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Abstract

This research study aimed to develop a non-learning-based approach for indoor

localization using Channel State Information (CSI). The study successfully created

a linear model that could perform the task of indoor localization with limited

data. The research dataset contained CSI data pertaining to an occupant who was

engaged in performing five distinct activities, and each data point in the dataset

came with annotations that detailed specific locations and activities. The study

also provided valuable insights into how different activities impact CSI in different

ways, how amplitude and phase differences produce various outcomes, and how the

size of the comparison vector is an important factor in determining the accuracy of

CSI data. While the algorithm proposed to locate an individual within a particular

area showed promising results, it had some limitations. Overall, the findings of this

research study provide valuable contributions and insights that could assist not only

in indoor localization but also in activity recognition.
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Preface

Indoor localization has recently emerged as a crucial area of research, driven by the

growing need for precise location tracking within buildings using wireless signals.

While traditional methods rely heavily on learning-based algorithms, limitations

in available datasets have hindered their accuracy and applicability.

In response to this challenge, this dissertation presents a novel non-learning-based

approach to indoor localization using CSI. The study explores the impact of various

activities on CSI, providing insights into wireless signal propagation and reception

within indoor environments.

Throughout this work, I transparently acknowledge the contributions of others,

particularly in the development of data collection setups in collaboration with my

supervisor. However, the data collected for evaluation and the subsequent analysis

are entirely my own, demonstrating the originality and autonomy of this research.

By adhering to principles of academic integrity, this dissertation aims to contribute

authentically to the field of indoor localization, advancing our understanding of

wireless signal behaviour in indoor settings.
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Chapter 1 - Introduction

Radio Tomographic Imaging (RTI) is a device-free localization method that uses

the effect of objects on a signal to localize/track the said object that is causing

the changes in the signal [1], [2]. This follows the fundamental principle that radio

signals would display a dip in their characteristics when the path between the

receiver node and the transmitter node (known as a link) has an obstruction [3].

RTI works by placing RF nodes around an area of interest, which are capable of

communicating with each other and thus form links to communicate that cover

the said area. When any object crosses/obstructs a link, this will create a showing

effect on the power of the signal. The receivers calculate the loss in power of

the signal of each link and construct an image that depicts where the attenuation

occurs [4]. RTI utilizes the change in attenuation of signal strength caused when

radio signals collide with objects in an area to form an image of the said area, such

as Figure 1.1 [5].

Figure 1.1: An example of an RTI resultant image (adapted from Wilson and

Patwari [5])

1.1 Motivation

Attempting to locate or localize individuals within an enclosed space is a problem

that comes up very often in many rescue operations. To address the problem, vari-

ous technological solutions have been presented over time, ranging from attempting

to sneak a device into the area of interest to ”passive” solutions that do not require
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direct access to the said area. Imagine such an emergency rescue situation where a

building has collapsed, and it is necessary to locate the survivors within the rubble

or a partly collapsed area. In such situations, it would be difficult to access the

area directly. RTI aims to provide a solution to gain valuable information about

the location of individuals in such situations by utilizing the effect that obstacles

have on radio frequency signals.

As of now, there has been considerable work done in the area of RTI, going as

far as being able to detect changes in the breathing of individuals by monitoring

the change in radio signals in the area. Despite there being various applications

for monitoring the effect that human activity has on radio frequency signals, this

research, in particular, aims to tackle the problem of how to localize individuals

within an enclosed space using RTI by developing a linear model as opposed to

the usage of learning models. The reasoning behind developing a linear model

is due to the necessity of requiring sufficient datasets for learning models. Such

datasets are rarely available freely and are not portable to any environment or

scenario. Further investigation into linear models can help develop systems that

can be developed with a lesser amount of data than learning models and that do

not require calibration in the deployment environment.

In 2009, J. Wilson and N. Patwari introduced a linear model that maps human

activity to changes in a WiFi signal. While this model provided satisfactory results,

given that it was not a learning algorithm, it required an ample number of devices.

In order to monitor an area of interest, the said area needed to be covered by

devices placed uniformly as depicted in Figure 1.2, with the exact distances between

the nodes placed and the dimensions of the area of interest needing to be known

measurements. This requirement makes the solution less than ideal in practical

environments, and such a high number of devices (or nodes) may not always be

available.

These issues proposed the possibility of a solution that would accommodate more

robustness in the device deployment strategy (or topology) and how one could

develop the existing linear model to achieve the same goal of locating people within

an area of interest.
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Figure 1.2: An example RTI setup

1.2 Scope

In Scope

• Investigating the capability of linear RTI systems with a lesser number of

nodes.

• Developing the existing linear model to enhance the capability to detect oc-

cupancy using CSI.

Out of Scope

• The project’s feasibility will not be tested in large or outdoor environments.

• The project does not aim to accommodate situations where the node locations

are unknown.

1.3 Research Gap

A clear need for a passive, non-intrusive localization and tracking system arose due

to the situations of needing to locate people without having direct access to an

area, such as in disaster and rescue operations, military operations and shopper

analysis. It was these requirements that brought forth RTI, an inexpensive system
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capable of localizing objects within an enclosed area even in through-wall situations.

Although RTI has much to offer in terms of its practical use, it is not yet in a

stage where it is a commercially and predominantly available technology. It was

identified during the preliminary literature review that not much focus was given to

performing RTI when the setup has an irregular topology. In roughly all the papers

reviewed, the nodes were set up uniformly around the area. Whilst such setups can

yield optimal results, they reduce the system’s practicality in nature. In addition,

it was also identified that the reviewed literature on CSI-based implementations

developed a machine-learning model to solve the problem of human detection or

gesture recognition.

1.4 Research Questions

1. Is it possible to develop a linear model for indoor localization using

CSI-based RTI?

Hypothesis: CSI has an advantage over Received Signal Strength Indicator

(RSSI) in providing more detailed information that can result in a linear

model with higher accuracy. As there is a lack of datasets available when

developing a learning-based approach, a linear model is a preferred approach.

2. How to accommodate a sparse device setup for linear model of

CSI-based RTI?

Hypothesis: The statistical linear model presented in the paper by [5] as-

sumes that enough devices cover the entire area of interest. However, when

the network setup consists of only a few nodes placed randomly through-

out the area, this assumption may not hold. It could significantly impact

the effectiveness of the system. It is possible to modify the standard model

to account for such irregular device placement with minimal impact on the

successful implementation of RTI.
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1.5 Aims and Objectives

Project Aim

This project focuses on exploring the ability to image an area of interest with RTI

using CSI when the setup is deployed in a nonuniform and irregular manner and a

sparse network of nodes is used.

Objectives

• Exploring the ability to form an image/detect the occupancy in an enclosed

area when the setup used is sparse and deployed in a non-uniform manner.

• Developing a linear RTI model that utilizes CSI as the primary parameter.
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Chapter 2 - Background

Indoor localization is novel research that is gaining popularity due to its wide ap-

plicability in various fields, especially in NLOS environments where certain human

activity in an enclosed space needs to be monitored in situations where it may be

difficult to get direct visual input [6] [7]. Indoor localization brings forth a multitude

of potential applications, such as recognizing patterns in smart home management,

disaster management, emergencies, rescue situations, traffic management, assisted

living, being a few [6] [8] [9] [7] [10].

Despite being applicable in a myriad of situations, indoor localization is a complex

research problem. In terms of visual-based approaches, where indoor localization is

performed by processing the feed obtained by a camera, it brings in problems such

as scale invariance, where the scale of the object depends on its distance to the

camera, and other problems such as environmental changes such as fog that can

affect the output [11]. Moreover, in terms of non-visual based approaches, over-

lapping objects and clutter in the environment, the activities that the individuals

are engaged in (some individuals may be stationary, some may be moving), unpre-

dictable human behaviour, indoor localization proves to be a challenging task[12].

