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Abstract

This study addresses the challenge of accurate Story Points (SP) estimation in ag-

ile software development. SP, a unit for measuring development effort, are crucial

for project planning and resource allocation. However, manual SP estimation is

critical yet a tedious and error-prone process, often causing delays and exceeding

project budgets. This highlights the pressing need for automated and accurate SP

prediction in the software development industry.

This study addresses this need by proposing a novel data preprocessing approach for

story point estimation. It involves removing similar user stories, data augmentation

and description segmentation. Furthermore, the study contributes 3 new datasets

to the public domain specifically designed for story point estimation research. This

enhanced data richness and diversity are shown to significantly improve model per-

formance. The study leverages these 3 datasets and the Choetkiertikul dataset to

train various traditional and transformer models, including Support Vector Ma-

chines (SVM), Random Forest, Recurrent Neural Network (RNN), Bidirectional

Encoder Representations from Transformers (BERT), DistilBERT and RoBERTa.

Among the traditional approaches, SVM achieved the highest accuracy (46.12%).

BERT outperformed other transformer models (44.58%) but fell slightly short of

SVM’s performance.

To enhance model transparency and interpretability, the study employed Local In-

terpretable Model-agnostic Explanations (LIME), Shapley Additive explanations

(SHAP), and Transformer Interpret libraries. These techniques offer explanations

by highlighting keywords influential in the model’s predictions. Additionally, a

human-based evaluation involving 7 industry professionals was conducted to assess

both model performance and the reliability of the Explainable Artificial Intelli-

gence (XAI) methods.
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Chapter 1 - Introduction

1.1 Background and Motivation

Scrum is a widely used Agile methodology for software development which empha-

sizes an iterative development process [1]. This is used when the requirements are

ambiguous and it focuses on client-user engagement. The Agile development pro-

cess starts with the customer representatives providing the product owners with a

list of work items or in other words user stories to be completed in order to develop

the software. Then the team evaluates and refines the user stories in the product

backlog as the initial phase of the product backlog refinement process. Then the

team does work breakdowns for larger items (i.e. epics) by creating a collection of

smaller work items and prioritizing the items by estimating the effort needed to

complete each task. In order to deliver a working product, the team completes a

sprint planning process that includes defining the sprint goal, assessing team ca-

pacity, selecting tasks for a sprint backlog based on team capacity and completing

the sprint in a certain number of iterations [2]. Overall Agile development involves

developing software in repeated iterations and in small incremental parts simulta-

neously. The development team designs, implements, tests and delivers a working

release in each iteration (sprint) of the project.

The problem arises when refining the product backlog which is also one of the

most critical aspects of the Agile process that involves estimating each user story.

A formal, comprehensive explanation of a software feature written from the client’s

or end-user perspective is known as a “user story” and the development team has

multiple user stories to complete in each sprint. Consequently, it is vital to esti-

mate the work necessary to fulfil each user story rather than concentrating on the

whole project. An effort estimation technique is used for this calculation. Using

effort estimation, Agile teams evaluate the size that a product backlog item should

be in relation to how much work it will take to complete. Since it enables teams to

efficiently schedule projects and distribute resources, it is an essential element in

2



Agile software development. Story Points (SP), the use case point approach and

FPA are a few techniques for effort estimation. Among them, SP has become more

popular in Agile projects because of how easy it is to use. Furthermore, SP was

the most commonly used sizing metric for sprints according to [3].

SP are one of the approaches to estimating user stories in Scrum. SP are a unit

of measure used to convey an estimation of the total effort needed to complete

a task or a user story in the product backlog. There are several SP estimation

techniques such as Planning Poker which uses either the Fibonacci sequence or

numeric sequence from 1 to 10 and T-shirt size estimation which uses values such

as XS, S, M and L. SP are often estimated by the team based on team consensus

utilizing a variety of factors such as analogy and expert opinion while taking into

account the amount of effort, complexity, risk and uncertainty [4]. This might

lead to inconsistent and inaccurate estimates. [3] draws attention to the possibility

of bias in the subjective estimation based on the knowledge of domain experts.

Therefore, such inaccurate SP estimates (overestimates or underestimates) might

result in unproductive sprint planning, which would waste developer time and

result in lost productivity, increased costs, project failure, unhappy customers,

and lost revenue [2]. Various Machine Learning (ML) and Artificial Intelligence

(AI) approaches have been used to address this problem however a more efficient,

consistent and accurate task-level effort-measuring approach which explains the

decision-making process is essential.

1.2 Problem Statement and Significance

SP estimation of user stories in Agile is a critical aspect of the development process

[5]. Therefore the accuracy of the SP estimation models is essential. Even though

there were several models built using different approaches, there’s still room to

improve accuracy. However to improve the accuracy of the existing models, we’ll

have to adopt much more complex ML models such as transformer models. How-

ever, these models are usually called “black boxes” models as it is difficult for users

to identify the factors which resulted in the prediction [6]. The user’s acceptance

and confidence in SP estimations are impacted by the lack of transparency of the

3



models. Thus, to build a more reliable SP estimation model, it needs to give ex-

planations as to why it generated the SP estimation. Therefore, applying XAI to

the model should be done.

1.3 Research Aim

To create an approach to estimate SP values accurately and generate explanations

for each estimation by using ML and XAI methods.

1.4 Research Gap

There are many ML models built for SP estimation and for cross-project evalu-

ation the state-of-the-art accuracy is 47.2%. Most of the previous literature had

used the Choetkiertikul dataset which consists of 23,313 user stories and the re-

maining literature had used datasets which was provided by a client which is not

publicly available. Almost all of the previous literature had focused on improving

the model’s accuracy rather than the model’s interpretability and only one research

had put the foundation for the model’s interpretability. I intend to find an approach

to estimate SP values by maintaining both accuracy and interpretability. Also, I

intend to construct a new and richer dataset than the Choetkiertikul dataset.

1.5 Research Questions and Objectives

1.5.1 Research Questions

RQ 1 What are other projects that can be combined with the existing dataset to

make it richer?

RQ 2 What are the preprocessing steps needed for the dataset to make it more

optimized?

RQ 3 Can transformer models generate SP values for given user stories more accu-

rately than the traditional approaches?

RQ 4 How to apply XAI techniques to generate explanations for each SP predic-

tion?
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1.5.2 Research Objectives

RO 1.1 To analyze the currently used datasets and projects for SP estimation.

RO 1.2 To build a richer dataset than the existing datasets for SP estimation.

RO 2.1 To explore transformer models and determine which transformer model is

best suited and their accuracy.

RO 2.2 To identify the key challenges when it comes to adapting transformer models

for SP estimation.

RO 2.3 To propose solutions to overcome the identified challenges while adapting

transformer models for SP estimation.

RO 2.4 To evaluate the best-suited transformer model.

RO 3.1 To explore XAI techniques and determine which technique is more suited.

RO 3.2 To identify the key challenges when it comes to adapting XAI techniques for

generating explanations for each SP prediction.

RO 3.3 To propose solutions to overcome the identified challenges while adapting

XAI techniques for generating explanations.

1.6 Research Scope

This study covers the following aspects,

1. Exploring various projects that can be used for SP estimation.

2. Exploring traditional approaches that can be used for SP estimation.

3. Exploring transformer-based approaches that can be used for SP estimation.

4. Exploring XAI approaches that can be used with ML models.

The project only aimed to determine the SP value by considering the title, descrip-

tion and issue type of a given user story. This did not consider the attributes/fea-

tures of the developer who is assigned to the user story.
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Chapter 2 - Literature Review

There have been several studies done regarding accuracy however only a hand-

ful of studies were done regarding the XAI aspect. The studies have focused

on regression-based, classification-based, graph-based, clustering and transformer-

based models.

2.1 Regression Based

2.1.1 Deep-SE

A new approach was proposed to estimate SP based on combining Recurrent High-

way Network Recurrent Highway Network (RHN) and LSTM which are 2 Deep

Learning Deep Learning (DL) architectures [7]. The proposed model was an end-

to-end prediction system known as Deep-SE. There are many layers in the model

and the description is given as the input for the model which then goes through

and processed by the layers before estimating the value of the SP. The architecture

of the Deep-SE model is given in the figure 2.1.

Word embedding, document representation using LSTM, deep representation using

RHN and differentiable regression are the 4 main components of the Deep-SE

model. The final layer of the model consists of a regressor which estimates the

SP value in the numerical sequence. Their dataset consists of 23,313 user stories

from 16 open-source projects. Furthermore, the evaluation showed that the Deep-

SE model outperforms Mean, Random Guessing and Median methods which are

the 3 widely used baselines with relation to Mean Absolute Error (MAE), Median

Absolute Error (MdAE) and Standardized Accuracy (SA). The evaluation results

are given in the figure 2.2.

A system was proposed which is a close adaptation of the Deep-SE model over

a commercial product dataset [8]. New elements were introduced to see the cor-

relation between the model performance and the level of detail in user stories.
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Figure 2.1: The Deep learning model

Also, they introduced an analysis of the model’s performance with respect to the

user story types such as bugs and new features. This study shows the Deep-SE’s

applicability outside of the open-source community.

2.1.2 RNN-CNN model

[9] proposed a deep learning model which is a combination of both the RNN and

Convolutional Neural Network (CNN). When developing the RNN-CNN model,

they have used the Bi-directional Long Short Term Memory (BiLSTM) as the

RNN to capture the contextual information on both the forward and backward

directions. The BiLSTM learns the user story as a vector. And then using that

learned vector, CNN extracts the features to predict the SP value. Lastly, a dense

network is used to predict the SP values based on the descriptions which were from

the learned user stories. The proposed model is given in the figure 2.3. They have

used the same dataset which was used to train the Deep-SE model which consists

of 23,313 user stories from 16 open-source projects. The performance of the model

7



Figure 2.2: Evaluation results of Deep-SE over the 3 baselines

was evaluated using the metrics R2 Score and MAE value.

