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Abstract

Research in music information retrieval has traditionally focused on audio-based meth-

ods for cover song identification, analyzing elements like chords, melody, and harmony.

However, these methods face scalability issues and struggle with covers that significantly

alter the original music. Recent studies have shifted towards text-based approaches, us-

ing metadata and lyrics, since lyrics often remain consistent across different versions of

a song, making these systems more robust. Nonetheless, these approaches are typically

limited by language dependency in Singing Voice Recognition (SVR).

This thesis introduces a novel method for cover song identification that utilizes the pho-

netic transcriptions of lyrics. The approach is based on the premise that any spoken

language can be transcribed into the phonetic transcriptions of International Phonetic

Alphabet (IPA). We fine-tuned the XLS-R wav2vec 2.0 model using Connectionist Tem-

poral Classification (CTC) to transcribe singing into IPA phonetic representations. Songs

are then analyzed for similarity using the Levenshtein distance to identify cover versions.

The study achieved a 40.41% improvement in multilingual phoneme recognition in

singing voices compared to the baseline. However, the results for English cover song

identification were below those of the state-of-the-art lyrics-based cover song identifi-

cation methods. Nonetheless, our proposed system achieved a Mean Average Precision

(MAP) of 0.513 for identifying cover songs in Sinhala, a language not previously seen by

the model during training or fine-tuning. This demonstrates the potential of using pho-

netic transcriptions for language-independent, lyrics-based cover song identification.
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Chapter 1 - Introduction

The Global Recorded Music Industry witnessed remarkable growth by 2023 (Figure

1.1), with its value surpassing 28 billion US dollars. This phenomenal expansion can

be attributed to the increasing popularity of music streaming services, which accounted

for a staggering 67.3% (Figure 1.2) of the industry’s revenue [1]. With rapid technolog-

ical advancements and growing accessibility to high-speed internet, music enthusiasts

around the world have embraced streaming platforms as their primary source of music

consumption. This paradigm shift has moved forward the music industry to new heights,

revolutionizing the way people access and experience music.

Figure 1.1: Global recorded music industry revenues 1999 - 2023 (US$ billions) [1].

However, with these technological revolutions, the music industry faces a significant

challenge from the unauthorized use of original musical works. Such illegal practices

not only dissuade artists from creating new music but also impact their financial gains.

One of the most common forms of copyright infringement in the music industry is copy-

ing an original song’s composition, which includes the melody, harmony, and lyrics.

Additionally, performing an original piece without exclusive permission is a prevalent
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Figure 1.2: Global recorded music revenues by segment 2023 [1].

violation of copyright laws, particularly in regions such as Sri Lanka. As a result, copy-

right detection plays a crucial role in protecting the interests of the music industry.

The terms “copyright detection” and “cover song identification” will be used inter-

changeably in the later part of this thesis, as copied musical works can be viewed as

cover versions of the original pieces. These copies and cover versions can be classified

into various types, as outlined by Serrà, Gómez, and Herrera [2]. Each type serves as a

label for a specific cover. In some cases, these labels can be observed in the titles of the

covers themselves. Table 1.1 provides a summary of some of these cover types along

with their descriptions. Whenever a musical work falls into one of these types, it can be

considered a copy or a cover of an original composition.
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Table 1.1: Types of cover songs [2].

Type Description

Remaster Remastering is the process of creating a new master record-

ing of a song or album, which often involves improving the

sound quality through techniques like compression, equaliza-

tion, and different endings or fade-outs. This is done to en-

hance the listening experience for the audience and to update

the original recording for modern technology.

Instrumental An instrumental is a type of cover song that does not include

any sung lyrics. These versions may be released for different

audiences, such as classical versions of pop songs or karaoke

versions for people to sing or play along with.

Live Performance A live performance is a recorded track of a song that was per-

formed in front of an audience. This can be a recording of

the original artist who previously released the song in a studio

album or a recording of other performers.

Acoustic In the context of music, an acoustic version of a song refers to

a recording that features a different set of instruments and is

often performed in a more intimate setting.

Demo A demo is a rough recording made by musicians to capture

their ideas and share them with others, such as record labels

or bandmates. It can also be used as a simplified recording

for publishing or copyright purposes. Demos are often made

quickly and may not have the same quality as a fully produced

studio recording.

Duet A duet is a type of musical performance where two singers or

instrumentalists perform together.

Continued on next page
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Type Description

Medley A medley is a musical composition that combines several

songs or tunes into a single piece. It is often performed live

and involves seamlessly transitioning between different songs

without stopping. The purpose of a medley is to create a

unique and engaging performance that captures the listener’s

attention.

Remix A remix is a type of cover song that involves altering the orig-

inal recording by adding or subtracting elements, changing

the equalization, dynamics, pitch, tempo, or other musical

components. It can also involve substantial changes to the

arrangement of the original work or a re-interpretation of the

given work by combining fragments of two or more works.

Remixes can be ambiguous and may not resemble the origi-

nal work, making it a challenging task to identify cover songs.

Quotation In the context of music, a quotation refers to the use of a brief

segment of existing music in another work, similar to a quote

in literature or speech. This can include borrowing a melody

or incorporating a musical texture from another piece, but it

is not considered a main part of the new work. This is one

of the ways that musicians can create cover songs, which in-

volve recording a different version of an existing song with

changes to various musical facets, such as dynamics, tempo,

and timbre.

1.1 Background and Related Works

As previously mentioned, music copyright detection can be considered as a task of cover

song identification. Cover song identification involves the identification of alternative

versions of existing musical compositions. These versions can exhibit significant dif-

ferences from the original in terms of timbre, tempo, structure, and even fundamental

4



elements such as harmony and melody [3]. In recent years, the research community has

shown a considerable interest in the field of cover song identification, owing to the re-

markable growth of the music industry. Various musical aspects can be altered between

cover songs, and Table 1.2 provides a description of some of the primary facets that can

be modified.

Table 1.2: Musical facets [2].

Musical Facets Description

Timbre Timbre refers to the general color or texture of a sound, which can

vary depending on different factors. These factors include pro-

duction techniques, such as sound recording and processing, and

instrumentation, which involves the use of different instruments,

configurations, or recording procedures. Timbre variations can af-

fect the overall sound of a cover version of a song, making it sound

different from the original.

Tempo Tempo refers to the speed or pace of a musical piece. In a cover

version of a song, the tempo may change from the original version

due to the performer’s intention or feeling. This can result in small

tempo fluctuations or even significant changes, which can affect

the expressiveness and contextual feedback of the music.

Timing Timing refers to the rhythmical structure of a piece of music and

how it might change depending on the performer’s intention or

feeling. This can include changes in tempo, swing, syncopation,

pauses, and other expressive deviations. Even in classical music,

small tempo fluctuations are introduced for different renditions of

the same piece, and tempo changes abound with different perform-

ers.

Continued on next page
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Musical Facets Description

Structure In the context of music covers, structure refers to the arrangement

of the song’s sections, such as the intro, verse, chorus, bridge, and

outro. Cover versions may modify the structure of the original

song by adding or removing sections, repeating parts, or chang-

ing the order of the sections. These modifications can range from

minor adjustments to radical transformations and can affect the

overall feel and impact of the song.

Key In music, the key refers to the tonality or pitch range of a piece.

When performing a cover song, it is common to transpose the

piece to a different key or tonality to suit the singer or instrument,

or to create a different mood for the listener. This modification

can significantly alter the sound of the song, but it is one of many

changes that can be made to a cover version.

Harmonization Harmonization is a musical characteristic that can change in cover

versions of a song. It refers to chord progression, which can be

modified by adding or deleting chords, substituting them with re-

lated chords, or changing the chord types or tensions. This is often

done in the introduction and bridge passages, as well as in instru-

ment solo parts, to create a unique interpretation of the original

song.

Lyrics In the context of cover songs, lyrics refer to the words of the orig-

inal song that are sung by the new performer. In some cases, the

lyrics may be translated into a different language to appeal to a

wider audience. Changing the lyrics can also be a way for the new

performer to put their own spin on the original work.

Continued on next page

6



Musical Facets Description

Noise Noise refers to any additional sounds that may be present in a song

recording, such as audience reactions, speech, or compression ar-

tifacts. These noises can affect the overall sound quality and may

be intentionally or unintentionally included in the cover version.

In some cases, the original song may be difficult to recognize due

to the presence of noise or other modifications.

Till recent days cover song identification is mainly based on audio-based systems. Audio-

based cover song identification systems are built in a way that those are insensitive to

the variations of musical attributes such as key, timbre, temp, and structure as those can

vary between covers significantly. Those systems use tonal progression features such as

chord, melody, and harmony since those features are commonly preserved between cover

songs. Serrà, Gómez, and Herrera [2] extensively studied these cover song identification

systems and found that we can group the functionality of those systems into four dif-

ferent functional blocks as shown in Figure 1.3. A summary of the several audio-based

systems with techniques those system used in these four functional blocks is included in

[2].

Even though audio-based cover song identification systems work well most of the time

there are some critical scenarios that those systems fail to identify covers or copies in

our context. In the introduction section, it was mentioned that there are different types

of cover versions. Although the tonal progression features such as chord, melody, and

harmony are mostly preserved in the cover songs there are situations in which these

features also vary between covers where these audio-based systems fail. In a remix of

a song, those features can be completely different from the original version of the song.

