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Abstract

Automatic Speech Recognition (ASR) is a rapidly evolving area within Natural
Language Processing (NLP), addressing a range of linguistic challenges. While
ASR technologies have made significant strides through various models, including
Hidden Markov Models (HMMs), Gaussian Mixture Models (GMMs), and more
recently, Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs),
and Recurrent Neural Networks (RNNs), certain languages like Sinhala face spe-
cific limitations. One major challenge for Sinhala ASR development is the lack of
sufficient labeled speech data, which makes it difficult and costly to build accurate
models.

This thesis explores a transfer learning-based approach to mitigate the data
scarcity problem in Sinhala ASR. Specifically, the study leverages the XLS-R
model developed by Babu et al. (2021) as the source model, using its pre-learned
speech representations to fine-tune a Sinhala ASR model. Two distinct datasets,
differing in their lexical composition, were used to evaluate the model’s perfor-
mance. The proposed model achieved Word Error Rates (WER) of 33.78% and
38.31% on the two datasets, respectively. To further enhance transcription accu-
racy, post-processing steps, including spell correction and word boundary correc-
tion algorithms, were applied, resulting in improved WERs of 24.28% and 36.6%.

While the baseline model performed better on the first dataset, a relative WER
reduction of 10.07% was observed on the second dataset. An analysis of the gen-
erated transcriptions indicates that the proposed model produces results that are
acceptable in practical applications, highlighting its potential to improve ASR
performance for under-resourced languages like Sinhala.

Keywords: Sinhala, speech recognition, transfer learning, XLS-R, post-processing
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Chapter 1

Introduction
1.1 Background to the Research
Over the years, Automatic Speech Recognition (ASR) technology has undergone
substantial changes in its approach, transitioning from early stages and traditional
statistical models to more advanced neural network based models.

The earliest project which can be considered as ASR was the “Audrey” tech-
nology invented by the researchers at Bell laboratories in the United States. It
could only recognize spoken numerical digits.

Then, after several research programs, in 1980’s the field of ASR faced a major
paradigm shift to statistical approaches (Arora and R. P. Singh 2012). Hidden
Markov Models (HMMs) were introduced as a result of this paradigm shift (Juang
and L. R. Rabiner 1991). For over a 30 years, it has been the major methodology
which the ASR systems were based on. Even today, most of the practical ASR
systems are based on statistical methods (Arora and R. P. Singh 2012; D. Wang
et al. 2019).

Subsequently, in the 2010s, Deep Neural Networks (DNNs) emerged as a re-
sult of the progress in deep learning. The introduction of DNN-HMM based ASR
models, which utilized DNNs to construct the acoustic models, led to the emer-
gence of the most advanced ASR models. Next, a paradigm change occurred
with end-to-end ASR models, which translated acoustic information directly into
a word sequence (D. Wang et al. 2019). Since then, up till now, Recurrent Neural
Networks (RNNs), Long-Short Term Memory (LSTM) networks, Convolutional
Neural Networks (CNNs), and Transformers have been employed to enhance the
accuracy and develop more sophisticated ASR systems (Li et al. 2022).

ASR systems for the Sinhala language have likewise undergone a similar path
to those of other languages. A continuous speech recognizer was developed in
2011 using an HMM-GMM based approach. This approach resulted in a recog-
nition accuracy of 96.14% (Nadungodage and Weerasinghe 2011). Karunathilaka
et al. (2020), have experimented with pre-trained DNN, DNN, Time Delay Neu-
ral Networks (TDNN), TDNN+LSTM to enhance the acoustic modeling process.
In 2021, Gamage, Pushpananda, Nadungodage, et al. (2021) developed an ASR
model employing the end-to-end architecture specifically for the Sinhala language
for the first time. Nevertheless, the scarcity and high cost of gathering speech
data for the Sinhala language, which is considered a low-resource language, has
consistently hindered researchers from developing an optimal ASR system.

As a solution for the problem of having limited resources in terms of data,
researchers started using the method called transfer learning (Bozinovski and Ful-
gosi 1976). Transfer learning is a machine learning method where the knowledge
learned from one task is applied to another separate or same but related task (Tan
et al. 2018). In the field of ASR, when applying transfer learning, there are two
types of source models which can be used to transfer knowledge from. Mono-
lingual models (trained with only a single language) and Multi-lingual models
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(trained with several languages). Both source models have been employed by
researchers to examine their performance in terms of accuracy and the resource
requirements and have succeeded to gain excellent outcomes (Huang et al. 2013;
Yu et al. 2019). There are only a few research done for Sinhala language us-
ing transfer learning (Nanayakkara and Weerasinghe 2023; Karunanayake et al.
2019). None of them have experimented with a multi-lingual model as the source
model. Therefore it will be advantageous to explore the applicability of employing
a multi-lingual model as the source model to create an ASR system for Sinhala
with an acceptable accuracy while utilizing the available data.

XLS-R is a large-scale model for cross-lingual speech representation learning
which is trained using 128 languages including Sinhala (Babu et al. 2021). It has
been effectively adopted by the ASR community recently as a multi-lingual source
model for constructing ASR systems for low-resourced languages (Krishna et al.
2021; Arisaputra et al. 2024).

1.2 Problem Statement
The problem statement lies in the under-utilization of effective methodologies,
particularly multi-lingual transfer learning (TL), in the domain of Sinhala Au-
tomatic Speech Recognition (ASR). Despite the proven efficacy of multi-lingual
TL in enhancing ASR performance for low-resource languages, its applicability
to Sinhala language remains largely unexplored. This deficiency represents a sig-
nificant gap in research, hindering the advancement of Sinhala ASR capabilities
and limiting its potential to achieve competitive accuracy levels comparable to
well-resourced languages. Thus, there is an urgent need to investigate and lever-
age multi-lingual TL techniques to address the unique challenges of Sinhala ASR,
thereby paving the way for improved accuracy and accessibility in Sinhala speech
recognition systems.

1.3 Research Aim, Questions and Objectives
This section describes an overview of the proposed research project’s research aim,
questions, and objectives.

1.3.1 Research Aim

To provide a more accurate and efficient ASR system for Sinhala language to
compete with other high-resourced ASR systems and to circumvent the limitation
of scarcity in linguistic resources.
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1.3.2 Research Questions

RQ 1 How can multi-lingual transfer learning models be used to improve Sinhala
ASR?
This research aims to enhance Sinhala ASR performance using multi-lingual
transfer learning models addressing resource limitations. By improving the
existing standards and reducing the gap in terms of accuracy and robustness
with high-resourced languages, it will pave the way for future researchers to
further bridge the disparity. Through experimental evaluations and com-
parisons with baseline models, this research question aims to demonstrate
the effectiveness of multi-lingual models in improving the accuracy and per-
formance of Sinhala ASR. The findings of this study can contribute to the
development of more robust and accurate ASR systems for low-resource lan-
guages like Sinhala.

RQ 2 How to optimize a Sinhala ASR model to achieve the best accuracy while
being resource efficient?

After answering the above research question, this research question refers
to finding out any limitations which might arise after developing a multi-
lingual transfer learning model for Sinhala language. This research question
is answered by finding out if there are any techniques to mitigate these
limitations, and thereby optimizing the ASR model while being resource
efficient.

1.3.3 Research Objectives

RO 1 Investigate the effectiveness in choosing a multi-lingual pre-trained model as
the source model vs. choosing a mono-lingual model.

RO 2 Experimenting to find the optimal combination of source languages and
optimal amount of training data to improve the accuracy while keeping the
requirement of computational power within availability.

RO 3 Developing an accurate and efficient ASR model for Sinhala language by
incorporating all the findings from the above objectives and compare it with
a baseline model to evaluate the model.

RO 4 Investigate the limitations and other issues that could arise during and after
the process of developing the ASR system.

RO 5 Investigate the solutions for the identified limitations.

3



1.4 Significance of the Project
The proposed project holds great significance in the both the field of computer sci-
ence and society. From a computer science perspective, it contributes to the field
of ASR by tackling the crucial challenge of limited annotated data in low-resource
languages like Sinhala. By exploring and implementing multi-lingual learning this
research aims to develop more accurate and efficient ASR models for the Sinhala
language.
From a societal perspective, the impact of this project is substantial. The avail-
ability of accurate and efficient ASR systems for the Sinhala language has pro-
found implications for communication, accessibility, and inclusion in Sri Lanka. It
can empower individuals and communities by enabling natural language interac-
tions with technology, facilitating access to information and services, and bridg-
ing language barriers. This research, therefore, contributes to the broader goal of
promoting linguistic diversity, cultural preservation, and equal opportunities for
individuals speaking Sinhala.

1.5 Research Approach And Methodology
1. Recreation of baseline models to compare

The very first approach is to recreate the baseline models that is going
to be used as benchmarks for comparison.

• End-to-end model introduced in (Gamage, Pushpananda, Nadungodage,
et al. 2021)

• Mono-lingual transfer learned model introduced in (Nanayakkara and
Weerasinghe 2023) with and without data augmentation.

2. Implementing the multi-lingual model

As the next step, the multi-lingual model will be trained using a suitable
pre-trained model(s). Experimentation will be done to end up with an opti-
mal ASR system. With the size of the pre-trained model and the available
resources, the optimal methods will be chosen for the model training. For an
example, according to Dalmia et al. (2018), full model adaptations provide
more accuracy. However, it requires more computational power. Therefore,
optimal methodologies will be chosen by comparing each other.

3. Identifying the limitations and problems with the resultant models

Identify any limitation or recurring problems after evaluating the models

4. Experimenting with various techniques to overcome the identified
limitations and derive an optimal model for Sinhala ASR within
the technical capabilities
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Analyze the nature of the identified limitations and research to find out
any solutions to mitigate them.

1.6 Outline of the Dissertation
The dissertation is organized as follows. In chapter 2, a comprehensive literature
review has been conducted to outline the evolution of ASR and the gap between
Sinhala ASR and other ASR systems in terms of the technologies used. Chapter
3 contains in-depth information on the technologies, architectures and algorithms
used in this research. In chapter 4, the step by step approach taken in this research
has been outlined. Chapter 5 displays the results from the experimentation done
throughout the research and an analysis of the results. Finally, Chapter 6 provides
the conclusions drawn from the research.

1.7 Scope Including Delimitation
In Scope

This study covers the following aspects.

• Use multi-lingual learning to develop an accurate ASR model for Sinhala
language.

• Fine tuning the developed model to optimize the performance.

• Finding out the best possible language combination as source languages.

• Comparing with an existing mono-lingual model to evaluate the model.

Out of Scope

This study will not cover the following aspect.

• Fine tuning the existing baseline models when comparing.

• Using only pre-trained models rather than training my own models which
may be too time consuming.

5



Chapter 2

Literature Review
2.1 History of ASR
The origins of Automatic Speech Recognition (ASR) can be traced back to the
mid-20th century when initial studies were conducted to comprehend basic spo-
ken phrases and commands. These endeavors were somewhat rudimentary as a
result of the constrained technological resources accessible during that period.
Nevertheless, as technology advanced, so did ASR. In the late 20th century, sta-
tistical models, particularly Hidden Markov Models (HMMs), gained popularity.
Hidden Markov Models (HMMs) proved to be successful in capturing the tempo-
ral patterns of speech sounds, resulting in improved accuracy in speech recogni-
tion. Nevertheless, it was only in recent years that Automatic Speech Recognition
(ASR) had a significant advancement with the use of neural networks. Recur-
rent neural networks (RNNs) and convolutional neural networks (CNNs) have
greatly enhanced automatic speech recognition (ASR) performance. They have
even surpassed previous methods and achieved accuracy similar to that of hu-
mans in several tests. This development underscores the continuous progress in
Automatic Speech Recognition (ASR), propelled by enhancements in both com-
putational capabilities and methods (Arora and R. P. Singh 2012).

2.1.1 Early Stages

Speech recognition has a long and significant history that can be traced back to the
early 1920s when Radio Rex, the first voice recognition toy, was invented. Dur-
ing the World Fair in New York, Bell Labs displayed a voice synthesis machine,
but eventually abandoned further work after incorrectly believing that success re-
quired artificial intelligence (AI). In the 1950s, researchers delved into fundamen-
tal phonetic-acoustic ideas to build automatic speech recognition (ASR) systems.
Initial systems focused on analyzing spectral resonances, notably in vowel sounds
(Arora and R. P. Singh 2012).

At Bell Labs, Davis et al. (1952) created a digit recognition system for a single
speaker by predicting formant frequencies during vowel regions. Olson and Belar
(1956), at RCA Labs, constructed a 10-syllable recognizer for a single speaker,
while J. W. Forgie and C. D. Forgie (1959), at MIT Lincoln Lab, developed a
speaker-independent 10-vowel recognizer by monitoring spectral resonances. Fry
(1959) and Denes (1959) attempted a phoneme recognizer for four vowels and
nine consonants at University College, England, utilizing spectrum analyzers and
pattern matchers (Arora and R. P. Singh 2012).

In the 1960s and 1970s, Japanese labs entered this field, building special-
purpose hardware due to computer restrictions. Nagata et al. (1964), at Tokyo’s
Radio Research Lab, created a hardware vowel recognizer, and a hardware phoneme
recognizer was built at the Kyoto University by Sakai (1962). Nagata et al. (1964),
at NEC Labs, produced a digit recognizer in 1963, commencing a productive re-
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search phase. By the 1970s, research switched to isolated word recognition, with
IBM working on large vocabulary speech recognition and AT&T Bell Labs ex-
perimenting with speaker-independent systems (L. Rabiner et al. 1979). Numer-
ous clustering algorithms were applied to uncover different patterns for speaker-
independent recognition, leading to widespread acceptance of these techniques.