2.2 Classification Based

2.2.1 TF-IDF

An approach was proposed for classifying user stories into several SP classes [10].

Their dataset consists of open-source and commercial issue reports which they

gathered from Jira repositories. They used Term Frequency-Inverse Document

Frequency (TF-IDF) to extract features from those issue reports in the dataset

and each row in the dataset is an issue report while the extracted features are in

columns. They used several classifier models to predict the SP for each issue report

by feeding the title and description of those issue reports. For the classifier models

they used SVM, Naive Bayes (NB), K-Nearest Neighbor (KNN) and Decision Tree
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Figure 2.3: RNN-CNN model

(DT) models. They used accuracy and Mean Magnitude of Relative Error (MMRE)

to evaluate the performance of each of the classifiers. The performance metrics for

the classification models are given in figure 2.4.

Figure 2.4: Performance metrics for the industrial project

According to the results, the SVM model achieved the highest accuracy and the

best MMRE value out of all the classifiers for the industrial project. Therefore they

have also checked the performance of the SVM model for the open source projects

as well. The performance metrics for the SVM model for the open source projects

are given in figure 2.5.

Furthermore, they confirmed the results from the study of Pekka Abrahamsson [11],
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Figure 2.5: Performance metrics for the SVM model in all projects

which suggested the length of the user story is a useful predictor for SP estimation.

They suggested that in order to train the classifier to a level of accuracy, more than

200 issues should be used.

2.2.2 Developer features

A different approach was proposed than other studies by using developer-related

features on a SVM model to estimate the SP [12]. The study combined developer-

related features with the attributes extracted from 4142 user stories of 8 open-

source projects. The developer-related features they considered are the current

developer’s workload, reputation, total work capacity (SP), total work capacity

(number of issues) and number of developer comments. The SVM model was

evaluated for the below 3 cases and the results are given in figure 2.6. Also, they

used accuracy, SA and MAE to evaluate the performance of the model.

1. using only developer-related features (Dev)

2. using only features extracted from the text (Text)

3. using a combination of both the developer-related features and features ex-

tracted from the text (Text + Dev)

They have concluded that using only developer features is best suited for estimating

the SP because it has the highest accuracy and MAE compared to the other 3

approaches.
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Figure 2.6: Evaluation results for the 3 cases

2.2.3 Graph Based - Text Level GNN-StoryPoint Estimator

A novel classification-based Graph Neural Networks (GNN) method was proposed

for estimating SP [13]. It is called TextLevelGNN. This study was focused on

solving some of the issues found in the traditional GNN models such as challenges

while testing the model online and excessive memory usage. They implemented a

text-level graph that connects word nodes for every input text, rather than making

an individual graph for the whole corpus. The dataset used consists of 23,313 user

stories from 16 open-source projects and they have divided 80% of the dataset for

training the remaining for validation. They classified the SP values into 4 namely

small (1–5), medium (6–15), large (16–40) and huge (¿40). Their method involves

creating a graph that shows the relationship between each word and its neighboring

terms by combining the title and description of the user story. Then the last step

involves training the GNN model to predict the SP values. The model architecture

is given in figure 2.7.

Figure 2.7: Architecture of TextGraph GNN model

It was further stated by the authors that GNN have better representations than

traditional vectorizing methods because of their capacity to learn data using graph

data structures. When it comes to the evaluation, they have done testing by
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comparing the random forest classifier with the TF-IDF and the TextLevelGNN

model. The results are given in the figure 2.8.

Figure 2.8: TextLevelGNN model evaluation with random forest

However, the accuracy came with the cost of training time. The authors observed

that it took longer time to train the TextLevelGNN model than the Random Forest

model. It took 25 minutes for the training step of the TextLevelGNN model while

the Random Forest model took 4 minutes for the training step.

2.3 Clustering Algorithms

2.3.1 K Means and K-medoids clustering

An approach was proposed that used k-means clustering [14]. The dataset used is

from an industrial project which consists of 98 user stories. Preprocessing, clus-

tering and validation are the 3 phases of the proposed model. The preprocessing

step consists of removing stop-words and tokenization. The clustering step is used

to determine the required clusters by implementing the k-means algorithm to both

TF-IDF vectorizers with cosine similarity and count vectorizer. The validation
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step consists of finding the cluster out of all the obtained results. The steps for the

proposed approach are given in the figure 2.9.

Figure 2.9: Steps for proposed study

Furthermore, To evaluate how well the data points are grouped in a cluster, they

used the silhouette coefficient value. Also, the k-means algorithm they used consists

of 4 steps.

1. Choose k data points at random to be used as centroids

2. It is calculated how similar the data points are to each cluster centroid

3. K centroids are modified by recently allocated data points.

4. Repeat (a) and (b) steps until all data points have been covered.

2.3.2 Hierarchical clustering

A novel clustering-based approach was proposed named LHC-SE to estimate SP

in agile development [15]. The model estimates the SP value of an issue based

on previous similar problems using agglomerative hierarchical clustering and topic

space of issue descriptions provided by LDA. The theory is that grouping com-
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parable data points together can decrease variation and improve the precision of

the model based on those data points. The dataset used for this study consists of

31,960 issues in 26 open-source projects.

2.4 GPT2SP

The Generative Pre-trained Transformer (GPT)-2 model was developed by Ope-

nAI which is a transformer-based language model that is used for a wide range

of Natural Language Processing (NLP) tasks including text translation and sum-

marization. There are different GPT-2 variants such as small, medium, large and

extra large. A novel approach was proposed using the GPT model [2]. The model

that they have developed is called GPT2SP and it utilizes the GPT-2 small variant

which consists of 177 million parameters. The model architecture is given in the

figure 2.10.

Figure 2.10: The architecture of the GPT2SP model

Their dataset consists of 23,313 user stories from 16 open-source projects. The ap-

proach authors proposed provides interpretability and enables the transferability

of GPT2SP across projects. For interpretability, they have proposed a proof-of-

concept. The authors have further mentioned that the GPT2SP model achieved

1.16 for the MAE which results in within-project evaluations to outperform the

baselines by 34% to 57% and in cross-project evaluations to outperform the base-

lines by 39% to 49%. They also mentioned that the Deep-SE model was significantly

improved by the GPT2SP model.
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2.5 Explainable AI

XAI is divided into 2 parts namely explainability and interpretability. Explain-

ability is the process of comprehending and clarifying a ML model’s underlying

workings. Interpretability refers to the ability to comprehend and provide an ex-

planation for the predictions or decisions made by a ML model [16]. XAI has

emerged as a novel area in research in the DL context [17]. They further stated

that today’s Deep Neural Network (DNN)s provide outputs that can’t be explained

without entirely new explanation methods and all the currently available DNN ar-

chitectures such as RNN, CNN and LSTM are considered as black-box models

because the observer cannot understand or interpret the underlying decision meth-

ods. Furthermore, a machine learning model’s explainability is typically inversely

correlated with accuracy. This means the higher the accuracy of the predictions,

the less explainable the model is. This is illustrated in the figure 2.11 where de-

cision trees have better explainability while having comparatively lower prediction

accuracy however DL models have better prediction accuracy while having com-

paratively lower explainability.

Figure 2.11: Machine learning model’s explainability and accuracy

2.5.1 Approaches of XAI in other research areas

In a previous literature on the research area of Automated Short Answer Grading,

the authors have done a survey on 71 individuals including professors, lecturers and
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teachers to check if it is essential that they comprehend how an AI arrives at its

predicted score. The results of that survey are given in the figure 2.12. According

to the results, the majority of the individuals confirm that it is essential for them

to comprehend how an AI determines its predicted score and the individuals feel

more confident on the models if the models explain their decisions [18].

Figure 2.12: Survey results for the need of XAI

Another previous literature also mentioned several approaches of applying XAI

in the research area of Automated Short Answer Grading. One of them is to

output the predicted score with a confidence score and a similar answer to the

given input. They defined the confidence score as the interpretable and observable

level of prediction certainty [18]. The output of this XAI approach is given in figure

2.13.

The next approach gives the predicted score with the highlighted words in the input

answer. The words are highlighted depending on their relevance to the contribution

to the score. The highlighted opacity also depends on the relevance. That means if

the opacity is high then that word is highly relevant to the score and if the opacity

is low then that word is not that relevant to the score [18]. The output of this XAI

approach is given in the figure2.14.

An approach was proposed for XAI by using a separate dataset [19]. In this dataset
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Figure 2.13: XAI approach: Predicted output score with a confidence score and a

similar answer

Figure 2.14: XAI approach: Predicted output score with highlighted words in the

input answer

apart from the general features such as question, answer and the relevant score,

there is also an additional feature called the elaborated feedback that explains the

relevant score. The authors have constructed this feature manually by using do-

main experts.

An analysis and a review were conducted on various XAI methods such as LIME,

SHAP, Anchors, etc [20]. According to the authors, the most thorough and widely

used techniques for visualizing feature importance and interactions in the literature
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are LIME and SHAP. Furthermore LIME and SHAP methods are independent of

models and also they have been shown to work with any kind of data. LIME gives

information about the relative contributions of each feature to the final result of a

ML model for a certain prediction [16].