For example, if the remix is done by converting the song into a different genre. The

quotation of a music piece is another example of where audio-based systems may fail. If

lyrics are copied and used in a new song with a completely different melody and chords

audio-based systems fail to identify it as a copy or cover of the original work.

As a solution for those kinds of scenarios, researchers focused on leveraging textual data

related to a song to identify covers in recent years. To the best of our knowledge, the

7



Figure 1.3: Functional blocks in cover song identification by Serra et al. [2].

research done by Correya, Hennequin, and Arcos [4] to investigate the usability of tex-

tual information such as metadata of a song and lyrics to identify covers in 2018 was the

first approach to leverage textual information in the domain of cover song identification.

They used a combination of text-based and audio-based approaches. As the text-based

approaches a metadata-based approach and a lyrics-based approach were used. As the

audio-based approach, they used the traditional cover song identification system pro-

posed by Serrà, Gómez, and Herrera [2]. Then they compared the Mean Average Pre-

cision (MAP) [5] proposed text-based methods and combine methods against the state-

of-the-art audio-based methods. The study achieved a 35.5% increase in MAP on the

Million Song Dataset (MSD) [6] by using text-based methods. Also, this result proves

that lyrics are often kept the same between the covers of a song.

There are some flaws in the previous approach. It was assumed that the lyrics of songs

are available. However, this assumption may not hold for large musical collections.

Also, the information carried by each modality is not optimally combined since each

feature is only used in a separate part of a multi-layer database pruning method. As a

solution, Vaglio, Hennequin, Moussallam, et al. [7] proposed a new approach for cover

8



Figure 1.4: Overview of the fused system in [7].

detection that leverages lyrics information extracted from audio. This was the first time

that lyrics transcripts from audio have been used explicitly for cover detection. Their

approach combined a singing voice recognition framework with an audio-based cover

detection method. The authors proposed a fused system for cover detection that uses

transcription methods to obtain lyrics estimates for all songs. They suggest that a lyrics-

recognition-based system is useful for covers with different tonal features but the same

lyrics, such as Janis Joplin’s cover of Summertime. However, they also acknowledge

that a pure lyrics-based system is insufficient for instrumental music, hence they use

a tonal-based system as well and apply an instrumental detector to inform the fusion

strategy. The overview of the system can be seen in the figure 1.4.

The authors used a framework that was considered the best in the 2020 lyrics tran-

scription challenge organized by the Music Information Retrieval Evaluation eXchange

(MIREX) [8] for transcribing lyrics. This framework employs a Time Delay Neural

Network (TDNN) acoustic model trained on English tracks of the DALI dataset [9],

along with an extended lexicon and a 3-gram word language model. The framework

extracts Mel-Frequency Cepstral Coefficients (MFCC) from the input audio and outputs

transcribed English words. As the tonal-based system, the authors used the Re-MOVE

system which is the updated version of MOVE. This system achieved the second most

accurate benchmark on the Da-Tacos dataset [10]. Re-MOVE has the advantage of be-

9



ing publicly available, unlike the best-performing system [11] reported in the dataset.

The results for the fused system on the full Da-Tacos test and its Da-Tacos-voice subset

are presented in Table 1.3, showing that the fused system outperforms the tonal-based

system alone and validates the assumption that both methods are highly complemen-

tary. They found that the cover song detection accuracy directly depended on the the

transcription accuracy by running the experiment with Covers80 using a lyrics informed

approach to simulate a ideal SVR framework. The results are presented in Table 1.4.

Query System MAP (%)

Da-Tacos-voice
Lyrics 66.4 (0.4)

Tonal 54.0 (0.4)

Da-Tacos-instr
Lyrics 0.45 (0.06)

Tonal 47.8 (0.7)

Table 1.3: Results of lyrics-recognition based and tonal-based cover detection system

on Da-Tacos-voice. Da-Tacos-instr is the subset of the Da-Tacos test restricted to instru-

mental tracks. Standard errors are given in parenthesis [7].

System SVR MAP (%)

Lyrics
Our 79.0 (0.6)

Lyrics-informed 89.7 (0.4)

Fused
Our 88.5 (0.4)

Lyrics-informed 93.6 (0.4)

Table 1.4: Performances of lyrics-recognition and fused based cover detection system

on Covers80 with various SVR framework. Lyrics-informed framework are informed by

lyrics at test time [7].

1.2 Problem

According to the literature, utilizing lyrics for cover song identification has proven to

be highly effective in the development of accurate and scalable systems. However, a

significant challenge faced by these lyrics-based systems is their reliance on specific
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languages. Consequently, the primary research focus centers around addressing this

dependency issue.

1.3 Proposed Solution

In the literature review, the text-based systems discussed involve the transcription of

singing utterances into actual words. Once transcribed, text similarity is assessed using

string-matching algorithms to identify covers. The meaning of the words themselves

is deemed irrelevant for this task. Consequently, there is no necessity to transcribe the

singing utterances into words of a specific language. Instead, the focus is on transcribing

the singing utterances into a universal representation that can be applied to any language.

The study suggests transcribing the singing utterances into phonetic transcription by

adapting a suitable ASR system. This phonetic transcription will enable the comparison

of similarity between different phonetic transcriptions to identify covers. The International

Phonetic Alphabet (IPA) will be utilized for this transcription, as it offers a language-

independent approach. The IPA is a phonetic notation system based on the Latin script,

which was developed by the International Phonetic Association in the late 19th century.

Its purpose is to provide a standardized and consistent means of representing the sounds

of human speech in written form [12].

1.4 Significance

This research has significant implications for the fields of computer science, music in-

formation retrieval, and the music industry. A phoneme-based approach to copyright

detection has the potential to improve the accuracy and efficiency of current methods,

which are limited in their ability to detect cover songs and versions across different lan-

guages. This research also has broader societal implications, as it contributes to the

protection of intellectual property and supports fair compensation for music creators.
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1.5 Research Aim

The aim of this research is to develop a lyrics-based language-independent system for

cover song identification.

1.6 Research Questions

This research study attempts to answer the following research questions.

RQ1. How can available ASR models be adapted to transcribe the singing utterances of

a song into a phoneme sequence in a language-independent manner?

RQ2. Which similarity measures are most effective for comparing phoneme sequences

transcribed from songs to detect cover versions?

RQ3. What is the effectiveness of the proposed method in identifying cover songs, and

how does it compare to existing methods?

1.7 Objectives

RO1. Select and investigate the most suitable ASR model for transcribing songs into

phoneme sequences without language dependency.

RO2. Evaluate and optimize the selected ASR model for transcribing singing utterances

in language independently into phonemes.

RO3. Identify a suitable similarity measures for comparing the phoneme sequences of

songs for cover song identification.

RO4. Assess the efficacy of the proposed method in identifying cover songs and bench-

mark its performance against established methods.

12



Chapter 2 - Literature Review

Phoneme recognition within musical compositions is a niche and underexplored area

of research, with scant prior studies and a noticeable lack of contemporary research.

However, the field of ASR has seen significant progress, particularly in the identification

of phonemes. This progress has led to breakthroughs in both cross-lingual speech and

phoneme recognition capabilities.

2.1 Phoneme Recognition in Songs

The most recent study by Hansen [13] introduces a novel approach that integrates MFCC

with temporal patterns to enhance phoneme recognition in vocal music. However, the

outcomes do not yet reach a level of reliability that would allow for the method’s appli-

cation in cover song identification based on transcribed sequences of phonemes. Com-

plementary research, such as Mesaros and Virtanen [14], investigates the employment of

n-gram language models for the recognition of sung phonemes and words, while Gruhne,

Dittmar, and Schmidt [15] delineates a system for phoneme detection using audio infor-

mation retrieval and various classification strategies. Nonetheless, these studies also

fall short in producing results that would fulfill the research objectives of this research

satisfactorily.

2.2 Automatic Speech Recognition

This review is focused exclusively on ASR models with an emphasis on phoneme recog-

nition capabilities. It centers on research that employs the TIMIT [16] dataset, which is

renowned for providing transcriptions at both phonetic and word levels.
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2.2.1 The PyTorch-Kaldi Speech Recognition Toolkit

In 2018, Ravanelli, Parcollet, and Bengio [17] spearheaded the PyTorch-Kaldi project,

which aims to bridge the functionalities of the PyTorch and Kaldi toolkits, leveraging

Kaldi’s processing efficiency and PyTorch’s flexible programming environment into a

unified framework. This toolkit is adept at combining Kaldi’s robust feature extrac-

tion, alignment, and decoding with PyTorch’s dynamic acoustic model implementation,

paving the way for sophisticated Deep Neural Network (DNN)-Hidden Markov Model

(HMM) speech recognizers (Figure 2.1). It accommodates a spectrum of neural network

models, including DNNs, Convolutional Neural Network (CNN)s, and Recurrent Neu-

ral Network (RNN)s, and endorses the creation of intricate architectures through various

combinations of models, features, and labels. The platform facilitates the customiza-

tion of neural networks and the exploration of a broad range of acoustic characteristics,

activation functions, normalization techniques, cost functions, and optimization algo-

rithms via editable configuration files. Trials on diverse datasets and tasks have validated

PyTorch-Kaldi’s potential in constructing state-of-the-art speech recognition models that

stand up to current competitive standards. The condensed outcomes of these tests on the

TIMIT [16] dataset are presented in Table 2.1.

