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Abstract
Cyber security, also referred to as computer security, is the field of study where com-

puter systems and networks are protected from malicious digital attacks such as spam

attacks, phishing attacks, malware attacks, and ransomware attacks from perpetrators.

The number of cyber threats and malicious attacks continue to rise each year globally at

a rapid pace and thus there is a need for implementing proper and effective cyber security

measures and recognizing possible attacks or malicious internet resources early on.

To address this issue, we propose ”cGraph: Graph Based Extensible Cyber Threat

Intelligence Platform” which is a scalable big data processing and storing system that

uses intelligence derived from state-of-the-art graph inference algorithms utilizing vast

amounts of passive DNS network traces and limited amount of external threat intelli-

gence.
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Chapter 1

Introduction

cGraph: Graph Based Extensible Cyber Threat Intelligence Platform is a web based

platform that allows any party including cyber-security researchers, security operations

teams and general public to visualize and analyze Internet resources such as IP ad-

dresses, domain names, TLS certificates and registration records related to cyber attacks

including spam attacks, phishing attacks, malware attacks, ransomware attacks etc, us-

ing the intelligence derived from state-of-the-art graph inference algorithms utilizing

vast amounts of passive DNS network traces and a limited amount of external threat

intelligence.

This chapter gives an inteoduction to the study under the following sections. Section

1.1 describes the motivation for undertaking this project and the goal and scope of the

project is given in sections 1.2 and 1.3 respectively. The project is justified to be a

product-based software engineering project in section 1.4.

1.1 Motivation

Internet domains are the launch pad for many cyber attacks we observe nowadays. One

effective way to reduce the damage caused by such attacks is to identify the domains in-

volved early and take actions such as blocking, taking down or sinkholing. Further, these

malicious domains have underlying associations with other Internet resources that help

to uncover malicious infrastructures. We observe that existing cyber threat intelligence

systems fail to take advantage of such associations to detect stealthy malicious domains

nor do they capture such associations in a user-friendly graphical form that allows users
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to easily explore related Internet resources. Motivated by these gaps in the industry, we

propose to build a proactive cyber threat intelligence platform that can uncover mali-

cious domains early and visualize associated Internet resources in a graph format for

easy analysis.

In this project, we are adopting predictive threat intelligence algorithms and mod-

els published in prior academic research done by Qatar Computing Research Institute

(QCRI) [1]. Key goals in this project is to engineer these algorithms to work in a big

data environment and make them available for the public to use.

Prior academic research has been conducted on controlled environments with cleaned

input data, limited amount of data, no real-time considerations, and short study peri-

ods. There is a considerable gap between software engineering view and research view.

Throughout this project we work to fill that gap and adopt these algorithms in a real time

system.

We build a heterogeneous knowledge graph of the Internet (derived from passive

DNS data) for each time epoch. Due to the large volume and the dynamic nature of that

data, we observe quite aggressive volatile behaviour on nodes and edges of the graph.

Despite the above challenges, in accordance with the engineering goals we have laid out

we build a system that can handle very large dynamic graphs and run threat intelligence

algorithms. We utilize open source tools and software engineering techniques to over-

come these problems and meet the functional and non-functional requirements while

maintaining the correctness of published research algorithms.

1.2 Goal

Implement a scalable, production ready cyber threat intelligence web platform which

connects research findings with software engineering aspects.

1.3 Scope of the Project

Threat intelligence data will be gathered from multiple external sources. Since this ag-

gregated data will add up to 10 petabytes, a scalable and dynamic backend needs to be

developed to model and manipulate this big data environment. This will be followed by
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a Middleware that will give the ability to query the persistent storage (database clusters)

within seconds according to the user’s needs.

Additionally, an interactive web-based front-end will be built in order to facilitate

Text-based as well as Graph-based search of domains for end users.

These components will be implemented while taking the necessary functional and

non-functional requirements into consideration and a fully working web platform will

be released within the time period of a year.

1.4 Justification as product-based project

Our project involves the application of software engineering techniques to develop a do-

main threat intelligence big data platform incorporating the latest results from research

publications with a plugin-based architecture that addresses real-world gaps in the cy-

bersecurity community. These SE techniques will include analyzing the product idea,

writing the specification, design, and development, thus making our project a product-

based project.

According to the Software Engineering White Paper published by Networked Euro-

pean Software and Services Initiative [2], despite the abundance of storage at relatively

low cost, the storage and querying of data at a large scale continue to remain challenging.

With our project we will be looking into technologies out there that can (partially) solve

these problems, how to use them and improve them to do better, and look into previous

research efforts that we can implement to address some of the weaknesses in the existing

systems and libraries, thus making our product innovative.

Considering these factors, the development of cGraph: Graph Based Extensible Cy-

ber Threat Intelligence Platform is justified as a Product-based Software Engineering

project.
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Chapter 2

Background Study

This chapter discusses current methods and techniques of large scale graph data manip-

ulation mentioned in literature and existing competitive systems. A literature study of

the inference algorithm is given in section 2.1. Section 2.2 describes current software

engineering solutions and a competitive analysis of the existing systems is given in sec-

tion 2.3. The significance and competitive advantage of the proposed solution over other

systems is explored in section 2.4.

2.1 Literature study of the algorithm

The Internet is a massive infrastructure which provides various services and facilitates

consumer engagements. Malicious attacks against internet users have become a daily

occurrence and thus, early prediction of malicious resources has become a tedious and

complicated task. For an example, the amount of daily scans happening through Virus-

Total (VT) is approximately 5-7 million. But the amount of Passive DNS (PDNS) traffic

that Farsight, a state of the art PDNS service, captures is more than 600 million. Thus,

it is clear that the amount of unseen internet resources is much larger than the seen ones.

Numerous researches have been conducted to predict and classify malicious resources

and security researchers mainly focus on two paradigms to carry out this task which

has been explored by Khalil et al in their work in “Killing Two Birds with One Stone:

Malicious Domain Detection with High Accuracy and Coverage” [1]. They have iden-

tified two approaches to classification and prediction systems; classification-based and

inference-based.
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The main focus of our system was to build a big data graph infrastructure to adopt

the research outcomes of Kahlil et al research work and utilize graph inference-based

techniques for prediction of malicious resources.

2.1.1 What is maliciousness?

In terms of Internet security, maliciousness can be said to be the trait of harming Internet

users, such as if a person or organization tries to establish an internet accessible resource

(website, file sharing services, email etc.) in order to compromise access of a victim

(a user or another organization). There are a number of malicious attacks that can be

carried out such as DDOS attacks, phishing attacks, malware attacks, botnet attacks,

ransomware attacks etc. The root of these attacks can be an Internet resource such as IP,

name server, mail server etc. and if the resource we are considering can be used to cause

harm to an internet user, they can be classified as malicious.

Maliciousness of a website measures the likelihood of the website being malicious.

The higher the maliciousness of a website, the more damage it may cause to the visi-

tors of the website. A malicious website may be either a malware website or a phishing

website. A malware website contains codes that install malicious software into visitors’

computers whereas a phishing website pretends to be a legitimate website so that attack-

ers can steal account credentials, cause financial losses, and/or steal private information.

2.1.2 The malicious domain detection system

The entire Internet is bound by two commonly used versions of the Internet Protocol

(IP): the 32 bit long IPv4 addressing and the 128 bit long IPv6 addressing. From these,

IPv4 is more mature compared to IPv6 since it has been around for a long time. Thus,

the current impact of IPv4 is high and all domains, name servers, mail servers use this

version. Currently, around 4 billion IPv4 addresses are in use and out of this only 3

billion addresses are available for public use; the rest is reserved for private network use

[3]. Timely monitoring of changes in this massive infrastructure is the key to uncovering

malicious resources.

Khalil et al in their work has identified two main approaches to uncover malicious

resources; classification-based and inference-based.
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Classification-based

These models are built by using classical statistical and machine learning models such as

random forest, support vector machines, and deep neural networks. The key ingredient

behind this model is to have a well-defined ground truth and adversarial proof feature set.

Defining an adversarial proof feature set and gathering a well-defined ground truth [4]

are two key issues with this approach. Other challenges are determining the re-train

period, establishing well-defined ground truth for each new training cycle and building

the model in a way that it is robust to noise in data.

Inference-based

Inference-based algorithms mainly run message propagation on top of graphs and un-

cover knowledge from the knowledge that is already available, which is different from

the ground truth based supervised learning or deep learning model. It uses label prop-

agation algorithms to propagate the labels from known nodes to unknown nodes in the

graph and uncover the state. An example inference algorithm is belief propagation [5]

which is a well-known label propagation algorithm.

2.1.3 Graph inference

According to Khalil et al’s work, building up an inference-based classification system is

a threefold approach.

1. Constructing the knowledge graph with the use of co-relation rules.

2. Labeling the graph with known malicious and benign resources which will be used

as the initial belief or messages for the message passing algorithms.

3. Running proven message passing algorithms such as Belief Propagation on top of

the graph and tuning the set of hyperparameters to the relevant context.

2.1.4 Knowledge graph

A graph is a data structure comprising of two basic elements; nodes and edges. Nodes are

the representatives of the entities of a graph build while edges symbolize relationships

between those entities. Edges can be directed or undirected. Graphs with directed edges
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are referred to as directed graphs and graphs with undirected edges are referred to as

undirected graphs. Furthermore, nodes and edges in a graph may have types and weights.

A graph with a single type of node is referred to as a homogeneous graph and a graph

with multiple types of nodes is referred to as a heterogeneous graph.

Our graph is built using DNS data which consists of different types of nodes such as

IPs, Apex, FQDNs, SOA, CNAME, Name Servers, and Mail Servers and its edges are

bidirected. Thus, the knowledge graph can be referred to as a heterogenous bidirectional

graph. Since DNS is highly dynamic, its data is extracted daily from the DNS feed,

and the graph is constructed daily. A set of day granular graphs were used to run the

inference algorithm for extracted windows and extracted sub graphs specifically needed

by the user.

2.1.5 Gathering data on known malicious resources

Initial belief or initial information is a key fact in inference. In order to label the nodes

in the knowledge graph, it is necessary to understand the information ecosystems, what

the credibility of the source is, how far one can use that information to label the knowl-

edge graph, and what improvements that one can do to enhance the credibility of the

information.

For this purpose, we can use domain or IP blacklists as an indicator to label the

knowledge graph as well as the state of the art reputation systems like VirusTotal, Alexa

Rank and Google Safe Browsing. However, all these sources have both advantages and

drwabacks.

When considering the domain or IP blacklists, they contain identities of prior known

offenders. These are usually used to aid more information to defense such as indicators

of compromise signals etc. But blacklists can be a victim of adversities and lead to

misinformation propagation [6].

Likewise, the state of the art reputation systems such as VirusTotal also have some

limitations. If one anti-virus engine detects a scanned domain or IP to be unsafe, it

does not indicate that resource is compromised or malicious. In such a case using such

resources require advanced as well as validated heuristics such as marking a scanned

domain as bad if two more anti-virus engines have detected it as bad.

Adding non-malisous information also necessary to run the inference algorithm. Be-
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nign resources have been gathered from Alexa top rank domains, High Alexa ranks are

the highly reputed legit domains. The top rank is always benign alway [4]s.

2.1.6 Belief propagation

In 1982, Judea Pearl [7] proposed the Belief Propagation algorithm as an inference algo-

rithm for trees. Since then, it was proven to work on poly-trees and later on the general

graph as well [8]. Belief propagation is an accurate and efficient algorithm for solving

the message passing problems on graph data structures and has been found to work well

with graphical models like Bayesian networks [9] and Markov random fields [10].

Belief propagation is an iterative algorithm that passes the belief iteratively. In every

iteration t, belief propagation algorithm updates the belief value on the node and passes

the beliefs (messages) to its neighbors based on the belief values it received from the

previous iteration t-1. As mentioned, this interactive process happens until each message

value passed by a node to a neighbor node converges to a stable number. The final beliefs

can be extracted after all the iterations end and the converged belief value indicates the

belief value of that node.

The main idea in the research work of Khalil et al is to define a knowledge graph

and inject labels to the knowledge graph from credible sources and run the belief prop-

agation algorithm on top of the knowledge graph by using the labeled values as initial

beliefs. It will be able to uncover the probabilistic value of indicating the maliciousness

of uncovered nodes in the knowledge graph. The key idea of belief propagation is that

for a given node, if it has more benign nodes associated with it, the likelihood of being

benign is high whereas if it has more malicious nodes associated with it, the likelihood

of being malicious is high. Likewise, a probabilistic answer to the malicious score of a

given node will be computed by belief propagation [figue:2.1].

The structure of the graph that is used to run the belief propagation can be of two

types and the inference depends on the type of graph.

2.1.7 Formal definition about belief propagation

Consider an undirected graph G = (V,E), where V represent nodes and E represent

edges. Each node vi ∈ V contains a discrete random variable Xi where i ∈ {1,n} and

n = ‖V‖ that holds the finite state s j where s j ∈ S and j ∈ {1,m}. In our scenario, S
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Figure 2.1: Computing the maliciousness score of a node by inference

can take three states: malicious, benign or unknown. This structural model defines the

probability distribution p(X1,X2, ...,Xn) over the nodes in G. This is called ”belief”,

which simply means the marginal probability being in each possible state. The exact

inference algorithm computes the marginal probability distribution p(Xi) of each discrete

random variable Xi given a set of observed/labeled nodes.

p(X j) = ∑
Xi,i∈{1,n} j

p(X1,X2, ...,Xn) (2.1)

The marginal probability of the node can be computed according to the above for-

mula by taking the sum over all possible states of all the other nodes in the graph.

The time complexity of the above marginal probability calculation is exponential to

the number of nodes in the graph. The worst time complexity is O(V 2). Belief prop-

agation algorithm is an approximation algorithm to find marginal probabilities and it

reduces the complexity to O(EV ).

The labels are the prior probability of being in each possible state and in the work

of Khalil et al they have been used as the ground truth which is denoted numerically to

represent the prior probability of each node. For example, a node being malicious is 1,
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being benign is 0 and being unknown is -1. Formally, we use φi(s j) to denote the prior

probability of node i being in state s j. By using the prior probability value φi(s j), the

belief propagation algorithm calculates the belief bi(s j) for each node i by computing

the marginal probability for each possible state s j where j ∈ {1,m}.

The edge potential function ψi, j(si,s j) defines the statistical properties between any

two connected nodes i and j. Here i and j are two different connected nodes, and si

and s j are the states of the node. In our context each node can be benign, malicious or

unknown. So the relevant ψi, j(si,s j) edge potential function can be defined by a 3 by 3

matrix that each represents a possible state of the two edge nodes.

In each iteration, the belief propagation algorithm propagates the message vector mi j

of size ‖s‖ to each neighbor j. Formally, node i passing the message to node j on state

sr is denoted as mi j(sr).

mt
i j(sr) = ∑

sp∈S

(
φi(sp)ψi j(sp,sr) ∏

k∈Ni/ j
mt−1

ki (sp)

)
(2.2)

For a given iteration at time t, the message value being updated on its previous state

is mt
i j(sr) (as shown in the equation).

The implementation of the algorithm can be defined to run a constant number of

iterations or until the message value of each node converges (the difference between

messages from two consecutive rounds for all edges is below a predefined small thresh-

old value).