2.1.2 Statistical Models

In 1980, research primarily centered on connected word speech recognition. Early
in the decade, marked a shift in technology from template-based methods to sta-
tistical modeling, particularly the adoption of Hidden Markov Models (HMM) in
speech research (Arora and R. P. Singh 2012).

HMM-based models consists of three key models: the acoustic model, pronun-
ciation model, and language model. The acoustic model serves as the bridge be-
tween voice input and feature sequences, typically phonemes or sub-phonemes, by
statistically analyzing auditory patterns in spoken language, forming the basis for
accurate transcription. Complementing this, the pronunciation model establishes
the relationship between phonemes and their corresponding graphemes, aiding
in mapping spoken words to written forms. Finally, the language model provides
probabilistic distributions over word sequences, offering contextual knowledge cru-
cial for precise and contextually relevant transcription by estimating the likelihood
of specific words occurring in a given context. Together, these models form the
backbone of ASR systems, enabling the accurate conversion of spoken language
into text (D. Wang et al. 2019).

Then, GMM-HMM became prominent during this period. GMMs were in-
troduced as a technique to model the acoustic features of speech. GMMs depict
the probability distribution of feature vectors collected from speech data. HMMs
were utilized to model the temporal transitions between these GMMs. This ap-
proach produced promising results and became a standard in ASR systems. One
famous system, SPHINX, designed by Kai-Fu Lee at Carnegie Mellon University,
uses HMM to describe speech patterns over time and Gaussian Mixture Models
(GMM) to reflect the likelihood of observing distinct speech states (Lee 1988).
This strategy constituted a significant breakthrough in Large Vocabulary Con-
tinuous Speech Recognition (LVCSR), remaining dominant until the development
of deep learning approaches. Despite its success, HMM-GMM faced difficulties,
especially in reliably transcribing common interactions like phone calls and con-
ferences, motivating the development of other approaches (D. Wang et al. 2019).

2.1.3 Neural Networks

In the mid-2000s, the emergence of deep neural networks (DNNs) revolutionized
acoustic modeling in ASR. Particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), showed superior performance in acoustic
modeling and feature extraction compared to traditional methods. DNNs had
various advantages over GMMs, including the ability to automatically learn hi-
erarchical features from raw data and catch complicated patterns in speech sig-
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nals. In 2011, Dahl et al. (2011) proposed an HMM combined with context-based
DNN which named context-dependent(CD)-DNN-HMM. The proposed CD-DNN-
HMMs demonstrated superior performance compared to conventional Context-
Dependent Gaussian Mixture Model Hidden Markov Models (CD-GMM-HMMs)
in large-vocabulary speech recognition tasks. The CD-DNN-HMMs achieved an
absolute sentence accuracy improvement of 5.8% and 9.2% (or relative error reduc-
tion of 16.0% and 23.2%) over CD-GMM-HMMs trained using minimum phone
error rate (MPE) and maximum-likelihood (ML) criteria, respectively. This signif-
icant improvement showcases the effectiveness of the proposed model in enhancing
speech recognition accuracy.

The HMM-DNN model faces challenges like forced data segmentation align-
ment, independent hypotheses, and separate module training inherited from HMM.
However, deep learning has permitted the construction of end-to-end models that
immediately translate input audio signals into transcriptions, streamlining the ar-
chitecture and training process for greater precision and speed. In order to mitigate
the challenges of HMM-DNN based models, end-to-end models were developed.
In contrast with HMM-DNN models, the end-to-end model offers simplification,
joint training, direct output, and eliminates the need for forced data alignment,
among other advantages (D. Wang et al. 2019).

End-to-end speech recognition models typically consist of an encoder, aligner,
and decoder. However, these components may not be clearly distinguishable as in
traditional modular systems. Unlike HMM-based models with multiple modules,
end-to-end models use a single deep network to directly map acoustic signals to
label sequences without intermediate states. This eliminates the need for posterior
processing. The key characteristics of end-to-end LVCSR compared to HMM-
based models include joint training of multiple modules in one network, direct
mapping from acoustic input to text output without additional processing, and
the absence of internal representations for pronunciation in character-level models
(D. Wang et al. 2019).

2.2 Low-resource Speech Recognition
A particular language in which the collection of labeled speech data to build
an ASR model is expensive and difficult due to the scarcity of data is usually
referred to as “low-resourced” in the ASR community. Sinhala is considered to be
such a language. Despite being a low-resource language, Sinhala ASR models has
witnessed a similar evolution in terms of technologies throughout the years.

In 2011, Nadungodage and Weerasinghe (2011) developed a continuous speech
recognizer for Sinhala using an acoustic model based on an HMM. Although they
have managed to achieve an accuracy of 96.14%, the model had a limitation of
being speaker dependent.

In 2020, Karunathilaka et al. (2020) experimented with several deep neural ar-
chitectures such as pre-trained DNN, DNN, Time Delay Neural Network (TDNN),
TDNN + Long Short Term Memory (LSTM) to enhance the acoustic modeling
process. Their TDNN based model resulted in 7.48% better word error rate (WER)
compared to their baseline models.
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In 2021, a research was conducted by Gamage, Pushpananda, Nadungodage,
et al. (2021) to build an end-to-end ASR model for Sinhala for the first time which
provided with a result of 28.55% WER.

Eventually, due to the nature of being a low-resource language, Sinhala ASR
systems had to move on to different techniques such as transfer learning to mitigate
this issue.

2.3 Transfer Learning
Transfer learning involves leveraging knowledge gained from one or multiple source
tasks to aid in the completion of a target task (Pan and Yang 2009). Figure 2.1
shows the illustration of the learning processes of traditional machine learning
(ML) and transfer learning.

Figure 2.1: Traditional machine learning vs. transfer learning (Pan and Yang 2009)

As discussed earlier, Sinhala being a low-resourced language, has become a
limitation for the ASR community to build improved ASR models using traditional
machine learning. Transfer learning provides a solution for this problem through
allowing to transfer the knowledge from a source task to a target task. Figure 2.2
shows an architecture of a cross-lingual knowledge transfer.

Figure 2.2: An architecture of a cross-lingual knowledge transfer learning model (Yi et al.
2018).
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When using transfer learning for speech recognition, there are two methods to
implement it based on the fact that the model which the knowledge is transferred
from (source model) is trained using a single language or multiple languages. In
this research, they are referred to as mono-lingual models and multi-lingual models
respectively.

Very few studies have focused on mono-lingual models for the Sinhala language.
Karunanayake et al. (2019) developed a mono-lingual ASR model by transferring
knowledge from a pre-trained English model to Sinhala and Tamil languages using
the DeepSpeech engine. They achieved notable accuracy improvements, with their
best model reaching 63.23% accuracy for Sinhala compared to 93.16% for the
mono-lingual model.

Nanayakkara and Weerasinghe (2023) conducted another significant research
solely on Sinhala, aiming to build an ASR model with the lowest word error rate
(WER) possible through mono-lingual transfer learning using DeepSpeech. They
incorporated data augmentation to further enhance WER. Their efforts resulted in
a WER of 22.92% without data augmentation, surpassing the accuracy of the best
available end-to-end models. With data augmentation, they achieved a remarkable
17.18% WER, indicating significant progress in the field.

Only mono-lingual source models have been experimented on Sinhala ASR as
of now. The applicability of transferring knowledge from a multi-lingual source
model for Sinhala ASR remains unexplored. However, many other research have
been done on other low-resource languages using multi-lingual source models.

The authors of Dalmia et al. (2018) have implemented techniques for multi-
lingual and cross-lingual speech recognition, aiming to aid low-resource scenarios,
bootstrap systems, and facilitate analysis of new languages and domains. They
particularly focus on end-to-end approaches, especially sequence-based techniques,
due to their simplicity and effectiveness. They demonstrate that end-to-end multi-
lingual training of sequence models using Connectionist Temporal Classification
(CTC) loss is effective, even without traditional multi-lingual bottleneck feature
extractors as front-ends. Their model shows significant improvement in perfor-
mance on Babel languages, achieving over a 6% absolute reduction in word/-
phoneme error rate compared to mono-lingual systems built under the same con-
ditions for those languages. Additionally, they illustrate that the trained model
can be adapted cross-lingually to an unseen language using only 25% of the target
data. The authors emphasize the importance of training on multiple languages for
very low-resource cross-lingual target scenarios but note that it is not crucial for
multi-lingual testing scenarios. In such cases, they suggest the inclusion of large,
well-prepared datasets for better performance.

Cho et al. (2018) utilize data from 10 BABEL languages to construct a mul-
tilingual seq2seq model as a prior model. They then employ transfer learning
to adapt this model to four other BABEL languages. Various architectures are
explored to enhance the prior multilingual seq2seq model. They have observed
that the multi-lingual source models outperform the mono-lingual source models
through experimentation.

Babu et al. (2021) introduces XLS-R, a large-scale model designed for cross-
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lingual speech representation learning, built upon the wav2vec 2.0 architecture.
The authors train models with up to 2 billion parameters, utilizing nearly half a
million hours of publicly available speech audio across 128 languages. This dataset
represents a significant increase in scale compared to previous efforts in the field.
Their evaluation encompasses a diverse set of tasks, domains, data regimes, and
languages, spanning both high and low-resource scenarios. For speech recognition
tasks, XLS-R surpasses the performance of previous state-of-the-art models on
various datasets such as BABEL, MLS, CommonVoice, and VoxPopuli, with error
rate reductions ranging from 14% to 34% relative on average. Overall, the authors
anticipate that XLS-R will contribute to the improvement of speech processing
tasks across a wide range of languages globally, thereby enabling advancements in
multilingual speech technology.

2.4 Conclusion
In conclusion, although multilingual transfer learning models have shown signifi-
cant advancements in ASR, they have yet to be thoroughly explored for the Sinhala
language. This presents a clear research gap, as most existing work has focused on
high-resource languages. My research aims to fill this gap by experimenting with
Sinhala ASR using multilingual models for the first time, alongside techniques
such as data augmentation and post-processing. These methods will contribute
to developing more accurate and efficient ASR systems for Sinhala, advancing the
state of speech recognition for this underrepresented language.
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Chapter 3

Design
The primary objective of this research is to evaluate the effectiveness of transfer
learning in Sinhala Automatic Speech Recognition (ASR). The goal is to utilize
pre-trained models, referred to as source models, from languages with high amount
of resources and adapt them for the Sinhala language. The XLS-R model devel-
oped by Babu et al. (2021), based on the wav2vec 2.0 framework by Baevski
et al. (2020) has been selected as the source model for this research due to its
high-resource nature and the fact that it has been proven to be effective by the
authors. Reasons for this choice is explained further in the section 4.2. Figure 3.1
illustrates the pipeline of the ASR system developed in this research.

Figure 3.1: Pipeline of the research design

This section will delve deep into the XLS-R model which is built on wav2vec
2.0 (Baevski et al. 2020), and the inner workings behind the post-processing phase.
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3.1 XLS-R
XLS-R is a large-scale model for cross-lingual speech representation learning based
on wav2vec 2.0. It was trained using 128 languages with 436,000 hours of speech
data including 54 hours of Sinhala speech data (Babu et al. 2021). The XLS-
R model architecture is based on wav2vec 2.0, which is a framework for self-
supervised learning of speech representations. They have employed a technique
that entails analyzing spoken audio using a multi-layer convolutional neural net-
work (CNN). Afterwards, they have employed masking on certain portions of the
resulting latent speech representations, similar to the technique of masked lan-
guage modeling (Devlin et al. 2018). The latent representations are subjected to
additional processing using a Transformer network in order to provide contextual-
ized representations. The training of the model involves a contrastive task, where
the objective is to distinguish between the genuine latent representation and other
irrelevant options (Baevski et al. 2020). Figure 3.2 shows an illustration of the
wav2vec 2.0 model architecture.

Figure 3.2: Illustration of wav2vec 2.0 (Baevski et al. 2020)

As mentioned earlier, the wav2vec 2.0 model consists of two main components:
a multi-layer convolutional feature encoder, denoted as f : X → Z, which takes
raw audio input X and produces latent speech representations z1, ..., zT for each
time step T ; and a Transformer, denoted as g : Z → C, which processes these
representations to create contextual embeddings c1, ..., cT capturing information
from the entire sequence. The output of the feature encoder is discretized to qt
using a quantization module Z → Q to represent the targets for the self-supervised
objective. Each zt corresponds to a 25ms segment of audio that is spaced 20ms
apart, and the Transformer architecture used is based on Bidirectional Encoder
Representations from Transformers (BERT) (Vaswani et al. 2017; Devlin et al.
2018; Babu et al. 2021).

During the training process, the representations generated by the feature en-
coder are transformed into discrete values q1, . . . , qT using a quantization module
denoted as Z → Q. This module is responsible for representing the targets in the
objective function. The quantization process involves utilizing a Gumbel softmax
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to select entries from the codebooks, and these selected entries are then concate-
nated to form q (Jang et al. 2016; Jegou et al. 2010; Babu et al. 2021).

The model undergoes training by addressing a contrastive task involving mask-
ing spans of ten time steps with randomly chosen starting points. The goal is to
correctly identify the true quantized latent representation for a masked time-step
among a set of 100 distractors sampled from other masked time steps.

− log
(

exp(sim(ct,qt))∑
q̃∼Qt

exp(sim(ct,q̃))

)
Where:

• ct is the output of the Transformer for time-step t.

• qt is the true quantized latent representation for the masked time-step.