Figure 2.1: An overview of the PyTorch-Kaldi architecture [17].
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RNN LSTM GRU Li-GRU

Baseline 16.5 16.0 16.6 16.3

+ Incr. Seq. length 16.6 15.3 16.1 15.4

+ Recurrent Dropout 16.4 15.1 15.4 14.5

+ Batch Normalization 16.0 14.8 15.3 14.4

+ Monophone Reg. 15.9 14.5 14.9 14.2

Table 2.1: PER(%) obtained on TIMIT [16] when progressively applying some tech-

niques implemented within PyTorch-Kaldi [17].

2.2.2 Wav2Vec

The wav2vec paper by Schneider, Baevski, Collobert, et al. [18] presents an innova-

tive approach to enhance ASR by utilizing unsupervised pre-training. This technique

allows the model to learn from a vast corpus of unlabeled audio data, thereby developing

generalizable speech representations without relying on transcriptions.

At the heart of the wav2vec framework there are two key components. The first is a

convolutional feature encoder that processes raw audio waveforms and outputs latent

representations of the speech. The second component is a context network that takes

these latent representations and aggregates them to understand longer contextual depen-

dencies within the speech input (Figure 2.2).

Figure 2.2: Illustration of pre-training from audio data X which is encoded with two

convolutional neural networks that are stacked on top of each other. The model is opti-

mized to solve a next time step prediction task [18].

The learning process involves a contrastive objective, where the model is trained to pre-
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dev test

Li-GRU + MFCC [17] - 16.7 ± 0.26

Li-GRU + FBANK [17] - 15.8 ± 0.10

Li-GRU + FMLLR [17] - 14.9 ± 0.27

Baseline 16.9 ± 0.15 17.6 ± 0.11

wav2vec (Librispeech 80h) 15.5 ± 0.03 17.6 ± 0.12

wav2vec (Librispeech 960h) 13.6 ± 0.20 15.6 ± 0.23

wav2vec (Librispeech + WSJ) 12.9 ± 0.18 14.7 ± 0.42

Table 2.2: Results for phoneme recognition on TIMIT in terms of PER [17].

dict the correct future audio samples from a set of possible options. This enables the

model to finely tune its understanding of speech patterns and characteristics during the

unsupervised pre-training phase. Once the model has been pre-trained on the unsuper-

vised data, it undergoes a fine-tuning stage using a smaller labeled dataset. This stage

introduces a new output layer, mapping the pre-trained representations to actual phonetic

or character-based transcriptions used in speech recognition tasks.

The benefits of the wav2vec method are particularly notable because it can tap into the

abundance of unlabeled audio data, which is often more readily available than labeled

datasets. This characteristic is especially advantageous for languages with limited la-

beled resources.

In terms of performance, the wav2vec pre-trained models have shown remarkable im-

provements over traditional methods when fine-tuned, setting new benchmarks in the

field as evidenced by the results detailed in Table 2.2 for the TIMIT [16] dataset. This ap-

proach not only advances the state-of-the-art in ASR but also opens up new avenues for

speech recognition research, especially in the context of low-resource languages and di-

alects. The paper’s findings underscore the potential of unsupervised learning as a means

to significantly reduce the dependency on costly labeled datasets while still achieving

high levels of accuracy in ASR.
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2.2.3 VQ-Wav2Vec

Baevski, Schneider, and Auli [19] present an evolution of the original wav2vec frame-

work by integrating a quantization step that transforms continuous speech representa-

tions into discrete codes. This is similar to Vector Quantization (VQ), hence the name

vq-wav2vec. The approach retains the self-supervised learning paradigm, leveraging un-

labelled audio data to learn useful features for speech recognition tasks without the need

for annotated data.

The architecture of vq-wav2vec builds upon a convolutional feature encoder that pro-

cesses raw audio input into latent representations. The new quantization module then

discretizes these latent representations into a finite set of tokens (Figure 2.3a). The quan-

tization part is done by either using a Gumbel-Softmax [20] or online k-means clustering.

These discrete tokens are smiliar to words in a text corpus, which enables the application

of methods traditionally used in natural language processing to speech.

To effectively train this architecture, vq-wav2vec adopts a contrastive task from the

BERT [21] model, another revolutionary model in natural language processing. In this

setup, a certain percentage of the audio frames are masked, and the model must predict

the correct quantized representation of these masked frames (Figure 2.3b). This self-

supervised task compels the model to understand the context in which sounds occur,

fostering the learning of rich, contextualized speech representations. By predicting the

quantized representations of the masked audio frames, the model effectively learns to

understand speech in context. This is a significant advance over the original wav2vec

[18] model, which did not include a quantization step and dealt with continuous repre-

sentations of audio.

The combination of self-supervised learning with discrete representation learning and

BERT-like pretraining makes vq-wav2vec an efficient and powerful framework for speech

processing. The discrete nature of the learned representations reduces the complexity

and size of the model’s output space, which can be particularly beneficial for downstream

tasks such as ASR. By leveraging the compact and discrete output of the model, ASR

models can be trained with much less labeled data than traditional models, which re-

quire extensive annotations. The BERT-inspired pretraining technique further enhances
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(a) vq-wav2vec (b) Discretized speech training pipeline

Figure 2.3: (a) The vq-wav2vec encoder maps raw audio (X) to a dense representation

(Z) which is quantized (q) to Ẑ and aggregated into context representations (C); training

requires future time step prediction. (b) Acoustic models are trained by quantizing the

raw audio with vq-wav2vec, then applying BERT to the discretized sequence and feeding

the resulting representations into the acoustic model to output transcriptions [19].

the model’s performance (Table 2.3) , as it enables the vq-wav2vec to capture the nu-

anced context of speech, an essential aspect of understanding and processing spoken

language.

2.2.4 Wav2Vec 2.0

The wav2vec 2.0 proposed by Baevski, Zhou, Mohamed, et al. [22] details an advanced

method in the field of speech processing, proposing a self-supervised framework for

dev PER test PER

Li-GRU + fMLLR [17] – 14.9

wav2vec [18] 12.9 14.7

Baseline (log-mel) 16.9 17.6

vq-wav2vec, Gumbel 15.34 17.78

+ BERT small 9.64 11.64

vq-wav2vec, k-means 15.65 18.73

+ BERT small 9.80 11.40

Table 2.3: TIMIT phoneme recognition in terms of PER [18].
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learning speech representations from raw audio data. This framework also aims to alle-

viate the heavy reliance on large sets of labeled data, which is a common bottleneck in

the development of speech recognition systems.

The innovation of wav2vec 2.0 lies in its two-step approach, starting with pre-training.

During this phase, the model is fed a vast corpus of unlabeled audio. The model uses

a multi-layer CNN to transform the raw waveform into latent representations. Subse-

quently, these representations are partially masked (similar to masked language model-

ing in BERT) and passed through a Transformer network, which is tasked with predicting

the masked audio segments. This prediction task forces the model to understand the nu-

ances of speech in different contexts, effectively learning useful speech features without

any labeled data.

The next phase is fine-tuning, where the pre-trained model is refined with a smaller set

of labeled data tailored to a specific task like speech recognition. This phase customizes

the model to the nuances and requirements of the particular task, ensuring the general

features learned previously are optimally applied. The architecture of wav2vec 2.0 is

particularly noteworthy (Figure 2.4). The convolutional feature encoder takes raw audio

input and generates latent representations that capture the essence of the speech signal.

These representations are then input into the context network, built on the Transformer

architecture, known for its effectiveness in capturing long-range dependencies and con-

textual information.

Figure 2.4: Illustration of our framework which jointly learns contextualized speech

representations and an inventory of discretized speech units [19].

In training the model, a contrastive loss function is utilized during the pre-training phase.

This loss function encourages the model to correctly identify the true speech representa-

tion from among a set of incorrect ones, improving its discriminative power. Addition-
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dev PER test PER

Li-GRU + fMLLR [17] - 14.9

wav2vec [18] 12.9 14.7

vq-wav2vec [19] 9.6 11.6

wav2vec 2.0 (no LM)

LARGE (LS-960) 7.4 8.3

Table 2.4: TIMIT phoneme recognition accuracy in terms of PER [22].

ally, a quantization module is introduced, discretizing the continuous latent representa-

tions into a set of distinct categories, facilitating the contrastive learning process.

The model’s performance was rigorously evaluated on standard speech recognition bench-

marks. The results were impressive, showcasing the ability of wav2vec 2.0 to achieve

state-of-the-art results in phoneme recognition and other speech-related tasks without

even using a language model (Table 2.4). These results were particularly striking given

that wav2vec 2.0 requires much less labeled data than traditional speech recognition

approaches.

2.2.5 Cross-Lingual ASR

The XLSR framework introduced by Conneau, Baevski, Collobert, et al. [23] enhances

the wav2vec 2.0 model to understand multiple languages through a novel pre-training

technique on raw audio waveforms from 53 different languages. Crucially, the model

incorporates a shared quantization module that processes the outputs of the feature en-

coder, yielding multilingual quantized speech units. These discrete units facilitate the

learning of a universal set of speech representations that are used across different lan-

guages (Figure 2.5).

The essence of the XLSR approach lies in how these quantized units serve as targets for

a Transformer architecture, which is trained using contrastive learning. By encouraging

the model to align similar sounds and distinguish dissimilar ones, the system learns to

associate discrete tokens with similar acoustic patterns across languages. This effectively
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Figure 2.5: XLSR approach [23].

builds “bridges” between languages, enabling the model to transfer knowledge learned

from one language to another.

