
Improving Low-Level Isolation of
Containers: Leveraging
Microkernel Design

B. R. P. Perera
2024

Improving Low-Level Isolation of
Containers: Leveraging
Microkernel Design

B. Ravin Perera
Index No : 19001126

Supervisor: Dr. C. I. Keppitiyagama
Co-supervisor: Mr. Tharindu Wijethilake

May 2024

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4224)

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously pub-

lished or written by another person or myself except where due reference is made

in the text. I also hereby give consent for my dissertation, if accepted, be made

available for photocopying and for interlibrary loans, and for the title and abstract

to be made available to outside organizations.

Candidate Name: B. R. P. Perera

. .

Signature of Candidate Date: 29/09/2024

This is to certify that this dissertation is based on the work of B. R. P. Perera under

my supervision. The thesis has been prepared according to the format stipulated

and is of acceptable standard.

Co- Supervisor’s Name: Mr. Tharindu Wijethilake

. .

Signature of Supervisor Signature of Co-Supervisor

Date: 29/09/2024 Date: 29/09/2024

i

!a"ndu

Abstract

The container is a concept in virtualization that groups code and dependencies into

a single isolated unit. It leverages the operating system’s kernel features to manage

and run processes within its isolated environment. While current implementations

o↵er seamless integration and enhanced performance, they do come with inherent

limitations. The design and architecture of the kernel serve as a critical factor in

enhancing key container characteristics, such as isolation, owing to its dependency

on kernel functionality. While it a↵ects the level of isolation provided within a

container, it also a↵ects the isolation provided among containers. A deeper under-

standing of container implementations underscores the importance of shifting the

primary focus from containers themselves to the underlying kernel and its inher-

ent strengths. The majority of contemporary container engines are optimized for

monolithic kernels, which, by definition, prioritize performance over isolation. In

contrast, microkernels are designed to provide higher levels of isolation at the cost

of performance. It is important to explore how the capabilities of microkernels and

the requirements of containers could interact to collectively find a stronger position

in terms of isolation. This research investigates the potential of microkernels to

emulate container environments, focusing on file system isolation and comparing

performance against monolithic implementations. Leveraging GNU Hurd, based on

the GNU Mach microkernel, the study employs Subhurd and translators to estab-

lish a container environment for evaluating performance and file system isolation

against Linux-based containers.

ii

Preface

In completing the requirements for my B.Sc in Computer Science Final Year Project

(SCS4224), this research marks a significant step in my academic journey. This

work is built on a thorough examination of existing literature, where I carefully

reviewed relevant publications that contributed to the study. Following this, I en-

gaged in the design and implementation stages, primarily relying on the web docu-

mentation of GNU Hurd. This section reflects my independent e↵ort and technical

skills in developing and executing the proposed solution, although I received as-

sistance from the GNU Hurd community when encountering technical challenges.

These e↵orts were greatly influenced by and connected to the web documentation

of GNU Hurd, which aided in learning necessary concepts and commands. At

the heart of this thesis are the original findings presented in the results section.

Through extensive experimentation and analysis, I have provided new insights to

the field, while properly acknowledging relevant research material.

iii

Acknowledgement

I am deeply grateful to the University of Colombo School of Computing (UCSC)

for providing me with the opportunity to pursue this research endeavor. It has

been invaluable in both my academic and personal development. I extend my sin-

cere appreciation to Dr. C. I. Keppitiyagama, my supervisor, and Mr. Tharindu

Wijethilake, my co-supervisor at UCSC, for their expert guidance and unwavering

support throughout this journey. Special thanks are also due to Samuel Thibault,

Professor at Université de Bordeaux and a contributor to GNU Hurd, for his assis-

tance and insights during critical moments. Lastly, I express my gratitude to my

friends and family for their encouragement and support, which has been a constant

source of strength.

