
Virtual Machine Proactive Fault
Tolerance using Log-based Anomaly

Detection

Pratheek Senevirathne
Index number: 19001622

Supervisor: Dr. Dinuni Fernando
Co-Supervisor: Dr. Jerome Dinal Herath

May 2024

Submitted in partial fulfillment of the requirements of the
B.Sc. (Honours) in Computer Science Final Year Project

Declaration

I certify that this dissertation does not incorporate, without acknowledgement,

any material previously submitted for a degree or diploma in any university and

to the best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, be

made available for photocopying and for interlibrary loans, and for the title and

abstract to be made available to outside organizations.

Candidate Name: P. L. W. Senevirathne

Signature & Date

This is to certify that this dissertation is based on the work of Mr. P. L. W.

Senevirathne under my supervision. The thesis has been prepared according to

the format stipulated and is of acceptable standard.

Supervisor Name: Dr. Dinuni K. Fernando

Signature & Date

Co-supervisor Name: Dr. Jerome Dinal Herath

Signature & Date

i

28-09-2024

28-09-2024

prath
Sign

Dinal
28-09-2024

Abstract

Virtual Machine (VM) fault tolerance ensures high availability in cloud computing

environments. Proactive fault tolerance strategies, which identify potential failures

before they occur and move VMs to healthy hosts, help avert service disruptions

due to VM failures. In recent years, there has been a wide adoption of Machine

Learning (ML) approaches for fault detection. However, existing approaches often

rely on ML models trained on labeled data, which can be challenging to obtain.

They also require a large amount of training data and may struggle with real-time

failure prediction and fast adaptation to dynamic environments. In this work, we

propose VMFT-LAD (Virtual Machine Proactive Fault Tolerance using Log-based

Anomaly Detection), a semi-supervised log anomaly detection model for proactive

VM fault tolerance. VMFT-LAD leverages the e�ciency of the Matrix Profile for

anomaly detection and the log inference capability of Large Language Models

(LLMs) to continuously learn and identify potential failures, including unforeseen

fault types, with minimal human intervention. By focusing on detecting anoma-

lies in log data, our approach operates without the need for labeled failure data.

Extensive evaluations on several datasets demonstrate VMFT-LAD’s outstanding

performance, achieving a Numenta Anomaly Benchmark (NAB) standard score

of 90.74 under the criterion of predicting failures before the failure point. Com-

pared to state-of-the-art anomaly detection models, VMFT-LAD demonstrates a

high early detection rate of 96.28% while maintaining a low false positive rate of

0.02%, enabling timely VM migration before failures occur. The results highlight

the superiority of VMFT-LAD in facilitating reliable and proactive fault tolerance

strategies in virtualized environments.

ii

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervi-

sors, Dr. Dinuni Fernando and Dr. Dinal Herath, for their invaluable guidance,

unwavering support, continuous encouragement, and motivation throughout this

research project. Their insightful feedback and expertise were invaluable in shap-

ing the direction of this project and ensuring its successful completion.

I would like to thank Samindu Cooray, who assisted me in setting up the servers

at the Network Operations Center (NOC) at UCSC and provided the necessary

migration time data needed for the evaluation of this work. I should also thank

WSO2 for providing the servers and Dr. Dinuni Fernando for facilitating their

collaboration, without which this project would not have been possible.

I would like to extend my appreciation to the sta↵ at NOC for their hard work

in setting up the servers and granting us access to the server room. I should also

thank all the servers I used for this project, for not failing up on me, even though

I stressed them to their limits.

Finally, I am eternally grateful to my parents, siblings, and colleagues for their

unwavering support, encouragement, and understanding throughout this challeng-

ing journey. Their presence and belief in me were a constant source of motivation

throughout the project.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Virtual Machine Live Migration 1

1.1.2 System logs and Log parsing 4

1.1.3 Fault Injection . 5

1.1.4 Machine Learning for Log Analysis 5

1.1.5 Log Key Subsequences . 6

1.1.6 Anomaly Detection Using Matrix Profile 7

1.1.7 Real-time Anomaly Detection Models 8

1.1.8 Natural Language Understanding 9

1.2 Motivation . 9

1.3 Research Questions . 11

1.4 Aims and Objectives . 11

1.5 Scope . 12

1.5.1 In Scope . 12

1.5.2 Out of Scope . 12

1.6 Outline of the Dissertation . 13

2 Literature Review 14

2.1 Physical Machine Failure Prediction 14

2.2 Virtual Machine Failure Prediction 14

2.3 Virtual Machine Live Migration Time Estimation 15

2.4 Supplementary Details . 16

3 Data Collection 18

3.1 Experimental Testbed . 18

3.2 Failure Scenarios . 20

3.3 Data Preprocessing . 22

4 Design and Implementation 24

4.1 Anomaly Detection . 25

4.2 Adaptive Learning . 28

4.3 Subsequence Store . 30

iv

5 Evaluation 32

5.1 Evaluation Criteria . 32

5.1.1 Criteria-1: relaxed . 32

5.1.2 Criteria-2: strict . 32

5.2 Evaluated Models . 33

5.3 ROC Curve Analysis . 34

5.3.1 HDD Failure Dataset . 34

5.3.2 CPU Over-allocation Failure Dataset 35

5.3.3 OOM Failure Dataset . 37

5.3.4 Bu↵er I/O Error Dataset . 37

5.4 NAB Scores . 38

5.5 Model Execution Time Analysis . 40

6 Hyperparameter Tuning 42

6.1 Training Period and Subsequence Length 42

6.2 Similarity Threshold . 43

7 Discussion 45

7.1 Utility of Anomaly Detection in Proactive VM Fault Tolerance . . . 45

7.2 Exploring LLM Usage Paradigms 47

7.3 Comparing LLM performance . 48

7.4 Properties of an Ideal VM Failure Predictor 49

8 Conclusions 51

v

List of Acronyms

VM Virtual Machine

OS Operating System

VMM Virtual Machine Monitor

PM Physical Machine

AWS Amazon Web Services

GCP Google Cloud Platform

CDC Cloud Data Center

FT Fault Tolerance

SLA Service Level Agreement

ML Machine Learning

CI Continuous Integration

CD Continuous Delivery

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

FNN Feed-forward Neural Network

SVM Support Vector Machine

VNF Virtual Network Function

NFV Network Functions Virtualization

vEPC Virtual Evolved Packet Core

IDS Intrusion Detection System

NLP Natural Language Processing

NLU Natural Language Understanding

BERT Bidirectional Encoder Representations from Transformers

NAB Numenta Anomaly Benchmark

vi

1 Introduction

A Virtual Machine (VM) can be thought of as a software emulation of a physical

computer. This technology allows several Operating Systems (OSs) to run on a

single computer/server, each with its own virtualized hardware, and each VM func-

tions separately from the other VMs in the same Physical Machine (PM). VMs

are used for a variety of purposes, including testing and development, applica-

tion deployment, building Continuous Integration (CI)/Continuous Delivery (CD)

pipelines, server consolidation, running legacy applications, etc. They are man-

aged by the hypervisor, which is also known as a Virtual Machine Monitor (VMM),

a piece of software that creates and manages VMs.

As with any system, VMs are failure-prone. VM failures may occur at any

moment of its execution or during migration from one host (PM) to another. VM

failure can be seen as a failure in the end-user application/service running in the

VM. An end-user application/service may experience a failure when there is a

failure or an error in the PM (host) hardware components, network, or in software

components such as the host OS, hypervisor, VM instance, the guest OS running

in the VM, or due to a failure in the end-user application itself [1].

VM failure can cause downtime and loss of user data, and disrupt service

availability, leading to negative impacts on users and business operations. By

utilizing failure prediction and proactive VM migration techniques, we can greatly

reduce service downtime due to VM failures. One e↵ective approach for proactive

VM migration is live migration, which enables VMs to be migrated to a healthy

PM while maintaining service continuity [2], [3].

All of the above-mentioned hardware, software, and firmware components re-

lated to VMs generate logs that contain valuable information about systems’ states

and events, including fault and failure data. Using Machine Learning (ML) tech-

niques to analyze these logs, it is possible to predict VM failures and proactively

move VMs from faulty PMs to healthy ones before the failure occurs [4].

1.1 Background

1.1.1 Virtual Machine Live Migration

Ensuring high availability and uninterrupted service delivery is paramount in vir-

tualized environments such as Cloud Data Centers (CDCs). VM Live Migration

is an e↵ective technique for achieving this goal. Live migration allows for the

seamless transfer of a running VM from one physical host machine (source) to

1

another (destination), with minimal disruption to its operation [1]. This process

involves copying the VM’s memory state, CPU context, and virtualized devices

to the destination server while it continues to execute. By using live migration,

cloud administrators can proactively address potential VM failures or resource

constraints.

This proactive approach to fault tolerance contrasts with reactive methods

that handle failure only after the fact. Live migration for proactive fault tolerance

works by identifying and anticipating potential hardware or software issues with

the host machine by using a predictive algorithm, such as the one we propose to

identify imminent hardware/software problems, to trigger the live migration to

move the VM to a healthy host, preventing service disruption due to a failure [2],

[3].

There are three sub-categories under VM live migration: Pre-copy migration,

Post-copy migration, and hybrid approach. Figure 1 illustrates the timeline of

pre-copy vs post-copy methods.

Figure 1: Pre-copy vs Post-copy timeline [5]

1. Pre-copy:

A pre-copy migration scheme will migrate the VM from a probable failing

node to a target node by iteratively copying all of its memory content before

stopping it in the source node and activating it in the target node. This

migration scheme is resource intensive, and the total migration time is also

comparatively high [6].

2. Post-copy:

2

This scheme will migrate the VM from the host node to the target node by

immediately suspending the VM and capturing the minimum possible state

to migrate the VM. This is then moved to the target, and the VM is started

in the target. And if the guest OS requires a page to read/write that is not

already copied, the migration system will copy it to the VM memory on the

fly over the network. When all the pages are copied from the source server,

the connection to the server will be terminated, and the source VM can then

be terminated [7].

3. Hybrid approach:

These frameworks integrate the properties of both the previous methods to

reduce migration time and improve system performance. It includes a finite

pre-copy stage before moving on to migrating the VM and running the post-

copy stage. This greatly reduces the page faults that may occur in the future

as a large amount of the memory is already copied, so this method reduces

the workload on the network and improves the application performance[8].

While live migration helps avert VM failure, the live migration process itself

might fail before the migration completes, leading to a complete loss of the VM

state. A live migration fault tolerance technique like [9], [10], which uses a check-

pointing mechanism, can be employed to prevent such failures. However, using

such a mechanism is outside of the scope of this research.

Reactive Virtual Machine Migration: This method is the most widely

adopted and used method in cloud VM Fault Tolerance (FT). Reactive migration

deals with faults after they have happened; that is, they migrate the VM to a suit-

able destination node after a fault/failure has been detected. Using this method

will take some time to get the failed VM properly running back again, which may

lead to Service Level Agreement (SLA) violation. Even though this method is

undesirable, one advantage of this method is that the overhead associated with

running a machine learning algorithm to predict fault occurrence is completely

avoided in this mechanism [8].

Proactive Virtual Machine Migration: These frameworks continuously

monitor the system and predict fault occurrence using an ML or a similar ap-

proach, and if a VM or the PM is predicted to fail, it will migrate the VM(s) to a

chosen healthy PM. This work is focused on proactive migration, where the failure

is predicted using an ML approach by analyzing logs.

3

1.1.2 System logs and Log parsing

System logs contain live information regarding the system status and events.

These events can occur in the operating system, applications, or hardware de-

vices. Logs include system events and statuses such as hardware changes, appli-

cation events, errors, warnings, performance metrics, and security events. Logs

help us understand the system state, debug performance issues, and perform root

cause analysis.

The structure of each log file is di↵erent and has a unique format; however,

each log line contains the timestamp at which it was logged, the log verbosity level

(INFO, WARNING, SEVERE, etc.), the application information, and the actual

log data. The log messages are text printed by logging statements in program code

such as print(), logging.info(), logger.log() written by the program developers [11].

The events are logged as they happen from currently running processes, so the logs

are an ideal source of information for live system status investigation.

Following is a small extract from the kernel log file,

Sep 12 09:54:45 cloudnet2 kernel: [93248.482863] br0: port 2(tap1)

entered disabled state

Sep 12 09:54:45 cloudnet2 kernel: [93248.482991] br0: port 4(tap3)

entered disabled state

Sep 12 12:10:46 cloudnet2 kernel: [8132.463411] FS-Cache: Loaded

Sep 12 12:10:46 cloudnet2 kernel: [8132.541471] FS-Cache: Netfs 'nfs

' registered for caching

The unstructured log data needs to be parsed in some way to make them

structured, e�cient, and easier to analyze [12]. In this study, we utilize the log

parsing technique, which transforms the log messages into log keys and values.

For this, the parser must distinguish the constant and variable parts of each raw

log message. The parser assigns a unique identifier for each constant part of the

log line; this identifier is the log key. The variable part is extracted as the log

parameters [11], [13].