In testing, the XLSR model achieved superior performance in speech recognition tasks

across a multitude of languages, notably improving on languages with sparse training

data. It excelled in comparison to monolingual baselines and even showed potential in

zero-shot learning scenarios, where it could recognize speech from languages it was not

explicitly trained on. This demonstrates the XLSR model’s ability to capture universal

speech features, making it a significant stride towards robust, language-agnostic speech

recognition technology.

Xu, Baevski, and Auli [24] fine tuned the above wav2vec 2.0 XLSR-53 model to tran-

scribe unseen languages. The approach involves mapping phonemes from the training

languages to the target language using articulatory features. This mapping helps ad-

dress the issue of out-of-vocabulary phonemes in the target languages during testing.

Experimental results demonstrate that this straightforward method outperforms previ-

ous approaches that utilized task-specific architectures and only utilized a portion of a

monolingually pretrained model.

The XLS-R model introduced by Babu, Wang, Tjandra, et al. [25] extends the wav2vec

2.0 framework to achieve self-supervised cross-lingual speech representation learning

at a large scale. This model leverages a convolutional feature encoder that transforms

raw audio into latent speech representations. These are then processed by a Transformer

to produce contextualized outputs. A novel aspect of the XLS-R training methodology
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involves a contrastive task where spans of feature encoder outputs are masked and the

model must identify the correct quantized latent representations among several distrac-

tors.

The training of the XLS-R model was conducted on an extensive and diverse corpus to-

taling 436,000 hours of publicly available speech data, sourced from multiple datasets.

These include VoxPopuli, with 372,000 hours of parliamentary speech in 23 European

languages; Multilingual LibriSpeech (MLS), comprising 50,000 hours primarily in En-

glish; CommonVoice, featuring 7,000 hours of read speech across 60 languages; VoxLin-

gua107, which adds 6,600 hours of YouTube content in 107 languages; and BABEL,

consisting of about 1,000 hours of conversational telephone speech in 17 languages.

Significant improvements were observed with the deployment of the XLS-R model

across various benchmarks. In speech translation tasks on the CoVoST-2 benchmark,

the model improved the previous state-of-the-art by an average of 7.4 BLEU points over

21 translation directions into English. For speech recognition, XLS-R reduced error

rates by 14-34% on average relative to the best known prior works on datasets such as

BABEL, MLS, CommonVoice, and VoxPopuli. Furthermore, it set a new state-of-the-art

in language identification on the VoxLingua107 benchmark. These results demonstrate

the model’s capability to leverage large-scale, cross-lingual pretraining to significantly

enhance speech processing tasks across a broad spectrum of languages and applications.

2.3 Summary

This chapter comprehensively explores the field of Automatic Speech Recognition (ASR),

with a specific focus on phoneme recognition within musical compositions and broader

multilingual contexts. It highlights several key studies and innovations that have signif-

icantly advanced the capabilities of ASR systems. The review details the integration of

Mel-frequency cepstral coefficients (MFCC) with temporal patterns to enhance phoneme

recognition in music, although these methods have not yet achieved a reliability suitable

for cover song identification. It also discusses the PyTorch-Kaldi toolkit, which merges

the strengths of PyTorch and Kaldi to create sophisticated DNN-HMM speech recog-

nizers. Innovations like Wav2Vec and its derivatives (VQ-Wav2Vec, Wav2Vec 2.0) are
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noted for their use of unsupervised pre-training from large unlabeled datasets, reduc-

ing the reliance on labeled data and expanding the technology’s applicability to under-

resourced languages. The XLS-R framework extends Wav2Vec 2.0’s methodology to

understand multiple languages through shared quantization, achieving impressive cross-

lingual speech recognition performance. These technological advancements underscore

a shift towards models that can learn from vast amounts of unlabeled data, enhancing

phoneme recognition and pushing the boundaries of what modern ASR systems can

achieve. In summary, the literature review, as illustrated in Figure 2.6, indicates that

wav2vec 2.0 models represent the current state-of-the-art in phoneme recognition.

Figure 2.6: PER of different ASR systems on TIMIT.
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Chapter 3 - Methodology

Hair, Money, Samouel, et al. [26]’s Research Onion model has been adapted for plan-

ning the research methodology in this study, as highlighted by Melnikovas [27]. The

research approach employed in this study is deductive, with a hypothesis stating that an

ASR model, when appropriately trained, can transcribe song lyrics into phonemes across

different languages. These phoneme transcriptions can then be utilized to identify songs

with identical lyrics. The research strategy is experimental in nature, involving the cre-

ation of an intervention in the form of a trained ASR model, followed by the observation

of outcomes.

A monomethod research design is adopted, focusing on quantitative measurements of

phoneme transcription accuracy and copyright infringement detection. The time horizon

for the study is cross-sectional, as data analysis will be conducted at a single point in

time rather than tracking changes over an extended period.

3.1 Research Design

The research design for this study encompasses a comprehensive methodology aimed at

developing and evaluating a phoneme recognition system tailored for cover song identi-

fication. It incorporates a series of structured sub-sections, each detailing critical com-

ponents of the research process: data collection involves using the DALI and specific

cover song datasets; determining the baseline employs the wav2vec 2.0 model; fine-

tuning the ASR model leverages the advanced XLS-R framework; phoneme recognition

accuracy is meticulously measured; similarity in cover songs is quantified through Lev-

enshtein distance; cover song identification efficacy is assessed using a precise metric,

and comparative analysis benchmarks the system against existing technologies. This

multi-faceted approach ensures a robust evaluation of the system’s capabilities in recog-

nizing and processing phonemes across diverse musical pieces and languages.
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3.1.1 Data Collection

For the development and evaluation of the Phoneme Recognition System, the DALI[28]

dataset is utilized as the primary source of training and testing data. This dataset is a

comprehensive resource that provides synchronized audio files along with their corre-

sponding full-duration lyrics, phonemes, and vocal melody notes. The DALI dataset

uniquely organizes lyrics into four distinct hierarchical levels: individual notes linked

with specific textual content, words, lines, and paragraphs. Each audio track in the

DALI dataset is further enriched with multimodal data including genre, language, artist

details, album artwork, and URLs to related music videos. The audio files are accessible

for download using YouTube URLs provided within the dataset.

To assess the system’s performance in cover song identification, two datasets are em-

ployed: Covers80[29] and Sinhala Cover Songs[30]. The Covers80 dataset is a recog-

nized benchmark in the domain of cover song identification and comprises 160 songs,

with each original track paired with its cover version, totaling 80 pairs. The Sinhala

Cover Songs dataset, specifically curated for the cover song identification task within

the Sinhala music context, includes 14 original songs along with their respective cover

versions. This dataset has been previously utilized in studies focusing on cover song

identification tasks for Sinhala music, providing a specialized resource for evaluating

system performance in a linguistically and culturally specific context.

3.1.2 Determining the Baseline

The literature review identifies wav2vec 2.0 as the current state-of-the-art in phoneme

transcription, as indicated by the enhancements reported by Xu, Baevski, and Auli [24]

in transcribing languages not encountered during training. This capability is particularly

relevant to the objectives of this research. Therefore, Xu, Baevski, and Auli [24]’s model

is adopted as the baseline phoneme recognition system for this study.

A key challenge in using the DALI dataset for evaluating the baseline model is the differ-

ence in phonetic transcription formats. While both the DALI dataset and Xu, Baevski,

and Auli [24]’s model employ the IPA for phonetic transcriptions, the specific alpha-
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bets or labeling systems used differ. This discrepancy makes it impractical to directly

measure the transcription accuracy of the baseline model using the DALI dataset’s tran-

scriptions, as manual conversion of lyrics into phonemes is time-consuming and not

feasible for this research.

During the literature review, two tools were identified for potentially automating the

phonemization of lyrics: ESpeak1 and Phonetisaurus2. For the purposes of this study,

ESpeak is selected to handle phoneme transcriptions due to its compatibility with the

baseline model and its support for over 100 languages. The use of ESpeak ensures

consistency between the model’s output vocabulary and the phonemic transcriptions of

the dataset’s lyrics, which is crucial for accurate evaluation and comparison.

3.1.3 Fine-tuning the ASR Model

The XLS-R[25] model, recognized as the state of the art in large-scale, cross-lingual

speech representation learning, is selected as the pre-trained model for fine-tuning to

specialize in phoneme recognition of singing voices. This choice is based on the analysis

conducted in literature review, which identifies XLS-R as superior to the previously

utilized XLSR-53[23] model, which was considered state of the art at the time of Xu,

Baevski, and Auli [24]’s research.

For this specific task, phoneme transcriptions provided by the DALI dataset are em-

ployed instead of those generated by the ESpeak phonemization tool. The DALI dataset

uses fewer phoneme labels compared to ESpeak, which is advantageous as fewer labels

can lead to improved classification results in this context. Additionally, only a subset of

the DALI dataset is used to maintain a balanced representation across languages.

