detection .. 9

Chapter 3 - Analysis and Design .. 14

3.1 System Overview .. 14

3.2 Use Case Diagram ... 14

3.3 Use Case Narratives .. 15

3.4 Activity Diagram .. 19

3.5 Architectural Pattern ... 20

3.6 Quality Attributes .. 20

Chapter 4 - Implementation .. 22

4.1 Methodology ... 22

4.2 Data Collection ... 22

4.3 Image Annotation .. 24

4.4 Data Augmentation ... 25

4.5 Deep Learning Model ... 25

4.5.1 YOLOv3 Design .. 26

4.5.2 Justification for Choosing a Object Detection Model Over a Classification

Model .. 28

4.6 Model Training ... 28

4.7 Graphical User Interfaces (GUI) ... 30

4.8 The Use of Design Patterns ... 35

4.9 Justification for Tools and Technologies .. 36

Chapter 5 - Results and Analysis ... 39

Chapter 6 - Evaluation and Testing ... 47

6.1 Evaluation of the Model .. 47

6.1.1 Model Results .. 51

6.1.2 Comparison of Our Results with Previous Works 52

vi

6.2 Testing Plan .. 53

6.2.1 Test Items ... 53

6.2.2 Testing Approaches ... 53

6.3 Test Results ... 55

6.3.1 Automation Testing ... 55

6.3.2 Manual Testing .. 58

Chapter 7 - Conclusion .. 62

7.1 Shortcomings of the Study .. 62

7.2 Future Directions .. 63

Peer Evaluation ... 64

References … .. 65

vii

List of Figures

Figure 1.1: Common diseases in tomato plants ... 2

Figure 3.1: System overview ... 14

Figure 3.2: Use case diagram .. 14

Figure 3.3: Activity diagram .. 19

Figure 4.1: Methodology ... 22

Figure 4.2: Images of classes from PlantVillage dataset ... 23

Figure 4.3: Images of classes from PlantDoc dataset ... 24

Figure 4.4: Image annotation using LabelImg tool ... 24

Figure 4.5: Comparison with other object detectors [29] .. 26

Figure 4.6: YOLOv3 network architecture [30] ... 27

Figure 4.7: Launch screen ... 30

Figure 4.8: Interface of Home screen ... 31

Figure 4.9: Interface of Upload Image screen .. 32

Figure 4.10: Interface of Result screen: displaying the processed image and control

instruction ... 33

Figure 4.11: Interface of zoomed in image and results showing for Late Blight disease

 ... 34

Figure 4.12: Interface of a Result screen showing results as healthy 35

Figure 5.1: Training Loss observed in Experiment 1 ... 40

Figure 5.2: Validation Loss observed in Experiment 1 .. 41

Figure 5.3: Training Loss observed in Experiment 2 ... 42

Figure 5.4: Validation Loss observed in Experiment 2 .. 43

Figure 5.5: Prediction of disease in Experiment 1 .. 44

Figure 5.6: Prediction of disease in Experiment 1 .. 44

Figure 5.7: Prediction of disease in Experiment 2 .. 45

Figure 5.8: Prediction of disease in Experiment 2 .. 45

Figure 6.1: Training loss .. 48

viii

Figure 6.2: Validation loss ... 49

Figure 6.3: Prediction of the disease .. 50

Figure 6.4: Prediction of the disease .. 50

Figure 6.5: Prediction of the disease .. 51

Figure 6.6: Sample of unit testing results of python application 55

Figure 6.7: Sample of unit testing results of Flutter application 56

Figure 6.8: Sample of unit testing results of Flutter application 56

Figure 6.9: Sample of widget testing code of Flutter application 56

Figure 6.10: Sample of widget testing results of Flutter application 57

Figure 6.11: Sample of widget testing results of Flutter application 57

Figure 6.12: Sample of widget testing code of Flutter application 57

Figure 6.13: Sample of widget testing results of Flutter application 58

Figure 6.14: Sample of widget testing results of Flutter application 58

ix

List of Tables

Table 2.1: Summary of some studies in plant disease classification 11

Table 3.1: Use case narrative for upload a photo ... 15

Table 3.2: Use case narrative for detect disease .. 16

Table 3.3: Use case narrative for suggest remedies ... 17

Table 3.4: Use case narrative for send results .. 17

Table 4.1: Summary of PlantVillage dataset ... 23

Table 4.2: Summary of PlantDoc dataset ... 23

Table 4.3: Parameter configuration during the training ... 29

Table 5.1: Results obtained from experiments... 43

Table 6.1: Average Precisions (AP) on the test set for each class and mAP 51

Table 6.2: Comparison with previous work .. 52

Table 6.3: Manual testing performed ... 58

x

List of Acronyms

API - Application Programmimg Interface

CNN - Convolutional Neural Networks

DL - Deep Learning

GIoU - Generalized Intersection over Union

IoU - Intersection over Union

JSON - Javascript Object Notation

mAP - Mean Average Precision

R-CNN - Regions with Convolutional Neural Networks

R-FCN - Region-based Fully Convolutional Network

SSD - Single Shot Detector

SVM - Support Vector Machine

YOLO - You Only Looks Once

1

Chapter 1 - Introduction

1.1 Introduction and Motivation

COVID-19 lockdowns are forcing people to rethink their lifestyles, particularly in terms

of food as they have seen how panic buying left many supermarket shelves empty. As a

result, many urban dwellers have transformed their back yards or rooftops of their

apartments into “Urban Farms” [1].

Tomato is a plant that is enjoyed both as a fruit and a vegetable worldwide. The

temperature that is required for tomato cultivation varies from Centigrade 20 to 27 which

is the temperature that exists in most areas of Sri Lanka throughout the year [2]. As such,

since 2013, Sri Lanka has enjoyed a healthy production of approximately 80000 tons of

tomato on average annually [3]. Further, it takes only 40 to 50 days after planting to

produce fruits/vegetables [4]. Also, it is a plant which can be grown in both backyard

pots as well as the highly commercial fields. Due to these reasons there is a tendency for

people in urban areas to grow tomatoes in their “Urban Farms”.

When it comes to tomato farming, tomato crop diseases can not be ignored. They are

attacked by many types of fungus, bacteria and virus. According to the experts, the most

common diseases found in tomato farming are Late blight, Leaf Mold, Bacterial spot

and Yellow leaf curl virus (Figure 1.1) [5]. These diseases need different types of control

measures. A brief description on those diseases are given below;

Leaf mold: The initial signs are light green or yellowish points on the top surface of the

leaf that eventually enlarge to become yellow. [6].

Bacterial spot: Small angular to irregular, water-soaked spots on the leaves are the

symptoms. [7].

2

Late blight: Late blight appears first as water-soaked, gray-green spots on the lower,

older leaves. These leaf spots will rapidly enlarge, and a white mold will appear at the

affected area's margins on the lower surface of the leaves. [8].

Yellow leaf curl virus: Plants that affected this disease exhibit upward and inward rolling

of the leaf margins and yellowing of leaflets. This is a destructive disease which causes

severe loss in productivity [9].

Leaf Mold Bacterial Spot

Late Blight

Yellow Leaf Curl

Virus

Figure 1.1: Common diseases in tomato plants

1.2 Problem Statement

For urban farmers disease detection and taking necessary control measures play a crucial

role in tomato farming. As most urban farmers do not tend to use pesticides in their

farms there is a high chance for the crops to get caught of various diseases. As such this

might be a difficult task for urban farmers or newcomers to this field to decide which

disease can be attached to the crops.

The symptoms of tomato plant diseases are conspicuous in different parts of a plant such

as leaves, stems, fruits [10]. But the manual detection of a tomato plant disease using

leaf images is a challenging task. Hence an automatic disease detection technique can

be advantageous specially for newcomers to this field in order to detect a plant disease

and to take preventive measures and control plant diseases at a very initial stage.

The detection and recognition of plant diseases based on deep learning provide hints for

early stage detection of diseases. Comparatively, identifying the plant diseases visually

is expensive, difficult and inefficient. Also it requires a higher level of expertise of

trained agricultural experts and botanists.

3

1.3 Aim

The aim of our project is to develop a practical, reliable and inexpensive real time

application to support urban farmers by detecting tomato plant diseases and guiding

them to take necessary control measures to enhance the productivity of the tomato

plants.

