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Abstract

The identification of each objects uniquely in each video frame is known as

the Multi Object Tracking(MOT). MOT is well- known for its potential uses in

autonomous driving, human-robot interaction, and surveillance. The goal of MOT

is to correctly identify each item and to maintain that identification over time in

the face of occlusions, changes in appearance, and other obstacles. This range of

uses demonstrates the effectiveness of MOT and encourages scientists to address

knowledge gaps in MOT fields. This has greatly influenced the development of all

these large-scale MOT works.

The MOT has certain limitations. We try ton resolve this limitation using novel

video features and depth cues integration. We explored freely available cross do-

main models such as human action recognition model and zero-shot depth extract-

ing model. With that we explored use of depth cues to give additional information

to improve tracking.

We analyzed the performance of our approaches by using benchmark datasets

and standard metrics. These outcome of our research is , we can use the existing

cross domain models to improve MOT in the aspect of detection without further

fine-tuning or complex tricks. In the other hand, usage of depth cues improves

MOT performance in short videos by fusion with the existing appearance features.

The major contribution of our research is, creating a unexplored path in solv-

ing MOT problem without complex algorithms and resource intensive training by

utilizing existing cross domain knowledge.
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Preface

This document has been written for the partial fulfillment of the requirements

of the B.Sc. in Computer Science (Hons) Final Year Project in Computer Science

(SCS4124). The problem of detecting the objects in each video frame is known as

the MOT problem, and it is a prominent area in computer vision. MOT is well-

known for its potential uses in autonomous driving, human-robot interaction, and

surveillance. The goal of MOT is to correctly identify each item and to maintain

that identification over time in the face of occlusions, changes in appearance, and

other obstacles. This range of uses demonstrates the effectiveness of MOT and

encourages scientists to address knowledge gaps in MOT fields. This has greatly

influenced the development of all these large-scale MOT works. The MOT sector

is still in its infancy and has certain drawbacks, though.

Next to address these problems, we explored addition methods of utilizing video

features, using freely available cross domain models. With that we explored use

of depth cues to give additional information to improve tracking. We validate the

performance of our approaches by using benchmark datasets and standard metrics.

With constant guidance and supervision of my supervisor more conclusions

were drawn about MOT which, we believe are new contributions to the body of

knowledge.
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Chapter 1 - Introduction

1.1 Background to the Research

Multi Object Tracking(MOT) is a computer vision problem where we have to track

multiple objects throughout its lifetime in a video. The evolving applications of

MOT, such as surveillance, self-driving cars, sports analytics, etc. make it as an

inevitable problem to be addressed with potential business value. In all of these

applications, Humans and their interactions with other objects plays an important

role. For example, in surveillance we track human movements to identify mali-

cious activities, in self-driving cars, tracking pedestrians is a crucial part and in

sports analytics, we track players and their interactions with football to analyze

the game. If we improve human tracking(HT) in MOT, we can improve overall

MOT performance.

MOT is an extension to Object Detection(OD) problem, where we locate spe-

cific objects in an image or sequence of images. They key difference of OD and

MOT is, in OD, we won’t re-identify the same objects instead we only locate them.

But in MOT, instance IDs are assigned to different objects, called reidentifica-

tion(ReID), such that the same object has a consistent unique IDs throughout the

video sequence. ReID should be improved to improve MOT performance. In ReID

object information are used, mainly appearance features and compare objects with

our target object to identify best match.

In MOT appearance features should be highly distinguishable for objects like

humans,because humans are similar in appearance when compare to other objects.

We need some additional information such as depth to compare humans more

accurately in MOT. Depth information can be easily extracted from the image

using other existing methods in computer vision domain such image classification,

video classification, etc. .

We are focusing on this particular problem by introducing new video features

to improve MOT performance and analyzed its effect on MOT. We used depth

information extracted from scene and analyzed its contribution towards MOT per-
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formance improvement.

1.2 Research Problem and Research Questions

1.2.1 Research Problem

There are many appearance feature extractors have been introduced in the liter-

ature but all of them are only extract features based on static images. In MOT,

when we track humans we track humans in motion in most cases. The features

we are going to use should have the combination of both appearance and motion

information. To extract information we need new feature extractors.

We are focusing on tracking humans in MOT. The motion features with appear-

ance knowledge existing on models which are trained on videos. Especially if we

need human motion features, we need models which trained on human activities.

Human Activity Recognition models perform very well in capturing motion fea-

tures. Another promising domain we can refer for our problem is monocular depth

estimation. With existing zero-shot monocular depth estimators we can extract

depth without need for training models.

Therefore we are going to utilize these cross domain models such as human

action recognition models and monocular depth estimators to extract additional

features such as video features and depth cues to improve MOT performance by

improving human tracking.

1.2.2 Research Questions

1.2.3 Research Question(RQ1): How can we improve dis-

crimination of humans using video features from video

classifiers in MOT?

We built a new feature extractor to extract video features and replacing the ap-

pearance features which currently used in the domain.
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1.2.4 Research Question(RQ2): How to enhance the occlu-

sion handling using depth information during human

tracking?

We focused on the challenge of distinguishing objects with similar appearances or

shapes, especially when multiple similar objects are present in a scene. Incorporate

additional information to improve discrimination and maintain accurate object

identities throughout the tracking process.

1.3 Justification for the research

We are trying to solve some important limitations and challenges in MOT, to

advance MOT performance.

• Motion Specific Features: The existing MOT pipelines have the important

component as feature extractors. Even though there are many MOT tracking

algorithms are available, they are trying to use same existing features from

feature extractors which are not optimized for MOT tasks. Trying to optimize

the tracking algorithm for the irrelevant features limits MOT performance.

Using appropriate representations from pretraining, we enable the model to

capture more meaningful and contextual information from the input data.

This can lead to more accurate and robust tracking results.

• Old wine in a new package: We try to enhance the performance of MOT

algorithms with the help of existing models which are performing in other

computer vision downstream tasks. So we find a way to use those models

which have potential information required for MOT. It help us to use valuable

knowledge which can be utilized without any additional burdens such as

training.

• Training Free Modules: Training deep learning models are resource and

time intensive task require more experience and knowledge. Especially tasks

like MOT, require multiple training modules from feature extractor to tracker,

but there are few tracking algorithms which are only relies on features, there

fore they do not require training in nature. We in cooperate those tracking

algorithms in our experiments and try push their limits with our experiments.
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• Data Efficiency: We are utilizing existing scene information, which can be

extracted from the scene and use them to feed more information into model

which they have to learn in hard way during training. This makes MOT

more feasible in scenarios where obtaining large-scale annotated datasets is

challenging or costly.

We aims to improve MOT performance by addressing limitations and chal-

lenges. It focuses on motion-specific features, using pretraining representations to

capture more meaningful information from input data.

1.4 Methodology

1.4.1 Datasets

The MOT Challenge dataset was first introduced in 2015 (Milan, Leal-Taixé, Reid,

Roth & Schindler 2016). It is a benchmark dataset that provides various challenges

for MOT algorithms such as crowded scenes, partial occlusions, fast motions, and

different camera viewpoints. The dataset is annually updated with new challenging

scenarios, making it one of the most comprehensive and diverse MOT datasets

available.

The key advantage of the MOT Challenge dataset is its large size and diverse

nature, which allows for fair comparisons of MOT algorithms across different do-

mains. Moreover, the MOT Challenge dataset is publicly available and allows

researchers to test their algorithms on a standard benchmark, which helps to pro-

mote reproducibility and comparability in the field.

We used three main MOT Challenge datasets. MOT16(Milan, Leal-Taixé,

Reid, Roth & Schindler 2016), MOT17(Milan, Leal-Taixé, Reid, Roth & Schindler

2016) and MOT20(Dendorfer, Rezatofighi, Milan, Shi, Cremers, Reid & Roth 2019)

1.5 Outline of the Dissertation

The Thesis is organized as follows format. In Chapter 2 , we first addresses what

MOT problem is and how the domain is evolving with additional problems. We

thoroughly analyzed te applications of the MOT methods and how MOT applica-
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tions are evolved over the past few years with evolution of modern science. We

also cover some other areas of computer vision domain where we are going to refer

some methodologies and models to improve MOT by analyzing the potential of

their domains and how they are going to helpful in improving MOT. We are high-

lighting those limitations in MOT and place for the improvements introduced in

this Chapter 1. In Chapter 3, the our research design and the high-level architec-

ture of our novel video feature extractor of our first research question and second

research questions designs are given in that chapter. While Chapter 4 addresses

the implementation details for research design which describe in Chapter 3 along

with the experimental benchmarks and standard evaluation related methods. In

Chapter 5 we compare the experimental insights obtained with a ablation study by

following the various methodologies and breakdown them for clear understanding.

Conclusion and future works will be in Chapter 6.

1.6 Delimitations of Scope

We are using extensive evaluation metrics to evaluate various aspects of our method-

ologies and comparing with one of the standard baseline. Because we are exploring

new approach into the domain where it cannot be compared with complex ap-

proaches.