• Qt is the set of K = 100 distractors sampled from other masked time steps.

• sim(a, b) denotes the cosine similarity between vectors.

• q̃ represents each distractor sampled from Qt.

The model is trained on various languages to acquire representations that work
across different languages. During training, batches include samples from multiple
languages, selected based on a distribution that considers the amount of unlabeled
data available for each language. This distribution is controlled by an up-sampling
factor, α, which balances the representation quality between languages with abun-
dant data and those with limited resources (Babu et al. 2021).

To fine-tune the XLS-R model for Sinhala ASR, the approach outlined by
Baevski et al. (2020) has been used. It involves appending a linear layer onto
the pre-trained model to predict the output vocabulary. Connectionist Temporal
Classification (CTC) is used for training (Graves et al. 2006).

Considering the settings suggested by Baevski et al. (2020), and the blog arti-
cle1 written by one of the authors of Babu et al. (2021), a learning rate of 3e− 4
which warms up for 500 steps and decays in a constant rate was used in this
research. Figure 3.3 shows the change of the learning rate.

1https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
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Figure 3.3: Graph illustrating the evolution of learning rate over the course of training

Batch sizes were selected according to the available resources.

3.2 Post-Processing
Post-processing is a step included into the pipeline of the research in order to
mitigate two kinds of errors which could occur in the transcriptions of the ASR
model.

• Spelling errors

• Word boundary errors, i.e., mistakes that occur due to incorrect separation
of words within a sentence. For an example “සමහරවිට” vs “සමහර විට”.

3.2.1 Spelling Errors

First, in order to detect a spelling mistake, a language model (LM) is used. If
the LM does not contain such word, it is considered as a spelling mistake. Then,
a set of words which are closest to the incorrectly spelled word is selected from
a the vocabulary of the LM. Levenshtein distance has been used to measure the
closeness between two words. Then, a set of alternative transcriptions are created
by replacing the incorrectly spelled word with the list of close words. The tran-
scription which has the best LM score is returned at the end. Algorithm 1 has
been used to correct the spelling mistakes in the transcriptions.
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Algorithm 1 Spell Correction Algorithm
1: procedure CorrectSpellings(transcriptions, word_list)
2: for i← 0 to len(transcriptions)− 1 do
3: best_list← empty_list
4: best_list.append(transcriptions[i])
5: words← split transcriptions[i] by spaces
6: for j ← 0 to len(words)− 1 do
7: if lm.score(words[j], bos = False, eos = False) ≤ −5.9 then
8: closest_words← get_closest_words(words[j], word_list)
9: for cw in closest_words do

10: words[j]← cw
11: best_list.append(join(words))
12: end for
13: end if
14: end for
15: if best_list is not empty then
16: transcriptions[i]← best_t(best_list)
17: end if
18: end for
19: end procedure
20: procedure get_closest_words(input_word, word_list)
21: closest_words← list of words from word_list with Levenshtein distance
≤ 3 from input_word

22: return closest_words
23: end procedure
24: procedure best_t(t_list)
25: best_score← lm.score(t_list[0])
26: best_transcription← t_list[0]
27: for t in t_list do
28: if lm.score(t) ≥ best_score then
29: best_score← lm.score(t)
30: best_transcription← t
31: end if
32: end for
33: return best_transcription
34: end procedure

Levenshtein distance is used to calculate the similarity between two strings
where the amount being 0 means the two strings are the same while higher values
indicate increasing dissimilarity or the number of edits needed to transform one
string into the other. Algorithm 2 shows the procedure to calculate the Levenshtein
distance between two strings (Haldar and Mukhopadhyay 2011).
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Algorithm 2 Calculate Levenshtein Distance
1: procedure LevenshteinDistance(s, t)
2: Set n to be the length of s, set m to be the length of t.
3: Construct a matrix d containing 0..m rows and 0..n columns.
4: Initialize the first row to 0..n.
5: Initialize the first column to 0..m.
6: for i = 1 to n do
7: for j = 1 to m do
8: if s[i] = t[j] then
9: cost← 0

10: else
11: cost← 1
12: end if
13: d[i, j]← min(d[i− 1, j] + 1, d[i, j − 1] + 1, d[i− 1, j − 1] + cost)
14: end for
15: end for
16: return d[n,m]
17: end procedure

3.2.2 Word Boundary Errors

Word boundary errors are resolved by iteratively splitting the words in a transcrip-
tion morphologically and replacing the old single word by the new split words and
checking the LM score to see whether it is transcription or not. Algorithm 3 shows
the way it is done.
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Algorithm 3 Word Boundary Correction Algorithm
1: procedure CorrectWordBoundary(transcriptions, word_splitter, lm)
2: for i← 0 to len(transcriptions)− 1 do
3: best_list← empty list
4: words← split transcriptions[i] by spaces
5: for j ← 0 to len(words)− 1 do
6: if len(words[j]) ≤ 1 then
7: continue
8: end if
9: res← word_splitter.split(words[j])

10: if lm.score(res[′base′], bos = False, eos = False) ≤ −5.9 or
lm.score(res[′affix′], bos = False, eos = False) ≤ −5.9 then

11: continue
12: end if
13: new_w ← res[′base′] + ”” + res[′affix′]
14: checking ← join words with spaces
15: words[j]← new_w
16: if lm.score(checking) ≤ lm.score(join(words)) then
17: append join(words) to best_list
18: else
19: words[j]← w
20: end if
21: end for
22: if best_list is not empty then
23: transcriptions[i]← best_t(best_list)
24: end if
25: end for
26: end procedure
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Chapter 4

Implementation
The forthcoming sections will discuss the implementations conducted in each stage
step by step.

4.1 Implementing the Baseline Models
The main baseline model considered in this research is the mono-lingual transfer
learning model developed by Nanayakkara and Weerasinghe (2023). They have
managed to achieve 22.93% WER (Word Error Rate) in their basic transfer learn-
ing model. And they have used data augmentation techniques to further reduce the
WER to 17.19%. Furthermore, Nanayakkara and Weerasinghe (2023) has recre-
ated the end-to-end model developed by Gamage, Pushpananda, Nadungodage,
et al. (2021) as a baseline model. Since comparing with both a mono-lingual and
an end-to-end model would increase the validity of the research, the end-to-end
model by Gamage, Pushpananda, Nadungodage, et al. (2021) is recreated in this
research as well.

All the baseline models are trained on Antpc server available at UCSC which is
equipped with 4 Nvidia GeForce RTX 2080 Ti GPUs with each having a capacity
of 10.8 GB. Efficient training process is achieved through training models using
all 4 GPUs in a parallel manner.

4.1.1 Data Collection

Effective data preparation is crucial in ASR to maximize system performance
and provide superior training outcomes. It also enhances the system’s ability to
handle various acoustic conditions, establishing a solid foundation for accurate
speech recognition. Hence, a speech dataset is crucial.

The speech dataset available at the Language Technology Research Labora-
tory (LTRL) of University of Colombo School of Computing (UCSC) which has
40 hours of training data which have been gathered using Praat (Boersma and Van
Heuven 2001) and Redstart (Pammi et al. 2010) tools, is used in this research.
A total of 45 individuals were recorded using Praat software, with 14 being male
and 31 being female. There were a total of 78 individuals recorded for Redstart,
with 23 of them being males and 55 being females. Each person has produced 200
utterances. The recordings from Praat were collected using a sample rate of 16kHz
and in Redstart, the sample rate was 44.1kHz (Gamage, Pushpananda, Weeras-
inghe, et al. 2020). For testing, the dataset created by Gamage, Pushpananda,
Weerasinghe, et al. (2020) which included recordings from 4 female speakers and
4 male speakers where they utter 80 speech sentences altogether is used.
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4.1.2 Mono-lingual Transfer Learning Model

Mozilla’s DeepSpeech tool is used to develop the mono-lingual transfer learning
model, tracing the approach followed by Nanayakkara and Weerasinghe (2023). A
pre-trained DeepSpeech model for English language which has been trained using
the Librispeech dataset (Panayotov et al. 2015), has been used as a source model
similar to the original research.

Data Preparation

According to the documentation provided by DeepSpeech, it is required to have a
character alphabet of which ever language that the speech recognition system will
be based on. Hence, it is required to create a text file (alphabet.txt) including all
the characters in the Sinhala alphabet.

Figure 4.1: alphabet.txt file

All the transcriptions in the speech dataset should only contain characters from
the alphabet. Failing to meet this condition will lead the model to crash. Hence,
some kind of a filtration process is needed to eliminate any unrecognized characters

20



from the transcriptions. Usually, when developing an English ASR, Zero-width
space, Zero-width non-joiner, and Zero-width joiner characters are also removed.
However, in Sinhala, those characters are necessary to be included in the alphabet
for accurate transcription (Gamage, Pushpananda, Weerasinghe, et al. 2020).

The speech dataset is already split into 17848 utterances of training data and
2002 utterances of validation data. Hence, it is kept as it is. As discussed earlier,
the testing dataset created by Gamage, Pushpananda, Weerasinghe, et al. (2020)
is used as testing data.

For each of these splits, DeepSpeech requires creating files in the form of comma
seperated values (CSV). Each CSV file must contain 3 columns.

• wav_filename : Contains the path to the audio file.

• wav_filesize : Contains the file size in bytes.

• transcript : Contains the transcript of the particular file.

Figure 4.2: Example CSV file (dev.csv)

Building the Language Model

The integration of a language model into DeepSpeech ASR improves tran-
scription accuracy by utilizing contextual predictions. The language model will
enhance the output transcriptions generated by the ASR system using techniques
such as correcting erroneous spellings, addressing incorrect word boundaries, and
managing ambiguous words. In DeepSpeech documentation, language models are
also known as external scorers. KenLM toolkit is used in DeepSpeech to create
the n-gram language models (Heafield 2011).

A text corpus is needed to create the language model. The text corpus used
by Gamage, Pushpananda, Nadungodage, et al. (2021) to create the language
model is used in this research as well. This corpus is a combination of 3 cor-
pora, UCSC Novel Corpus with 90000 unique sentences, Chatbot Corpus with
388 unique sentences and the corpus created using active learning method which
has 20000 unique sentences (Gamage, Pushpananda, Nadungodage, et al. 2021).

DeepSpeech has provided two python scripts for the creation of the external
scorer. One is to create the trie type n-gram language model and the other one
is to create the external scorer as a package. Following is the script to create the
4-gram language model.

21



python3 generate_lm.py \
--input_txt /hdd/2019CS125/corpus/corpus_20000+90000+chatbot.txt\
--output_dir /hdd/2019CS125/bl_files/lm_tl_base_model/lm/ \
--top_k 500000 \
--kenlm_bins /hdd/2019CS125/kenlm/build/bin \
--arpa_order 4 \
--max_arpa_memory "85\%" \
--arpa_prune "0|0|1" \
--binary_a_bits 255 \
--binary_q_bits 8 \
--binary_type trie

This script will create two files: lm.binary, which is the language model in binary
format, and vocab-500000.txt, which is the vocabulary set of the corpus. The
following script will wrap them in an external scorer package.

./generate_scorer_package \
--alphabet /hdd/2019CS125/bl_files/alphabet.txt \
--lm /hdd/2019CS125/bl_files/lm_tl_base_model/lm/lm.binary \
--vocab /hdd/2019CS125/bl_files/lm_tl_base_model/lm/vocab-500000.

txt \
--package /hdd/2019CS125/bl_files/lm_tl_base_model/lm/kenlm.scorer

\
--default_alpha 0.931289039105002 \
--default_beta 1.1834137581510284

lm_optimizer.py script provided by DeepSpeech can be used to find the best values
for alpha and beta for Sinhala since the original values are for English. However,
the original values used by Nanayakkara and Weerasinghe (2023) has been used
here.

Training

In the DeepSpeech documentation, it is recommended to create a python vir-
tual environment to do the training. A python virtual environment is created
with the following command.
virtualenv -p python3 $HOME/tmp/deepspeech-venv/

Once the virtual environment is created, the following command will activate
it.
source $HOME/tmp/deepspeech-venv/bin/activate

Although Nanayakkara and Weerasinghe (2023) has done several experimen-
tation with different models, the best model has been selected to recreate, which
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is the mono-lingual transfer learning model with data augmentations applied. Fol-
lowing is the training script which is of similar settings to the original research.