1.4 Objectives

• Reviewing existing similar solutions on detecting plant diseases.

• Exploring real time technologies that are available to detect plant diseases.

• Find an effective and accurate approach to detect diseases on tomato plants.

• Find a simple and user friendly way to reach the urban farmers through an

application which can detect diseases on tomato plants.

1.5 Scope of the Project

• Classification & localization model that is designed to detect 5 different types of

diseased and healthy leaves of tomato plant.

• Identification of the control measures and mapping them with the respective

disease.

• Implementation of the mobile application to communicate the identified disease

and the control measures to the farmer effectively.

1.6 Novelty

This project marks its novelty by successfully detecting 5 different types of diseased and

healthy leaves of tomato plant in heterogeneous background using one of the best object

detection models recently introduced which gives more accurate results in real time than

the previous works carried out in this field.

4

In addition to that our application provides following facilities when compared to most

of the traditional approaches used in the context of plant disease detection.

• Our application uses images of tomato plant diseases taken on site rather than

collecting and analyzing samples in the laboratory.

• The possibility is considered that more than one disease can be affected by a

single plant at the same time.

• It offers a convenient real-time application that can be used in the field without

the use of costly and complicated technologies.

• Our approach uses input images captured by various mobile phone camera

devices with different resolutions.

• With differing sizes of objects and changes of background contained in the plant

environment, the system results are not impacted negatively.

• It offers the end-user the remedies for the tomato plant diseases detected.

1.7 Limitations

• Detects only 5 different types of diseased and healthy leaves of tomato plants.

• The control measures are given considering only the type of disease in the plant

such that the control measures are not given accordingly to the severity of the

disease.

• Identification of diseases affecting the parts other than leaves in tomato plants is

out of scope.

1.8 Justification for a Product Based Project

Software engineering projects focus on the development of software products with the

main intention of doing an innovation rather than an invention. According to the facts

described in the previous section this project consists of an innovative research

component of successfully detecting 5 different types of diseased and healthy leaves of

tomato plant in real time with a mean average accuracy of 92 percent. The goal is

building a mobile application that could be used by the urban tomato farmers to detect

5

the diseases in their farms neither having to place expensive devices in their farms nor

having to reach expertise consultancy.

Having considered the overall characteristics and capabilities of the members and the

time constraints, an iterative and incremental method was adopted as the software

engineering process model. The application was divided into components and these

components were completed and improved in subsequent iterations gradually, before

they were combined into a system. Rather than delivering the whole project at once, the

application is developed with the feedback of the supervisors to do necessary changes

on the application on time.

We considered the best practices in software engineering such as adapting quality

assurance principles and design patterns which will ensure the quality of the system and

enhance the system’s maintainability, flexibility and adaptability. Version controlling

and code reviews (peer reviews) was carried throughout the project to maintain best

coding structures and increase the quality of coding.

From the above facts it points to the conclusion that this is a software engineering project

and to be more specific; this is a product-based software engineering project.

1.9 Outline of the Dissertation

The dissertation contains six main chapters each dedicated to an important aspect of the

system. Chapter 1 provides an overview of the application from problem definition to

the solution identified. Chapter 2 discusses the related work carried out regarding plant

disease detection. Chapter 3 gives a detailed description of problem analysis and system

design along with UML diagrams. Chapter 4 describes the approach used to solve the

problem identified and the tools and technologies used in the implementation process.

Chapter 5 depicts two approaches adapted to train the model and compares the findings

of those approaches. Chapter 6 explains how the testing was carried out and how the

system was evaluated. Chapter 7 provides the conclusion as the final chapter of the body

of the dissertation.

6

Chapter 2 - Literature Review

2.1 Pre-processing

Various preprocessing techniques are applied to the images to process raw images and

then to get useful images for further processing and analysis. For instance, Vetal et al

[11], uses Kurtosis and skewness filters to smoothen images. Then performed the image

segmentation using the inverse difference method to part disease affected area from the

leaf. After this stage, two images were available, one with only diseases and one with

disease extracted images.

In order to enhance the quality of the images and upgrade the feature extraction phase,

Mokhtar et al [12] applied leaf image isolation, image resizing, and background

removing as the preprocessing techniques. They manually cropped the image to separate

every leaf in the image and since the input images are in different sizes, they resized the

images to 512512 resolution to make them identical in size so that the storage capacity

is utilized and the computational time is pulled down in later phases. Although the leaf

image is isolated and extracted at an early phase still there can be small parts and

shadows remaining disturbing the feature extraction phase. In order to overcome that

issue, the background of each image was removed using the background subtraction

technique with some morphological operations.

Sabrol et al [13], resized and standardized the images to a fixed size of 256 × 256. Then

recognized the tomato plant diseases by classifying them using a decision tree having

applied Otsu’s segmentation to convert intensity-based feature extraction.

2.2. Feature Extraction

Feature extraction is performed on images to extract features for classification. For

instance, Vetal et al [11], considered the color and texture of the segmented disease-only

images to extract the unique features from the image. Color features were extracted by

converting the RGB image of a leaf into HIS color space. Texture features that were

7

extracted are Energy, Entropy, correlation, and homogeneity. A minimum of 80 sample

images per disease was chosen to extract features.

Measuring certain features or properties like texture and color in order to reduce the

original dataset was described as the motive of the feature extraction phase by Mokhtar

et al [12]. They extracted the textural pattern of tomato leaves using Gabor wavelet

transformation and extracted 402 such texture-based features and represented them in a

database as vector values.

The digital image represents using digital information that contains the color intensity

values of each pixel. The perception of a color is a combination of three primary colors

red, green, and blue. In the study of Sabrol et al [13], the pattern of the disease symptoms

are recognized by the intensity of each disease infected tomato plant image. A total of

ten intensity-based statistical features were computed for each plant disease. Then ten

color descriptors were computed for three colors. Finally, the extracted features were

submitted to three different classifiers.

2.3 Machine Learning

In the context of plant disease detection traditional machine learning approaches such

as SVM and decision trees are more applicable in the identification of plant images in

uniform-background where they are captured in an ideal laboratory environment. The

reason behind this is in diagnosing plant diseases using traditional machine learning

approaches efficiency is reduced because images should undergo some complex image

preprocessing and feature extraction steps.

After the phases of pre-processing and feature extraction, machine learning approaches

are used to determine which disease is present in the leaf. For instance, Vetal et al [11],

used a multi-class SVM algorithm to identify four key diseases in tomato plants namely

Early Blight, Septoria Leaf Spot, Bacterial Spot, and Iron Chlirosis using 320 images.

The training dataset was prepared by extracting the co-occurrence features for the leaves

with analogous feature values. The result reported better classification accuracies for all

the four diseases and the percentage accuracy is 93.75%.

8

Mokhtar et al [12] used SVM to classify 2 tomato plant diseases, Powdery Mildew and

Early Blight using 200 images. It was trained and tested using different kernel functions

such as Cauchy kernel, Invmult Kernel and Laplacian Kernel comparing different

results yielded. They achieved 99.5% of accuracy.

Sabrol et al [13], proposed a solution to detect 5 diseases of tomato plants using a

decision tree using 670 images of disease infected areas of the plant and achieved 78%

accuracy. They have proposed to combine some statistical and geometric features with

more other classifiers. The decision tree based classifier follows the criteria of if-then

rules. They had considered five types of tomato plant diseases and healthy images for

the experiment. The proposed algorithm computed ten statistical normalized features

and submitted to a classifier based decision tree. The recognition accuracy of bacterial

canker: 84.6%, bacterial leaf spot:69.2%, late blight: 80.7%, septoria leaf spot: 92.3%,

leaf curl:70% and healthy recognized with 70%. The overall recognition accuracy

yielded 78% and that was quite satisfactory.

2.4 Deep Learning

The main incentive using deep learning for computer vision is without having to use

hand-crafted features it can exploit the image directly. This is because CNNs can extract

features automatically and directly with no need of complex preprocessing on images.

But it requires a high machine configuration, large amounts of data and relies on large

scale datasets. To solve that problem transfer learning comes to play. Transfer learning

enables us to use models trained on one computer vision task with a large number of

labelled images to use in another task. It removes the need for a huge dataset and a lot

of computational power to train a model from scratch. In comparison to models trained

from scratch, transfer learning experiments are much faster and more accurate[14][15].