After all iterations have completed, the final belief value of node i can be defined as,

bi(sr) =Cφi(sr) ∏
k∈Ni/ j

mki(sp) (2.3)

Where C is a constant that is used to normalize the belief values.

∑
sp∈S

bi(sp) = 1 (2.4)

2.1.8 Inference-based classification

From the work of Khalil et al, our focus was on inference-based classification and the

algorithmic flow is described in detail below.
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Construction of Domain Graph

There are two types of nodes in the graph (domains and IPs) and information had been

extracted using Passive DNS. By using the extracted A records, IP addresses have been

divided into two groups; public IP addresses and dedicated IP addresses. Public IP

addresses are the IPs belonging to public cloud vendors such as Google Cloud, AWS,

and Azure Cloud or CDN networks such as Cloudflare, Akamai, and Fastly or web

hosting services such as 00host.com. Dedicated IP addresses are the IPs belonging to

particular organizations such as universities, and governments.

The construction of a heterogeneous undirected domain-IP graph called a baseline

graph (G-Baseline) has been done by taking IPs and domains hosted on those IPs.

Ground Truth Collection

The nodes of the above constructed graph has been labelled using two ground truths;

malicious ground truth and benign ground truth.

McAfee SiteAdvisor has been used to gather the malicious ground truth. For the

malicious ground truth they have used McAfee SiteAdvisor [11]. McAfee SiteAdvisor

returns four labels for a given domain; Safe, Caution, Warning and Unknown. “Safe”

indicates a benign domain, “Caution” indicates the domain may bring a minor risk,

“Warning” indicates that a domain has a major risk of being malicious and “Unknown”

indicates that SiteAdvisor does not have sufficient information to categorize a domain.

For benign ground truth, in addition to the “Safe” domains from SiteAdvisor, the

data from previous researches carried out in this area has been used [12], along with

Alexa top 1 million domains [13] appearing consistently over the last 1 year. These long

lived domains with high Alexa rank are very likely to be benign.

Inference

The heterogeneous undirected baseline graph has been transformed into a homogenous

undirected domain-domain graph with the use of association rules. Two association rules

have been created based on the results of the IP classification experiment on the paper.

First association rule is about utilizing the dedicated IPs as well as the common ASs

between domains.
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If two domains are associated if they have shared either at least one dedicated IP or

more than one public IP from more than one AS. If they have shared one dedicated IP

it’s called a dedicated association rule and if they have shared more than one one public

IP from more than one AS, it is called the public association rule. The strength of the

type of associations depends on the number of shared, dedicated and public IPs.

The second association rule is also similar to the first one. Instead of taking a straight

association, it relaxes the dedicated association rule by using the shared /24-subnets

instead of the shared dedicated IPs. That means two domains are associated if they are

resolved to dedicated IPs that belong to the same /24-subnet.

By using the above two association rules, research work transforms the G-baseline

into the domain to domain graph and runs the belief propagation algorithm on top of it.

2.2 Current software engineering solutions

The main inspiration to understand and build a large scale graph for data manipulation

is TAO: Facebook’s Distributed Data Store for the Social Graph [14].

Facebook has over a billion active users. Every time any one of these users access

the site they are presented with hundreds of pieces of information derived from Face-

book’s social graph. Users are presented with photos, check-ins, recommendations and

life events from their friends; News Feed stories, comments, reactions, and shares as-

sociated with them and many more. All this information presented to the user is highly

customized and has a high update rate which in turn puts an extremely demanding work-

load on Facebook’s data back-end due to the data retrieval and rendering which should

happen in a matter of a few hundred milliseconds.

Furthermore, the data set cannot be easily partitioned, and the request rates are not

equally distributed as celebrity photos and current news items have more requests. This

gives rise to a highly customized, constantly changing, and read-dominated workload

that is incredibly challenging to serve efficiently.

Facebook architecture is designed to store and retrieve data using MySQL as the

relational database technology along with Memcache as a large distributed caching layer.

It was designed at a time where the popularity of graph databases were low and hence

the idea was to encapsulate the graph definition (edges and vertices) in the form of a
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relational structure.

TAO (“The Associations and Objects”) design is a geographically distributed col-

lection of server clusters which are organized logically as a tree. The design, which

grabs completely different sets of clusters, are used for storing objects and associations

persistently. This was the secret behind the efficiency and scalability of the design of

Facebook.

Although TAO is the main inspiration behind our system design, there are a few key

differences in our system when compared to TAO. Due to the lack of need to cater to a

global user pool, our servers will be geographically designed to be in one place. Instead

of modeling the graph in a relational form, it will be modelled similar to its conceptual

form with a graph definition (edges and vertices). Similar to TAO, our system will also

make use of caching layers and parallel query execution (Refer Chapter 4.3). Scalability

will be addressed through highly available infrastructure orchestration while achieving

the maximum use of modern graph databases and parallel SQL database engines.

2.3 Competitive Analysis

2.3.1 AT&T Cybersecurity

AT&T Cybersecurity [15] provides commercial and open source services to manage

cyber attacks, including the Open Threat Exchange, which is said to be the world’s

largest crowd-sourced computer-security platform.

Pros

• Provides detailed threat intelligence on various malware families.

• Helps protect enterprises from malicious Internet traffic.

Cons

• Limited intelligence on Internet artifacts such as domains, IPs and certificates.

• No graph visualization.

• No inference on malicious Internet artifacts.
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2.3.2 Anomali Threat Intelligence Platform

Anomali [16] is a threat intelligence and analysis platform that aggregates threat intelli-

gence data under one platform.

Pros

• Integrates domain and IP threat intelligence data from multiple sources.

• Provides a graph representation of Internet artifacts.

• Calculates a threat score based on external threat intelligence sources.

Cons

• Intelligence is limited to external threat intelligence sources.

• Unable to dynamically expand and perform a graph based investigation.

• Unable to traverse graphs based on time.

2.3.3 Cisco Umbrella Investigate

Cisco Umbrella Investigate [17] gives a complete view of the relationships and evolution

of internet domains, IPs, and files which helps to pinpoint attackers’ infrastructures, and

expose current and developing threats.

Pros

• Provides detailed historical view of domains based on passive DNS data.

• Provides information about blocked traffic due to malicious activities.

• Provides a maliciousness risk score for each domain.

Cons

• No graph visualization.

• Limited information on Internet artifacts such as certificates and IP addresses.
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2.3.4 VirusTotal Graph

VirusTotal Graph [18] is a visualization tool built on top of VirusTotal data set. It ex-

plores the relationship between files, URLs, domains, IP addresses and other items en-

countered in an ongoing investigation.

Pros

• Provides threat intelligence based on 70+ antivirus scanners.

• Provides a graph view of domain under consideration.

• Incrementally loads child nodes for parent nodes with many children.

• Provides the ability to save/share graphs.

Cons

• Does not provide capability to dynamically expand or explore graphs.

• No inference based threat intelligence provided.

• No intelligence based on certificates or domain registration information.

• Unable to traverse graphs based on time.

2.4 Significance of the proposed solution

Compared to existing products in the market, our solution provides the following com-

petitive advantages:

• Dynamic graph based visualization and search of Internet artifacts for threat intel-

ligence.

• Ability to integrate various data sources seamlessly to expand the network cover-

age.

• Ability to integrate any intelligence sources seamlessly.

• Graph based inference to uncover malicious Internet artifacts based on a small

seed set of intelligence data.
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• Ability to traverse graphs based on time.
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Chapter 3

Functional and Non-functional

Requirements

This chapter explores the functional and non-functional requirements of the system

through several sections. Section 3.1 gives the functional requirements of the system,

while section 3.2 gives the non-functional requirements (quality attribute scenarios) of

the system.

3.1 Functional Requirements

3.1.1 End user’s functional requirements

• Search an exact domain name, URL, IP address, Name server, Mail server, CNAME

or SOA record.

• Keyword-based search of domains names (for example, if a user types ”paypal”,

show all apex domains containing the keyword ”paypal” e.g. paypal-mysevice.com,

paypal.com, paypal-login.com).

• Display results in a knowledge graph.

• Ability to expand the graph by allowing users to fetch information about any do-

main nodes.

• Ability to window the graph (i.e. limit the investigation to specific time window).
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3.1.2 User Stories

• As a User (general/security researcher) when I type a keyword (for example, pay-

pal) the System must retrieve a list of all Apex, FQDNs, NS, MX, SOA, CNAME,

and associated IPs (if any) ranked by last seen and VirusTotal scan.

• As a User (general/security researcher) when I select a keyword search result I

should see the knowledge graph, inference graph and historical information as a

log.

• As a User (general/security researcher) when I click on a graph node I should see

the inference results of the node.

• As a User (general/security researcher) when I click on a graph node I should be

able to expand and shrink the nodes.

• As a User (general/security researcher) when I drag the timeline, I should see the

graph (vertices and edges) and inference values dynamically changing over time.

• As a User (general/security researcher) when I change the time window of the

the time line I should see the graph (vertices and edges) and inference values

dynamically changing over time.

3.2 Quality Attribute Scenarios

The quality attribute scenarios were developed with respect to the template in ”Software

Architecture in Practice” by Len Bass, Paul Clements, and Rick Kazman [19].

3.2.1 Availability Scenarios

1. In the case that an unanticipated external network failure occurs during normal

operation, the system should trigger an event and notify the admin within 1 second

(Table 3.1).
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Table 3.1: Availability Scenario 1
Source of stimulus External to the system

Stimulus Unanticipated network failure

Environment Normal operations

Artifacts System

Response Event should be triggered and must notify to the admin

Response measures Triggered event must be displayed within 1 second

3.2.2 Modifiability Scenarios

1. A developer should be able to add new data sources. This change will be made to

the system at design time and it should take the least amount of time possible to

make and test the change. Additionally, it should not violate the semantics of the

inference system after the modification (Table 3.2).

Table 3.2: Modifiability Scenario 1
Source of stimulus Developer

Stimulus Add new data sources

Environment At design time

Artifacts System

Response Should not violate the semantics of the inference system

Response measures +/- 0.1% error in inference algorithm results

3.2.3 Performance Scenarios

1. Under normal operations, the data transformation process should complete within

2-4 hours. If not the system will lose the ability to provide up-to-date data (Table

3.3).
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Table 3.3: Performance Scenario 1
Source of stimulus Data extraction system

Stimulus Daily gathered data

Environment Normal operations

Artifacts Preprocessing system

Response Notify the statistics of the preprocessing jobs

Response measures Average preprocessing time should bounce between 2 to 4 hours

2. Under critical operations, the data transformation process should complete within

3-5 hours. If not the system will lose the ability to provide updated data (Table

3.4).

Table 3.4: Performance Scenario 2
Source of stimulus Data extraction system

Stimulus Daily gathered data

Environment Critical operations

Artifacts Preprocessing syste

Response Notify the statistics of the preprocessing jobs

Response measures Average preprocessing time should bounce between 3 to 5 hours

3. The graph database should be optimized in a way that users should be able to per-

form fast graph traversal under normal operations, and these transactions should

be processed within 5 seconds (Table 3.5).

Table 3.5: Performance Scenario 3
Source of stimulus Developer

Stimulus Graph queries

Environment Normal operations

Artifacts Graph database cluster

Response Retrieve nodes and edges

Response measures Retrieve the data within 5 second (without any database driver crashing)
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4. The graph database should be optimized in a way that users should be able to per-

form fast graph traversal under critical operations, and these transactions should

be processed within less than 15 seconds (Table 3.6).

Table 3.6: Performance Scenario 4
Source of stimulus Developer

Stimulus Graph queries

Environment Critical operations

Artifacts Graph database cluster

Response Retrieve nodes and edges

Response measures Retrieve the data within 15 seconds (without any database driver crashing)

5. Under normal conditions, data should be orchestrated to the front end within 10

seconds in an average bandwidth internet connection (Table 3.7).

Table 3.7: Performance Scenario 5
Source of stimulus User

Stimulus User request

Environment Normal operation

Artifacts API and the middleware

Response API response

Response measures Return the result (JSON response) under 10 seconds (100Mbs bandwidth)
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6. Under critical conditions, data should be orchestrated to the front end within 20

seconds in an average bandwidth internet connection (Table 3.8).

Table 3.8: Performance Scenario 6
Source of stimulus User

Stimulus User request

Environment Normal operation

Artifacts API and the middleware

Response API response

Response measures Return the result (JSON response) under 20 seconds (100Mbs bandwidth)

7. Under normal operations, inference algorithms must complete the inference pro-

cess relevant to the extracted subgraph within 10 seconds (Table 3.9).

Table 3.9: Performance Scenario 7
Source of stimulus Internal to the system (Inference algorithms)

Stimulus Extracted sub graph from user request

Environment Normal Operation

Artifacts Middleware

Response Inference results

Response measures Run the algorithm and return results within 10 seconds

8. Under critical operations, inference algorithms must complete the inference pro-

cess relevant to the extracted subgraph within 10 seconds (Table 3.10).

Table 3.10: Performance Scenario 8
Source of stimulus Internal to the system (Inference algorithms)

Stimulus Extracted sub graph from user request

Environment Critical operation

Artifacts Middleware

Response Inference results

Response measures Run the algorithm and return results within 20 seconds
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3.2.4 Scalability scenarios

1. The database cluster should be able to scale up with the data without any avail-

ability corruption (without any downtime) (Table 3.11).

Table 3.11: Scalability Scenario 1

Source of stimulus System

Stimulus Data

Environment Normal Operation

Artifacts Database clusters

Response No downtime and notify the Volume expansion

Response measures Updated volume

23



Chapter 4

Analysis and Design

This chapter explains about the design of the system in depth through several sections,

emphasizing the experiments and tests carried out to understand the data, and the design

of a suitable system architecture. Section 4.1 explores the data sources used in the sys-

tem which includes Farsight Security, VirusTotal, MaxMind, and Alexa Rank and the

techniques used to store them, while section 4.2 explores the design of the system and

how the data is preprocessed and stored.

4.1 Sources of data

The system deals with mainly four types of data sources to build the graph:

• Farsight Security [20] - Cybersecurity intelligence solutions that is the main PDNS

data source.

• VirusTotal [21] - Reputation service that provides aggregated intelligence on any

URL.

• MaxMind [22] - Intelligence service that provides IP geolocation data.

• Alexa Rank [13] - Website ranking service that adds the reputation value to web-

sites based on their popularity.

PDNS data from Farsight Security was used to model the graph while data from the

other sources, VirusTotal, Alexa, and MaxMind, was used as intelligence sources to add

belief values to the vertices and edges in the graph in order to run inference algorithms

on top of the graph.
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Table 4.1: Structure and Volume of data feeds (daily)

Data feed Structure of raw data Volume
Structure of the

transformed data

Farsight (PDNS) Document 170 GB - 195 GB
Graph and

Time series

VirusTotal Document 2.3 GB - 3 GB
Document and

Time series

Alexa Rank Document 18MB
Document and

Time series

MaxMind Key-value 1 GB - 2 GB
Key-value and

Time series

4.1.1 Passive DNS data from Farsight Security

PDNS data from Farsight Security was used as the key ingredient of the graph which

consists of several types of DNS records such as A, NS, MX, CNAME, and SOA, col-

lected daily. Initial studies were conducted in order to understand the volume and format

of this data and the following fields were found to be common:

• count - Number of times that the record has been captured by Farsight Security’s

PDNS listeners throughout the day.