1.6.1 In scope

• We are introducing novel video features for tracking by utilizing existing

computer vision models.

• We extract depth information and fusion strategy to integrate with existing

tracking algorithm to analyze contribution of depth cues in MOT.

1.6.2 Out Scope

• We are are focusing only on tracking humans in the MOT domain due to the

complexity of distinguishing humans and real world MOT applications.

• We are using off-the-shelf models and existing algorithms, we are not imple-

menting any of new algorithms.
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Chapter 2 - Literature Review

2.1 Mutli Object Tracking(MOT) problem

The MOT problem, which is a significant area in computer vision, is the task of

identifying the objects in each video frame. MOT is famous for its potential appli-

cations, including surveillance, human-robot interaction, and autonomous driving.

MOT’s objective is to associate the correct identity to each object and to main-

tain the association over time despite occlusions, appearance changes, and other

challenges.

The number of surveys is increasing. Some surveys are application-oriented,

like this paper, (Alimi et al. 2021) provides a survey of object detection based on

deep learning and tracking in self-driving cars. Some surveys are at a high level and

only include the recent approaches. Even though these surveys provide valuable

insights into the SOTA in MOT. They do not particularly address the MOT domain

in the whole spectrum from classical models to modern deep learning-based models.

We attempted to cover most of the important aspects of the MOT instead of an

in-depth analysis of the models by delivering our main contributions through this

paper are:

• Revisiting classical MOT approaches

• Analyzing deep learning-based MOT approaches

• Identifying benchmark datasets

• Examining evaluation metrics of MOT

• Exploring applications of MOT

Our primary goal in doing this work is to establish a solid foundation of MOT

for researchers and practitioners, who wants to know or work with MOT. They

can use this review to get a better comprehension of the state of MOT approaches

today and identify areas for future research without getting stuck into complex

modalities.
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2.1.1 Mathematical Formulation

We can identify multiple-object tracking (MOT) as an optimization problem that

uses joint distribution estimation. We created the following formulation to under-

stand MOT in a mathematical way.

Let Dt indicate the set of detections at t time, and Lt denote the set of objects

present in the frame at t time. Estimating the joint distribution p(D1:T , DL:T ) is

the aim of MOT, where T denotes how many total frames there are in the video

sequence.

The joint distribution can be factorized as follows:

p(L1:T , D1:T ) = p(L1)p(D1|L1)
T∏
t=2

p(Lt|Lt−1)p(Dt|Lt) (2.1)

The beginning term p(L1) is the scene’s prior distribution of objects at t = 1.

The second term p(D1|L1) is the likelihood of the detections given to the objects

at time t = 1. The third term p(Lt|Lt−1) denotes the transition probability from

the time step t − 1 to the time step t. The fourth term p(Dt|Lt) is the likelihood

of the detections given to the objects at time t. The joint distribution is estimated

by factoring each term to provide a more computationally efficient solution. By

estimating the joint distribution, we can track multiple objects over time, which is

crucial for many computer vision applications.

The joint distribution’s estimation p(L1:T , D1:T ) is a fundamental problem in

MOT. Various filter-based methods are commonly used to estimate this distribu-

tion. In the upcoming chapter, we will provide more detailed information on these

methods and their evolution.

2.1.2 Challenges in MOT

When we try to solve the problem of MOT, there are specific challenges that should

be tackled. The following are some of the major challenges in MOT:

• Occlusions: When tracking objects it is very hard to handle occlusions, where

objects are temporarily or fully hidden from the camera’s view. This can lead

to tracking failures or errors when objects reappear.

• Appearance changes: While we are tracking, objects can change their ap-

pearance over time due to factors such as illumination, orientation, or scale.

7



Tracking may fail to recognize and track objects under such conditions, lead-

ing to tracking errors.

• Ambiguity: In crowded scenes with multiple objects, it can be challenging

for tracking objects. Because distinguishing between objects with similar

appearances leads to tracking confusion and errors.

• Computational complexity: MOT is a complex problem to solve, therefore

the solutions can be computationally expensive, especially when dealing with

large-scale or long-term tracking scenarios like surveillance. This can limit

their real-time performance and practical applicability

Even though MOT is a challenging problem as stated above, the following

factors make it a significant issue as well.

2.1.3 Importance of MOT

MOT is a significant research area in computer vision due to its wide range of

applications. Some of the key reasons for its importance are:

• MOT algorithms provide a foundation for more advanced tasks including

object recognition, activity recognition, and behavior analysis.

• MOT is a crucial component in domains, where we need to accurately track

multiple objects in real-time. Those domains need MOT for decision-making

and to ensure people’s safety.

• MOT is a significant part of many business domains such as surveillance,

robotics, and autonomous driving, where MOT is a core component, and

without perfect MOT that business will be at risk.

• MOT can help to unlock the full potential of other tasks in computer vision,

including scene understanding and action recognition. For example, tracking

objects over time can provide further details about the objects and their

interactions, which can be used to better understand the scene and identify

important events.

• The development of MOT algorithms has led to numerous technological in-

novations and advances when it comes to computer vision, including the ap-

plication of deep learning and the fusion of several modalities such as RGB,

depth, and radar.
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We could notice that these reasons are driving forces in the disruptive develop-

ment of the MOT domain in recent years. Unleashing high-powered computational

systems for building perfect MOT models and low-powered edge devices to deploy

efficient MOT algorithms makes MOT more accessible to a variety of people from

highly intellectual people like researchers to ordinary people. Therefore, the need

for a strong foundation in MOT is needed for all levels of people. We tried to make

this work as possible as to reach all those people. Therefore we will start with the

classical methods used to solve MOT problems.

2.1.4 Applications of MOT

Advancements in more and more accurate and fast MOT models attracted many

researchers to use on practical applications. is famous for its potential applications,

such as surveillance and security, autonomous vehicles, robotics, sports analytics,

and medical imaging.

Surveillance and Security

MOT has several applications in the field of surveillance and security. It can be

used for detecting and tracking suspicious objects or persons, monitoring crowd

movements, and identifying potential threats in public places. For instance, in

airports and train stations, MOT can be used to track individuals and identify

their movement patterns to detect any suspicious behavior. Multiple objects can

be tracked in real-time with high accuracy can enhance situational awareness and

improve response times in critical situations.

MOT can also be used in traffic surveillance to monitor the movement of ve-

hicles and pedestrians, ensuring safety and security on roads and highways. By

tracking the movements of vehicles and pedestrians, authorities can identify traffic

congestion and take necessary measures to ensure smooth traffic flow.

Moreover, MOT can be used in border control and maritime surveillance to

find and track any suspicious waterborne objects or vessels. In this case, MOT is

used to detect and monitor potential security threats in the sea, including illegal

fishing, drug trafficking, and smuggling.

The ability of MOT to accurately monitor several objects in real time has the
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potential to enhance the safety and security of public places and improve response

times to critical situations.(Ali & Shah 2015)

Autonomous Vehicles

Multi-object tracking has become an important technology for autonomous vehi-

cles, which rely on accurate tracking and detection of items in their surroundings

in real-time. Autonomous vehicles require the ability to track multiple objects,

such as other vehicles, pedestrians, and obstacles, to navigate and avoid collisions.

Multi-object tracking can also be used for traffic flow analysis and prediction, as

well as for intelligent intersection management.

An important aspect of MOT in autonomous vehicles is the integration with

decision-making and control systems. The tracking information can be used to

generate high-level situational awareness and to inform decision-making algorithms

for path planning and trajectory prediction (Papadimitriou et al. 2015).

MOT is an essential technology for autonomous vehicles, enabling them to

navigate and operate safely and efficiently in complex and dynamic environments.

Robotics

MOT has several applications in the field of robotics. MOT is particularly useful

in robotics applications such as mobile robots, autonomous vehicles, and drones.

MOT is also applicable to improve the safety and efficiency of industrial robots

by tracking the movement of workers and other objects in the robot’s workspace.

Furthermore, MOT can be used in robotics to enable robots to interact with humans

more effectively, by detecting and tracking human gestures and movements.

Multi-object tracking in robotics can be achieved using various sensors, includ-

ing LiDAR, cameras, and radar. Many robotics applications require the capacity

to precisely monitor several objects in real-time, which has prompted the creation

of novel MOT algorithms and techniques.

The use of MOT in robotics has the potential to enable new applications and

capabilities, such as autonomous delivery robots, mobile robots for environmental

monitoring, and intelligent transportation systems. As such, MOT in robotics

continues to be a busy field for research and development.
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Sports Analytics

MOT has become an essential tool in sports analytics (Luo & Li 2018). It provides

coaches, players, and fans with detailed insights into the performance of athletes

and teams during games and training sessions. Multi-object tracking can be used to

measure various aspects of player and ball movement, such as speed, acceleration,

trajectory, and proximity to other players. This information can be used to analyze

game strategies, evaluate player performance, and improve training programs.