9

2.4.1 Classification

Image classification involves assigning a class label to an image. This decides, using the

classification model, which disease is present in the leaf. This model should be trained

with labeled data using learning algorithms.

Mohanty et al. [14] used AlexNet and GoogLeNet to detect 26 diseases from 14 crop

species. They used 54206 images of diseased and healthy plant leaves to train the model.

They achieved an overall accuracy of 99.35% on the held-out test set.

Brahimi et al. [15] did a comparison between AlexNet and GoogLeNet architectures for

tomato plant diseases by using 14828 images of healthy and diseased leaves from Plant

Village dataset in which GoogLeNet performed better than AlexNet. They achieved

98.66% accuracy with Alexnet and achieved 99.17% accuracy on GoogLeNet. They had

achieved this accuracy by getting a portion of the same dataset they used for training as

the test set.

The 3 deep learning models Densnet161, DensNet121 and VGG16 with transfer learning

were taken into consideration by Ouhami et al. [16] to find the machine learning model

for tomato-growing disorders in standard RGB images. The study was based on images

of infected leaves of plants divided into six kinds of infections, pest attacks and plant

conditions. They used a 666-image dataset and divided the data set into 80% for training

and 20% for evaluation. They achieved accuracy of 95.65% for DensNet161, 94.93%

for DensNet121 and 90.58% for VGG16.

2.4.2 Object Detection

Unlike image classification, in object detection it is required to detect and locate certain

multiple objects from the image. Few deep learning algorithms were developed for the

purposes of object detection which are primarily divided into two categories. One

approach is for the algorithm to generate a series of candidate frames as samples, and

then classify the samples using CNN, such as RCNN [17], which was one of the first

algorithms in the context of object detection through CNN, faster RCNN [18], and R-

10

FCN [19]. The other transforms the problem of object bounding box location directly

into a regression problem, which does not require the generation of candidate boxes.

SSD [20] and YOLO [21] are two examples for such algorithms. There have been very

few studies that have used object detection algorithms in the context of plant disease

recognition.

Fuentes et al. [22] did a comparison between three network structures, Faster R-CNN,

SSD and R-FCN with different feature extractors, AlexNet, ZFNet, GoogLeNet, VGG-

16, ResNet-50, ResNet-101 and ResNetXt-101 for the recognition of tomato plant pests

and diseases. Dataset of 2823 images that contain 9 classes of pests and diseases were

used in this work. Data augmentation was applied due to the small number of images in

the dataset. Dataset was divided into 8o% for the training set, 10% for the validation set

and 10% for the testing set. Study states that some classes with high variation in patterns

are often confused with others due to lack of sample numbers, leading to false positives

or low average precision. It states that R-FCN with the ResNet-50 feature extractor gave

best results with a mean AP of 85.98%.

Cynthia et al. [23] presents a method that detects 5 different diseases from plant leaf

images (Blast of Rice, Sigatoka Leaf Spot of banana, Black Spot of Rose, White Rust

of Mustard, Grey Spot of Mustard) using Tensorflow, and the model was trained using

a faster R-CNN method. They used a dataset containing only 236 images. The difference

between R-CNN and faster R-CNN is that faster R-CNN does not require selective

search and allows the network to generate ideas for regional proposals. However, this

algorithm does not use selective search, and another network is used to predict region

proposals. They divided the entire dataset into two parts: 80 percent of the total images

were taken for training samples, and 20 percent of the total images were taken for test

samples. From that, they achieved the accuracy value of 67.34%.

Jiang et coll. [24] suggested an enhanced deep learning method of CNN-based to detect

Apple Leaf and Insect Pests in real time. Primarily, an apple leaf disease data set was

composed using laboratory images and complex images in real-world conditions by

means of data expansion and images annotation technology. A new method has therefore

been suggested by introducing GoogleNet inception structure and rainbow

11

concatenation. Finally, five common insect pests and apple leaf disease images were

trained in the proposed INAR-SSD (SSD with a perception module and rainbow

condition). The model obtained 78.80% mAP according to experimental results.

The summary of some studies in plant disease classification is shown in Table 2.1. These

studies show some principal issues. Such as a small number of images in datasets,

accuracy results which are relatively low and to fail to detect diseases from the images

taken under conditions different from the images used for training.

Table 2.1: Summary of some studies in plant disease classification

Study Approach Diseases Dataset Accuracy Drawback

Vetal et

al [11]

Multi-class

SVM

Early blight,

Septoria leaf spot,

Bacterial spot,

Iron chlirosis

320

images

93.75% Images in the

dataset were very

less

Mokhtar

et al [12]

SVM Powdery mildew,

Early Blight

200

images

99.5% Although the

accuracy is 99.5%,

the used dataset

contains only 200

images that belong

to 2 classes.

Sabrol et

al [13]

Decision Tree Bacterial canker,

Bacterial leaf

spot, Late blight,

Septoria leaf spot,

Leaf curl

670

images

78% Accuracy yielded

for Bacterial spot

and Leaf Curl was

not satisfactory.

Mohanty

et al [14]

AlexNet

GoogLeNet

26 diseases from

14 crop species

54206

images

99.35% Accuracy fell to

31.4% when tested

on another verified

dataset of 121

images collected

12

from real life

scenario.

Brahimi

et al [15]

AlexNet

GoogLeNet

Early blight,

Tomato leaf curl

virus, Septoria

spot, Tomato

Mosaic Virus,

Target spot,

Bacterial spot,

spider mites, leaf

mold, Late blight

14828

images

98.66%

99.17%

When tested on a

set of images taken

under conditions

different from the

images used for

training, the

model’s accuracy

reduced

substantially.

Ouhami

et al [16]

DensNet161

DensNet121

VGG16

Early blight, Late

blight, Powdery

mildew, Leaf

miner flies,

Thrips, Tuta

absoluta

666

images

95.65%

94.93%

90.58%

Images in the

dataset were very

less

Fuentes

et al [22]

Faster R-CNN

SSD

R-FCN

Leaf mold, Gray

mold, Canker,

plague, Miner,

Low temperature,

powdery mildew,

Whitefly,

Nutritional excess

2823

images

85.98% Due to the lacking

number of images

some classes with

high pattern

variation tend to be

confused with

others which

resulted in lower

average precision.

Cynthia

et al [23]

Faster R-CNN Blast of Rice,

Sigatoka Leaf

Spot of banana,

Black Spot of

Rose, White Rust

of Mustard, Grey

Spot of Mustard

236

images

67.34% Overall accuracy

obtained was

relatively low.

Images in the

dataset were very

less.

13

Jiang et

al [24]

INAR-SSD

(SSD with

perception

module and

rainbow

condition)

model

Alternaria leaf

spot, Brown spot,

Mosaic, Grey

spot and Rust

(Apple leaf

diseases)

26,377

images

78.80% Accuracy obtained

was relatively low.

14

Chapter 3 - Analysis and Design

3.1 System Overview

Figure 3.1: System overview

3.2 Use Case Diagram

Figure 3.2: Use case diagram

15

3.3 Use Case Narratives

Use case 01: Upload a photo

Table 3.1: Use case narrative for upload a photo

Use Case ID 01

Use Case Name Upload a photo

Description Upload a photo of leaves of the tomato plant to detect whether the leaves

are healthy or not. If the leaves have disease then to know which disease

is attached to it.

Primary Actors User

Secondary Actors System

Precondition None

Trigger This use case is triggered when the user want to upload a photo

Scenario 1. Launch the application.

2. Select the upload method “From Camera” or “From Gallery”

2.1. User select the “From Camera”

2.1.1. System checks for the permission to access

camera

2.1.1.1. If the camera is launched from this

application for first time then the

application ask for permission

2.1.1.2. If the user hasn't given the permission

previous time then the application asks

for permission again.

2.1.2. If the permission was given then the camera is

launched and then the user can capture the

photo. Else the user is returned back to home

screen.

16

2.2. User select the “From Gallery”

2.2.1. System checks for the permission to access the

gallery.

2.2.1.1. If the gallery is launched from this

application for first time then the

application ask for permission

2.2.1.2. If the user hasn't given the permission

previous time then the application asks

for permission again.