iv

Table of Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Containers . 2

1.1.2 Microkernels . 2

1.2 Gap and Research Questions . 3

1.3 Research Aim and Objectives . 3

1.4 Research Scope . 4

1.5 Significance of the project . 4

1.6 Research Methodology and Evaluation Criteria 5

2 Literature Review 8

2.1 Virtualization . 8

2.1.1 What is virtualization? . 8

2.1.2 Characteristics of virtualization 8

2.1.3 Types of virtualization . 9

2.1.4 Comparision between virtual machines and containers 10

2.2 Isolation . 13

2.2.1 Importance of isolation in virtualization 13

2.2.2 Methods of improving isolation 15

2.3 Containers . 17

2.3.1 Evolution of container technologies 17

2.3.2 Technology Stack of Containers 19

2.3.3 Isolation in containers . 23

2.4 Operating system kernels . 23

2.4.1 Microkernel architecture . 24

2.4.2 Monolith kernel architecture 24

2.4.3 Comparison of isolation between architectures 25

3 Design 27

3.1 Selection of a suitable environment 27

v

3.1.1 Important characteristics of GNU Hurd 27

3.2 Setup a container within GNU Hurd 33

3.2.1 Essential components of GNU Hurd 34

3.2.2 Design 1 . 41

3.2.3 Design 2 . 44

3.3 Isolation Analysis . 45

3.4 Performance comparison . 46

4 Implementation 47

4.1 Test Environment Setup . 47

4.2 Implementing Design 1 . 49

4.3 Implementing Design 2 . 55

4.3.1 Isolation analysis . 61

5 Results and Evaluation 64

5.1 Analysis on file system isolation . 64

5.1.1 Separating of the file system server from the kernel 64

5.1.2 Minimizing of shared resources 67

5.1.3 Extensibility of the containerized system 69

5.1.4 Tighter interfaces with strict access control 70

5.2 Performance comparison . 71

5.2.1 CPU . 72

5.2.2 File System . 72

5.2.3 Memory . 74

6 Conclusions 76

6.1 Limitations . 76

6.2 Future Work . 77

vi

List of Figures

2.1 Performance metrics [17] . 11

2.2 Implementation comparison [18] . 12

2.3 Reduce shared areas between systems 16

2.4 Diminish dependence among systems 16

2.5 Container Technology Stack [14] . 20

2.6 Linux kernel code size growth [50] 25

3.1 GNU Hurd architecture [55] . 28

3.2 GNU Mach ports . 30

3.3 GNU Hurd translator . 32

3.4 The settrans program implementation [52] 33

3.5 Pathname resolution . 36

3.6 Three-way handshake . 39

3.7 Initial architecture for design 1 . 42

3.8 Revised architecture for design 1 . 43

3.9 Architecture of a Subhurd . 45

4.1 Processes listed within the host environment 61

4.2 Processes listed within the Subhurd 61

4.3 File Systems within the Subhurd 62

4.4 File Systems within the host environment 62

4.5 Network interfaces within the Subhurd 62

4.6 Network interfaces within the host environment 63

5.1 Killing the file system server of Subhurd 1 67

5.2 Observing the functionality of the file system server of Subhurd 2 . 67

5.3 List of operating file systems seen by the host 68

5.4 Minimization of non-sharable resources in a microkernel architecture 68

5.5 Time taken to calculate 5,761,455 primes 72

5.6 File created per second . 73

5.7 Application overhead . 73

vii

5.8 System call latency . 74

5.9 Memory transfer speeds . 75

5.10 Reading speed . 75

viii

List of Tables

4.1 Memory information . 47

4.2 CPU information . 48

4.3 WSL and Ubuntu (running in WSL) Information 48

ix

Chapter 1 - Introduction

1.1 Background

Virtualization is a technology that allows for the creation and operation of virtual

instances or representations of computer resources, such as servers, operating sys-

tems, storage devices, or network resources. At its core, virtualization separates

the logical or virtual layer from the underlying physical infrastructure [1]. This sep-

aration allows multiple virtualized environments to run on a single physical server,

each with its own set of applications and software dependencies. Isolation is a fun-

damental concept in virtualization that ensures the separation and independence

of these instances, preventing them from interfering with one another [2]. When

discussing virtualization, it’s important to talk about the two main technologies

used in the process, Virtual Machines and Containers. Virtual machines are heav-

ier in terms of resource usage and performance but provide better isolation for

the environment by introducing a dedicated operating system and kernel to work

with. Containers, on the contrary, are lightweight and provide a much smaller

level of isolation utilizing the host operating system kernel features [3]. The ex-

pected level of isolation from a virtualized environment can vary depending on the

specific virtualization technology and configuration used. However, while virtual-

ization provides strong isolation between virtual instances, it’s important to note

that achieving absolute isolation is challenging, especially in containers due to the

underlying hardware and software complexities involved such as process isolation,

memory isolation, file system isolation, network isolation, resource isolation, etc

[2]. Improving the isolation of containers to a level that is competitive with VMs

while still retaining its lightweight nature can be a game changer. It may be a

challenging feat, but making advancements in at least one of the mentioned areas

can make a significant impact on the overall result.