In addition, [9] notes that solutions should be ”scale-able and minimally intru-

sive” and need to function as intended in various scenarios regardless of the crowd

density [11].

Researchers have looked into various methods to tackle this problem, ranging from

visual-based approaches such as using cameras combined with image processing, en-

vironmental science and radio signals [13]. Radio signal-based approaches use Radio

Frequency (RF) sensing devices such as Radio-frequency identification (RFID) tags,

Bluetooth, or processes the effect on Wireless Networks [14]. Although computer

vision has long since been used to achieve this, it has many limitations, is not appli-

cable in NLOS environments, and poses privacy concerns [8]. Thus, the need arose

for a technology that is capable of passively monitoring human activity within an

enclosed space without requiring direct access to that specific area.

RTI is a radio-based novel approach. Formed from the Greek word ”tomos”, which
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translates to section or sectioning, tomography is concerned with the computation

of an image of a sectioned area using the interaction of signals with the objects in

the area of interest. When this technology is performed using radio signals, it is

called Radio Tomography (RT) [15].

RTI provides an effective method for through-wall tracking compared to the other

methods [16]. It uses the attenuation caused by a signal when an object obstructs

the links in an area covered by a wireless network to compute information about

the object [17]. RT using wireless networks is being greatly researched into as the

infrastructure required is readily available, easier to deploy, low cost and less intru-

sive than camera-based approaches [7]. Wireless tomography uses the properties

in a wireless network, such as the RSSI or CSI, and how they interact with the

objects in an environment to compute an image or calculate the number of people

in a certain localized area.

2.1 Applications of Indoor Localization

This section aims to give a general overview of how indoor localization is applied

in different use cases. The applications can be generalized to military and rescue,

security, domestic and commercial use, and assisted living.

2.1.1 Military and Rescue

Indoor localization can be used in various situations, albeit the most popular us-

age is in military situations. [17] notes that it has wide applications in the areas

of ”security, surveillance, search-and-rescue, and military” and can be used for

tracking systems that can help to locate survivors or individuals trapped during

disasters. Usage of passive localization systems could result in fewer injuries for

law enforcement officers as such imaging systems would assist them in assessing an

environment and locating offenders in situations where they would otherwise have

no visual input [18] [17] [15]. The military can utilize such imaging systems to

detect fighter jets and drones or the number of soldiers and their locations, which

would assist in setting up and planning counterattacks and defensive mechanisms

[6]. In addition, in situations such as concerts with massive crowds, such technolo-
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gies can be used to manage the crowd to avoid disastrous situations [6]. Another

possible application is detecting if the amount of people in a gathering exceeds

a safe threshold, which would be required in crises such as the COVID-19 crisis

where large gatherings were prohibited [19].

2.1.2 Security

Traditional methods to provide security are camera-based approaches or trip-wire-

based approaches. Tripwire systems have a major limitation of being able to iden-

tify only if a boundary has been crossed and cannot provide information about the

location or number of people [18]. While security cameras do have the advantage

of providing a visual output that can be used to identify people, it has limited

coverage, cannot see through objects such as walls and may not always work as

intended in low light situations [15]. On the contrary, passive localization systems,

such as RTI based systems, could be used to be alerted when an intruder crosses a

boundary as well as to track the intruders [18].

2.1.3 Domestic and Commercial Use

Localization systems can be integrated with smart buildings or homes to optimize

energy consumption according to the individuals present in specific regions and

control the air conditioning, lighting and heating accordingly [15] [18] [20]. In

terms of commercial use, it can be used in buildings such as supermarket stores

to assess the areas that attract more customers [20]. It can also assist in urban

planning to better distribute the resources based on the occupancy [20]. In addition

to urban planning, indoor localization also helps in event management to identify

and estimate the number of people sitting in a certain region [19].

2.2 Methods of Indoor Localization

The problem of indoor localization has been approached in different ways. A noted

classification of the approaches is as image-based approaches and non-image-based

approaches [9] [21].
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2.2.1 Visual-Based Approaches

Traditionally, camera-based or special hardware-based approaches have been used

[22]. Camera-based approaches add an image-processing algorithm to a visual out-

put to extract information such as the identity or the number of people [9] [20]

[23]. As such, the inclusion of image processing algorithms leads to an additional

computational overhead [24] [14]. To add to its limited applicability, video-based

systems would require a network of cameras to be set up, which would add on a

deployment cost in addition to its inability to function as expected in low light sit-

uations [20]. In addition to bringing in the added complication of privacy concerns,

being applicable only in direct line-of-sight situations, most camera-based systems

require favourable environmental and lighting conditions to function as intended

[10] [9] [14].

2.2.2 Environment-Based Approaches

Research has also been done in utilizing environmental science such as carbon

dioxide concentration, dew point and humidity to identify the number of people

[25]. Similar to the downside of visual-based approaches, this approach requires

direct access to the area of interest.

2.2.3 Radio Signal Based Approaches

Radio signal-based approaches can be further classified into two main categories

[20] [25].

1. Device-based active methods which rely on people to carry a communication

device

2. Device-free passive methods which use the interaction of signals with the

people in the area of interest. These methods are based on the principle

that the presence and motion of humans affect radio signals in a significant

manner [25].

Since device-based active methods are limited in applicability due to the require-

ment of people in the area of interest needing to carry communication devices,

device-free passive methods are being largely researched. Indoor localization in-
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Figure 2.1: Categorization of localization methods

[25]

herently poses the requirement to utilize device-free passive methods to be prac-

tically usable in many situations as they need to be rapidly deployed, especially

in emergencies, without having direct access to the area of interest [17]. Modern

requirements have brought forward the need for passive methods, which is also

known as Device Free Localization (DFL) or “sensorless-sensing” [16].

Device-Based Active Approaches

RFID is a contact-less communication technology whose system consists of a tag

and a reader [7]. RFID systems required the individuals to carry tags, which would

also enable the individuals to be uniquely recognizable [16]. RFID tags are used

since the RFID signals reflect off of the human body. This reflection is then used

for human activity sensing [7]. However, the readers required by RFID systems are

expensive hardware [16].

Device-based approaches carry the disadvantage of requiring the people in the

crowd to be carrying mobile devices [22]. Since RF based approaches use specialized

sensors and have a device-based active nature, they cannot support large-scale

deployment [14].

Device-Free Passive Approaches

RTI is a radio-based, device-free passive approach. To achieve NLOS tracking,

using radio signals in imaging systems has an advantage over signals such as infrared

since they are long-range and can travel through obstructions such as walls [18].
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Using Wireless Signals with RTI

With the recent boom of wireless networking and mobile devices, wireless infras-

tructure has been deployed widely in both commercial and residential areas, lead-

ing to most areas constantly being covered by wireless networks [7] [14] [19] [16]

[26]. Due to this abundantly available network coverage and most Commercial-Off-

The-Shelf (COTS) devices being WiFi enabled, using WiFi has become a popular

approach to indoor localization [19]. Although ZigBee transceivers have outper-

formed WiFi in indoor environments, in situations where there is less scattering

and in outdoor environments, WiFi has had better outcomes in localization. [27].

Despite WiFi infrastructure being readily available and abundant coverage by wire-

less networks, usage of WiFi poses its drawbacks. Its sensing range is limited, and

the signals can be affected by environmental factors. Moreover, WiFi cannot sup-

port both motion sensing and communication simultaneously [7].

Despite the existence of other techniques such as camera, capacitance, infra-red,

ultrasonic, and environmental science, most of them have major drawbacks such as

raising privacy concerns, requiring training in a deployed environment, high deploy-

ment cost, occlusion, with the most critical being their inability to support NLOS

tracking. Due to its ability to support NLOS tracking, regardless of its drawbacks,

RTI imaging remains a popular solution for indoor localization.

2.3 Introduction to Radio Tomographic Imaging

Radio tomography stems from the concepts of two widely used imaging systems.