Several tests were conducted by a study to find the best XAI method for inter-

pretation [21]. They selected LIME, SHAP and Class Activation Mapping (CAM)

as the XAI methods. The authors further state that those 3 XAI methods are

widely used. They have proposed 2 metrics to evaluate XAI methods namely

Determining the Highest-Impacted Segments (DHIS) which determine the regions

that have the greatest influence on the predictions and Intersection Over Union

(IOU) which takes a value from 0 to 1 where the most accurate XAI approach is

the one with the largest IOU value. The results of the evaluation are given in the

figure2.15. By selecting the 2 highest-value areas, LIME outperforms the other two

XAI approaches, according to results on the DHIS method. Also when comparing

the IOU values, out of the 3 XAI methods LIME has the highest value. Therefore,

by analysing the results the authors mentioned that the explanations provided by

LIME and SHAP are more precise and human-like.

Figure 2.15: Results of LIME, SHAP and CAM on DHIS and IOU
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Chapter 3 - Design

3.1 Research Approach and Methodology

This study explored traditional approaches, transformer models [22] and XAI tech-

niques to find an approach to estimate SP more accurately and consistently utilizing

the existing theoretical foundation. Therefore this research falls under the cate-

gory of deductive research using an experimental research approach in Saunders’

Research Onion Framework [23]. The main steps of the approach are given in figure

3.1. The approach starts with an existing theory and then using that theory the

hypotheses are formulated. Then comes the data collection and analysis. The final

step is to decide whether the hypothesis is rejected or not. The hypotheses of this

study are mentioned below.

1. The null hypothesis (H0): Using the selected transformer models we cannot

get better accuracy than the state-of-the-art traditional models and using

XAI methods we cannot generate justifications for each estimation.

2. Alternative Hypotheses (H1): Using the selected transformer models we can

get better accuracy than the state-of-the-art traditional models and using

XAI methods we can generate justifications for each estimation.

Figure 3.1: Flow of deductive Research

This study used the design science methodology to solve the limitations of existing

story point estimating approaches and provide an accurate and reliable approach

for this area of research. This rigorous methodology, shown in figure 3.2, ensured a

novel estimation approach was developed that successfully contributed to the area

of research [24].
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Figure 3.2: Design science research steps

3.2 High Level Design

This study primarily consists of two phases. The first phase involves the develop-

ment of SP prediction model. The second phase involves the integration of XAI

methods to generate explanations of the model’s predictions. A high-level illus-

tration of the steps followed to build the traditional approaches and transformer

models are given in figure 3.3 which includes all the steps of data preprocessing. A

comprehensive elaboration of each phase is provided in the following sections.

3.2.1 Data Collection

The model’s accuracy depends on the dataset’s quality and size. There are few pub-

licly available datasets for this domain. The Choetkiertikul dataset is commonly

used in most of the previous literature which consists of 16 projects with a total

of 23,313 user stories with the features title, description and SP [25]. To address

the first research question, the construction of a richer dataset was needed. For

that, I used the TAWOS (Tawosi Agile Web-based Open-Source) dataset which was
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Figure 3.3: High-Level Research Design

provided by Vali Tawosi. The TAWOS dataset is a comprehensive dataset from 44

open-source Agile projects that includes a variety of data from over 500,000 issues

[26]. Also, it is better than the Choetkiertikul dataset in terms of size, quality

and features. Furthermore, the 16 projects in the Choetkiertikul dataset are also

included in the TAWOS dataset. Based on the features, the TAWOS dataset was

used to construct 2 types of datasets for this study, which are mentioned below.

1. Dataset A - with the features issue key, title, description and SP

2. Dataset B - with the features issue key, title, description and SP, type of

issue and priority of the issue

The overview of both datasets is given in figure 3.4 and figure 3.5.

The TAWOS dataset consists of 44 open-source projects. However, for this study

only 39 projects were useful. The data distributed of all the 39 projects including

the project names and their respective number of data items are given in the figure

3.6.
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Figure 3.4: The overview of dataset A

Figure 3.5: The overview of dataset B

Also, the SP distribution of the TAWOS dataset is given in figure 3.7. Furthermore,

the SP distribution of each of the 39 projects is given in the figures 3.8, 3.9, 3.10,

3.11, 3.12 and 3.13.
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Figure 3.6: Data distributed of the TAWOS dataset

Figure 3.7: SP distributed of the TAWOS dataset
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3.2.2 Pre-processing

After analysing the previous literature, it was evident that planning poker was the

most widely used approach for SP estimation. Then the initial decision of the data

preprocessing was to decide whether to use the Fibonacci sequence (1, 2, 3, 5, 8,

13, 21) or the numerical sequence (1, 2, 3, 4, 5, 6, 7). The Fibonacci sequence

was adapted to this study since it was commonly used in this area of research.

Based on the initial analysis of the SP distribution of the TAWOS dataset which is

given in figure 3.7, it was observed that there aren’t many user stories for the SP

above 8. Also, a previous study has mentioned that to get a model with adequate

accuracy, the classifier must be trained on more than 200 problems per category

[10]. Therefore the first step of data preprocessing is to filter out the user stories

which has a SP value of greater than 8. Also since this study adapts the Fibonacci

sequence, the user stories of SP value 4, 6 and 7 were filtered out.

Then the second step of data preprocessing is to clean the dataset to increase

the accuracy because clean data enhances the capability of the model to identify

underlying patterns and relationships, resulting in better predictions and results,

and enhanced efficiency. After all, the model can train more quickly and make bet-

ter use of its resources by eliminating data that is inaccurate or useless. Also, less

biased and more reliable results can be obtained by cleaning the dataset because

unclean data may have biases and inconsistencies that the model may pick up and

propagate.

The third step of data preprocessing is to reduce the noise of the dataset by filter-

ing out similar user stories with different SP values. This is done because similar

descriptions with different SP values show estimation inconsistencies, which can

add noise to the dataset. By eliminating these noises we can achieve a more reli-

able dataset resulting in analysis and conclusions that are more reliable. Also, we

can get a better understanding of what factors are impacting the SP estimation

by focusing on the user stories that differ in effort or complexity by eliminating

similar ones.
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The fourth step in data preprocessing involves encoding the SP values which is

essential as they represent categorical data. Since many ML models work with

numerical data, this conversion is crucial for the model’s comprehension. By en-

coding SP, we convert them into a format that ML models can comprehend.

The next step involves creating a representation using either tokenization or vec-

torization depending on the traditional approach or the transformer model. Some

ML models have a maximum sequence length that can be tokenized such as the

BERT model has a maximum sequence length of 512 tokens. Therefore to prevent

information loss depending on the model, the description was split into chunks and

then tokenization was done.

In a classification problem, a class imbalance arises when one class has substan-

tially fewer samples than another [27]. This can result in inaccurate predictions

and biased models. As a result of class imbalance, the models might prioritize the

dominant class which would negatively impact the minority class’s performance.

One approach for addressing class imbalance is the use of class weights that are

used in model training to provide lower weights to majority classes while giving

greater weights to minority classes. Furthermore, according to the SP distribution

of the TAWOS dataset given in figure 3.7, there is a class imbalance across all 5

classes. Therefore class weighting was used to handle this issue. With the objec-

tive of overcoming the class imbalance in the dataset, this study looked into data

augmentation. Although class weighting is a standard strategy to address class

imbalance, data augmentation was also tested because it can increase the size and

variety of the minority class which is SP value 5 and 8, without creating inaccurate

biases. The goal of this method is to enhance the dataset’s quality so that the

models can learn from and generalize to new cases more effectively, especially in

the underrepresented class.
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3.2.3 Design and Implementation of Models for SP Estima-

tion

An analysis of previous literature revealed that there were multiple ML models cre-

ated for SP estimation. I analyzed how well those ML models performed and after

a thorough consideration of the previous literature, Random Forest, SVM, LSTM

and BiLSTM were selected as the traditional approaches. The BERT, DistilBERT

and RoBERTa models were selected as the transformer model because of several

compelling reasons. One of the reasons why BERT was selected is its state-of-the-

art performance. BERT has continuously shown outstanding performance on a

range of NLP tasks such as question-answering, text summarization and sentiment

analysis [28]. Although it hasn’t been used specifically for the domain of story

point estimation, its effectiveness in evaluating textual data shows a real poten-

tial. BERT also have the capability to comprehend complex text. This is needed

because user stories can contain complex textual data. Unlike other transformer

models, BERT can analyze text bi-directionally which allows it to completely un-

derstand the relationships and context between words. This allows it to capture

the complex details of user stories and potentially improve the accuracy of SP

predictions. Also, BERT can generate contextual embeddings which is essential

to capture how a word’s meaning varies based on the surrounding content. This

type of dynamic comprehension of word meaning was significant in my domain.