The constant part is analogous to the log printing statement in the program

source code [12]; for example,

printf("%s: port %d(%s) entered %s state", bridgeName, portId,

portName, portState)

The parser outputs parsed log lines as log key and value pairs. Table 1 presents

the sample parsed log data output for the above log lines. These values can then

be directly used in log analysis.

Most of the logs will not have any failure or failure indicating logs because

4

Parsed log line Log key Log values

br0: port h*i(taph*i) entered h*i state 101 [2, 1, disabled]

br0: port h*i(taph*i) entered h*i state 101 [4, 3, disabled]

FS-Cache: Loaded 102 []

FS-Cache: Netfs h*i registered for caching 103 [nfs]

Table 1: Sample Parsed log lines

the VM will not fail under regular operation. Waiting for the VMs to fail is not

feasible because a VM may not fail in its usual operation and may take months

or years to fail under normal conditions. To tackle this issue, we need a way to

simulate VM and host failures; fault injection is an e↵ective way of simulating the

VM and host failures [4].

1.1.3 Fault Injection

Fault injection is a software testing technique used to intentionally introduce faults

or errors into a system or component to evaluate its behavior and robustness in

the presence of unexpected or adverse conditions. The primary purpose of fault

injection is to assess how a system responds to faults, errors, or failures and to

identify weaknesses in its design or implementation. In this context, we use fault

injection software to simulate host and VM failure scenarios. Simulating high

resource demands and hardware faults allows for identifying and collecting near-

failure and failure logs. The near-failure logs will contain warning messages, fault

logs, and other valuable logs for VM failure prediction.

1.1.4 Machine Learning for Log Analysis

We can utilize several supervised, semi-supervised, and unsupervised ML tech-

niques for log analysis. Recent studies on the subject [4], [14], [15], have primarily

utilized supervised ML models for failure prediction by analyzing the logs, and

they have shown that several ML models prove to be e↵ective, and the authors

have shown that Convolutional Neural Networks (CNNs) and Long Short-Term

Memory (LSTM) models have shown superior performance over other models in

the reviewed papers. However, supervised models are not preferred because they

may fail to identify failure situations that they are not trained on.

Some ML models, like CNN, require the logs to be in a numerical format, such

as vectors. There are several approaches to achieve this conversion. One common

method is to employ word embedding, which involves using a language model to

5

convert log words into tokens and then represent them as vectors. This technique

captures the semantic meaning of the words and their relationships within the log

data [4]. Alternatively, we can also consider converting the logs to a log event

count representation, where each log event is treated as a feature, and the count

of occurrences of each event is recorded [15].

In the Literature Review section, we will discuss how the authors of the related

papers have approached this conversion step and which ML algorithms they have

used, providing further insights into their methodologies.

This study mainly focuses on developing a semi-supervised model using the

above-mentioned log key and value representation for this conversion step because

of its simplicity and speed.

1.1.5 Log Key Subsequences

To extract log key subsequences, we first obtain the timestamp and log message

from the log files. Using an online log parser like Drain [16], we parse the log

message to extract the log template and its corresponding identifier (log key).

The output, consisting of the timestamp and the log key, forms a time series of

log keys. Given a log key time series T = t1, t2, . . . , tn�1, tn, the subsequence of

length m at a fixed position i is defined as Ti,m = ti�m+1, ti�m+2, . . . , ti�1, ti, where

ti is the i
th log key of the time series T , and i � m, i  n.

The distance between any two such subsequences can be calculated using var-

ious vector distance measures. The most commonly used measure, employed in

the Matrix Profile [17], is the z-normalized Euclidean distance. For two given

subsequences Ti,m and Tj,m, the z-normalized Euclidean distance is defined as:

D
E(Ti,m, Tj,m) =

����
Ti,m � µi

�i
� Tj,m � µj

�j

����
2

, (1)

where µi, µj and �i, �j are the mean and standard deviation of the subsequences

Ti,m and Tj,m, respectively.

For a given subsequence Ti,m, the vector of distances between Ti,m and each sub-

sequence of T is called the distance profile, denoted asDi = di,m, di,m+1, . . . , di,n�1, di,n,

where di,j is the z-normalized Euclidean distance between Ti,m and Tj,m.

Using the distance profile for a subsequence Ti,m, we can quickly identify the

closest matching subsequence to it, excluding its trivial match, by finding the

minimum distance profile value. The matrix profile P is defined as the vector

that stores this minimum distance for each subsequence in the time series T ,

6

i.e., P = min(Dm),min(Dm+1), . . . ,min(Dn�1),min(Dn). A small value in the

Matrix Profile suggests that the subsequence pattern appears in other parts of

the time series, known as a motif. Conversely, an unusually high Matrix Profile

value (discord) indicates that the given subsequence is unique in the time series

and could potentially represent an anomaly.

1.1.6 Anomaly Detection Using Matrix Profile

Given a Matrix Profile P for a time series T , anomaly detection becomes straight-

forward because the anomalous subsequences have a high distance value compared

to the other subsequences [17]. By using an appropriate threshold, we can e↵ort-

lessly identify the anomalous subsequences in the time series, as illustrated in the

figure 2.

Figure 2: An example of a matrix profile and left matrix profiles using Euclidean
distance and relative distance

In an online scenario, the subsequences on the right-hand side of ti are un-

known (future subsequences). The left matrix profile takes this into account and

calculates the distances for a subsequence at time step i based solely on the left-

hand-side subsequences. The first few values of the left matrix profile are high

because there are not many subsequences to compare against during the initial

stages. This is known as the warm-up period of the left matrix profile [18].

We can consider the left matrix profile value at time step i as the anomaly

score for the data point i. However, the Euclidean distance (Equation 1) has no

upper bound, making it challenging to obtain an appropriate anomaly threshold.

As mentioned in [18], we can replace the distance measure of the matrix profile

7

algorithm with any suitable distance measure. An ideal scenario would be to use

a distance measure that outputs a value bounded between 0 and 1. As shown

in RAMP [19], the relative distance measure would be an appropriate choice in

this scenario, as it outputs a value between 0 and 1. The relative distance D
R is

defined as:

D
R(Ti,m, Tj,m) = min

✓
1,
kTi,m � Tj,mk1
kTj,mk1

◆
. (2)

Figure 2 shows the original time series, matrix profile, and left matrix profiles

for both the Euclidean and relative distance measures for the same time series.

1.1.7 Real-time Anomaly Detection Models

Over the past decade, many researchers [12], [20]–[26] have proposed various real-

time machine-learning-based anomaly detection models. Although most super-

vised models have reported superior performance [23]–[26], they are not preferred

because most real-world systems do not match their strict criteria. For example,

in many scenarios, it is infeasible for a human operator to label each data point

as normal or abnormal, especially when dealing with several hundred to several

thousand data streams. Additionally, it is impossible to identify all anomalous

situations a priori to train a supervised model. Unsupervised or semi-supervised

models are preferred because they can be adapted quickly to any real-world sce-

nario.

There are two main categories of unsupervised/semi-supervised anomaly de-

tection models. The first category involves anomaly detection using possible next-

value prediction. An anomaly is flagged if the predicted value deviates significantly

from the actual value. Models like HTM [21], Autoencoders [22], Long Short Term

Memory (LSTM), and other neural network (NN)-based models like Deep Log [12]

follow this approach with high prediction accuracy. However, the main disadvan-

tage of an NN-based approach is that it requires a large amount of training data.

The other category detects abnormal values that do not match pre-configured

benign (normal-state) values. The matrix profile model described above falls into

this category. Some models use a distance measure like the distance to k nearest

neighbors of a value [20], or kernel-based methods like EXPoSE [27] and SVM

[28].

8

1.1.8 Natural Language Understanding

All logging statements generated by software applications are written in natural

language, predominantly in English. This allows us to leverage Natural Language

Understanding (NLU) techniques to extract insights from the log data, rather than

just interpreting them at a superficial level. NLU, a field within Natural Language

Processing (NLP), aims to enable machines to interact with human language and

understand the meaning behind sentences. In recent years, we have seen a massive

boom in this area, giving rise to transformer-based [29] large language models

(LLMs) like BERT [30] and GPT [31]. Some of these models show comprehension

ability that surpasses human experts in specific domains [32], [33]. It is shown

that the size of the LLM (number of parameters) is directly proportional to its

performance [34]; however, there are some relatively small models fine-tuned for

specific tasks that outperform large models [35]. The success of LLMs can be

mainly attributed to few-shot (conditioning the model with few examples) and

zero-shot learning, where we directly prompt instructions [36].

The ability to understand natural language can be leveraged to gain insights

from log data, which has information about system events and behaviors. By ap-

plying NLU techniques, we can extract contextual information from log messages

rather than treating them as sequences of log keys. This leads to more e↵ec-

tive anomaly detection, root cause analysis, and improved interpretability of the

models’ decisions.

1.2 Motivation

The software industry has widely adopted deploying applications and services

on large-scale cloud platforms like Amazon Web Services (AWS), Google Cloud

Platform (GCP), and Microsoft Azure in recent years [37]. These cloud service

systems are required to o↵er a range of services to millions of users worldwide

every day, which makes high service availability crucial. Even minor issues can

have significant consequences, and many service providers have put in considerable

e↵ort to maintain it [38].

Cloud VM is one such service provided by the cloud vendors, and they use

several fault tolerance methodologies to keep the VMs up and running most of

the time with minimal service downtime. For example, AWS claims to have “five

nines” [39], which means a service availability of 99.999%, allowing at most 26

seconds of downtime per month per VM.

Despite significant e↵ort devoted to quality assurance, cloud service systems

9

continue to face many problems and frequently fail to meet user requests. These

problems are often due to computing node (physical server) failures and VM fail-

ures within cloud service systems[40], [41]. Such systems typically comprise a

vast number of computing nodes that provide processing, network, and storage

resources for VM instances.

Accurate failure prediction will reduce VM downtime significantly, but as iden-

tified by Lin, Hsieh, Dang, et al. [40], the failure prediction of cloud service systems

is extremely challenging due to the following reasons,

Complex causes of node failure: Because of the complexity of the cloud

architecture, the node (PM) failure may be caused by di↵erent software or hard-

ware issues.

Complicated failure indication: Detection of failure of the node is hard

and could be indicated by many signs, and one node failure may a↵ect other nodes

to fail due to explicit/implicit dependencies among them.

Highly imbalanced failure data: Node fault/failure data are extremely

unbalanced, meaning most of the data collected by the nodes will be allocated to

the healthy class, and failure data are very rare because of the low failure rate of

the nodes.

Researchers have attempted to achieve high VM availability by building a

node failure prediction algorithm to proactively move the failure-prone VMs to a

healthy node using live migration. They have used several strategies to achieve

this while tackling the issues mentioned earlier. Most of them have used physical

server (node) resource usage history data to train an ML model to predict the

possible future node failure. Even though these papers claim to have achieved

successful node failure prediction, they have left out the most crucial part of any

digital system that keeps track of the system state and the events: the logs.

VM live migration takes some time, say x minutes, to move a VM from one

node to another, so we need a way to reliably predict the VM failure before the

time it takes to move the VM to a healthy node. That is, the failure should be

predicted x minutes to VM failure. Most of the papers in this area have ignored

this basic fact, and even though the failure prediction may be accurate, the VM

may fail during migration due to late failure prediction.

Overall, utilizing log analysis and machine learning to detect failure indicators

in logs and predicting VM failures before the time it takes to migrate the VM and

proactively migrating the VM using the live migration technique is an e↵ective

strategy for reducing service downtime and ensuring a seamless user experience.

10

1.3 Research Questions

1. How to e↵ectively utilize VM and server logs for machine learning (ML)

based VM failure prediction?

2. How to develop a generalized VM failure prediction approach using log anal-

ysis, enabling its applicability to a wide range of generic VMs?

3. How can the timing of VM failure prediction be optimized to ensure a suc-

cessful migration, considering the total time required for the VM migration?

1.4 Aims and Objectives

The main aim of this study is to advance the field of virtual machine failure

prediction using log analysis for VM fault tolerance, contributing to improved

reliability and performance of VMs in server environments such as Cloud Data

Centers (CDCs).

These are the main objectives of this study:

• To develop a generalized ML-based prediction approach that leverages key

events and indicators present in VM and server logs to predict failures in a

variety of VMs.

• To asses the prediction times of the system, compared to the total time

required for the VM migration to ensure successful VM migration.

• To evaluate the proposed prediction approach and compare its performance

against existing techniques using VM and server log data.

11

1.5 Scope

1.5.1 In Scope

• VM failure simulation: The VM failure log dataset will be collected by

simulating VM and PM failures using fault injection techniques because the

collection of real-world failure data is infeasible during the project timeframe.

• VM failure prediction: The study will focus on developing and evaluating

techniques for predicting failures in both VMs and PMs running Ubuntu

Server as the host OS, using the logs from the server and the hypervisor

(QEMU-KVM).