#! /bin/sh

source /hdd/2019CS125/deepspeech-train-venv/bin/activate;

export CUDA_VISIBLE_DEVICES="2,3"

python /hdd/2019CS125/DeepSpeech-0.9.3/DeepSpeech.py \
--train_cudnn \
--drop_source_layers 1 \
--alphabet_config_path /hdd/2019CS125/bl_files/alphabet.txt \
--scorer /hdd/2019CS125/bl_files/lm_tl_base_model/lm/kenlm.scorer \
--learning_rate 0.00095 \
--reduce_lr_on_plateau True \
--plateau_epochs 8 \
--plateau_reduction 0.08 \
--early_stop True \
--dropout_rate 0.22 \
--save_checkpoint_dir /hdd/2019CS125/baseline_tl_models/

tl3_DA_mono_DS/checkpoints_2 \
--load_checkpoint_dir /hdd/2019CS125/data/deepspeech-pretrained/

deepspeech-0.9.3-checkpoint \
--train_files /hdd/2019CS125/final_dataset/LSD/train/train.csv \
--dev_files /hdd/2019CS125/final_dataset/LSD/dev/dev.csv \
--test_files /hdd/2019CS125/final_dataset/LSD/test/test.csv \
--augment overlay[p=0.3,source=/hdd/2019CS125/final_dataset/LSD/

train/noise.csv,layers=10:1,snr=50:20~9] \
--augment reverb[p=0.1,delay=50.0~30.0,decay=10.0:2.0~1.0] \
--augment codec[p=0.4,bitrate=48000:16000] \
--augment volume[p=0.4,dbfs=-10:-40] \
--augment pitch[p=0.4,pitch=1~0.2] \
--augment tempo[p=0.4,factor=1~0.5] \
--augment frequency_mask[p=0.4,n=1:3,size=1:5] \
--augment time_mask[p=0.4,domain=signal,n=3:10~2,size=50:100~40] \
--augment dropout[p=0.4,rate=0.05] \
--augment add[p=0.4,domain=signal,stddev=0~0.5] \
--augment multiply[p=0.4,domain=features,stddev=0~0.5] \
--use_allow_growth \
> /hdd/2019CS125/baseline_tl_models/tl3_DA_mono_DS/results_2.txt

2>&1;

In the above script, as discussed earlier, an English, pre-trained, DeepSpeech
model is used as the source model. “load_checkpoint_dir” flag is used to set
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the path to the source model. In DeepSpeech, when implementing mono-lingual
transfer learning, after loading the weights from the source model, the top layer
is dropped so that the model can learn new weights for the target language data.
“drop_source_layers” flag is used to drop the top layer (layer 1) (Nanayakkara
and Weerasinghe 2023).

Plateau reduction is a mechanism used by Nanayakkara and Weerasinghe
(2023) when developing the mono-lingual model to achieve a smooth training
process. Plateau reduction is when it defines a number of epochs where if the loss
doesn’t get reduced for the said number of epochs it will adjust the learning rate
as mentioned in the script.

“augment” flag has been used to apply different augmentations to the train
set. The “p” parameter in each augmentation denotes the probability which an
audio file will get augmented so that the whole train set doesn’t get augmented.

The final line of the script is to redirect the output of the script to a text file
which is optional.

Exporting the model for inference

Upon completion of the training process, a model file named output_graph.pb
is produced. This file has additional loading time and consumes more memory.
Producing a mmap-able model can avoid this. Following command can be used
to create such a model.

$ convert_graphdef_memmapped_format --in_graph=output_graph.pb --
out_graph=output_graph.pbmm

Testing

Following script can be used to test the trained model using the test dataset.

#! /bin/sh

# source /hdd/2019CS125/deepspeech-train-venv/bin/activate;

export CUDA_VISIBLE_DEVICES="0,1,2,3"

python /hdd/2019CS125/DeepSpeech-0.9.3/DeepSpeech.py \
--show_progressbar True \
--train_cudnn \
--test_batch_size 8 \
--save_checkpoint_dir /hdd/2019CS125/baseline_tl_models/

tl3_DA_mono_DS/checkpoints_2 \
--load_checkpoint_dir /hdd/2019CS125/baseline_tl_models/

tl3_DA_mono_DS/checkpoints_2 \
--test_output_file results_my_2.json \
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--alphabet_config_path /hdd/2019CS125/bl_files/alphabet.txt \
--scorer /hdd/2019CS125/bl_files/lm_tl_base_model/lm/kenlm.scorer \
--lm_alpha 0.7780193880793429 \
--lm_beta 4.901133686880696 \
--export_dir /hdd/2019CS125/baseline_tl_models/tl3_DA_mono_DS/

exp_my \
--test_files /hdd/2019CS125/final_dataset/LSD/test/test.csv \
> /hdd/2019CS125/baseline_tl_models/tl3_DA_mono_DS/results_test_2.

txt 2>&1;

Alpha and beta values are used as same as in the original research (Nanayakkara
and Weerasinghe 2023).

4.1.3 End-to-end Model

As mentioned earlier, in order to compare the multi-lingual transfer learning
model, both the mono-lingual model developed by Nanayakkara and Weerasinghe
(2023), and the end-to-end model created by Gamage, Pushpananda, Nadun-
godage, et al. (2021) will be recreated in this research as baseline models. How-
ever, rather than recreating the exact model developed by Gamage, Pushpananda,
Nadungodage, et al. (2021), the version which was developed by Nanayakkara and
Weerasinghe (2023) as a baseline model for their research will be implemented as
they have managed to get a slightly better accuracy using plateau handling.

The first stages of developing the end-to-end model is quite similar to devel-
oping the mono-lingual transfer learning model since this is also developed using
DeepSpeech engine. Thus, after preparing the alphabet, language model, and the
CSV files as discussed in the previous section, the following script is used to train
the model together with plateau handling.

python -u DeepSpeech.py
--train_files /hdd/2019CS125/Test1/ASRDATA/mymodel/train/train.csv
--dev_files /hdd/2019CS125/Test1/ASRDATA/mymodel/dev/dev.csv
--test_files /hdd/2019CS125/Test1/ASRDATA/mymodel/test/test.csv
--train_batch_size 100
--dev_batch_size 60
--test_batch_size 40
--n_hidden 375
--epochs 100
--learning_rate 0.00095
--reduce_lr_on_plateau True
--plateau_epochs 8
--plateau_reduction 0.08
--early_stop True
--dropout_rate 0.22
--report_count 100
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--export_dir /hdd/2019CS125/baseline_tl_models/test1_e2e_plateau/
exp/

--checkpoint_dir /hdd/2019CS125/baseline_tl_models/
test1_e2e_plateau/checkpoints/

--alphabet_config_path /hdd/2019CS125/Test1/sin/sinhala_alphabet.
txt

--scorer /hdd/2019CS125/bl_files/lm_tl_base_model/lm/kenlm.scorer >
/hdd/2019CS125/baseline_tl_models/test1_e2e_plateau/results.txt
2>&1

4.2 Implementing the Multi-lingual Transfer Learning Model
The initial decision was to conduct experiments using three different combinations
of source languages. Languages that are related to Sinhala, high-resourced lan-
guages, and a mix of the two. However, it is challenging to find pre-trained models
that have been trained using these specific language combinations. Particularly,
models that are trained exclusively on languages related to Sinhala. Addition-
ally, training a multi-lingual source model from the scratch is challenging due to
the constraints imposed by limited resources. Therefore, following an extensive
investigation, the options were reduced to two distinct models. XLSR-53 model
(Conneau et al. 2020) and the XLS-R model (Babu et al. 2021) which are devel-
oped by Facebook AI.

XLSR-53 model is trained using 53 languages which includes both high and
low resource languages with 56,000 hours of speech data (Conneau et al. 2020).
Compared to the XLSR-53 model, according to Babu et al. (2021), XLS-R model is
an updated and more powerful version which has been trained using 128 languages
with 436,000 hours of speech data. In addition, they have utilized 54 hours of
Sinhala speech data which is a bit larger than the one that will be using in this
research as well. Hence, it was evident that the preferable choice would be the
XLS-R model and the results obtained by Babu et al. (2021) also validated it.
XLS-R model has 3 different sizes. 300 million parameters, 1 billion parameters
and 2 billion parameters. Due to the resource constraints, 300 million parameter
version has been selected as the source model for constructing the multi-lingual
transfer learning model.

Since the antpc server available at UCSC turned out to be inadequate in terms
of memory requirements to train this model, Kaggle platform has been used. In
Kaggle, an Nvidia Tesla P100 GPU has been used for the training process.

4.2.1 Data Preparation

First of all, the Sinhala dataset which will be using to fine-tune the XLS-R model
should be uploaded to Kaggle. The same dataset used to implement the baseline
models, the 40 hour speech dataset available at the LTRL of the UCSC, will be
used.
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After creating a dataset in Kaggle, the next task is to set up a notebook and
adding the created dataset into the notebook so that we can load the data and
perform the necessary pre-processing. In order to load the data, the “Datasets”
library of Hugging Face is used. Hugging Face is a community which provides
many resources such as libraries, models and datasets for training various machine
learning models.

The “load_dataset” method of the “Datasets” library can be used to load the
dataset using a CSV file. The CSV file format is only slightly different from the
one used in DeepSpeech when implementing the baseline models which is shown
in the figure 4.2. The CSV file format is not strict unlike in DeepSpeech so that
the columns names and additional data can be kept as desired. Following are the
columns used in the CSV file.

• path: Contains the path of the audio file

• sentence: Contains the transcription of the audio file

• audio: Contains the path of the audio file

The path of the audio file is duplicated in “path” and “audio” columns since it
will be later replaced by the decoded audio data in the “audio” column. Following
code is used to load the dataset using the CSV files for train and validation (eval)
sets.

1 sinhala_data = load_dataset(
2 'csv', data_files={
3 'train': '/kaggle/input/sinhala-asr-data/train_kaggle1_full.

csv',
4 'eval': '/kaggle/input/sinhala-asr-data/eval_kaggle_new.csv'
5 }
6 )

As mentioned earlier, audio data is required to be decoded and represented as
a 1-dimensional array in order to use in the pre-processing stage later. In order to
do this, the “Features” class of the “Datasets” library can be used. The “Features”
class is used to define the attributes of the dataset. When the in-built “Audio”
feature is defined, the audio file will be automatically decoded and resamples if
the sampling rate is mentioned. Following shows the code to defining the features
and casting them on to the loaded dataset.

1 features = Features(
2 {
3 "path": Value("string"),
4 "sentence": Value("string"),
5 "audio": Audio(sampling_rate=16000),
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6 })
7

8 sinhala_data = sinhala_data.cast(features)

The next step is to remove any special characters from the transcriptions. It
is considerably harder to assign speech chunks to such special characters because
they don’t actually correspond to a typical sound unit. The following function
was designed to remove the special characters using regular expressions.

1 chars_to_remove_regex = '[\)…“‘”�\(\\,\?\.\!\-\;\:\"\\%\\\\']'
2

3 def remove_special_characters(batch):
4 batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["

sentence"])
5 return batch

Then the above function is mapped to the loaded datasets using the following
code.

1 sinhala_data["train"] = sinhala_data["train"].map(
remove_special_characters)

2 sinhala_data["eval"] = sinhala_data["eval"].map(
remove_special_characters)

XLS-R is fine-tuned using Connectionist Temporal Classification (CTC) algo-
rithm. In CTC, the speech chunks are usually classified into characters. Hence, it
is required to have the set of unique characters in the transcriptions in both the
train and validation sets. In order to perform this task, first, the set of transcrip-
tions are joined into a single string and all the unique characters are extracted in
both train and validation sets using the following code.

1 def extract_all_chars(batch):
2 all_text = "␣".join(batch["sentence"])
3 vocab = list(set(all_text))
4 return {"vocab": [vocab], "all_text": [all_text]}
5

6 vocab_train = sinhala_data["train"].map(extract_all_chars, batched=
True, batch_size=-1, keep_in_memory=True, remove_columns=
sinhala_data["train"].column_names)

7

8 vocab_eval = sinhala_data["eval"].map(extract_all_chars, batched=
True, batch_size=-1, keep_in_memory=True, remove_columns=
sinhala_data["eval"].column_names)
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Then, the union of two sets of characters extracted from train and validation
sets is acquired and converted into a sorted, enumerated dictionary as follows.

1 vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_eval["
vocab"][0]))

2

3 vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))}

In order to make it clearer that “ ”(white space) has its own token class, a
more visible character, “|” is replaced. An “unknown” token should be added
to deal with the previously unseen characters that might appear. In addition,
the CTC algorithm requires the inclusion of a padding token that corresponds
to the “blank token” of the CTC algorithm, which is an essential element of the
algorithm. Following code performs the above-mentioned tasks.

1 vocab_dict["|"] = vocab_dict["␣"]
2 del vocab_dict["␣"]
3

4 vocab_dict["[UNK]"] = len(vocab_dict)
5

6 vocab_dict["[PAD]"] = len(vocab_dict)

And then, the extracted vocabulary should be saved as a json file.

1 with open('vocab.json', 'w') as vocab_file:
2 json.dump(vocab_dict, vocab_file, ensure_ascii=False)

4.2.2 Creating Tokenizer and Feature Extractor

Since ASR models transcribe the speech signal to text, a feature extractor is
required to convert the speech signals into feature vectors in order to be compatible
with the input format of the model. Additionally, a tokenizer is required to process
the output of the model to text format. The pre-trained XLS-R model is trained
using the wav2vec 2.0 framework (Baevski et al. 2020). Hence, the tokenizer
and the feature extractor provided by the Hugging Face’s Transformers library,
Wav2Vec2CTCTokenizer and Wav2Vec2FeatureExtractor can be used.

An instance of the Wav2Vec2CTCTokenizer class should be created and the
previously created vocab.json file should be used to load the vocabulary into the
instance.
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1 tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("/kaggle/working/"
, unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|"
)

It is best to save the created tokenizer in the Hugging Face Hub which is a
github like version control system for ML models.

The following code will create the Wav2Vec2FeatureExtractor object.

1 feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1,
sampling_rate=16000, padding_value=0.0, do_normalize=True,
return_attention_mask=True)

The purposes of the parameters of the Wav2Vec2FeatureExtractor are as fol-
lows.

feature_size: This parameter specifies the size of each feature vector in the
input sequence. For Wav2Vec2, the model was trained on raw speech signals, so
each feature vector represents a specific aspect of the speech signal. In the case of
Wav2Vec2, the feature size is typically set to 1 because the model was trained on
raw speech signals directly.

sampling_rate: This parameter indicates the sampling rate at which the
model was trained. The sampling rate represents how many samples of the audio
signal were taken per second during training. It’s crucial to set this parameter
correctly to match the sampling rate of the input audio data during inference.

padding_value: During batched inference, inputs may have different lengths.
To handle this variability, shorter inputs are typically padded with a specific value.
This parameter specifies the value to use for padding.

do_normalize: This is a boolean parameter that determines whether the
input should be normalized or not before feeding it into the model. Normalization
typically involves zero-mean-unit-variance normalization, where the input is scaled
to have zero mean and unit variance. Speech models often perform better when
the input is normalized.

return_attention_mask: This parameter specifies whether the model should
utilize an attention mask during batched inference. An attention mask is used to
indicate which elements of the input sequence should be attended to and which
should be ignored. For XLS-R models, it’s generally recommended to use an
attention mask.