1

1.1.1 Containers

Containers are a fundamental concept in virtualization, serving as encapsulated

units that bundle together code and its dependencies. They leverage the capabili-

ties of the underlying operating system’s kernel to manage and isolate processes ef-

fectively. By utilizing features like namespaces and cgroups, containers can enforce

restrictions on resource utilization such as CPU, memory, disk I/O, and network

access [4]. This approach allows for the creation of virtualized environments tai-

lored specifically to individual applications, ensuring that each container contains

all the necessary components and libraries to run the software it holds. Despite

the complexity of container technologies like Docker, their functionality ultimately

relies on a few key kernel features. However, this dependency on the kernel means

that the stability of the underlying operating system is crucial for maintaining the

promised isolation and security of containers. Any vulnerabilities or faults within

the kernel can potentially compromise the entire container infrastructure, leading

to errors and issues across the system. Furthermore, the level of isolation provided

by containers is inherently limited by the capabilities of the kernel itself [5]. In

monolithic kernel architectures, where components are tightly interconnected, the

risk of errors spreading between containers is heightened. A single error a↵ecting

the kernel could potentially impact multiple containers due to their coupled nature.

This is where the concept of microkernel architecture comes into play. By decou-

pling components related to containers, microkernel architectures reduce the risk

of errors propagating between containers. This architectural approach enhances

reliability and isolation, addressing some of the limitations inherent in traditional

monolithic kernel designs.

1.1.2 Microkernels

A microkernel is a minimalist operating system kernel that focuses solely on es-

sential services. Most operating system functions are implemented as user-level

programs, called “servers,” running outside the kernel [6]. This design enhances

isolation between components interacting with the kernel and increases process

isolation. Microkernels align closely with container expectations, o↵ering better

2

isolation by decoupling processes and system services from the kernel. This de-

coupling enables containers to isolate themselves more e↵ectively and eliminate

interfering dependencies. Leveraging the architectural advantages of microkernels,

if the kernel can isolate system services related to each container, container isolation

could be significantly improved at a lower level.

1.2 Gap and Research Questions

The area of containerization has not greatly extended to the realms of microkernels

and no standard implementation of containers is popular within the industry with

respect to that particular kernel architecture. It is important to address and explore

how the capabilities of microkernels and the characteristics of containers could

interact to collectively find a stronger position in terms of container isolation. The

research intends to fill that gap by initiating a discussion about their relationships

and serve as a starting point to encourage conversation around the topic.

The research primarily revolves around exploring the following research questions.

• Can a microkernel’s detached nature with its system services be utilized to

enhance low-level isolation of containers?

• Does implementation of containers on a microkernel-based architecture su↵er

in terms of performance when compared to Linux-based containers?

1.3 Research Aim and Objectives

The research aims to investigate the potential of implementing containers on a mi-

crokernel to improve isolation using the architectural advantages and special char-

acteristics provided by its kernel design. The research process intends to achieve

the following objectives.

• Explore the architecture of microkernels and its support for containers

• Implement a primitive version of containers using features provided a micro-

kernel based operating system

• Explore and analyze the functionalities provided by the kernel to isolate file

system-related services for each container

• Measure the performance of containers and compare them with a monolith

3

based container implementation

1.4 Research Scope

The research will primarily cover the following tasks.

• Explore the topics of microkernels and containers

• Explore the relationship between the isolation mechanisms of microkernels

and the isolation of containers

• Implement a primitive version of a container using features provided by GNU

Hurd.

• Explore the capabilities of GNU Hurd to isolated the file system of each

container.

• Analyze the overall isolation provided by the aforementioned setup with re-

spect to the file system.

• Measure the performance of the aforementioned setup to analyze limitations

• Suggest future work and improvements to the topic

Implementing an entire container engine that could support the most commonly

found features in platforms such as Docker can be extremely challenging. This

is why the research aims to work with a setup that closely mimics the isolation

provided by modern day containers. Containers tend to use many di↵erent kernel

services other than file systems and analyzing all these services and how GNU Hurd

handles isolation in each of these areas can be di�cult and time-consuming. Due

to the strict timeline of the research, the project will only focus on the file system

of a container and any further improvements to design will be considered as future

work.