• Log analysis: The research will explore the utilization of logs generated

by the server and QEMU-KVM hypervisor to extract log events and system

states for failure prediction using an ML approach.

• Online prediction: The project will emphasize the development of an

online prediction model that can continuously monitor logs to detect failure

indicators to predict failures.

1.5.2 Out of Scope

• Simulation of long-term and cascading VM failures: This project

will emphasize the simulation of only independent failures (like hard disk

failure) within a short time window. We did not simulate long-term failure

scenarios and cascading failure scenarios, where one failure may lead to an-

other due to time constraints, and their complexity. It is also worth noting

that any method/algorithm that can identify short-term failures and inde-

pendent failures should also be capable of identifying long-term failures and

cascading failures even ahead of time.

• Integrity of VMs before failure: We assume that the anomalies (faults)

do not cause the VM to corrupt before the failure and the integrity (cor-

rectness) of the VMs’ disk, memory, and state remain the same as if it were

in the normal operation condition. The VM may get corrupted after the

failure.

• Network-related failures: The research will not specifically address fail-

ures related to network components or network infrastructure. It is impor-

tant to note that in cases where network failure occurs, migration of the

12

VM may not be feasible or e↵ective, as the network failure may impact the

migration process itself.

1.6 Outline of the Dissertation

The rest of this dissertation is organized as follows: Section 2 reviews the related

work for this research. Section 3 discusses the data collection process. Section 4

presents the design and implementation details of VMFT-LAD. Section 5 evaluates

the performance of VMFT-LAD using various metrics and compares it with state-

of-the-art anomaly detection models. Section 6 shows how the hyperparameters

of our model a↵ect its performance. Section 7 discusses the utility of log anomaly

detection on proactive VM fault tolerance and the implications and potential

upgrades for our model. Section 8 concludes the paper and presents possible

future research directions.

13

2 Literature Review

2.1 Physical Machine Failure Prediction

In large-scale cloud computing environments with thousands of physical servers,

it is inevitable to encounter frequent server failures. According to the studies by

Vishwanath and Nagappan [42], and Birke, Giurgiu, Chen, et al. [43], approxi-

mately 6-8% of all servers experienced at least one hardware issue during a year.

Therefore, accurately predicting PM failures is crucial for ensuring cloud system

FT.

Numerous studies have been conducted on this topic [40], [44]–[47], and most

researchers have utilized PMs’ resource usage history data in combination with

ML approaches to predict failure. The system administrators label the collected

data to train a suitable supervised ML model to predict the failures. For example,

the framework proposed by Guan, Zhang, and Fu [44] uses an unsupervised failure

detection model using an ensemble of Bayesian models, and the found anomalous

data get verified and labeled by system administrators. This labeled data is then

used to train a random forest model to classify the server resource usage data as

failure-prone or healthy. The framework proposed by Sun, Chakrabarty, Huang,

et al. [45] uses a CNN model to predict the PM failures. A similar framework

proposed by Gao, Wang, and Shen [46] uses a Bi-directional LSTM model.

One notable framework that stands out from the rest is the MING framework,

developed by Lin, Hsieh, Dang, et al. [40] at Microsoft Research. Its successful

deployment in a production cloud environment sets MING apart, demonstrating

its practicality and e↵ectiveness. MING uses temporal data, such as performance

data, log rate, and OS events, and spatial data, such as the server rack location

and load-balancer data, to train a LSTM and Random forest models, respectively,

to predict the server failure. MING also has a server ranking system, which will

rank all the servers from their failure-proneness. Top k servers can then be selected

as the faulty servers.

2.2 Virtual Machine Failure Prediction

When it comes to VM failures, it can be due to either the physical server it is

running on or any of the software components involved, such as the host OS,

hypervisor, or guest OS. So, physical server failure prediction is a subset of VM

failure prediction.

14

An analysis conducted by Birke, Giurgiu, Chen, et al. [43] revealed that 60%

of the collected VM failure cases were attributed to physical server failures, while

the remaining 40% were caused by other factors. One approach to addressing VM

failures is the utilization of redundant VMs [48], [49]. For instance, Scales, Nelson,

and Venkitachalam [48] discusses the VMWare VSphere 4.0 VM FT architecture,

which employs a redundant VM pattern to replicate the entire execution state of

the primary VM through a backup VM on another physical server. Nevertheless,

this redundancy strategy can lead to increased costs for cloud service providers,

which is not ideal.

An alternative approach involves predicting VM failures and proactively mi-

grating the failure-prone VMs to other physical servers. Similar to the prediction

of physical server failures, several studies have focused on VM failure prediction

using ML models based on the VM’s resource usage history. For instance, Sax-

ena and Singh [50] conducted a study utilizing an ensemble of predictors using

Feed-forward Neural Network (FNN), Support Vector Machine (SVM), and Lin-

ear Regression (LR) ML models to identify failure-prone VMs and proactively

migrate them to a di↵erent host.

Although there is a significant body of research on PM/VM failure prediction

utilizing resource usage data, the literature on VM failure prediction using log

analysis remains relatively scarce. We will discuss the few papers we found that

specifically address this topic in the Supplementary Details subsection.

2.3 Virtual Machine Live Migration Time Estimation

VM live migration time estimation/prediction is another aspect of successful VM

failure prediction because the failure should be predicted before the time it takes

to migrate the VM. If not, there will be migration failures or downtime. In this

study, we focus on QEMU-KVM live migration, where the VMs’ disk images are

located on a network file system, and hence, disk image migration is not required.

There are several studies on KVM live migration time estimation/prediction,

where most use a statistical method to calculate the estimated migration time.

In this work, a statistical approach is preferable over an ML-based prediction

technique because of low resource utilization.

Elsaid, Abbas, and Meinel [51] have conducted a survey on VM live migration

cost-modeling, and under section 7 of their paper, they have compared several

models for VM migration time estimation. The simplest model they found was

t = as+ b, where s is the VM memory size, and a and b are constants. This shows

15

that the VM migration time directly depends on the VM memory. However, the

study by Nathan, Bellur, and Kulkarni [52] shows several additional parameters

a↵ecting pre-copy migration time, namely, VM memory size, page transfer rate,

number of unique pages dirtied during each iteration, and the number of skipped

pages. The memory size and the transfer rate can be predetermined. The other

two parameters depend on the application running on the VM. Thus, to accurately

predict the migration time of the VM, we may need to use VM resource usage data.

The discussed literature focuses on the pre-copy live migration approach. In

most cases, the pre-copy takes longer to migrate a VM when compared to other

methods [6], [7]. Thus, the above-mentioned migration time estimation method is

su�cient for this research.

2.4 Supplementary Details

The framework proposed by Nam, Hong, Yoo, et al. [4] focuses on predicting the

future failure of Virtual Network Functions (VNFs) in a Network Functions Vir-

tualization (NFV) environment built on OpenStack cloud management software

[53]. VNF is a VM that runs a network function application such as a firewall or

an Intrusion Detection System (IDS). They leverage log data generated by the

VNF application and the VM to predict failures. To convert the log data into word

embeddings, they employ a Natural Language Processing (NLP) technique using

the Google Word2Vec library [54]. A CNN model is then used for failure predic-

tion. The Word2Vec-CNN model achieved an overall F1 score of 0.67, predicting

VM failure before 5 minutes of the actual failure.

The authors collected the training log data by using a fault injection method

to simulate VM failures. Log data is collected at intervals (m minutes), and labels

indicating whether the VM failed are collected after a gap time (n minutes). The

trained CNN model predicts VM failure before the gap time. However, the authors

observed some unexpected failures with no corresponding failure logs. Therefore,

VM failure prediction through log analysis may not cover all possible VM failure

scenarios.

In their subsequent work [14], the same authors improved their approach to pre-

dicting VM and PM failures in a similar NFV environment. Instead of Word2Vec,

they employed the Google Bidirectional Encoder Representations from Transform-

ers (BERT) [55] for word embedding and a CNN model for prediction. The BERT-

CNN model achieved an F1 score of 0.74, predicting server failure 30 minutes

before the actual failure. However, the impact of the prediction models on VMs’

16

performance is not mentioned in either paper.

Jeong, Van Tu, Yoo, et al. [15] proposed a framework to predict paging failure

of Virtual Evolved Packet Core (vEPC) in 4G networking. They used VM and

server logs and resource usage information to predict VM failure. Unlike the NLP

approach in the previous papers, they used the log count (number of occurrences)

of specific log types and resource usage data as inputs to an LSTM model for VNF

failure prediction. They evaluated the total system throughput with and without

the proposed proactive migration system and demonstrated that the framework

successfully prevents long-term vEPC failures leading to depleted throughput.

It is important to note that there is a scarcity of research in the area of virtual

machine failure prediction using log analysis, as indicated by the limited number

of papers identified during the search. This highlights the need for further research

and exploration in this specific field to bridge the existing knowledge gap.

17

3 Data Collection

This section discusses how log data is collected for testing and model evaluation,

We collected log data from 4 physical machines over 5 months, simulating di↵erent

failure scenarios. Two physical machines were deployed to simulate VM failures

(source servers), and the other two were set up to monitor the activity and log

data collection. The physical machines consisted of two IBM System x3560 M4 -

48-core Intel Xeon E5-2697v2 machines with 338 GB of memory connected with

Gigabit Ethernet acting as a source and a monitoring server, and two HP Z620

Workstation - 12-core Intel Xeon E3-1200v3 machines with 16 GB of memory, also

connected with Gigabit Ethernet acting as a source and a monitoring server.

While public log datasets, such as Loghub [56], are readily available, they have

significant limitations for our specific research needs. They lack log datasets re-

lated to VM/Server failures, which is essential for our study. Moreover, they do

not include critical features we require for analyzing the feasibility of proactive VM

fault tolerance. Specifically, they are missing essential metadata, such as times-

tamps associated with the initial fault (in our case, the fault injection time) and

the eventual failure. These timestamps are necessary for assessing the potential

for implementing proactive fault tolerance mechanisms in VMs.

3.1 Experimental Testbed

Figure 3 presents the high-level architecture of the testbed setup. The servers had

Ubuntu server host OS and QEMU-KVM hypervisor installed. We configured the

rSyslog client and rSyslog server in the source and monitoring servers, respectively,

to collect and stream log data from the source server. Some of the log files we

collected include kernel log, sudo log, systemd log, networkd log, other application

logs, and QEMU logs for each VM.

In the source server, we configured three VMs, each running real-world and

synthetic workloads to simulate typical VM usage scenarios. On the monitoring

server, we set up a single VM running the Seige application to perform load testing

on the web server running on the source server, simulating client web requests.

Additionally, we implemented three modules: one for monitoring the live/failure

status of the VMs and source server, another for collecting timestamps of VM/host

failures, and a backup module for pushing the collected log data and labels to

Azure blob storage for later access.

The monitoring module works using a heartbeat protocol, where the host and

18

Figure 3: Data collection testbed architecture

VMs send a signal to the monitoring module every 15 seconds via an HTTP GET

request using a CRON (the periodic job scheduler of Linux) task to indicate that

they are alive. HTTP requests not only verify the VM reachability but also verify

that the applications running in VMs function properly.

In normal conditions and under heavy load, the VMs are expected to perform

without any service disruption, without dropping any connection, so for a general

scenario, we define the failure as the point at which the monitoring module does

not receive a heartbeat pulse from the host or the VMs within 18 seconds. We

chose 18 seconds because it gives su�cient time (3 extra seconds) to account for

slight timing di↵erences and other delays and to confirm total VM failure. For

specific scenarios, such as Out of Memory (OOM), we define the failure point

di↵erently, as described below (section 3.2).

19

3.2 Failure Scenarios

According to Vishwanath and Nagappan [42], 78% of server failures are attributed

to hard-disk-related issues, while 5% are caused by memory-module-related prob-

lems. According to Cano, Aiyar, and Krishnamurthy [57], about 30% of the

failures in private cloud servers are related to HDD failures, while 16% are caused

by memory-related issues. The CPU and motherboard are considered the most

reliable hardware components in servers [42], and they observed no failures in

these components during their study period. When it comes to VM failures, most

instances are due to resource over-utilization [26], [43], such as physical machines

running out of memory and very high CPU utilization. Handling VM failures that

originate from network failure is outside the scope of this research because network

failure may impact the migration process, rendering VM migration impractical as

a solution for network-related failures.

Given the low probability of individual servers failing within a year and the

need to study a variety of failure scenarios, we opted to simulate server/VM failures

using fault injection techniques rather than waiting for actual failures to occur.