2.2.2. If the permission was given then the gallery is

launched and then the user can select the photo.

Else the user is returned back to home screen.

Post Condition Photo is uploaded to the application and begins the detection process

Use case 02: Detect disease

Table 3.2: Use case narrative for detect disease

Use Case ID 02

Use Case Name Detect disease

Description Detect leaves with diseases and output bounding boxes with the class

label attached to each bounding box

Primary Actors System

Secondary Actors None

Precondition Image should be uploaded to the application

Trigger This use case is triggered when the image is uploaded

Scenario 1. Input uploaded image to the model

2. Output the bounding boxes with the disease name attached to it

as a label for each diseased leaf

17

Post Condition If diseases are found, then those diseases should be sent to suggest

remedies else start the processing of results.

Details of bounding boxes with class names should be sent to process the

results.

Use case 03: Suggest remedies

Table 3.3: Use case narrative for suggest remedies

Use Case ID 03

Use Case Name Suggest remedies

Description Suggest remedies for the detected disease

Primary Actors System

Secondary Actors None

Precondition Diseases should be found in the uploaded image

Trigger This use case is triggered when the diseases are found in the uploaded

image

Scenario 1. Input the diseases that are found in the uploaded image

2. Output remedies for the disease.

Post Condition Start processing the result

Use case 04: Send results

Table 3.4: Use case narrative for send results

Use Case ID 04

Use Case Name Send results

18

Description Send the results to display to the user

Primary Actors System

Secondary Actors User

Precondition Results from the detect disease and suggest remedies use cases.

Trigger This use case is triggered when there are no diseases found or after

suggesting the remedies

Scenario 1. Send the image with bound boxes around the each diseased

leaves with their disease name and the remedies for the disease

Post Condition Results should be displayed to user

19

3.4 Activity Diagram

Figure 3.3: Activity diagram

20

3.5 Architectural Pattern

MVVM (Model View ViewModel) was used as the architectural pattern which builds a

view model that can represent the data through a view.

Model in the MVVM is used to fetch the data from the python backend where the input

image is sent for the detection and receive the processed image and diseases and to

interact with the ViewModel.

ViewModel in the MVVM is used as the mediator between View and Model. It takes all

the user events and sends requests with the input image for the Model for data. When

the model receives detection details from the python backend, it returns to ViewModel

and then ViewModel sends processed images and diseases to View.

View in the MVVM contains the widget that the user interacts with the application.

This interacts with the ViewModel, when the user events occur.

3.6 Quality Attributes

Accuracy

With the achieved detection accuracy of 92 percent of the trained model the application

is able to predict the correct disease a tomato plant is affected with and provide the

necessary control measures to overcome those diseases as that is the main objective of

this project to support urban farmers in detecting tomato plant diseases. Although

accuracy is not critical in this context because wrongly detected diseases may not cause

severe damage but in order to accomplish the goal of this project the accuracy should be

there to some extent.

Usability

As the end users of this application are urban farmers, usability was treated as a critical

factor. The system features were made easy to learn by making the interfaces familiar to

21

users for instance the icons like camera, gallery were chosen such that the end user can

identify them quickly. The application consists of an efficient navigation system and

distinct views that the user feels comfortable using. In addition, if a user error occurs,

the user can easily return to the previous state. Thus the usability quality attribute is

ensured in our application.

Reliability

Software reliability is the ability of a computer program to perform its intended functions

and operations in a system's environment, without experiencing failure. In this context

reliability factor is ensured as the farmers are able to use this application whenever they

need it.

Performance

Performance requirements describe response time, resources required and the

survivability. Therefore our system was made interactive and the delays involved were

made minimal by making the application simpler, reducing the number of event sources

and avoiding complex data arrival patterns and thereby enhancing the user experience

so that users may not get bored waiting for the application to respond.

22

Chapter 4 - Implementation

4.1 Methodology

A general overview of the methodology adopted is presented as follows.

Figure 4.1: Methodology

4.2 Data Collection

Two benchmarked datasets are used in this work. One is PlantVillage [25] dataset. It

contains 54309 images for 14 crops and 38 classes which are both healthy and diseased

categories. As mentioned in the [25] images are taken in laboratory setups such that they

collected leaves by removing them from the plant and then placed against a paper sheet

that provided a grey or black background. Table 3.1 and Figure 3.2 give a summary of

the PlantVillage dataset.

Second one is PlantDoc [26] dataset which contains 2569 images with 13 plant species

and 30 classes of both healthy and diseased. This dataset contains images with

heterogeneous backgrounds where the images are taken in natural environments. Table

3.2 and Figure 3.3 give a summary of the PlantDoc dataset.

23

From these two datasets only images of 5 different types of diseased and healthy leaves

of tomato plant were extracted in this work.

Table 4.1: Summary of PlantVillage dataset

Classes No of images

Leaf Mold 952

Bacterial Spot 2127

Late Blight 1910

Yellow Leaf Curl Virus 5357

Healthy 1592

Leaf Mold Bacterial Spot Late Blight Yellow Leaf

Curl Virus

Healthy

Figure 4.2: Images of classes from PlantVillage dataset

Table 4.2: Summary of PlantDoc dataset

Classes No of images

Leaf Mold 91

Bacterial Spot 110

Late Blight 111

Yellow Leaf Curl Virus 76

24

Healthy 63

Leaf Mold Bacterial Spot Late Blight Yellow Leaf

Curl Virus

Healthy

Figure 4.3: Images of classes from PlantDoc dataset

4.3 Image Annotation

To train a model for the object detection task we need to input images with specifying

where the objects are located in the image. LabelImg tool is used to draw the bounding

box around the leaf and to annotate the class manually in all images. The image can have

multiple leaves or a combination of healthy and diseased leaves in real scenarios.

Therefore explicitly with their particular classes we label the diseased leaves in the

image and make sure that the entire leaf is presented inside the box. Output of this step

is an xml file corresponding to each image that contains information about all the

coordinates of the bounding boxes of different sizes with their respective class labels.

Figure 4.4: Image annotation using LabelImg tool

25

4.4 Data Augmentation

Data augmentation must be followed if the data set does not contain sufficient number

of images. Although we collected a considerable number of images, image

augmentmentation was applied to further improve the learning of the model. We used

several techniques that basically increase the number of images of our dataset. These

techniques consist of geometrical transformations such as random horizontal flipping,

random crop and random translation.

Data augmentation can overcome the problem of overfitting in deep neural network

systems training. The problem of overfitting occurs when there is random noise or errors.

With more images following expansion using techniques for data augmentation, the

model can learn as many irrelevant patterns as possible during the training process, thus

preventing overfitting and improving the performance.

4.5 Deep Learning Model

The YOLOv3 [27] model is used as the object detection model in our work. YOLO

(You Only Looks Once) is a faster object detection algorithm that uses convolution

neural networks for detecting objects of various sizes. It is a sliding window and

classification approach where you look at the image and classify it for every window

which is called one-stage detection or one shot detection. In a region proposal network

which is used in R-CNN and Fast R-CNN, the image is looked at in two steps. First is

to identify where the objects might be and the second one is to classify it. Drawback of

this region proposal network is taking more processing time and chances of occurring

false positives are more. So YOLO was coming into existence to overcome all these

problems. YOLO treats the problem of detection as a regression problem not as a

classification problem.

YOLOv3 is an improvement over previous YOLO detection networks of YOLOv1 [21]

and YOLOv2 [28]. It’s features are multi scale detection, stronger feature extractor

network and some changes in the loss function.

26

The below graph is sufficient to demonstrate that YOLOv3 has achieved a very high

accuracy rate under the premise of ensuring speed. Although it shows high accuracy

rates in models like RetinaNet-101 and FPN FRCN the detection time is very high.

Figure 4.5: Comparison with other object detectors [29]

4.5.1 YOLOv3 Design

The YOLO algorithm treats the object detection problem as a regression problem and

divides the image into an S × S grid. The grid that is responsible for detecting the target

object is discovered by tracing to which grid the center of the target is fallen into. Each

grid yields a bounding box containing 4 values consisting of cartesian values of the

center of the bounding box and width and height of the bounding box, a confidence

indicating the probability of containing objects in this prediction box and a class

probability map containing the class probability of the object.