• time first - First time the record has been captured by the PDNS listener.

• time last - Last time the record has been captured by the PDNS listener.

• rrtype - Flag to indicate the type of record.
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Table 4.2: Overview of Farsight data

Type of record Data format Definitions

A record - Contains

information about

domain to IP

resolutions.

{”count”:6,

”time first”:1596227280,

”time last”:1596227280,

”rrname”:”1.ac.”,

”rrtype”:”A”,

”bailiwick”:”1.ac.”,

”rdata”:[”209.203.84.21”]}

rrname - Indicator of the

Apex/FQDNs.

rdata - Array of IPs that

are resolved by

Apex/FQDNs in the

rrname field.

NS record - Contains

information about

name servers.

{”count”:2,

”time first”:1596307649,

”time last”:1596307649,

”rrname”:”4.ac.”,

”rrtype”:”NS”,

”bailiwick”:”4.ac.”,

”rdata”:[”dns1.goodspeed.net.”,

”dns2.goodspeed.net.”]}

rrname - Indicates the

name of the name server;

this could be a root name

server to FQDNs.

rdata - Array of name

servers that are associated

with the name server

indicated in the rrname.

MX record - Contains

information about mail

servers.

{”count”:7,

”time first”:1601499588,

”time last”:1601586025,

”rrname”:”encompass.co.ac.”,

”rrtype”:”MX”,

”bailiwick”:”encompass.co.ac.”,

”rdata”:[”10 mail.encompass.

co.ac.”]}

rrname - Indicate the

name of the mail server.

rrdata - Array of mail

servers associated with

the mail server indicated

in the rrname.
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CNAME record -

Contains information

about aliases of

another canonical

domain.

{”count”:12,

”time first”:1602104578,

”time last”:1602198338,

”rrname”:”www.acs.ac.”,

”rrtype”:”CNAME”,

”bailiwick”:”acs.ac.”,

”rdata”:[”tn50000215.

schoolwires.net.”]}

rrname - Indicate the

relevant domain and its

original domain name.

rrdata - Array of all

aliases for the

Apex/FQDNs in the

rrname field.

SOA record - Contains

administrative

information about the

zone.

{”count”:84624187,

”time first”:1596228840,

”time last”:1596240622,

”rrname”:”.”,

”rrtype”:”SOA”,

”bailiwick”:”.”,

”rdata”:[”a.root-servers.net.

nstld.verisign-grs.com.

2020073100 1800 900 604800

86400”]}

rrname - Contains

information about

Apex/FQDNs.

rrdata - Relevant

zone transfer information.

Analysis of the volume of PDNS data

Table 4.3 gives details on the volume of data and the unique number of records received

daily by Farsight Security’s PDNS data feed based on their record types (A, NS, MX,

SOA and CNAME).
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Table 4.3: Statistics of PDNS data

Record Type
Data Volume

(daily)

Number of Records

(Unique)

A 68GB-75GB 350 million - 400 million

NS 51GB-60GB 200 million - 250 million

MX 2GB-3GB 10 million - 15 million

SOA 27GB-30GB 100 million - 115 million

CNAME 22GB-25GB 100 million - 115 million

Formulating graph using PDNS data

From the different types of records available in the PDNS data (A, NS, MX, CNAME,

SOA) the following vertices and edges were extracted.

• Vertices: Apex, FQDNs, IPs, Name Servers, Mail Servers, CNAME, SOA

• Edges: Apex-IP, Apex-FQDNs, FQDNs-IP, Apex-NS, FQDNs-NS, Apex-MX,

FQDNs-MX, Apex-CNAME, FQDNs-CNAME, Apex-SOA, FQDNs-SOA

Most of the Apex/FQDNs have used the same IPs, name servers, mail servers, and

SOA. This gives rise to a large number of connected components with various underlying

properties such as the same cloud vendor, CDN etc.

As shown in [Figure 4.1], the graph is stored along with time stamps which allows

users to filter a subgraph for any given time interval.

28



Figure 4.1: An instance of a heterogeneous knowledge graph (Apex as start node)

Storing PDNS data

Once the conceptual model of the graph is built the next challenge was to store the graph

data in a manner which preserves its time properties. The inference algorithms depend

on the time we run the algorithms on the graph so one of the major requirements was

to build the graph to capture the time properties of PDNS data. Additionally, a large

number of edges and vertices are also appended to the graph daily. This highlighted the

need for a clustered environment to store and query the graph. Section 4.2.2 describes

the selection process of the clustered environment.

4.1.2 Intelligence data from VirusTotal

VirusTotal is a URL reputation system which inspects items with over 70 antivirus scan-

ners and URL/domain blacklisting services and gives a comprehensive report of that

URL. cGraph uses VT data as an intelligence source for the inference algorithms in or-

der to mark vertices as malicious or benign. While the schema of VT data gives detailed
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information about the scanned URL, the system is mainly concerned with the majority

vote of the indicators (malicious, spam, phishing, malware, ransomware, suspicious) and

the positive count which indicates the number of indicators that have marked the URLs

as infected.

Analysis of the volume of data from VirusTotal

Table 4.4 shows the daily, monthly and yearly volumes of the VT data feed and the

number of records.

Table 4.4: Analysis of volume and number of records of VT data feed

Data Volume
Number of Records

(VT Scans)

Day 2.8GB-3.2GB 5 million - 8 million

Month 80GB-95GB 175 million - 250 million

Year 2GB-3GB 2 billion - 2.5 billion

Distribution VT data

Table 4.5 gives an overview of the most scanned Apexes within the study period of Au-

gust 2019 to November 2019. As shown in the table, somes Apexes are more prominent

than others in the VT feed. These observations were considered when sharding VT data.

Table 4.5: Top Apex Domains with Most FQDNs

Apex #FQDNs #scans
#scanners

>0%
Description

blogspot.com 2,112,783 4,144,736 25.28
Popular

Blogging Site

coop.it 1,881,552 1,940,000 0.0002
URL Shortner

Service

mcafee.com 1,763,914 2,342,965 0.013
McAfee

Endpoint Hosts

opendns.com 1,490,547 1,987,743 0.001
Cisco Open

DNS
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office.com 1,068,008 1,460,318 1.43
Microsoft’s

Data Telemetry

footprintdns.com 764,060 883,773 0.001
Microsoft DNS

Tracker

cedexis-radar.net 703,962 922,056 0.041
Cedexis Radar

Tracker

amgdgt.com 233,914 330,944 0.01

Digital

Advertising

(Amobee Inc.)

Storing VT data

Similar to PDNS data, VT data was also stored in a manner which preserves its time

properties, in order to use it as an intelligence source for graph inference and was profiled

based on FQDNs as shown in Figure 4.18. A large number of records of VT data was

also appended to the data store every day which resulted in a massive volume of data.

This necitates a clustered environment for storing VT data (similar to PDNS data) with

a good partitioning mechanism.

First Approach

The initial idea was to keep one table for one apex and group the information of its

scanned URLs in the table. However, by studying the data in depth it was clear that there

is no single database that can store a large number of such individual tables and while

some tables will be growing exponentially (for example, site.google.com, blogspot.com)

and others will not (for example, ugvle.ucsc.cmb.ac.lk). To overcome these drawbacks,

a different approach was proposed.

Second Approach

In this approach, all the URLs were stored using two level hierarchical partitioning.

Specifically, the tables were partitioned based on letters, digits, and special characters

(for example, !, @, # etc) and profiled them by queries. The main problem was to

identify an effective way to create relations and partitions.
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Each of the tables were partitioned again by letters, digits, and special characters.

The first letter of the apex/FQDNs decides which table it should be stored in and the sec-

ond letter decides which partition it should be in. With this conceptual model the number

of relations were reduced from 2,136,347,556 to 1,369 (37*37) which is manageable by

any database engine and also overcomes the problem of exponential growth of some ta-

bles. Section 4.2.2 explores how parallel SQL was used to store data according to this

model and how it was queried.

Data partitioning

Storing a large number of records (Two billion per year) is quite a tedious task and

querying them is also time consuming. As a solution for this relations from letter a to

z, number 1 to 9 and all ASCII special characters and two indexes for table level and

database level were used.

4.1.3 Geolocation Data from MaxMind

MaxMind is a geo IP locator that gives information of the geolocation of any particular

IP. Compared to the other sources, MaxMind brings a considerable amount of data into

the system which is easy to manipulate. MaxMind is the main source of geolocation data

which gives an insight to the system’s initial search results.

Storing MaxMind Data

MaxMind data is of a manageable volume and it has its own file type which is easy to

manipulate. Due to these reasons, the original file format was used to store and query

the data without any restructuring.

4.1.4 Data from Alexa Rank

Data obtained from the reputation system Alexa Rank includes the Alexa rank of Apex/

FQDNs based on popularity and other relevant measurements. This data is used to give

some insight into initial search results and rank them as well as to be fed to the inference

algorithm of the knowledge graph. We use domains with high alexa ranks as benign

domains for the inference algorithms.
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Data format

Alexa data is represented in a key-value format, as shown below.

google.com, 1

youtube.com, 2

[apex/fqdns], [rank]

Storing Alexa Rank Data

Data concerning the Alexa rank is gathered every day and as a result it was a neces-

sary requirement to maintain the time-series properties of this data. Due to this, a SQL

schema was proposed which takes into consideration both the key-value properties and

time-series properties of the data (Refer Appendix B).

4.2 System Design

This section explores the steps taken to store the above data in suitable databases and

how the big data environment was handled under the following sub-components:

1. Data preprocessing

2. Data storing

3. Data orchestration and data visualization

4.2.1 Data preprocessing

Due to the large volume of data that is handled by the system, data preprocessing is a

time consuming and computationally heavy process (Table 4.1). Distributed data pro-

cessing techniques such as map-reduce and map reduce implementations such as Apache

Hadoop and Apache Spark were considered for this task. According to the study of

graph data processing comparison [Figure 4.2] by Lei Gu and Huan Li in the publi-

cation ”Memory or Time: Performance Evaluation for Iterative Operation on Hadoop

and Spark” [23], Spark was far efficient than the old school Hadoop environment for

MapReduce operations. As a result, Spark was selected to distribute computing engines

for pre-processing and scheduled batch processing tasks in the system.
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Figure 4.2: Scalability comparison

4.2.2 Data storing

Databases

Maintaining the quality and integrity of each data source was a vital factor that had to

be considered when storing data. As a result, community studies and experiments were

conducted in order to identify the best databases to store the data used by the system.

Since each data source had its own requirement, it was decided that a single database is

insufficient to control such a vast amount of data. The proposed solution for this was a

cluster of databases and the following databases were selected for this purpose.

• Graph storage - ArangoDB

• VT data storage - Greenplum DB

• Alexa Rank data storage - Greenplum DB

Document/Time series Data Storage (VT and Alexa Rank data)

Greenplum DB was used for both Alexa ranked domain profiling and VT profile ranking

since it is a massively parallel PostgreSQL database with the capability to run parallel

SQL queries [24]. It was selected as the most suitable database to store document/time-

series data based on community readings, use-case studies and various trial and error

experiments that were carried out.
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Graph Data Storage (PDNS data)

A benchmark test was conducted with other competitive open source graph databases

available (ArangoDB vs OrientDB vs Neo4j) to analyze the performance of graph queries.

It was done on a Virtual Machine in Google Cloud Platform with 16 cores and 32GB

RAM and 0.01% graph data from the original PDNS data was used. Since the commu-

nity studies we have previously done was complementary to the test results obtained,

ArangoDB was selected as the graph data storage. ArangoDB’s support for scalability

and clustering for big data environments were also other major factors that was consid-

ered in this decision.

Figure 4.3: Any Direction Figure 4.4: Inbound Figure 4.5: Outbound

In line with the system’s goals, the system was designed to optimize Read operations

compared to Write operations. Due to this, benchmark testing was performed for Read

queries of inbound, outbound and any directional graphs for different Apex/FQDNs with

different depth values. Figures 4.3, 4.4, and 4.5 give the mean time taken for compila-

tion of graphs against different depth values. The time taken for graph compilation is

significantly less for ArangoDB when compared to both OrientDB and Neo4j.

Furthermore, one of the main requirements in the heterogeneous graph and a neces-

sary requirement when deploying inference algorithms is the ability to traverse in any

direction. ArangoDB executes the query and returns the node and edges more effectively

when compared to OrientDB and Neo4j. It was found to be 25% faster than OrientDB

and 33% faster than Neo4j. Neo4j is a good competitor to ArangoDB but from an engi-

neering point of view Neo4j had development limitations such as the lack of support for

clustering and sharding in the community edition.

35



Database drivers

In order to select a suitable programming language to build APIs and middleware com-

ponents, a study was done to obtain the performance of database drivers by using dif-

ferent languages. Figure 4.6 gives the performance of database drivers for ArangoDB in

different programming languages against the depth of the graph.

Python and Go have an average execution time of 2-3 seconds, when compared to the

other supported languages, Java and PHP. Thus, it was concluded that both Python and

Go are suitable for the development of APIs and middleware components of the system.

However, since time taken to execute queries is of vital importance, Go was deduced

to be the better suited language for the system’s needs owing to it’s better performance

over Python.

Figure 4.6: Execution time vs depth under 10 000 node limit

Infrastructure orchestration

Maintaining large database clusters is a tedious task. As a solution for this, it was decided

to use a container orchestration platform such as Docker Swarm or Kubernetes [25] to

deploy the middleware application. Kubernetes was selected as the more suitable con-

tainerized platform for the system due to its flexibility and scalability. Using Kubernetes

to manage all computation resources together makes the manipulation of database clus-

ters much easier [Figure:4.7]. Kubernetes brings stable and easy infrastructure orches-

tration as an alternative to installing binaries on VMs and creating database clusters. It
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uses ‘pod’ or ‘container’ as its smallest instance of infrastructure orchestration which

can consist of one or more containers inside it. This containerized architecture has made

the developing and deployment process of middleware and APIs much easier than a reg-

ular development environment. Being able to deploy the algorithms and dependencies as

same as its development environment (research environments) added more consistency

for the middleware and its process.

Figure 4.7: High level diagram of infrastructure orchestration with Kubernetes

As shown in Figure 4.8, different namespaces were used inside Kubernetes such that

the database clusters and applications could be kept separately so that it facilitates the

easy maintenance and enhancement of the system in the future.

Figure 4.8: Namespaces inside Kubernetes
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Data visualization

In graph data visualization, the most important requirement was effective graph render-

ing and good usability. Community studies and readings were done to evaluate and com-

pare the performance and usability of open source graph rendering libraries. As a result,

Graphin (AntD) and D3.js, which are two Javascript-based graph visualization libraries,

were selected as most suited for the system’s needs and experiments were conducted to

determine the library with better rendering performance.

Figure 4.9: Ant Performance of Force Layouts AntD vs D3

The time taken to render the graph with different numbers of nodes and edges were

measured for each library. The experiments were run on different computation environ-

ments for different browser types and versions and the average value was taken when

plotting the chart for rendering time against the nodes/edges combinations. The graph

was populated using real data from the databases and it was seen that the performance of

the D3 library was better than Graphin (Figure 4.9). However, Graphin provided better

usability and visual appearance. Therefore, it was selected as the graph visualization

library.