1.5 Significance of the project

Achieving robust isolation within and among containers poses a significant chal-

lenge. While absolute isolation is elusive, advancements in areas contributing to iso-

lation can pave the way for progress. This research focuses on enhancing file system

isolation through microkernel technology, thereby bolstering container safety and

resilience. Future advancements in this field hold promise for improving isolation

4

in other critical container areas. Developers must prioritize designs that minimize

kernel dependency to mitigate the risk of kernel exploitation, which could compro-

mise all containers on a host. One significant drawback of microkernels is their

overhead in Interprocess Communication (IPC). Upon conducting a performance

comparison, the preference for monolithic architecture over microkernel architec-

ture becomes evident due to the notable di↵erence. However, considering the rapid

pace of advancements in computing technology, there is reason to be optimistic

about the future and the vast computational power that will be available. Many

research endeavors exploring AI or higher-end cryptographic encryption standards

operate under the assumption of expecting increased computational power in the

future. Nonetheless, it’s never too early to delve into these topics in detail. This

pattern has been evident in the exploration of neural networks, developments in

virtual reality, and similar research where theoretical advancements often preceded

the availability of requisite capabilities to demonstrate their value. Yet, throughout

the history of technology, one truth remains constant: superior architectures con-

strained solely by technological limitations eventually dominate once technology

catches up. This has clearly been demonstrated by the meteoric rise of microser-

vice architecture due to improvements in network latency. With an optimistic view

regarding the future of computing, it’s reasonable to anticipate that microkernels

will establish themselves as a standard due to their architectural superiority. When

that time arrives, containers and other virtualization technologies will need to adapt

to the shift in architecture, and this research will serve as a solid foundation for

moving in that direction.

1.6 Research Methodology and Evaluation Cri-

teria

The research will revolve around the design science research methodology. Al-

though the larger research aim encompasses a design problem (which will be dis-

cussed in much detail during the design section 3), it is embedded with multiple

knowledge problems. As mentioned in [7], the process shall consist of three cy-

cles. The relevance cycle which will take the identified problems, requirements,

5

and evaluation criteria from the environment and pass them to the design science

research. Then, the design cycle will generate the appropriate artifacts matching

the provided requirements and evaluation criteria. The rigor cycle will add the

newly found knowledge and artifacts to the knowledge base. The key components

related to the three cycles are provided below.

• Stakeholders

– Users of containers and virtualization

– Researchers related to the area of research

– Operating system developers

• Requirements

– Improvements to isolation in containers at a lower level closer to the

operating system’s kernel

– Identify the relationship between the inherent isolation provided by the

design of microkernels and the isolation sought by containers at a lower

level

– Establish a discussion about the use of microkernels to improve isolation

in virtualized environments

– Evaluate and analyze the performance and isolation di↵erence between

monolith and microkernel implementations of containers

• Artifacts

– A primitive version of container implementation utilizing the character-

istics and features of a microkernel based operating system

– An addition of comprehensive knowledge regarding the relationship be-

tween microkernels and container isolation with respect to isolation into

the related field

• Evaluation criteria

– The system shall be tested for performance and e�ciency targeting the

file structure using benchmarking tools

– An analysis based on isolation will be conducted on the microkernel

based container environment setup

• Additions to the knowledge base

– A research paper providing a detailed explanation of the methods, find-

6

ings, and conclusions of the research

The research process shall also satisfy the design science guidelines as follows.

• Design as an artifact

– The problem is well-defined and has a set of well-defined requirements.

The artifact consists of a model and instantiation

• Problem relevance

– The problem revolves around technology and has business relevance as

discussed in the “Significance of the project” section.

• Design Evaluation

– The methodology shall consist of strict evaluation criteria and shall use

rigorous methods to maintain consistency and integrity

• Research contributions

– The research will contain verifiable contributions and references where

appropriate and will always give credit to relevant parties when deemed

necessary

• Research rigor

– Evaluations will always be conducted as accurately as possible

– The methods used for evaluation will be transparent and would be re-

producible

• Design as a search process

– The research will undergo review once completed analyzing limitations

and future work that could eventually improve the artifact to better

meet the requirements of the stakeholders

• Communication as research

– The research process and methods involved will be disclosed publicly

through one or more research papers or other common mediums of re-

search documentation at the end of the process to communicate the

findings

A thorough explanation regarding the research design is provided in the design

section 3.

7

Chapter 2 - Literature Review

2.1 Virtualization

2.1.1 What is virtualization?

Virtualization initially emerged in the 1960s as a solution to manage time-sharing

systems. During this era, the cost of purchasing individual mainframe units for

each user was prohibitive. As a cost-e↵ective alternative, a single mainframe was

shared among multiple users, with each accessing it during designated time slots.