Darknet 53 is used as the feature extractor in the YOLOv3 which contains 53

convolution layers. It is mainly composed of convolutional and residual structures. By

implementing a residual unit it improved the depth of the network to protect against

27

gradient disappearance. After every convolutional layer, batch normalization and

dropout operations are added to prevent overfitting.

YOLOv3 makes 3 scales detection to adapt the size of different objects using 32, 16 and

8 strides. YOLOv3 downsamples the input image to 13 x 13 and predicts at the 82nd

layer in the first scale. YOLOv3 then applies one convolutional layer to the feature map

from the 79th layer before upsampling it by a factor of two and concatenating it with the

feature map from layer 61. The combined feature map is then passed through to some

more convolutional layers up to the second detection scale which produces a 3-D tensor

at layer 94.

To predict the third scale, the same design is repeated once more. The feature map from

layer 91 is concatenated with a feature map from layer 36 after being passed through

one convolutional layer. The final prediction layer is completed at layer 106, resulting

in a 3-D tensor. In short, what simply happens in this case is that YOLOv3 predicts 3

different detection scales. For example, if we feed an image of size 416x416, we get

three different output shape tensors: 13 x 13 x 255, 26 x 26 x 255, and 52 x 52 x 255.

The diagram below depicts the detection procedure of YOLOv3.

Figure 4.6: YOLOv3 network architecture [30]

28

4.5.2 Justification for Choosing a Object Detection Model Over a

Classification Model

There are several researches conducted on plant disease detection. But those researches

used classification models to detect the disease. Hence those models are by giving a

dataset that contains images of a single leaf with a homogenous background and doing

the predictions with the images taken under the same conditions. But our task is to detect

the diseased leaves from the images that contain single leaf as well as multiple leaves in

the heterogeneous backgrounds. So to do that the best choice is to go for an object

detection model which acts as a combination of image classification and object

localization. It uses an input image and generates an or several bounding boxes with the

class label attached to each bounding box.

4.6 Model Training

The YOLOv3 model is pre-trained for detection on the COCO dataset that consists of

80 different classes. Inorder to accomplish the goal in our study we retrained the model

on our preprocessed tomato plant diseases dataset using transfer learning technique so

that we can reuse the already pre-trained model on our new problem. Thus it is possible

to transfer the weights that a network has learned at the initial training process to apply

on a new task.

Dataset of 3150 images of tomato leaves which contains 630 images for each class was

used in this work. 630 images consists of all of the images from the PlantDoc dataset

(The number of images per class in the PlantDoc dataset is mentioned in Table 4.2) and

the remainder from the PlantVillage dataset. Dataset was divided into 8o% for the

training set, 10% for the validation set and 10% for the testing set.

The weight parameters provided in the official website of YOLOv3 were therefore used

in order to initialize network training and the images in the annotated tomato disease

dataset were randomly used for network parameters in the training, so that we can have

a good detection result for the entire model. The parameter configuration of our

YOLOv3 model during the training is shown in the following table.

29

Table 4.3: Parameter configuration during the training

Parameter Value

Batch size 4

Learning Rate Initial learning rate - 1e-4

Ending learning rate - 1e-6

Epochs 100

Match Threshold 0.3

30

4.7 Graphical User Interfaces (GUI)

Launch Screen

Launch screen, also known as splash screen is added to improve the user experience

instead of having a blank screen until the app initializes.

Figure 4.7: Launch screen

31

Home Screen

The Home Screen has two options for selecting an image. One is from the device camera

and the other is from the gallery. After taking or selecting an image user is navigated to

Upload Image screen.

Figure 4.8: Interface of Home screen

32

Upload Image Screen

If the user is satisfied with the image selected, then the user can upload the image by

taping the upload image button. If not, the user can go back to the Home screen and

select another image. Internet connection is required to upload the image. Therefore

when tapping the upload image button it will first check the Internet connection and if

the Internet connection is not available, the user will be informed that Internet

connection is not available. If the Internet connection is available it will upload the

image (and detect the diseases using the trained model and send results back to the

application) then navigate to the Result screen.

Figure 4.9: Interface of Upload Image screen

33

Result Screen

The processed image and disease control measures are displayed on the Result screen.

The processed image is displayed on the Result screen, along with bounding boxes of

diseased and healthy leaves, as well as their respective probabilities. Users can zoom in

the image for better inspection.

Figure 4.10: Interface of Result screen: displaying the processed image and control instruction

34

Figure 4.11: Interface of zoomed in image and results showing for Late Blight disease

35

Figure 4.12: Interface of a Result screen showing results as healthy

4.8 The Use of Design Patterns

State design pattern

The State design pattern which is a behavioural design pattern was used in our Flutter

application to make it easier to change the appearance of the widgets in our application

according to different internal state changes. We could easily add new states by

encapsulating each state and its implementations in a different class, and also could

change the existing states independently of each other. For an instance in the process of

image uploading in our app when we click on the check button to upload the image the

progress indicator should be displayed replacing the check button along with the text

saying “Uploading the Image”.

36

Adapter design pattern

Adapter design pattern was used to exchange data between our frontend Flutter

application with the backend Python application so that these incompatible interfaces

can collaborate. For instance when data is passed between the two applications we wrap

the data into a JSON object.

Facade design pattern

Facade is a structural design pattern that provides a simplified interface to a complicated

subsystem. For example in our python application we used the Flask framework to listen

to http requests and in the flutter application flutter packages were used to access the

camera and gallery without coding from scratch. We could use the methods of those

readily available functions off the shelf without the complex implementation behind

them.

4.9 Justification for Tools and Technologies

Python

Python 3.6 was used for implemplementing the neural network and for image

processing. There are many libraries that exist in python for image processing and neural

networks to facilitate the development process.

Tensorflow

Tensorflow is a free and open source framework for developing and using Neural

networks. It consists of neural network models and functions necessary for operation in

neural networks development. So Tensorflow was used as the machine learning

platform.

37

Github

Github was used as the version controlling application because it was familiar and easy

handling.

LabelImg

LabelImg is a tool for annotating graphical images. It's written in Python and has a

graphical user interface built with Qt. It was used to annotate our dataset by drawing

bounding boxes around the diseased leaves.

Flutter

Flutter is a mobile development framework that has become quite popular across the

world. It has all the elements from cross-platform and native development models to

build robust applications in minimal time. In contrast to a native mobile development

approach, Flutter allows the creation of a single code base that works for both iOS and

Android devices. Unlike React Native which requires a “bridge” from the JavaScript

(JS) code to the device’s native environment, Flutter, whose programming language is

Dart, can access native features of the mobile device directly without any additional

interlayers. Thus it compils quicker and consumes fewer resources to execute the code.

That results in the instant start-up of the application, faster performance, and the ability

to process multiple threads and complicated animations with less load on the device.

Hence Flutter was chosen over other mobile development platforms to develop the

mobile app.

Keras

Keras is one of the leading high-level neural networks APIs as it was created to be user

friendly, modular, easy to extend, and to work with Python [31]. It is written in Python

and supports a variety of neural network computation engines on the back end. In our

model we used Keras as the library that provides the Python interface for the neural

network.

38

Flask

Flask is a web application framework written in Python. In the common situations the

equivalent Web application Flask is more explicit than other web frameworks like

Django[32]. Flask is also easy to begin as a newbie, as there's a small boilerplate code

to run a simple app. So Flask was used as the web framework in our python backend so

that our Flutter frontend can send http requests and retrieve prediction results.

Pytest

Pytest is a framework that makes it simple to create simple and scalable tests. Tests are

expressive and readable, with no need for boilerplate code. Due to different capabilities

of pytest such as fast test mechanism, highly customizable simple scripting mechanism

pytest was chosen over other testing tools such as ‘nose’ and ‘unitest’.

39

Chapter 5 - Results and Analysis

The main intention of this study is to aid urban tomato farmers in detecting tomato

plant diseases that are commonly turning up in tomato crops, and providing them with

necessary control measures so that the plants can be treated accordingly even though

the farmers are in shortfal of mastery in the area.

The YOLOv3 object detection model was chosen as the detection model over other

object detection models as it is more accurate and faster. To train the model to obtain

the most promising detection results, we explored training the model with different

blending of the dataset.

The experiments were undertaken only for the two diseases, Late Blight and Bacterial

Spot, to examine the perfect blending of the annotated data that should be fed into the

model so that the results produced are optimal.