MOT has several applications in various sports, including soccer, basketball,

football, and hockey. In soccer, MOT can be used to analyze the movement of

players and the ball during games, providing coaches with valuable insights into

team performance (Cuturi & Blondel 2018). In basketball, MOT can be used to

analyze the movement of players and the ball during games, providing coaches with

valuable insights into team performance (Liu et al. 2019). In football, MOT can

be used to analyze the movement of players and the ball during games, providing

coaches with valuable insights into team performance (Pfister et al. 2014). In

hockey, MOT can be used to analyze the movement of players and the puck during

games, providing coaches with valuable insights into team performance (Del Giorno

et al. 2013).

The use of MOT in sports analytics has revolutionized the way coaches and

players approach training and games. It has also provided fans with a more in-depth

understanding of the sports they love. As the technology behind MOT continues to

improve, it is anticipated to have a bigger impact on sports analytics in the future.

Medical Imaging

MOT is a powerful tool in medical imaging, allowing for the identification and

tracking of multiple objects such as cells, tissues, and organs (Shaham 2010). MOT

is used to track the movement of cells during development, monitor the progression

of diseases, and assess the effectiveness of treatments.

In cancer research, MOT can be used to track the growth and movement of

tumors over time. This can help to identify the spread of cancer and assess the

effectiveness of treatments. MOT is also applicable in neuroimaging to track the

movement of neuronal cells and identify abnormalities in brain function.
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Another application of MOT in medical imaging is in the field of ophthalmology.

The movement of retinal vessels and identifying changes in blood flow can be an

early indicator of diseases such as glaucoma and diabetic retinopathy. MOT is used

to track the movement of retinal vessels.

The ability to track multiple objects simultaneously in medical imaging can

provide a more comprehensive understanding of disease progression and treatment

efficacy. Multi-object tracking also has the potential to increase the accuracy and

efficiency of medical diagnoses, leading to better patient outcomes. Therefore MOT

is a promising tool in medical imaging and has the capacity to significantly improve

our comprehension of disease and improve patient care.

This variety of applications clearly explains the power of MOT and motivates

researchers to get involved in resolving research gaps in MOT domains. This has a

significant impact on how all of these extensive works in MOT have developed. But

there is a catch, the MOT field is still emerging and it has its own shortcomings.

We have analyzed a few significant aspects of MOT in the next chapter.

2.2 Human Action Recognition

2.2.1 Problem

Human action recognition task indicates classify the human’s action using sensor

data. It is the ability to recognize and deduce human activity or movement from

human body motions or movements using sensors. There are several kinds of human

behavior. These acts can be divided into two major groups: voluntary acts and

involuntary activities (Buehner (2015)). Numerous CV approaches are presented in

the literature (Hassaballah & Hosny (2019), Khan et al. (2020)) to assist with the

laborious and error-prone operation of manually recognising these motions in real-

time. Numerous classical strategies, including shape, texture, point, and geometric

aspects, form the basis of the majority of the suggested solutions (Kolekar & Dash

(2016)). A number of methods are predicated on human temporal information

(Hermansky (2006)), and some of them extract human silhouettes prior to feature

extraction (Krzeszowski et al. (2019)).
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2.2.2 Significance of Problem

Due of the multitude of human events that occur in daily life, the HAR process is

a difficult undertaking. Deep learning models are applied to address this problem.

The quantity of training data a deep learning model has is always what determines

its performance [20]. Several datasets are available to the public for use in the

action recognition challenges.These datasets contain a wide range of behaviors,

such as walking, running, jumping out of a car, throwing, kicking, boxing, falling,

bending down, and many more.

The following are a few additional major HAR challenges:

1. In order to identify the focal point in the most recent frame, query video

sequence resolution is essential.

2. It is challenging to classify the correct human activities using automatic ac-

tivity recognition under multi-view cameras due to the complexity of the

background, shadows, lighting, and outfit conditions that extract irrelevant

information using classical techniques of human action.

3. (iii) Unbalanced datasets affect a model’s ability to train Because, change in

motion variation catches incorrect actions under multi-view cameras. So, For

model to learn, a large volume of training images is always required.

4. when features are extracted from whole video sequences, numerous irrele-

vant characteristics are included, which can negatively impact classification

accuracy.

2.2.3 Datasets

In the Human Action Recognition (HAR) task, there are four publicly available

datasets - KTH (Chen et al. (2021)), Hollywood (Melhart et al. (2022)), WVU

(Hassan et al. (2018)), Kinetics-400 (K400) (Wojke et al. (2017)) and IXMAS

(Joshi et al. (2020)). Each dataset consists of 10,000 video frames used for experi-

mentation.
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2.2.4 Model

In the field of computer vision (CV), deep learning has recently demonstrated en-

couraging results (Hassaballah & Awad (2020)). By simulating how the human

brain processes information, deep learning generates models that facilitate learn-

ing and data representation on several levels (Voulodimos et al. (2018)). In the

HAR also, Deep learning models achieved best results. Initially, For the purpose

of recognizing the final activity, (Ahmed Bhuiyan et al. (2020))used acidometer

sensors to extract the spatial characteristics and multiclass SVM for classification.

After that a unified framework was presented by Zhao et al. (2020) for activity

recognition. The end outcomes were a combination of short- and long-term traits.

For impleenting action recognition with CNN , Muhammad et al. (2021) coupled

the dilated CNN model characteristics with the attention-based LSTM network.

Similarly, Li et al. (2021) presents a skeleton based attention framework for ac-

tion recognition. The shape and the OFF features were both used in the HAR

framework that Kolekar & Dash (2016) described (Im et al. (2020)).

SVM and the Hidden Markov Model (HMM) are used to create the framework

that is being described. The HMM classifier is used to extract and use the shape

and OFF features for HAR. The background extraction of the image was done

using the multi-frame averaging method. The length feature set from the middle

to the body contour had its magnitude reduced using a discrete Fourier transform

(DFT). The principle component analysis was suggested as a means of choosing

features. The proposed framework demonstrated optimal accuracy when evaluated

on real-time video recordings.Weifeng and his colleagues introduced a new approach

called Laplacian Regularized Sparse Coding (LRSC) for Human Activity Recogni-

tion (HAR). This method was a more advanced version of graph Laplacian with

improved performance. They also developed a fast-iterative algorithm to optimize

LRSC. The sparse codes generated by LRSC were then used in a support vector

machine (SVM) for classification purposes. The experiments were conducted using

USAA and HMDB51 datasets, showing the effectiveness of LRSC in HAR tasks.

The authors Jalal et al. (2017) introduced a model for Human Activity Recog-

nition (HAR) utilizing depth video analysis. Hidden Markov Model (HMM) was

utilized to identify common activities performed by elderly individuals living inde-
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pendently. The initial phase involved analyzing the depth maps through a tempo-

ral motion identification technique using human silhouette segments in a specific

setting. Durable characteristics were chosen and combined to detect changes in

gradient orientation, temporal intensity differences, and local movements of the

body organs.

The researchers conducted experiments on three different datasets: Online Self-

Annotated (Melhart et al. (2022)), Smart Home, and Three Healthcare. They

achieved accuracies of 84.4 percentage, 87.3 percentage, and 95.97 percentage re-

spectively. Muhammed and colleagues (Hassan et al. (2018)) introduced a frame-

work for human activity recognition using smartphone inertial sensors. The frame-

work involved three steps: extracting efficient features, reducing features using

KPCA and LDA, and training resultant features with DBN for improved accuracy.

In their study, ? introduced a model for action recognition to address the issue

of multi-view human activity recognition (HAR). This algorithm, known as adap-

tive fusion and category-level dictionary learning (AFCDL), incorporated dictio-

nary learning by implementing query sets and a regularization scheme for assigning

adaptive weights. Additionally, Khan et al. (2021) proposed a new framework for

composite action classification using a 26-layered CNN.

In their study, Kun and colleagues Xia et al. (2020) introduced a Human Ac-

tivity Recognition (HAR) model based on Deep Neural Networks (DNN) that com-

bines convolutional layers with Long Short-Term Memory (LSTM). This model was

able to automatically extract features and classify them using standard parameters.

Recently, there has been significant progress in developing deep learning models

for HAR using high-dimensional datasets. Traditional methods for HAR were not

performing well, especially on large datasets. However, modern techniques such as

LSTM, SV-GCN, and CNNs have shown improved performance.

Finally, MAE-ST (He et al. (2022)) explored a straightforward extension of

Masked Autoencoders (MAE) to learn spatiotemporal representations from videos.

By randomly masking spacetime patches in the videos, an autoencoder is trained

to reconstruct them in pixels. Surprisingly, the MAE method is able to learn pow-

erful representations without any specific bias towards spacetime (except for patch

and positional embeddings), and random masking without considering spacetime
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performs the most effectively.

2.2.5 Potential Applications

Applications for HAR can be found in many different fields, such as video recla-

mation, human-computer interface (HCI) Chen et al. (2021), surveillance Mishra

et al. (2021), and visual information interpretation Khan et al. (2024). Video

surveillance is the most significant use of action recognition (Liu et al. (2021)).