We simulated the following errors in this study to collect log data for the

evaluation of VMFT-LAD,

1. Out of memory (OOM) failure - The OOM failure was induced by over-

allocating the total memory for VMs by 25% of the host’s total physical

memory capacity. In a cloud environment, OOM failure can occur if the

server consolidation algorithm decides to allocate VMs over the available

physical memory capacity of the host, due to host resource under-utilization

by VMs, and if there is a sudden increase of VM memory utilization. Addi-

tionally, it can occur due to software faults or malicious software installed on

the host. During normal operation, VMs utilize the host’s swap area to man-

age the over-allocation. We injected faults by stressing the VMs’ memory

using the stress [58] tool. We consider the VM failure as the log timestamp

where the host OS invokes the OOM-killer to kill the VM process or the

failure label by the monitoring module, whichever is earlier. Following are

some sample logs collected for OOM failure,

qemu-system-x86 invoked oom-killer:

gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0,

oom_score_adj=0

,!

,!

Call Trace:

dump_stack+0x6d/0x8b

20

dump_header+0x4f/0x1eb

oom_kill_process.cold+0xb/0x10

out_of_memory+0x1cf/0x500

...

2. Hard disk failure - We simulated hard disk failure according to [59] by

creating a faulty pseudo disk using the Linux SCSI debug module. Failures

were defined as the point where we continuously received unrecoverable read

errors for block reads from the faulty disk. We ignore the label of the moni-

toring module as this is a simulated failure. Following are some sample logs

collected for HDD failure,

blk_update_request: critical medium error, dev sdb, sector 4576

op 0x0:(READ) flags 0x80700 phys_seg 32 prio class 0,!

FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE

Sense Key : Medium Error [current]

Add. Sense: Unrecovered read error

CDB: Read(10) 28 00 00 00 12 30 00 00 08 00

...

3. Bu↵er-IO error - Bu↵er I/O error happens when there is a problem trans-

ferring data between the storage device and memory. Multiple such errors

indicate a failure in the disk controller, loose connection, or filesystem cor-

ruption [59]. Similar to hard disk failure, for bu↵er I/O errors, we defined

failure as the point where we continuously encountered several errors, and

as this is a simulated error, we ignored the label of the monitoring module.

Following are some sample logs collected for Bu↵er-IO error,

buffer_io_error: 62 callbacks suppressed

Buffer I/O error on dev dm-0, logical block 0, async page read

Buffer I/O error on dev dm-0, logical block 1, async page read

...

4. CPU over-utilization - We induced VM failure due to CPU over-utilization

by over-allocating the total VM vCPUs by 30% of the available host CPU

cores.bThis failure can happen in a cloud environment if the server consoli-

dation algorithm over-allocates VMs on the host, or due to software faults or

malicious software installed on the host, which may lead to CPU overheat-

ing. During normal operation, the VMs functioned without any noticeable

issues to performance. We used the stress [58] tool to simulate a failure by

stressing the CPU on VMs and the host. For this failure, we consider the

21

failure label from the monitoring module. Following are some sample logs

collected for CPU over-utilization failure,

perf: interrupt took too long (3975 > 3970), lowering

kernel.perf_event_max_sample_rate to 50250,!

INFO: task qemu-system-x86:1431 blocked for more than 3 seconds.

Not tainted 5.4.0-166-generic #183-Ubuntu

qemu-system-x86 D 0 1431 1067 0x00000000

Call Trace:

__schedule+0x2e3/0x740

schedule+0x42/0xb0

io_schedule+0x16/0x40

wait_on_page_bit+0x120/0x240

We focused on simulating short-term failures in this study because of the time

constraints. If anomaly detection works for short-term failures, it should also work

for long-term failure scenarios. Also, the simulated failures are independent failure

scenarios, where one failure does not lead to another failure due to the complexity

and technical di�culty of simulating such cascading failure scenarios. Studying

the real-world failure scenarios of a cloud data center, and evaluating our model

on that dataset can be a possible future research direction.

3.3 Data Preprocessing

This section explains the preprocessing steps to process the raw log data into a

uniform format before anomaly detection.

The collected raw log data are in di↵erent formats, with logging patterns unique

to each log file. However, as mentioned in Section 1.1.2 above, they have a common

pattern of timestamp and log messages. To convert them to a uniform format, we

extract the timestamp and the log message from the di↵erent types of log files.

After extracting the log message, we remove unnecessary logs, such as CRON

logs, that were produced by the VM and host monitoring system, that do not

contribute much to the VM failure prediction task. Next, we utilized the DRAIN-

3 [16] log parser, as explained in Section 1.1.2 above, to extract the log template,

log template ID (log key) and parameters (values).

We simulated approximately 130-150 instances of each failure scenario, result-

ing in a total of 691 datasets with more than one million log lines. Each dataset

has 3 distinct regions: benign region (normal state before fault injection), pre-

failure region (after fault injection), and post-failure region (after failure point).

We format the datasets similar to Numenta Anomaly Benchmark (NAB) [60]. Ta-

22

Dataset
Log lines

Benign Pre-failure Post-failure Total

HDD 79345 74574 10901 164820
OOM 96833 7365 26196 130394

Bu↵er-IO 369499 97918 16274 483691
CPU 58192 50187 13429 121808

Benign 113313 - - 113313

Total data points 1014026

Table 2: Number of log lines in each dataset under each region

ble 2 presents the number of log lines in each dataset under each region of the

dataset.

23

4 Design and Implementation

This section provides the design and implementation details of VMFT-LAD, an

online log anomaly detection model for proactive VM fault tolerance. Fig. 4

illustrates the architecture of our model. It has three main sub-components: an

anomaly detection module, a subsequence store, and an adaptive training module

to handle anomalous situations.

Figure 4: Architecture of VMFT-LAD

Our model runs time-stepped, each time-step is defined as the instance we

receive the next log line, so receiving a new log line would be a new time step. For

each time step, the anomaly detection module takes in a sequence of log keys of

length m, created using the new and past m� 1 log keys. The anomaly detection

module is implemented by utilizing a modified matrix profile model [17]. For

each input subsequence, it calculates an anomaly score based on the subsequences

stored in the subsequence store. When the anomaly score exceeds the preset

threshold ✓, the anomaly detection module invokes the adaptive learning module

and passes in the anomalous subsequence to handle the anomaly situation. An

anomalous situation can occur for two reasons: the anomaly detection module

encountered actual fault-related log data, or it can be due to normal but previously

unseen logging patterns. While most previous works ignore this false-positive

situation, some models [12], [19] use human feedback to adjust their weights to

avoid similar false positives in the future. Getting human feedback for data streams

of thousands of servers in a cloud data center is slow and impractical, so in this

24

work, we employ a Large Language Model (LLM) to replace human feedback.

The adaptive learning module gets the log template for each log key in the

anomalous subsequence and calls an LLM to determine whether the given set of

log templates contains failure-related log messages. With that knowledge, it can

decide whether to send the migration signal to QEMU or update the comparison

sequence store with the current subsequence.

The subsequence store is implemented using max-heap and hash set data struc-

tures. Each subsequence is stored alongside the number of hits to that subse-

quence. The number of hits is the number of times the subsequence gets used

during the run, and the max-heap is maintained according to this number. This

ensures we access the subsequences in the order of their usage, so more frequently

used subsequences get matched first. The hash set is used to prevent the storage

of duplicate subsequences.

4.1 Anomaly Detection

The anomaly detection works in a semi-supervised manner, where the matrix-

profile-based model learns the normal state log key patterns within a given pe-

riod. After the initial learning period, the model calculates an anomaly score for

each incoming log key subsequence. This method aligns with other anomaly de-

tection models, specifically, those implemented/tested in the Numenta Anomaly

Benchmark (NAB) [60].

1. We modify the Matrix Profile similar to RAMP [19] using the relative dis-

tance measure as discussed in Section 1.1.6 above instead of the z-normalized

Euclidean distance.

2. Unlike RAMP, we only use unique subsequences in the initial training period

for comparison, dramatically reducing the model’s memory footprint. We

also employ a max-heap to order the comparison subsequences according to

their frequency of usage so that the most frequently used subsequences will

get matched first. This significantly improves the model’s speed because the

log patterns inherently have frequently repeating patterns.

3. Unlike the Matrix Profile, we are not interested in finding motifs (identifica-

tion of similar patterns), so we employ a two-level thresholding strategy to

increase the e�ciency of our model.

25

4. When the model identifies a subsequence that causes false positives, it sup-

presses it and updates its comparison set to not give a false positive to a

similar subsequence in the future.

Table 3 summarizes the symbols used in all the algorithms below.

Symbol Description

Ti,m Current subsequence
i Current time step
m Subsequence length (Window size)
M Initial learning period (Probationary period)
✓ Anomaly threshold
⌘ Similarity threshold
C Subsequence Store
�i Anomaly score for time step

Table 3: Symbol legend for algorithms

Algorithm 1 presents our anomaly detection algorithm. For every time step

i, the anomaly detection module takes in the current subsequence Ti,m. If the

current time step is in the initial training region, we push the subsequence to the

subsequence store (we will discuss the working of the subsequence store later) and

return 0 as the anomaly score, as we are currently in the training phase (Lines

1-5). This way, the model learns the unique log patterns in the initial benign

region.

Once the training period is over, the model will then calculate the anomaly

score for the current time step �i. First, we assign 1 as a temporary anomaly score

(Line 6). Then, we iterate over the benign subsequences in the subsequence store

in the order of their frequency of usage. For each subsequence Tj,m, we calculate

the similarity of Tj,m and Ti,m using the relative distance measure discussed in the

section 1.1.6 above (Line 8). If the distance between Tj,m and Ti,m is less than

the similarity threshold ⌘ (that means we found a matching benign subsequence),

then we increase the number of hits of Tj,m and set the current distance as the

anomaly score and break out of the loop (Lines 9-12).

Here, we use two di↵erent thresholds, the similarity threshold (⌘) and the

anomaly threshold (✓), to define at which distance we define two subsequences

as similar (⌘), and if we do not find a similar subsequence matching the current

subsequence in the comparison set, at which minimum distance we define it as

an anomaly (✓.) The similarity threshold must be strictly less than the anomaly

threshold (⌘ < ✓); otherwise, the model would identify an anomalous subsequence

26

Algorithm 1 Anomaly detection

1: procedure AnomalyDetection(M, i, Ti,m, ✓, ⌘, C)
2: if i < M then
3: C.push(Ti,m)
4: return 0
5: end if

6: �i 1
7: for Tj,m in C do
8: Calculate relative distance for Ti,m and Tj,m

with equation 2
9: if relative distance < ⌘ then
10: C.increment hits(Ti,m)
11: �i relative distance

12: break
13: else if relative distance < �i then
14: �i relative distance

15: end if
16: end for
17: if �i � ✓ then . Anomaly detected
18: �i AdaptiveLearning(Ti,m, C)
19: end if
20: return �i

21: end procedure

as similar to some subsequence in the comparison set, resulting in no anomalies

being detected.

Also, notice that, unlike the original matrix profile, we did not iterate over all

the subsequences to find an exact match; instead, we opted for a close enough

solution because we are not interested in finding motifs. Next, if the distance

for the current subsequence TJ,m is less than the previous minimum distance, we

update the minimum distance (Lines 13-15).

Once the iteration terminates, we will have the minimum distance for Ti,m

compared with all Tj,m in the subsequence store as the anomaly score for the

current time step i. If the anomaly score �i is less than the anomaly threshold ✓,

we return it. Otherwise, we must identify whether the anomaly is due to an actual

failure-related log or an unanticipated normal log pattern. For that, we call the

adaptive learning module (Lines 17 -19).

27

4.2 Adaptive Learning

The adaptive learning module depicted in the algorithm 2 takes in the anomalous

log key subsequence Ti,m and it will get the log template corresponding to each

log key tj in Ti,m from the log parser, DRAIN-3. Then, we call an LLM to check

for failure/fault indicating logs in the log templates.

The LLM acts as a proxy human user and infers the natural language log,

considering the current context to classify whether the given log template contains

hardware or software failure/fault-related information.

The following techniques can be used to align the LLM to better understand

the context of VM failure-related logs, as understanding the context of VM logs

would potentially require domain knowledge a vanilla LLM would not know of

unless it is guided in that direction. Few-shot learning: we condition the LLM

with few benign log samples to let the LLM understand the context before finally

prompting using the current log template to classify it as failure-related or not.

Zero-shot learning: we prompt the LLM directly with the log template to classify

it without providing any samples. Fine-tuning: we can fine-tune the LLM before

prompting to make the model understand the context better with several log

samples.

With experimentation, we found that few-shot learning, with only a few benign

log template samples, works best for log inference. Also, removing the parameter

placeholders like <:*:>, <:NUM:>, <:HEX:> from the log templates greatly im-

proved the classification accuracy of the LLMs we tested. Zero/few-shot prompting

is advantageous because it is less costly as there is no training requirement [34],

[36], and the LLM will be used as is for inference. Fine-tuning with only benign

log data might cause the LLM to lose its inference capability due to overfitting,

as this was our experience with fine-tuning LLMs. We will discuss this later in

Section 7 below.

We iterate through the log keys in the anomalous subsequence and then call

the LogTemplate extractor function to get the log template corresponding to the

log key from the log parser (Line 3). Then, we call an LLM to check whether

the current log template contains failure/fault indicators using the LogInference

function (Line 4).