Graphin provides several layouts to render the graph such as Random, Circle, Radial,

Grid, Concentric and Force. Experiments were done on the same set of nodes/edges

combinations as before on different browsers and the average time taken to render the

38



Figure 4.10: Graphin: Performance of Layouts

graph was considered for each of these layouts as seen in Figure 4.10. Although Ran-

dom, Grid, Circle and Concentric layouts had better performance when compared to

Radial and Force layouts, it was decided that the Force layout was better suited for data

visualization of the system when considering its functionality and purpose as well as its

usability. Figure 4.11 and Figure 4.12 shows the visual difference of the two layouts:

Force and Random.

Figure 4.11: Force Layout Figure 4.12: Random Layout
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4.2.3 System architecture design

Designing the system architecture was done as an incremental process. Initially, a single

node database instance with all the functionalities of the database was investigated. This

monolithic based unscalable architecture resulted in a number of issues in the system and

was a hindrance to accomplish the necessary requirements. As an alternative solution,

a containerized microservices-based architecture was proposed with high availability,

scalability and portability.

The said architecture is explored in 3 views below. Each view describes how the

design helps to plant the algorithms that are published in a real time system and do

analysis on the running system.

1. Infrastructure point of view

2. Data point of view

3. Concepts and Relationships point of view

Infrastructure point of view

Figure 4.13 depicts the system architecture from the point of view of its infrastructure. It

describes how the system components, such as Spark cluster, ArangoDB cluster, Green-

plum DB cluster, job schedule, middleware and the web application, are served on the

private cloud environment.

All resources have been provisioned on top of VMware vSphere private cloud. Ku-

bernetes cluster has been installed on top of the provisioned VMs and an abstracted com-

putation resources layer has been created in order to manage all computation resources

together.

The entire application has been built on top of Kubernetes, web servers, and API

(middleware) ingress to the outside world via the load balancer. Behind that, we have

implemented ArangoDB cluster and Greenplum cluster on top of Kubernetes cluster and

the Spark cluster has been implemented outside of the Kubernetes cluster. A dedicated

set of resources has been allocated to Spark itself to preserve its performance. The

middleware has been deployed on top of Kubernetes in pods as replica sets to preserve

the availability and get the maximum use of resources available in the Kubernetes cluster.
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Figure 4.13: Infrastructure point of view

Apache Airflow was used to automate the daily insertion process by running daily Spark

jobs and inserting new data into the database clusters.

Kubernetes was used for easy management of database clusters and to increase the

availability of data nodes which are requirements of the system. It also facilitated the

addition of new computation resources to the pool which makes scaling much easier.

Table 4.6: Infrastructure Components

Web Server Serve the front-end application

Load Balancer

Balance the load arriving at the web server from outside

(Both web server and load balancing happen via one

NGINX Ingress Controller)

REST API
Orchestrate the data to the front-end (connect the

front-end and back-end)

API Gateway Manage all API calls happen through the microservice

Microservices
Consists of parallel data executors, data transformers,

inference algorithms, MaxMind data extractors etc.

ArangoDB

Cluster
Store graph data (PDNS data)

GreenplumDB

Cluster
Store intelligence data sources (VT and Alexa Rank)
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Spark Cluster Run data preprocessing and insertions

Airflow Automate the data preprocessing and data insertions

Data point of view

Data point of view describes how the data flows throughout the system design and how

different data sources interact with each other to produce the expected results. As shown

in figure 4.14, the graph was mainly formed with PDNS data and VT, Alexa Rank and

MaxMind data sources was used to add belief values to the edges and nodes using the

inference algorithms which is run on top of the formulated graph.

Figure 4.14: Data point of view

Concepts and Relationships point of view

The system architecture from the point of view of its concepts and relationships explores

how the middleware components, parallel query execution components and inference

algorithms interact with each other. The main ingress point of the system is the API.

Several endpoints have been defined in the API to do queries in the backend system.

Each query is treated as a separate computation work and executed parallely. The com-

ponent diagram1 in figure 4.15 gives an overview of the interaction between system

components.

The system functions as a set of microservices. When a search query is executed

for an IP, Apex, FQDNs, NS, MX, CNAME or SOA from the frontend of the system,

the relevant microservice executes parallel queries on an ArangoDB cluster and fetches

the relevant data. If the scanned resource is an IP, the search component interacts with

MaxMind IP database and gather necessary data. All other resources will additionally

1UML 2.0 Specification
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Figure 4.15: Concepts and Relationships point of view

fetch data from the VT profile database and Alexa Rank database. The retrieved results

will be sorted based on Alexa Rank and VT feedback. The results will be displayed on

the front-end as a ranked list of search results.

When a search result is selected, the graph data retrieval endpoint will fetch the data

necessary to render the graph in the front-end. Graph data retrieval endpoint consists

of two children microservices; a microservice to handle the depth and the number of

nodes returned in the graph traversal, and another microservice to handle the traversal

of the graph using time property. VT scan and Alexa scan microservices will fetch data

relevant to the vertex and assign a maliciousness score to each domain of the graph using

the graph inference algorithm.

The diagram in figure 4.15 shows a single instance of the microservices. However,

each microservice has been deployed as a replica set in Kubernetes which helps to avoid

single point of failures.

4.2.4 Design of the inference system

Khalil et al in their work has designed the inference system for a homogeneous domain

graph which consisted of only of two types of nodes; domains and IPs only. The baseline

graph has been converted into a domain-domain graph by using association rules and the

inference algorithm has been run on top of it. The knowledge graph constructed in our
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project is of a heterogenous nature and it is exponentially large when compared to the

graphs used in the publication.

There has been recent research showing that the belief propagation works on het-

erogenous graphs of different types of network nodes [26]. Following this approach, we

run belief propagation on the heterogeneous knowledge graph we build. An advantage

of this approach is that even if the association rules change over time, this approach can

withstand the changes and produce acceptable results.

Ground truth extraction for inference

Similar to the work in the publication by Khalil et al, our system also has two ground

truths; malicious ground truth and benign ground truth. Malicious ground truth was

defined by using the intelligence provided by the daily feed of VirusTotal. For a given

resource the VT positive count was taken for seven days prior to the current date and

if the count was ≥ 2, it was considered to be malicious [4]. Benign ground truth was

defined by using the intelligence provided by Alexa Rank data. If the Alexa Rank for a

given resource consistently below 100K for a week, considered to be benign [4].

Node labeling

For the node labeling process, the node types of the nodes extracted from the graph were

synced with the relevant ground truth information and they were labeled by following

the heuristics given below:

• If the given Apex/FQDNs/IP/SOA/CNAME/NX/MX is in the ground truth list and

its VT count is ≥ 2, the node is marked as Malicious (indicated by 1)

• If the given Apex/FQDNs/IP/SOA/CNAME/NX/MX is in the ground truth list and

its Alexa Rank is ≤ 100,000, the node is marked as Benign (indicated by 0)

• If the given Apex/FQDNs/IP/SOA/CNAME/NX/MX is not in the ground truth list,

the node is marked as Unknown (indicated by -1)

Inference process

The implementation of our version of belief propagation has a worst case time complex-

ity of O(EV ). Even for the implementation of the algorithm using a low-level language
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based (C-language based) parallel code it was seen to take days to execute such a large

volume of data. Initially, our attempt was to map the belief propagation process to the

MapReduce operation and run on it. However, it was extremely tedious to interpret the

inference algorithm to MapReduce operations. As a solution, it was decided to run the

inference algorithm on user requested depth 2 sub graph that extrated from the main

knowledge graph, and then run inference on top of the immediately connected compo-

nents as requested by the user. This scenario is depicted in figure 4.16.

Figure 4.16: Subgraph with a depth of 2

For the inference process a subgraph with depth 2 was extracted from the knowledge

graph with the resource scanned by the user as the root node. For an example, if the user

scans the Apex abc.com, the latest DNS formation is taken from the knowledge graph

with a depth of 2 as shown in figure 4.16. Then it is synced with the data of malicious

and benign nodes and the inference algorithm is run on top of it and the graph is rebuilt

in a heterogenous manner as shown in figure 4.17.
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Figure 4.17: Labeling the depth two subgraph before Inference

4.2.5 Technology stack

Table 4.7: Overview of the Technology Stack

Scenario Technology

Alexa Rank and VT data storage Greenplum DB

PDNS data storage ArangoDB

Data Preprocessing Apache Spark

Managing high available system Kubernetes

API/Middleware (parallel query executors and

inference algorithms)
Go, C, Python

Front-end ReactJS with Redux, Graphin

Documentation Swagger, MkDocs

Spark Jobs Automation Apache AirFlow

Caching Redis

Traffic Manipulation KrakenD

CI/CD GitHub Actions

4.3 Engineering Challenges and Solutions

Various software engineering challenges were encountered during the development pro-

cess and this sections explores them and how they were overcome.
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4.3.1 Profiling VT records

VirusTotal is the main source of intelligence data in the system. The total number of VT

scan records that had to be profiled based on their FQDNs is 2,136,347,556. In order

to fulfill this task, two different approaches were used. One was just using flat-files

and the Apache Spark distribution system, and the other approach was to preprocess the

data using Apache Spark and save in a database. Before going into further details about

each process, it is important to take a closer look at the profiling process. As shown in

Figure 4.18, it was required to profile each scanned URL under its FQDNs and separately

retrieve the profile based (time series) data to feed the inference algorithm and label the

vertices of the graph. One of the major requirements of this profiling is to monitor the

behaviors of FQDNs relative to the time.

Figure 4.18: VT profiling

As shown in figure 4.18, the requirement was to profile the scanned URL feed and

scan results in a hierarchical structure.
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Using Spark

Since the requirement of the system was to build a hierarchical profiling model, the initial

idea was to use a model similar to the file hierarchy model found in operating systems.

Apache Spark was used to preprocess the data from VT and this data preprocessing

stage consisted of running a set of MapReduce operations followed by a set of groupBy

operations on the data and saving the grouped results on the file system. A single file

was used to store one scanned apex. However, this approach had some drawbacks owing

to the difficulties encountered while inserting new data.

Spark has been designed to load all the necessary data into memory at once using a

fundamental data structure called Resilient Distributed Datasets (RDD). RDD is a read-

only, partitioned collection of records, and each dataset in RDD is divided into logical

partitions which may be computed on different nodes of the cluster in parallel. Due

to this, it is impossible to track the necessary data in a straightforward manner without

running any map filter operations which makes insertion of new data an expensive and

time-consuming task.

Furthermore, running search queries on the data is challenging due to the difficulty

in maintaining an indexing mechanism. As a solution, it was proposed to use a binary

tree. However, integrating a custom-built binary tree with Spark MapReduce operations

was proved to be ineffective due to the amount of time taken to run operations such as

keyword searches. Additionally, since VT data amounts to over 2 billion records in total,

maintaining such a large number of files was a tedious task and the data partitions had

to be maintained as ext4 file type.

Taking these maintenance and scalability issues into consideration it was decided to

use a dedicated database or database cluster to store the data

Using Database

One of the major conflicts encountered when using databases was to integrate the pro-

filing model as same as the conceptual model. Due to this reason, our first attempt was

to keep one table per one FQDNs. However, it was an impossible task to find any single

database that could handle 2 billion tables, so it was realized that it was a naive approach.

The next step was to identify a model that was compatible with both conceptual models

and the database. Since this data is structured and well-formed, it was decided that a
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relational database was most suited to store for this data. This resulted in two solutions:

one was to design a normalized design, and the other was to keep some redundancies

and save the data without a normalized design.

Normalized design

Figure 4.19: ER diagram for the Normalized design

All the apexes were encapsulated into one relation while FQDNs, scanned URLs,

and antivirus engine results were encapsulated into another relation2. When a single

apex is considered there were multiple FQDNs associated with it. Therefore, a one-to-

many relationship was created between Apex and FQDNs relations. Likewise, a single

FQDNs has multiple scanned URLs associated with it. Therefore, a one-to-many rela-

tionship was created between FQDNs and URL relations. Finally, a similar one-to-many

relationship was created between URL and scanned results relations (Figure 4.19).

After the data was normalized into the above structure, each relation contained nearly

200 million records, and both URLs and scanned results relations contained nearly 800

million and 2 billion records respectively. Even with indexing and partitioning of the

relations, running aggregate queries with join operations took a considerable time to

complete (20 seconds to 1-2 minutes). This was a major barrier in achieving the sys-

tem’s quality requirements. To overcome this, vertical scaling was done by giving more

resources to the database. However, the goals were still not reachable and the perfor-

mance was poor.

The solution for this was identified as having clusters of the database in which verti-

cal scaling could be done exceptionally well, distributing the data among the database in-
2UML 2.0 Specification
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stances (segments) and running parallel queries on them. In order to do that, the database

had to be sharded. By keeping the same normalized schema, Random and Hash-based

data sharding methods were used in the cluster. Random sharding distributes data in a

round-robin manner while the hash-based sharding uses a hash of the data in columns.

Still, it was observed that this normalization makes some unnecessary traffic between

database instances resulting in the reduction in performance of the database cluster.

Only hash-based sharding could be used in the normalized design. The reason was

that the database does not allow sharding in a random manner whenever there exists a

constraint in the relation. This was a critical way of distributing data due to the fact

that poor distribution of data led to communication between segments when executing

queries which led to reducing the performance. Although indexing and partitioning

mechanisms were used to overcome this, the results were not satisfactory. Thus, it was

concluded that the best practice of avoiding redundant data had to be traded to reach the

expected query performances.
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Figure 4.20: Sharding using APEX-ID (Hash distribution)

Figure 4.20 shows how data was sharded using APEX-ID (Hash distribution). When

considering very large scanned domains such as Blogspot, one segment can grow ex-

ponentially. This method was quite effective with join operations, but the benefits for

parallel queries were lost because of the non-uniform record distribution within the seg-

ments.
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Figure 4.21: Sharding using FQDN-ID (Hash distribution)

Figure 4.21 demonstrates an alternative investigation done to overcome the above

problem. Here the relations were shared using FQDN-ID and by using the same hash-

based sharding strategy. Considering the fact that FQDN-ID is not the foreign key of

the FQDNs relation, the situation where most records are stored in the same segment

can be avoided. As a result, data are more likely to be uniformly distributed within the

segments. However, this strategy also fails when running parallel queries since join op-

erations are quite costly, which resulted in a large amount of unnecessary traffic between

segments.
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Figure 4.22: Sharding using FQDN-ID (Random distribution)

As shown in Figure 4.22, in the final design decision of VT profiling the normalized

design has been omitted. Storage was traded for query performance. In this scenario,

the relations were sharded by using a random sharding mechanism (round-robin man-

ner) which resulted in data being distributed more uniformly. Since each data silo is

monolithically captured within the segment, queries without any join operations can be

executed in parallel on each segment.

Not Normalized design

In this design, the relations were designed based on the letters of the scanned URLs. The

relations were created based on the first letter of the scanned URL and each directory

was partitioned by the second letter of the scanned URL. This method was not visually

the same as the conceptual model of profiling but consists of all the necessary semantics
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of the conceptual model. Then experiments were done by using both random and hash-

based sharding methods to shard the relations within the database instances in the cluster.

While experimenting with both sharding methods, it was observed that in hash-based

sharding some shards were growing exponentially. The reason for this is when the URL

was hashed and the relevant segment was selected, some special cases of the dataset

were affected. As explained in the experiments (Table 4.5), some of the Apex/FQDNs

had been scanned considerably more times than other Apex/FQDNs. In such cases hash-

based sharding would lead to the creation of unbalanced segments with either a million

records or very few hundred records.