Governments employ this application for security purposes Ahmed et al. (2021),

intelligence gathering, crime investigation Wang et al. (2021), and even to lower

the crime rate. The primary driving force behind the expansion of HAR research

is its application in video surveillance Zin et al. (2021). When it comes to visual

surveillance, HAR is essential for identifying people’ movements in public areas.

Additionally, the surveillance of smart cities can benefit from these kinds of systems

(Farnoosh et al. (2021)).

2.3 Zeroshot monocular depth estimation

2.3.1 Monocular Depth Estimation

Estimating depth from a single camera view is called monocular depth estimation,

is crucial in the realm of computer vision, especially in disciplines like robotics and

autonomous driving. The idea of turning any regular camera into a tool that can

detect depth levels across a wide range is quite exciting, as it not only lowers costs

but also enhances the depth of information captured. With that, we can estimate

depths from videos without need for any additional information.

2.3.2 Siginificance

There are many devices available for depth information, but they are often too

expensive, slow, and limited in range for consumer use. Devices like the Kinect

sensor are popular for consumer products. These sensors use Time-of-Flight tech-

nology to measure depth by calculating how long it takes light to travel from a

source to an object and back. Time-of-Flight sensors work well indoors and for

short distances (¡2 meters). Meanwhile, LiDAR scanners are used for outdoor 3D
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measurements. LiDAR sensors have several advantages over other types of sensors.

LiDAR sensors have advantages such as high resolution, accuracy, performance in

low light, and speed. Yet, they are costly and demand a lot of power, making

them unsuitable for consumer products. Moreover, buying a 3D camera can be

expensive. Alternatively, we could buy two cheaper cameras and utilize the stereo

camera method to gauge depth. But, with two cameras also there is a cost.

Monocular Depth Estimation helps to reduce this cost. And many binocular

or multi-view methods can accurately estimate depth information, but they face

significant challenges in terms of computational time and memory requirements,

which can hinder their application in various scenarios. In machine perception,

recognizing important factors like scene shape and image independence is crucial.

Depth Estimation (DE) shows promise in various applications, from robotics to

computer graphics.

2.3.3 Limitations

1. MDE face a challenge when it comes to diversity in training data, especially

in different subjects and types of images. For example, if the training dataset

doesn’t have enough photos of the sky, it can make it harder to accurately

measure depth in those specific areas.

2. Capturing the overall characteristics of a scene, such as texture changes or

blurry details, is challenging from a computational standpoint.

2.3.4 Applications

Monocular depth estimation has many uses, such as creating 3D models, enhanc-

ing virtual reality experiences, aiding self-driving vehicles, and improving robot

capabilities.
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Chapter 3 - Design

In this chapter, we outlined our approach to answer the research questions

introduced in chapter 01. The first section focused on answering ”How can we

improve discrimination of humans using video features from video classifiers in

MOT?”. In the second section, we explored strategies such that to answer the

second question ”How to enhance the occlusion handling using depth information

during human tracking?”. Our experiments follow the traditional MOT pipeline

structured into five main stages: frame extraction, localization, feature extrac-

tion, feature association, and reidentification. Then we evaluate our results with

benchmark datasets.

3.1 Conventional MOT pipeline

Figure 3.1: The conventional MOT pipeline with five stages. We denoted the stages

where we are contributing in red rounded rectangle.

In the conventional MOT pipeline, initially, we extract individual frames from

the video sequence because we always process videos as set of frames in MOT con-

text. Then we localizate the objects in each frame by extracting the spatial coor-

dinates or bounding boxes of the target objects using object detectors /(¡Required

citations for YOLO and other object detectors/). Using those bounding boxes, we

extract features of objects in the frame by inserting into the feature extractor
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which gives features having appearance attributes such as color, shape, or texture,

essential for object identification and tracking. We perform feature association

on those extracted features to link objects across consecutive frames to establish

coherent object trajectories over time. We give the unique identification number

for highly correlated objects with our target object in the reidentification phase

to ensure the continuity and accuracy of the tracking process throughout the video

sequence.

We are using this conventional MOT pipeline as the backbone of our experi-

mental methodology, for fair comparison and evaluation within the domain of MOT

research.

3.2 Research Design for RQ1: Research Feature

Extractor

In this part of the study, we aim to address our first research question through

our experiments with new feature extractor. To do so, we selected the top video

classifier, MAE-ST(Feichtenhofer et al. 2022), as we require video features. Af-

ter customizing the video classifier to identify human attributes, we assessed the

tracking accuracy of humans using video features and compared it to that of human

features.

3.2.1 Data Pre-processing

We used all the model specific preprocessing techniques for the best performance

of the models. We did’t use any additional or new preprocessing techniques.

3.2.2 Baseline model

We used image feature extractor addressed in the Deepsort(Wojke et al. 2017) to

achieve optimal results as it’s crucial to have a feature embedding with strong dis-

crimination abilities. This basleline was nalready trained before using the online

tracking application. To do this, Convolutional Neural Network (CNN) trained on

a large dataset (Zheng et al. (2016)) of over 1,100,000 images of 1,261 pedestrians

for deep metric learning in people tracking. The structure of our CNN network can
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be found in the following table:

Name Patch Size/Stride Output Size

Conv 1 3× 3/1 32× 128× 64

Conv 2 3× 3/1 32× 128× 64

Max Pool 3 3× 3/2 32× 64× 32

Residual 4 3× 3/1 32× 64× 32

Residual 5 3× 3/1 32× 64× 32

Residual 6 3× 3/2 64× 32× 16

Residual 7 3× 3/1 64× 32× 16

Residual 8 3× 3/2 128× 16× 8

Residual 9 3× 3/1 128× 16× 8

Dense 10 128

Batch and ℓ2 normalization 128

Table 3.1: Overview of the CNN architecture. The final batch and ℓ2 normalization

projects features onto the unit hypersphere. (Wojke et al. 2017)

Essentially, our baseline has wide residual network (Zagoruyko & Komodakis

(2016)) with two convolutional layers followed by six residual blocks is used in this

CNN. The global feature map, having a size of 128, is calculated in dense layer 10.

After that, a final batch and L2 normalization process projects features onto the

unit hypersphere to ensure compatibility with our cosine appearance metric. In

total, the network has 2,800,864 parameters, and it takes around very less time for

a single forward pass with 32 bounding boxes on mobile GPU.

3.2.3 Masked Auto Encoder(MAE) architecture

MAE is transformer architecture which is trained using self-supervised pre-training

approach, which is already outperfrom in natural language processing (NLP) through

methods like autoregressive language modeling in GPT(Brown et al. 2020) and

masked autoencoding in BERT(Devlin et al. 2018). These approaches involve re-

moving parts of data such as text, image, etc. and training models to predict the

missing part.
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While masked autoencoders(mae) are useful in both language and computer

vision, there are differences. In vision, convolutional networks (LeCun et al. 1989)

have historically dominated, posing challenges for integrating masking mechanisms

due to their regular grid operation. However, this obstacle has been overcome with

the introduction of Vision Transformers (ViT) (Dosovitskiy et al. 2020). The in-

formation density varies between language and vision, with language being highly

semantic and information-dense, while images exhibit spatial redundancy. To ad-

dress this, a strategy of masking a high proportion of random patches in images

is proposed to encourage holistic understanding and reduce redundancy. The au-

toencoder’s decoder differs in its role between text and images, with the latter

reconstructing missing patches in pixel space. Based on this analysis, the Masked

Autoencoder (MAE) is designed to mask random patches from input images and

reconstruct missing patches, employing an asymmetric encoder-decoder design to

efficiently handle both tasks

3.2.4 Video Feature Extractor

Figure 3.2: Masked Autoencoders as spatiotemporal learners

MAE-ST Architecture is build upon the foundation laid out by MAE archi-

tecture by He et al. (2022) principles which is mentioned above, adapting them to

analyze spacetime data. The goal of this MAE-ST is to create a method that works

within a broad and cohesive framework, reducing the need for specialized domain

knowledge. The main flow of this architecture is divided into 3 parts. They are

Patch embedding, Masking and Autoencoding which are explained below.
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Patch embedding. Similar to the original Vision Transformer (ViT Dosovit-

skiy et al. (2020)) , in the MAE-ST video clip is divided into a grid of patches that

do not overlap (Bertasius et al. (2021), Fan et al. (2021), Wei et al. (2022)). These

patches are then flattened and projected linearly (Dosovitskiy et al. (2020)). To

enhance the embedded patches, positional embeddings (Vaswani et al. (2017)) are

included in the MAE-ST. This combined process of embedding patches and posi-

tional information is the only spacetime-aware operation in this MAE-ST method-

ology.

masking.As a next step,in the realm of processing spacetime data, the mask-

ing technique is utilized. This technique involves a random patch sampling method

that is unaware of the underlying spacetime structure, similar to techniques used in

BERT and MAE. The ideal masking ratio, which is suggested to be linked to data

redundancy, is explored through real-world observations, revealing an optimal ratio

of 90 perentage. This indicates that natural videos possess more redundancy than

images due to their temporal consistency. Furthermore, it showcases the effective-

ness of spacetime-agnostic sampling in comparison to structure-aware strategies,

as the former efficiently uses visible patches, enabling higher masking ratios and

potentially overcoming challenges presented by intricate pre-training tasks.