The LogInference function works by prompting the LLM with the following

prompt with 18 randomly selected benign log templates (for few-shot learning):

Classify the given log line into faulty or normal.

28

Algorithm 2 Adaptive Learning

1: procedure AdaptiveLearning(Ti,m, C)
2: for tj in Ti,m do
3: log template LogTemplateExtractor(tj)
4: faulty log LogInference(log template)
5: if faulty log = True then
6: return 1 . True positive
7: end if
8: end for
9: C.push(Ti,m)
10: return 0 . False positive
11: end procedure

Following are some of the normal state logs. Refer to them when

deciding whether the given log template contains a failure

indicator or normal.

,!

,!

Normal state logs:

br0: port entered state,

device promiscuous mode,

...

Command: Classify the given log line as faulty or normal, and give a

short reason in 4-5 words. The faulty log lines should contain a

valid reason for failure. The response should only contain the

result and the reason.

,!

,!

,!

Log line: < Log template here >

Result:

The LLM will return a result with a reason for the choice. We also limit the

output length by setting the maximum number of new tokens generated to 15.

The result is then passed to a function to detect whether it contains “faulty” or

not and return True if it does and False if not.

For zero-shot learning, we directly prompt the model with the anomalous log

template to classify it into one of three classes: normal, faulty, or unsure. If the

model classifies it as faulty, we return True, and if not, False.

One issue with directly using LLM output is that LLMs tend to have hallucina-

tion issues, that is, the text they generate might be faulty, incorrect, or nonsensical.

However, here we incorporate only a binary result, without much text generation,

additionally, based on our experimental results explained in section 5, while not

perfect, the LLM output can di↵erentiate between a failure-related anomalous log

and a normal anomalous log that does not contain any failure indicators.

29

If any of the log templates in the anomalous subsequence contains a failure-

related log, we take it as a true positive and return 1 as �i (Lines 5-6). If not, this is

a false positive, and to prevent future false positives due to the same subsequence,

we update the subsequence store with the current subsequence and return 0 as �i

(Lines 9-10).

This module helps to identify benign log sequences that occur after a long time

and may not be present in the initial learning period. These log sequences will

appear as anomalous logs but actually are not failure-related. This is a limiting

factor in the left matrix profile and also in models like RAMP, where they mark

such sequences as anomalous with high confidence.

4.3 Subsequence Store

The subsequence store is responsible for e�cient storage and retrieval of log key

subsequences with their number of hits. It has a set S that only stores unique

subsequences and is ordered according to the number of hits to the subsequence

using the max-heap heapify algorithm. The subsequence store has two primary

operations: push, which is responsible for inserting a subsequence if it does not

exist (Lines 2-5), and increment hits, responsible for incrementing the number

of hits of a given subsequence (Lines 8-11). Both operations maintain the heap

property by calling the heapify operation after making changes to S.

Algorithm 3 Subsequence Store

1: S {} . S is an ordered set
2: procedure push(Ti,m)
3: if Ti,m /2 S then
4: S S [{(id : Ti,m, hits : 1)}
5: Heapify S according to the number of hits of each

subsequence
6: end if
7: end procedure

8: procedure increment hits(Ti,m)
9: t S.get(Ti,m)
10: t.hits t.hits+ 1
11: Heapify S according to the number of hits of each

subsequence
12: end procedure

We implemented the subsequence store using a hash set and a max heap. The

max heap is implemented using a list that maintains the max heap property. When

30

inserting a new subsequence, we check the hash set to see if the given subsequence

is already present.

The worst-case time complexity of VMFT-LAD for calculating anomaly score

for a subsequence Ti,m is bounded by O(lm), where l represents the size of the

subsequence store (the number of subsequences stored) and m is the subsequence

length (window size).

This e�cient implementation of the subsequence store, combined with the

modified matrix profile algorithm and the adaptive learning module leveraging

LLMs, allows VMFT-LAD to e↵ectively detect anomalies in log data and proac-

tively identify potential VM failures with no human intervention. The adaptive

learning capability further enhances the model’s ability to handle false positives

and continuously improve its performance over time.

31

5 Evaluation

This section presents the evaluation of our model, VMFT-LAD, under the follow-

ing metrics:

• Receiver Operator Characteristics (ROC) under two criteria

• Area Under the Curve (AUC) for ROC

• Numenta Anomaly Benchmark (NAB) scores under two criteria

• Execution speed

5.1 Evaluation Criteria

We evaluated the performance of the models under two di↵erent criteria to check

the models’ failure detection ability in general and to check for models’ early failure

indicators detection ability:

5.1.1 Criteria-1: relaxed

Under this criterion, the model is expected to detect failure indicators after the

fault injection point and even within the failure region. A True Positive (TP) is

counted when the model detects an anomaly in the pre-failure region or after the

failure has occurred. This criterion serves as a baseline to verify if the model can

correctly identify failures without considering the strict requirement of detecting

them before the failure point.

5.1.2 Criteria-2: strict

This criterion is stricter and requires the model to detect failures before the failure

point. A True Positive (TP) is counted when the model detects an anomaly in the

pre-failure region. This criterion considers the requirement of predicting failure

before the failure point, which allows the successful migration of VMs to the

destination server without any issues to the VM.

For both criteria, if a model detects an anomaly in the benign region of a

dataset (the region before fault injection), it is classified as a False Positive (FP).

A False Negative (FN) is defined as the model’s failure to identify the anomaly in

the pre-failure region or the failure region. Similar to NAB, we do not consider

any anomaly flagged by the models during the initial learning period, in all the

models except DeepLog [12], because DeepLog is pre-trained with benign data,

32

whereas the other models including VMFT-LAD learn online during the learning

period.

5.2 Evaluated Models

We evaluated the VMFT-LADmodel with di↵erent LLM configurations using both

few-shot and zero-shot learning, along with selected four models implemented and

evaluated in the Numenta Anomaly Benchmark (NAB) [60], and DeepLog [12] for

comparison with the state of the art.

1. VMFT-LAD without feedback: This is the baseline version of our VMFT-

LAD model that does not utilize any feedback mechanism from the large

language model (LLM).

2. VMFT-LAD with LLM: Several variants of the VMFT-LAD model are eval-

uated, each incorporating a di↵erent LLM and di↵erent model conditioning

techniques. These LLMs include:

• GPT-3.5 turbo: This is a state-of-the-art LLM known for its exceptional

performance on a wide range of tasks.

• Falcon 7B, Cyrax 7B, and Emerton Monarch 7B LLMs: High-scoring

LLMs based on the Hugging Face Open LLM Leaderboard [61] 1

• Bart Large (Zero-Shot): Bart Large is the most popular open-source

zero-shot text classifier in the Hugging Face model library 1

3. HTM: This model uses a di↵erent anomaly detection approach based on the

Hierarchical Temporal Memory (HTM) architecture [21]. This is a state-of-

the-art anomaly detection model and is used in many real-world projects.

4. KNN-CAD: K-Nearest-Neighbours Conformal Anomaly Detection (KNN-

CAD) [20] is a K-Nearest Neighbors (KNN) based non-parametric anomaly

detection model.

5. EXPOSE: EXPected Similarity Estimation (EXPoSE) [27] is also a non-

parametric anomaly detection model based on a kernel function to measure

similarity between data points.

6. ARTime: ARTime [62] is based on Adaptive Resonance Theory (ART), and

this model outperforms the state-of-the-art model HTM in NAB.

1as of February 2024

33

7. DeepLog: DeepLog [12] is a popular log anomaly detection model based on

an LSTM model; It uses Drain [11] as its log parser.

VMFT-LAD and other NAB models train online, so we define the first 150

data points of each dataset as the training region (which is roughly 15% of each

dataset instance); we made sure that each instance of the dataset had at least 400

benign data points initially.

The chosen hyperparameters of the VMFT-LAD model for the evaluation are

as follows: Window size (m): 5, learning period (M): 150, similarity threshold

(⌘): 0.05, anomaly threshold (✓): varied from 0 to 1 for ROC. We also explored

how these hyperparameters a↵ect the performance of our model in the next section

(section 6). For the NAB models, we use the default parameter values (some of

the models were parameterless.)

All LLMs used to evaluate VMFT-LAD are conditioned with 25 randomly

selected benign log samples so that the model can better understand the VM failure

context. The Bart Large (Zero-Shot) model is an exception, as it is specifically

evaluated to assess results using an LLM without any conditioning.

The DeepLog model is pre-trained with 2400 benign log sequences from our

collected dataset. We tuned the hyperparameters of the DeepLog log key anomaly

detection model to obtain the best results, which are presented below. Hyperpa-

rameters - classes: 750, candidate keys: 250, window size: 20, No. of recurrent

LSTM layers: 2, hidden layer size: 64.

5.3 ROC Curve Analysis

Figure 5 presents the Receiver Operator Characteristics (ROC) curves for each

dataset using all evaluated models. The ROC curve is a graphical representation

of the trade-o↵ between the true positive rate (TPR) and the false positive rate

(FPR) at di↵erent classification thresholds. A model with better performance will

have an ROC curve closer to the top-left corner of the plot, indicating a higher TPR

and a lower FPR. Table 4 presents the Area Under the Curve (AUC) values for

the ROC curves, which provide a quantitative measure of the overall performance

of the models. Higher AUC values indicate better classification performance.

5.3.1 HDD Failure Dataset

Under the relaxed criteria (i.e., Criteria-1), the VMFT-LAD model with GPT

3.5 turbo LLM (AUC: 0.999) and ARTime (AUC: 0.997) exhibits near-perfect

34

(a) ROC for HDD failure dataset (b) ROC for CPU over-allocation failure
dataset

(c) ROC for OOM failure dataset (d) ROC for Bu↵er I/O error dataset

Figure 5: Receiver Operator Characteristics (ROC) curves for each dataset using
all evaluated models

performance for the HDD failure dataset. The VMFT-LAD with Falcon 7B, Cyrax

7B, and Emerton Monarch 7B LLMs perform exceptionally well (AUC: 0.992-

0.996), closely followed by the VMFT-LAD without feedback (AUC: 0.992), HTM

(AUC: 0.988), and DeepLog (AUC: 0.95). KNN-CAD (AUC: 0.684) and EXPOSE

(AUC: 0.512) show relatively poorer performance for this dataset.

Under stricter Criteria-2, the VMFT-LAD model with GPT 3.5 turbo LLM

(AUC: 0.999) continues to exhibit excellent performance. However, the ARTime

model (AUC: 0.973) slightly underperforms compared to Criteria-1. All other

models performed relatively well for the HDD failure dataset (AUC around 0.9),

except for KNN-CAD (AUC: 0.659) and EXPOSE (AUC: 0.512), which showed

relatively poorer performance.

5.3.2 CPU Over-allocation Failure Dataset

For the CPU over-allocation failure dataset, the VMFT-LAD model with GPT

3.5 turbo LLM (AUC: 0.999) stands out with an exceptional ROC curve, achiev-

35

Models
Dataset

HDD OOM Bu↵er-IO CPU

C
ri
te
ri
a-
1:

re
la
xe
d

VMFT-LAD no feedback 0.992 0.903 0.993 0.678
VMFT-LAD w/ GPT 3.5 turbo 0.999 0.999 0.999 0.999

VMFT-LAD w/ Falcon 7B 0.996 0.965 0.978 0.678
VMFT-LAD w/ Cyrax 7B 0.992 0.974 0.997 0.754

VMFT-LAD w/ Emerton Monarch 7B 0.996 0.909 0.993 0.817
VMFT-LAD w/ Bart Large (Zero Shot) 0.991 0.836 0.993 0.725

HTM 0.988 0.977 0.99 0.888
KNN-CAD 0.684 0.626 0.607 0.677
EXPOSE 0.512 0.499 0.501 0.511
ARTime 0.997 0.986 0.995 0.780
DeepLog 0.95 0.836 0.975 0.783

C
ri
te
ri
a-
2:

st
ri
ct

VMFT-LAD no feedback 0.987 0.657 0.992 0.588
VMFT-LAD w/ GPT 3.5 turbo 0.999 0.998 0.999 0.996

VMFT-LAD w/ Falcon 7B 0.993 0.767 0.962 0.588
VMFT-LAD w/ Cyrax 7B 0.989 0.899 0.997 0.594

VMFT-LAD w/ Emerton Monarch 7B 0.995 0.667 0.992 0.669
VMFT-LAD w/ Bart Large (Zero Shot) 0.987 0.621 0.993 0.634

HTM 0.987 0.623 0.989 0.680
KNN-CAD 0.659 0.304 0.607 0.664
EXPOSE 0.512 0.499 0.501 0.511
ARTime 0.973 0.546 0.995 0.458
DeepLog 0.95 0.836 0.975 0.783

Table 4: Area Under the Curve (AUC) results for ROC curves

ing nearly perfect classification performance under Criteria-1. The HTM model

(AUC: 0.888) outperformed all the other models, including VMFT-LAD, with

other LLMs. The VMFT-LAD without feedback (AUC: 0.678), the ARTime

model (AUC: 0.780), and the DeepLog model (AUC: 0.783) exhibit moderate per-

formance, while KNN-CAD (AUC: 0.677) and EXPOSE (AUC: 0.511) struggle

with this dataset.