Due to these unsatisfactory observations it was decided to use a random distibution

method which runs on each segment in a round-robin manner. With this mechanism it

was possible to reach the expected query execution results (Read and Write). The ER

diagram in figure 4.19 shows the relations and its partitions. Aggregate queries could be

avoided by trading extra space on the disk due to the monolithic nature.

4.3.2 Modeling PDNS data to graph

Graph modeling was an extremely tedious task, when considering the 310,092,177 DNS

records that were received in the feed, since it had to undergo multiple preprocessing

operations. Getting the DNS records of A, NS, MX, CNAME, and SOA, and finding

the associated edge and vertex relationships and interest in the graph database cluster

was a computationally heavy task. Apache Spark was used as the distributed computing

framework to carry out this task. However, there were some challenges to overcome

with respect to the big data environment. Due to the massive data volume, once the

data was loaded to Spark’s RDD, Java heap memory overflow issues were encountered.

Furthermore, network issues were encountered where Spark was not able to transfer

data within nodes because of the volume of RDDs. These problems were overcome by

re-partitioning and some context declarations.

The next challenge in graph modeling was to save the time-series properties of the

graph. The nodes and edges had to be time-stamped based on the first seen and last

seen dates of the PDNS feed. None of the open-source graph databases supported the

time-stamping properties itself. Community studies were done on Neo4j, OrientDB,

and ArangoDB and it was realized that there is no explicit way to save the time-series
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property of the graph. After completing the community studies and our own benchmark

tests on the sample data and picking ArangoDB as the best candidate to store PDNS

data, the next step was to figure out an explicit way to store the time-series properties of

the nodes and edges.

Figure 4.25 shows how the time-stamping problem was overcome. New edges were

added daily with a timestamp even if the edge already exists in the graph. This process

costed some storage but the time-series property could be preserved. Later, ArangoDB

Query Language (AQL) which is ArangoDB’s own query language, was used to filter

out the edges and nodes for a given time frame. Considering the time-stamping nodes,

ArangoDB’s inbuilt UPSERT operation was used to overcome this problem.

Figure 4.23: Timestamping graph edges

Graph sharding (Figure 4.24) was a remaining unsolved problem in the design.

Arango DB suggests sharding the graph in a way that minimizes the edges between

database instances. But due to the nature of the graph it was almost impossible to figure

out the way to balance the graph. One experiment was to understand the nature of con-

nected components and reinsert the data based on those findings. However, with random

sharding, good performance could be achieved to retrieve queries under 10 seconds.

Figure 4.24: Graph sharding
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4.3.3 Bootstrapping and daily insertions (Populating databases)

Populating databases was carried out in two steps: bootstrapping the databases with

pre-collected data (each source has data collected for the duration of one year), and

automating daily insertion process of data. Apache Spark was used for preprocessing

and bootstrapping data from each source.

4.3.4 MaxMind Data Storage

MaxMind data has two formats: MaxMind’s own file format (.mmdb), and Comma-

separated values format (.csv). The initial attempt was to store the CSVs in the databse

as it preserves its time series properties. However, the IPs were compressed into groups

by their subnets in the CSV format and it was difficult to determine the subnet that a

given IP belongs to.

Experiments were carried out to obtain an idea about the subnet distribution (Figure

4.25), to investigate a method to map a given IP to the subnet. As seen in the figure it

was hard to distinguish the subnet by just giving the IP. Therefore, two approaches were

proposed: to expand all subnets (2 billion IPs per day) and keep repeating the data or

to move forward with MaxMind’s own file format. However, it became clear that the

first approach of expanding subnets leads to a waste of storage space and reduction in

performance.

As a result, MaxMind’s own file format was chosen to store data in the database since

it supports straightforward IP to subnet mapping and it was proposed to implement the

middleware to query these files in a way that its time series properties are preserved.

4.3.5 Alexa Data Storage

Initial experiments on storing Alexa data were done using InfluxDB [27], which is an

open source time series database. The performance of InfluxDB was tested with 100

days of Alexa Rank data (approximately 100 million records) and it was determined

to be satisfactory. However, when the database was deployed in the cluster and data

insertion was done, with increasing amounts of data various issues arose. Some of these

issues were timeout errors during database operations, and the database getting frozen

and automatically restarting during query execution.
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Figure 4.25: MaxMind’s subnet distribution

This was an unexpected challenge since although community readings and bench-

marks suggested that it was the better time series database, it was not suited for the

purpose of our system due to its inability to handle extremeley large amounts of data.

Therefore, Greenplum DB was chosen to store Alexa Rank data as the alternative.

4.3.6 Designing a scalable architecture

With the volume of data that had to be dealt with daily, the time that could be spent to

insert new data each day was quite limited. The data insertion bandwidth that needed

to be achieved did not match with the current capabilities of our existing graph database

cluster which led to the failure of the database cluster during data insertion. To avoid

this failure more database coordinators had to be added to the Arango DB graph database

cluster, which was a very resource intensive decision. However, even after the insertion

of one week of data it was observed that the database cluster was not able to handle the

volume of graph data that was been generated. As a technique to overcome this chal-

lenge, new VMs were added to the Kubernetes cluster and an entirely new ArangoDB

graph database cluster was created on top of the newly added resources and our day

granule graph was built on top of it, as shown in figure 4.26. This gave the need to add

16 new VMs each month and at the end of the period of a year a total of 216 VMs will

be present in the Kubernetes cluster. Since the scale of the VMs that is used for this

purpose is 8-16 core, 16-32GB RAM, it was quite an expensive design decision to take.

Due to this, it was decided to gradually archive the previous year’s data starting from the

current date.
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Figure 4.26: Resource intensive architecture design

Since this was an expensive and highly resource intensive design decision, the need

for a less expensive solution to this problem was needed. After revising the system

requirements, the time taken for the daily bootstrapping process of new data insertion

was increased from 1 hour to 4 hours by slowing down the data insertion pipeline. This

reduced the number of database coordinators required to handle the daily insertion pro-

cess. Additionally, ArangoDB’s default configuration was overwritten with some native

configurations in order to enhance its buffer space. With this solution it was possible to

have a single cluster that could hold one month of data and 4 new VMs does not need to

be added each week. Instead, 4 new VMs could be added per month which was a 50%

cost-cutting solution (Refer section 7.5)
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Chapter 5

Implementation

This chapter discusses the implementation details of the project under three sections:

implementing the data processing pipelines using Spark, implementing the middleware

and implementing end consumer products (web application, Chrome extension and de-

veloper API).

5.1 Implementation of the infrastructure and database

clusters

5.1.1 Implementing the Kubernetes cluster

A Kubernetes cluster was implemented using 16 VMs with 16 cores 32GB each in order

to create the initial Kubernetes cluster for this project. Docker was used as the container

management engine for Kubernetes. Considering the cluster provisioning, our own bash

scripts were used to send SSH keys to nodes and the necessary commands were executed

to install binaries in each node to create the cluster. Once the configuration was set in

place for each node, one node was assigned as the Master node and 15 other nodes were

assigned as Worker nodes in the cluster. Next, a pod network was installed on top of the

cluster using Flannel [28]. In the final stage, the Kubernetes dashboard was set up and

configured for real-time monitoring of the cluster and a couple of 25 terabyte network-

attached storages were included to maintain the persistant volumes.
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5.1.2 Implementing the ArangoDB cluster

An ArangoDB cluster with 5 agents, 5 coordinators and 15 database engines was imple-

mented on top of the Kubernetes cluster.

5.1.3 Implementing the GreenplumDB cluster

Our own Kubernetes operator was created on top of the container image of Greenplum

DB extracted from Pivotal Cloud and it was pulled into our container registry. 15 seg-

ments and 2 Master Greenplum DB clusters were implemented on top of the Kubernetes

cluster using this Kubernetes operator.

5.2 Data processing pipelines using Spark

Two main types of pipelinees can be found in the Spark data processing pipeline. One

was implemented to bootstrap the historical data and the other was implemented for

daily insertion of new data. The initial design and implementation of both types of

pipelines are the same but the strategies followed in order to bootstrap the initial data

were different.

5.2.1 Spark jobs for processing PDNS data

The Spark pipeline is designed in a way to work as five parallel Spark jobs, each for

processing A, MX, NX, CNAME, and SOA records as indicated in figure 5.1]. Each

job is automatically triggered by Airflow with new data for each day. Each pipe has

three phases. Phase one cleanses and transforms the raw data into a structured form.

Underneath these jobs there are a series of MapReduce operations which is executed to

clean the data and do the transformation. In the phase two, the cleaned and transformed

data are taken and syncced with data from the daily feed of VirusTotal and it undergoes

the labelling process. In the phase three, the data is taken and it undergoes the labelling

process again with Alexa Rank data which adds more value and information to the raw

data. Later this data is sent to be stored in the relevant databases.

Apart from the data in the process the initial structure of each of the six pipelines was

the same. In abstract, the job was to take documents from PDNS records and transform
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Figure 5.1: Spark data pipeline with 3 phases

the data to graph schema that ArangoDB graph database cluster can store. Considering

the PDNS records, Type A records needed some slightly different design and implemen-

tation when compared to other record type such as NS, MX, SOA, and CNAME.

Processing of Type A records

The job for processing Type A records was the most critical processing job. This was

due to the fact that Type A records contain much more transformative information which

needs to be synced with other sources and inserted into the ArangoDB cluster. Figure

5.2 shows the row schema of a type A record and the nodes and edges that have been

derived to store inside the graph database cluster using the record.

The first stage of the Spark job for processing Type A records was to remove the

duplicate entries. Farsight has several sensors around the world to capture DNS traffic

and as a result the feed may have multiple PDNS records for a single Apex/FQDN. Con-

sidering these duplicate records, we can not simply take one and ignore the others since

those records may have newly exposed IP addresses as most of the domains use CDN

nowadays. So the first stage was to take the PDNS records and load it to a RDD which

is Spark’s native data structure and do the group by operation by domain(Apex/FQDNs)

and aggregate the rrdata array. This aggregation process of rrdata array is a union oper-

ation since we get all the exposed IPs relevant to that particular domain without having
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Figure 5.2: Converting Type A record to graph nodes and edges

any duplicate IPs. The following code snippet shows how the group by operation was

done in the Spark job.

apex = DF.filter(lambda x:x.TYPE==’apex’)

apex = spark.createDataFrame(apex)

apex = apex.groupBy(’apex’)

.agg(F.collect_list(’ip’),F.collect_list(’count’),

F.collect_list(’time_first’),F.collect_list(’time_last’),

F.collect_list(’rrtype’),F.collect_list(’bailiwick’))

apex = apex.rdd.map(apex_vertex_edges)

The next stage was the Spark job, which divides the aggregated data into nodes and

edges as it is needed to be stored. This is also a MapReduce operation as given in the

following code snippet.

#node trasformation

return {

"apex_vertex":{

"_key": x.apex,

"_id": "apex/{}".format(x.apex),

"rrtype": "A1",

"type":1

},

#edge trasformation

"edges":{
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"apex_ip": combine_apex_ip(

x[’collect_list(ip)’]

,x[’collect_list(time_first)’]

,x[’collect_list(time_last)’],x.apex)

}

}

Next the pipeline runs a series of left join operations with VirusTotal data and Alexa

Rank data to insert knowledge information to the relevant domain (Apex/FQDNs).

#Alexa

JOIN_APEX = JOIN_APEX.join(

alexa_day,

JOIN_APEX._key==alexa_day.domain_alexa,

how=’left’)

#VT

JOIN_APEX = apex.join(VT_APEX, apex._key==VT_APEX.apex, how=’left’)

After syncing with the knowledge data, the Spark pipeline flushes the data to relevant

database clusters with relevant timestamps. The above code snippet simply shows the

core parts of a complex Spark job design.

Processing of records of Type NS, MX, SOA, and CNAME

Design and implementation of the processing jobs for NS, MX, SOA, and CNAME

records are also similar to the design and implementation of the job for A records. The

only difference is the number of derivations is lesser than that of the A records as indi-

cated in figure 5.3. Similar to the processing of A records, the jobs for all these record

types also run as a series of groupBy operations to remove the redundancy and extract

full information. It is followed by a MapReduce operation to transform the document

form to nodes and edges. Next, set operations are carried out to sync the data with other

data from knowledge sources and then the data is flushed to the relevant database clusters

with timestamps of the data.

The major difference and critical part of the Spark job for processing NS, MX,

CNAME, and SOA records is that the design has one extra stage of MapReduce and
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Figure 5.3: Converting Type NS, MX, SOA, and CNAME records to graph nodes and

edges

set operation (left join operation within RDD) to define the relationship of NS, MX,

CNAME, and SOA and previously processed A records.

5.2.2 Spark jobs for processing VT data

Similar to the Spark job for processing PDNS data, Spark jobs for processing VT data

are set to trigger automatically with new data by Airflow. This job prunes the raw JSON

output and transforms it into the database schema of the Greenplum DB as shown in

figure 5.4.

Figure 5.4: Spark jobs for processing VT data

5.2.3 Spark jobs for processing Alexa Rank data

The data cleansing and transformation process for Alexa Rank data is exactly similar to

the data processing of VT data as shown in figure 5.5. The only difference is the schema

of raw Alexa Rank data and database schema that is used to store the data.
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Figure 5.5: Alexa cleansing and transformation process

5.2.4 Bootstrapping pipelines and daily pipelines

Designed Spark jobs has been used for two different tasks. One is for bootstrapping the

historical data initially and the other is to insert the daily feed to the database clusters.

The way each job has been structured in order to build the overall pipeline has some

differences. Initial bootstrapping jobs run parallel replicates of each job at the same time

for different data portions and the daily insertion job was automated using Airflow with

one replica of each job.

5.3 Middleware

This section explores the detaile architecture we have used in building the middleware

using Microservices. The purpose of microservices is to solve the issues encountered

when working with monolithic architectures.

Monolithic architectures have been the main approach to software design for a long

time and still today, a large number of applications run through a monolithic approach.

In software engineering, a monolithic application describes a single-tiered software ap-

plication in which the user interface and data access code are combined into a single

program from a single platform. Monolithic architecture has some considerable draw-

backs which is why we have moved to the microservices architecture as shown in figure

5.6.

The microservices architecture has appeared lately as a new paradigm for program-

ming applications by means of the composition of small services, each running its own

processes and communicating via light-weight mechanisms. This approach has been

built on the concepts of Service-Oriented Architecture (SOA) brought from crossing-

boundaries workflows to the application level and into the applications architectures.
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Figure 5.6: Microservices Architecture

5.3.1 IAM Microservice

IAM Microservice is used to manage user access and identity in the system. It is imple-

mented using Echo, a high performance, extensible, and minimalist Go (Golang) web

framework, and the data storage used to implement the service is MySQL. Figure 5.7

gives an overview of the endpoints implemented for identity and access management.

Figure 5.7: Identity and access management endpoints
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Users can register with the system by using the /signup endpoint. The endpoint

validates the data (unique constraints are applied for the username) and insert them to the

users table. Then the user will receive an email to confirm their email address provided

when registering. The state of the validation is kept in the database and users will not

be able to get access to the system until their email address is confirmed. Once it is

confirmed, the users get the access token to access the system using the /signin endpoint

by providing valid credentials that were given by the user during the registration. In

case they forgot their password, users get the chance to get the reset password link to

their email using the /forgotpassword endpoint by providing a valid email address. The

users will get an endpoint to reset the password which includes a unique token for each

user which validates that before resetting the password of the user. Figure 5.8 gives an

overview of how the authentication works in the system.