For the ease of use, the tokenizer and the feature extractor are wrapped into
a single processor class.

1 processor = Wav2Vec2Processor(feature_extractor=feature_extractor,
tokenizer=tokenizer)
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4.2.3 Data Pre-processing

In the data preparation step, the audio files were decoded and represented as 1-
dimensional arrays. Now, those data should be converted into a format which will
be compatible for input of the Wav2Vec2ForCTC model for training.

First, the content of the 1-dimensional array of each audio file is extracted and
normalized by the Wav2Vec2Processor. Then, the transcriptions are encoded into
label ids. These tasks are done using the following function.

1 def prepare_dataset(batch):
2 audio = batch["audio"]
3

4 batch["input_values"] = processor(audio["array"], sampling_rate
=audio["sampling_rate"]).input_values[0]

5 batch["input_length"] = len(batch["input_values"])
6

7 with processor.as_target_processor():
8 batch["labels"] = processor(batch["sentence"]).input_ids
9 return batch

10

11 sinhala_data["train"] = sinhala_data["train"].map(prepare_dataset,
remove_columns=sinhala_data["train"].column_names)

12

13 sinhala_data["eval"] = sinhala_data["eval"].map(prepare_dataset,
remove_columns=sinhala_data["eval"].column_names)

XLS-R typically has a greater input length than an output length. Therefore,
it is advisable to pad the input batches in a way that each input of a batch is
padded to the length of the highest input length of that particular batch rather
than padding all inputs to the highest length of the whole dataset. In order to
perform this, a data collator needs to be defined. Hugging Face’s Transformers
library has an example in their github repository. It is as follows.

1 @dataclass
2 class DataCollatorCTCWithPadding:
3 processor: Wav2Vec2Processor
4 padding: Union[bool, str] = True
5

6 def __call__(self, features: List[Dict[str, Union[List[int],
torch.Tensor]]]) -> Dict[str, torch.Tensor]:

7

8 input_features = [{"input_values": feature["input_values"]}
for feature in features]

9 label_features = [{"input_ids": feature["labels"]} for
feature in features]
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10

11 batch = self.processor.pad(
12 input_features,
13 padding=self.padding,
14 return_tensors="pt",
15 )
16 with self.processor.as_target_processor():
17 labels_batch = self.processor.pad(
18 label_features,
19 padding=self.padding,
20 return_tensors="pt",
21 )
22 labels = labels_batch["input_ids"].masked_fill(labels_batch.

attention_mask.ne(1), -100)
23

24 batch["labels"] = labels
25

26 return batch
27

28 data_collator = DataCollatorCTCWithPadding(processor=processor,
padding=True)

4.2.4 Training

First of all, an evaluation metric to evaluate the model should be defined. The
“load_metric” method of the “Datasets” library can be used for this task. A
function to calculate the metric should be defined as well. As usual, the Word
Error Rate (WER) is chosen as the evaluation metric. To calculate the WER,
the argmax of the prediction logits is selected since it will be the most likely
transcription in the form of token ids. Then the padded tokens are replaced.
The data collator introduced -100 as the padding token. It will be replaced by the
padding token of the tokenizer. Then, predictions ids and the label ids are decoded
and the compute function is called for the list of predictions and the references to
calculate the WER.

1 wer_metric = load_metric("wer")
2

3 def compute_metrics(pred):
4 pred_logits = pred.predictions
5 pred_ids = np.argmax(pred_logits, axis=-1)
6

7 pred.label_ids[pred.label_ids == -100] = processor.tokenizer.
pad_token_id

8
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9 pred_str = processor.batch_decode(pred_ids)
10

11 label_str = processor.batch_decode(pred.label_ids, group_tokens
=False)

12

13 wer = wer_metric.compute(predictions=pred_str, references=
label_str)

14

15 return {"wer": wer}

The pre-trained source model should be loaded now. As discussed, the 300
million parameter version of the XLS-R is loaded as follows.

1 model = Wav2Vec2ForCTC.from_pretrained(
2 "facebook/wav2vec2-xls-r-300m",
3 attention_dropout=0.0,
4 hidden_dropout=0.0,
5 feat_proj_dropout=0.0,
6 mask_time_prob=0.05,
7 layerdrop=0.0,
8 ctc_loss_reduction="mean",
9 pad_token_id=processor.tokenizer.pad_token_id,

10 vocab_size=len(processor.tokenizer),
11 )

When fine-tuning a pre-trained model, the layers of the already trained model
is freezed to prevent it from training again since it has been trained enough. A
linear layer is added on top of the pre-trained model to train the model on the
labeled data of the target language. The “freeze_feature_extractor()” function is
used to freeze the pre-trained model.

Finally, the training arguments should be defined using the “TrainingArgu-
ments” class of the Transformers library and the trainer should be defined using
the ”Trainer” class.

1 model.freeze_feature_extractor()
2

3 training_args = TrainingArguments(
4 output_dir=repo_name,
5 group_by_length=True,
6 hub_strategy="checkpoint",
7 per_device_train_batch_size=8,
8 gradient_accumulation_steps=2,
9 evaluation_strategy="steps",

10 num_train_epochs=30,
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11 gradient_checkpointing=True,
12 save_steps=400,
13 eval_steps=400,
14 logging_steps=400,
15 learning_rate=3e-4,
16 warmup_steps=500,
17 save_total_limit=2,
18 push_to_hub=True,
19 )
20

21 trainer = Trainer(
22 model=model,
23 data_collator=data_collator,
24 args=training_args,
25 compute_metrics=compute_metrics,
26 train_dataset=sinhala_data["train"],
27 eval_dataset=sinhala_data["eval"],
28 tokenizer=processor.feature_extractor,
29 )

To begin the training, “train()” function has to be called. It is advisable to
save the trained model to the Hugging Face Hub in order to easily perform testing
and other alterations such as integrating a language model(LM).

4.2.5 Language Model Integration

Typically, ASR models require the use of an additional language model (LM) and
a dictionary in order to convert the sequence of classified audio frames into a
coherent transcription. The architecture of Wav2Vec2 is built upon transformer
layers, allowing each processed audio representation to have contextual informa-
tion from all other audio representations. Furthermore, Wav2Vec2 utilizes the
CTC algorithm during the fine-tuning process to address the challenge of aligning
the difference of length between the input audio and the output text (Baevski
et al. 2020). Thus, it is optional to have an LM to decode the ASR output of the
multi-lingual transfer learning model.

However, using an LM has been proven to be beneficial in terms of accuracy and
the readability of the transcriptions by Baevski et al. (2020). Kensho Technologies’
pyctcdecode library has been used to integrate an LM to the trained model.

First of all, the KenLM toolkit (Heafield 2011) is used to create an n-gram LM.
The “lmplz” command can be used to build the n-gram LM as follows. The corpus
used to generate the LM is the same as the one used to generate the LM when
implementing the baseline DeepSpeech models as explained in the sub section
4.1.2.
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1 kenlm/build/bin/lmplz -o 5 < "corpus_20000+90000+chatbot.txt" > "5
gram.arpa"

The next step is to combine the generated LM with the previously trained
model. In order to do that, first, the trained model which was previously save to
the Hugging Face Hub should be loaded using the “AutoProcessor” class provided
by the Hugging Face Transformers as follows.

1 processor = AutoProcessor.from_pretrained("SpideyDLK/wav2vec2-large
-xls-r-300m-sinhala-original-split-part4-epoch30-final")

Kensho Technologies’ pyctcdecode library has the method, “build_ctcdecoder”
which requires the list of vocabulary of the tokenizer of the trained ASR model
and the .arpa file generated previously. The list of vocabulary is extracted from
the tokenizer of the loaded model and converted into a sorted list and passed to
the “build _ctcdecoder” function with the path to the LM as follows.

1 vocab_dict = processor.tokenizer.get_vocab()
2 sorted_vocab_dict = {k: v for k, v in sorted(vocab_dict.items(),

key=lambda item: item[1])}
3

4 decoder = build_ctcdecoder(
5 labels=list(sorted_vocab_dict.keys()),
6 kenlm_model_path="/hdd/2019CS125/final_lms/chatbot_lm/5gram.

arpa"
7 )

Then, the “Wav2Vec2ProcessorWithLM” class can be used to wrap the feature
extractor, processor, and the generated decoder together as follows.

1 processor_with_lm = Wav2Vec2ProcessorWithLM(
2 feature_extractor=processor.feature_extractor,
3 tokenizer=processor.tokenizer,
4 decoder=decoder
5 )

Finally, the modified model with the integrated LM should be pushed back
into the Hugging Face Hub to be used in testing.
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4.2.6 Testing

Testing the created ASR model should be done with and without the LM in order
to compare the outputs in each approach.

First of all, the testing dataset should be loaded into the notebook in a similar
way explained in the section 4.2.1. Then, the set of 1-dimensional arrays which
represent each audio file should be extracted into a list. It can be done as follows.

1 inputs_list = []
2

3 processor = Wav2Vec2Processor.from_pretrained("SpideyDLK/wav2vec2-
large-xls-r-300m-sinhala-original-split-part4-epoch30-final")

4

5 for audio_sample in test_data["test"]:
6 inputs = processor(audio_sample["audio"]["array"],

sampling_rate=16_000, return_tensors="pt")
7 inputs_list.append(inputs)

Then, the created list should be passed on to the trained model the results
should be stored in a list as well.

1 logits_array = []
2

3 for input_data in inputs_list:
4 with torch.no_grad():
5 logits = model(**input_data).logits
6 logits_array.append(logits)

Testing without the LM

From the list of logits received from the above step, the argmax is taken to get
the set of token ids for the transcription for each audio file.

1 pred_id_array = []
2

3 for logit in logits_array:
4 ids = torch.argmax(logit, dim=-1)[0]
5 pred_id_array.append(ids)

Since the transcriptions are now in the form of token ids, it should be decoded
into readable text. It is done as follows;
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1 predictions_without_lm = []
2

3 for ids in pred_id_array:
4 pred = processor.decode(ids)
5 predictions_without_lm.append(pred)

Since the processor is loaded using the “Wav2Vec2Processor” class, the LM
will not be loaded. Hence, the decoded transcription is without using an LM.

Testing with the LM

In order to decode with the LM, the processor should be loaded with the
“Wav2Vec2ProcessorWithLM” class. Then the logits should be converted into
numpy to be able to be compatible with the pyctcdecode library and passed on to
the processor to decode. Following code shows the tasks above.

1 transcription_with_lm = []
2

3 with torch.no_grad():
4 for logits in logits_array:
5 transcription = processor.batch_decode(logits.numpy(),
6 unk_score_offset=-1.0,
7 beam_width=1000,
8 beam_prune_logp=-20.0,
9 alpha=0.9,

10 beta=5.7,
11 lm_score_boundary=False,
12 output_word_offsets=False
13 ).text
14 transcription_with_lm.append(transcription[0])

The hyperparameters used in the above code can be obtained from a grid search
algorithm to find out the best parameters which will provide the most accurate
transcriptions.

Calculating the WER

Finally, the WER values should be calculated. “jiwer” is a library that can be
used for this task. It requires the set of references to behave as the ground truths
to calculate the WER. The set of references should be extracted from the loaded
dataset and passed on to the “wer” function of the “jiwer” library together with
the set of transcriptions which we need to include in the calculation.
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1 from jiwer import wer
2

3 print(wer(sentences,transcription_with_lm)*100)

4.2.7 Post-processing

Even after integrating an LM to decode the outputs of the ASR model, there can
be some types of errors in the transcriptions which will massively contribute to the
WER. After analyzing the output received from the multi-lingual transfer learning
model, the following prominent errors were identified.

• Spelling errors
E.g. :

ෙවළඳාම vs ෙවෙළඳාම
හැඟිණ vs හැඟින
අයියණ‍්ඩිෙග‍් vs අයියන‍්ඩිෙග‍්
සිතිණ vs සිතින

• Words boundary errors
E.g. :

සමහරවිට vs සමහර විට
කියනවනම‍් vs කියනව නම‍්
කරනවාද vs කරනවා ද
කළාය vs කළා ය

These type of errors massively contribute to the WER even if the transcriptions
are good and readable. Hence, one can refer to the WER and mistakenly determine
the usability of the ASR system as poor while the actual transcription seem to be
acceptable.

E.g. :
Reference : ඔහු කණස‍්සල‍්ලට පත‍් වූෙය‍් පුංචිමැණිකා සිහි වීෙමනි
Prediction : ඔහු කනස‍්සල‍්ලට පත‍්වූෙය‍් පුංචි මැණිකා සිහිවීෙමනි
WER : 85%

Reference : ෙම‍් ලියුම‍් පත‍් ෙබාෙහෝම කාලයක සිට පාවිච‍්චි කරනවා ද
Prediction : ෙම‍් ලියුම‍්පත‍් ෙබාෙහෝම කාලයක සිට පාවිච‍්චි කරනවාද
WER : 44%

Reference : මම දිවි නසාෙගන නුඹ ෙම‍් සියල‍්ෙලන‍් නිදහස‍් කරන‍්නම‍්
Prediction : මම දිවි නසාෙගන නුඹෙම‍් සියල‍්ෙලන‍් නිදහස‍් කරන‍්නම‍්
WER : 25%

38



The above example shows how the WER of the sentence is calculated to be
85% due to spelling and word boundary errors while the transcription is quite
acceptable.