To safeguard user privacy, their sessions needed to be kept separate, a challenge that

virtualization addressed e↵ectively [8]. The widespread adoption of virtualization

was primarily driven by industry needs rather than academic research. Hence, it

is useful to define virtualization from an industry standpoint [9].

Some definitions:

• The separation of a service request from the underlying physical delivery of

that service - VMWare [10].

• The abstraction of the computer hardware, that is, hiding the physical com-

puter from the way in which it is used - Intel [11].

Broadly speaking, virtualization can be perceived as an abstraction that delineates

the physical attributes of computing resources, creating a distinction between hard-

ware and software components [9].

2.1.2 Characteristics of virtualization

While virtualization finds applications across various domains, its primary utiliza-

tion is within the realm of cloud computing. This preference stems from its capac-

ity to streamline the provisioning and management of computing infrastructure,

thereby minimizing both cost and complexity [12]. Cloud computing encompasses

an amalgamation of hardware, storage, networks, interfaces, and services, facilitat-

ing the provision of computing resources as a service. Within the domain of cloud

computing, virtualization exhibits three principal characteristics [13].

1. Partitioning

8

A single physical system should be able to support various software systems

by partitioning various resources

2. Isolation

Each virtualized system should be able to work in isolation without a↵ect-

ing other systems or the host system. This should also isolate data among

systems.

3. Encapsulation

A virtualized system should be able to package the software system into a

single file or bundle. This helps in portability and safety as each bundle is

separate and avoids interference.

2.1.3 Types of virtualization

Historically, virtual machines utilizing hypervisors have been the predominant form

of virtualization solution. However, advancements in software technologies over

time have introduced a diverse array of alternative solutions, each emphasizing

distinct aspects of virtualization [14]. Presented below are two of the most notable

solutions in this regard.

1. Virtual Machines (Full virtualization)

A virtual machine (VM) serves as a simulated representation of a physical

computer system, commonly referred to as a guest, while the actual physical

machine hosting it is denoted as the host. Unlike direct interaction with phys-

ical hardware, a VM requires mediation through a lightweight software layer

known as a hypervisor to facilitate communication with the underlying phys-

ical infrastructure. The hypervisor assumes the responsibility of allocating

physical computing resources such as processors, memory, and storage to each

VM, ensuring their segregation to prevent interference between them. Em-

ploying a hypervisor on a physical computer or server, often termed a bare

metal server, enables the separation of the operating system and applica-

tions from the underlying hardware. Subsequently, the physical machine can

partition itself into multiple independent “virtual machines,” each capable

of executing its own operating system and applications autonomously while

leveraging shared resources managed by the hypervisor, including memory,

9

RAM, and storage [15].

2. Containers (Operating System layer virtualization)

This concept, also known as Single Kernel Image (SKI) or container-based

virtualization, operates by concurrently executing multiple instances of the

same operating system (OS). Consequently, the virtualization occurs at the

level of the host OS rather than at the hardware level. All virtual machines

(VMs) utilize an identical virtualized OS image, referred to as the virtual

machine image herein. This streamlined approach simplifies system admin-

istration by enabling administrators to allocate resources such as memory,

CPU, and disk space both during VM instantiation and dynamically during

runtime. Operating system-layer virtualization proves to be more e�cient

than alternative virtualization methods, albeit lacking complete isolation.

However, as VMs share the kernel with the host OS, compatibility necessi-

tates that the guest OS matches the host OS, thereby precluding scenarios

such as running Windows atop Linux [16].

The classification of containerization, involving the utilization of containers, as a

form of virtualization is a topic of ongoing debate within the community. However,

upon closer examination of virtualization definitions, it appears to align with the

overarching concept of virtualization. Increasingly, numerous researchers are ac-

knowledging operating system-based virtualization, including containerization, as

integral components of the broader virtualization paradigm [14][16][13].

2.1.4 Comparision between virtual machines and containers

Performance

Virtual machines (VMs) and containers represent two prevalent technologies uti-

lized in the deployment and execution of applications. While both a↵ord a degree

of isolation and segregation between applications and the underlying host system,

they exhibit disparities, particularly concerning performance. VMs furnish com-

prehensive isolation by simulating an entire operating system along with virtual

hardware, thereby enabling each VM to execute distinct operating systems and

application sets. Nonetheless, this isolation entails performance trade-o↵s as each

VM encompasses an entire kernel alongside its associated processes, resulting in

10

substantial consumption of system resources and consequent performance degra-

dation. Notably, the overhead becomes notably pronounced when multiple VMs

operate on a single physical host.