Furthermore, BERT has pre-trained models such as BERT base or large and it

has a variation of models such as RoBERTa and DistilBERT. Also, it has the ca-

pability to fine-tune the pre-trained models for a specific task such as story point

estimation [29]. Lastly is the BERT tokenizer which plays a significant role when

it comes to textual data. When dealing with unknown words the BERT tokenizer

efficiently divides them into smaller, more recognizable units. This produces un-

derstandable tokens for the model, enabling it to derive meaning from even highly

complicated terms that it hasn’t come across before. The figure 3.14 illustrates

how the BERT tokenizer handles the word ’machinelearning’. Various experiments

were done with the traditional and transformer models. The details and results of

those experiments are given in the next sections.
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3.2.4 Implementation of XAI methods

An analysis of previous literature revealed that various XAI approaches have been

applied to diverse domains including automated short answer grading research ar-

eas. However, the use of XAI in the field of story point estimation is still relatively

new. By analysing the previous literature it was evident that LIME was widely

used because of its significant efficiency. Therefore, in this study LIME was pri-

marily employed for generating explanations for both traditional approaches and

transformer models. However, other than LIME, 2 other approaches namely SHAP

and transformers-interpret were used for the transformer model.
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(a) ALOY (b) APIKIT

(c) APSTUD (d) BAM

(e) BE (f) CLI

(g) CLOV

Figure 3.8: SP distribution of the 39 projects (first set)
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(a) COMPASS (b) CONFCLOUD

(c) CONFSERVER (d) CWD

(e) CXX (f) DAEMON

(g) DATACASS

Figure 3.9: SP distribution of the 39 projects (second set)
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(a) DM (b) DNN

(c) DURACLOUD (d) EVG

(e) FAB (f) FE

(g) INDY

Figure 3.10: SP distribution of the 39 projects (third set)
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(a) IS (b) JAVA

(c) JRACLOUD (d) JRASERVER

(e) JSWCLOUD (f) JSWSERVER

(g) MDL

Figure 3.11: SP distribution of the 39 projects (fourth set)
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(a) MESOS (b) MULE

(c) MXNET (d) NEXUS

(e) SERVER (f) STL

(g) TIDOC

Figure 3.12: SP distribution of the 39 projects (fifth set)
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(a) TIMOB (b) TISTUD

(c) USERGRID (d) XD

Figure 3.13: SP distribution of the 39 projects (sixth set)

Figure 3.14: How BERT tokenizer works for unknown words
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Chapter 4 - Implementation

4.1 Data Collection

The TAWOS dataset was publically available and it was provided as an Structured

Query Language (SQL) file which served as the dataset for this study. I effectively

extracted the necessary data needed for this study by utilizing the command line

interface. The TAWOS dataset consists of a set of tables which is illustrated in

figure 4.1, that relate to several areas of user stories in software development.

Figure 4.1: Tables in the TAWOS dataset

Furthermore, out of all the tables, only the ”issue” table contains the data that is

essential for this study. The structure of the issue table is illustrated in the figure

4.2 which contains the essential data such as issue key, title, description, SP, etc.

Also, the 2 datasets namely Dataset A and Dataset B were successfully created by

processing the ”issue” table. The necessary SQL queries are given in the figure 4.3.

4.2 Pre-processing

4.2.1 Data Filtering

The inclusion and deletion of data items according to SP values were thoroughly

considered during the data filtration phase. In order to keep the analysis focused
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Figure 4.2: The structure of the issue table

Figure 4.3: Construction of Dataset A and Dataset B

on the typical range found in the area of study, the SP values greater than 8 were

considered outliers and were removed from the analysis. Furthermore, since SP

values 4, 6 and 7 deviate from the Fibonacci sequence used in this study, they were

also eliminated. Assigning effort levels between consecutive Fibonacci values (eg -

between 3 and 5) increases ambiguity and makes it more difficult to analyze the

data accurately. Eliminating these data items results in an overall smaller sample

size. However, it also guarantees that the selected estimation approach is applied

consistently and unambiguously.

4.2.2 Data Cleaning

The accuracy of the SP estimation model is directly impacted by the quality of the

data. The data is thoroughly processed and cleaned in order to provide reliable

and accurate predictions. This phase includes:

• Removing incomplete or missing data: Empty rows and rows with undefined

values are eliminated as they lead to bias and the quality of predictions can
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be impacted negatively

• Removing irrelevant data: Rows with URLs that are not directly related to

the estimation context are eliminated to reduce noise and keep attention to

important features

• Removing noise: Removing stop words, articles and prepositions from the

dataset is a good way to reduce noise because they don’t add much to the

semantic meaning. For maintaining consistency emojis and whitespace are

also excluded.

• Eliminating unnecessary formatting: HTML tags are removed so that the

models can focus on the main text that is important for estimating SP.

Dataset A contains 34,484 data items and Dataset B contains 25,854 data items

after going through the data filtering and data cleaning phases.

4.2.3 Removing Similar User Stories

A semantic similarity-based data preprocessing approach was used to address the

problem of inconsistent SP values assigned to similar user stories. There were two

parts to this approach:

1. Sentence-BERT is a robust pre-trained neural network model that was used

to extract the rich semantic meaning that is embedded in each user story.

Sentence-BERT considers the relationships and context between words in

addition to individual words, in contrast to traditional word embedding ap-

proaches. This approach provides a more comprehensive representation of

the overall meaning of user stories [30].

2. The level of semantic similarity across user stories was measured using cosine

similarity which is a well-known metric in text analysis. Measuring the degree

to which the embedded representations aligned was done by computing the

cosine similarity between the user stories. This approach filtered out the user

stories which has similar semantic means with different SP values which led

to reduced inconsistencies and noise in the dataset. Furthermore, in previous

studies, it was mentioned that cosine similarity was a commonly used metric

and it has a high efficiency [31].

3892 data items were eliminated after filtering out similar user stories from the
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dataset.

4.2.4 Label Encoding

In this study, we address the issue as a multi-label classification problem. Therefore

each SP value must be assigned a particular number. When it comes to transform-

ing the SP values in the Fibonacci sequence into a format that is suitable for the ML

models, the SP were encoded from 0 to 4 in the numeric sequence. This encoding

uses the Fibonacci sequence’s inherent ordering to guarantee that each encoded

number appropriately represents the relative complexity of the associated story.

The encoding of the SP values is given below.

• SP value 1 gets encoded into the value 0

• SP value 2 gets encoded into the value 1

• SP value 3 gets encoded into the value 2

• SP value 5 gets encoded into the value 3

• SP value 8 gets encoded into the value 4

However, we can also address this as a 4 step binary classification problem. In that

situation, the encoding values should only contain values 0 and 1. An example of

the first encoding step of SP values is given below. This is further explained in the

upcoming sections.

• SP value 1 gets encoded into the value 0

• SP value 2 gets encoded into the value 1

• SP value 3 gets encoded into the value 1

• SP value 5 gets encoded into the value 1

• SP value 8 gets encoded into the value 1

4.2.5 Tokenization and Vectorization

This step of preprocessing involves creating a representation using either tokeniza-

tion or vectorization. Tokenization is an essential pre-processing step that was

applied to the text data handled in this study in accordance with the particular

needs of the transformer models that were used. The BERTTokenizer, which can

handle sequences with up to 512 distinct tokens was used for the BERT model. The

DistilBertTokenizer was selected in order to utilize the DistilBERT model that en-
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ables sequences up to 2048 tokens in length. Lastly, the RoBERTa model is used

with the RobertaTokenizer, which enables sequences with up to 2048 tokens. Due

to the hardware constraints of the ANTPC, the sequence length was limited to 128

tokens on each of the transformer models. While limiting the sequence length to

128 tokens, some descriptive information may inevitably be lost. To overcome this

issue, an approach was used which involved the segmentation of the original user

story descriptions into smaller and more manageable chunks. This segmentation

attempted to preserve the essential elements of the user story descriptions while

maintaining the sequence length restriction that had been imposed upon it. An

additional step of pre-processing was implemented to overcome the repetition of

including the title for every description segment. The titles and descriptions were

merged into a single column then segmentation of that column was done using a

specific segmentation number.

Text vectorization is essential to the efficient processing and analysis of textual

input by traditional ML approaches such as SVM. This study utilizes the TF-IDF

vectorization approach, combining n-grams and also uses Word2Vec to capture the

semantic context and complex relationships within the textual data.

4.2.6 Handling Class Imbalance Using Data Augmentation

and Class Weights

The dataset has a class imbalance across all 5 classes. Class weights were utilized in

order to overcome this problem and guarantee that the model gives minority classes

sufficient attention. The equation that was used to calculate the class weight for

the nth label is given below.

class weight for label n =

∑4
i=0 samples in class label i

samples in class label n

Before data augmentation is done, the dataset is divided into 3 subsets, 70% for

training, 15% for validation and 15% testing. Furthermore, data augmentation is

only done on the training set because keeping the validation and testing sets intact
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allows for an unbiased evaluation of the model’s performance on real-world data.

This approach guarantees that the models are trained on a variety of augmented

instances while maintaining the integrity of the unseen testing and validation data

for a fair evaluation.

This study utilized NLPAug [32] which is a versatile library that provides 3 data

augmentation strategies namely character-level, word-level and sentence-level. Ev-

ery level of data augmentation includes synonym replacement, random insertion,

random deletion and shuffling techniques. Out of all the strategies, replacing syn-

onyms with word embeddings is the most common and efficient method. With this

technique, words are strategically replaced with their synonyms to create sentences

that have the exact same meaning but a different vocabulary. For synonym re-

placement, selecting pre-trained embeddings is crucial. For this, we can either use

contextual embeddings such as BERT and RoBERTa or non-contextual embed-

dings such as word2vec and GloVe. For this study, we have utilized sentence-level

contextual embeddings using BERT.

4.3 Model Training and Experiments

4.3.1 Environment

All the ML models were trained on the ANTPC server which is a high-performance

computing environment with 4 GeForce RTX 2080 Ti GPUs each with an impres-

sive 11GB of dedicated memory. In addition, the ANTPC server has 128GB of

RAM and 32 CPU cores which make training procedures more efficient. Addition-

ally, Google Colab was used to increase training capacity. The main programming

language used to train the ML model was Python 3.8. The main libraries used were

NumPy for numerical computation, Matplotlib for data visualization, PyTorch for

deep learning, Pandas for data manipulation and huggingface for implementing the

transformer models.
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4.3.2 Model Evaluation Metrics

Several metrics were used to evaluate the effectiveness of how each classification

model predicted the SP values between 0 and 4.