In order to mitigate the kinds of errors mentioned above, a stage of post-
processing has been introduced. Many researchers have used post-processing of the
transcriptions received from an ASR system to correct the similar errors mentioned
above and increase the readability of the transcriptions and proved the method to
be effective (Liao et al. 2023; Bassil and Alwani 2012).

In this research, to correct the spelling errors and the word boundary errors,
the previously created LM is used.

For spelling errors, each word in the transcriptions is scored with the language
model to determine if the word is in the LM or not. If a word does not appear
in the LM, a set of words which are closer to the wrong word will be taken from
the set of uni-grams (single words) of the LM. To check the closeness, Levenshtein
distance is calculated. Then each word in the set of close words is replaced with the
wrong word and a set of possible transcriptions is created. Then each transcription
in the set is again scored using the LM and the transcription with the best score
is obtained. Even if this method is not as sophisticated as a rule-based or neural
network based spell checker, it still resolved an acceptable amount of errors in the
transcriptions.

In order to correct the word boundary issues, the “sinling” python library
which contains several language processing tools for Sinhala is used. This library
provides a method called “word_splitter” which morphologically splits the words
into two words. An example is shown in the figure 4.3.

Figure 4.3: An example result of the “word_splitter” function

Each word in the transcription is split into two words using the above function.
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Those two words are scored using the LM to see whether they are meaningful words
(exists in the LM). If the two words are meaningful, a new sentence is created with
the split words replacing the original word. This new transcription is then scored
against the original transcription to determine the best transcription.

4.2.8 Data Augmentation

Data augmentation in Automatic Speech Recognition (ASR) refers to techniques
used to artificially expand the diversity of training data by introducing variations
in the speech signals without changing their underlying meaning. This is crucial
for improving the robustness and generalization capabilities of ASR systems, es-
pecially when dealing with limited training data or to mitigate overfitting. Since,
Nanayakkara and Weerasinghe (2023) has successfully used data augmentation to
optimize their mono-lingual transfer learning model, it is beneficial to test it out
for the multi-lingual models as well.

The same settings used by Nanayakkara and Weerasinghe (2023) for the ap-
plied augmentations has been used in this research since they were proven to be
effective. Mozilla’s DeepSpeech provides a tool to create an augmented dataset.
However, this tool only supports overlay, codec, reverb, resample and volume
augmentations. Hence, only these augmentations are applied to the dataset. The
following command is used to create the augmented dataset using DeepSpeech.

bin/data_set_tool.py \
--augment overlay[p=0.3,source=/hdd/2019CS125/final_dataset/LSD/

train/noise.csv,layers=10:1,snr=50:20~9] \
--augment reverb[p=0.1,delay=50.0~30.0,decay=10.0:2.0~1.0] \
--augment codec[p=0.4,bitrate=48000:16000] \
--augment volume[p=0.4,dbfs=-10:-40] \
test.csv test-augmented.tar.gz
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Chapter 5

Results and Analysis
This chapter will discuss the results of the experimentation done in this research.
First section of the chapter will introduce the evaluation metrics used throughout
the research and the second section will discuss the results obtained from the
experimentation and the analysis on them.

5.1 Evaluation Metrics
Evaluation metrics serve a key role in analyzing the performance of various sys-
tems, notably in disciplines like natural language processing and speech recogni-
tion. Among the diversity of metrics used, two typically employed ones are Word
Error Rate (WER) and Character Error Rate (CER).

5.1.1 Word Error Rate (WER)

Word Error Rate (WER) is a statistic used to evaluate the accuracy of ASR sys-
tems. It evaluates the percentage of words that are improperly recognized or
transcribed compared to a reference transcript.

The Word Error Rate (WER) calculation formula is given by:

WER =
S +D + I

N

Where:

• S is the number of word substitutions (words in the recognized transcript
that are different from the reference transcript).

• D is the number of word deletions (words missing in the recognized transcript
compared to the reference transcript).

• I is the number of word insertions (extra words in the recognized transcript
compared to the reference transcript).

• N is the total number of words in the reference transcript.

After calculating the WER using this formula, the result is typically multiplied
by 100 to express it as a percentage.
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5.1.2 Character Error Rate (CER)

Character Error Rate (CER) is another key parameter used in evaluating the
performance of ASR systems. Unlike WER, which focuses on words, CER eval-
uates the percentage of characters that are erroneously recognized or transcribed
compared to a reference transcript. Similar to WER, CER considers insertions,
deletions, and replacements but acts at the character level.

The Character Error Rate (CER) calculation formula is given by:

CER =
S +D + I

N

Where:

• S is the number of character substitutions (characters in the recognized
transcript that are different from the reference transcript).

• D is the number of character deletions (characters missing in the recognized
transcript compared to the reference transcript).

• I is the number of character insertions (extra characters in the recognized
transcript compared to the reference transcript).

• N is the total number of characters in the reference transcript.

After calculating the CER using this formula, the result is typically multiplied
by 100 to express it as a percentage.

5.2 Experiments, Results and Analysis
5.2.1 Datasets

For the purpose of evaluating the models created in this research, two different
datasets have been used. One of the two datasets utilized is the dataset created
by Gamage, Pushpananda, Weerasinghe, et al. (2020) which included recordings
from 4 female speakers and 4 male speakers where they utter 80 speech sentences
altogether. The other dataset is a Sinhala only subset of the dataset created by
Kjartansson et al. (2018) which is a crowd-sourced speech dataset for Javanese,
Sundanese, Sinhala, Nepali, and Bangladeshi Bengali. The two datasets are uti-
lized as follows.

• Dataset 1: The whole dataset by Gamage, Pushpananda, Weerasinghe, et
al. (2020) with 80 utterances

• Dataset 2: A subset of 100 utterances from the dataset by Kjartansson et al.
(2018)
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From here onwards, the two datasets will be referred to as Dataset 1 and
Dataset 2.

5.2.2 Results of the End-to-End Baseline Model

As mentioned earlier, the end-to-end model created by Gamage, Pushpananda,
Nadungodage, et al. (2021) will be recreated in this research as a baseline model.
However, rather than recreating the exact model developed by Gamage, Push-
pananda, Nadungodage, et al. (2021), the version which was developed by Nanayakkara
and Weerasinghe (2023) as a baseline model for their research will be implemented
as they have managed to get a slightly better accuracy using plateau handling.
Mozilla’s DeepSpeech engine has been used to develop the end-to-end model. Ta-
ble 5.1 shows the obtained results from the end-to-end baseline model by testing
on the two datasets.

Dataset WER(%) CER(%)
Dataset 1 35.00 8.27
Dataset 2 41.62 16.34

Table 5.1: Results obtained by the end-to-end baseline model

5.2.3 Results of the Mono-lingual Baseline Model

As discussed in the section 4.1.2, Mozilla’s DeepSpeech engine has been used to
develop the mono-lingual model. A pre-trained DeepSpeech model for English
language which has been trained using the Librispeech dataset (Panayotov et al.
2015), has been used as a source model similar to the original research. Data
augmentation steps followed by Nanayakkara and Weerasinghe (2023) in their
best performing model, which resulted in 17.19% WER, has been followed in the
exact way when recreating this baseline model. Table 5.2 shows the obtained
results from the mono-lingual baseline model by testing on the two datasets.

Dataset WER(%) CER(%)
Dataset 1 18.55 6.77
Dataset 2 40.48 15.54

Table 5.2: Results obtained by the mono-lingual baseline model

It is clear that even if this model performed well on dataset 1, It has higher
WERs on the dataset 2. The dataset 2 having too many unseen speech data can
be the reason for this difference in WER.

5.2.4 Results of the Multi-lingual Model

As discussed in the section 4.2, two models has been trained using the XLS-R
pre-trained model as the source model. One model is trained using the 40 hour
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sinhala dataset which is available in the LTRL at UCSC. The other model uses
data augmentation to apply some augmentations to the 40 hour dataset. Each
model is evaluated under 3 conditions.

• The basic model

• The basic model + LM integrated

• The basic model + LM + Post-processing

The table 5.3 shows the results obtained by evaluating the multi-lingual trans-
fer learning model without data augmentation.

Condition WER(%) CER(%)
Basic Model 47.05 9.17

Basic Model + LM 33.78 6.95
Basic Model + LM + Post-processing 24.28 8.89

Table 5.3: Results obtained by the multi-lingual model for dataset 1

By integrating an LM to decode the transcriptions, 28% WER reduction has
been achieved. Further, using the post-processing mechanisms explained in the
section 4.2.7, another 28% WER reduction has been achieved. When examining
the results in the table 5.3, an increase in CER can be observed when implementing
post-processing. That might be due to wrongfully adding and deleting certain
characters to change the spellings.

A similar behaviour can be observed from the table 5.4, which shows the results
obtained from testing the multi-lingual with the dataset 2.

Condition WER(%) CER(%)
Basic Model 55 12.69

Basic Model + LM 38.31 10.32
Basic Model + LM + Post-processing 36.6 12.16

Table 5.4: Results obtained by the multi-lingual model for dataset 2

Table 5.5 shows the results obtained from the multi-lingual model which was
trained with augmented data and tested on the dataset 1.

Condition WER(%) CER(%)
Basic Model 48.56 10.18

Basic Model + LM 37.7 7.88
Basic Model + LM + Post-processing 26.54 7.58

Table 5.5: Results obtained by the multi-lingual model with data augmentation for
dataset 1
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Table 5.6 shows the results obtained from the multi-lingual model which was
trained with augmented data and tested on the dataset 2.

Condition WER(%) CER(%)
Basic Model 54.58 12.68

Basic Model + LM 38.82 9.88
Basic Model + LM + Post-processing 35.29 10.94

Table 5.6: Results obtained by the multi-lingual model with data augmentation for
dataset 2

Even if a slight increase in WER can be witnessed compared to the model
without data augmentation, the effect from extensive post-processing, which was
notable in Tables 5.3 and 5.4 doesn’t seem to occur here as the CER has gone
down in each condition. Less amount of substitutions in the transcriptions of the
data augmentation based model might be the reason for this. Less amount of
substitutions means there are less amount of spelling errors, thus post-processing
will not have to correct them and increase the CER in the process.

5.2.5 Analysis

LM integration and post-processing

Analysing the above results, it is evident that integrating an LM and con-
ducting post-processing does in deed contribute towards decreasing the WER.
However, the effectiveness of those methods can be truly examined by looking at
the transcriptions.

Condition Transcript
Utterance ඔහු කණස‍්සල‍්ලට පත‍් වූෙය‍් පුංචිමැණිකා සිහි වීෙමනි

Basic Model ඔහු කනස‍්සලලට පත‍් වූෙය‍් කුංචි මැනිකා සිහිවීෙමනි
Basic Model + LM ඔහු කනස‍්සලට පත‍් වූෙය‍් කුංචි මැණිකා සිහිවීෙමනි

Basic Model + LM + PP ඔහු කනස‍්සලට පත‍් වූෙය‍් පුංචිමැණිකා සිහි වීෙමනි

Table 5.7: Results from LM and post-processing - sentence 1

Analysing the table 5.7, it can be noticed that, the word separation issues have
been successfully handled by post-processing. The word "කුංචි" is also corrected
as "පුංචි" due to the post-processing phase. The LM has managed to identify the
error in "මැනිකා" and successfully corrected it to "මැණිකා".

By observing the results in section 5.2.4, it was notable that post-processing
some times lead into increasing the CER. Table 5.8 shows a similar instance.
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Condition Transcript
Utterance පීටර‍් ගැන කියනවා නම‍් මට එයාව අත‍් අරින‍්න ඕෙන නෑ

Basic Model පීටර‍් ගැන කිෙයනවානම‍් මට යාව අත‍්හයින‍්න ඕෙන නෑ
Basic Model + LM පීටර‍් ගැන කිෙයනවානම‍් මට එයාව අත‍්හයින‍්න ඕෙන නෑ

Basic Model + LM + PP පීටර‍් ගැන ගිල‍්ලන‍්න මට එයාව බලන‍්න ඕෙන නෑ

Table 5.8: Results from LM and post-processing - sentence 2

It can be observed that, the word "කිෙයනවානම‍්" is changed into "ගිල‍්ලන‍්න".
And the word "අත‍්හයින‍්න" is changed into "බලන‍්න". These kind of errors happen
due to overdoing the pre-processing phase. Iterating the spell corrector multiple
times may change the incorrectly spelled words into something completely differ-
ent. This might not affect the WER since the replaced word is wrong in the first
place. However, this can greatly affect the CER since the replaced word contains
some correct characters which will be replaced by entirely different characters.

Comparison between models

Table 5.9 shows an instance where the multi-lingual models outperform the
baseline model. The word "වික�මනායක" is not identified correctly in the baseline
model while the multi-lingual models successfully identify it.