One is radar systems, which transmit a signal and, based on the echo, identify the

existence and distance of objects in the environment. The other is imaging systems

in the medical industry, such as Computed Tomographic Imaging (CTI), which

sends out a signal through a medium and uses the signal measurements to compute

an image of the spatial field of the paths that the signals went through. RTI, similar

to radio systems, uses radio frequencies and measures the signal strengths across

different paths that the signal travels through in a certain area [18]. RTI is a

technology that enables the imaging of a localized area based on the attenuation

of wireless signals caused by the physical objects within the area of interest [18].
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Wireless tomography combines the concepts of RTI using wireless communication

technologies [28].

Figure 2.2: Illustration of an RTI network and links that pass through a localized

area.

[18]

In a localized area of interest that is covered by a wireless network, the obstruction

of the links by the objects in the said area would cause an attenuation in the

signals, and the link would experience shadowing losses [16] [18]. In RTI, multiple

radio transceivers, or RF nodes, are set up around an area such that they create a

wireless network grid covering the area [16]. A link is used to describe the straight

line between two RF nodes [25]. A voxel is a three-dimensional element in the

coverage area, similar to a pixel in a two-dimensional space [25].

The impact on a link by the objects in an environment can be categorized into two

types: [20] [18].

1. Line Of Sight (LOS) blockage - When an object is obstructing a direct path

between a transmitter and receiver. This causes a significant attenuation in

the RSSI [27].

2. Multipath effect - The signals can reflect and bounce off objects in the area.

This would cause the RSSI to fluctuate. The interference with the signal could

either be a constructive interference, where the reflected signals combine to

form a stronger signal than the transmitted, or a destructive signal, where

the reflected signals have cancelled each other out.

RTI would typically have three main components [25].
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Figure 2.3: An overall view of a RTI setup

[25]

1. The weighting models - To identify the voxels which contribute to a link and

their contribution to said link.

2. Noise - Noise is identified to be the variation in RSSI measurements when

there is no object obstructing a link that could cause an attenuation.

3. Image reconstruction - Concerns with constructing a map/image of the area

under inspection such that the effect of noise is as minimal as possible. The

reconstruction of the image is an inverse problem.

Inverse Problem

A forward problem is any typical problem where a solution to a system is obtained

by applying data to known parameters. An inverse problem attempts to discover

the parameters using the observations or result of a system [29]. In the context

of RTI, the inverse problem would be, knowing the emitted and received RSSI

measurements, what would be the signal loss at each voxel.

2.4 RTI in Indoor Localization

Radio signals are inherently affected by the phenomenon of ”radio irregularity”,

which refers to signals being absorbed, reflected or scattered by objects in their
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Figure 2.4: Illustration of a localized area with people walking inside to depict the

LOS blockage and multipath effect

[20]

path [30]. RTI uses this phenomenon to its advantage to track the objects that

caused the attenuation [31]. It exploits changes in the radio signals to locate objects

of the body without them needing to carry a device or be actively participating in

the localization process [16].

RTI can be mainly categorized into two.

1. Shadowing-based RTI

It uses the shadowing effect of the human body to correlate to the location of

an individual. The shadowing effect is the phenomenon of the signal values

displaying a considerable loss due to an obstacle being in the direct path

between a receiving and sending device. [25] [16].

2. Variance-based RTI

A vector of the RSSI variance on each link is used to compute an image that

can detect motion within the voxels. It is based on the fluctuations of RSSI

measurements over time due to the motion of individuals. These systems

require an initial calibration without the presence of objects in the room [16]

[31].

2.4.1 RSSI and CSI

RTI works by analyzing the effect that objects in an environment have on a signal.

This analysis is performed utilizing either of the one-channel properties RSSI or

CSI.
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RSSI

RSS measurements can be calculated by most commercial off-the-shelf (COTS)

electronic devices. It is the received power of a signal, which is the squared mag-

nitude of the complex baseband voltage, in decibels [32]. It is a coarse indicator of

the received power obtained from the MAC layer [33]. The received signal strength

can be mathematically represented as,

yi(t) = Pi − Li − Si(t)− Fi(t)− vi(t) (2.1)

where,

• Pi: Transmitted power in dB.

• Si(t): Shadowing loss in dB due to objects that attenuate the signal.

• Fi(t): Fading loss in dB that occurs from constructive and destructive inter-

ference of narrow-band signals in multipath environments.

• Li: Static losses in dB due to distance, antenna patterns, device inconsisten-

cies, etc.

• vi(t): Measurement noise [5].

CSI

CSI serves as the metric in Orthogonal Frequency-Division Multiplexing (OFDM)

systems to characterize amplitude and phase fluctuations among subcarrier fre-

quencies during signal transmission from a transmitter to a receiver. Channel

estimation is the method employed to discern these fluctuations across subcarriers

in OFDM systems by transmitting a designated set of known shared pilot symbols

arranged in a comb-type pilot pattern. This pattern consistently utilizes the same

subset of subcarriers as pilot subcarriers over time.

CSI measurements are fine-grained channel information obtained from the physical

layer, including the different time delays, amplitude attenuation and the phase

shift of multiple paths in each subcarrier [34]. While CSI amplitude variations

can be observed to depict different patterns for different individuals, activities

and gestures, phase shifts in the frequency domain display, which are related to

transmission delay and direction, can be utilized to obtain information regarding

the location of humans [35]. CSI represents how wireless signals can propagate
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along multiple different paths from a receiver to a transmitter at certain carrier

frequencies [35].

A WiFi channel with Multiple Input Multiple Output (MIMO) has multiple sub-

carriers divided by OFDM. In order to measure CSI, a transmitter sends Long

Training Symbols (LTF), which contains pre-defined symbols for each sub-carrier

in the packet preamble. When the receivers receive the LTFs, the CSI is calculated

using the received signal and the original LTF. For each sub-carrier, the channel

is modelled by the following equation,

y = Hx+ n (2.2)

where,

• y: Received Signal

• H: The estimated CSI matrix (calculated by the receiver)

• x: The transmitted signal

• n: Noise vector

OFDM systems utilize multiple subcarriers, each with slightly different frequencies,

to prevent interference issues and ensure reliable data transmission. Some sub-

carriers serve as pilot subcarriers, carrying known symbols that help the receiver

understand variations across the entire OFDM symbol. This enables the correction

of signal fluctuations across different subcarriers through subcarrier equalization.

For example, in a standard WiFi channel with a 20MHz bandwidth, there are 64

subcarriers, with some designated as pilot subcarriers as illustrated in Figure 2.5.

These pilot subcarriers, along with others carrying encoded data, are organized

around a central frequency, allowing for efficient data transmission and reception.

RSSI vs CSI

RSSI has been a popular approach because it does not need expensive hardware to

form a dense network. Since the number of nodes used increases the accuracy of the

system, a low-cost dense network would“ result in an RTI system with significant

capability [32], [37]. When an object obstructs the line-of-sight (LOS) path in a

wireless network, the RSS in this path will undergo a significant drop. Although a

majority of the RSS-based approaches rest on this principle, due to the multipath

effect, the RSS signal may not always undergo a drop. Based on whether the
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Figure 2.5: Layout of subcarrier types in the WiFi frequency domain (adapted

from [36]

interference is constructive or destructive, due to the signals getting reflected or

diffracted, the signals could either increase, decrease or even remain unchanged

[32], [33], [37]. The dips in the signals which are not caused by objects are called

fake-shadowing-decreased measurements [37]. If the fake/incorrect measurements

are taken into account in the image construction phase, it can cause a significant

drop in the accuracy. Researchers have since then come up with concepts, such as

the fade level and using regularization, to identify the fake measurements from the

informative ones and to reduce the effect of noise [37], [38].