The fine-tuning of the XLS-R model is conducted using the Connectionist Temporal

Classification (CTC) algorithm[31]. CTC is particularly suited for this application as it

is an alignment-free method, eliminating the need for manual alignment of audio inputs

to their corresponding labels—a process that becomes impractical given the size of the

dataset. The alignment-free nature of CTC is due to its loss function, which marginalizes
1https://github.com/espeak-ng/espeak-ng
2https://github.com/AdolfVonKleist/Phonetisaurus
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over all possible alignments, thereby simplifying the training process. A CTC layer is

integrated above the transformer structure, and the entire model undergoes fine-tuning

to minimize the CTC loss. The feature extractor remains frozen during this fine-tuning

phase because it has already been adequately trained during the pretraining stage (Figure

3.1).

Figure 3.1: Overview of the proposed fine-tuning framework.

In this study, two versions of the XLS-R model are employed: one with 300 million

parameters and another with 2 billion parameters. Different learning rates are tested to

determine the optimal rate for achieving the best results in phoneme recognition tasks.

This approach allows for a thorough exploration of the model’s capabilities and the ef-

fects of scale on performance.

3.1.4 Evaluation of Phoneme Recognition Accuracy

The phoneme transcription accuracy of the fine-tuned ASR model will be rigorously

evaluated using test subsets derived from the DALI [28] dataset.

The efficacy of phoneme transcription will be quantitatively measured using the PER,

a standard metric in speech recognition that reflects the model’s precision in capturing

phonemic details. PER is analogous to the Word Error Rate (WER) but focuses on the

more granular phoneme level.

The computation of PER involves the following steps:

1. Alignment: Initially, the ASR model’s predicted phoneme sequence is aligned with

the reference sequence to enable direct comparison. Dynamic programming is typically
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employed to optimize this alignment by identifying the most cost-effective sequence of

edits.

2. Error Categorization: Following alignment, transcription discrepancies are classified

as: - Substitutions: Incorrect recognition of a phoneme as another. - Insertions: Un-

warranted addition of a phoneme not present in the reference. - Deletions: Failure to

recognize a phoneme that exists in the reference.

3. Calculation Process: The total PER is calculated by summing the substitution, inser-

tion, and deletion errors and dividing by the number of phonemes in the reference. The

formula is expressed as:

PER =
S+ I +D

N

Here, S represents substitutions, I denotes insertions, D stands for deletions, and N is the

count of reference phonemes.

4. Normalization: The PER is typically presented as a percentage. A lower percentage

signifies higher transcription accuracy.

5. Analytical Insight: The PER offers nuanced insights into the ASR model’s phonemic

recognition capabilities, which is particularly vital for understanding its performance

across various languages and dialects, where precise phoneme differentiation is critical.

This thorough approach to evaluating phoneme transcription ensures that the ASR model’s

capabilities are accurately understood and benchmarked, paving the way for targeted im-

provements where necessary.

3.1.5 Measuring the Similarity

In the process of identifying cover songs, it is essential to measure the similarity between

phoneme transcriptions of the query song and those already stored. For this purpose,

Levenshtein distance[32] is employed as the primary metric. Levenshtein distance, also

known as edit distance, quantifies the similarity between two sequences by calculating

the minimum number of single-character edits required to change one sequence into the
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other. These edits can include insertions, deletions, or substitutions.

This metric is particularly relevant in the context of phoneme transcriptions because it

allows for a detailed comparison of the sequences at a granular level. For example, if

one transcription includes a phoneme that the other does not, Levenshtein distance will

count this as a single edit—either an insertion or a deletion, depending on the sequence

being modified. Similarly, if a phoneme needs to be changed to another to match the

second sequence, this is counted as a substitution.

Levenshtein distance is akin to the PER, a common measure in speech recognition that

also counts the number of edits needed to correct a transcription error. By using Leven-

shtein distance, the methodology directly assesses the extent of difference or similarity

between the phoneme sequences of the original songs and their respective covers. This

approach is critical for the task at hand, as the accurate detection of cover songs relies

on identifying even subtle phonetic variations that distinguish different performances of

the same musical piece.

3.1.6 Evaluation of Cover Song Identification

The evaluation of cover song identification utilizes the Covers80[29] and Sinhala Cover

Songs[30] datasets, as previously outlined. The Covers80 dataset serves a dual purpose:

it measures the accuracy of English cover song identification and provides a benchmark

against other systems in the field, being the most commonly used dataset for such com-

parisons. Its widespread adoption in research makes it an ideal standard for assessing

system performance in recognizing English cover songs.

In contrast, the Sinhala Cover Songs dataset is employed to evaluate the accuracy of

identifying Sinhala cover songs and to assess the system’s performance in a multilingual

context with a focus on an unseen language. This dataset offers a unique perspective on

how well the phoneme recognition system adapates to languages that are less commonly

represented in global datasets.

However, the challenge arises in fully evaluating multilingual cover song identification.

While the Sinhala Cover Songs dataset supports testing in a less common linguistic
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context, it is insufficient for a comprehensive assessment across multiple languages. Al-

though there have been studies in other languages, such as Chinese cover song identi-

fication, access to corresponding datasets is often restricted or non-existent. Creating a

new multilingual dataset to fill this gap would be akin to undertaking a separate research

project, given the extensive time and resources required.

Due to these limitations, this study focuses solely on evaluating the English and Sinhala

cover song identification accuracy. This decision is driven by the practical constraints

of dataset availability and the scope of the current research project. The methodology,

therefore, emphasizes detailed analysis within the accessible datasets to yield insights

into the system’s performance in recognized and less commonly studied linguistic set-

tings.

The key metric for this evaluation, MAP, is a critical indicator that combines precision

and recall elements, prioritizing the rank-order of predictions. In the context of cover

song identification, MAP measures how well a system can recognize different perfor-

mances of the same underlying musical composition.

The computation fo MAP involved following steps:

1. Query and Retrieval Process: A ‘query’ refers to an original track which the system

uses to scour a database for all potential ‘cover’ versions. The identified covers are then

ranked according to the likelihood of them being true covers.

2. Precision at K (P@k): For any given query, the precision at a certain rank k signifies

the proportion of retrieved tracks within the top k that are verified covers.

3. Average Precision (Average Precision (AP)): This figure is the mean of precision

scores recorded at every instance a new correct cover is found within the retrieval list.

4. Mean Average Precision (MAP): MAP represents the average of these AP scores

across all queries in a test set. It is expressed as:

MAP =
1
Q

Q

Â
q=1

APq

where APq denotes the Average Precision for each individual query q.
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A system with a high MAP score is not only adept at identifying cover songs but also

excels in ranking the most relevant covers at the top of its results, providing an efficient

search outcome.

MAP is particularly critical in the evaluation of cover song identification systems be-

cause it accounts for both the correctness of the matches and their ranked order, provid-

ing insight into the practical performance of the system, where users would benefit from

quickly finding the most fitting covers.

3.1.7 Comparative Analysis

The comparative analysis in this study focuses on two main aspects: phoneme recogni-

tion accuracy and cover song identification accuracy. The performance of the developed

system is benchmarked against existing systems using standard metrics and datasets

within the domain, facilitating a direct comparison without the need for reproducing

previous studies.

For phoneme recognition, accuracy is assessed using the DALI dataset, which is well-

recognized for its comprehensive annotation of phonemes, making it suitable for a re-

liable accuracy assessment. In the case of cover song identification, the accuracy is

also compared using established benchmarks. The Covers80 and Sinhala Cover Songs

datasets provide a basis for these comparisons. Covers80, being a widely used bench-

mark in the field, enables the assessment of English cover song identification capabilities

against other systems. Similarly, the Sinhala Cover Songs dataset allows for evaluation

in a less common linguistic context, offering insights into the system’s performance in

identifying covers in a multilingual setting.

The comparative analysis leverages these standard datasets to ensure that the results are

both valid and comparable to existing research. By using these recognized benchmarks,

the study ensures that the evaluations are consistent with industry standards, thus pro-

viding a credible comparison of the developed system’s performance against the current

state of the art in both phoneme recognition and cover song identification. This approach

not only enhances the reliability of the comparisons but also contributes to the broader

understanding of system capabilities in a multi-lingual context.
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3.2 Summary

The methodology chapter of the research thesis outlines a structured approach to de-

veloping and evaluating a phoneme recognition system for cover song identification. It

incorporates a detailed plan based on the Research Onion model, employing a deduc-

tive research approach and an experimental strategy. The chapter is divided into several

key sections: Data Collection, which leverages the DALI and Covers80 datasets; De-

termining the Baseline, utilizing the state-of-the-art wav2vec 2.0 model; fine-tuning the

ASR Model, applying the advanced XLS-R model; Evaluation of Phoneme Recogni-

tion Accuracy, using Phoneme Error Rate (PER); Measuring the Similarity, employing

Levenshtein distance; Evaluation of Cover Song Identification, focusing on the MAP

metric; and Comparative Analysis, benchmarking against existing systems. Each sec-

tion is meticulously designed to ensure a comprehensive assessment of the system’s

capabilities across diverse musical pieces and languages, supporting a robust evaluation

and comparison framework for phoneme recognition and cover song identification.
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Chapter 4 - Implementation

This chapter outlines the implementation of the baseline model and fine-tuning the XLS-

R model. Initially, the chapter details the preprocessing steps for the DALI dataset to

prepare it for use with the model, including the retrieval of audio files and conversion to a

compatible format. It then describes the phonemization process to align dataset phoneme

labels with the model’s output, followed by the implementation steps for running the

model using the Huggingface platform. The fine-tuning of the XLS-R model variants

with different parameter sizes is then discussed, including specific modifications and

preparations for the training environment, data handling, and tokenizer setup to ensure

optimal model performance.