We explored two strategies using about total of 400 images of both the aforementioned

diseases by annotating them as explained below;

Experiment 1 : Annotation of the images was done by drawing bounding boxes to the

full leaf in the images taken from the PlantVillage and PlantDoc datasets.

Experiment 2 : Annotation of the images was done drawing bounding boxes only

around the diseased area in the images taken from the PlantVillage and PlantDoc

datasets.

40

Figure 5.1: Training Loss observed in Experiment 1

41

Figure 5.2: Validation Loss observed in Experiment 1

42

Figure 5.3: Training Loss observed in Experiment 2

43

Figure 5.4: Validation Loss observed in Experiment 2

Illustration of the results observed

Table 5.1: Results obtained from experiments

Strategy Average Precision

Experiment 1 Bacterial Spot : 84.683%

Late Blight : 94.101%

Mean Average Precision : 89.392%

Experiment 2 Bacterial Spot : 16.492%

Late Blight : 48.940%

Mean Average Precision : 32.716%

44

Some predictions from Experiment 1 are shown in Figure 5.5 and Figure 5.6.

Figure 5.5: Prediction of disease in Experiment 1

Figure 5.6: Prediction of disease in Experiment 1

45

Some predictions from Experiment 2 are shown in Figure 5.7 and Figure 5.8.

Figure 5.7: Prediction of disease in Experiment 2

Figure 5.8: Prediction of disease in Experiment 2

46

Possible reasons for the deviation of the above results were assumed as;

The features for learning the characteristics of the diseases were more distinguishable

when the images were annotated to be examined by the model for the leaf as a whole

rather than they were annotated region wise only for the diseased area.

Locating the diseased area in the test set so that they overlap with the manually annotated

bounding boxes becomes more methodical in Experiment 1 than Experiment 2 as in

Experiment 1 it is just a matter of locating the leaf.

Thus it explains the causes for the high average precision values in experiment 1.

Observing the above facts it was obvious that we should adapt the strategy in Experiment

1 inorder to anticipate optimal results in our study.

47

Chapter 6 - Evaluation and Testing

6.1 Evaluation of the Model

There are various deep learning architectures available for image classification. These

classification models are evaluated in terms of accuracy and parameters. The metrics

mAP and IOU are used to assess classification and localization performance.

IoU is used to assess the accuracy of the object detector on the dataset. The definition of

Intersection Over Union (IoU) is as follows:

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

Area of union

The intersection of the ground truth bounding box and the predicted bounding box is

defined in the above equation as the area of overlap. The area of union is defined as the

area bounded by both the ground truth bounding box and the predicting bounding box.

Mean average precision (mAP) is used in determining whether or not the predicted

object is correct. It is also the most common assessment method. The detection is then

marked as correct or incorrect after calculating the IoU threshold between the ground

truth and the anchors for that result. Once the true positive and false positive value is

achieved, the precision recall curve is calculated.

𝑚𝐴𝑃 =
1

N
∑(max (p(r̅)))

1

𝑟=0

𝑟̅ ≥ 𝑟

where p is precision and r is recall.

48

Dataset of 3150 images of tomato leaves which contains 630 images for each class was

used in this work. Dataset was divided into 8o% for the training set, 10% for the

validation set and 10% for the testing set and achieved 92.2% of mAP on the test set.

The training loss and validation loss are shown in Figure 4.1 and Figure 4.2. Average

Precisions (AP) achieved on the test set for each class are presented on Table 6.1.

Figure 6.1: Training loss

49

Figure 6.2: Validation loss

50

Visualization of the bounding boxes and class labels predicted by our trained model are

shown in Figure 6.3, Figure 6.4 and Figure 6.5.

Figure 6.3: Prediction of the disease

Figure 6.4: Prediction of the disease

51

Figure 6.5: Prediction of the disease

6.1.1 Model Results

Table 6.1: Average Precisions (AP) on the test set for each class and mAP

Class Average Precision

Leaf Mold 93.970%

Bacterial Spot 86.066%

Late Blight 94.717%

Yellow Leaf Curl Virus 91.913%

Healthy 94.334%

Mean Average Precision (mAP) 92.200%

52

6.1.2 Comparison of Our Results with Previous Works

A comparison of our work with the previous works carried out with object detection

models is presented in Table 6.2.

Table 6.2: Comparison with previous work

Study Classes Dataset Approach mAP

Fuentes et

al. [22]

Gray mold, Canker,

plague, Miner, Leaf

mold, Low temperature,

powdery mildew,

Whitefly, Nutritional

excess

2823

images with

9 classes of

tomato

plant

Faster R-CNN with VGG-16

SSD with ResNet-50

R-FCN with ResNet-50

83%

82.53%

85.98%

Cynthia et

al [23]

Blast of Rice, Sigatoka

Leaf Spot of banana,

Black Spot of Rose,

White Rust of Mustard,

Grey Spot of Mustard

236 images

with 5

classes of

different

types of

plants

Faster R-CNN 67.34%

Jiang et al

[24]

Alternaria leaf spot,

Brown spot, Mosaic,

Grey spot and Rust

(Apple leaf diseases)

26,377

images with

5 classes of

apple plant

INAR-SSD (SSD with

perception module and

rainbow condition) model

78.80%

This work Leaf Mold, Bacterial

Spot, Late Blight,

Yellow Leaf Curl Virus,

Healthy

3150

images with

5 classes of

tomato

plant

YOLOv3

92.20%

53

6.2 Testing Plan

6.2.1 Test Items

Annotating images

Annotated images are double checked manually in case there are missed leaves or

improperly annotated leaves in the images when the annotation is done in the first phase.

Improperly annotated images may lead to faults in the neural network because we feed

these annotated images as the input to the neural network to abstract features.

Neural Network training

The training of the neural network can be visualized using the tensorboard.

Using trained network for predictions

The tests in the training process can be examined by using the trained network for

predictions.

Visualizing the predicted class labels and bounding boxes

Captured images/Selected images from the gallery are predicted correctly.

Remedies are suggested to the user in accordance to the predicted disease.

6.2.2 Testing Approaches

Unit Testing

Individual functionalities were tested and the issues of those functionalities were

discussed among the group. Feedback of the supervisors was taken into consideration

and necessary changes were made for the individual components before integration.

54

Widget Testing

Widgets are UI building blocks of Flutter applications. Widget testing was carried out

to ensure that the widget’s UI looks and interacts with other widgets as expected which

is a unique testing approach for flutter.

Integration Testing

Each individually refined component from the unit testing phase was integrated one by

one and tested the dependencies between those components. Dependency issues among

components were resolved by performing integrated tests before integrating them

together so that the integrated components function properly.

System Testing

To test the complete application, system testing was used. After integrating all the

system components and performing integrating tests the whole system was tested as one

and checked whether the system fulfills the functional requirements intended by the

requirements and fulfill Quality Standards.

Regression Testing

This was done in order to test the issues in the system that are caused due to bug fixes

and changes. So that these tests ensure that the system is not prone to bugs due to those

changes.

User Acceptance Testing

User acceptance of the application is the key factor for the success of our application.

Acceptance testing was held with our supervisor Dr. Thilina Halloluwa and co-

supervisor Ms. Hiruni Kegalle by getting their feedback.

55

6.3 Test Results

6.3.1 Automation Testing

The unit tests in our python application were carried out using Pytest. Pytest unit testing

ensures that our tests are stateless, makes repetitive tests more comprehensible, runs

subsets of codes by name or custom groups, and creates and maintains reusable testing

utilities.

The test results of the python scripts written to perform unit testing inorder to ensure

that we get the exact results as we expected from the functions are shown in Figure 6.6.

Figure 6.6: Sample of unit testing results of python application

Unit testing in the Flutter application was carried out using the test package in flutter.

Following are the samples of results obtained after unit testing.

56

Figure 6.7: Sample of unit testing results of Flutter application

Figure 6.8: Sample of unit testing results of Flutter application

Widget testing in the Flutter application was carried out using the flutter_test package.

Following is a sample test code of Home screen widget testing to test whether

ScrollView shows up.

Figure 6.9: Sample of widget testing code of Flutter application

Following are the samples of results obtained after Home Screen widget testing.