CSI can provide fine-grained information, but it is susceptible to inherent noise

that conventional low pass filters cannot remove [34]. CSI values are very sensi-

tive to even the most minor disruptions in the environment and more resilient to

noise [39]. Due to its sensitivity, it has been used in related work for human ges-

ture recognition, human activity recognition, and even to detect breathing analysis

[34]. Unlike in the case of RSS, most commodity WiFi chipsets do not support

CSI extraction [40]. CSI has the upper hand over RSS since it is more robust

to the multipath effect, supports channel and spatial diversity and provides more

information than RSS that can [33].

2.4.2 CSI-based Implementations

In a survey done in 2020 by Ma et al., different theoretical models, statistical models

and algorithms are mentioned as depicted in Figure 2.6 [35]. Despite identifying and

describing several models, the paper presents only two related literature that follow
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the mentioned mathematical models. Unfortunately, both papers track mobile

devices specifically and not objects or humans in the environment [41] [42]. Another

survey conducted in 2017 by Yousefi et al. only reviews learning-based models for

CSI-based implementations for behaviour recognition [43]. A survey conducted

by Zhang et al. in 2017 does a more comprehensive review of the model-based

approaches, which they identify as depicted in Figure 2.7. During their survey, the

authors identified the Fresnel zone model as a powerful model as they conducted

experiments in which they observed that it is capable of interpreting where and at

what orientation a person’s respiration can be sensed. When considering the related

work mentioned that focuses on localizes and tracking, the passive tracking (CSI-

speed model-based) method utilized can only work when the sensor devices are

deployed inside the tracking area along the walls such that objects and humans do

not obstruct the LOS [44]. The Angle-of-Arrival (AOA) based method (MaTrack),

comparatively, can only work in situations when there is only one target to track

[45]. WiDir, the Fresnel zone model-based approach, only estimates the indoor

movement direction of a target and does not localize or track the said target, and

similar to MaTrack is only for singular subjects [46].

Figure 2.6: The non-learning based models

[35]

2.4.3 RTI Setup

For most typical RTI setups that attempt to perform through-wall tracking or occu-

pancy detection, wireless nodes would be placed in a uniform manner surrounding

the area of interest in order to form a dense network of nodes. Since many RTI

models attempt to image the attenuation per voxel, as per Figure 2.8, a sparse

network of nodes would not form a regular grid, thus making it difficult to image
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Figure 2.7: Pattern-based vs Model-based solutions

[47]

as the voxel sizes would differ. While dense networks utilize a large amount of

nodes, such as 20-30 nodes, a sparse network would contain a much lesser number

of nodes, such as three nodes. This becomes an issue in situations such as in disas-

ter areas, where the placement of nodes cannot be done uniformly and would be a

random deployment [48]. Random deployment could bring forth many issues, such

as poor network connectivity and insufficient coverage. Self-deployment of nodes

has been a proposed technique where the nodes themselves would be capable of

organizing themselves to form an optimal topology [48]. This would be a difficult

task to perform as finding the optimal topology is an NP-Hard problem and would

require trade-offs when considering the different factors such as network connec-

tivity, coverage, energy consumption, and the battery lifetime of the nodes [48],

[49].

Regular Topology

Figure 2.9 and Figure 2.10 are a few examples of setups that follow a uniform/reg-

ular topology. When a regular topology is set up, an imaginary grid with voxels

of a specific size can be used. When the topology becomes irregular, maintaining

a uniform grid with equally sized voxels can be difficult and would complicate the

mathematical models thus developed.

In addition, [50] mentions how the number of nodes utilized increases the accuracy
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Figure 2.8: An illustration of an RTI network

[5]

of the system rather than using nodes with high computational power, which would

create a dip in accuracy in setups with a sparse network. This research aims to

explore the methods to increase/maintain the accuracy achieved whilst using a

lesser number of nodes and when the grid created by the links in a network cannot

form a uniform grid.

Figure 2.9: Experimental setup with a dense network used by Wilson and Patwari

in 2011

[50]

The work done thus far has focused on aspects such as increasing the accuracy of

the system, attempting to track multiple targets since most papers have a limit of

being able to track at most three/four people at a time [52] and not much focus

has been given to improve the practical usability of RTI. Although it has been

proposed that future advancements lie in increasing the deployment strategies of

an RTI setup, not much work has been done on the topic. Therefore, there is a
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Figure 2.10: Experimental setup used by Kaltiokallio, Bocca and Patwari in 2013

[51]

gap in terms of obtaining a satisfactory result when using a mathematical model

in irregular setups with a sparse node network.
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Chapter 3 - Design and Implemen-

tation

To understand RTI without the availability of a non-learning model’s public im-

plementation, the only apparent solution was to replicate a typical configuration

illustrated in Figure 1.2, which would necessitate using at least four or more de-

vices. However, while attempting to replicate the setup, several obstructions were

encountered.

1. A significant number of devices were required

2. A protocol needed to be implemented for the devices to communicate and

transmit the CSI data to a computer.

3. The node’s firmware must be familiarized to implement such a protocol.

It is imperative to note that successful implementation of such a protocol would

require an in-depth understanding of the firmware, communication protocols, and

data transmission mechanisms. Given the constraints of the project timeline and

the desired output, it was determined that replicating existing setups would be

excessively time-consuming. As such, allocating resources to this task would be

detrimental to the project’s overall success.

3.1 Datasets Used

Publicly available datasets that meet the project requirements were sought to de-

velop a non-linear model. A suitable dataset would have the following properties:

1. Accurate information regarding the environment in which the data was col-

lected, such as the room’s dimensions. This information is critical to segment

the area of interest into voxels.

2. Clearly stated information on the exact location of every occupant and the

devices used to collect the data. This attribute is crucial for establishing a

correlation between the CSI data and occupant presence and the relationship

between an occupant’s location and the device’s location.

3. A comprehensive and detailed description of the dataset, including informa-
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tion about the exact number of subcarriers and their corresponding data

format.

3.1.1 WILD

In June 2020, WILD was released. The dataset was collected to develop a Deep

Learning-based Wireless Localization for Indoor Navigation called ”DLoc”. It is

claimed to be the first of its kind and the largest location labelled Wi-Fi CSI

dataset. The authors utilized the dataset to create a platform that facilitates indoor

navigation. DLoc platform enables the utilization of any Commercial-Off-The-

Shelf (COTS) devices (such as smartphones) to access a map of the environment

and estimate their location concerning the map. Once trained using collected data,

DLoc enables new users to estimate their location with their smartphone [53].

The authors mounted an off-the-shell Wi-Fi transmitter onto the Turtlebot2 plat-

form, a low-cost, open-source robot development kit to collect the CSI data and

generate the maps. The robot was equipped with Light Detection and Rang-

ing (LIDAR), a camera, and odometry to collect accurate location estimates for

wireless channels. To gather accurate data, the authors placed the Wi-Fi transmit-

ter on the robot’s top at a height typically used by an average smartphone user.

The robot was operated through the Robot Operating System (ROSKinetic) with

the help of a laptop that was equipped with an 8th Gen Intel Core i5-8250U mobile

processor and 8GB of RAM.

The data was collected in two different environments: a complex NLOS environ-

ment with high multipath, as shown in Figure 3.2, and a simple Line Of Sight (LOS)

environment, as shown in Figure 3.3 [53]. For Figure 3.2, data was collected for

five different setups; for Figure 3.3, data was collected for three different setups.

The CSI dataset was provided in MATLAB files stored using HDF5 file structure,

with one file for each setup in each environment, and each file was said to contain

the variables given in Table 3.1.

Challenges with the dataset

Upon loading the dataset, it was discovered that the actual attributes differed from

those listed in the description. Specifically, the attributes RSSI, channel, ap aoa,
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Figure 3.1: MapFind (right) is an autonomous robotics platform that creates a

map (left) for indoor navigation and collects ground truth labelled CSI data for

neural network training.

[53]

Figure 3.2: Complex high multipath NLOS environment (1500 sq. ft.)

[53]
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Figure 3.3: Simple LOS based environment (500 sq. ft.)

[53]

d1 and d1 were not present, while the attributes #refs#, channels w offset,

channels without offset and tof gnd were included despite not being listed in

the data dictionary.