Conversely, containers o↵er a lightweight form of isolation by leveraging the same

operating system kernel as the host system. This design facilitates rapid startup

and shutdown times, typically within seconds, in contrast to VMs which may take

minutes. By virtue of sharing the underlying operating system, containers incur

diminished overhead and utilize fewer system resources relative to VMs, thereby

enhancing performance and resource e�ciency. However, containers exhibit certain

limitations in comparison to VMs. For instance, containers lack the capability to

execute distinct operating systems or kernels, and they do not furnish complete

isolation between the host and the container due to their shared kernel. Conse-

quently, this shared environment poses potential security vulnerabilities and raises

concerns pertaining to data privacy. Moreover, containers may prove unsuitable for

applications necessitating stringent isolation or dependencies on specific hardware

components [17]. The Figure 2.1 provides a comparison on performance between

di↵erence virtualization techniques.

Figure 2.1: Performance metrics [17]

Security

As previously discussed, virtual machines and containers present distinct security

paradigms. VMs a↵ord a robust level of isolation between the host system and

the guest operating system housed within the VM. Each VM operates with its

11

Figure 2.2: Implementation comparison [18]

own virtual hardware, encompassing network interfaces, disk drives, and assorted

devices. This comprehensive isolation complicates unauthorized access for an at-

tacker who has compromised one VM, thereby mitigating the risk of intrusion into

other VMs or the host system. Additionally, VMs facilitate granular control over

security policies, encompassing firewall configurations and access management.

In contrast, containers share the underlying operating system kernel with other con-

tainers and the host system. Although containers o↵er a degree of isolation, they do

not match the security robustness of VMs due to their partial isolation from both

other containers and the host system. The exploitation of a single container by an

attacker can compromise the integrity of the entire system. Furthermore, as con-

tainers share the same kernel, any vulnerabilities at the kernel level can potentially

impact all containers hosted on the system. Despite these limitations, containers

utilize namespaces and cgroups to furnish rudimentary security measures. Namely,

namespaces segregate processes and resources within containers, thereby limiting

an attacker’s access scope, while cgroups regulate CPU, memory, and disk I/O uti-

lization to prevent resource monopolization. Additionally, Seccomp filters bolster

security by thwarting system calls that could execute malicious code.

A notable advantage of containers pertains to their resistance against configuration

drift, a phenomenon characterized by the stagnation and obsolescence of config-

12

urations due to prolonged environment uptime. Unlike VMs, which frequently

encounter configuration drift owing to infrequent shutdowns, containers maintain

configuration consistency more e↵ectively. Despite their comparative security vul-

nerabilities, containers o↵er a lightweight and agile deployment approach for appli-

cations. Nevertheless, in scenarios involving sensitive data or critical applications,

VMs remain the preferred choice due to their superior isolation and security as-

surances. Consequently, users often opt to deploy containers atop VMs to enhance

security, even at the expense of anticipated performance levels [19]. The Figure 2.2

demonstrates the di↵erences in both architectures.

2.2 Isolation

There isn’t a widely agreed-upon definition for isolation in virtualized systems, but

di↵erent authors tend to imply it in similar ways. Broadly speaking, isolation is

the absence of the ability of a system A to interact with a di↵erent system B.

This interaction could involve sharing needed information, stealing data, or nega-

tively a↵ecting the intended behavior of one or both systems, either intentionally

or unintentionally. Hakamian suggests that a properly isolated virtualized system

should be able to confine programs within themselves, preventing them from af-

fecting other virtualized systems or the host system [20]. This explanation implies

that interactions can occur through various means like interprocess communica-

tion, networking, or memory access. It’s also evident that if a system A can have

x such interactions and a similar system B only has y (y is a subset of x) such

interactions, then system B is more isolated than system A.

2.2.1 Importance of isolation in virtualization

Isolation stands out as a paramount attribute of virtualization, as underscored

by Popek and Goldberg’s definition of a virtualized system as “an e�cient, iso-

lated duplicate of a real computer machine” dating back to 1974 [21]. With the

evolution of technology and the proliferation of new virtualization methodologies,

coupled with the escalating demand for virtualization, the significance of isolation

has only amplified, particularly in domains such as security, performance, and fault

13

propagation. Examining instances where systems have su↵ered compromise owing

to inadequate isolation sheds light on the criticality of this aspect.