57

Figure 6.10: Sample of widget testing results of Flutter application

Figure 6.11: Sample of widget testing results of Flutter application

Following is a sample test code of Upload screen widget testing to test whether the

progress indicator and the text “Uploading the image...” shows up instead of the upload

button and the text “Upload the image”when tap the upload button.

Figure 6.12: Sample of widget testing code of Flutter application

Following are the samples of results obtained after Upload Screen widget testing.

58

Figure 6.13: Sample of widget testing results of Flutter application

Figure 6.14: Sample of widget testing results of Flutter application

6.3.2 Manual Testing

In addition to the automation tests performed as described above to check whether our

system functions properly as expected the manual testing was also carried out

throughout the implementation process and after the whole system was built to ensure

that our system is up and running according to the requirements established at the outset.

Table 6.3: Manual testing performed

Test

Case #

Test Case

Description

Test Steps Expected

Results

Actual

Results

Pass

/ Fail

1 Taking a

photo from

the camera for

the first time.

1.Launch the app.

2.Tap on the “From

Camera” button.

System should ask

the permission to

access the camera

As

expected

Pass

59

2 Selecting a

photo from

the gallery for

the first time.

1.Launch the app.

2.Tap on the “From

Gallery” button.

System should ask

the permission to

access the gallery

As

expected

Pass

3 Granting the

permission to

access the

camera for the

first time.

1.Launch the app.

2.Tap on the “From

Camera” button.

3.Clicking on “Allow”

button when the

permission is requested

by the system to access

the camera

The user should be

directed to the

camera allowing

him/her to take a

photo.

As

expected

Pass

4 Granting the

permission to

access the

gallery for the

first time.

1.Launch the app.

2.Tap on the “From

Gallery” button.

3.Clicking on “Allow”

button when the

permission is requested

by the system to access

the gallery

The user should be

directed to the

gallery allowing

him/her to select a

photo.

As

expected

Pass

5 Denying the

permission to

access the

camera.

1.Launch the app.

2.Tap on the “From

Camera” button.

3.Clicking on “Deny”

button when the

permission is requested

by the system to access

the camera

The user should be

returned to the

home screen.

As

expected

Pass

6 Denying the

permission to

access the

gallery.

1.Launch the app.

2.Tap on the “From

Gallery” button.

3.Clicking on “Deny”

button when the

The user should be

returned to the

home screen.

As

expected

Pass

60

permission is requested

by the system to access

the gallery

7 Taking a

photo from

the camera

after

permission is

granted.

1.Launch the app.

2.Tap on the “From

Camera” button.

The user should be

directed to the

camera allowing

him/her to take a

photo.

As

expected

Pass

8 Selecting a

photo from

the gallery

after

permission is

granted.

1.Launch the app.

2.Tap on the “From

Gallery” button.

The user should be

directed to the

gallery allowing

him/her to select a

photo.

As

expected

Pass

9 Uploading an

image without

the internet

connection.

1.Launch the app.

2.Tap on the “From

Gallery”/ “From

Camera” button.

3.Taking a photo from

the camera or selecting

a photo from the

gallery.

4.Click on the upload

button on the upload

image screen.

A message should

be displayed saying

“No internet

connection”

As

expected

Pass

10 Uploading an

random image

which is not

an image of a

leaf providing

the internet

connection.

1.Launch the app.

2.Tap on the “From

Gallery”/ “From

Camera” button.

3.Taking a random

photo from the camera

A message should

be displayed saying

“Please upload a

valid image”

As

expected

Pass

61

or selecting a random

photo from the gallery.

4.Click on the upload

button on the upload

image screen.

11 Uploading a

diseased

tomato plant

leaf image

providing the

internet

connection.

1.Launch the app.

2.Tap on the “From

Gallery”/ “From

Camera” button.

3.Taking a photo of

diseased tomato plant

leaves from the camera

or selecting a photo of

diseased tomato plant

leaves from the gallery.

4.Click on the upload

button on the upload

image screen.

The user should be

directed to the

result screen

displaying the

photo with detected

diseases with

bounding boxes

and necessary

control measures

for the identified

diseases.

As

expected

Pass

12 Uploading a

healthy

tomato plant

leaf image

providing the

internet

connection.

1.Launch the app.

2.Tap on the “From

Gallery”/ “From

Camera” button.

3.Taking a photo of

healthy tomato plant

leaves from the camera

or selecting a photo of

healthy tomato plant

leaves from the gallery.

4.Click on the upload

button on the upload

image screen.

The user should be

directed to the

result screen

displaying the

photo detected as

healthy with

bounding boxes

around healthy

leafs and notifying

the user that the

plant is healthy.

As

expected

Pass

62

Chapter 7 - Conclusion

We developed a robust deep-learning-based detector for real-time tomato disease

detection, in this study. It introduces a practical and applicable solution for detecting

the class and location of diseases in tomato plants, which in fact represents a

significant comparable difference with other methods for plant disease classification.

The experimental results show that the YOLOv3 model's detection accuracy reached

92 percent. As a result, for the task of detecting tomato diseases, the YOLOv3

algorithm that was proposed can not only maintain a high detection rate, but also meet

real-time detection requirements, and accurately and quickly detect the location and

category of diseased tomato leaves.

In comparison to the previous studies conducted in this field our system, which

employs the YOLOv3 Model, has strong robustness for detecting different object sizes

and resolution images in a complex environment, as well as high detection and

positioning accuracy, and can meet the needs of tomato disease detection in complex

environments using the end user's smartphone camera. Further we have trained our

detector to detect diseases that have not been considered in the previous studies.

The discoveries and the outcomes achieved by this study make a significant impact to

make the field of plant disease detection move forward. We explored different deep

learning models that are available for the purpose of object detection and finally came

to a conclusion that YOLOv3 outstands all the other object detectors available such as

R-CNN, Faster R-CNN and SSD, not only by accuracy but also by performance.

Moving forward YOLOv3 model can be used to make excellence advancements in the

field of crop cultivation by mitigating the losses and damages to the crops.

7.1 Shortcomings of the Study

Several limitations of the system should be acknowledged. Our system only detects 5

different classes of diseased and healthy leaves of the tomato plants. The control

measures are given considering only the type of disease in the plant such that the

63

control measures are not given accordingly to the severity of the disease. Identification

of diseases affecting the parts other than the leaves in tomato plants is beyond the

scope of this study. The detection accuracy could be further improved by training the

model on more images with the heterogeneous background. Due to this pandemic

situation it was impossible to collect images through field visits. Hence all the images

were collected using internet sources.

7.2 Future Directions

It is recommended that this research can be extended to other crops, having improved

the detection accuracy of plant diseases in order to mitigate the losses due to plant

diseases in the agricultural sector. The system can be improved further by training the

model to identify different states of the disease based on the view of the disease in the

plant and providing remedies accordingly. In addition the application can be further

improved by making a platform where the farmers can post their problems to a forum

so that the other farmers who had similar problems can discuss how they overcame

such conditions. Thus these facts can be considered when making further

improvements to the system.

64

Peer Evaluation

In accordance with the problem definition in this dissertation, both the team members

contributed equally in finding an approach to achieve the proposed goal. Some

components in the project were implemented separately and some components were

implemented collectively by the two of us.

Contributions made collectively

The tasks that we both collaborated collectively are; researching and reviewing the

previous work that has been carried out in the field of plant disease detection, exploring

a suitable method to solve the identified research problem and choosing YOLO v3 model

from the available deep learning models and writing the dissertation of the study.

Contributor 1: H.A.D.D. Navodi

Annotating images of the diseases Leaf Mold, Yellow Leaf Curl Virus and for the

healthy leaf. Training the YOLOv3 model for different numbers of images and different

model parameters to compare results and determine the optimal number of images and

model parameters to train to achieve the optimal accuracy. In the front end flutter

application the user interfaces Launching screen, Home screen and the Image upload

screen that sends the input image to the backend for processing the desired result was

developed. And the automation testing scripts for testing the frontend application was

written and tested the front end application functions as expected.

Contributor 2: W.L.V. Fernando

Annotating images of the diseases Bacterial Spot, Late Blight and the healthy leaf.