The dataset contained several discrepancies that posed obstacles to the analysis

process. The following issues were identified:

1. The labels variable did not provide the relationship between the x and y

locations and the environment’s actual dimensions, making it challenging to

determine the spatial locations of the data points.

2. The data format for the Access Point (AP) locations lacked information about

the entire axis’s scale, as it was supposed to be in the missing variables d1

and d2. which made it challenging to comprehend the location concerning

the entire axis.

3. The channels w offset and channels wo offset variables contained a 4D

array that can be assumed to be the channels variable given in the data

dictionary. However, the dataset lacked any information about whether the

single value contained in the variable was the amplitude or phase of the CSI

data. CSI data is usually given as a tuple of imaginary and complex numbers

to calculate both amplitude and phase.

4. The task of dividing the area into voxels and calculating the dimensions of

each voxel was hindered by the unavailability of the scale for the x and y
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Variable Data format Description

channels [ No of datapoints x No of

subcarriers x No of anten-

nas X No of access points ]

4D complex channel ma-

trix

RSSI [ No of subcarriers x No of

access points ]

2D RSSI matrix

labels [ No of subcarriers x 2 ] 2D XY labels

opt.freq [ No of subcarriers x 1 ] 1D vector that describes

the frequency of the sub-

carriers

opt.lambda [ No of subcarriers x 1 ] 1D vector that describes

the wavelength of the sub-

carriers

opt.ant sep NA antenna separation used

on all of our APs

ap [ No of access points ] Each element correspond-

ing to [ No of antennas x 2

] XY locations of the num-

ber of antennas on each

AP

ap aoa [ No of access points x 1 ] Vectors that contain the

rotation that needs to be

added to the AoA mea-

sured at each AP (assumes

that the AoA is measured

about the normal to the

AP’s antenna array)

d1 NA The sampled x-axis of the

space under consideration

d2 NA The sampled y-axis of the

space under consideration

Table 3.1: Data dictionary of the CSI data

[53]
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axes.

However, the most significant obstacle was the lack of information about the robot

and AP locations, as it was impossible to identify which voxel an AP and occupant

would be in. As a result of the challenges encountered, it was required to pursue a

different dataset.

3.1.2 AWi-Fi Channel State Information (CSI and Received

Signal Strength (RSSI) dataset for human presence

and movement detection

”A Wi-Fi Channel State Information (CSI) and Received Signal Strength (RSSI)

dataset for human presence and movement detection”, released in February 2020,

claimed to be the first at the time to release a dataset that combines antenna-wise

RSSI with human presence annotations [54]. The authors collected the dataset to

develop a machine-learning-based model that detects human presence using RSSI.

The data was collected from four testbeds, depicted in Figure 3.4. The Wi-Fi

APs, displayed as blue disks in Figure 3.4, were regular COTS computers running

Ubuntu with an Intel 5300 Network Interface Card (NIC) and three dipole anten-

nas. Each AP had a whitelist of client device addresses. Three clients were in each

room, and each client had three antennas. The Raspberry Pi 3 model was used as

the client device with an integrated Cypress CYW43455 Wi-Fi chip connected to

a PCB Proant Dual Band Niche antenna in the larger rooms. On the other hand,

Raspberry Pi 2 was used in the smaller rooms, with an assortment of single-antenna

Wi-Fi USB dongles. The dotted lines found in Figure 3.4 represent connections

between the AP and a client and are referred to as ”Wi-Fi links”.

The ”Intel CSI” tool [55] was utilized to capture and save the CSI information from

every antenna of each client. The collected CSI data was stored in separate JSON

files for each AP-client link. The JSON file’s data dictionary for the CSI data is

presented in Table 3.2. Figure 3.5 provides a sample of the CSI data, where each

CSI object is listed on a separate line in the JSON file.
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Figure 3.4: Schematic of the four rooms, drawn to scale, where the experiments

were conducted

[56]

Figure 3.5: Example of a CSI sample

[54]
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Attribute Data-type Description

t double *NIX epoch timestamp,

rounded to 6 decimal dig-

its.

CSI array[30][] This is a two-dimensional

array that consists of one

array for each of the 30

subcarriers. Each subcar-

rier array consists of sev-

eral complex number pairs

antenna.

r integer The real part of a complex

number

i integer The imaginary part of a

complex number

Table 3.2: Data dictionary for the CSI samples

[54]

Data Processing

The data from one of the rooms, specifically ”1.28A” depicted in Figure 3.6 with

the voxels annotated, was analyzed. The necessary CSI data was stored in JSON

files, and due to the formatting, loading the dataset was a time-consuming and

storage-consuming task. To optimize the loading and assist in processing, the file

was processed in chunks, and the data was processed and saved into a SQLite

database in a format that would allow faster and more refined access.

The room had three links, one for each client, and the data for each link was given

in a separate file, which was saved in individual relations per link in the database.

The data, initially in the format shown in Table 3.2, was formatted to save in its

respective link’s relation, which had the format shown in Table 3.3.

The ground truth values were stored in a CSV file with the format shown in Ta-

ble 3.4 and were gathered through a mobile app which the occupants utilized to

record their upcoming activities. The information was stored in a separate relation

in the database as shown in Table 3.5.
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Figure 3.6: Schematic of the room ”1.28A” drawn to scale

[56]

Column Name Data format Description

timestamp Unix timestamp saved as a

string

The timestamp of the data

instance

antenna no int Each client had three an-

tennas. This attribute

was to save the CSI from

each antenna separately

for each data instance.

csi int[] The array containing the

complex number tuple for

the relevant antenna for all

subcarriers of the particu-

lar data instance.

Table 3.3: Data dictionary for the relation for each link

A relationship between the level of CSI data and the occupant’s presence needed

to be established to determine if an occupant was present in a particular area. To

do so, an average CSI value or level at which an activity occurs could be identified.

This level will be referred to as the threshold. Whenever the CSI data crosses this

threshold, it would indicate that some activity had occurred in the area.

To establish a threshold for each activity, the timestamps of every instance of that

activity were obtained from the ground truth relation. Since an activity can occur

multiple times, there were multiple timestamp ranges for each activity. The data

within each timestamp of every occurrence of an activity was then retrieved from

each link’s relation. For each occurrence of an activity, the average, minimum,
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Column Data-type Description

begin time double Timestamp (*NIX epoch),

rounded to 6 decimal dig-

its that mark the begin-

ning of the period the an-

notation corresponds to.

end time double Timestamp (*NIX epoch),

rounded to 6 decimal dig-

its, marks the end of the

period the annotation cor-

responds to.

room string The room that the annota-

tion corresponds to, which

would be either ”G21”,

”G19”, ”260”, ”128a”, or

”NA” (for ”Not Applica-

ble”).

oid string The occupant ID (”01” or

”02”).

label string This is the ground truth,

i.e., the occupancy state of

the room during the indi-

cated period.

Table 3.4: Data dictionary for the ground-truth annotations

and maximum values were calculated for each subcarrier and saved in a separate

relation called ’threshold per occurrence’. The data dictionary for this relation is

provided in Table 3.6.

Challenges with the dataset

The structure of the relation given in Table 3.6 and the calculation of averages,

minimum and maximum values were under the assumption that an activity could

be associated with a voxel. This would enable the identification of the threshold at

which an activity occurs in a specific voxel. Consequently, each voxel would have
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begin timestamp double The starting timestamp of

a labelled activity.

end timestamp double The ending timestamp of a

labelled activity.

activity string There were five activi-

ties: ”Gone”, ”Approach”,

”Enter”, ”Mobile”, ”Sta-

tionary”, ”Exit”, and ”De-

parture”. Each activity

would indicate the room’s

occupancy.

Table 3.5: Data dictionary for the ground truth relation

its threshold for every activity, allowing us to detect occupancy at each voxel.