Security

Virtualized environments are susceptible to side-channel attacks, where informa-

tion can be compromised through indirect means. For instance, when a guest VM

utilizes a GPU in pass-through mode and is subsequently shut down, there exists

a potential scenario wherein another guest VM may be launched and assigned the

same GPU. Under certain conditions, remnants of data may persist in the GPU

memory, allowing the new guest VM to access information left behind by a previ-

ous guest [22]. Additionally, in scenarios where multiple virtualized systems share

common memory cache or hardware resources, one system may be capable of pro-

filing these shared units to extract information pertaining to other systems. This

vulnerability was notably exemplified in the well-known “Bernstein’s attack” on

the AES (Advanced Encryption Standard) [23]. In addition to instances of data

theft, there have been occurrences where a virtualized system gains unauthorized

access to other virtualized systems by exploiting vulnerabilities and utilizing read

commands [24]. Notably, attacks on DRAMs utilizing disturbance errors, known

as rowhammer attacks, have been observed. These attacks can be leveraged to ma-

nipulate data stored in RAM, subsequently facilitating the alteration of executable

programs residing in other virtualized systems [25].

Performance

Every virtualized system incorporates a manager within the host system to oversee

the virtualized environments. If one virtualized system has the ability to disrupt

the manager’s execution, it impacts all other virtualized systems. Likewise, if

a virtualized system overwhelms the manager with tasks, it may impede crucial

operations related to other virtualized systems. Another tactic involves excessive

utilization of shared physical resources like CPU, memory, or I/O, thereby depriving

other virtualized systems of e�cient access to those resources [26].

14

Fault propagation

Faults are inherent in any system, but e↵ective management necessitates their con-

tainment within the system where they occur. The phenomenon of transferring

the repercussions of a fault from one system to other external systems is termed

fault propagation [27]. Within a virtualized environment, fault propagation poses

significant risks due to the extensive scale of such systems. A single host may host

numerous virtualized systems of varying natures, some being malicious, others cru-

cially requiring stability, and some less critical. The potential for a fault in one

system to propagate to another system carries considerable implications, both dis-

astrous and unforeseen. As previously discussed, fault propagation can occur either

voluntarily (maliciously) or involuntarily. [28] notes the heightened vulnerability

of post-quantum cryptographic algorithms, particularly those based on learning

with errors problems, to such attacks. Resource sharing is a common scenario for

fault propagation, where interruptions or compromises to shared resources by a

single virtualized system render them unusable or inaccessible to other systems.

[29] highlights a multitude of such faults pertaining to file systems.

Upon reviewing the aforementioned instances and considering the comprehensive

definition of isolation, it becomes apparent that many of the discussed attacks stem

primarily from insu�cient isolation measures. Enhancements in isolation can bol-

ster a system’s resilience against such attacks, underscoring its significance for any

system, whether virtualized or not.

2.2.2 Methods of improving isolation

Though various methods exist for enhancing isolation within a system, they ul-

timately revolve around fundamental concepts. If a system can manage these

concepts e↵ectively through certain mechanisms, it can bolster its isolation.

1. Reduce shared areas between systems [30]

When two systems interact, potentially compromising isolation, minimizing

the size of the interface available for interaction can enhance isolation. For

instance, consider reducing the Trusted Computing Base. This concept is

demonstrated in Figure 2.3

15

Figure 2.3: Reduce shared areas between systems

2. Diminish dependence among systems [30]

When one system relies on another, its isolation is compromised. This in-

terdependence may arise from reliance on availability, message passing for

information exchange, or utilization of shared resources controlled by another

system. This is demonstrated in Figure 2.4.

Figure 2.4: Diminish dependence among systems

If a system succeeds in enhancing the factors mentioned above, it can be inferred

that the system’s isolation has technically been heightened.

16

2.3 Containers

The container is a concept in virtualization that groups code and dependencies into

a single unit. A container uses the operating system’s kernel features to separate

processes and set restrictions on how resources like CPU, memory, disk I/O, and

network are utilized. This makes it possible to create a virtualized environment at

the application level. The containers consist of all the necessary dependencies and

system libraries to run the software that it consists of. This is also true regardless

of which environment the container is running on, either Windows or Linux [4].

The concept of containers embodies a framework that leverages operating sys-

tem (OS) virtualization techniques to establish a virtualized environment. Unlike

hardware virtualization, which focuses on virtualizing physical hardware, operating

system virtualization entails the virtualization of the OS kernel. This kernel-level

virtualization is pivotal for container abstraction, encompassing the allocation of

CPU shares, memory, network I/O, and file system isolation to each container.