Figure 3.3: High level architecture diagram of our video extractor in comparison

with traditional image feature extractor.

Auto encoding. AS a final step, auto encoding was done by the vanila ViT
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model (Dosovitskiy et al. (2020))which is used by the encoder to work on visible

embedded patches, reducing computational complexity while remaining practical.

The encoder’s complexity is minimized by a high masking ratio. On the other hand,

the decoder, which is smaller in design but also based on a ViT model, processes

the combined encoded patch set and mask tokens. Despite working with the entire

set, the decoder’s complexity is lower than that of the encoder, leading to a notable

decrease in the overall complexity of the autoencoder.

We extracted the encoder from the MAE ST architecture because it has all the

knowledge about video understanding and used to get our video features.

3.3 Research Design for RQ2: Depth Cues for

MOT

3.3.1 Depth Map Extractor

We use MiDaS (Multiple Depth Estimation Accuracy with Single Network) Ranftl

et al. (2020) as a depth map extractor to extract depth maps of target objects

to track. MiDAS is a sophisticated deep learning model that leverages residual

connections and is built on top of ResNet for predicting depth with a single image.

MiDaS has shown remarkable effectiveness in determining depth from single images.

Let’s take a closer look at the structure of MiDaS:

1. Encoder-Decoder Architecture:-The foundation of MiDaS is an encoder-

decoder architecture, in which the encoder extracts high-level features and

the decoder uses upsampling to create the depth map from these features.

2. Backbone:- Since ResNet-50 and ResNet-101 are resistant against vanish-

ing gradients, MiDaS usually employs them for feature extraction. enabling

MiDaS to capture hierarchical information at different sizes by extracting

multi-channeled feature maps from input photos.

3. Multi-Scale Feature Fusion:- MiDaS incorporates skip connections and

feature fusion to provide precise depth estimate. In order to access low level

details during upsampling, feature maps from older layers are connected to

the later layers via skip connections. Feature fusion ensures that both local

and global information is effectively exploited for depth estimate by combin-
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ing the multi-scale feature maps.

4. Up-Sampling and Refinement:-By utilising up-sampling, the final depth

map is produced. Bi-linear interpolation and transposed convolutions are

often employed approaches for upsampling, which aim to enhance the spatial

resolution of feature maps. Refining the depth estimation involves combining

the depth maps with associated skip links using feature fusion.

3.4 Evaluation

We use domain standard benchmark datasets and evaluation metrics to evaluate

the reliability and accuracy of our approach in a quantitative way. We compare

the performance of several existing approaches, and improve our approach with the

help of the benchmark performance evaluation.

3.4.1 Benchmark Datasets

MOT Challenge

The MOT Challenge dataset was first introduced in 2015 (Milan, Leal-Taixé, Reid,

Roth & Schindler 2016). It is a benchmark dataset that provides various challenges

for MOT algorithms such as crowded scenes, partial occlusions, fast motions, and

different camera viewpoints. The dataset is annually updated with new challenging

scenarios, making it one of the most comprehensive and diverse MOT datasets

available.

The key advantage of the MOT Challenge dataset is its large size and diverse

nature, which allows for fair comparisons of MOT algorithms across different do-

mains. Moreover, the MOT Challenge dataset is publicly available and allows

researchers to test their algorithms on a standard benchmark, which helps to pro-

mote reproducibility and comparability in the field.

The MOT Challenge dataset has played a significant role in advancing SOTA

MOT research by offering a comprehensive benchmark for evaluating the perfor-

mance of MOT algorithms. The continued development and use of the MOT

Challenge dataset will continue to drive progress in this field and help to address

the remaining challenges in MOT (Dendorfer, Rezatofighi, Milan, Shi, Cremers &
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Reid 2019, Leal-Taixé et al. 2015, Milan et al. 2017, Milan, Heng & Sminchisescu

2016, Milan et al. 2018).

3.4.2 Evaluation Metrics

MOT problem has always been a challenge to assess properly. Some existing metrics

tend to focus too much on either detecting objects or connecting them together.

To tackle this issue, higher order tracking accuracy (HOTA) (Luiten et al. 2021) is

a suitable metric. Because this metric carefully considers the impact of accurate

detection, association, and localization, combining them into one comprehensive

measure for comparing different trackers (Luiten et al. 2021).

HOTA metric is combined metric of three IoU scores, assessing detection, asso-

ciation, and localization tasks separately and then amalgamating them into a final

HOTA score by combining the individual IoU scores. We apply the HOTA on our

experiments because of its ability to capture critical aspects of MOT performance

by combining three different aspects of MOT.

IOU Scores

The IoU, also called the Jaccard Index, is used to measure the overlap between

predicted and ground truth bounding boxes.

Location Accuracy (LocA)

Localization Accuracy (LocA) is a way to check how well predicted detections

match with actual detections. The measure called Localization Intersection over

Union (Loc-IoU) is commonly used to measure how accurate the localization is. It

is calculated by comparing the overlap between the two detections with the total

area covered by both. Check out the diagram below for a visual representation.

We can apply this metric for both bounding boxes and segmentation masks.

As we can observe, when the Loc-IoU score goes up, the predicted detections and

the actual detections are more closely positioned and the accuracy of localization

is enhanced. We can assess the overall Localization Accuracy (LocA) by averaging

the Loc-IoU for all matching pairs of predicted and actual detections in the entire

dataset (we will explain later how we determine these matches).
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LocA =
1

|TP|
∑
c∈TP

Loc−IoU(c)

Detection Accuracy (DetA)

We use DetA to evaluate how well the algorithms perform. These metrics assess

the object detector’s ability to detect objects in video sequences and the number

of false positives or false negatives it generates. Detection IoU (Intersection over

Union) is a common metric used to evaluate detection accuracy. The process

involves determining which predicted detections intersect with the ground-truth

detections by setting a localization threshold (e.g. generally we set Loc-IoU ≥

0.5). It is important to note that a single predicted detection may overlap with

multiple ground-truth detections, and vice versa.

To address this, the Hungarian algorithm(Kuhn 1955) is employed to establish

a one-to-one correspondence between predicted and ground-truth detections. When

considering True Positives (TP), they represent the overlapping detections between

the two sets. False Positives (FP) are the predicted detections that do not match,

while False Negatives (FN) are the ground-truth detections that do not match.

The measure of intersection, known as the detection IoU, is calculated as follows:

Det-IoU =
|TP|

|TP| + |FN| + |FP|
This measure ois similar to Loc-loU, where we calculate the intersection of

matches (TPs) divided by the union of all detections. Unlike Loc-IoU which com-

pares a single predicted detection with a ground-truth detection, Det-loU compares

all predicted detections with all ground-truth detections. This set-based loU cal-

culation is also known as the Jaccard Index. To determine the overall Detection

Accuracy (DetA), we can calculate Det-loU using the counts of TPs, FNs, and FPs

across the entire dataset.

DetA = Det-IoU =
|TP|

|TP| + |FN| + |FP|
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Association Accuracy (AssA)

Association measures how effectively a tracker connects detections over time to the

correct identities, based on the true set of identity links in the true tracks. We can

calculate this by comparing a predicted detection with a true detection that are

matched together, and evaluating the alignment between the predicted detection’s

track and the true detection’s track. This alignment can be expressed using an

Intersection over Union (IoU) formulation.

Ass-IoU =
|TPA|

|TPA| + |FNA| + |FPA|
The red square represents the matched true positive pair of prediction and

ground-truth detection that we are trying to find an association score for. To

evaluate how well the temporal association lines up between these detections, we

look at all the detections in these two tracks that match (true positive associations

in green) and those that don’t match (false positive associations in yellow and false

negative associations in brown).

AssA =
1

|TP|
∑
c∈TP

Ass-IoU(c)

=
1

|TP|
∑
c∈TP

|TPA(c)|
|TPA(c)| + |FNA(c)| + |FPA(c)|

The overall Association Accuracy (AssA) can be calculated by averaging the in-

tersection over union of all pairs of matching predicted and ground-truth detections

in the entire dataset.