Under the stricter Criteria-2, the VMFT-LAD model with GPT 3.5 turbo

LLM (AUC: 0.996) and, notably, the DeepLog model (AUC: 0.783) maintained

their performance. The HTM model (AUC: 0.680) and VMFT-LAD with Emerton

Monarch 7B (AUC: 0.669) LLMs perform reasonably well. Other models, includ-

ing VMFT-LAD without feedback (AUC: 0.588) and especially ARTime (AUC:

0.458), struggled with this dataset.

36

5.3.3 OOM Failure Dataset

In the case of the OOM failure dataset, the VMFT-LADmodel with GPT 3.5 turbo

LLM (AUC: 0.999) demonstrates outstanding performance under relaxed Criteria-

1, closely followed by the ARTime (AUC: 0.986), VMFT-LAD with Cyrax 7B LLM

(AUC: 0.974), and the HTM model (AUC: 0.977). The VMFT-LAD with Falcon

7B, with Emerton Monarch 7B, and without feedback also performs reasonably

well (AUC around 0.9-0.965). VMFT-LAD with Bart Large (Zero Shot) and

DeepLog also exhibit good performance (AUC: 0.836). KNN-CAD (AUC: 0.626)

and EXPOSE (AUC: 0.499) struggle with this dataset.

In the case of the OOM failure dataset under stricter Criteria-2, the VMFT-

LAD model with GPT 3.5 turbo LLM (AUC: 0.998) continues to demonstrate out-

standing performance. The VMFT-LAD with Cyrax 7B LLM (AUC: 0.899) and

DeepLog (AUC: 0.836) models performed well, while the ARTime model (AUC:

0.546) showed very poor performance compared to Criteria-1. KNN-CAD (AUC:

0.304) and EXPOSE (AUC: 0.499) continue to struggle significantly.

5.3.4 Bu↵er I/O Error Dataset

For the Bu↵er I/O error dataset under relaxed Criteria-1, all the models achieve

near-perfect classification performance, with AUC values above 0.99, except for

VMFT-LAD with Falcon 7B LLM feedback (AUC: 0.978), which shows relatively

low performance compared to others. KNN-CAD (AUC: 0.607) and EXPOSE

(AUC: 0.501) again show very poor performance for this dataset.

Under stricter Criteria-2 for the Bu↵er-I/O error dataset, most models per-

formed well, with VMFT-LAD models and HTM achieving AUC values above

0.98. DeepLog model also performed well (AUC: 0.975). The VMFT-LAD with

Falcon 7B LLM feedback (AUC: 0.962) showed slightly lower performance, while

KNN-CAD (AUC: 0.607) and EXPOSE (AUC: 0.501) again showed very poor

performance.

Overall, the VMFT-LAD model with the GPT 3.5 turbo LLM consistently

outperforms other models across all datasets and under both evaluation criteria,

with near-perfect AUC values, demonstrating its e↵ectiveness in VM log anomaly

detection. The DeepLog model showed very good performance across the board.

The VMFT-LAD without feedback and with other LLMs, such as Cyrax 7B and

Emerton Monarch 7B, exhibit promising performance. The HTM and ARTime

models perform well in certain scenarios, while KNN-CAD and EXPOSE generally

struggle across the datasets and evaluation criteria.

37

5.4 NAB Scores

The Numenta Anomaly Benchmark (NAB) [60] is a benchmark suite designed to

evaluate the performance of algorithms for detecting anomalies in streaming data.

It provides a standardized framework for comparing the e↵ectiveness of di↵erent

univariate anomaly detection models. The NAB scores serve as a quantitative

measure of a model’s ability to identify anomalies while minimizing false positives

and false negatives accurately. The NAB score is suitable for evaluating the models

in this case because NAB gives a high score for early true anomaly detection.

Additionally, it penalizes late predictions and false positives with negative marks

using a sigmoidal scoring function [60]. Fig. 6 shows how the NAB scoring function

scores the predictions of a model (marked as a cross) relative to their position to

the anomaly window. The first true prediction within the anomaly window (green

cross) gets a positive score, while all the other false positives (red crosses) get

negative scores according to their closeness to the anomaly window.

Figure 6: NAB Scoring Example [60]

NAB calculates three di↵erent scores: Standard, Reward Low FP, and Reward

Low FN. The Standard score is a balanced score that accounts for both false

positives and false negatives. The Reward Low FP score emphasizes minimizing

false positives, making it suitable for scenarios where false alarms are more costly.

Conversely, the Reward Low FN score prioritizes minimizing false negatives, which

is beneficial when failing to detect an anomaly is more critical.

We modified the original NAB repository by adding our datasets, including

the benign dataset and labels according to the NAB specification. The anomaly

38

window is defined as the pre-failure region (after fault injection) and the failure

region (after the failure point) for the relaxed criterion, and for the strict criterion,

we only consider the pre-failure region as the anomalous window and removed the

post-failure region from the result set to allow NAB to score only the early pre-

failure detections. The modified NAB repository is available publicly.2

Table 5 presents NAB score results under both Criteria-1: relaxed and Criteria-

2: strict.

Model
NAB Score

Standard Reward Low FP Reward Low FN

C
ri
te
ri
a-
1

VMFT-LAD 98.16 97.77 98.44
HTM 66.63 61.04 71.64

KNN-CAD 32.13 -22.05 42.32
EXPOSE 42.32 37.07 67.33
ARTime 73.98 56.92 77.89
DeepLog 71.82 43.75 76.06

C
ri
te
ri
a-
2

VMFT-LAD 90.74 90.36 89.67
HTM 21.52 16.22 3.13

KNN-CAD 1.47 -54.94 0.21
EXPOSE 52.50 18.42 56.17
ARTime 48.53 26.99 46.55
DeepLog 71.50 43.30 75.79

Table 5: NAB scores for evaluated models

Under relaxed Criteria-1, the VMFT-LAD model with GPT 3.5 turbo LLM

feedback achieves outstanding NAB scores across all three metrics (around 98),

demonstrating its overall e↵ectiveness in accurately identifying anomalies while

maintaining a balance between false positives and false negatives. Among the other

models, ARTime exhibits the next best performance (standard score: 73.98), fol-

lowed by the DeepLog model (standard score: 71.82), and the HTM model (stan-

dard score: 66.63). KNN-CAD and EXPOSE show relatively poorer performance

even under this less strict criterion.

Under stricter Criteria-2, which requires anomaly detection before the failure

point, the VMFT-LAD model continues to outperform the others with a standard

score of 90.74. The DeepLog model maintains its performance with a standard

score of 71.5. The other models, however, exhibit a significant drop in performance

under this criterion, with very low scores across all three metrics.

2Modified NAB repository: https://github.com/CloudnetUCSC/NAB

39

https://github.com/CloudnetUCSC/NAB

Model False positive rate Early detection rate

VMFT-LAD 0.02% 96.28%
HTM 0.07% 62.08%

KNN-CAD 0.74% 76.58%
EXPOSE 0.39% 85.13%
ARTime 0.24% 78.25%
DeepLog 0.37% 100%

Table 6: Average False Positive rate and Early Detection rate at the best threshold

The results in Table 6 present the average false positive rate and average early

detection rate, which is the true positive rate under the stricter Criteria-2 for the

evaluated models. The results are calculated using the best threshold for each

model identified by the NAB optimizer across all datasets, including the benign

dataset. VMFT-LAD shows the lowest false positive rate (0.02%) and a high early

failure indicator detection rate (96.28%). Notably, the DeepLog model shows a

100% early detection rate; however, its false positive rate is relatively high at

0.37%.

These results highlight our model’s e↵ectiveness in proactive VM fault toler-

ance using log anomaly detection, which is the early detection of anomalies before

failures occur while minimizing the false positives that may lead to service degra-

dation due to unnecessary VM migrations.

5.5 Model Execution Time Analysis

Figure 7: Average execution time to process a record (Lower the better)

Fig. 7 presents the average execution time required by each model to process

a single record and determine whether it is anomalous or not. This metric is

essential in determining the models’ practicality for real-time anomaly detection.

40

The VMFT-LAD without LLM feedback and ARTime models exhibit impres-

sive average execution times. KNN-CAD, EXPOSE, and DeepLog have moderate

execution times, and the HTM model has a comparatively higher average execu-

tion time.

The following are the actual log rates observed in the collected server log

data: The average time di↵erence between two consecutive records is 163.966

milliseconds, and the average time between all records is 6.053 seconds. Even the

slowest model, HTM, with an average execution time of 8.7557 milliseconds, can

comfortably process records at these log generation rates.

All the evaluated models demonstrate su�cient computational e�ciency to

handle online anomaly detection in our server environment. However, for scenarios

with exceptionally high log generation rates, the VMFT-LAD model without LLM

feedback and ARTime can be the most suitable choice due to their sub-millisecond

execution times.

41

6 Hyperparameter Tuning

In this section, we show how the hyperparameters of our model VMFT-LAD a↵ect

its performance.

6.1 Training Period and Subsequence Length

Fig. 8 illustrates the impact of varying the training period (M) and subsequence

length (m) on the True Positive Rate (TPR) and False Positive Rate (FPR) of

the anomaly detection process.

(a) Impact of the training period (M)
and subsequence length (m) on True
Positive Rates

(b) Impact of the training period (M)
and subsequence length (m) on False
Positive Rates

Figure 8: Impact of hyperparameter change on anomaly detection performance

Fig. 8(a) depicts the e↵ect of M and m on the TPR. As evident from the

plotted surface, increasing the training period length (M) has a minimal impact

on the TPR; however, as depicted by Fig. 8(b), increasing M reduces the FPR,

which is the expected behavior, because the model will have a larger benign context

from the training data.

The subsequence length (m) plays a significant role in determining the TPR.

For smaller values of m, the TPR is lower, indicating that the model may struggle

to capture the anomalous patterns when considering shorter subsequences. As m

increases, the TPR steadily improves, reaching its maximum value form � 4. This

behavior is expected, as longer subsequences provide more contextual information,

allowing the model to identify anomalies within the time series data e↵ectively.

42

6.2 Similarity Threshold

Fig. 9 presents the impact of the similarity threshold (⌘) on the record processing

time of VMFT-LAD. The results were measured by running VMFT-LAD on a

large benign dataset with over 6000 data points to get an average execution time

to process a single data point. We set ✓ 0.5, M 150, m 4 for the

evaluation. As defined in the section 4.1 above, ⌘ < ✓, so we set the ⌘ to range

from 0 to 0.45 with a step size of 0.05. The plot shows that the record processing

time decreases (execution speed increases) when ⌘ approaches ✓.

Figure 9: Impact of the similarity threshold (⌘) over the average record processing
time. The average record processing time using a list-based implementation is
added for comparison

⌘ does not a↵ect the TPR or the FPR of the model because they are deter-

mined by the anomaly threshold ✓. We also included the average record handling

time for the regular list-based implementation of the subsequence store. The exe-

cution speed of VMFT-LAD with the Max-heap-based subsequence store is faster

compared to the list-based implementation, even when ⌘ is 0 (searches for an ex-

act match with the minimum possible distance). This is because the max-heap

implementation searches from the order of the frequency of subsequences, while

the list-based implementation does a linear search.

From the results, we can clearly see that choosing the similarity threshold closer

43

to the anomaly threshold is better for the execution speed of the model. The max-

heap-based implementation is 84.63% faster than the list-based implementation.

But, even with the list-based subsequence store implementation, VMFT-LAD is

faster than some NAB detectors.

44

7 Discussion

In this section, we discuss the utility of log-based anomaly detection in proactive

VM fault tolerance via live migration, how our solution has addressed all our

research questions, and our experience with fine-tuning LLMs for failure-related

log identification.

7.1 Utility of Anomaly Detection in Proactive VM Fault

Tolerance

The e↵ectiveness of proactive fault tolerance in virtual machine environments relies

on accurately predicting failures well in advance, allowing su�cient time for VM

migration before the failure occurs. In this section, we evaluate the log anomaly

detection time of models in comparison to the failure time of the VMs under each

fault model, to assess their ability in detecting failure in advance to allow su�cient

time for VM migration.

Model
Dataset

HDD OOM Bu↵er-IO CPU

VMFT-LAD 15.651 3.033 13.338 14.535
HTM 15.675 1.535 13.354 8.462

KNN-CAD 15.901 2.012 12.073 12.555
EXPOSE 15.658 3.136 11.864 23.959
ARTime 15.674 4.057 13.337 13.120
DeepLog 15.675 4.376 13.354 23.959

Table 7: Average detection time before total VM failure (minutes)

Table 7 presents the average early detection time before the VM failure for each

model across all our datasets. This early detection capability is crucial for enabling

timely migration of VMs before failures occur. All the models performed relatively

well, except for the OOM dataset, where all the models seemed to struggle to

identify the failure early. This may be due to a lack of early pre-failure indicators

in the log dataset for OOM failures.