Figure 5.8: Flowchart for Authentication
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5.3.2 IAM Authentication

When users sign up to the system a unique token is created for each user. That token is

37 characters long and that unique string is used to confirm the email address of the user.

When sending the password reset links it first creates a token and updates the pass-

word reset table in the database with the token and sends the link to the users email ad-

dress. When resetting the password the system always checks the token in the database

to validate the request.

5.3.3 Search microservice

Search Microservice is used to search any keyword and get a list of suggestions that

matches the keyword, which includes some filters to facilitate the filtering of data. This

was implemented using Python and Flask since MaxMind .dat files have drivers only for

Python language. Given below is the endpoint implemented for the search. (Figure 5.9)

• Term - The keyword used to fetch the results

• Page - Only 10 results per page will be retrieved therefore need to include the page

number

• Filter - The factor that is used to filter the data (Alexa Rank, VT, firstSeen and

lastSeen)

• Order - the sorting order (either ASC or DESC)

• Type - Type of the nodes (Apex, FQDN, Name Server, Mail Server, SOA, CNAME

or all)

Figure 5.9: Search endpoints

As explained in the data modelling section, ArangoDB consists of nodes in different

collections which is used to create the graph. When the user searches the data for the first
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time the queries are executed in each collection parallely and the data is retrieved using

a fulltext search and it is combined together as depicted in figure 5.10. Then retrieved

data is stored in the Redis cluster and the filters are applied to get 10 records that need

to be sent as the response and the MaxMind ASN and location information is bound to

these 10 records and the response is sent back. This data is stored in the Redis cluster

for 1 day. That is, whenever someone searches the same keyword or the url the system

first checks whether the result is already available in the redis cluster or not. If it is, then

the data will be retrieved from the Redis cluster and the filters will be applied. If not, the

queries will execute parellely to retrieve the data more efficiently.

Figure 5.10: Component diagram for search

5.3.4 Graph microservice

Graph Microservice is used to retrieve the nodes and edges of graph traversal for a given

depth and node as well as to retrieve the last 7 days graph traversal of the given node.

This microservice includes 2 endpoints as /graph and the /timeline as shown in figure

5.11.

Figure 5.11: Graph endpoints
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/graph

This endpoint (figure:5.12) is used to retrieve the graph for the current date. It requires

three query parameters in order to carry out the graph traversal.

• GraphType - Whether the starting node is an Apex, FQDN,CNAME, SOA, Name

Server or Mail Server

• Startnode - key of the starting node

• Depth - the depth for the graph traversal

Figure 5.12: /graph endpoints

When the request comes in the graph traversal will execute in two parallel processes

to fetch the Edges and the Nodes (figure:5.13). Then the data combines together and

it is sent as the response. The Color codes are binded to the node data during the data

processing. The data is stored in the Redis cluster once the graph is traversed. Since the

depth is passed as a query parameter, we have the ability to use this same endpoint as

the expand endpoint by passing the depth of 1 to the endpoint. So the endpoint acts as

the graph traversal endpoint and also used to expand the graph in the frontend.

For the parallel execution we have used ’goroutine’ which is a lightweight thread

of execution. When using goroutine the function which is invoked using goroutine will

execute concurrently. And then it uses wait groups to wait till all the processes to end

and then sends back the response.
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Figure 5.13: Component diagram of graph

/timeline

This endpoint (figure 5.14) is used to retrieve the graph for the last seven days. It requires

three query parameters similar /graph in order to carry out the graph traversal.

• GraphType - Whether the starting node is an Apex, FQDN,CNAME, SOA, Name

Server or Mail Server

• Startnode - key of the starting node

• Depth - the depth for the graph traversal

Figure 5.14: /timeline endpoints

This works the same as in the /graph endpoint but the only difference is that this will

create 2 processes parallel for each day. Therefore, altogether 14 processes are created to

fetch the data for the past 7 days. Figure:5.15 illustrates how the 14 processes are made.

Similar to above, goroutines are used here for the processes along with wait groups.
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Figure 5.15: Component diagram of timeline

5.3.5 Inference microservice

Inference microservice is the component which is used to get the inference output of the

graph. Relevant implementation of belief propagation (Refer section 2.1.6) is exact to the

variation of the paper. Belief propagation process can be encapsulated to the following

flow as shown in figure 5.16.

Figure 5.16: Belief propagation process

Purging process removes the IP address that belongs to public clouds, web hosting
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and CDN networks since the system designed in the works of Khalil et al does not

work with public IP addresses. Then filtered graph undergoes the labelling process,

and the inference algorithm is run and the inference value is taken and reconstruct the

heterogeneous graph and return it.[figure:5.16]

Figure 5.17: Programming languages in implementaion

Being more specific to the implementation (figure 5.17), two main programming lan-

guages were used to implement this service. The core of belief propagation has been im-

plemented using C language since the execution time is a critical factor for the algorithm.

Apart from that, extracting the graph, syncing with ground truth data, and reconstructing

and serving the results has been implemented using Python and Flask framework.

Figure 5.18: Inference endpoints

Python OS module was used to load the pre-compiled C binaries and pass the graph

to the inference algorithm and take the outputs and return it to the API. Figure5.18 shows

the API endpoint for retrieving the inference output.

Figure 5.19: Inference microservice and caching layer
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In this implementation we are not directly extracting graphs to run the inference

algorithm from the ArangoDB cluster. Since time and performance are critical factors it

has been taken from the caching layer as seen in figure 5.19.

As shown figure 5.20 once a user invokes the knowledge graph, it first checks if

it’s on our cache. If not it goes and searches for the relevant data on ArangoDB and

serves the graph. While serving the knowledge graph, it is cached in the Redis caching

layer. Later when user invoke the inference output, inference system directly invoke the

knowledge graph from Redis cluster and execute its process and return the output via

HTTP endpoint. Our Entire system design is designed on pluggable architecture as here

we plug the inference intelligence. Any graph based intelligence can be planted as a

scalable microservice implementation to the system.

Figure 5.20: pluggable architecture
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5.3.6 Detail microservice

Detail Microservice [figure:5.21] is used to retrieve the Alexa Rank history, VirusTotal

history and MaxMind data for the given domains. This was implemented using the

Python and the Flask since the MaxMind .dat files have drivers only for the Python

language. Given in figure 5.21 is the endpoint that can be used to retrieve the data.

Figure 5.21: Details endpoints

5.3.7 Monitoring and matrices

In big data systems one of the most critical requirements is maintaining the avalablity.

Since a number of computational tasks are running in both background and foreground

there’s a possibility of causing a failure. Also, responding to the consumer end requests

can cause huge traffic within the middleware and database segments.

Therefore, monitoring the health of the entire system is essential in designing a big

data system. For that, we have defined three levels of monitoring matrices.

The first level of monitoring is designed to monitor the big data pipeline. As shown

in figure 5.22 we have full control of how the Apache Spark cluster works and the jobs

that are running.

The second level is designed to monitor the entire cGraph infrastructure where we

have run all database clusters, microservices, web servers, IAM servers, etc. The en-

tire infrastructure was designed on the Kubernetes cluster. Figure 5.23 shows how the

Kubernetes monitoring system has been configured to monitor the infrastructure and its

failures.
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Figure 5.22: Spark Monitoring

Figure 5.23: Kuberneties Monitoring

The third level is the API monitoring which is depicted in figure 5.24. This level

of monitoring was not a straightforward development similar early stages since we have

used a single instance Influx time-series database to store the metadata generated from

KrakenD API gateway and Graphana to visualize the matrices.

5.3.8 Deployment strategies

The continuous delivery strategy was used to add new features to the system. For that,

GitHub actions (figure 5.25) was used to take the new commit on the deployment branch
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Figure 5.24: API monitoring

and build the docker image and push it to the container registry. Then Kubernetes pulls

the image for its new deployment and initiate it on the Kubernetes cluster. This semi-

automated process makes it much easier to add new features to the system.

Figure 5.25: Github Actions Page
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5.4 End consumer products

5.4.1 Web Application

A single-page application (SPA) is a more modern approach to app development. SPA

is a web application in which content is loaded dynamically without needing to reload

the page. A multiple page application (MPA), on the other hand, is considered a more

classical approach to app development. The multi-page design pattern requires a page

reload every time the content changes. By considering the advantages of SPA, the front

end was designed as a single page application. The communication between frontend

and back end happens via REST API calls.

React JS is a front end development framework developed and maintained by Face-

book which runs on NodeJs server. Node Package Manager (NPM) is used to install

and maintain the packages. Webpack, Babel, React hot loader, and Nodemon are some

necessary tools used for React development.

Ant Design specification was used to develop a React UI library that contains a set

of high quality components and demos for building rich, interactive user interfaces. It

is compatible with browsers such as Edge, Chrome, Safari, Opera, Firefox and etc. For

graph rendering in the web application we are using Graphin which is a big data visu-

alization package under Ant Vision which was built specially for React using the G6

library in Ant Vision.

Maintaining the application state is difficult in a single page application. Redux JS

is used to maintain state in SPA. Redux is a predictable state container for JavaScript

apps. The state is stored in the Redux Store. It helps to write applications that behave

consistently, run in different environments (client, server, and native), and is easy to test.

We have used redux-logger along with Redux which made it easy for debugging and

identifying issues especially when working with Axios to manage REST API calls.

We have not used a single template from outside and all the CSS and components

are implemented and designed by ourselves.
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Using Redux

The whole global state of the application is stored in an object tree inside a single store.

The only way to change the state tree is to create an action, an object describing what

happened, and dispatch it to the store. To specify how a state gets updated in response to

an action, we have written reducer functions that calculate a new state based on the old

state and the action.

Decribed below is how Redux works with an example from our System. Assume

that the user enters a keyword in the search box and press submit.

• Once the user presses the submit button, the Search function dispatches three Re-

dux Actions.

• First SEARCH START action is dispatched. The action modifies the Redux state

of the search state as loading true, data to null and the error null

searchData:{

loading: true,

error: null,

data: null

}

• This loading true state is used to show the loading state of the search screen.

• The frontend sends the GET request to the search endpoint with the relevant path

parameters. Then the backend retrieves the relevant data and sends it to the fron-

tend

• When the front end receives the successful response the SEARCH SUCESS action

is dispatched. This action modifies the loading to false, data to payload and error

to null.

searchData:{

loading: false,

error: null,

data: payload

}
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• Then the search page used the data in the state to show them in the front page.

• If somehow the response failed for a reason the SEARCH FAIL action is dis-

patched. This action updates the loading to false, data to null and error to payload.

searchData:{

loading: false,

error: payload,

data: null

}

• This error object is used and shows an error notification in the front end.

Structure of the front end

The application is structured and refactored to make the maintenance easy. The accepted

React-Redux application directory structure is used in the front end.

• components/ - All the UI components are implemented in this directory.

• store/actions/ - All the Redux actions are defined in this directory.

• store/reducers/ - The reducers which binds Redux actions with Redux state are

defined in this directory.

• services/ - Used to manage the localStorage and the authentication.

• assets/ - All icons, images and other assets are included in here

• components/[component]/style.less - SCSS style files are structured in this form.

• index.js - This file serves as the entry point to the application.

Authentication

The users need to have an account to access some of the routes in the application. We

have implemented an Authentication service to protect these routes. Whenever user

tries to go to a protected route the service looking for the token in the localStorage and

validate the token and if only a valid token is present in the store the application lets the
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user to access the route. Otherwise user is redirected to the Sign in page to log in to the

system. Auth service behaves similarly whenever a user tries to access the non-protected

routes. If auth services identifies a valid token present in the localStorage the user will

be automatically redirected to the home. Whenever a user logs out from the system the

auth service removes the token from the localStorage.

Overcoming graph rendering problems using Redux

Rendering large graphs in the application was one of our major challenges. The main

reason for this was the number of nodes and edges being too high in some of the graphs.

This led to improper functionaning of the graph layout when trying to render a large

amount of nodes and edges at once as shown in figure 5.26.

Figure 5.26: Struggle with large braph

This challenge was overcome by managing the states and because of that we were

able to render the graphs according to the user needs. When the backend sends data into

the front end only 10 nodes are rendered in a single hop. The users get the chance to

extract the nodes depending on their preference but still each hop will render only 10

nodes. Due to this, the layout will not have to handle a very large number of nodes and
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edges at a single time since it performs well without freezing the browser. It even in-

creases the user experience and the usability of the system. This implementation details

of this process is explained in detail below.

• First when the user goes to the graph views an action named

GET NETWORK GRAPH START is dispatched. The actions request the nodes

and the edges from the backend via a REST API call using Axios and once the

action receives a successful response the system dispatches an action named

GET NETWORK GRAPH SUCESS.

• GET NETWORK GRAPH SUCESS action gets the payload and updates the net-

workGraphData objects finalNodes and the finalEdges with the payload and sets

the nodes and edges to empty arrays.

case actions.GET_NETWORK_GRAPH_SUCESS:

return{

...state

networkGraphData: {

nodes: [],

edges: [],

finalNodes: payload["nodes"],

finalEdges: payload["links"],

loading: false,

error: false,

expanding: false,

expandedCout: null,

messageShow: false

}

};

• Then GET NETWORK GRAPH SUCESS action dispatches another action called

GET EXTRACT NETWORK GRAPH START.

• This actions get the states of the networkGraphData and perform a small function

to extract 10 edges (if there are more than 10) and get the nodes and edges rel-

evant to them. Then the same function creates a payload which includes nodes
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and edges that were taken out and nodes and edges that are remaining taken

out. And then the action updates the networkgraphData states by dispatching

GET EXTRACT NETWORK GRAPH SUCESS action.

case actions.GET_EXTRACT_NETWORK_GRAPH_START:

return{

...state

networkGraphData: {

loading: false,

nodes: payload["nodes"],

edges: payload["edges"],

finalNode: payload["finalNodes"],

finalEdges: payload["finalEdges"],

error: null

}

};

• We are using nodes and edges to render the graph and finalNodes and finalEdges

includes the remaining nodes and edges to render.

• Same action dispatches when the View More button is clicked in the frontend.

It dispatches the GET EXTRACT NETWORK GRAPH START action passing

the key of node ID. Then 10 edges and nodes relevant to it are fetched and con-

catanated to the networkGraphData nodes and edges and removed from the finalN-

odes and finalEdges by dispatching the GET EXTRACT NETWORK GRAPH

SUCESS action.

5.4.2 Chrome Extension

This is a plugin that can be installed into Chrome. Using the extension the users could

investigate whether the domain they are currently accessing is benign or malicious based

on the inference values. The extension is fed with an API called the Chrome API which

was developed using Flask. This API calls the previously implemented Graph API and

the Inference API to retrieve the inference value of the domain that the user is currently

accessing. The Chrome extension passes the current domain to the endpoint and retrieves
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the inference values to the Chrome extension. Based on the inference value the status

of the domain is shown in the browser extension. Figure 7.2 gives a situation where the

domain has a probability for being benign while figure 7.3 gives a situation where the

domain has a probability for being malicious.