1. Confusion Matrix: This gives the distribution of the model’s predictions

in relation to the actual labels by providing a summary of the number of

True Positives (TP), True Negatives (TN), False Positives (FP) and False

Negatives (FN). This enables a more in-depth understanding of the model’s

performance across all classes. This matrix was used in some of the experi-

ments to understand the model’s prediction decisions. The confusion matrix

is given in the table 4.1. An example of the confusion matrix of an experiment

done in this study is given in the figure 4.4.

Predicted Class

Positive Negative

Positive TP FP

Negative FN TN

Table 4.1: Confusion Matrix

Figure 4.4: Confusion Matrix experiment

2. Accuracy: This commonly used matrix shows the total percentage of ac-

curate predictions the model makes. In terms of math, it is computed as

below. Other than the accuracy, for some experiments the accuracy for each

class was also individually measured to see the performance for each class.

An example of the class-wise accuracy of an experiment done in this study is

given in the figure 4.5.

Accuracy =
TP + TN

TP + TN+ FP + FN
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Figure 4.5: Class-wise accuracy experiment

3. MAE: This matrix evaluates the average size of the gap between actual

and predicted SP values. A lower MAE denotes better model performance,

implying smaller average prediction mistakes.

4. MdAE: The central tendency of prediction errors is the main focus of this

matrix. In comparison to MAE, it is less sensitive to outliers and shows the

median of the absolute differences between the values that were predicted and

the actual values. For the majority of data points, a lower MdAE indicates

that the model typically generates predictions that are closer to the true

values.

4.3.3 Model Implimentation

Random Forest

The implemented Random Forest model utilized the RandomForestClassifier class

from the scikit-learn library. TF-IDF vectorization was used to prepare the textual

data for the model. Furthermore, the n-gram range was set to 1-2, indicating that

the model considered unigrams and bigrams during vectorization.

RNN

The implemented RNN model employs a sequential architecture that consists of

the following layers,

• Embedding Layer: This layer converts the text data into numerical vectors.

It also captures the semantic relationship between the words.

• Recurrent Layer: This layer is implemented using either the LSTM or the

BiLSTM. The LSTM processes sequential data which enables it to identify
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long-term dependencies. However, unlike the LSTM, the BiLSTM considers

both forward and backward directions.

• Dense Layer: This layer maps the processed features to the predicted class.

For training the model, 10 epochs were used with a batch size of 64. For text

preprocessing, the Keras tokenizer was utilized and the maximum sequence length

was set to 1000 tokens. The following regularization techniques were utilized for

overfitting prevention.

• Dropout: The initial value was set to 0.2

• L1 and L2 regularization: The initial values were set to 0.01

SVM

This study explored 2 separate data preprocessing approaches to evaluate how they

affected the performance of the SVM model.

1. Vectorization-based Preprocessing: Utilizes the TF-IDF Vectorizer with n-

grams and Word2Vec methods for transforming text data into numerical

representations. This approach captures the semantic relationships between

words. Additionally, n-gram ranges 1-2, 1-3, 1-4, 1-5, and 1-6 were explored

to test the effects of considering word combinations of varying lengths.

2. Tokenization-based Preprocessing: Utilizes the BERT tokenizer with the

bert-base-uncased pre-trained model. The maximum sequence length was

set to 128 tokens.

In order to optimize the SVM model’s hyperparameters, a grid search approach

was utilized. This rigorous optimization approach determines the combination of

hyperparameters that provides the highest efficiency by systematically evaluating a

predetermined range of values. Specifically, the grid search explored multiple kernel

functions including polynomial, linear, sigmoid and Radial Basis Function (RBF)

to capture distinct underlying data relationships. Furthermore, it considered a

range of gamma values including 1, 0.1, 0.001, and 0.0001 to manage the impact

of data points in the kernel function and C values including 1, 10, 100, 1000, 5000,

and 10000 to control the trade-off between training error and model complexity.

The initial implementation phase involved setting a baseline configuration for the
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SVM model. This utilized the TF-IDF with the n-gram range of 1-2 for feature

representation. The RBF kernel function was utilized due to its flexibility in han-

dling non-linear relationships. Furthermore, an initial gamma value of 0.1 and a

C value of 1 were chosen. These values were selected based on common practices

and served as a basis for further hyperparameter exploration.

Transformer Models

The implemented transformer models utilized bert-base-uncased, distilBERT-base-

uncased and RoBERTa-base as pre-trained models and tokenizers. The maximum

sequence length was set to 128 tokens in order to prepare the text data for the mod-

els. AdamW optimizer was utilized in the training process due to its stability and

effectiveness. A batch size of 16 was utilized and a variety of learning rate values

(1e-3, 1e-4, 1e-5, 2e-3, 2e-5, 3e-5, 4e-5, and 5e-5) were evaluated in order to opti-

mize the learning process. Determining the optimal value for learning rate can have

significant effects on performance since it regulates the stability and speed of the

learning process. Furthermore, a variety of weight decay values were used including

0.0001, 0.001, 0.01, 0.1, 0.2, 0.3 and 0.4. Also, a variety of dropout rates were used

including 0.01, 0.05, 0.1, 0.15, 0.2, 0.3 and 0.4 were also used to prevent overfitting.

The initial configuration of the models utilized a batch size of 16, a number of

epochs of 4, a dropout rate of 0.1, a weight decay of 0.01 and a learning rate of 2e-

5. Following the initial configuration, a systematic hyperparameter tuning process

was implemented to optimize the model’s performance.

4.4 XAI Apporaches

The main goal of this study was to bridge the knowledge gap between the model’s

prediction decisions and human comprehension by explaining its predicted outputs

in a way that is familiar to developers. Out of all the interpretability approaches

that were explored, highlighting the words based on their relevance to the final

prediction emerged as the most effective method. This approach simplifies compre-

hension by pointing developers to the exact textual components which influenced

the model’s predictions.

43



4.4.1 LIME

LIME was utilized as one of the XAI methods to explain the predictions made by

traditional approaches and transformer models. The two main forms of explana-

tion outputs generated by LIME are visualizations which use distinct colours to

differentiate the class probabilities and textual explanations in which the words are

displayed in either tabular format or with words highlighted directly in the text.

Further customization of the LIME method can be done by adjusting the number

of features displayed which shows the most relevant words for the prediction and

setting the number of labels to show which shows the features contributed for each

class.

The initial configuration was done by setting the number of features to 10 and the

number of labels to 1. Additionally, the textual explanations are set to display the

highlighted words. An example of the explanation given by LIME is illustrated in

figure 4.6.

Figure 4.6: Explainability output from LIME

The explanation illustrates 3 main components, prediction probabilities for each

class, relevant words for the predicted class and the given text with highlighted

words. LIME gives the explanation using 2 different colours with an opacity to

indicate their relevance for the prediction. Each class is assigned a particular

colour and the 2 colours vary depending on the predicted class.

4.4.2 SHAP

Although SHAP provides several methods of explanation, the ”highlighted words

based on relevance” method is currently limited to just transformer models. In this
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SHAP method 2 parameters should be given. The first parameter is the prediction

function which predicts the SP value of the given text and the second parameter

is the tokenizer used. Following that, the method then determines the Shapley

values for every feature in the given text. Lastly, we can visualize the explanation

with the plotting functionalities given by the SHAP library. An example of the

explanation given by SHAP is illustrated in figure 4.7.

Figure 4.7: Explainability output from SHAP

The explanation visually highlights the predicted label in red colour. By clicking on

it, you can see the words with different levels of opacity that had a significant influ-

ence on the prediction. A red colour denotes a positive contribution to each related

feature’s prediction, while blue denotes a negative contribution. Furthermore, the

opacity of the highlighting allows to further identify important words. The opacity

of the highlighting distinguishes the relevant words: a highly visible red highlight

indicates a highly relevant feature, whereas a highly visible blue indicates a feature

that has less of an influence on the prediction.

4.4.3 Transformer-Interpret

Transformer-Interpret is a XAI library which works on every transformer model.

This tool provides insightful information about transformer model decision-making

processes. Additionally, this approach also has the ”highlighted words based on rel-

evance” method. The SequenceClassificationExplainer provided in the Transformers-

Interpret library is designed to explain sequence classification problems, like the one

used in this work. Therefore as the explainer, the SequenceClassificationExplainer

was utilized. The tokenizer and model used for the prediction are passed in as

parameters to configure this explainer. Following that, when the text is passed to

the explainer, it provides numerical attribution scores for every word. Using these

numerical attribution scores, we can plot the explanation. The explanation pro-

vides 2 colours for word highlighting. The green colour indicates that it supports
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the prediction and the red colour indicates it doesn’t support the prediction. An

example of the explanation given by Transformer-Interpret is illustrated in figure

4.8.

Figure 4.8: Explainability output from Transformer-Interpret

The explanation clearly describes the meaning of the highlighted colours and it

also displays the predicted label on the left-hand side of the given explanation.

This method gives the explanation using the colours red and green with an opac-

ity to indicate their relevance for the prediction. The green colour indicates a

positive contribution to the prediction, while the red colour indicates a negative

contribution.
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Chapter 5 - Results and Evaluation

The research employed a cross-project evaluation, utilizing dataset A and dataset

B. User stories from a variety of 39 projects are included in each dataset and

they consist of 25,854 and 34,484 data items in total. This selection of datasets

guarantees unbiased and lower noise in the features of the datasets. Both the

datasets were divided into 3 parts, 70% for training, 15% for validating and 15%

for testing. Furthermore, in order to evaluate the efficacy of the selected models,

the comparison of the results with the Choetkiertikul dataset was also done. This

comparison provides perspective and aids in determining how effective the proposed

approach is in comparison. Also, the cross-project state-of-the-art accuracy for SP

estimation is 47.2% which is achieved using the GPT2SP model [2]. Achieving

this objective would be a major step forward for the area of study and show the

potential of our proposed approach.