4.1 Baseline Model Implementation

Xu, Baevski, and Auli [24]’s fine-tuned XLSR-53 model is utilized as the baseline model

for this study as mentioned above. As the first step DALI dataset is preprocessed to use

with the selected model.

4.1.1 Data Preprocessing

To evaluate the phoneme recognition accuracy of the baseline model, a representative

subset of songs from the DALI dataset is selected, covering all languages present in the

dataset. The DALI dataset itself does not include audio files; thus, audio files are re-

trieved from YouTube using the URLs provided within the dataset. Some songs could

not be accessed due to removal from YouTube or regional restrictions and were conse-

quently excluded from the dataset. The Python library ‘pytube’ is employed to download

these video files.

Once downloaded, the video files, which are in MP4 format, need to be converted to a

compatible audio format for the model. The baseline model requires audio files with a

16 kHz sampling rate. Using the Python library ’pydub’, the MP4 files are converted
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into Waveform Audio File Format (WAV) at the required 16 kHz sampling rate.

4.1.2 Phonemization the Lyrics

The phoneme output from the baseline model is in International Phonetic Alphabet (IPA)

symbols, whereas the DALI dataset provides phoneme labels in ARPABET symbols. To

align the phoneme transcriptions with the model’s output, the ESpeak phonemization

tool is used to convert the provided lyrics in DALI dataset to IPA symbols. This tool was

also used in the original work by Xu, Baevski, and Auli [24], ensuring consistency in

phoneme transcription.

4.1.3 Running the Model

Access to the Xu, Baevski, and Auli [24]’s model is provided through Huggingface1,

an open-source deep learning framework that offers convenient APIs and tools. The

Huggingface Transformers library is utilized to implement and run the baseline model,

facilitating the evaluation of phoneme recognition across the processed audio files. This

setup ensures that the model runs efficiently and the phoneme recognition results can be

accurately compared against the DALI dataset’s labels.

4.2 Fine-tuning XLS-R Model

The XLS-R model is available in several variants based on the number of parameters,

specifically the 300 million, 1 billion, and 2 billion parameters models2. For this study,

the 300 million and 2 billion parameters models are selected to evaluate the impact of

model size on phoneme recognition accuracy.
1https://huggingface.co/
2https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/xlsr/README.md
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4.2.1 Version Management

During the fine-tuning process, training checkpoints are systematically uploaded to the

Hugging Face Hub. This platform integrates version control, which provides a robust

safeguard against potential issues during training. If a problem arises, the process can

be resumed from the last saved checkpoint, thus avoiding the need to restart the entire

training from scratch.

Due to the substantial size of the model checkpoint files, Git Large File Storage (Git-

LFS)3 is employed. This extension of Git is designed to handle large files more ef-

ficiently, allowing for smoother uploads and management of extensive data within the

version-controlled environment provided by the Hugging Face Hub. This approach en-

sures that all model data remains accessible and securely stored, facilitating ongoing

research and development activities.

4.2.2 Data Preprocessing

The DALI dataset, comprising a total of 7,756 songs, provides URLs to correspond-

ing YouTube videos for each song. However, some of these videos are either removed

or have restricted access on YouTube. Such inaccessible songs are excluded from the

dataset. The remaining songs are downloaded using the Python ’pytube’ library, which

retrieves the video files in MP4 format.

The XLS-R model, utilized in this study, requires audio files to have a 16 kHz sampling

rate. Therefore, the downloaded MP4 files are converted into the Waveform Audio File

Format (WAV) at a 16 kHz sampling rate using the Python ’pydub’ library.

DALI dataset annotations include timestamps marking the start and end of each sen-

tence within a song’s lyrics. Utilizing these timestamps, each full-length audio file is

segmented into shorter clips, each containing a single sentence. This segmentation is

crucial because the full-length songs, typically lasting 3-4 minutes, are too lengthy for

the XLS-R model to process efficiently. The model’s self-attention mechanism demands

a significant amount of memory, especially for longer input sequences, making the han-
3https://git-lfs.com/
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dling of such large files impractical.

An analysis (detailed in Table 4.1) reveals a substantial imbalance in the total duration

of songs across different languages in the dataset. While it is not feasible to perfectly

balance the duration across all languages due to limitations in the available audio files,

an effort is made to select approximately 480 minutes of audio per language for model

fine-tuning. In cases where a language does not have up to 480 minutes of audio, all

available files are used. The dataset is then split into training and testing sets, with 80%

of the audio files allocated for training and the remaining 20% for testing from each

language.

The prepared datasets are subsequently loaded into the research environment using the

Hugging Face Datasets library, ensuring they are ready for the subsequent stages of

model training and evaluation. This step facilitates efficient data management and ac-

cessibility during the machine learning workflow.

Language Duration (Minutes)

English 11171

German 1105

French 513

Spanish 482

Italian 477

Polish 159

Dutch 139

Finnish 136

Portuguese 64

Swedish 63

Norwegian 30

Turkish 22

Language Duration (Minutes)

Hungarian 20

Swahili 17

Croatian 14

Slovak 14

Danish 10

Slovene 10

Welsh 7

Romanian 3

Czech 2

Estonian 2

Latin 5

Table 4.1: Duration of each language in the DALI dataset (rounded to nearest minute).
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4.2.3 Prepare the Tokenizer

The pre-trained XLS-R model outputs a sequence of context representations, which are

then processed into actual transcriptions by a tokenizer. For this process, the Wav2Vec2CTCTokenizer

from the Hugging Face Transformers library is utilized. This tokenizer acts as a linear

layer added on top of the XLS-R model’s transformer.

The tokenizer’s function is to classify the model’s output into labels or tokens corre-

sponding to the vocabulary of the transcription dataset. Special characters are removed

from the transcriptions, and the text is transformed into lowercase. Additionally, two

special tokens, “padding token” and “blank token,” are introduced to accommodate the

requirements of the CTC algorithm.

Every unique character from the dataset’s transcriptions is extracted and assigned a

unique number. This mapping of numbers to characters or tokens constitutes the vo-

cabulary that is provided to the tokenizer.

4.2.4 Prepare the Feature Extractor

Audio files are continuous signals and need to be sampled before they can be fed into a

model. To ensure compatibility with the model’s input requirements, a feature extractor

is used. Specifically, the Wav2Vec2FeatureExtractor from the Hugging Face Transform-

ers library is configured for this task.

The feature size is set to 1 because the inputs are raw audio files. The sampling rate is

maintained at 16kHz to match the model’s training conditions, as changing the sampling

rate can significantly alter the distribution of the audio data. Therefore, it is crucial to

use audio input at 16kHz.

For training, batch inference is employed due to the large size of the dataset. This neces-

sitates padding the shorter inputs within a batch to align with the length of the longest

input, using a padding value of 0.0.

In the Wav2Vec2FeatureExtractor, it is necessary to specify whether the input should

undergo zero-mean-unit-variance normalization. This normalization process adjusts the
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data so that its mean is zero and its variance is one, a condition that generally improves

the performance of speech models. Thus, this normalization is activated.

Additionally, it is essential to determine whether to use an attention mask for batched

inference. Given that XLS-R models require the use of an attention mask to perform

optimally, this feature is also enabled.

4.2.5 Prepare the Trainer

The Trainer from the Hugging Face Transformers library is also utilized and configured

for this task. A specialized data collator is used to dynamically pad the inputs within a

batch to match the length of the longest input. This data collator is unique because it

processes ‘input values’ and ‘labels’ differently, applying distinct padding functions to

each by leveraging the XLS-R processor’s context management capabilities.

This method is crucial because it acknowledges that the inputs and outputs in speech

models represent different types of data, each requiring specific handling. Unlike stan-

dard data collators, this approach does not apply uniform padding across different data

types. For the labels, padding tokens are assigned a value of -100, ensuring that these to-

kens are ignored during loss calculations, which is essential for accurate model training.

This method is crucial because it acknowledges that the inputs and outputs in speech

models represent different types of data, each requiring specific handling. Unlike stan-

dard data collators, this approach does not apply uniform padding across different data

types. For the labels, padding tokens are assigned a value of -100, ensuring that these to-

kens are ignored during loss calculations, which is essential for accurate model training.

The evaluation metric for this phoneme recognition task is defined as PER, and the

Character Error Rate (CER) the ‘jiwer’ Python library, which is similar to PER, is uti-

lized for this purpose. The model architecture generates a sequence of logit vectors,

labeled as Y1,Y2, . . . ,Ym. These vectors result from the function fq acting on the input

sequence (x1, . . . ,xn), where n exceeds m. Each logit vector Yi contains the log-odds for

each term in the predetermined vocabulary, and thus the dimension of Yi is equal to the

size of the vocabulary specified in the configuration.
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The focus is primarily on the model’s most accurate predictions, which are identified by

applying the argmax function to the logit vectors. The process also includes converting

the encoded labels back to their original string representation. This conversion involves

replacing instances of the pad token id with -100, which is critical to ensure that con-

secutive tokens are not mistakenly merged into a single token, adhering to the principles

of CTC decoding.

The appropriate pre-trained model checkpoint is specified in the trainer configuration.

Since this study utilizes two versions of the XLS-R model, this parameter is adjusted

accordingly for each version. The trainer also includes several adjustable parameters

such as attention dropout, hidden dropout, and learning rate.