Model Transcript
Utterance වික�මනායක මහත‍්තයාට කිවුවාම ඕනෑ ෙදයක‍් කර ෙද‍්වි
Baseline වක‍් රවා මහත‍්තයට කිව‍්වාම ඕන දයක‍් කෙර‍් වි

Multi-lingual වික�මනායක මහත‍්තයට කිව‍්වාම ඕන ෙදයක‍් කර ෙද‍්වි
Multi-lingual + DA වික�මනායක මහත‍්තයට කිව‍්වා ම ඕන ෙදයක‍් කර ෙද‍්වි

Table 5.9: Comparison of results between models - sentence 1

Words that sounds quite similar, are a real challenge for ASR models to de-
code. For an example, "බැළලිය" vs. "බැල‍්ලිය". Table 5.10 shows how each model
identified the word "බැළලිය". It should be noted that both the models which iden-
tified the word correctly has incorporated data augmentation. That observation
seems plausible since data augmentation increases the ability of ASR models to
distinguish between subtle differences in speech.

Model Transcript
Utterance බැළලිය අසුෙනන‍් බිමට පැන ෙදාරටුව ෙදසට ගමන‍් කළා ය
Baseline බැළලිය අසුෙනන‍් බිමට පැන ෙදාරටුව ෙදසට ගමන‍් කළා ය

Multi-lingual බැල‍්ලිය අසුෙනන‍් බිමට පැන ෙදාරටුව ෙදසට ගමන‍් කළා ය
Multi-lingual + DA බැළලිය අසුෙනන‍් බිමට පැන ෙදාරටුව ෙදසට ගමන‍් කළා ය

Table 5.10: Comparison of results between models - sentence 2
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Table 5.11 shows an example where multi-lingual model with data augmenta-
tions applied outperformed both the baseline and the multi-lingual model without
data augmentations.

Model Transcript
Utterance මරතීනු උදැල‍්ල පෙසක තබා තිරික‍්කලය ෙවතට පා එසවීය
Baseline මරතීනු ගැන පෙසක තවත‍් තිරික‍්කලය ෙවතට පා සවි

Multi-lingual සැදැහැවත‍්හු දැල‍්ල පෙසක තබා තිරික‍්කලය ෙවතට පා එසවීය
Multi-lingual + DA මරතීනු උදැල‍්ල පෙසක තබා තිරික‍්කලය ෙවතට පා එසවීය

Table 5.11: Comparison of results between models - sentence 3

The final transcription achieved by the multi-lingual model with data augmen-
tation on the sentence "මරතීනු උදැල‍්ල පෙසක තබා තිරික‍්කලය ෙවතට පා එසවීය" was
achieved with the help of the LM and the post-processing. Table 5.12 shows the
evolution of the sentence through the LM and the post-processing phase.

Condition Transcript
Utterance මරතීනු උදැල‍්ල පෙසක තබා තිරික‍්කලය ෙවතට පා එසවීය

Basic Model මරතීන‍් ඉදැල‍්ල පෙසක තබත‍් සිරික‍් කෙළ‍්ය ෙවතර පා එස වීය
Basic Model + LM මරතීන‍් ඉදැල‍්ල පෙසක තබත‍් සිරික‍්කෙළ‍්ය ෙවතට පා එසවීය

Basic Model + LM + PP මරතීනු උදැල‍්ල පෙසක තබා තිරික‍්කලය ෙවතට පා එසවීය

Table 5.12: Results from LM and post-processing - sentence 3
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Chapter 6

Conclusion
This dissertation is about testing the applicability of transfer learning on end-to-
end Sinhala speech recognition. Chapter 1 contains a brief introduction to auto-
matic speech recognition (ASR), the technologies that have been used throughout
the history and the current state of Sinhala ASR. In chapter 2, a comprehensive
literature review has been conducted to outline the evolution of ASR and the gap
between Sinhala ASR and other ASR systems in terms of the technologies used.
Chapter 3 contains in-depth information on the technologies, architectures and
algorithms used in this research. In chapter 4, the step by step approach taken
in this research has been outlined. Chapter 5 displays the results from the exper-
imentation done throughout the research and an analysis of the results. Finally,
this chapter provides the conclusions drawn from the research.

6.1 Effectiveness of WER as an Evaluation Metric for Sin-
hala

When evaluating the performance of Automatic Speech Recognition (ASR) sys-
tems, metrics like Word Error Rate (WER) and Character Error Rate (CER)
are commonly used. These metrics help gauge how accurately spoken words are
transcribed into text.

WER is often considered a primary measure of ASR system quality. A lower
WER is generally interpreted as indicating better performance in converting speech
to text. However, for Sinhala, relying solely on WER for evaluation may not reflect
how well the ASR system performs.

Sinhala has unique linguistic features that may not align well with how WER
works. For example, spoken words may be combined but written separately, lead-
ing to discrepancies between spoken and written forms and inflating WER scores.

Set Prediction and Reference
1 Reference: ෙම‍් ලියුම‍් පත‍් ෙබාෙහෝම කාලයක සිට පාවිච‍්චි කරනවා ද

Prediction: ෙම‍් ලියුම‍්පත‍් ෙබාෙහෝම කාලයක සිට පාවිච‍්චි කරනවාද
2 Reference: මසුරැ සිටානන‍්ෙග‍් පුතා නන‍්ද සිදුහත‍් දන‍්නවා ෙනව ද

Prediction: මසුරැ සිටානන‍්ෙග‍් පුතා නන‍්ද සිදුහත‍් දන‍්නවා ෙනවද
3 Reference: තමාෙග‍් සිතීෙම‍් ශක‍්තිය නතර වී ඇත‍්තා ෙස‍් ඔහුට හැඟිණ

Prediction: තමාෙග‍් සිතීෙම‍් ශක‍්තිය නතරවී ඇත‍්තාෙස‍් ඔහුට හැඟින

Table 6.1: Example word boundary differences when spoken and written

Table 6.1 contains a set of example predictions and references. In set 1, the
word “ලියුම‍් පත‍්” is the reference, while the prediction gave it as “ලියුම‍්පත‍්”. Also
the word “කරනවා ද” has been predicted as “කරනවාද”. However, when considering
the actual way a person who speaks Sinhala will pronounce those words, one will
rarely pause between “කරනවා” and “ද” when speaking in a regular context. Hence,
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it is acceptable that the ASR system detect it as a single word despite the fact
that the reference has it as two separate words. In sets 2 and 3, similar behaviour
can be observed. Words “ෙනවද”, “ඇත‍්තාෙස‍්”, and “නතරවී” are often pronounced
as a single word without pausing in between. Although the ASR system results in
a higher WER due to these errors, when the system is used in a practical context,
without having a written version of the spoken text, the resultant predictions are
of an acceptable quality in terms of the accuracy.

To address these challenges, researchers must look beyond WER when evaluat-
ing Sinhala ASR systems. Alternative measures, such as analyzing word structure
and assessing coherence between spoken words and their intended meaning, can
provide a more comprehensive evaluation. Utilizing specific criteria and datasets
tailored for Sinhala can also improve the assessment of ASR system performance.
Additionally, as this research has proven, post-processing the ASR output can
help evaluating the usability of an ASR system.

Ultimately, while WER remains a useful metric, it should not be relied upon
exclusively for evaluating ASR systems for Sinhala. By acknowledging these com-
plexities and employing a diverse range of evaluation methods, researchers can
develop more effective ASR systems that better serve the needs of Sinhala speak-
ers.

6.2 Conclusion about Research Questions
There were two research questions formed in this research.

• How can multi-lingual transfer learning models be used to improve Sinhala
ASR?

• How to optimize a Sinhala ASR model to achieve the best accuracy while
being resource efficient?

In chapter 4, the step by step approach for fine-tuning the XLS-R model on
Sinhala data has been outlined. Chapter 5 contains the analysis of the results of
the experimentation conducted throughout the research. By observing the results,
it can be seen that the multi-lingual model displayed an acceptable results where in
some evaluations it even outperformed the baseline models in terms of the WER.
Apart from the WER, by looking at some of the actual transcriptions which are
presented in section 5.2.4, the multi-lingual ASR model presented in this study
can be seen as of acceptable quality in terms of the accuracy of the transcriptions.
Hence, it is safe to conclude the research question “How can multi-lingual transfer
learning models be used to improve Sinhala ASR?”.

The research question, “How to optimize a Sinhala ASR model to achieve the
best accuracy while being resource efficient?” refers to finding out any limitations
which might arise after developing a multi-lingual transfer learning model for
Sinhala language and finding out how to solve them and by doing so optimizing the
developed model while being resource efficient. As mentioned earlier in this study,
two kinds of errors were seemed to be occurring in the output transcriptions of
the multi-lingual model. The spelling errors and the word boundary errors. Those
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were the main limitations identified in the initial model. Through experimentation
with integrating language models and conducting a phase of post-processing to
correct the spelling and word boundary errors, it is safe to conclude this research
question as well.

6.3 Limitations
There were few limitations identified in the proposed multi-lingual model. When
applying data augmentation, the types of augmentations were limited to overlay,
codec, reverb, resample and volume augmentations since DeepSpeech was used to
apply the augmentations and when creating a separate augmented dataset, Deep-
Speech only allowed those augmentations. Other augmentations such as pitch,
tempo, frequency mask, time mask, dropout, and etc. was not experimented. Ad-
ditionally, the recognition of named-entities were poor compared to other words
in the proposed model.

6.4 Future Directions
In this research, two kinds of post-processing techniques are tested and were proven
to be effective. There are other possible post-processing techniques such as gram-
mar correction and spell correction using more sophisticated algorithms.

Another room for improvement is improving the accuracy of named-entity
recognition. Improving the speech corpus with more named-entities or having a
separate text corpus with named-entities and correcting the errors in the post-
processing phase might be starting points for a solution.

Since Sinhala speakers often speak in mixed tongues (Sinhala mixed with En-
glish), ASR systems which provides transcriptions in two languages can be ex-
plored. XLS-R would be of help since it has been trained using multiple languages.

In recent studies, Meta Learning has been used for fast adaptations for transfer
learning ASR models while keeping the model complexity significantly minimum
(Hou et al. 2021). It would be beneficial to study about that.

50



References
Arisaputra, Panji et al. (2024). “XLS-R Deep Learning Model for Multilingual

ASR on Low-Resource Languages: Indonesian, Javanese, and Sundanese”. In:
arXiv preprint arXiv:2401.06832.

Arora, Shipra J and Rishi Pal Singh (2012). “Automatic speech recognition: a
review”. In: International Journal of Computer Applications 60.9.

Babu, Arun et al. (2021). “XLS-R: Self-supervised cross-lingual speech represen-
tation learning at scale”. In: arXiv preprint arXiv:2111.09296.

Baevski, Alexei et al. (2020). “wav2vec 2.0: A framework for self-supervised learn-
ing of speech representations”. In: Advances in neural information processing
systems 33, pp. 12449–12460.

Bassil, Youssef and Mohammad Alwani (2012). “Post-editing error correction algo-
rithm for speech recognition using bing spelling suggestion”. In: arXiv preprint
arXiv:1203.5255.

Boersma, Paul and Vincent Van Heuven (2001). “Speak and unSpeak with PRAAT”.
In: Glot International 5.9/10, pp. 341–347.

Bozinovski, Stevo and Ante Fulgosi (1976). “The influence of pattern similarity
and transfer learning upon training of a base perceptron b2”. In: Proceedings
of Symposium Informatica. Vol. 3, pp. 121–126.

Cho, Jaejin et al. (2018). “Multilingual sequence-to-sequence speech recognition:
architecture, transfer learning, and language modeling”. In: 2018 IEEE Spoken
Language Technology Workshop (SLT). IEEE, pp. 521–527.

Conneau, Alexis et al. (2020). “Unsupervised cross-lingual representation learning
for speech recognition”. In: arXiv preprint arXiv:2006.13979.

Dahl, George E et al. (2011). “Context-dependent pre-trained deep neural net-
works for large-vocabulary speech recognition”. In: IEEE Transactions on au-
dio, speech, and language processing 20.1, pp. 30–42.

Dalmia, Siddharth et al. (2018). “Sequence-based multi-lingual low resource speech
recognition”. In: 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, pp. 4909–4913.

Davis, Ken H et al. (1952). “Automatic recognition of spoken digits”. In: The
Journal of the Acoustical Society of America 24.6, pp. 637–642.

Denes, Pablo (1959). “The design and operation of the mechanical speech recog-
nizer at University College London”. In: Journal of the British Institution of
Radio Engineers 19.4, pp. 219–229.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers
for language understanding”. In: arXiv preprint arXiv:1810.04805.

Forgie, James W and Carma D Forgie (1959). “Results obtained from a vowel
recognition computer program”. In: The Journal of the Acoustical Society of
America 31.11, pp. 1480–1489.

Fry, Dennis Butler (1959). “Theoretical aspects of mechanical speech recognition”.
In: Journal of the British Institution of Radio Engineers 19.4, pp. 211–218.

Gamage, Buddhi, Randil Pushpananda, Thilini Nadungodage, et al. (2021). “Im-
prove Sinhala Speech Recognition Through e2e LF-MMI Model”. In: Proceed-

51



ings of the 18th International Conference on Natural Language Processing
(ICON), pp. 213–219.

Gamage, Buddhi, Randil Pushpananda, Ruvan Weerasinghe, et al. (2020). “Us-
age of combinational acoustic models (dnn-hmm and sgmm) and identifying
the impact of language models in sinhala speech recognition”. In: 2020 20th
International Conference on Advances in ICT for Emerging Regions (ICTer).
IEEE, pp. 17–22.

Graves, Alex et al. (2006). “Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks”. In: Proceedings of the
23rd international conference on Machine learning, pp. 369–376.

Haldar, Rishin and Debajyoti Mukhopadhyay (2011). “Levenshtein distance tech-
nique in dictionary lookup methods: An improved approach”. In: arXiv preprint
arXiv:1101.1232.