5.1 First Phase of Experiments Using the Tradi-

tional Approaches

5.1.1 Experiment I - Using Random Forest

The study evaluated a baseline Random Forest model’s performance on the 3

datasets. Accuracy was used to evaluate the model’s performance. The results

showed that there was diversity in the datasets’ accuracy, with Dataset A obtain-

ing the highest accuracy of 37.7%. The accuracy for Dataset B was 37.3% and the

accuracy for the Choetkiertikul dataset was 37.1%.

5.1.2 Experiment II - Using RNN with LSTM

This study evaluated the 3 datasets using 2 recurrent neural network RNN architec-

tures, LSTM and BiLSTM, in order to provide a baseline performance benchmark.

Each dataset was evaluated using both the LSTM and BiLSTM models.

The LSTM model obtained a 35.7% accuracy with an MAE of 1.013 on dataset A,

35.3% accuracy with an MAE of 1.033 on dataset B and 34.4% accuracy with an
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MAE of 1.108 on the Choetkiertikul Dataset.

It was observed that the BiLSTM model outperformed the LSTM model across all

datasets. The BiLSTM model obtained an accuracy of 36.7% and an MAE of 0.957

on Dataset A. With an MAE of 0.96, the BiLSTM model obtained an accuracy of

35.6% on Dataset B. Lately, with an MAE of 1.1, the BiLSTM model obtained an

accuracy of 35.1% on the Choetkiertikul Dataset.

5.1.3 Experiment III - Using SVM

The study utilized an SVM model in a baseline configuration on all 3 datasets

to create a baseline performance benchmark. The model obtained an accuracy of

42.5% with a MAE of 0.911 on Dataset A, an accuracy of 40.5% with a MAE of 0.94

on Dataset B and an accuracy of 38.9% with a MAE of 1.01 on the Choetkiertikul

dataset.

5.1.4 Conclusion on the First Phase of Experiments Using

the Traditional Approaches

In evaluating various ML models across the 3 datasets, SVM model consistently

performed well compared to other models. Notably, dataset A was the dataset on

which all models achieved the highest accuracy, whereas the Choetkiertikul dataset

achieved the lowest accuracy. Given the results, the SVM model has been chosen

for additional exploration because of its overall efficiency and promising results. A

summary of the results is given in the table 5.1

5.2 Second Phase of Experiments Using the Tra-

ditional Approaches

The second phase of experiments involved utilizing the SVM model since it demon-

strated promising results compared to other models. This phase included several

key components: hyperparameter tuning to optimize model performance, explor-

ing how various embedding techniques affect classification accuracy, analyzing the

model’s sensitivity to data segmentation by feeding it smaller description chunks

and at last, evaluating the model’s performance with the augmented dataset.
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Model Dataset Accuracy

Random forest Choetkiertikul dataset 37.1%

Dataset A 37.7%

Dataset B 37.3%

SVM Choetkiertikul dataset 38.9%

Dataset A 42.5%

Dataset B 40.5%

LSTM Choetkiertikul dataset 34.2%

Dataset A 35.7%

Dataset B 35.3%

Bi-LSTM Choetkiertikul dataset 35.1%

Dataset A 36.7%

Dataset B 35.6%

Table 5.1: A summary of the performance of traditional approaches

5.2.1 Hyper Parameter Tuning

In this phase, a systematic hyperparameter tuning process was undertaken. The

model’s performance was evaluated using several kernel functions in the first step.

It was observed that the RBF kernel obtained the highest accuracy of 42.5%,

followed by the linear kernel at 41.7%, the sigmoid kernel at 41.4% and lastly the

polynomial kernel at 23.8%. Since the RBF kernel outperformed the other kernels,

it was selected for kernel for subsequent experiments. The best combination of the

gamma and C parameters was then found using a grid search. According to the

results, an RBF kernel with C set to 1000 and gamma set to 0.1 produced the best

results. Furthermore, TF-IDF was utilized with n-grams for vectorization. The

selected SVMmodel was evaluated with different n-gram ranges and it was observed

that the 1-4 n-gram range achieved the best result. The model performance for the

considered n-gram ranges is given in 5.2.

5.2.2 Experiment I - Using Various Embedding Techniques

This experiment explored the effectiveness of various embedding techniques for

SVM classification utilizing Word2Vec, SentenceBERT and BERT embeddings.
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n-gram range Accuracy

1-2 42.5%

1-3 42.8%

1-4 42.9%

1-5 42.3%

1-6 42.2%

Table 5.2: Performance of the SVM model on various n-gram ranges

Utilizing Word2Vec embeddings achieved an accuracy of 35.8%, SentenceBERT

embeddings achieved an accuracy of 32% and BERT embeddings achieved an accu-

racy of 29.7%. Out of the 3 embedding techniques, Word2Vec embeddings showed

the highest performance however TF-IDF still outperforms the Word2Vec.

5.2.3 Experiment II - Description Segmentation

This experiment explored the effect of description segmentation on SVM model

performance in order to understand how textual word size affects model perfor-

mance. According to this analysis, the best results were obtained by chunking the

description into 15-word segments. A variety of chunk sizes including 5, 10, 15,

20, 30, 40 and 60 words were evaluated in the experiment which demonstrates how

sensitive the SVM model is to the level of detail in the input data. The relevant

accuracies are given in the table 5.3.

Word size Accuracy

5 43.2%

10 42.2%

15 42.6%

20 42.2%

30 41.7%

40 41.3%

60 41%

Table 5.3: Performance of the SVM model on various word chunk lengths
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5.2.4 Experiment III - Augmented Dataset

An accuracy of 43.21% was obtained from the model’s first evaluation using the aug-

mented dataset. Then this study explored the potential advantages of implement-

ing word segmentation as a preprocessing step after seeing this early performance.

Positive effects on model performance were observed when word segmentation was

utilized in the augmented dataset. With 46.12% accuracy, this achieved a signif-

icant improvement. Based on this outcome, it is possible to improve the model’s

ability to extract significant features and eventually increase prediction accuracy

by segmenting words within the text data.

5.2.5 Conclusion on Second Phase of Experiments Using the

Traditional Approaches

The SVM model’s accuracy progressively improved throughout the experiments.

This pattern indicates that the model parameter can be learned and optimized

effectively. Out of all the configurations that were explored, the model performed

at its best with 46.12% accuracy. The RBF kernel with a C value of 1000, gamma

value of 0.1, n-gram range of 1-4 and word segmentation size of 15 was used in this

configuration. This outcome shows how well the model can learn complex relation-

ships from the data and highlights the importance of hyperparameter tuning for

optimal performance.

Additionally, the obtained accuracy was quite near to the state-of-the-art accu-

racy in this domain at the time. This result implies the effectiveness of the selected

approach in the field as well as its efficacy.

5.3 First Phase of Experiments Using the Trans-

former Models

To determine the most promising transformer model for further exploration, 2 base-

line experiments were conducted for each of the 3 candidate models.
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The first experiment is done using single-label multi-class classification. The per-

formance of each model was evaluated utilizing a single multi-class classifier that

predicted the SP value directly. Using this method, the SP is supposed to be clas-

sified into predefined classes (1, 2, 3, 5, 8).

The second experiment used a novel strategy that utilized 4 binary classifiers.

Every classifier was designed to differentiate between particular ranges of SP val-

ues.

1. Classifier 1: differentiate between SP values of 1 and the combined set of 2,

3, 5 and 8.

2. Classifier 2: differentiate between SP values of 2 and the combined set of 3,

5 and 8.

3. Classifier 3: differentiate between SP values of 3 and the combined set of 5

and 8.

4. Classifier 4: differentiate between SP values of 5 and 8.

The overall architecture of the second experiment is given in the figure 5.1.

Figure 5.1: The architecture of the second experiment
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5.3.1 Experiment I - Using RoBERTa

The Roberta transformer model in a baseline configuration was initially utilized

as the first candidate for the experiments. The model obtained an accuracy of

37.41% with a MAE of 0.9543 on Dataset A, an accuracy of 37.46% with a MAE

of 0.9691 on Dataset B and an accuracy of 35.24% with a MAE of 1.1077 on the

Choetkiertikul dataset. Then for the second experiment, this achieved the below

accuracies for the 4 binary classifiers.

1. Classifier 1: Accuracy of 70.01% with a MAE of 0.2999

2. Classifier 2: Accuracy of 73.38% with a MAE of 0.2662

3. Classifier 3: Accuracy of 61.67% with a MAE of 0.3833

4. Classifier 4: Accuracy of 65.56% with a MAE of 0.3444

5.3.2 Experiment II - Using DilstilBERT

The DilstilBERT transformer model in a baseline configuration was then utilized as

the second candidate for the experiments. This configuration achieved an accuracy

of 28.92% and a MAE of 1.1045 on Dataset A, 36.67% accuracy and 0.9976 MAE on

Dataset B and 33.81% accuracy with 1.1092 MAE on the Choetkiertikul dataset.

Then for the second experiment, this achieved the below accuracies for the 4 binary

classifiers.

1. Classifier 1: Accuracy of 68.12% with a MAE of 0.3188

2. Classifier 2: Accuracy of 76.12% with a MAE of 0.2383

3. Classifier 3: Accuracy of 58.93% with a MAE of 0.4107

4. Classifier 4: Accuracy of 65.56% with a MAE of 0.3444

5.3.3 Experiment III - Using BERT

The BERT transformer model in a baseline configuration was finally utilized as the

last candidate for the experiments. Its performance varied across the datasets. On

Dataset A, it achieved an accuracy of 38.29% and a MAE of 0.9537. Dataset B

followed closely with an accuracy of 38.96% and MAE of 0.9202. The Choetkiertikul

dataset presented the most challenging task, with the model achieving an accuracy

of 36.32% and MAE of 1.011. Then for the second experiment, this achieved the
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below accuracies for the 4 binary classifiers.