It was discovered that a dataset, which was being analyzed to establish a thresh-

old per voxel, was missing location information for occupants. This meant that

identifying a threshold per voxel would not be possible. The dataset included

five different activities, but only two activities, ”Enter” and ”Departure,” could

be associated with a voxel number (voxel nine, as seen in Figure 3.6). Therefore,

thresholds could only be identified for these two activities for only a singular voxel.

Unfortunately, the other two activities, ”Stationary” and ”Mobile,” were said to

occur randomly in the room, and thus, their impact on the CSI data could not be

analyzed. The absence of this critical information made it difficult to gain valuable

insights into how the CSI data would react to both stationary and active occupants.

Upon examining two datasets, the latter of which contained data from only three

links, it was discovered that it might be feasible to generate a dataset from scratch

utilizing just two devices. This would eliminate the requirement for a communica-

tion protocol, which was the primary issue at hand.
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begin timestamp double The starting timestamp of

the occurrence of the ac-

tivity

end timestamp double The ending timestamp of

the occurrence of the ac-

tivity

activity string The name of the activity

link no int The threshold of all links

were saved in the same re-

lation. Each link was given

an identifying number.

antenna no int The number determining

which of the three anten-

nas.

subcarrier no int The subcarrier index,

ranging from 0-29.

min double The lowest CSI value en-

countered during the spe-

cific time period.

max double The lowest CSI value en-

countered during the spe-

cific time period.

avg double The average of the CSI val-

ues during the time period.

voxel no int The voxel at which the ac-

tivity occurred.

Table 3.6: Data dictionary for the relation ’threshold per occurrence’
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Figure 3.7: Voxel breakdown drawn with scale

3.2 Data Collection

3.2.1 Collection Setup

An empty room of 4.2m by 4.2m was divided into nine equally sized voxels, each

voxel being 1.4m by 1.4m. The room was divided into nine voxels instead of a

larger count to make identifying thresholds easier. If the voxels were required to

be smaller for a finer output, each was further divided into four smaller voxels,

called ”inter-voxels.” Each inter-voxel size was 0.7m by 0.7m. The inter-voxels

were numbered from 1 to 4 with the midpoint of the voxel being numbered as 5 as

illustrated in Figure 3.7.

Two ESP32s were utilized for the experiment, where one of them was used as the

transmitter, and the other one was used as the receiver, functioning as an AP.

Neither of the devices had any external antennae attached to them. The firmware

utilized in both ESP32 devices was obtained from an open source CSI collection

tool, ”ESP32 CSI Toolkit” [57]. All the configurations were maintained as per the

tool’s documentation, except for the tick rate, which was adjusted to 100 Hz.

The laptop running Ubuntu 22.04 LTS was connected to the receiver, which re-

ceived the CSI data from the receiver through the serial port. The transmitter

was placed on the voxel numbered ”2”, while the receiver was placed on the voxel
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Figure 3.8: Schematic of the room that the data was collected in

numbered ”8”, as shown in Figure 3.8.

A web application was created to gather annotated CSI data that allowed the user

to indicate their activity and position at any given time. The web page was hosted

on the same laptop computer connected to the receiver and made accessible over

the network. The user accessed the web page using a tablet device (iPad). The

web page was connected via a web socket to a Python server. Whenever the user

updated their location or activity, the Python server added annotations to the CSI

data read through the serial port. The annotations included the user’s activity

and location and were then saved in a file on the laptop computer. The setup’s

architecture is illustrated in Figure 3.9.

The Python libraries Pandas and Numpy were used for data manipulation and

processing. SQLite3 was utilized for database operations, the math module for

mathematical calculations, and Matplotlib’s pyplot module for data visualization.

3.2.2 Collection Methodology

To establish thresholds for each voxel, it was necessary to collect configuration data,

the CSI data obtained from occupants. To collect this data, a single occupant was

asked to remain at the centre of each voxel for thirty seconds and perform one of

the five activities:
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Figure 3.9: Architecture diagram of the data collection setup

1. ”Standing-Stationary”: standing motionless.

2. ”Standing-Movement”: standing still in the same location but moving their

arms.

3. ”SittingDown-Stationary”: sitting down cross-legged with no movement.

4. ”SittingDown-Movement”: sitting down cross-legged while moving their arms.

5. ”Walking”: walking within a voxel.

In addition, a ”None” activity was also recorded to represent the CSI data when no

one was in the room. Each activity was performed for 30 seconds, and this resulted

in 335 data points per activity per voxel.

To collect the testing data, the occupant walked around the room for a random

amount of time while annotating their current location. The annotation was done

to obtain ground-truth values. It is worth noting that for both configuration data

and testing data, only one occupant was present in the room at any given time.

3.3 Development of the model

3.3.1 Overview of the algorithm

To estimate the occupied voxel for one row of input data, the algorithm would

perform the following steps:

1. Set a threshold for each voxel based on activity and subcarrier. There would

be 52× 5 thresholds for each voxel, one for each subcarrier per activity.
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2. For each of the 52 subcarriers in the input data, the algorithm would check

which voxel’s respective subcarrier threshold is exceeded, and it would do

this for all five activities.

3. If the threshold is exceeded, the corresponding voxel on the plot will be

coloured. This process would be repeated for all 52 subcarriers and each of

the five activities, resulting in 52 x 5 plots.

4. Finally, all outputs would be layered on top of each other to obtain the final

output.

3.3.2 Challenges with the proposed algorithm

1. The algorithm proposed needed to address a crucial issue: determining the

threshold of activity. Although calculating an average seemed the most

straightforward solution, taking a single average for 335 data points would

result in data loss.

Solution - Instead of calculating a single average value for all data points,

represent the 335 data points in the configuration data as a vector.

2. Using a vector as a threshold helps eliminate the risk of having low accuracy

when using a singular value as a threshold. However, it is important to select

a vector size that is large enough to provide sufficient accuracy while being

small enough to avoid the need for large configuration data.

Solution - To handle the configuration data, which contains 335 data points

for each activity per voxel, there are two options: divide it into five blocks,

each with 67 rows or divide it into 67 blocks, each with five rows. A vector

size of 5 x 1 per activity per voxel per subcarrier is a good starting point.

Therefore, the configuration data was divided into five blocks of 67 rows each.

Each block was then averaged into a single value, resulting in 5 averages from

the five blocks used to form the final vector.

3. The goal is to develop an algorithm that can use CSI data to estimate the

occupant’s location within a specific voxel. To achieve this, the input CSI

data must be compared with a threshold vector to estimate the voxel. The

main challenge is to find a reliable method for comparing the configuration

vector and input data.
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Solution - Calculate the distance between the vectors. By determining the

configuration vector of the voxel with the shortest distance from the input

vector, the algorithm can identify and colour the estimated voxel. Calculating

the similarity between vectors is a common problem in computing.

3.3.3 Data Processing

A row from the raw data obtained from the serial port would contain the columns

type, id, mac, rssi, rate, sig mode, mcs, bandwidth, smoothing, not sounding,

aggregation, stbc, fec coding, sgi, noise floor, ampdu cnt, channel,

secondary channel, local timestamp, ant, sig len, rx state, len, first word,

data. Of these columns, only the data column would be of value as it contained

the CSI data. The CSI data was in an array with 128 elements, with each pair of

elements belonging to a subcarrier, thus representing 64 subcarriers. The pair of

elements represented the real and imaginary parts values for each subcarrier, with

every second element being the imaginary value.

3.3.4 Vectorization

The raw CSI data had to undergo several processing steps after being loaded into

a Pandas data frame to obtain insightful data such as amplitude and phase per

subcarrier. These steps were as follows:

1. Identifying the null subcarriers: According to the ESP32 CSI Toolkit’s doc-

umentation, out of the 64 subcarriers, only 52 are data subcarriers. The

indexes of the null subcarriers were provided in the toolkit’s documentation

and were removed from the dataset accordingly.