Higher Order Tracking Accuracy (HOTA)

Even though all three aspects (localization, detection, and association) play a cru-

cial role in determining the success of tracking. It is vital to evaluate each of these

components. Nonetheless, there is a need for a unified measure to assess the over-

all performance of trackers. This measure is known as HOTA, which combines the

three loU scores discussed previously:
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HOTA α =
√

DetAα ·AssAα

=

√∑
c∈TPα

Ass2 − IOα(c)

|TPα| + |FNα| + |FPα|

HOTA =

∫
0<α≤1

HOTAα

≈ 1

19

0.95∑
α=0.05
α+0.05

HOTAα

Earlier, we described DetA and AssA using a Hungarian matching method(Kuhn

1955) with a specific Loc-IoU threshold (a). As DetA and AssA scores are influ-

enced by Loc-loU values, we compute these scores across various thresholds. For

each threshold, we determine the overall score as the geometric mean of detec-

tion and association scores. By incorporating different thresholds, we account for

localization accuracy in the final score.

When combining detection and association, the geometric mean is used to give

equal weight to both aspects in the final score. If either detection or association is

zero, the score will also be zero. This means that the HOTA score can be seen as a

formulation of Det-IoU, where each true positive is weighted by the corresponding

Ass-IoU. For example, the average of the Ass-IoU scores across all detections.

3.5 Summary

In this chapter, we have discussed the pipeline, architecture and the evaluation

design to address the two research questions we are focusing on. As the initial

step, methodology to extract video features was presented. Then we focus on

depth feature extraction using depth feature extractor and depth fusion strategy.

With that this chapter discussed the techniques of Evaluation methodologies to

extensively evaluate various aspects of our methodologies. Finally, based on the

results we observed by following these techniques and how we can improve them

in future work are discussed in Chapter 5.
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Chapter 4 - Implementation

In this chapter, we will outline how we experimented the methodologies covered

in the previous Chapter 3. We explain into the preprocessing methods and provide

insights into the research tool employed to address our research query.

All of our implementations were done using Python language and deep learning

framework, Pytroch.

4.1 Data-preprocessing

One of the main limitation of the video feature extractor we discussed in the pre-

vious Chapter 3 is the backbone is mainly designed to work with videos. Therefore

we have to modify the input data, image segment into video by duplicating image

segment such that we will create video with minimum number of frames available,

that is two.

4.2 Video feature extractor

We modified the official implementation of MAE ST (Feichtenhofer et al. 2022) as

a feature extractor by modifying the forward encoder’s predict function to return

the features we need.

4.3 Segmentation Patch Extraction

Our segementation patch extraction algorithm code is in Figure 4.2.

4.4 Depth Extractor

Our depth feature extractor code is in Figure 4.4.

4.5 Depth Fusion

Our depth fusion strategy is implemented in Figure 4.4.
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Figure 4.1: Code of modified forward encoder’s predict function

4.6 Research Tools

• We used Pytorch deeplearning framework to build our models.

• Official implementation of Deepsort(Danelljan et al. 2017) as a tracking al-

gorithm.

• Used the Kaggle (GPU: NVIDIA P100 16GB ) for all the experiments.

• Ultralytics library was used to get segmentation models.

• Trackeval script was used to evaluate the model performance.
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Figure 4.2: Code of image patch extraction function
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Figure 4.3: Code for extracting depth features from object image patches.

Figure 4.4: Code for fusion of depth cues with appearance features.
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Chapter 5 - Results and Evaluation

In this chapter we present an analysis of effects on MOT performance through

the techniques outlined in Chapter 3. We describe how we tackled our study topics

and provide explanations and conclusions for the observed outcomes. This gives

the reader insight into how various approaches vary in HOTA and other relevant

measures.

We carried out extensive experiments on three datasets with comparison to

baseline methods for detailed study of each approaches. We break down results in

several categories for the ablation study of experimental results.

5.1 Results obtained from the First Research Ques-

tion

We evaluated our new feature extractor, video feature extractor with our baseline

model to identify the effect of video features in improving MOT performance. We

modified the official implementation of deep sort algorithm and included our new

feature extractor.

5.1.1 Video image feature extractor

MOT16

In our experiments, for MOT16 datasets (refer table 5.1) , model with video feature

extractor gives low results for all types of sequences to the HOTA metric. For

the combined or average results also, model with video feature feature not works

well Overall, the video feature extractor model doesn’t work well for the MOT16

dataset as mentioned in the below table; But when we consider DetA metric except

for MOT16-02 and MOT16-11 our model performs better than baseline.

MOT17

In our experiments, for MOT17 datasets (refer tables 5.2 and 5.2), specifically in

MOT17-02-DPM, MOT17-02-FRCNN,MOT17-02-SDP,MOT17-04-DPM,MOT17-
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT16-02
MARS 16.384 9.4892 28.299 80.385

Ours 14.502 9.3878 22.421 80.152

MOT16-04
MARS 26.657 20.863 34.085 83.58

Ours 24.886 20.867 29.723 83.265

MOT16-05
MARS 23.567 16.473 33.744 81.465

Ours 18.995 17.11 21.135 81.018

MOT16-09
MARS 30.248 27.742 33.032 79.693

Ours 25.167 27.797 22.899 79.236

MOT16-10
MARS 24.698 19.019 32.128 80.275

Ours 22.985 19.175 27.624 79.962

MOT16-11
MARS 40.89 34.294 48.777 82.381

Ours 31.491 34.093 29.142 81.771

MOT16-13
MARS 12.727 4.8646 33.388 79.043

Ours 12.557 5.0394 31.395 78.801

COMBINED
MARS 25.592 18.362 35.7 82.195

Ours 22.67 18.422 27.962 81.819

Table 5.1: HOTA metric for experiments on MOT16 with new feature extractor

05-FRCNN,MOT17-09-DPM,MOT17-10-DPM,MOT17-10-FRCNN,MOT17-10-SDP,MOT17-

11-FRCNN,MOT17-11-SDP video sequences, model with video feature extractor

gives better results for the HOTA metric. And for MOT17-04-FRCNN,MOT17-04-

SDP,MOT17-05-DPM,MOT17-05-SDP,MOT17-09-FRCNN,MOT17-09-SDP,MOT17-

11-DPM,MOT17-13-DPM video sequences, the model with video feature not gives

better results when we compare with the model without video feature.But, when

we see the combined or average results, model with dvideo feature does not works

well Overall, most of the video sequences works well for model with video feature

based on the HOTA results as shown below,

MOT20

In our experiments, for MOT20 datasets (refer table 5.4, there is no any type of

video sequences gives better results for the HOTA metric for model with video

feature extractor. And for all video sequences, MOT20-01,MOT20-02, MOT20-
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03,MOT20-05 , the model without video feature extractor gives better results But,

when we see the combined or average results also, model with feature extractor

does not works well. Overall, the all type of video sequences works well for model

without feature extractor based on the HOTA results mentioned in the below table.

5.1.2 Segmentation mask experiments

In our experiments, for MOT16 datasets, specifically in MOT16-04,MOT16-05,MOT16-

09 video sequences, model with segmentaion masks gives better results for the

HOTA metric. And for MOT16-02, MOT16-10,MOT16-11,MOT16-13 video se-

quaences, the model with segmentation mask not gives better results when we

compare with the model without segmentation mask. But, when we see the com-

bined or average results also, model with segmentation mask does not work well.

Overall, most of the video sequences does not work well for model with segmenta-

tion mask as in the below table;

MOT16

MOT17

In our experiments, for MOT17 datasets, specifically in MOT17-04-DPM, MOT17-

04-FRCNN,MOT17-04-SDP,MOT17-05-DPM,MOT17-05-FRCNN,MOT17-05-SDP,MOT17-

09-DPM,MOT17-10-FRCNN video sequences, model with segmentation mask gives

better results for the HOTA metric. And for MOT17-02-DPM,MOT17-02-FRCNN,

MOT17-04-SDP,MOT17-09-FRCNN,MOT17-09-SDP,MOT17-10-DPM,MOT17-10-

SDP,MOT17-11-DPM,MOT17-11-FRCNN,MOT17-11-SDP,MOT17-13-DPM video

sequaences, the model with segmentation mask not gives better results when we

compare with the model without segmentation mask. But, when we see the com-

bined or average results, model with segmentation masks does not works well .Over-

all, the most of the video sequences does not works well for model with segmentation

masks based on the HOTA results as in the below table.

MOT20

In our experiments, for MOT20 datasets, there is no such video sequences works

well with segmentation model based on the HOTA metric results. And for all
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MOT-20 video sequences, the model without segmentation mask gives better re-

sults.But, when we see the combined or average results, model with segmentation

mask not gives better results when we compare with model without segmentation

mask.Overall, the MOT-20 dataset works well for model without segmentation

mask as in the following table:

5.2 Results obtained from the Second Research

Question

We evaluated our new feature extractor, video feature extractor with our baseline

model to identify the effect of video features in improving MOT performance. We

modified the official implementation of deep sort algorithm and included our new

feature extractor.

5.3 Results obtained from the second Research

Question

5.3.1 Experiments with depth coefficient

MOT16

In our experiments, for MOT16 datasets, specifically in MOT16-02, MOT16-04,MOT16-

05,MOT16-11 video sequences, model with depth feature gives better results for

the HOTA metric. And for MOT16-04,MOT16-09, MOT16-10,MOT16-13 video

sequences, the model with depth feature not gives better results when we compare

with the model without depth feature.But, when we see the combined or average

results, model with depth feature works well Overall, the equal number of video se-

quences works well for model with depth feature and model without depth feature

respectively.