Optimizing these parameters typically requires hyper-parameter tuning. However, due

to limited computing resources, conducting extensive tuning with the large datasets and

models used in this study is not feasible. Therefore, the parameter values were adopted

from a similar previous study. Only three different learning rates were experimentally

tested in this study, as detailed in the results section.

The initial part of the XLS-R architecture consists of several CNN layers. These lay-

ers are designed to extract acoustically significant and contextually unique features from

raw speech signals. According to the relevant literature, this segment of the architecture

has already undergone extensive pretraining. Consequently, further fine-tuning of these

layers is considered unnecessary. Therefore, the ’requires grad’ setting for the parame-

ters associated with this feature extraction segment can be set to ’False’, indicating that

these parameters do not need to be updated during training.

4.2.6 Training

The model with 300 million parameters is fine-tuned using three different learning rates

to determine the most suitable one. Once the optimal learning rate is established from

the experiments with the 300 million parameters model, it is then applied to fine-tune

the larger model with 2 billion parameters. In both instances, the training is conducted

over 30 epochs.
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The results of these fine-tuning processes are detailed in the results section. The model

with 300 million parameters was fine-tuned on a free Kaggle instance which has P100

GPU with 16 GB memory, while the 2 billion parameters model was fine-tuned on a paid

instance equipped with two A100 GPUs, each having 45GB of memory.

4.3 Cover Song Identification

All songs across two datasets are transcribed into their phonetic representations using

a fine-tuned model, which is readily accessible through the Hugging Face Hub since

the model is uploaded there during the fine-tuning process. Due to the limitations of the

wav2vec 2.0 model, which cannot process long-duration audio files, each song is divided

into 10-second segments. These segments are individually transcribed, and the resulting

phonetic transcriptions are then concatenated to form the complete transcription of each

song.

To identify cover versions of original songs, each original song transcription is compared

to all potential cover song transcriptions using the Levenshtein distance metric. This

metric measures the minimum number of edits required to transform one transcription

into another, effectively quantifying their similarity. Cover songs are then ranked for

each original song based on their Levenshtein distances; a lower distance indicates a

closer match and thus a higher rank.

The accuracy of these matches is evaluated using the MAP metric, focusing only on the

top 10 results. This approach is justified because each dataset contains only one cover

song per original song, making it sufficient to consider a limited number of top-ranked

matches to assess performance accurately.

4.4 Summary

The chapter provides a comprehensive overview of the procedures and technical config-

urations used to fine-tune and evaluate the XLS-R model across multiple experiments

aimed at improving phoneme recognition. Various datasets, including the DALI dataset,
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were processed and prepared for these experiments. Significant attention was given to

the management of large audio files and the handling of data through tools like pytube,

pydub, and the Hugging Face Transformers library. The fine-tuning process was me-

thodically documented, highlighting the importance of maintaining consistent training

conditions, such as the sampling rate and batch processing norms. The latter part of the

chapter focuses on the implementation of the cover song identification process, detailing

how the phonetic transcriptions of songs are used to compare and rank potential cover

versions using the Levenshtein distance metric.
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Chapter 5 - Results & Analysis

This chapter presents the outcomes of a study focused on phoneme recognition in singing

voices using various models and data sizes, alongside an exploration of cover song iden-

tification effectiveness. It details the methodologies, baseline configurations, incremen-

tal enhancements, and the comparative performance of different models. Additionally,

the analysis delves into the challenges and potential improvements within the context of

phoneme recognition and cover song identification across diverse languages and musi-

cal genres. Results are systematically documented in tables and figures throughout the

chapter.

5.1 Results

This section details the results of a study on phoneme recognition in singing voices using

different models and data scales. The baseline is established using the fine-tuned XLSR-

53 model, followed by experiments on learning rates and dataset sizes with 300 million

and 2 billion parameter models. Additionally, the performance of these models in cover

song identification across two datasets is assessed.

5.1.1 Baseline

Xu, Baevski, and Auli [24]’s fine-tuned XLSR-53 model is utilized as the baseline model

for this study Transcriptions generated by the ESpeak phonemicization tool are com-

pared with the predictions from the fine-tuned XLSR-53 model. The evaluation metric

used is the PER. The overall PER across the DALI test set stands at 0.537 and the Table

5.1 displays the average PER for each language, representing the baseline accuracy of

multilingual phoneme recognition in singing voice for this study.
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Language PER

English 0.494

German 0.439

French 0.461

Spanish 0.436

Italian 0.439

Polish 0.504

Dutch 0.422

Finnish 0.469

Portuguese 0.473

Swedish 0.617

Norwegian 0.589

Turkish 0.586

Language PER

Hungarian 0.695

Swahili 0.599

Croatian 0.425

Slovak 0.420

Danish 0.496

Slovene 0.529

Welsh 0.6

Romanian 0.634

Czech 0.676

Estonian 0.582

Latin 0.772

Table 5.1: Average PER for each language in baseline model.

5.1.2 Fine-tuned XLS-R Model

In an initial phase of the study, three different learning rates are tested to fine-tune a

model with 300 million parameters, as the larger 2 billion parameters model required

more computing power than is available on the free tier. The learning rates tested are

5⇥10�3, 5⇥10�4, and 5⇥10�5. The lowest learning rate, 5⇥10�5, produced the best

results and is subsequently chosen for all further experiments.

Following this, the 300 million parameters model underwent further training using vary-

ing amounts of data. In the initial training session, the model is fine-tuned using 100

minutes of audio from each language, incorporating all available data from languages

that had less than 100 minutes of audio. The phoneme PER for this setup is 0.7088. In

a subsequent run, the amount of data is increased to 240 minutes of audio per language,

again including all available data from languages with fewer resources. This led to a

notable improvement in PER, which dropped to 0.3870.

For the final experiment, the 2 billion parameters model is fine-tuned using an even larger

dataset consisting of 480 minutes of audio from each language, including all data from
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languages with limited resources. This adjustment resulted in a further reduction in the

PER, achieving a rate of 0.32 (Table 5.2).

Model Size (parameters) Data per Language (minutes) PER

300 million 100 0.7088

300 million 240 0.3870

2 billion 480 0.32

Table 5.2: Results of fine-tuned XLS-R model.

5.1.3 Cover Song Identification

For the Covers80 dataset, which comprises exclusively English songs, the MAP achieved

is 0.745. In contrast, the MAP for the Sinhala Cover Songs dataset is 0.513 (Table 5.3).

Dataset MAP

Covers80 (English songs) 0.745

Sinhala Cover Songs 0.513

Table 5.3: Cover song identification results.

5.2 Analysis

The Analysis section delves deeper into the nuances of the study, examining the fac-

tors contributing to the model’s performance. This section discusses the challenges in

phoneme recognition, particularly the distinction between vowels and consonants in a

singing context, and the impact of background music. The section also explores the im-

plications of using global versus local similarity measures for cover song identification

and addresses the limitations posed by the model’s handling of long audio files. The

discussion highlights the potential for future improvements in model accuracy through

enhanced training strategies and resource allocation.
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5.2.1 Fine-tuned XLS-R Model

The fine-tuned model demonstrates a notable enhancement in transcription accuracy

compared to the baseline. The overall PER across the DALI test set improved signifi-

cantly from 0.537 to 0.32, representing a 40.41% improvement in multilingual phoneme

recognition of singing voice. Table 5.4 provides a detailed comparison, listing the aver-

age PER for each language using both the baseline and the fine-tuned models, alongside

the percentage improvement achieved over the baseline model.

In Table 5.4, it’s clear that low-resource languages have seen greater improvements than

high-resource languages. This difference can be attributed to the music genres associ-

ated with these languages. Most songs in low-resource languages fall under genres like

instrumental music, where the background sound is less intense. Genre-based analy-

sis further supports this observation: accuracy tends to be lower in genres with louder

music, such as rock and hard rock (Figure 5.1). Despite this, there is still noticeable

improvement over the baseline model.

Figure 5.1: Phoneme recognition performance by music genres

45



Language Baseline PER Fine-tuned PER Improvement (%)

English 0.494 0.334 32.39

German 0.439 0.344 21.64

French 0.461 0.39 15.40

Spanish 0.436 0.352 19.27

Italian 0.439 0.313 28.70

Polish 0.504 0.286 43.25

Dutch 0.422 0.207 50.95

Finnish 0.469 0.192 59.06

Portuguese 0.473 0.217 54.12

Swedish 0.617 0.303 50.89

Norwegian 0.589 0.270 54.16

Turkish 0.586 0.217 62.97

Hungarian 0.695 0.33 52.52

Swahili 0.599 0.285 52.42

Croatian 0.425 0.302 28.94

Slovak 0.420 0.314 25.24

Slovene 0.529 0.34 35.73

Welsh 0.600 0.252 58.00

Romanian 0.634 0.194 69.40

Czech 0.676 0.431 36.24

Estonian 0.582 0.416 28.52

Latin 0.772 0.593 23.19

Table 5.4: Phoneme Error Rate (PER) improvement for each language, comparing base-

line and fine-tuned models.