2. Separating the real and imaginary parts of each subcarrier: Each subcarrier

had a real and imaginary part but was in the same array. It was necessary

to extract each subcarrier’s real and imaginary parts separately from the CSI

array.

3. Calculating the amplitude and phase: The amplitude was calculated by tak-

ing the square root of the sum of the squares of the imaginary and real values.

The phase was calculated by finding the arc tangent from the real and imag-

inary values using the Python atan2 function. For each row of data, the
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Column Data type Description

voxel int The voxel number.

subcarrier int The index of the subcar-

rier

activity string The activity label

amplitude vector double[ ] The 5×1 amplitude vector.

phase vector double[ ] The 5× 1 phase vector.

Table 3.7: Data dictionary for the relation ”distance vector”

amplitude and phase were calculated for each of the 52 data subcarriers and

saved in separate columns in the data frame.

amplitude =
√
i2 + r2

phase = atan2(i, r)

4. The amplitude and phase vectors were calculated for each configuration data

file and saved in a relation named “distance vector” in an SQLite database.

The data dictionary of the relation is given in Table 3.7.

3.3.5 Heatmap Generation

A heatmap of a 3 × 3 grid would be generated to visualize the estimated voxel

where the occupant is present. To estimate the voxel and visualize the output, the

proposed solution is as follows:

1. 5 rows of input were read from the test data as the configuration vector size

is 5.

2. The null subcarriers were removed, and the amplitude and phase of each

subcarrier were calculated.

3. Separate input vectors for amplitude and phase were made for each subcarrier

using their respective amplitudes and phases that were previously calculated.

The size of each input vector was the same as the configuration vectors.

4. The Euclidean distance was used to calculate the vector distance between

input vectors and corresponding configuration vectors. This calculation was

performed for every subcarrier in each voxel, and the resulting vector differ-

ences were then saved in separate 3×3 Numpy arrays for both amplitude and
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phase. Since there were a total of 52 subcarriers, 52 arrays were generated for

both amplitude and phase. Therefore, for five activities, there were a total

of 52× 9× 2× 5 Numpy arrays.

5. Heatmaps were created using Matplotlib’s pyplot module. They were layered

on top of each other using alpha blending with decreasing opacity, using the

Numpy arrays as input.
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Chapter 4 - Results and Evaluation

4.1 Results

The results discussed in the following are obtained from a subset of test data in

which the occupant was “walking”, and the location was voxel number 1. As

described in subsection 3.3.5, the vector size is five. Thus, a subset of five rows was

extracted from the test data that corresponds to the occupant’s walking activity

in voxel number 1. The voxel locations are provided in Figure 4.1. An overall

evaluation is described in section 4.2.

As per the implementation, after plotting all possible activities of each voxel per

subcarrier and layering them on top of each other, a scattered heatmap was gen-

erated, which estimated the occupant to be present in almost every voxel. The

output generated with amplitude vectors is depicted in Figure 4.3a, while the out-

put generated with phase vectors is described in Figure 4.3b. An example expected

output of 100% accuracy is depicted in Figure 4.2.

The output accuracy was suboptimal due to the overlapping of all activities in

the analysis. However, this was expected given that the test data examined was

drawn from a subset where the occupant was solely walking. It is worth noting

that all activities were accounted for in the analysis to ensure a comprehensive

evaluation. The approach was necessitated by the fact that the algorithm would not

perform activity recognition. As such, to account for any potential activity by the

occupant, all activities were considered in the analysis. After plotting the activities

individually and by considering the phase and amplitude vectors separately, the

output for the phase vectors is shown in Figure 4.4. In contrast, the output for the

amplitude vector is depicted in Figure 4.5.

Amplitude vs. Phase

The results obtained using the amplitude vectors indicate low accuracy, as none

of the activities were correctly estimated to have only voxel 1. However, the out-

puts generated with the phase vector showed relatively better results. Specifically,
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Figure 4.1: A grid with the marked voxels

Figure 4.2: Expected output for when the occupant is in the first voxel
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(a) Output generated with the

amplitude vector

(b) Output generated with the

phase vector

Figure 4.3: Output generated when all generated plots of all activities and subcar-

riers were layered on top of each other for when the occupant’s actual location was

in voxel 1

for two of the activities, Standing-Stationary (as shown in Figure 4.4a) and

Standing-Movement (as shown in Figure 4.4b), voxel 1 was accurately estimated

as the most probable voxel that the occupant would be in.

Based on research conducted by [58], it has been found that the phase difference

caused by movements remains stable in individual subcarriers. Furthermore, it is

also observed that the phase differences are not affected by fluctuations caused by

noise, interference in nearby correlated electromagnetic fields, or the multi-path

effect [59]. Since the phase is less susceptible to noise, it is expected to provide

higher accuracy from the phase vector.

Activity Analysis

The amplitude of a signal is known to be highly sensitive to noise and movements,

which can result in the generation of inaccurate configuration vectors. In contrast,

the phase vector has been shown to be less susceptible to noise and is thus consid-

ered to be the more accurate parameter. After analyzing the phase vector outputs

for different activities, it is evident that the “Standing stationary” and “Standing

movement” activities have provided more accurate estimations than the others.

While examining the voxels with the least possibility, the Standing-Movement

phase vector outperformed the Standing-Stationary one. This outcome was ex-
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(a) Output generated with the

phase vector for the activity

Standing-Stationary

(b) Output generated with the

phase vector for the activity

Standing-Movement

(c) Output generated with the

phase vector for the activity

Walking

(d) Output generated with the

phase vector for the activity

SittingDown-Stationary

(e) Output generated with the

phase vector for the activity

SittingDown-Movement

Figure 4.4: Output generated with phase vector for each activity separately for

when the occupant was in voxel 1
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(a) Output generated with the

amplitude vector for the activ-

ity Standing-Stationary

(b) Output generated with the

amplitude vector for the activ-

ity Standing-Movement

(c) Output generated with the

amplitude vector for the activ-

ity Walking

(d) Output generated with the

amplitude vector for the activ-

ity SittingDown-Stationary

(e) Output generated with the

amplitude vector for the activ-

ity SittingDown-Movement

Figure 4.5: Output generated with amplitude vector for each activity separately

for when the occupant was in voxel 1
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pected as the subset of the testing data used for generating the output was obtained

while the occupant was walking. Since the data considered was from a small time

frame, the overall walking activity was not completely captured. Hence, it is more

likely to be similar to “Standing-Movement.” The time frame considered was small

enough to capture only a part of the occupant’s walking activity and not large

enough to encompass all the movements involved in walking. In order to enhance

the accuracy, it is imperative to have prior knowledge of the activity to select a

comparison vector as the parameter.

4.2 Evaluation

4.2.1 Evaluation Methodology

The algorithm produces heatmaps based on the vector differences between the

vectors generated from the test data and the configuration data. However, evalu-

ating visualizations can be difficult. Therefore, the evaluation process follows the

following steps to determine the accuracy level per subcarrier.

1. Iterates over a dataset in batches of five rows

2. Calculates amplitude and phase for each subcarrier using vectorized opera-

tions

3. Computes Euclidean distances between the dataset and reference vectors for

each subcarrier and voxel

4. Estimates the voxel for each subcarrier based on the minimum phase and

amplitude difference separately

5. Counts the number of correct estimates (hits) and incorrect estimates (misses)

6. Determines the most frequently predicted voxel and its count

7. Evaluates the accuracy based on the hits and total estimates

4.2.2 Evaluation Results

The evaluation data was collected when the occupant was randomly walking around

the room for a variable duration and standing still at certain locations for varied du-

rations. However, to evaluate test data, only the data collected when the occupant

was walking was considered. Therefore, the configuration vectors for the activities
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Figure 4.6: Accuracy for when vector difference was calculated using ampli-

tude vector

SittingDown-Stationary and SittingDown-Movement will not be considered for

evaluation.