MOT17

In our experiments, for MOT17 datasets, specifically in MOT17-02-DPM, MOT17-

02-FRCNN,MOT17-02-SDP,MOT17-04-DPM,MOT17-05-FRCNN,MOT17-09-DPM,MOT17-
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10-DPM,MOT17-10-FRCNN,MOT17-10-SDP,MOT17-11-FRCNN,MOT17-11-SDP

video sequences, model with depth feature gives better results for the HOTA

metric. And for MOT17-04-FRCNN,MOT17-04-SDP,MOT17-05-DPM,MOT17-

05-SDP,MOT17-09-FRCNN,MOT17-09-SDP,MOT17-11-DPM,MOT17-13-DPM video

sequences, the model with depth feature not gives better results when we compare

with the model without depth feature.But, when we see the combined or average

results, model with depth feature does not works well Overall, most of the video

sequences works well for model with depth feature for HOTA metric as shown in

the below table.

MOT20

In our experiments, for MOT20 datasets, specifically in MOT20-01, MOT20-02,MOT20-

03,MOT20-05 video sequences, model with depth feature gives better results for

the HOTA metric. And for , there is no video sequaences, the model without depth

feature gives better results.But, when we see the combined or average results, model

with depth feature works well. Overall, the all types of video sequences works well

for model with depth feature based on the HOTA results as shown below.

5.4 Summary

In this chapter, we presented the detailed results of each methodology we used. In

addition to the findings, an overview of the BLEU scores was addressed, as well

as a com- parison of various experiments with examples. Chapter 6 addresses the

possible conclusions that can be taken from these findings.

37



Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT17-02-DPM
Mars 16.053 9.1108 28.299 80.385

Ours 13.949 9.1943 21.174 80.753

MOT17-02-FRCNN
Mars 32.512 28.543 37.138 88.501

Ours 29.878 27.969 32.067 87.705

MOT17-02-SDP
Mars 33.76 37.15 30.761 84.002

Ours 28.685 36.936 22.431 83.043

MOT17-04-DPM
Mars 26.657 20.863 34.085 83.58

Ours 24.654 20.966 29.019 83.35

MOT17-04-FRCNN
Mars 51.832 47.735 56.405 90.54

Ours 48.062 47.265 49.007 90.28

MOT17-04-SDP
Mars 62.12 62.738 61.565 87.9

Ours 54.269 60.871 48.49 87.25

MOT17-05-DPM
Mars 23.37 16.237 33.665 81.462

Ours 19.996 16.727 23.926 80.93

MOT17-05-FRCNN
Mars 45.399 39.014 52.901 84.463

Ours 34.18 39.697 29.496 84.045

MOT17-05-SDP
Mars 51.359 50.114 53.039 86.323

Ours 39.789 50.074 32.029 85.539

MOT17-09-DPM
Mars 29.965 27.447 32.762 79.723

Ours 24.052 27.22 21.337 79.103

MOT17-09-FRCNN
Mars 48.71 48.321 49.119 90.525

Ours 41.734 47.34 36.81 89.897

MOT17-09-SDP
Mars 47.927 55.346 41.593 87.97

Ours 41.769 53.751 32.533 87.232

Table 5.2: HOTA metric for experiments on MOT17 with new feature extractor

(1)
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT17-10-DPM
Mars 24.241 18.297 32.181 80.368

Ours 21.646 18.299 25.688 79.993

MOT17-10-FRCNN
Mars 43.912 46.745 41.391 85.419

Ours 38.029 46.644 31.201 85.229

MOT17-10-SDP
Mars 51.546 56.115 47.494 83.233

Ours 40.85 55.117 30.454 82.671

MOT17-11-DPM
Mars 40.315 33.428 48.644 82.374

Ours 32.002 33.264 30.825 81.809

MOT17-11-FRCNN
Mars 54.597 51.399 58.03 91.081

Ours 39.911 51.044 31.222 90.648

MOT17-11-SDP
Mars 56.993 60.512 53.758 88.156

Ours 39.598 60.101 26.141 87.409

MOT17-13-DPM
Mars 12.621 4.7848 33.38 79.043

Ours 12.478 4.9582 31.511 78.816

MOT17-13-FRCNN
Mars 46.354 42.667 50.627 84.304

Ours 44.183 42.162 46.658 83.854

MOT17-13-SDP
Mars 51.651 41.249 64.777 83.519

Ours 47.401 40.706 55.367 83.142

COMBINED
Mars 44.377 38.7 51.16 86.618

Ours 38.538 38.277 39.096 86.101

Table 5.3: HOTA metric for experiments on MOT17 with new feature extractor

(2)
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT20-01
Mars 30.181 18.96 48.045 92.787

Ours 27.891 19.234 40.455 92.409

MOT20-02
Mars 25.984 20.633 32.732 92.857

Ours 23.992 20.753 27.755 92.464

MOT20-03
Mars 2.1288 0.48733 9.306 91.188

Ours 2.0679 0.49727 8.6061 90.841

MOT20-05
Mars 1.7868 0.4072 7.8499 90.466

Ours 1.7668 0.41899 7.4621 90.183

COMBINED
Mars 10.567 3.5276 31.66 92.627

Ours 9.7823 3.5622 26.879 92.241

Table 5.4: HOTA metric for experiments on MOT20 with new feature extractor

Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT16-02
w/o seg, 16.384 9.4892 28.299 80.385

w/ seg 15.456 9.4723 25.229 80.873

MOT16-04
w/o seg, 26.657 20.863 34.085 83.58

w/ seg 26.935 20.821 34.86 83.539

MOT16-05
w/o seg, 23.567 16.473 33.744 81.465

w/ seg 23.754 16.322 34.591 81.41

MOT16-09
w/o seg, 30.248 27.742 33.032 79.693

w/ seg 31.834 27.586 36.769 79.524

MOT16-10
w/o seg, 24.698 19.019 32.128 80.275

w/ seg 24.045 18.858 30.711 80.23

MOT16-11
w/o seg, 40.89 34.294 48.777 82.381

w/ seg 36.5 33.8 39.446 82.163

MOT16-13
w/o seg, 12.727 4.8646 33.388 79.043

w/ seg 12.029 4.8704 29.803 79.011

COMBINED
w/o seg, 25.592 18.362 35.7 82.195

w/ seg 25.065 18.272 34.409 82.164

Table 5.5: HOTA metric for experiments on MOT16 with fine segmentation masks
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT17-02-DPM
w/o seg, 16.053 9.1108 28.299 80.385

w/ seg 15.144 9.0931 25.231 80.865

MOT17-02-FRCNN
w/o seg, 32.512 28.543 37.138 88.501

w/ seg 31.245 28.592 34.252 88.39

MOT17-02-SDP
w/o seg, 33.76 37.15 30.761 84.002

w/ seg 34.555 36.769 32.569 83.694

MOT17-04-DPM
w/o seg, 26.657 20.863 34.085 83.58

w/ seg 26.935 20.821 34.86 83.539

MOT17-04-FRCNN
w/o seg, 51.832 47.735 56.405 90.54

w/ seg 51.855 47.699 56.497 90.527

MOT17-04-SDP
w/o seg, 62.12 62.738 61.565 87.9

w/ seg 61.872 62.926 60.89 88.001

MOT17-05-DPM
w/o seg, 23.37 16.237 33.665 81.462

w/ seg 23.554 16.074 34.538 81.375

MOT17-05-FRCNN
w/o seg, 45.399 39.014 52.901 84.463

w/ seg 43.769 38.934 49.257 84.469

MOT17-05-SDP
w/o seg, 51.359 50.114 53.039 86.323

w/ seg 51.997 49.795 54.695 86.206

MOT17-09-DPM
w/o seg, 29.965 27.447 32.762 79.723

w/ seg 31.676 27.375 36.681 79.694

MOT17-09-FRCNN
w/o seg, 48.71 48.321 49.119 90.525

w/ seg 46.752 47.64 45.904 90.275

MOT17-09-SDP
w/o seg, 47.927 55.346 41.593 87.97

w/ seg 47.513 54.475 41.49 87.862

MOT17-10-DPM
w/o seg, 24.241 18.297 32.181 80.368

w/ seg 23.588 18.14 30.728 80.321

MOT17-10-FRCNN
w/o seg, 43.912 46.745 41.391 85.419

w/ seg 43.967 46.7 41.535 85.393

MOT17-10-SDP
w/o seg, 51.546 56.115 47.494 83.233

w/ seg 50.865 56.025 46.301 83.22

MOT17-11-DPM
w/o seg, 40.315 33.428 48.644 82.374

w/ seg 35.983 32.986 39.284 82.179

MOT17-11-FRCNN
w/o seg, 54.597 51.399 58.03 91.081

w/ seg 47.866 51.442 44.552 91.09

MOT17-11-SDP
w/o seg, 56.993 60.512 53.758 88.156

w/ seg 54.308 60.043 49.17 88.076

MOT17-13-DPM
w/o seg, 12.621 4.7848 33.38 79.043

w/ seg 11.928 4.7905 29.795 79.011

MOT17-13-FRCNN
w/o seg, 46.354 42.667 50.627 84.304

w/ seg 46.691 42.55 51.522 84.283

MOT17-13-SDP
w/o seg, 51.651 41.249 64.777 83.519

w/ seg 51.634 41.271 64.696 83.533

COMBINED
w/o seg, 44.377 38.7 51.16 86.618

w/ seg 43.818 38.619 49.969 86.602

Table 5.6: HOTA metric for experiments on MOT17 with fine segmentation masks
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT20-01
w/o seg, 30.181 18.96 48.045 92.787