To assess the feasibility of proactive migration, we compare the failure pre-

diction times with the actual VM migration times observed. Fig. 10 illustrates

the total migration time for VMs of di↵erent sizes, ranging from 1 GB to 20

GB, using three di↵erent migration techniques: Vanilla post-copy, Vanilla pre-

copy, and XBZRLE compression enabled pre-copy [63]. We ran Memcached in

45

the VMs when collecting migration time data (Memcached is a high-performance

in-memory caching solution for databases). We allowed Memcached to use up to

80% of the VM memory and configured the Memaslap load generation tool to

generate the necessary database load to simulate real-world scenarios. We chose

Memcached because it is a real-world unified workload that is CPU, memory, and

I/O intensive.

Figure 10: The total migration time for migrating VMs with di↵erent v-RAM
sizes

We can see that across all VM sizes, the post-copy technique exhibits the lowest

migration times. The XBZRLE compression helps to reduce migration times in

pre-copy when the VM sizes are relatively large (�16 GB).

Figure 11: The downtime for migrating VMs with di↵erent v-RAM sizes

Fig. 11 shows the downtime experienced by VMs during migration. The

46

downtime is the period during which the VM is paused to copy the final states

of the VM to the destination, and it is essential to minimize this duration to

maintain the quality of service. All the migration methods across all VM sizes

show relatively low downtimes (4̃0-255 ms). Specifically, the post-copy technique

demonstrates the lowest downtimes (1̃0-45 ms) across all VM sizes.

Comparing the failure prediction times from Table 7 with the migration times

shown in Fig. 10, it becomes evident that all the models provide su�cient lead

time to facilitate proactive VM migration before failures occur. For instance,

even in the case of the OOM dataset, where the VMFT-LAD achieves an average

detection time of 3.033 minutes, the migration time for a 20 GB VM using the

pre-copy technique is around 45 seconds; migrating one large VM is su�cient to

avert the OOM failure of the VMs running in the server.

These results, combined with the previous evaluation results, highlight the

e↵ectiveness of VMFT-LAD in enabling proactive fault tolerance through timely

VM failure prediction and migration. Thus, our solution has addressed all the

Research Questions (RQs). RQ1 is solved with our implemented model, VMFT-

LAD. RQ2 and RQ3 are satisfied by the above comprehensive evaluation of our

model and the VMmigration time analysis of our test environment. The high early

detection rate, low FPR, and early detection times, combined with the migration

techniques available, ensure that VMs can be migrated to alternative hosts before

failures occur, minimizing service disruptions due to failure.

7.2 Exploring LLM Usage Paradigms

VMFT-LAD reduces false positives and continuously adapts to changing logging

patterns by integrating LLM feedback, eliminating the need for human interven-

tion in the VM failure prediction process. For the LLM feedback, we have evalu-

ated several popular and high-performing LLMs using zero-shot classification and

few-shot learning with a few normal state logs. These approaches gave promising

classification results as explained below. Additionally, we attempted to fine-tune

the distilBert [35] LLM using Low-Rank Adaptation (LoRA) [64], utilizing only a

subset of the benign logs, adhering to our criterion of only using normal state logs

for training. However, the fine-tuned model did not perform well in identifying

failures and classified most failure logs as normal.

47

7.3 Comparing LLM performance

In this section, we compare the performance of LLM used in the evaluation of our

model VMFT-LAD using AUC results and the average false positive rates.

Models
Dataset

HDD OOM Bu↵er-IO CPU

C
ri
te
ri
a-
1

Falcon 7B 0.517 0.499 0.505 0.534
Cyrax 7B 0.506 0.5 0.501 0.515

Em. Monarch 7B 0.518 0.499 0.502 0.515
Bart Large (0-Shot) 0.513 0.499 0.501 0.524

GPT 3.5 turbo 0.999 0.87 0.999 0.999

C
ri
te
ri
a-
2

Falcon 7B 0.517 0.499 0.487 0.534
Cyrax 7B 0.506 0.5 0.501 0.515

Em. Monarch 7B 0.518 0.499 0.502 0.515
Bart Large (0-Shot) 0.513 0.499 0.501 0.524

GPT 3.5 turbo 0.999 0.87 0.999 0.999

Table 8: Area Under the Curve (AUC) results for ROC curves of LLMs

Table 8 presents the AUC results for the LLMs on each dataset. Most of the

models show relatively low AUC results, around 0.5, except for the GPT 3.5 turbo

model, which demonstrates a near-perfect AUC score (0.999) for all datasets, with

the exception of the OOM dataset (AUC: 0.87).

Model False positive rate

Falcon 7B 7.95%
Cyrax 7B 8.78%

Emerton Monarch 7B 12.07%
Bart Large (Zero-Shot) 17.49%

GPT 3.5 turbo 0.05%

Table 9: Average False Positive rate for LLMs

Table 9 presents the False Positive Rate of the LLMs on our datasets. The

Falcon 7B, Cyrax 7B, and the Emerton Monarch 7B models have similar FPR

around 7-12%. The Bart Large zero-shot classifier had the worst FPR at 17.49%.

Impressively, the GPT 3.5 turbo model showed a very low FPR of 0.05%. These

results show that using few-shot learning is much better for di↵erentiating between

a true VM failure-indicating log and a normal but anomalous log.

The GPT 3.5 turbo model showed good AUC performance and low FPR; when

comparing this to using VMFT-LAD in conjunction with the GPT 3.5 turbo

48

model, we can see that VMFT-LAD had an improvement over the results of only

using GPT 3.5 turbo model; specifically in the case of the OOM dataset and the

FPR (combined model FPR: 0.02%)

The promising results for the GPT 3.5 turbo model raises an intriguing pos-

sibility: could an LLM like GPT 3.5 turbo, given adequate resources, be solely

used for the VM failure prediction task through log analysis? While the results

are promising, further research and analysis are necessary to draw definitive con-

clusions. A significant challenge to this approach lies in the latency issue. The

time interval between logs (163.9 ms) is substantially shorter than the LLM’s re-

sponse time (approximately 800 ms - 2 seconds), making it impractical to query

the LLM for each individual log line. These results show how VMFT-LAD and

an LLM like GPT 3.5 turbo complement each other in creating a highly e↵ective

and e�cient log anomaly detector for VM failure prediction. A practical imple-

mentation could involve installing VMFT-LAD instances on each physical host

in the data center, with a single LLM instance serving requests for anomalous

log classification (di↵erentiating between normal and failure-related logs) from all

deployed VMFT-LAD instances across the hosts. This setup would balance the

strengths of both models while mitigating the latency issues.

7.4 Properties of an Ideal VM Failure Predictor

In this section, we show how our model aligns with the properties of an ideal VM

failure predictor, as outlined in the introduction section.

The VMFT-LAD model exhibits several key characteristics that make it an

e↵ective VM failure predictor:

1. Early identification of failures: As demonstrated in the evaluation section

above, our model successfully identifies failures at an early stage while main-

taining a very low false positive rate.

2. Adaptability to changing environments: When the log pattern changes in the

host machine due to software or hardware update, the previously learned

”normal” state of any anomaly detector should be updated; otherwise the

new normal state would be marked as an anomaly. When VMFT-LAD

identifies an abnormal log sequence, it will consult an LLM to verify whether

it is a true anomaly (VM failure indicator) or normal log unrelated to VM

failure. If the anomaly is a normal log, VMFT-LAD updates its internal

state to adapt to the new change.

49

3. Ability to identify unforeseen failure types: By training only on the normal

system state and identifying anomalies, VMFT-LAD is inherently designed

to detect unforeseen failures, as all failure indicators are anomalies.

4. Capability to work with highly imbalanced data: VM failure data are highly

imbalanced as we mostly only have normal state log data and failures are

relatively very rare. Semi-supervised models like VMFT-LAD can handle

highly imbalanced data, as they only train on one class (normal class.)

5. Minimization of false positives: VMFT-LAD e↵ectively minimizes false pos-

itives with the help of LLM feedback.

6. Ability to work independently: Once deployed, VMFT-LAD operates au-

tonomously, requiring minimal human intervention in identifying VM failure-

indicating logs. This autonomy results in faster reaction times when man-

aging VM failure scenarios.

These properties demonstrates how VMFT-LAD functions as a robust and

e�cient VM failure prediction system, addressing key challenges in proactive fault

tolerance.

50

8 Conclusions

In this work, we presented VMFT-LAD, a novel semi-supervised log anomaly de-

tection model for proactive VM fault tolerance. By combining the e�ciency of

the Matrix Profile [17], with the log inference capability of large language mod-

els (LLMs), VMFT-LAD addresses the limitations of traditional supervised ap-

proaches and enables early detection of potential failures, including unforeseen

fault types, while continuously adapting to changing log patterns with limited

human intervention. Our comprehensive evaluation of VMFT-LAD on several

datasets exemplifies its superiority over state-of-the-art real-time anomaly detec-

tion models, demonstrating a high early detection rate of 96.28% while maintaining

a low false positive rate of 0.02%. VMFT-LAD also demonstrates superior results

in the Numenta Anomaly Benchmark (NAB) [60], scoring a standard score of

90.74 under the criterion of predicting failures before the failure point.

However, there is still scope for further improvements and future research di-

rections. One is to test VMFT-LAD in a broader range of failure scenarios and

real-world data from diverse cloud environments to further validate its perfor-

mance and generalization capabilities. Additionally, incorporating multivariate

time series data sources, such as resource usage data, alongside log data could

potentially enhance the accuracy and robustness of the failure prediction process.

51

References

[1] R. Jhawar and V. Piuri, “Fault tolerance management in iaas clouds,” in

2012 IEEE First AESS European Conference on Satellite Telecommunica-

tions (ESTEL), IEEE, 2012, pp. 1–6.

[2] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, “Proactive fault

tolerance using preemptive migration,” in 2009 17th Euromicro Interna-

tional Conference on Parallel, Distributed and Network-based Processing,

2009, pp. 252–257. doi: 10.1109/PDP.2009.31.

[3] A. Polze, P. Tröger, and F. Salfner, “Timely virtual machine migration for

pro-active fault tolerance,” in 2011 14th IEEE International Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing

Workshops, 2011, pp. 234–243. doi: 10.1109/ISORCW.2011.42.

[4] S. Nam, J. Hong, J.-H. Yoo, and J. W.-K. Hong, “Virtual machine failure

prediction using log analysis,” in 2021 22nd Asia-Pacific Network Operations

and Management Symposium (APNOMS), IEEE, 2021, pp. 279–284.

[5] M. Hines and K. Gopalan, “Post-copy based live virtual machine migration

using pre-paging and dynamic self-ballooning,” Mar. 2009, pp. 51–60. doi:

10.1145/1508293.1508301.

[6] A. Shribman and B. Hudzia, “Pre-copy and post-copy vm live migration

for memory intensive applications,” in Euro-Par 2012: Parallel Processing

Workshops: BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER,

Resilience, UCHPC, VHPC, Rhodes Islands, Greece, August 27-31, 2012.

Revised Selected Papers 18, Springer, 2013, pp. 539–547.

[7] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration of

virtual machines,” ACM SIGOPS operating systems review, vol. 43, no. 3,

pp. 14–26, 2009.

[8] R. W. Ahmad, A. Gani, M. Shiraz, F. Xia, S. A. Madani, et al., “Virtual

machine migration in cloud data centers: A review, taxonomy, and open

research issues,” The Journal of Supercomputing, vol. 71, no. 7, pp. 2473–

2515, 2015.

[9] D. Fernando, H. Bagdi, Y. Hu, et al., “Quick eviction of virtual machines

through proactive snapshots,” in 2016 IEEE International Conference on

Cluster Computing (CLUSTER), IEEE, 2016, pp. 156–157.

52

https://doi.org/10.1109/PDP.2009.31
https://doi.org/10.1109/ISORCW.2011.42
https://doi.org/10.1145/1508293.1508301

[10] D. Fernando, J. Terner, K. Gopalan, and P. Yang, “Live migration ate my

vm: Recovering a virtual machine after failure of post-copy live migration,”

in IEEE INFOCOM 2019-IEEE Conference on Computer Communications,

IEEE, 2019, pp. 343–351.

[11] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing

approach with fixed depth tree,” in 2017 IEEE international conference on

web services (ICWS), IEEE, 2017, pp. 33–40.

[12] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and

diagnosis from system logs through deep learning,” in Proceedings of the 2017

ACM SIGSAC conference on computer and communications security, 2017,

pp. 1285–1298.

[13] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in 2016

IEEE 16th International Conference on Data Mining (ICDM), IEEE, 2016,

pp. 859–864.