Heafield, Kenneth (2011). “KenLM: Faster and smaller language model queries”.
In: Proceedings of the sixth workshop on statistical machine translation, pp. 187–
197.

Hou, Wenxin et al. (2021). “Meta-adapter: Efficient cross-lingual adaptation with
meta-learning”. In: ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 7028–7032.

Huang, Jui-Ting et al. (2013). “Cross-language knowledge transfer using multilin-
gual deep neural network with shared hidden layers”. In: 2013 IEEE interna-
tional conference on acoustics, speech and signal processing. IEEE, pp. 7304–
7308.

Jang, Eric et al. (2016). “Categorical reparameterization with gumbel-softmax”.
In: arXiv preprint arXiv:1611.01144.

Jegou, Herve et al. (2010). “Product quantization for nearest neighbor search”. In:
IEEE transactions on pattern analysis and machine intelligence 33.1, pp. 117–
128.

Juang, Biing Hwang and Laurence R Rabiner (1991). “Hidden Markov models for
speech recognition”. In: Technometrics 33.3, pp. 251–272.

Karunanayake, Yohan et al. (2019). “Transfer learning based free-form speech
command classification for low-resource languages”. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: Student Re-
search Workshop, pp. 288–294.

Karunathilaka, Hirunika et al. (2020). “Low-resource Sinhala speech recognition
using deep learning”. In: 2020 20th International Conference on Advances in
ICT for Emerging Regions (ICTer). IEEE, pp. 196–201.

Kjartansson, Oddur et al. (Aug. 2018). “Crowd-Sourced Speech Corpora for Ja-
vanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali”. In: Proc. The
6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Lan-
guages (SLTU). Gurugram, India, pp. 52–55. url: http://dx.doi.org/10.
21437/SLTU.2018-11.

Krishna, DN et al. (2021). “Using Large Self-Supervised Models for Low-Resource
Speech Recognition.” In: Interspeech, pp. 2436–2440.

52

http://dx.doi.org/10.21437/SLTU.2018-11
http://dx.doi.org/10.21437/SLTU.2018-11


Lee, Kai-Fu (1988). “On large-vocabulary speaker-independent continuous speech
recognition”. In: Speech communication 7.4, pp. 375–379.

Li, Jinyu et al. (2022). “Recent advances in end-to-end automatic speech recogni-
tion”. In: APSIPA Transactions on Signal and Information Processing 11.1.

Liao, Junwei et al. (2023). “Improving readability for automatic speech recognition
transcription”. In: ACM Transactions on Asian and Low-Resource Language
Information Processing 22.5, pp. 1–23.

Nadungodage, Thilini and Ruvan Weerasinghe (2011). “Continuous sinhala speech
recognizer”. In: Conference on Human Language Technology for Development,
Alexandria, Egypt. Citeseer, pp. 2–5.

Nagata, Kuniichi et al. (1964). “Spoken digit recognizer for the Japanese language”.
In: Journal of the Audio Engineering Society 12.4, pp. 336–342.

Nanayakkara, Lakshika and Ruvan Weerasinghe (2023). “Exploring Model-Level
Transfer Learning to Improve the Recognition of Sinhala Speech”. In: Inter-
national Conference on Machine Learning, Deep Learning and Computational
Intelligence for Wireless Communication. Springer, pp. 17–28.

Olson, Harry F and Herbert Belar (1956). “Phonetic typewriter”. In: The Journal
of the Acoustical Society of America 28.6, pp. 1072–1081.

Pammi, Sathish et al. (2010). “Multilingual Voice Creation Toolkit for the MARY
TTS Platform.” In: LREC. Citeseer.

Pan, Sinno Jialin and Qiang Yang (2009). “A survey on transfer learning”. In:
IEEE Transactions on knowledge and data engineering 22.10, pp. 1345–1359.

Panayotov, Vassil et al. (2015). “Librispeech: An ASR corpus based on public
domain audio books”. In: 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 5206–5210. doi: 10.1109/
ICASSP.2015.7178964.

Rabiner, L et al. (1979). “Speaker-independent recognition of isolated words using
clustering techniques”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 27.4, pp. 336–349.

Sakai, Toshiyuki (1962). “The phonetic typewriter”. In: Proc. IFIP Congress 62,
pp. 445–450.

Tan, Chuanqi et al. (2018). “A survey on deep transfer learning”. In: Artificial
Neural Networks and Machine Learning–ICANN 2018: 27th International Con-
ference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Pro-
ceedings, Part III 27. Springer, pp. 270–279.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural
information processing systems 30.

Wang, Dong et al. (2019). “An overview of end-to-end automatic speech recogni-
tion”. In: Symmetry 11.8, p. 1018.

Yi, Jiangyan et al. (2018). “Language-adversarial transfer learning for low-resource
speech recognition”. In: IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing 27.3, pp. 621–630.

Yu, Chongchong et al. (2019). “Cross-language end-to-end speech recognition re-
search based on transfer learning for the low-resource Tujia language”. In: Sym-
metry 11.2, p. 179.

53

https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964


Appendix A

Code Listings

Listing 1: Full training code
1 from datasets import load_dataset, load_from_disk, load_metric,

Audio, ClassLabel, Value, Audio, Dataset, Features, DatasetDict
2 from IPython.display import display, HTML
3 from transformers import Wav2Vec2ForCTC, TrainingArguments, Trainer
4 from transformers import Wav2Vec2CTCTokenizer,

Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2ForCTC
5 from dataclasses import dataclass, field
6 from typing import Any, Dict, List, Optional, Union
7 from huggingface_hub import create_repo, notebook_login
8 import random
9 import pandas as pd

10 import re
11 import json
12 import os
13 import torch
14 import numpy as np
15 import librosa
16

17 # Define features
18 features = Features(
19 {
20 "path": Value("string"),
21 "size": Value("int32"),
22 "sentence": Value("string"),
23 "audio": Audio(sampling_rate=16000),
24 })
25

26 # Load Sinhala dataset
27 sinhala_data = load_dataset(
28 'csv', data_files={
29 'train': '/kaggle/input/sinhala-asr-data/train_kaggle1_full.

csv',
30 'test': '/kaggle/input/sinhala-asr-data/test_kaggle_new.csv'
31 }
32 )
33

34 # Cast dataset features
35 sinhala_data = sinhala_data.cast(features)
36

37 # Remove unnecessary columns
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38 sinhala_data["train"] = sinhala_data["train"].remove_columns(["size
"])

39 sinhala_data["test"] = sinhala_data["test"].remove_columns(["size"
])

40

41 # Define regex pattern for special characters removal
42 chars_to_remove_regex = '[\)…“‘”�\(\\,\?\.\!\-\;\:\"\\%\\\\']'
43

44 # Remove special characters function
45 def remove_special_characters(batch):
46 batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["

sentence"])
47 return batch
48

49 # Apply special characters removal to train and test datasets
50 sinhala_data["train"] = sinhala_data["train"].map(

remove_special_characters)
51 sinhala_data["test"] = sinhala_data["test"].map(

remove_special_characters)
52

53 # Extract vocabulary
54 def extract_all_chars(batch):
55 all_text = "␣".join(batch["sentence"])
56 vocab = list(set(all_text))
57 return {"vocab": [vocab], "all_text": [all_text]}
58

59 vocab_train = sinhala_data["train"].map(extract_all_chars, batched=
True, batch_size=-1, keep_in_memory=True, remove_columns=
sinhala_data["train"].column_names)

60 vocab_test = sinhala_data["test"].map(extract_all_chars, batched=
True, batch_size=-1, keep_in_memory=True, remove_columns=
sinhala_data["test"].column_names)

61 vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["
vocab"][0]))

62 vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))}
63

64 vocab_dict["|"] = vocab_dict["␣"]
65 del vocab_dict["␣"]
66

67 vocab_dict["[UNK]"] = len(vocab_dict)
68 vocab_dict["[PAD]"] = len(vocab_dict)
69

70 # Save vocabulary to a JSON file
71 with open('vocab.json', 'w') as vocab_file:
72 json.dump(vocab_dict, vocab_file, ensure_ascii=False)

55



73

74 # Initialize tokenizer and push to Hugging Face Hub
75 tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("/kaggle/working/"

, unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|"
)

76 repo_name = "wav2vec2-large-xls-r-300m-sinhala-original-split-part4
-epoch30-final"

77 tokenizer.push_to_hub(repo_name)
78

79 # Initialize feature extractor
80 feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1,

sampling_rate=16000, padding_value=0.0, do_normalize=True,
return_attention_mask=True)

81

82 # Initialize processor
83 processor = Wav2Vec2Processor(feature_extractor=feature_extractor,

tokenizer=tokenizer)
84

85 # Prepare dataset function
86 def prepare_dataset(batch):
87 audio = batch["audio"]
88

89 # Un-batch batched output
90 batch["input_values"] = processor(audio["array"], sampling_rate

=audio["sampling_rate"]).input_values[0]
91 batch["input_length"] = len(batch["input_values"])
92

93 with processor.as_target_processor():
94 batch["labels"] = processor(batch["sentence"]).input_ids
95 return batch
96

97 # Cache directories for train and test datasets
98 cache_dir_train = "common_voice_train_cache"
99 cache_dir_test = "common_voice_test_cache"

100

101 # Preprocess and save train dataset if not already cached
102 if not os.path.exists(cache_dir_train):
103 print("common_voice_train_cache␣does␣not␣exist.␣Preprocessing␣

and␣saving␣to␣disk.")
104 sinhala_data["train"] = sinhala_data["train"].map(

prepare_dataset, remove_columns=sinhala_data["train"].
column_names)

105 sinhala_data["train"].save_to_disk(cache_dir_train)
106 else:
107 print("common_voice_train_cache␣exists.␣Loading␣from␣disk.")
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108 sinhala_data["train"] = load_from_disk(cache_dir_train)
109

110 # Preprocess and save test dataset if not already cached
111 if not os.path.exists(cache_dir_test):
112 print("common_voice_test_cache␣does␣not␣exist.␣Preprocessing␣

and␣saving␣to␣disk.")
113 sinhala_data["test"] = sinhala_data["test"].map(prepare_dataset

, remove_columns=sinhala_data["test"].column_names)
114 sinhala_data["test"].save_to_disk(cache_dir_test)
115 else:
116 print("common_voice_test_cache␣exists.␣Loading␣from␣disk.")
117 sinhala_data["test"] = load_from_disk(cache_dir_test)
118

119 # Data collator for CTC with padding
120 @dataclass
121 class DataCollatorCTCWithPadding:
122 processor: Wav2Vec2Processor
123 padding: Union[bool, str] = True
124

125 def __call__(self, features: List[Dict[str, Union[List[int],
torch.Tensor]]]) -> Dict[str, torch.Tensor]:

126 input_features = [{"input_values": feature["input_values"]}
for feature in features]

127 label_features = [{"input_ids": feature["labels"]} for
feature in features]

128

129 batch = self.processor.pad(
130 input_features,
131 padding=self.padding,
132 return_tensors="pt",
133 )
134 with self.processor.as_target_processor():
135 labels_batch = self.processor.pad(
136 label_features,
137 padding=self.padding,
138 return_tensors="pt",
139 )
140

141 labels = labels_batch["input_ids"].masked_fill(labels_batch.
attention_mask.ne(1), -100)

142

143 batch["labels"] = labels
144

145 return batch
146
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147 # Initialize data collator
148 data_collator = DataCollatorCTCWithPadding(processor=processor,

padding=True)
149

150 # Load WER metric
151 wer_metric = load_metric("wer")
152

153 # Load pre-trained model
154 model = Wav2Vec2ForCTC.from_pretrained(
155 "facebook/wav2vec2-xls-r-300m",
156 attention_dropout=0.0,
157 hidden_dropout=0.0,
158 feat_proj_dropout=0.0,
159 mask_time_prob=0.05,
160 layerdrop=0.0,
161 ctc_loss_reduction="mean",
162 pad_token_id=processor.tokenizer.pad_token_id,
163 vocab_size=len(processor.tokenizer),
164 )
165

166 # Compute metrics function
167 def compute_metrics(pred):
168 pred_logits = pred.predictions
169 pred_ids = np.argmax(pred_logits, axis=-1)
170

171 pred.label_ids[pred.label_ids == -100] = processor.tokenizer.
pad_token_id

172

173 pred_str = processor.batch_decode(pred_ids)
174 label_str = processor.batch_decode(pred.label_ids, group_tokens

=False)
175

176 wer = wer_metric.compute(predictions=pred_str, references=
label_str)

177

178 return {"wer": wer}
179

180 # Freeze feature extractor
181 model.freeze_feature_extractor()
182

183 # Training arguments
184 training_args = TrainingArguments(
185 output_dir=repo_name,
186 group_by_length=True,
187 hub_strategy="checkpoint",
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188 per_device_train_batch_size=8,
189 gradient_accumulation_steps=2,
190 evaluation_strategy="steps",
191 num_train_epochs=30,
192 gradient_checkpointing=True,
193 save_steps=400,
194 eval_steps=400,
195 logging_steps=400,
196 learning_rate=3e-4,
197 warmup_steps=500,
198 save_total_limit=2,
199 push_to_hub=True,
200 )
201

202 # Initialize trainer
203 trainer = Trainer(
204 model=model,
205 data_collator=data_collator,
206 args=training_args,
207 compute_metrics=compute_metrics,
208 train_dataset=sinhala_data["train"],
209 eval_dataset=sinhala_data["test"],
210 tokenizer=processor.feature_extractor,
211 )
212

213 # Train the model
214 trainer.train()
215

216 # Push trained model to Hugging Face Hub
217 trainer.push_to_hub()
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