1. Classifier 1: Accuracy of 70.35% with a MAE of 0.3188

2. Classifier 2: Accuracy of 76.60% with a MAE of 0.2383

3. Classifier 3: Accuracy of 62.29% with a MAE of 0.4107

4. Classifier 4: Accuracy of 65.82% with a MAE of 0.3444

5.3.4 Conclusion on First Phase of Experiments Using the

Transformer Models

In evaluating various transformer models across the 3 datasets and utilizing 4 bi-

nary classifiers, the BERT model consistently performed well compared to other

models. The DistilBERT model achieved the lowest accuracy on Dataset A. This

might be due to the potential trade-off between model complexity and performance,

particularly when dealing with Dataset A’s features.

A noteworthy observation was identified regarding the performance across differ-

ent models and datasets. Unlike traditional models, which achieved their highest

accuracy on Dataset A, the transformer models achieved their highest accuracy on

Dataset B. Furthermore, both BERT and RoBERTa models achieved the lowest

accuracy on the Choetkiertikul dataset. However, DistilBERT achieved the lowest

accuracy on Dataset A. The results obtained from all models on each dataset and

4 binary classifiers are given in tables 5.4 and 5.5.

Furthermore, while the overall performance of the 4 BERT binary classifiers might

initially suggest promising results, a deeper analysis reveals a different picture.

When analyzing the class-wise performance, the individual class accuracy scores

drastically decrease, indicating that the models might struggle to distinguish be-

tween certain classes effectively. Therefore this approach is not taken for further

explorations.
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Model Dataset Accuracy

RoBERTa Choetkiertikul dataset 35.24%

Dataset A 37.41%

Dataset B 37.46%

DilstilBERT Choetkiertikul dataset 33.81%

Dataset A 28.92%

Dataset B 36.67%

BERT Choetkiertikul dataset 36.32%

Dataset A 38.29%

Dataset B 38.96%

Table 5.4: A summary of the performance of transformer models on the 3 datasets

Model Classifier Accuracy

RoBERTa Classifier 1 70.01%

Classifier 2 73.38%

Classifier 3 61.67%

Classifier 4 65.56%

DilstilBERT Classifier 1 68.12%

Classifier 2 76.12%

Classifier 3 58.93%

Classifier 4 65.56%

BERT Classifier 1 70.35%

Classifier 2 76.60%

Classifier 3 62.29%

Classifier 4 65.82%

Table 5.5: A summary of the performance of transformer models on the 4 classifiers

5.4 Second Phase of Experiments Using the Trans-

former Models

The second phase of experiments involved utilizing the BERTmodel since it achieved

better results compared to other transformer models. Due to the close alignment

between the accuracy achieved on Dataset A and Dataset B and considering the

specific features of each dataset, Dataset A was chosen for further exploration of
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the BERT model. This phase included several key components: hyperparameter

tuning to optimize model performance, analyzing the model’s sensitivity to data

segmentation by feeding it smaller description chunks and evaluating the model’s

performance with the augmented dataset.

5.4.1 Hyper Parameter Tuning

This phase focused on optimizing the hyperparameters of the BERT model to im-

prove its performance. A systematic grid search technique was employed to achieve

this. The grid search explored hyperparameters including learning rate, weight de-

cay and dropout rates. This aimed to determine the configuration that optimizes

the BERT model’s performance by systematically evaluating various combinations

of these hyperparameters. The best configuration was found to have a learning

rate of 2e-5, a weight decay of 0.001 and a dropout rate of 0.3 which achieved an

accuracy of 39.30%. Therefore this configuration is utilized for further experiments

done in this phase.

5.4.2 Experiment I - Description Segmentation

This experiment explored the effect of description segmentation on the BERTmodel

performance in order to understand how textual word size affects model perfor-

mance. Additionally, this can be used to overcome the issue of information loss.

According to this analysis, the best results were obtained by chunking the descrip-

tion into 15-word segments. Various chunk sizes including 5, 10, 15, 20, 30 and 40

words were evaluated in the experiment, demonstrating how sensitive the BERT

model is to the level of detail in the input data. The relevant accuracies are given

in the table 5.6.

The experiments revealed a pattern with the highest accuracy achieved when the

text was segmented into chunks of 15 words. This result suggests that a chunk size

of 15 words may be optimal for capturing relevant information within the data while

maintaining computational efficiency and avoiding information loss. Therefore the

subsequent experiment utilized a chunk size of 15 words.
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Word size Accuracy

5 39.90%

10 40.19%

15 41.65%

20 41.28%

30 40.91%

40 40.49%

Table 5.6: Performance of the BERT model on various word chunk lengths

5.4.3 Experiment II - Augmented Dataset

The initial exploration utilized the augmented dataset which achieved an accuracy

of 42.37%. Subsequently, the exploration utilized word segmentation with a chunk

size of 15 words. This approach resulted in a notable improvement in accuracy

to 44.58%. According to this observation, word segmentation might be crucial

for identifying the semantic relationships within the data and improving model

performance.

5.4.4 Conclusion on Second Phase of Experiments Using the

Transformer Models

Throughout the experiment evaluations, the accuracy of the BERT model showed

a pattern of progressive improvement. The observation indicates that the model

could efficiently learn and optimize its internal parameters. Across the range of

evaluated combinations, the model reached the highest accuracy of 44.58%. The

learning rate of 2e-5, the dropout rate of 0.3, the weight decay of 0.001 and the

word segmentation size of 15 were all used in this optimal configuration.

5.5 Human-Based Evaluation

To evaluate the efficacy of the LIME, SHAP and Transformer Interpret methods, a

human-centered evaluation [33] was conducted with 7 industry professionals. The

group consist of 4 business analysts and 3 software engineers with experience in SP

estimation. The study employed a data collection approach through a Google Sheet
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and each participant was given 19 identical user stories. Following a structured

format, participants were instructed to do the following.

1. Read and understand each user story.

2. Select the most fitting SP from the provided SP list. The SP values include

1,2,3,5,8 and larger than 8

3. Identify the keywords that influenced their SP estimation by entering them

into the designated field.

4. Rate their confidence level in each SP estimation and the understanding of

the user story on a scale of 1 (not confident) to 5 (highly confident).

This collected data serves as a benchmark for evaluating the effectiveness of the

XAI methods of this study in highlighting the key textual features driving the

model’s predictions. The answers provided by a participant is given in the figure

5.2.

Figure 5.2: The answers provided by a participant

A key challenge arose when comparing SP estimations from the SVM and BERT

models, the actual SP in the dataset and human-based estimates. The reason for

this challenge is because of the nature of subjectivity in this area of research as par-

ticipants assigned different SP values to the same user stories depending on their

understanding. To address this, the study devised a metric leveraging participants’

confidence scores. This metric functioned similarly to a voting system, but instead

of simply counting votes, it takes the summation of the confidence levels assigned

to each SP estimate. For instance, if 2 participants assigned a SP of 2 with a

confidence level of 4, 3 participants assigned a SP value of 5 with a confidence of 3
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and 2 participants assigned a SP value of 8 with a confidence of 5, the confidence

score would be 8 (4+4) for SP value 2, 9 (3+3+3) for SP value 5 and 10 (5+5)

for SP value 8. Utilizing this approach, the SP with the highest confidence score

(in this case 8) was considered as the human-based estimation for comparison with

model predictions and actual SP.

The comparison of all the SP predictions done for those 19 user stories using the

SVM model, BERT model and human-base estimation is given in the table 5.7.

ID Actual value SVM predictions BERT predictions human-based

1 8 3 1 3

2 1 5 5 8

3 1 5 2 5

4 1 1 1 2

5 1 5 5 5

6 2 3 5 1

7 1 3 5 1

8 2 5 5 2

9 2 3 5 3

10 8 5 1 1

11 1 1 2 3

12 3 3 5 5

13 8 8 3 1

14 2 5 2 2,3

15 3 3 3 5

16 5 5 8 3

17 8 5 2 3

18 8 3 3 2

19 8 8 2 8

Table 5.7: Comparison of the SP predictions approaches

Table 5.7 reveals comparative performance between the SVM and BERT models in

predicting SP. While both models have limitations in accurately matching human-

based estimations (SVM: 5/19 correct, BERT: 4/19 correct), the SVM model
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demonstrated a slight advantage in closely predicting SP values (SVM: 8/19 close

predictions, BERT: 7/19 close predictions). However, when compared to actual

story point values, the SVM model outperformed BERT with 7 correct predictions

compared to BERT’s 3. While both models achieved similar close predictions to

actual values (SVM and BERT: 4/19), the SVM model displayed a more consistent

ability to accurately estimate SP.

An analysis of the results presented in Table 5.8 provides valuable insights into the

alignment between the 3 XAI methods and human decision-making in SP estima-

tion. This alignment reflects how well the explanations generated by these methods

correspond to the factors human experts consider when assigning SP values.

The analysis reveals that SHAP consistently identifies keywords most aligned with

those used by participants in 14 out of 19 user stories. This suggests that SHAP’s

explanations effectively capture the aspects of the data that resonate most strongly

with human reasoning during SP estimation. In contrast, LIME aligns with par-

ticipant keywords in 5 user stories, and Transformer Interpret aligns in 3 stories.