w/ seg 29.108 18.784 45.11 92.794

MOT20-02
w/o seg, 25.984 20.633 32.732 92.857

w/ seg 25.778 20.575 32.307 92.833

MOT20-03
w/o seg, 2.1288 0.48733 9.306 91.188

w/ seg 2.1177 0.48436 9.2654 91.186

MOT20-05
w/o seg, 1.7868 0.4072 7.8499 90.466

w/ seg 1.7851 0.40625 7.8527 90.497

COMBINED
w/o seg, 10.567 3.5276 31.66 92.627

w/ seg 10.444 3.5154 31.034 92.611

Table 5.7: HOTA metric for experiments on MOT20 with fine segmentation masks

Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT16-02
w/o depth 14.502 9.3878 22.421 80.152

w/ depth 14.618 9.4371 22.661 80.145

MOT16-04
w/o depth 24.886 20.867 29.723 83.265

w/ depth 25.292 20.939 30.568 83.35

MOT16-05
w/o depth 18.995 17.11 21.135 81.018

w/ depth 19.174 17.136 21.489 81.139

MOT16-09
w/o depth 25.167 27.797 22.899 79.236

w/ depth 23.372 27.222 20.158 78.858

MOT16-10
w/o depth 22.985 19.175 27.624 79.962

w/ depth 22.938 19.261 27.388 80.043

MOT16-11
w/o depth 31.491 34.093 29.142 81.771

w/ depth 32.138 34.101 30.316 81.826

MOT16-13
w/o depth 12.557 5.0394 31.395 78.801

w/ depth 12.557 5.0394 31.395 78.801

COMBINED
w/o depth 22.67 18.422 27.962 81.819

w/ depth 22.855 18.445 28.359 81.86

Table 5.8: HOTA metric for experiments on MOT16 with new depth feature
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT17-02-DPM
w/o depth 13.949 9.1943 21.174 80.753

w/ depth 14.613 9.0763 23.543 80.317

MOT17-02-FRCNN
w/o depth 29.878 27.969 32.067 87.705

w/ depth 30.458 28.247 32.981 87.955

MOT17-02-SDP
w/o depth 28.685 36.936 22.431 83.043

w/ depth 31.589 36.952 27.107 82.946

MOT17-04-DPM
w/o depth 24.654 20.966 29.019 83.35

w/ depth 24.714 20.907 29.236 83.322

MOT17-04-FRCNN
w/o depth 48.062 47.265 49.007 90.28

w/ depth 46.596 47.41 45.943 90.331

MOT17-04-SDP
w/o depth 54.269 60.871 48.49 87.25

w/ depth 53.793 60.977 47.551 87.28

MOT17-05-DPM
w/o depth 19.996 16.727 23.926 80.93

w/ depth 18.829 16.964 20.931 81.109

MOT17-05-FRCNN
w/o depth 34.18 39.697 29.496 84.045

w/ depth 34.811 39.477 30.717 83.954

MOT17-05-SDP
w/o depth 39.789 50.074 32.029 85.539

w/ depth 39.178 50.486 30.86 85.684

MOT17-09-DPM
w/o depth 24.052 27.22 21.337 79.103

w/ depth 25.122 27.195 23.253 79.138

MOT17-09-FRCNN
w/o depth 41.734 47.34 36.81 89.897

w/ depth 38.626 47.738 31.273 89.975

MOT17-09-SDP
w/o depth 41.769 53.751 32.533 87.232

w/ depth 39.588 53.361 29.489 86.923

MOT17-10-DPM
w/o depth 21.646 18.299 25.688 79.993

w/ depth 21.739 18.275 25.939 79.994

MOT17-10-FRCNN
w/o depth 38.029 46.644 31.201 85.229

w/ depth 39.389 46.59 33.475 85.181

MOT17-10-SDP
w/o depth 40.85 55.117 30.454 82.671

w/ depth 46.512 55.097 39.452 82.642

MOT17-11-DPM
w/o depth 32.002 33.264 30.825 81.809

w/ depth 30.49 33.209 28.039 81.831

MOT17-11-FRCNN
w/o depth 39.911 51.044 31.222 90.648

w/ depth 40.675 50.833 32.563 90.647

MOT17-11-SDP
w/o depth 39.598 60.101 26.141 87.409

w/ depth 42.559 59.776 30.351 87.319

MOT17-13-DPM
w/o depth 12.478 4.9582 31.511 78.816

w/ depth 12.452 4.9569 31.385 78.801

MOT17-13-FRCNN
w/o depth 44.183 42.162 46.658 83.854

w/ depth 44.308 42.3 46.752 83.933

MOT17-13-SDP
w/o depth 47.401 40.706 55.367 83.142

w/ depth 47.203 40.679 54.967 83.04

COMBINED
w/o depth 38.538 38.277 39.096 86.101

w/ depth 38.67 38.3 39.312 86.105

Table 5.9: HOTA metric for experiments on MOT17 with new depth feature
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Sequence Method HOTA↑ DetA↑ AssA↑ LocA↑

MOT20-01
w/o depth 27.891 19.234 40.455 92.409

w/ depth 28.144 19.209 41.247 92.39

MOT20-02
w/o depth 23.992 20.753 27.755 92.464

w/ depth 24.018 20.734 27.84 92.451

MOT20-03
w/o depth 2.0679 0.49727 8.6061 90.841

w/ depth 2.07 0.49584 8.6475 90.881

MOT20-05
w/o depth 1.7668 0.41899 7.4621 90.183

w/ depth 1.7669 0.41927 7.4574 90.182

COMBINED
w/o depth 9.7823 3.5622 26.879 92.241

w/ depth 9.8044 3.5593 27.022 92.231

Table 5.10: HOTA metric for experiments on MOT20 with new depth feature
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Chapter 6 - Conclusions

6.1 Introduction

The aim of this dissertation is to explore cross domain models to improve MOT

performance, such as human action recognition and zero-shot monocular depth

estimation. This chapter gives an overview of the findings reached as a result of

our overall study efforts.

6.2 Conclusions about research problem and re-

search questions

The first research question in subsection 1.2.2 is,”How can we improve discrimina-

tion of humans using video features from video classifiers in MOT?”. The methods

have been discussed thoroughly with results in Chapter 3 and Chapter 5 respec-

tively .

In the MOT domain, for feature extraction image feature extractors are used

which are trained in static images. When we are using video features as in our

methodology we could see improvement in detection accuracy in most of our ex-

periments in Chapter 5. Mainly in short videos like MOT16(Milan, Leal-Taixé,

Reid, Roth & Schindler 2016) we could see consistent improvement throughout

the videos. But in longer videos like MOT17(Milan, Leal-Taixé, Reid, Roth &

Schindler 2016) and MOT20(Dendorfer et al. 2020) our approach didn’t work as

expected. Even though there is improvement in detection accuracy, in all these

experiments overall performance, HOTA score slightly decreases.

If we consider our second research question, ”How to enhance the occlusion

handling using depth information during human tracking? ” We extracted the

depth information and the depth cues are fused with appearance features using

our new coefficient, depth coefficient. When we use this coefficient, we observed

overall improvement in two datasets, MOT16(Milan, Leal-Taixé, Reid, Roth &

Schindler 2016)and MOT20(Dendorfer et al. 2020) gives a positive indication of
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usage of depth cues in MOT for the improvement. We coudld the improvement in

all three HOTA, DetA and AssA in above two datasets. Therefore, it concludes

that the depth information can be utilized to advance MOT.

6.3 Limitations

Main limitation of the our approach is, as we are using the off-the-shelf models

we needs very intensive strategy to utilize the potential of cross-domain models.

Because when we working in log videos our approaches slightly under perform.

6.4 Future works

With that, as a preliminary research we only used one algorithm to understand

our methodology by reducing additional complexity. But if we explored the other

MOT algorithms we could get more clear understanding of our approaches.

We could further push the limits of these approaches by involving parameter

training as these features are entirely new for the domain. But as these trainings

are resource and time intensive, my be in the future introduction of some optimiza-

tion strategies could make these training feasible and could help to improve our

approaches further.
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