[14] S. Nam, J.-H. Yoo, and J. W.-K. Hong, “Vm failure prediction with log

analysis using bert-cnn model,” in 2022 18th International Conference on

Network and Service Management (CNSM), IEEE, 2022, pp. 331–337.

[15] S. Jeong, N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Proactive live mi-

gration for virtual network functions using machine learning,” in 2021 17th

International Conference on Network and Service Management (CNSM),

IEEE, 2021, pp. 335–339.

[16] IBM, Drain3, https://github.com/IBM/Drain3, [Accessed 30-03-

2024], 2020.

[17] C.-C. M. Yeh, Y. Zhu, L. Ulanova, et al., “Matrix profile i: All pairs sim-

ilarity joins for time series: A unifying view that includes motifs, discords

and shapelets,” in 2016 IEEE 16th international conference on data mining

(ICDM), Ieee, 2016, pp. 1317–1322.

[18] S.-Y. Lan, R.-Q. Chen, and W.-L. Zhao, “Anomaly detection on it operation

series via online matrix profile,” arXiv preprint arXiv:2108.12093, 2021.

[19] J. D. Herath, C. Bai, G. Yan, P. Yang, and S. Lu, “Ramp: Real-time anomaly

detection in scientific workflows,” in 2019 IEEE International Conference on

Big Data (Big Data), IEEE, 2019, pp. 1367–1374.

[20] E. Burnaev and V. Ishimtsev, “Conformalized density-and distance-based

anomaly detection in time-series data,” arXiv preprint arXiv:1608.04585,

2016.

53

https://github.com/IBM/Drain3

[21] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly

detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017.

[22] H. Xu, W. Chen, N. Zhao, et al., “Unsupervised anomaly detection via vari-

ational auto-encoder for seasonal kpis in web applications,” in Proceedings

of the 2018 world wide web conference, 2018, pp. 187–196.

[23] D. Liu, Y. Zhao, H. Xu, et al., “Opprentice: Towards practical and automatic

anomaly detection through machine learning,” in Proceedings of the 2015

internet measurement conference, 2015, pp. 211–224.

[24] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards, “Time

series anomaly detection; detection of anomalous drops with limited fea-

tures and sparse examples in noisy highly periodic data,” arXiv preprint

arXiv:1708.03665, 2017.

[25] H. Ren, B. Xu, Y. Wang, et al., “Time-series anomaly detection service at

microsoft,” in Proceedings of the 25th ACM SIGKDD international confer-

ence on knowledge discovery & data mining, 2019, pp. 3009–3017.

[26] D. Saxena and A. K. Singh, “Ofp-tm: An online vm failure prediction and

tolerance model towards high availability of cloud computing environments,”

The Journal of Supercomputing, vol. 78, no. 6, pp. 8003–8024, 2022.

[27] M. Schneider, W. Ertel, and F. Ramos, “Expected similarity estimation

for large-scale batch and streaming anomaly detection,” Machine Learning,

vol. 105, pp. 305–333, 2016.

[28] J. Ma and S. Perkins, “Time-series novelty detection using one-class support

vector machines,” in Proceedings of the International Joint Conference on

Neural Networks, 2003., IEEE, vol. 3, 2003, pp. 1741–1745.

[29] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”

Advances in neural information processing systems, vol. 30, 2017.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[31] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving

language understanding by generative pre-training,” 2018.

[32] X. Luo, A. Rechardt, G. Sun, et al., “Large language models surpass hu-

man experts in predicting neuroscience results,” 2024. [Online]. Available:

https://api.semanticscholar.org/CorpusID:268253470.

54

https://api.semanticscholar.org/CorpusID:268253470

[33] D. Van Veen, C. Van Uden, L. Blankemeier, et al., “Clinical text summa-

rization: Adapting large language models can outperform human experts,”

Research Square, 2023.

[34] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learn-

ers,” Advances in neural information processing systems, vol. 33, pp. 1877–

1901, 2020.

[35] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version

of bert: Smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108,

2019.

[36] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language

models are zero-shot reasoners,” Advances in neural information processing

systems, vol. 35, pp. 22 199–22 213, 2022.

[37] J. Bulao. “How many companies use cloud computing in 2023? all you need

to know.” (2023), [Online]. Available: https://techjury.net/blog/

how-many-companies-use-cloud-computing/#gref (visited on

01/22/2023).

[38] J. Khalili. “Here’s how much cash google lost due to last week’s outage.”

(2020), [Online]. Available: https://www.techradar.com/news/

google-blackout-saw-millions-in-revenue-vanish-into-

thin-air (visited on 01/28/2023).

[39] R. Reynolds. “Achieving “five nines” in the cloud for justice and pub-

lic safety.” (2020), [Online]. Available: https://aws.amazon.com/

blogs/publicsector/achieving-five-nines-cloud-justice-

public-safety/ (visited on 05/12/2023).

[40] Q. Lin, K. Hsieh, Y. Dang, et al., “Predicting node failure in cloud service

systems,” in Proceedings of the 2018 26th ACM joint meeting on European

software engineering conference and symposium on the foundations of soft-

ware engineering, 2018, pp. 480–490.

[41] A. Lawrence. “2022 outage analysis finds downtime costs and consequences

worsening as industry e↵orts to curb outage frequency fall short.” (2022),

[Online]. Available: https://uptimeinstitute.com/about-ui/

press-releases/2022-outage-analysis-finds-downtime-

costs-and-consequences-worsening (visited on 01/28/2023).

55

https://techjury.net/blog/how-many-companies-use-cloud-computing/#gref
https://techjury.net/blog/how-many-companies-use-cloud-computing/#gref
https://www.techradar.com/news/google-blackout-saw-millions-in-revenue-vanish-into-thin-air
https://www.techradar.com/news/google-blackout-saw-millions-in-revenue-vanish-into-thin-air
https://www.techradar.com/news/google-blackout-saw-millions-in-revenue-vanish-into-thin-air
https://aws.amazon.com/blogs/publicsector/achieving-five-nines-cloud-justice-public-safety/
https://aws.amazon.com/blogs/publicsector/achieving-five-nines-cloud-justice-public-safety/
https://aws.amazon.com/blogs/publicsector/achieving-five-nines-cloud-justice-public-safety/
https://uptimeinstitute.com/about-ui/press-releases/2022-outage-analysis-finds-downtime-costs-and-consequences-worsening
https://uptimeinstitute.com/about-ui/press-releases/2022-outage-analysis-finds-downtime-costs-and-consequences-worsening
https://uptimeinstitute.com/about-ui/press-releases/2022-outage-analysis-finds-downtime-costs-and-consequences-worsening

[42] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing hard-

ware reliability,” in Proceedings of the 1st ACM symposium on Cloud com-

puting, 2010, pp. 193–204.

[43] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen, “Failure

analysis of virtual and physical machines: Patterns, causes and characteris-

tics,” in 2014 44th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks, 2014, pp. 1–12. doi: 10.1109/DSN.2014.18.

[44] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors and decision

trees for proactive failure management in cloud computing systems.,” J.

Commun., vol. 7, no. 1, pp. 52–61, 2012.

[45] X. Sun, K. Chakrabarty, R. Huang, et al., “System-level hardware failure

prediction using deep learning,” ser. DAC ’19, Las Vegas, NV, USA: As-

sociation for Computing Machinery, 2019, isbn: 9781450367257. doi: 10.

1145/3316781.3317918. [Online]. Available: https://doi.org/

10.1145/3316781.3317918.

[46] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data centers

using deep learning,” IEEE transactions on services computing, vol. 15, no. 3,

pp. 1411–1422, 2020.

[47] R. S. A. K. Abid, M. M. Taher, and S. A. R. Ahmed, “Task failure prediction

in cloud data centers using deep learning,” Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 14, no. 2, pp. 716–723, 2023.

[48] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a practical

system for fault-tolerant virtual machines,” ACM SIGOPS Operating Sys-

tems Review, vol. 44, no. 4, pp. 30–39, 2010.

[49] J.-B. Decourcelle, T. D. Ngoc, B. Teabe, and D. Hagimont, “Fast vm replica-

tion on heterogeneous hypervisors for robust fault tolerance,” in Proceedings

of the 24th International Middleware Conference, 2023, pp. 15–28.

[50] D. Saxena and A. K. Singh, “Ofp-tm: An online vm failure prediction and

tolerance model towards high availability of cloud computing environments,”

The Journal of Supercomputing, vol. 78, no. 6, pp. 8003–8024, 2022.

[51] M. E. Elsaid, H. M. Abbas, and C. Meinel, “Virtual machines pre-copy live

migration cost modeling and prediction: A survey,” Distributed and Parallel

Databases, vol. 40, no. 2-3, pp. 441–474, 2022.

56

https://doi.org/10.1109/DSN.2014.18
https://doi.org/10.1145/3316781.3317918
https://doi.org/10.1145/3316781.3317918
https://doi.org/10.1145/3316781.3317918
https://doi.org/10.1145/3316781.3317918

[52] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a comprehensive perfor-

mance model of virtual machine live migration,” in Proceedings of the Sixth

ACM Symposium on Cloud Computing, 2015, pp. 288–301.

[53] OpenStack. “What is openstack?” (2023), [Online]. Available: https://

www.openstack.org/software/ (visited on 05/17/2023).

[54] T. Mikolov, K. Chen, G. Corrado, and J. Dean, E�cient estimation of word

representations in vector space, 2013. arXiv: 1301.3781 [cs.CL].

[55] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training

of deep bidirectional transformers for language understanding, 2019. arXiv:

1810.04805 [cs.CL].

[56] J. Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection

of system log datasets for ai-driven log analytics,” in 2023 IEEE 34th In-

ternational Symposium on Software Reliability Engineering (ISSRE), IEEE,

2023, pp. 355–366.

[57] I. Cano, S. Aiyar, and A. Krishnamurthy, “Characterizing private clouds:

A large-scale empirical analysis of enterprise clusters,” in Proceedings of the

Seventh ACM Symposium on Cloud Computing, 2016, pp. 29–41.

[58] Stress - tool to impose load on and stress test systems, https://linux.

die.net/man/1/stress, [Accessed 17-08-2024].

[59] N. Georgoulopoulos, A. Hatzopoulos, K. Karamitsios, I. M. Tabakis, K.

Kotrotsios, and A. I. Metsai, “Investigation and simulation of hardware er-

rors in kernel logs of linux-based server systems,” in 2021 6th South-East

Europe Design Automation, Computer Engineering, Computer Networks and

Social Media Conference (SEEDA-CECNSM), IEEE, 2021, pp. 1–7.

[60] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly

detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017.

[61] N. L. Edward Beeching Sheon Han. “Open llm leaderboard.” (2023), [On-

line]. Available: https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard (visited on 04/09/2024).

[62] M. Hampton. “Artimenab.” (2021), [Online]. Available: https://github.

com/markNZed/ARTimeNAB.jl (visited on 10/29/2023).

57

https://www.openstack.org/software/
https://www.openstack.org/software/
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1810.04805
https://linux.die.net/man/1/stress
https://linux.die.net/man/1/stress
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/markNZed/ARTimeNAB.jl
https://github.com/markNZed/ARTimeNAB.jl

[63] A. Shribman and B. Hudzia, “Pre-copy and post-copy vm live migration

for memory intensive applications,” in Euro-Par 2012: Parallel Processing

Workshops: BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER,

Resilience, UCHPC, VHPC, Rhodes Islands, Greece, August 27-31, 2012.

Revised Selected Papers 18, Springer, 2013, pp. 539–547.

[64] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adaptation of large

language models,” arXiv preprint arXiv:2106.09685, 2021.

58

	Introduction
	Background
	Virtual Machine Live Migration
	System logs and Log parsing
	Fault Injection
	Machine Learning for Log Analysis
	Log Key Subsequences
	Anomaly Detection Using Matrix Profile
	Real-time Anomaly Detection Models
	Natural Language Understanding

	Motivation
	Research Questions
	Aims and Objectives
	Scope
	In Scope
	Out of Scope

	Outline of the Dissertation

	Literature Review
	Physical Machine Failure Prediction
	Virtual Machine Failure Prediction
	Virtual Machine Live Migration Time Estimation
	Supplementary Details

	Data Collection
	Experimental Testbed
	Failure Scenarios
	Data Preprocessing

	Design and Implementation
	Anomaly Detection
	Adaptive Learning
	Subsequence Store

	Evaluation
	Evaluation Criteria
	Criteria-1: relaxed
	Criteria-2: strict

	Evaluated Models
	ROC Curve Analysis
	HDD Failure Dataset
	CPU Over-allocation Failure Dataset
	OOM Failure Dataset
	Buffer I/O Error Dataset

	NAB Scores
	Model Execution Time Analysis

	Hyperparameter Tuning
	Training Period and Subsequence Length
	Similarity Threshold

	Discussion
	Utility of Anomaly Detection in Proactive VM Fault Tolerance
	Exploring LLM Usage Paradigms
	Comparing LLM performance
	Properties of an Ideal VM Failure Predictor

	Conclusions