Training the YOLOv3 model using the images that were annotated only for the diseased

area of the leaves and examined whether it improves the accuracy of the detector. In the

front end application the user interface Result screen was developed displaying the

resultant image from the back end along with the remedies for the identified diseases.

And the automation testing scripts for testing the backend application was written and

tested the back end application functions as expected.

65

References

[1] R. Chandran. (2020, Apr. 09). “Grow your own: Urban farming is flourishing

during the coronavirus lockdowns”[Online]. Available:

https://www.weforum.org/agenda/2020/04/grow-your-own-urban-farming-

flourishes-in-coronavirus-lockdowns/ [Accessed 29 May 2020]

[2] Daily News. (2017, Jan. 30). “A toast for tomatoes!”[Online]. Available:

http://www.dailynews.lk/2017/01/30/features/106060/toast-tomatoes [Accessed

27 May 2020]

[3] TILASTO. “Sri Lanka: Tomatoes, production quantity (tons)”[Online].

Available: https://www.tilasto.com/en/country/sri-lanka/geography-and-

agriculture/tomatoes-production-quantity [Accessed 28 May 2020]

[4] L. Rose. (2018, Dec. 15). “Plant Starts to Grow Tomatoes?”[Online].

Available: https://homeguides.sfgate.com/long-before-plant-starts-grow-

tomatoes-59989.html [Accessed 27 May 2020]

[5] “Tomato”[Online]. Available: https://plantvillage.psu.edu/topics/tomato/infos

[Accessed 28 May 2020]

[6] H.M. Griffiths. (2014, Mar. 26). “Tomato Leaf Mold”[Online]. Available:

https://www.growertalks.com/Article/?articleid=20665 [Accessed 27 May

2020]

[7] G. McAvoy. (2019, Oct. 17). “Tactics to Tackle Bacterial Spot of

Tomato”[Online]. Available:

https://www.growingproduce.com/vegetables/tactics-to-tackle-bacterial-spot-

of-tomato/ [Accessed 27 May 2020]

https://www.weforum.org/agenda/2020/04/grow-your-own-urban-farming-flourishes-in-coronavirus-lockdowns/
https://www.weforum.org/agenda/2020/04/grow-your-own-urban-farming-flourishes-in-coronavirus-lockdowns/
http://www.dailynews.lk/2017/01/30/features/106060/toast-tomatoes
https://www.tilasto.com/en/country/sri-lanka/geography-and-agriculture/tomatoes-production-quantity
https://www.tilasto.com/en/country/sri-lanka/geography-and-agriculture/tomatoes-production-quantity
https://homeguides.sfgate.com/long-before-plant-starts-grow-tomatoes-59989.html
https://homeguides.sfgate.com/long-before-plant-starts-grow-tomatoes-59989.html
https://plantvillage.psu.edu/topics/tomato/infos
https://www.growertalks.com/Article/?articleid=20665
https://www.growingproduce.com/vegetables/tactics-to-tackle-bacterial-spot-of-tomato/
https://www.growingproduce.com/vegetables/tactics-to-tackle-bacterial-spot-of-tomato/

66

[8] Planet Natural. “Late Blight”[Online]. Available:

https://www.planetnatural.com/pest-problem-solver/plant-disease/late-blight/

[Accessed 27 May 2020]

[9] UC IPM. “Tomato Yellow Leaf Curl”[Online]. Available:

https://www2.ipm.ucanr.edu/agriculture/tomato/Tomato-Yellow-Leaf-Curl/

[Accessed 27 May 2020]

[10] HGIC. (2020,Jul. 23). “Tomato Diseases & Disorders”[Online]. Available:

https://hgic.clemson.edu/factsheet/tomato-diseases-disorders/ [Accessed 27

May 2020]

[11] S. Vetal and R.S. Khule, “Tomato Plant Disease Detection using Image

Processing”, 2017 International Journal of Advanced Research in Computer

and Communication Engineering (IJARCCE), 2017, vol. 6, pp. 293-297.

[12] U. Mokhtar, M. A. S. Ali, A. E. Hassenian and H. Hefny, "Tomato leaves

diseases detection approach based on Support Vector Machines," 2015 11th

International Computer Engineering Conference (ICENCO), Cairo, 2015, pp.

246-250, doi: 10.1109/ICENCO.2015.7416356.

[13] H. Sabrol and S. Kumar, "Intensity based feature extraction for tomato plant

disease recognition by classification using decision tree," International Journal

of Computer Science and Information Security (IJCSIS), 2016, vol. 14, no. 9,

pp. 622-626.

[14] S. Mohanty, D. Hughes and S. Marcel, “Using deep learning for image-based

plant disease detection,” 2016.

[15] M. Brahimi, K. Boukhalfa and A. Moussaoui, “Deep Learning for Tomato

Diseases: Classification and Symptoms Visualization”, Applied Artificial

Intelligence,2017, vol. 31, no. 4, pp. 299-315.

https://www.planetnatural.com/pest-problem-solver/plant-disease/late-blight/
https://www2.ipm.ucanr.edu/agriculture/tomato/Tomato-Yellow-Leaf-Curl/
https://hgic.clemson.edu/factsheet/tomato-diseases-disorders/

67

[16] M. Ouhami, Y. Es-Saady, M. E. Hajji, A. Hafiane, R. Canals and M. E. Yassa,

“Deep Transfer Learning Models for Tomato Disease Detection”, ICISP 2020,

LNCS, 2020, vol. 12119, pp. 65-73.

[17] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation," 2014 IEEE

Conference on Computer Vision and Pattern Recognition, Columbus, OH,

2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.

[18] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2015,

doi: 10.1109/TPAMI.2016.2577031.

[19] J. Dai, Y. Li, K. He and J. Sun, “R-FCN: Object Detection via Region-based

Fully Convolutional Networks,” 2016.

[20] W. Liu, D. Angyelov, D. Erhan, C. Szegedy, S. Reed, C. Fu and A. C. Berg,

“SSD: Single Shot MultiBox Detector,” ECCV 2016. Lecture Notes in

Computer Science, 2016, vol. 9905, pp. 21-37.

[21] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,

HI, 2017, pp. 6517-6525, doi: 10.1109/CVPR.2017.690.

[22] A. Fuentes, S. Yoon, S. C. Kim and D. S. Park, “A Robust Deep-Learning-

Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition”,

Sensors, 2017, vol. 17, no. 9, p. 2022.

[23] S. T. Cynthia, K. M. Shahrukh Hossain, M. N. Hasan, M. Asaduzzaman and A.

K. Das, "Automated Detection of Plant Diseases Using Image Processing and

Faster R-CNN Algorithm," 2019 International Conference on Sustainable

68

Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 2019, pp. 1-5, doi:

10.1109/STI47673.2019.9068092.

[24] P. Jiang, Y. Chen, B. Liu, D. He and C. Liang, "Real-Time Detection of Apple

Leaf Diseases Using Deep Learning Approach Based on Improved

Convolutional Neural Networks," in IEEE Access, vol. 7, pp. 59069-59080,

2019, doi: 10.1109/ACCESS.2019.2914929.

[25] D. P. Hughes and M. Salathe, “An open access repository of images on plant

health to enable the development of mobile disease diagnostics”, 2015.

[26] D. Singh, N. Jain, P.Jain, P. Kayal, S. Kumawat and N. Batra, “PlantDoc: A

Dataset for Visual Plant Disease Detection”, 2020.

[27] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement”, 2018.

[28] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once:

Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 779-788,

doi: 10.1109/CVPR.2016.91.

[29] “YOLO: Real-Time Object Detection”[Online]. Available:

https://pjreddie.com/darknet/yolo/ [Accessed 05 Jan 2020]

[30] R. Balsys. “Yolo v3 with TensorFlow 2” Python Lessons.[Online]. Available:

https://pylessons.com/YOLOv3-TF2-introduction/ [Accessed 05 Jan 2020]

[31] M. Heller. (2019, Jan. 28). “What is Keras? The deep neural network API

explained”[Online]. Available:

https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-

network-api-explained.html [Accessed 29 May 2020]

https://pjreddie.com/darknet/yolo/
https://pylessons.com/YOLOv3-TF2-introduction/
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html

69

[32] M. Makai. “Flask”[Online]. Available:

https://www.fullstackpython.com/flask.html [Accessed 29 May 2020]

https://www.fullstackpython.com/flask.html