Figure 5.27: Benign indication Figure 5.28: Malicious indication

5.4.3 Developer API

For researchers or people who need to would like to do research using our data a devel-

oper API was created publicly exposing the API to access the data. However, users need

to have a unique access token and their JWT token. This could be generated using the

Token Manager page in the web application as shown in figure 5.29.These public APIs

are secured with the tokens and JWT tokens. Whenever a request is received the API

validates both the JWT token and the token before retrieving the data to the public users.

Figure 5.29: Token Manager (Public API key generator)

As given in figure 5.30 the publicly exposed API has two end points to the users.

First end point is the the /search endpoint where users could have the available domain

in our database and another endpoint is the /graphsearch to retrieve the nodes and edges

for any analysis they are willing to carry out.
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Figure 5.30: Public API endpoints
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Chapter 6

Results and Analysis

This chapter explores the results of the inference process and gives an analysis on it.

Section 6.1 discusses the evaluation of the inference process and section 6.2 gives a

demonstration of the inference process.

6.1 Evaluation of the inference process

Apex domains with different VT levels and benign domain with a high Alexa Rank was

extracted from the PDNS A record data in order to run the inference algorithm on it.

6.1.1 Ground truth creation for the evaluation process

The ground truth extraction process was conducted in two stages; benign ground truth

extraction and malicious ground truth extraction.

For the benign ground truth extraction Alexa Rank data was used. Alexa Rank data

feed for the latest seven consecutive days was taken and the domains with Alexa Rank

≤ 10000 was taken for each day. From this, the unique set of domains was extracted and

the topmost 700 Alexa Rank domains were taken as the benign ground truth. The reason

for using domains with Alexa Rank ≤ 10000 which appear continuously throughout a

week is under the assumption that such domains are less likely to be attacker manipulated

[4].

For the malicious ground truth, the data from the daily feed of VirusTotal was used.

VirusTotal reports for seven consecutive days were taken and and the records with a VT

count of more than 2 is filtered each day. From this, the unique set of records is taken
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and a random sample of 600 records was taken as the malicious ground truth.

After the extraction of malicious and benign seeds, a few random samples were se-

lected in order to carry out manual verification to verify that the extracted samples are

correct. It was observed that the sample set had no ambiguous seeds, so the collection

of 1300 ground truth data was used to run the inference algorithm and extract the belief

value after the inference process was done.

6.1.2 ROC and AUC

To understand the best threshold value from the given inference values as given in table

6.1 the ROC curve was plotted for different threshold values and the AUC value was

taken from it.

Table 6.1: TP rate and FP rate against different threshold values on inference results
False Positive (FP) Rate True Positive (TP) Rate Threshold

0.006667 0.175714 0.692308

0.008333 0.175714 0.600000

0.078333 0.994286 0.500000

0.140000 0.994386 0.40000

0.161667 0.984286 0.307692

0.170000 0.994267 0.250000

0.573333 0.995714 0.181818

1.000000 1.000000 0.129032

With the different threshold values, the best performance was obtained when the

threshold value is 0.1290 as shown in figure 6.1.

87



Figure 6.1: ROC curve

Figure 6.2: Confusion Matrix

With the selected best threshold value, the confusion matrix given in figure 6.2 was

obtained. The relevant evaluation matrix calculated using these values are given in table

6.2.

Table 6.2: Evaluation matrix for the inference process

precision 0.92166

recall 0.99428

PPV 0.99281

PNV 0.93674
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6.1.3 Evaluation of the inference process against different malicious-

ness levels indicated by VirusTotal

The following experiment was done in order to verify how well the inference algorithm

has performed. FQDNs with different levels of maliciousness as provided by the Virus-

Total data was extracted and the inference algorithm was run on top of it. As seen in

figure 6.3, it was observed that there was a reduction in False Positive rate as the positive

indicators of VT data increases. Thus, we can conclude that the inference algorithm has

performed very well.

Figure 6.3: Evaluation of the inference process against different maliciousness levels

indicated by VirusTotal

6.2 Demonstration

Most of the phishing attacks are targeted at the average user and most attacks run via

the social engineering corner. A main method that attackers use to mislead a user is

squatting the domain. For example, a user may think that since paypalcom.co is similar

to paypal.com that it is also a legitimate site. That is, an average user may not know

whether a certain domain is legitimate or not.

In the following tscenario a specific type of squatting attack called typo attacks

is considered for demonstrtion purposes. Consider an average user who receives an

email from http://www.goole.com/ (which is an actual site). But users may be confused

whether its the original google.com or not.
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In general major companies such as Facebook or Google does not allow their do-

mains be vulnerable to phishing attacks. In order to do this they buy all the domains

that look similar to their original one and create CNAME records in the DNS and redi-

rect the traffic to the original site. Figure 6.4 shows the search results for the keyword

”Instagram” in our system where such a situation has occurred.

Figure 6.4: Search results for the keyword ”Instagram”

All the above domains belong to the legitimate Instagram corporation and the grey

dash mark indicates that existing reputation systems have never explored them. Addi-

tional information also gives some insight as where they are coming from etc.

Figure 6.5: Advanced filtering of search results

Figure 6.5 gives another example page where a domain originates from various loca-

tions and is marked with a green tick indicating that it has been explored by an existing

reputation system (VirusTotal). This means that it is recognized as a non-malicious site.
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Furthermore, our system can be used for exploring the resources attached with a

given domain or IP in order to determine whether it is legitimate or not. Such a situation

is shown in figure 6.6.

Figure 6.6: Catching malicious acts from search results

We can sort all our internet resources (Apex, FQDNs, Name Servers, Mail Servers

etc.) using the Alexa Rank in the ascending order (Figure 6.7). Alexa Rank indicates the

traffic statistics and gives an idea whether the given domain is popular or not. But still,

the attacker has a chance to compromise the site and use it for malicious acts.

Figure 6.7: Sorted seacrh results

When filtered goole.com is at the top and it indicates that it has never been explored
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by VirusTotal and its Alexa Rank is 172143 which indicates that it is not much popular.

Therefore, at this stage, user can arrive at the conclusion that it is not attacker created,

but there is a chance to be compromised. That is the next step of our system as the search

result could be visualized using a graph as shown in figure 6.8.

Figure 6.8: Visiting the graph view

As seen in figures 6.9 and 6.10, the basic information for the search result does not

indicate that it could be a malicious domain.

Figure 6.9: View historical DNS information

When exploring the DNS profiles of the domain we can see what existing reputation

systems indicate about the domain. Since it Alexa Rank is within the top 1M, it’s a good

indicator that this site does not have any malicious intentions.

We can expand the graph and explore the relations of the captured resources as shown

in figures 6.11 and 6.12.

We can expand the graph traverse it through time to see how things have changed

over the time.

In conclusion, in this scenario all the information points to the resource being labeled
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Figure 6.10: View historical DNS information (Summarized View)

Figure 6.11: Initail graph view

as a benign domain, even if it’s more likely to be a typosquatting domain of original

google.com. Also we can conclude that it’s neither an attacker created or compromised

domain.
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Figure 6.12: Inferance graph
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Chapter 7

Evaluation and Testing

This chapter explores the performance of the designed system against different measure-

ment matrices and how the entire system is evaluated in terms of Performance, Avail-

ability, Security, and Usability, etc.

7.1 Spark data processing pipelines

Table 7.1 gives the aggregated summary of each Spark job process. It shows the required

resources and processing time, as well as the volume of of data that has been processed.

The total number of processors indicates the accrued number of processor cores

while the total number of executors indicates the number of spark executors that was

designed to distribute the data. Total memory gives the total memory capacity required

and swapping indicates the disk swapping while the in-memory computation is running

on the job.

Each spark job consists of series of MapReduce operations. The failure rate indicates

the number of times a particular stage had to be resubmitted in order to complete the job

successfully. The causes for this type of failures was Java VM heap overflows and bad

partitioning. The skipping rate indicates the intermediate stage crashes that occured

while processing VirusTotal data. It was identified that this was due to oversized RDD

partitions. With high optimizations the skipping rate was reduced to 0.01% level, which

led to high efficiency in processing of VirusTotal data.

When considering the time taken to complete each job, which is the most significant

evaluation criteria, new data could be processed each day within 1.5 hours to 2 hours
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Table 7.1: Measuring the performance of the Spark big data pipeline

Job name

Number of

processor

cores

(Total)

Number of

executors

Number of

processor

cores

for executor

Memory Swapping Input Output
Failure rate

(stages)

Skipped

(stages)
Time to complete

A record processing stage one 360 24 15 1.4TB 0B 68GB 76.1GB 0% 0% 15:28min

A record processing stage two 360 24 15 1.4TB 0B 76.1GB 84.2GB 0% 0% 16.30min

NS record processing stage one 360 24 15 1.4TB 0B 51GB 62.3GB 0% 0% 10.12min

NS record processing stage two 360 24 15 1.4TB 0B 62.3GB 68.1GB 0% 0% 11.00min

MX record processing stage one 360 24 15 1.4TB 0B 2.1GB 3.0GB 0% 0% 4.20min

MX record processing stage two 360 24 15 1.4TB 0B 3.0GB 3.4GB 0% 0% 5.23min

SOA record processing stage one 360 24 15 1.4TB 0B 27GB 32.1GB 0% 0% 8.12min

SOA record processing stage two 360 24 15 1.4TB 0B 32.1GB 36GB 0% 0% 9.30min

CNAME record processing stage one 360 24 15 1.4TB 0B 22GB 27.4GB 0% 0% 8.40min

CNAME record processing stage two 360 24 15 1.4TB 0B 27.4GB 27.1GB 0% 0% 10.10min

VT data processing 360 360 1 1.448TB 100MB-200MB 2.3 GB - 3 GB 2.8 GB - 3.6 GB 0% ∼0.001% 23.20min

Alexa Rank data processing 4 4 1 1GB 0B 11MB ∼28MB 0% 0% 1min

time. Processing such a large volume of data within that amount of time leads to keep

the system up to date while serving global consumers.

7.2 Database Clusters

7.2.1 Evaluation of data insertion in ArangoDB

When a database is at its maximum capacity, it may lead to some unexpected failures.

Therefore, the system had to be designed in such a way so as to ensure that none of

the database clusters arrive at its maximum capacity. Considering the database clusters

that have been used in the project, the most critical database cluster to the system is

ArangoDB since it contains the data needed to formulate the entire graph and it also has

to handle the most number of Read and Write requests. Figure 7.1 shows the outcome of

aggressive data insertion for the ArangoDB cluster. As shown, the data insertion speed

is ∼23MBps. Due to the data capacity it was possible to insert the entire day graph data

into the database cluster within 3 hours.

Figure 7.1: Evaluation of the Write speed of the ArangoDB graph database cluster
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7.2.2 Evaluation of the indexing performance of the Greenplum DB

cluster

Graph databases needed less search space compared to the greenplum databases , Given

a node extracting a graph from the only search space used in the Graph database cluster.

Considering the two databases (Virus tolatal profile database and Alexa profile database)

in green plum required more search space. Since it’s used to retrieve apex/fqdns belongs

to given keywords etc. With the new data insertion it is required to update the index of

each partition of the database. Figure 7.2 shows the amount of data records in the alexa

database partitions and figure 7.3 shows the time of completion of the index update. The

time required to update the index is orthogonal to the amount of the data in the partition.

With design we could active average 50 second index updation time for each new data

insertion.

Figure 7.2: Partitions Vs Number of Records
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Figure 7.3: Partitions Vs Index Creation Time

Encapsulating the index creation time of VirusTotal database is much more complex

than the Alexa DB. VirusTotal database has been partitioned into 1332 partitions and

each partition. Those partitions have high diversity witin the volume of data. Figure 7.4

shows the cumulative measure of index creation time in each patient. On average 50%

partitions do the index creation process within 500s and the maximum time required to

update the index was 1300s.
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Figure 7.4: Cumulative measure of index creation time in VirusTotal profile database

7.3 Middleware

7.3.1 Performance

For evaluating the performance of each microservice Apache JMeter [29] was used,

which is an industry-standard open-source software used for load testing and perfor-

mance evaluation. The performance evaluation process was done using hundred con-

current JMeter artificial clients, sending the request to each service individually to its

endpoints for ten rounds and calculating the average, min, max, and median access

time/response time.

The results of the performance testing carried out using JMeter is summarized in

table 7.2. The response times and error rates achieved by the system indicates that the

optimization strategies implemented in the system is satisfactory.
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Table 7.2: Performance evaluation using JMeter
Service Average(ms) Median(ms) Min(ms) Max(ms) Error TP(ms)

GraphNodeAlexa

API
2138 2058 874 3424 0.000% 0.060

Maxmind API 306 288 248 1028 0.000% 0.059

Graph API 469 258 252 1756 0.000% 0.058

GraphInference API 1213 1068 773 2881 0.000% 0.460

Timeline API 3058 2880 2055 5509 0.000% 0.059

Search API 360 332 250 859 0.000% 0.059

GetNodeDetails API 354 328 264 671 0.000% 0.575

GetNodeDetails API 2041 1992 1302 3245 0.000% 1.061

Forgotpassword API 1758 1732 1671 2132 0.000% 0.939

signup API 470 485 388 527 0.000% 0.657

signIn API 475 489 374 683 0.000% 0.681

7.3.2 Availability

For evaluating the availability of the application an industry-standard open-source per-

formance evaluation tool named Locust [30] was used. The number of concurrent users

was gradually increased using this tool against our platform and the mean response time

was recorded (Figure 7.5). With the increased number of users, the number of requests

per second was also gradually increased as shown in figure 7.6] and the average response

time was measured. As seen in figure 7.7 it remained constant, and it was concluded that

the load balancing and auto-scaling of API is functioning as designed.

Figure 7.5: Increasing the Number of users with time
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Figure 7.6: Increasing the Number of requests with time

Figure 7.7: Average response time

7.4 Web application

7.4.1 Front-end testing and end-to-end evaluation

Cypress [31], which is a JavaScript end-to-end testing framework built for the modern

web was chosen as the front-end testing and API testing tool. Figure 7.8 shows the

Cypress dashboard integrated with our system.

The test cases are run for each Pull Request (PR). As shown in figure 7.9, test cases

for all the functionailites defined were executed and tested.
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Figure 7.8: Cypress dashboard (Summary)

Figure 7.9: Cypress dashboard (Test case)

7.5 Cost evaluation

According to the Google Cloud Resource Calculator the initial system cost was calcu-

lated as given in figure 7.10, without calculating the egress charges for each VM [32].

With this initial cost of USD 8,850.93, our initial design had to add 16 new VMs to

the cluster each month. The cost of adding 16 VMs to the cluster was USD 6,261.55

which was an increment cost for the month as shown in figure 7.11.
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Figure 7.10: Initial cost
Figure 7.11: Incremental cost

Thus, the estimation cost for one year was USD 519,473.45. With deep configuration

of database clusters it was possible to reduce 4 new VMs per week when scaling the

Kubernetes cluster into 4 new VMs per month. This reduced the overall cost to USD

209,526.89 with a reduction in cost of USD 309,946.56, which is a 40% cost cut.
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Chapter 8

Conclusion

The main purpose of the project was to design and implement a scalable and efficient

big data graph system that can process and store a large amount of data. The challenge

was to understand raw data sources and transform them into intelligence and store them

in a time series heterogeneous graph that could be retrieved within milliseconds. Addi-

tionally, a web platform for cyber threat intelligence was developed using the research

findings of QCRI for graph-based inference, along with a Chrome extension and Devel-

oper API.