The accuracy of the amplitude and phase vectors is presented in Figure 4.6 and Fig-

ure 4.7, respectively. The accuracy percentage represents the number of occasions

where each of the estimated voxels was accurate.

It is important to note that the accuracy levels presented in Figure 4.6 and Fig-

ure 4.7 represent the precision per subcarrier. Specifically, this refers to the number

of times that the vector differences between the configuration vector and test vector

accurately estimated the correct voxel. It is worth emphasizing that the accuracy

of the visualization is contingent upon the number of subcarriers that accurately

estimate the voxel for each instance of the test data. The heatmap generated

is based on the number of subcarriers that estimate the same voxel. The plots

from each subcarrier will be layered on top of each other to create the final output.

Therefore, the more subcarriers that estimate the same voxel, the more highlighted

it will be in the final output. It should be noted that when calculating the vector

difference with the ”phase vector”, the accuracies of the subcarriers are less erratic

and neighbouring subcarriers display similar accuracies.
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Figure 4.7: Accuracy for when vector difference was calculated using phase vector

4.2.3 Improving Accuracy

The framework developed to provide a non-learning-based solution to indoor local-

ization faced weaknesses when it came to accuracy. During the evaluation phase, it

was noted that the following points were identified which would assist in improving

the accuracy.

1. Expanding the size of the configuration vector will result in a larger amount

of data to be compared, which may improve the similarity between the test

vector and the configuration vector. However, it is important to carefully

select a suitable configuration vector size because if it is too large, too many

changes will be recorded in a single vector, causing the accuracy to decrease.

Therefore, additional analysis is recommended to determine the appropriate

size of the configuration vector.

2. During the analysis of subcarriers, it was observed that certain voxels were

frequently misidentified as specific other voxels. For instance, voxel 1 was

frequently mistaken for voxel 8. This inconsistency might be attributed to the

fact that when occupants are in specific voxels with similar spatial locations,

their impact on the CSI data is indistinguishable. For instance, standing on

two sides of a node may have an identical effect. By considering this factor,
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the algorithm can be improved to increase accuracy.

3. Before the final output is generated, the most accurate voxel is selected.

At this point, if a subcarrier prediction has not been estimated by multiple

voxels, it is considered to be noise and can be removed. This helps to improve

the accuracy of the output, as removing the noise subcarrier predictions can

reduce interference.
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Chapter 5 - Conclusion

This section presents the results of a research study that aimed to develop a non-

learning-based approach for indoor localization using CSI. The discussion covers

the limitations identified during the project, potential future advancements, and

overall findings.

5.0.1 Conclusion on the Research Questions

1. Is it possible to develop a linear model for indoor localization using

CSI-based RTI?

The primary reason for exploring the development of a linear model with CSI

was the unavailability of publicly accessible datasets of adequate size to create

an accurate learning-based model. Two datasets were evaluated, but neither of

them had enough labelling information, making them unsuitable for the task of

indoor localization. Therefore, to develop a model, a dataset had to be created

with appropriate labelling. The dataset was formulated by linking each voxel with

a CSI-based vector and calculating the vector difference. Consequently, the study

was able to create a linear model that could perform the task of indoor localization

successfully.

Additionally, the study provided insight into how amplitude and phase differences

produce various outcomes and how different activities impact CSI in different ways.

This could assist not only in indoor localization but also in activity recognition.

In conclusion, the research question of whether such an approach was possible was

successfully resolved by developing a linear model.

2. How to accommodate a sparse device setup for a linear model of

CSI-based RTI?

The research dataset was formed with only two nodes deployed in the area of

interest, where one node acted as the receiver and the other as the transmitter. This

resulted in sparse coverage since only one Line-of-Sight (LOS) link was available in

the entire area. However, using CSI to develop a model allowed for the utilization

51



of fine-grained information. This paved the way for the support of a limited number

of devices, in this case, only two devices.

5.0.2 Contributions

The research conducted in this study has provided significant contributions and

valuable insights, which are summarized below:

Main Contributions

1. The dataset in question contains CSI (Channel State Information) data per-

taining to an occupant who is engaged in performing five distinct activities.

Each data point in the dataset comes with annotations that detail specific

locations and activities. This dataset would be a valuable resource for re-

searchers and developers who are working on projects related to activity

recognition and indoor localization.

2. A non-learning-based algorithm was developed to determine the location of

the occupant within a specified area of interest. This algorithm is designed

to leverage the CSI data available in order to accurately determine the oc-

cupant’s location, and provided insightful analysis and a framework that can

be used for indoor localization with limited data.

Auxiliary Findings

In addition to the main contributions, the study also yielded some valuable insights,

which are summarized below:

1. Voxel analysis involves examining the changes in the CSI data when an ob-

stacle is present in different locations around a link. By analyzing the data in

this way, we can gain insights into how the presence and location of obstacles

affect wireless signal propagation and reception.

2. Activity analysis is a technique for studying how different activities, such

as moving or standing still, affect the CSI data. By analyzing the data in

this way, we can gain insights into how activities affect wireless signal prop-

agation and reception, which can be useful for optimizing wireless network

performance in various scenarios.
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3. Amplitude and phase are two important parameters of wireless signals that

can affect the accuracy of CSI data. By comparing and contrasting the dif-

ferences between amplitude and phase, we can gain a better understanding

of how they affect the accuracy of CSI data, and how to optimize wireless

network performance based on these parameters.

4. The size of the comparison vector is an important factor in determining the

accuracy of CSI data. By analyzing the effects of different comparison vector

sizes on the accuracy of CSI data, we can gain insights into how to optimize

wireless network performance based on this parameter.

5.0.3 Limitations

The algorithm proposed to locate an individual within a particular area showed

promising results, but it had some limitations.

1. The experiments were conducted in a relatively small room, and only one

link was sufficient to detect changes in CSI data when the occupant was in

any voxel. However, if the room were larger, there could be blind spots where

the occupant could not be detected if there weren’t enough links covering the

area of interest. This study aimed to develop a linear model with limited

data and a sparse network of devices, and considering the performance of the

model in locations with large dimensions was considered out of scope.

2. To accurately detect an occupant’s location, the activity they are engaged

in must be known since each activity has its comparison vector. Without

knowing the activity, comparing to every possible vector would result in heavy

inaccuracies.

3. The devices’ placement in the experiments created a line across the room,

dividing it into two. Different placements of devices could have provided dif-

ferent results, but the study considered only one particular device placement.

4. Splitting a room into nine voxels may not be sufficient to obtain an acceptable

level of accuracy in a larger room. In a smaller room, nine voxels may be too

large to differentiate a change from each voxel. This study did not take this

factor into account.

5. The room could be divided into elliptical voxels instead of squares, but this
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study did not consider voxels of a different shape when developing a solution.

6. Noise was not taken into account, which can affect the accuracy of the am-

plitude vector. However, the effect of noise can be minimized using signal

processing and regularization techniques.

7. Increasing the tick rate of the devices can result in collecting more CSI data

points for the configuration data. This can help in capturing more accurate

movement data, but the effect of different tick rates was not considered during

this study.

This study aimed to explore the possibility of developing a linear-based model that

could perform indoor localization even when there is a low number of devices in

the area. The objective was motivated by the realization of a gap between the

potential of RTI in practical applications and its current progress. The proposed

solution can be further improved by addressing the constraints discussed above.

By supporting a random placement of a low number of devices, RTI would benefit

various fields, including military, smart home applications, healthcare, and rescue

operations since the major hindrance when applying such a solution in real-world

applications is its lack of tolerance for robustness. Unlike learning-based models,

which require a large training dataset and configuration phase in the deployment

area, non-learning-based models could be developed with far fewer data and still

tolerate robustness in the device topology.

In conclusion, the development of a linear-based model for indoor localization

presents promising prospects for enhancing real-world applications across diverse

fields. With further refinement to address existing constraints, such advancements

hold the potential to revolutionize industries and improve efficiency, safety, and

performance in various scenarios.
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