Notably, in 2 user stories, both SHAP and Transformer Interpret identified the same

number of participant-aligned keywords, and in 1 story, SHAP and LIME achieved

the same level of alignment. These findings highlight SHAP’s effectiveness in gen-

erating explanations that closely mirror human decision-making processes for SP

estimation tasks.
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ID Human-based
LIME

(SVM)

LIME

(BERT)
SHAP

Transformer

Interpret

1

id, Custom module,

REST API, cluster,

installation

the, custom,

REST

push, id,

to, user, a,

the

custom, the,

can, in, cluster,

I, install, like,

as, REST API

id, module,

custom, like

2

AWS Source Mod-

ule, Ingest data from

Amazon S3, Simple

email service, refer-

ence spring integra-

tion, extension

spring,

service, in-

tegration,

email, aws,

reference,

extension

user, I, to,

option, in-

gest, aws,

an

aws, as, user,

module, exten-

sion, data, sim-

ple, email, ser-

vice, reference

amazon,

option,

source

module, as,

user

3

Partitioning logic,

named destinations,

control message

ordering, provide

the, to, pro-

vide, logic,

partitioning

as, I, user,

a, want,

to, control

destination,

ordering, mes-

sages, user, as

I, want,

partition-

ing, logic,

named, out

4

Error, load, page,

task, deployment,

task executions,

task, in-

stead, see-

ing, page

I’m, try-

ing, user,

to, task

executions,

trying, load,

task, page,

seeing, error

as, user,

load, try-

ing, task

5

Landing page,

higher-order links,

jump to right

section, sources,

processors, sinks,

jump, jobs

and, user,

jobs, with,

can, one

I, user,

like, a,

would, to

processors,

links, higher,

order, place,

right, section,

sources

as, landing,

higher,

order, links,

sources,

processors,

sinks

6

Analytics tab docs,

widgets, understand,

streaming pipeline,

refer docs

to, use, refer,

docs, wid-

gets, various,

like

user, like,

I, ana-

lytics, a,

would, as

user, like, as,

understand,

docs, pipeline

would, wid-

gets, refer,

tab, docs

7

Documentation, con-

figure the proper-

ties file, deployment

manifest

to, documen-

tation, refer,

configure,

like, repre-

sent

like, user,

I, would,

a, as,

properties

documentations,

recommended,

as, user, prop-

erties, file

as, I, docu-

mentation,

file, refer
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8

Parameterize, im-

port options, elimi-

nate, args, confusing

it, all, user,

for, the, can,

all

parameterize,

like, user, I,

options, to

parameterize,

options, args,

options, con-

fusing, like,

user

as, user, I,

parameter-

ize, import,

args

9

upload, custom,

mavengradle tar-

gets, automate,

installation, module,

fragments

custom, to,

the. also,

automate

user, like, I,

capability,

to, would,

so

custom, mod-

ule, through,

automate, up-

load

as, user,

like,

custom,

targets,

fragments

10

Description, Each

module, module pur-

pose & capabilities

the, to,

each, of, it,

use, have

to, id, like,

have, de-

scription

description,

understand,

capabilities,

as, for

user, de-

scription,

modules,

understand

11

Configure, threading

profile, xml snippet

code

threading,

profile,

code, todo,

paste, XML,

snippet

I, as, want,

a, user, to,

the, thread-

ing

XML, thread-

ing, batch,

snippet, code,

user, as

user, paste,

XML,

threading,

configure,

batch

12

Changing the run-

time, better options,

automatically up-

grade all connectors

the, to,

upgrade,

all, runtime,

better

user, will, I,

like, that,

changing,

the

changing,

offer, bet-

ter, options,

upgrade, con-

nectors, like,

as

as, like,

changing,

automat-

ically,

upgrade, all

13

Properties and flow

variables, stay ex-

panded or collapsed,

moving, block to

block in studio

block, to,

user, studio,

from, to,

want

want, as,

my, a, to,

and

variables,

stay, when,

collapsed,

block, moving

user, want,

studio, stay

14

Name of the server,

launching, version,

acceptance criteria

name, ver-

sion, should,

server, be,

see, of, cri-

teria

see, as, user,

a, I, name,

want, of, to

version,

should, visi-

ble, see, user

as, user,

launching
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15

First step, adding

capability, building

multiple configu-

rations, reviewbot,

build scripts, docker

to, build,

scripts,

change,

building,

step, use

as, adding,

a, first,

reviewbot,

step

adding, capa-

bility, change,

scripts, multi-

ple, as

adding,

capability,

building,

change,

docker

16

First step, address

the use cases, pro-

pose a design doc-

ument, requirement

design and imple-

mentation details

design, and,

cases, doc-

ument, pur-

pose, details

step, ad-

dress, to,

first, the,

cases, use,

as

propose, im-

plementation,

step, as

address,

the, use,

cases,

propose,

design,

covering

17

Configure, single

point, common

transport attributes,

reusable place

to, the, in,

be, Com-

mon

as, user, I, a,

want, trans-

port

transport,

common,

transport, at-

tributes, sin-

gle, reusable,

place, config

user, com-

mon, trans-

port, at-

tributes,

single,

reusable,

figure, sin-

gle

18

Review the specs,

contribute with my

feedback, product

owner or community

member

be, to, able,

member,

community,

review

community,

as, a, owner,

product, be

member,

owner, com-

munity, specs,

feedback,

contribute

as, owner,

member, re-

view, spec,

product

19

Tested against a real

broker and a real ap-

plication, transport

works on real world

usage

real, world,

want, bro-

ker, works

as, trans-

port, a, I,

user, works

broker, trans-

port, work,

real, world,

usage, sure

transport,

world, us-

age, real,

broker

Table 5.8: The keywords that each of the XAI approaches used to determine the

SP value
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Chapter 6 - Conclusions

This section addresses the research questions that guided this study, discusses its

contributions and outlines potential future directions.

The first research question explored the possibility of enriching the existing Choetkier-

tikul dataset, which consists of 16 open-source projects. This study successfully

expanded the dataset to 39 open-source projects, including the 16 projects in the

Choetkiertikul dataset. By leveraging this enhanced dataset, the accuracy of the

considered ML models in this study considerably improved. Furthermore, one key

finding of this study is the positive impact of data augmentation on model accu-

racy. By leveraging data augmentation techniques, this study was able to enrich

the dataset further and enhance the model’s ability to learn complex relationships

within the data. This ultimately contributed to improved model performance in

terms of accuracy. This highlights the importance of data richness and diversity

in achieving superior model performance. This research expands upon existing

work by providing a collection of valuable datasets for story point estimation. The

study offers 3 distinct datasets: Dataset A, Dataset B and an augmented version

of Dataset A. This diversity allows researchers to explore different aspects of story

point estimation. The augmented Dataset A provides a richer representation of the

original data, potentially leading to improved model generalizability. By offering

these datasets, this study facilitates further research and development in the field

of story point estimation.

The second research question focused on optimizing the dataset through novel pre-

processing steps beyond standard approaches like the removal of stop words and

punctuations. This study explored and contributed innovative techniques such as

removing similar user stories, data augmentation and description segmentation.

These steps considerably improved model performance. For instance, the SVM

model’s accuracy increased from 42.1% to 46.12%, while the BERT model’s accu-

racy rose from 41.1% to 44.58%.These results demonstrate how specific preprocess-
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ing techniques can improve the accuracy and generalizability of models.

The third research question explored the potential of transformer models to out-

perform traditional ML approaches in generating SP values for user stories. While

both traditional and transformer-based models were evaluated, the study revealed

that SVM and BERT models achieved the highest accuracy among the considered

approaches. Within these 2 models, the SVM model achieved a slightly higher ac-

curacy of 46.12% compared to BERT’s 44.58%. Furthermore, BERT’s pre-trained

nature offers advantages in general language understanding, the specific task of

story point estimation may align better with the strengths of SVMs.

Additionally, the analysis also revealed that BERT performed better on Dataset

B compared to Dataset A. This suggests that the inherent characteristics of the

BERT architecture might be better suited to handle the specific data distribution

or complexities present in Dataset B. Future research could investigate further into

this observation to better understand the strengths and weaknesses of different

model architectures for this specific task.

The final research question explored the application of XAI techniques to gen-

erate explanations for each SP prediction. 3 XAI approaches namely LIME, SHAP

and Transformer Interpret were selected as they focus on highlighting keywords

contributing to the model’s predictions. Analysing the results revealed that SHAP

provided the most insightful explanations, while Transformer Interpret generated

the least informative ones. These findings contribute to a deeper understanding of

the strengths and limitations of different XAI techniques. Techniques like SHAP,

which align more closely with human reasoning processes, can be particularly valu-

able in tasks requiring interpretable explanations. Future studies can enhance user

trust and understanding of the model’s decision-making processes by incorporating

XAI techniques like SHAP.

This study successfully addressed the research questions demonstrating the effec-

tiveness of the chosen approaches. By enriching the dataset, implementing novel
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preprocessing techniques and utilizing specific model architectures, the study made

significant contributions to the field of story point estimation. Additionally, it

highlighted the importance of XAI techniques in fostering model transparency and

interpretability.

While resource constraints limited the use of the BERT-large-uncased model in

this study, future research could explore its performance to determine if it sur-

passes the base BERT model’s accuracy. Furthermore, exploring other transformer

models such as the GPT-J model could yield valuable insights into the potential of

alternative architectures for story point estimation. By continuing to explore these

avenues, researchers can further refine and enhance the effectiveness of story point

estimation techniques.
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Appendix

1. The code for training the models and running the experiments can be found

at this GitHub repository.

2. The participant responses of the human-based evaluation are available at

this Google drive link.
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