This study includes a well-focused background study covering the inference algo-

rithm research done by QCRI, and a number of existing cyber threat intelligence solu-

tions. Furthermore, it provides an analysis of the competitive advantage of our system

over the existing systems.

System implementation was done in three main streams as data engineering, back

end development and front end development. Data engineering includes the neces-

sary data preprocessing, transformation and storage components. Back end development

holds implementation of the middleware with the use of mircroservices and REST APIs

to provide services of the system. Additionally, the back end development also includes

integration, monitoring and deployment of the system. Front end development includes

implementation of the web platform which provides the users an interactive web appli-

cation in order to derive cyber threat intelligence using graphs.

The entire big data system has been evaluated in order to ensure that it meets its

functional and non-functional requirements. The inference system has been evaluated

to ensure that the underlying methodologies and algorithms of the original research is
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preserved when being adapted into a system with real-world data.

8.1 Limitations

The system only allows traversal through a prior week’s worth of historical data. Beyond

one week of data existing open-source tools were unable to handle the rendering process.

Due to this the system only allows the user to travel one week, which avoids flooding of

the user interfaces from thousands of edges and nodes and crashing of the browser. Since

transferring the data is not cumbersome, retrieving more historical data is only allowed

via the developer API.

Additionally, the inference process is being run on depth two subgraph only. It is

run on the entire knowledge graph at once, since there is no existing tool to load such a

massive amount of data and run the graph inference algorithm on it.

8.2 Future Work

• Introducing a Pricing Plan and limiting the retrieved results based on the packages

for the public API.

• Introducing other graph based research outcomes of QCRI to the system and make

it available to the end consumer.

• Enhancement of the chrome Extension.

• Creation of a Data archive system.

• Creation of TAXII/Indicators of Compromise Service(IOC).

105



References

[1] I. Khalil, B. Guan, M. Nabeel, and T. Yu, “Killing two birds with one stone: Mali-

cious domain detection with high accuracy and coverage,” 2017.

[2] A. Metzger, K. Pohl, P. Bellavista, J. Butler, M. Franz, and J. Garbajosa, “Software

Engineering: Key enabler for innovation,” in NESSI White Paper. Networked

European Software and Services Initiative, Jul. 2014. [Online]. Available:

http://www.nessi-europe.eu/Files/Private/NESSI SE WhitePaper-FINAL.pdf

[3] N. P. Hoang, A. A. Niaki, M. Polychronakis, and P. Gill, “The web is still small

after more than a decade,” 2020.

[4] R. De Silva, M. Nabeel, C. Elvitigala, I. Khalil, T. Yu, and C. Keppitiyagama,

“Compromised or attacker-owned: A large scale classification and study of hosting

domains of malicious urls,” january 2021, usenix security. [Online]. Available:

https://sec21fall.usenix.hotcrp.com/paper/309?cap=0309aokMMWq1Zwm8

[5] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” in

Proceedings of the 13th International Conference on Neural Information Process-

ing Systems, ser. NIPS’00. Cambridge, MA, USA: MIT Press, 2000, p. 668–674.

[6] S. Ramanathan, J. Mirkovic, and M. Yu, “Blag: Improving the accuracy of black-

lists,” 01 2020.

[7] J. Pearl, “Reverend bayes on inference engines: a distributed hierarchical ap-

proach,” in in Proceedings of the National Conference on Artificial Intelligence,

1982, pp. 133–136.

[8] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding belief propagation and

its generalizations,” in Exploring Artificial Intelligence in the New Millennium,

106

http://www.nessi-europe.eu/Files/Private/NESSI_SE_WhitePaper-FINAL.pdf
https://sec21fall.usenix.hotcrp.com/paper/309?cap=0309aokMMWq1Zwm8


G. Lakemeyer and B. Nebel, Eds. Morgan Kaufmann Publishers, Jan. 2003, ch. 8,

pp. 239–236. [Online]. Available: https://www.merl.com/publications/TR2001-22

[9] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” in

Machine Learning, 1997, pp. 131–163.

[10] H. Rue and L. Held, Gaussian Markov Random Fields: Theory And Applications

(Monographs on Statistics and Applied Probability). Chapman Hall/CRC, 2005.

[11] “McAfee SiteAdvisor,” https://www.siteadvisor.com/, [Online].

[12] P. Manadhata, S. Yadav, P. Rao, and W. Horne, “Detecting malicious

domains via graph inference,” in Proceedings of the 2014 Workshop on Artificial

Intelligent and Security Workshop, ser. AISec ’14. New York, NY, USA:

Association for Computing Machinery, 2014, p. 59–60. [Online]. Available:

https://doi.org/10.1145/2666652.2666659

[13] “Alexa Top Sites,” https://aws.amazon.com/alexa-top-sites/, [Online].

[14] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J.

Song, and V. Venkataramani, “TAO: Facebook’s distributed data store for the

social graph,” in 2013 USENIX Annual Technical Conference (USENIX ATC 13).

San Jose, CA: USENIX Association, Jun. 2013, pp. 49–60. [Online]. Available:

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

[15] “AT&T Cybersecurity,” https://cybersecurity.att.com/, [Online].

[16] “Anomali Threat Intelligence Platform,” https://www.anomali.com/, [Online].

[17] “Cisco Umbrella Investigate,” https://umbrella.cisco.com/products/

umbrella-investigate, [Online].

[18] “VirusTotal Graph,” https://www.virustotal.com/gui/graph-overview, [Online].

[19] L. Bass, P. Clements, and R. Kazman, Software Architecture In Practice, 01 2003.

[20] “Farsight Security,” https://www.farsightsecurity.com/, [Online].

[21] “VirusTotal,” https://www.virustotal.com/, [Online].

107

https://www.merl.com/publications/TR2001-22
https://www.siteadvisor.com/
https://doi.org/10.1145/2666652.2666659
https://aws.amazon.com/alexa-top-sites/
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://cybersecurity.att.com/
https://www.anomali.com/
https://umbrella.cisco.com/products/umbrella-investigate
https://umbrella.cisco.com/products/umbrella-investigate
https://www.virustotal.com/gui/graph-overview
https://www.farsightsecurity.com/
https://www.virustotal.com/


[22] “MaxMind,” https://www.maxmind.com/en/home, [Online].

[23] L. Gu and H. Li, “Memory or time: Performance evaluation for iterative operation

on hadoop and spark,” in 2013 IEEE 10th International Conference on High Per-

formance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing, 2013, pp. 721–727.

[24] “Greenplum Database,” https://greenplum.org/, [Online].

[25] “Kubernetes,” https://kubernetes.io/, [Online].

[26] E. Choo, M. Nabeel, M. Alsabah, I. Khalil, T. Yu, and W. Wang, “Device-

watch: Identifying compromised mobile devices through network traffic analysis

and graph inference,” 2019.

[27] “InfluxDB,” https://www.influxdata.com/, [Online].

[28] “Flannel: Pod network for Kubernetes,” https://github.com/flannel-io/flannel, [On-

line].

[29] “Apache JMeter,” https://jmeter.apache.org/, [Online].

[30] “Locust,” https://locust.io/, [Online].

[31] “Cypress,” https://www.cypress.io/, [Online].

[32] “Google Cloud Resource Calculator ,” (https://cloud.google.com/products/

calculator/#id=e07bb625-e7c1-4325-844f-fe6c907299af).

108

https://www.maxmind.com/en/home
https://greenplum.org/
https://kubernetes.io/
https://www.influxdata.com/
https://github.com/flannel-io/flannel
https://jmeter.apache.org/
https://locust.io/
https://www.cypress.io/
 (https://cloud.google.com/products/calculator/#id=e07bb625-e7c1-4325-844f-fe6c907299af)
 (https://cloud.google.com/products/calculator/#id=e07bb625-e7c1-4325-844f-fe6c907299af)


Appendices

109



 

 

University of Colombo School od Computing 
Sri Lanka 
 
RE: Letter of Appreciation 
 
To whom it may concern, 

 

I am writing to express my satisfaction and appreciation of the successful completion 
of cGraph: Graph Based Extensible Cyber Threat Intelligence Platform by W. W. 
Daluwatta (16000226), L. R. S. De Silva (16000252) and S. N. Kariyawasam 
(16000684) from University of Colombo School of Computing, Sri Lanka.  

 

cGraph is a project to develop a pluggable and scalable big data graph processing and 
storing system as a backbone of graph-based research outcomes of QCRI. The goal 
was to design and implement a big data architecture and implement one of our 
research outcomes on predicting malicious Internet domains and expose it to the end 
user as a proof of concept. 

 

The research outcomes show how to run inference-based models on a controlled 
environment with static datasets. Taking such research outcomes to production 
involves several engineering challenges on their own and requires innovative 
engineering solutions especially due to the sheer volume of data that needs to be 
handled and the dynamic nature of the data involved. The three students were able to 
work as a team and overcome the above challenges to build a highly scalable system. 

 

QCRI was responsible for providing the raw data, hardware infrastructure, and 
research outcomes of the inference algorithms. The aforementioned group of students 
has done an immense job, among other aspects, in gaining the required domain 
knowledge,  understanding the non-uniform and dynamic raw data, finding better ways 
to optimally process and store data, running microbenchmark on database tools and 
frameworks to understand the most suitable technology stack for the project, designing 
a highly available and scalable architecture, building a Kubernetes cluster and 



 

 

database clusters, designing and implementing the microservices based middleware 
and consumer end applications, solving the problem of large graph visualization in 
consumer products, adopting our research outcomes to the system, and evaluating 
both the algorithm and the system. 

 

Thank you. 

 

Sincerely, 

 
 
 
 

 

Dr. Mohamed Nabeel 
Senior Scientist 
  
Qatar Computing Research Institute 
Hamad Bin Khalifa University 
HBKU Research Complex 
P.O. Box 5825, Doha, Qatar 
Tel:   +974 44541426 
www.qcri.qa 

 

 

 

 



Appendix A

Contribution

This project was successfully completed with equal contribution from all members of the

group at all phases of the project. The workload was divided horizontally and vertically

within each member. Detailed descriptions of the contribution by each member of the

group is given below.

W.W. Daluwatta (16000226)

Mainly worked on designing and building the microservices/API and designing the

database schemas along with their optimizations, explored how to use parallel routines

for fast execution, explored better ways for faster data orchestration to the end consumer,

explored how to get the max use of Kubernetes to build a high available big data pro-

cessing/storing system and worked on application level security. As a result was able to

develop a highly available and effective graph retrieval and graph time traversal middle-

ware.

Additionally worked on designing and implementing databases, worked on solving

data engineering problems, worked on designing big data processing pipelines using

Spark, worked on desigining continuous delivery pipelines (CI/CD) and solved the chal-

lenges of adopting the QCRI research outcomes to the system. Also worked on develop-

ing the public API, Chrome extension and the web application.
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L.R.S. De Silva (16000252)

Mainly worked on designing and implementing the high available infrastructure and data

processing pipelines. Was responsible for understanding the volume and shape of raw

data, designing the database schemas, designing and implementing the data processing

pipelines using Spark and building the Kubernetes cluster and other relevant database

clusters on top of the Kubernetes clusters.

How to keep the system without failures, how to achieve the best combinations of

infrasture orchestration, how to trade data redundancy against efficiency, how to opti-

mize the pipelines using Spark, how to see every problem as a MapReduce operation

when writing Spark jobs, and how message passing algorithms such as belief propaga-

tion works in our context were the major concerns.

Apart from that understanding the research outcome of QCRI and converting it to

a microservice that could be plugged into the designed system was one of the other

highlighted works. Collaborating to the design phase of middleware and continuous

delivery pipelines and frontend were other contributions

S.N. Kariyawasam (16000684)

Mainly Worked on designing and implementing the data visualization component and

the relevant APIs. Smooth rendering of a large amount of nodes and edges, finding the

most suitable data visualization libraries, state management of the rendering process in

React using Redux, developing the timeline feature from the sketch, and graph node

expansion were the major concerns.

Apart from that the API is the most important link between the backend and fron-

tend, designing how the messages are passed within the backend and implementing the

orchestration were highlighted works.

Also contributed to designing the database schemas, solving the data engineering

problems and adopting the inference algorithm to the system. And worked on developing

the web application and Chrome extension.
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Group contribution

Conducting the literature study and competitive analysis of similar systems, exploring

various technologies through trial and error in order to select the best suited technologies

for the project, running microbenchmarks on several databases and libraries, designing

the overall system, overcoming data engineering challenges and evaluating the system

were a collaborative effort with more or less individual responsibilities.
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Appendix B

SQL Schema for Alexa data

CREATE TABLE alexa (

domain text,

partition_key char(2),

date DATE Null,

rank int Null

)

DISTRIBUTED RANDOMLY

PARTITION BY LIST (partition_key) (

PARTITION a_alexa VALUES (’a’),

PARTITION b_alexa VALUES (’b’),

PARTITION c_alexa VALUES (’c’),

PARTITION d_alexa VALUES (’d’),

PARTITION e_alexa VALUES (’e’),

PARTITION f_alexa VALUES (’f’),

PARTITION g_alexa VALUES (’g’),

PARTITION h_alexa VALUES (’h’),

PARTITION i_alexa VALUES (’i’),

PARTITION j_alexa VALUES (’j’),

PARTITION k_alexa VALUES (’k’),

PARTITION l_alexa VALUES (’l’),

PARTITION m_alexa VALUES (’m’),
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PARTITION n_alexa VALUES (’n’),

PARTITION o_alexa VALUES (’o’),

PARTITION p_alexa VALUES (’p’),

PARTITION q_alexa VALUES (’q’),

PARTITION r_alexa VALUES (’r’),

PARTITION s_alexa VALUES (’s’),

PARTITION t_alexa VALUES (’t’),

PARTITION u_alexa VALUES (’u’),

PARTITION v_alexa VALUES (’v’),

PARTITION w_alexa VALUES (’w’),

PARTITION x_alexa VALUES (’x’),

PARTITION y_alexa VALUES (’y’),

PARTITION z_alexa VALUES (’z’),

PARTITION zero_alexa VALUES (’0’),

PARTITION one_alexa VALUES (’1’),

PARTITION two_alexa VALUES (’2’),

PARTITION three_alexa VALUES (’3’),

PARTITION four_alexa VALUES (’4’),

PARTITION five_alexa VALUES (’5’),

PARTITION six_alexa VALUES (’6’),

PARTITION seven_alexa VALUES (’7’),

PARTITION eight_alexa VALUES (’8’),

PARTITION nine_alexa VALUES (’9’),

DEFAULT PARTITION other

);
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Appendix C

Product Documentation

Figure C.1: Documentation - MkDocs
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Appendix D

System View

Figure D.1: SignIn

Figure D.2: SignUp
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Figure D.3: Forgot Password

Figure D.4: Search View

119



Figure D.5: Search Results
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Figure D.6: Search Results
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Appendix E

Container images

Figure E.1: Container images - DcokerHub#1

Figure E.2: Container images - DcokerHub#2
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Appendix F

External References

Microbenchmark codes and results used in cGraph project can be accessed by using the

following link:

https://github.com/Wathsara/graphdb-benchmark/tree/main
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