In an analysis of the DALI test set, comparing predicted transcripts against reference

transcripts, it was observed that the model accurately identifies consonants more often

than vowels. This distinction is significant in phonetics, where speech sounds are catego-

rized primarily into vowels and consonants. Vowels are vocal sounds produced without

any significant closure of the air passage and are crucial for syllable formation; they in-

clude sounds like ’AH,’ ’AA,’ ’AE,’ ’EY,’ ’IH.’ Consonants, by contrast, involve some

degree of closure or constriction within the vocal tract, such as ’K,’ ’D,’ ’T,’ ’P,’ ’B.’
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The model’s poorer performance in identifying vowels can be attributed to the complex

variations in the singing voice, which differ significantly from normal speech. In singing,

the rate of speech—especially the elongation and modulation of vowel sounds—is markedly

different, which poses a challenge for accurate recognition. Additionally, loud back-

ground music often accompanies singing, further complicating the accurate discernment

of vowel sounds.

The results of this study indicate that phoneme recognition accuracy in singing voices

has improved significantly when compared to a baseline speech recognition model. The

speech recognition model used was somewhat adapted to handle singing voices, though

there remains substantial potential for enhancement.

In this research, hyperparameter tuning was not conducted during the training phase

due to resource constraints. However, with adequate resources, conducting extensive

hyperparameter tuning could likely lead to further improvements in model accuracy.

5.3 Cover Song Identification

The performance of our cover song identification system is subpar when compared with

state-of-the-art lyric bases cover song identification system. Specifically, on the Cover80

dataset, our system achieved a MAP of only 0.745. This result is lower than those

obtained by state-of-the-art cover song identification systems, as detailed in Table 5.5.

System MAP

Correya, Hennequin, and Arcos [4] 0.926

Vaglio, Hennequin, Moussallam, et al. [7] 0.790

Proposed Method 0.745

Table 5.5: Comparison of English cover song identification results using the proposed

method and two other methods.

The results from the Correya, Hennequin, and Arcos [4]’s study can be disregarded

since it relies on a lyrics-informed system, where lyrics are manually inputted into the

system. In contrast, the Vaglio, Hennequin, Moussallam, et al. [7]’s study employs a
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SVR framework to automatically transcribe lyrics, and it demonstrated better results for

English songs compared to the proposed method in this study. However, their system is

specifically tailored for English, indicating a dependency on language.

The inaccuracies were primarily due to the accuracy of phoneme recognition. Another

contributing factor was the presence of instrumental sections in songs, which do not

contain any vocals. The model attempted to transcribe these purely musical parts as well,

resulting in some nonsensical transcriptions. Implementing a singing voice identification

method could resolve this issue by ensuring the model only transcribes sections where a

singing voice is detected.

The chosen similarity measure, despite being the most suitable one available, has some

limitations. The Levenshtein distance is a global similarity metric, which assesses the

entire string to determine similarity, rather than focusing on localized or substring simi-

larities. This approach posed problems when comparing songs whose cover versions are

significantly shorter than the original versions, often because the original versions in-

clude longer instrumental sections. Consequently, when the model transcribes these in-

strumental parts, the original version ends up with a much longer phonetic transcription,

which increases the similarity distance between the two versions. A potential solution

is to use local similarity metrics that assess only portions of the strings. These met-

rics, similar to those used in local sequence alignment in bioinformatics, could provide

a more accurate measure of similarity in such cases.

The model struggled with handling longer audio files, leading to the transcription of

songs into phonemes in a chunk-wise manner, with the audio split into 10-second long

chunks. This approach resulted in transcription inaccuracies at the points where the au-

dio was split, contributing to lower accuracy in cover song identification. To improve

accuracy, a singing voice identification method could be used to strategically split the

song into chunks at points where only instrumental music is present, avoiding the dis-

ruption of vocal segments.

The proposed method performs poorly compared to other state-of-the-art lyrics-based

cover song identification methods. However, it is important to note that these other

systems are language-dependent. The proposed model, evaluated using a dataset of Sin-
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hala songs, still managed to achieve reasonable results despite Sinhala being an unseen

language during both the training and fine-tuning phases. A comprehensive analysis of

multilingual lyrics-based cover song identification is currently limited due to the scarcity

of cover song datasets in various languages. Nonetheless, the success achieved with an

unseen language highlights the potential for multilingual cover song identification using

the proposed phoneme-based method, which still has considerable room for improve-

ment.

5.4 Summary

This chapter meticulously evaluates the performance of a phoneme-based model for

cover song identification, comparing it against other state-of-the-art methods. It presents

detailed results from various experiments, showing the model’s capabilities and limita-

tions in handling multilingual datasets and different audio complexities. The analysis

further investigates the specific issues affecting accuracy, such as phoneme recognition

and audio segmentation, and suggests potential solutions for these challenges. Overall,

the chapter emphasizes the model’s potential in multilingual settings and outlines areas

for further research and development to enhance its effectiveness in real-world applica-

tions.
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Chapter 6 - Limitations & Future Works

This study introduces a novel method for cover song identification using phoneme tran-

scriptions of singing voices, but several limitations have emerged that require future

exploration. One significant issue is the model’s inherent limitation in processing long-

duration audio files. This constraint necessitates dividing the audio into shorter seg-

ments, leading to inaccuracies in the final transcriptions, as detailed in Chapter 5. Future

research could focus on developing models capable of handling extensive audio files or

devising robust methods to mitigate inaccuracies in existing models.

Another major limitation is the absence of multilingual datasets to assess the accuracy

of multilingual cover song identification. To address this, there is a need to create new

datasets that include multilingual cover song data. Such datasets would significantly

enhance the model’s training and testing phases, providing a broader base for evaluating

the effectiveness of the phoneme recognition system across different languages.

While the Levenshtein distance is currently the most suitable method for measuring sim-

ilarities in this context, it has limitations that affect its efficacy, particularly in cover song

identification where nuanced differences are crucial. A potential advancement would be

the development of a Weighted Levenshtein Distance. This metric would extend the

standard Levenshtein Distance by assigning variable costs to different operations—such

as insertions, deletions, and substitutions—based on the phonetic similarity between

phonemes. Implementing such a customization would improve the sensitivity and accu-

racy of the metric, especially in scenarios where phonetic nuances significantly influence

the outcome.

Furthermore, the study did not engage in extensive hyperparameter tuning of the XLS-R

model due to resource constraints. Future efforts could focus on comprehensive hy-

perparameter optimization to enhance the model’s accuracy in multilingual phoneme

recognition. Optimizing parameters such as learning rate, batch size, and model archi-

tecture could lead to substantial improvements in performance. This approach would

not only refine the model’s ability to handle diverse linguistic nuances but also extend

its applicability to a wider range of audio processing tasks.
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In summary, while this study lays the groundwork for advanced phoneme recognition in

singing voices, it also highlights several avenues for further research and development.

By addressing these limitations, future studies can significantly enhance the robustness

and accuracy of phoneme recognition systems, particularly in complex and multilingual

audio environments.
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Chapter 7 - Conclusions

This research commenced with the hypothesis that utilizing phoneme transcriptions

of singing voices could facilitate multilingual lyrics-based cover song identification,

thereby eliminating language dependency from the identification process. The primary

motivation for focusing on lyrics-based identification is its scalability and the ability to

recognize covers even when the music has been significantly altered but the lyrics remain

unchanged.

The first step was to identify a suitable ASR system that could be adapted to transcribe

singing into phoneme transcriptions. A comprehensive literature review revealed that

transformer-based wav2vec2 models exhibit state-of-the-art phoneme recognition per-

formance in natural speech. Among several wav2vec2 models evaluated, Xu et al.’s

fine-tuned XLSR-53 model was initially considered as the baseline for this study due

to its superior performance in multilingual phoneme recognition. However, this model

did not perform satisfactorily on singing voices for the purposes of cover song identifi-

cation. Consequently, the more advanced XLS-R model, which outperforms XLSR-53,

was selected for this study. The DALI dataset was used to fine-tune the XLS-R model,

significantly enhancing its phoneme recognition capabilities in singing voices.

For cover song identification using phoneme transcriptions, a robust similarity measure

that considers the order of tokens or characters is essential. The Levenshtein distance

was chosen for this purpose due to its suitability for the task. This metric was then

applied to assess cover song identification accuracy using two datasets: Covers80 and

Sinhala Cover Songs.

Despite these efforts, the cover song identification accuracy did not reach the expected

levels compared to state-of-the-art methods. The proposed method performed well with

the Covers80 dataset and reasonably well with the Sinhala Songs dataset. The modest

success with the Sinhala dataset is particularly notable because Sinhala was an unseen

language for the model both during its pretraining and fine-tuning phases. This outcome

demonstrates that the research has effectively addressed the initial hypothesis by remov-

ing language dependency. However, significant improvements are needed to enhance the
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efficacy of the proposed method for practical cover song identification applications.

In conclusion, this research has made a significant contribution to the field of lyrics-

based cover song identification by demonstrating the potential of phoneme transcription

to mitigate language dependencies. By utilizing advanced ASR technology such as the

XLS-R model and integrating phoneme recognition in singing voices, this study has laid

the groundwork for more language-agnostic approaches in music identification. While

the results with the Sinhala dataset underscore the challenges of applying this technol-

ogy across diverse linguistic contexts, they also highlight the innovative direction of

using phoneme transcriptions for music recognition. Future work will focus on refin-

ing the phoneme transcription techniques and improving the robustness of the similarity

measures used, aiming to enhance the practical applicability of this method for cover

song identification across a broader range of languages and musical styles.
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