Various allocation strategies, including dedicated, shared, and best e↵ort, may be

supported akin to hardware virtualization. In certain instances, the underlying OS

kernel may emulate a distinct OS kernel version for processes operating within a

container [18]. This functionality is frequently utilized to facilitate backward OS

compatibility or to emulate diverse OS application programming interfaces (APIs),

as evidenced in LX branded zones [31] on Solaris and in the execution of Linux

applications on Windows [32]. Numerous OS virtualization techniques have been

developed, including Solaris Zones, BSD-jails, and Linux LXC. The recent ad-

vent of Docker, a container platform akin to LXC but distinguished by its layered

filesystem and additional software engineering advantages, has reignited interest in

container-based virtualization for data centers and cloud environments [18].

2.3.1 Evolution of container technologies

While Docker and Kubernetes are often synonymous with containers, container-

ization is the culmination of numerous technologies and kernel features. A core

objective of containerization is to achieve significant process isolation. This sec-

tion explores the evolution of key technologies that provide this isolation. The

17

1979 release of Unix version 7 introduced “chroot,” allowing users to change the

root directory for a process and its children to any directory within the filesystem

[33]. This restricted process access to the file system beyond the designated “fake

root” folder, introducing filesystem namespace isolation. However, isolation was

limited to the file system structure, as processes still shared resources and network

namespaces. In 2000, “FreeBSD Jails” addressed these limitations. Jails o↵ered

filesystem namespace isolation but also isolated the network namespace and user-

space. This meant even if an isolated process gained root access, it could not a↵ect

processes and resources outside the jail [34]. The year 2001 saw the introduction of

“Linux VServer,” a virtualization technology that utilized patched Linux kernels to

add functionalities for limiting and isolating resource usage [35]. Around the same

time, “OpenVZ” emerged, another virtualization technology o↵ering similar func-

tionalities with the addition of inter-process communication isolation [36]. These

patches were later integrated into the o�cial kernel between 2006 and 2013. No-

tably, user namespaces were introduced, allowing users within a specific namespace

to create processes with privileges limited to that namespace [37]. In 2004, Solaris

introduced “Zones,” a feature that grouped processes, allowing them to signal and

observe only other processes within the same group. Zones also o↵ered resource

limitation and separate filesystem namespaces per group [38]. This concept later

made its way into the Linux kernel as “Control Groups” (cgroups). Another area

of development focused on adding functionalities to control and restrict system

calls for enhanced isolation. The 2001 Linux kernel module “SubDomain” intro-

duced access control functionalities for a selected number of system calls within

processes [39]. Shortly after, SELinux (Security Enhanced Linux) was proposed,

but its strict implementation led to rejection [39]. However, it inspired the creation

of the Linux Security Module (LSM) framework, enabling the loading of security

policies as kernel modules for a more generalized approach [40]. In 2005, ”sec-

comp” patches were added to the Linux kernel, limiting the number of system calls

a process could make. While an improvement, it wasn’t su�cient. AppArmor, a

system for dynamically filtering system calls using Berkeley Packet Filter (BPF),

was later introduced [41].

18

The Rise of Modern Containers

Modern containers o↵er robust resource control and isolated environments. The

2008 Linux Containers (LXC) project combined key Linux kernel features like

cgroups, namespaces, and capabilities to create a tool for managing and creat-

ing system containers. Research has explored improvements to LXC’s file system

isolation using SELinux policies and compared its resource isolation and manage-

ment functionalities to those of Linux VServer and OpenVZ [42]. Docker, a popular

container management platform launched in 2013, built upon LXC. Docker later

developed its own implementation, libcontainer, as a substitute for LXC. Both

LXC and Docker with libcontainer utilize the same underlying Linux kernel fea-

tures (cgroups, capabilities, namespaces) and exhibit similar performance across

various metrics, with LXC performing slightly better on random writes due to its

use of a union filesystem [42]. Research has explored various aspects of container se-

curity, including dynamically generating AppArmor rules and security assessments

based on attack goals. Docker’s “runc” project, launched later, aimed to establish a

vendor-neutral container runtime specification maintained by the Open Container

Initiative (OCI). Runc utilizes the same isolation mechanisms (namespaces and

cgroups) as Docker and supports security features like SELinux, AppArmor, and

seccomp. It is noted to be more minimal compared to the Docker runtime [42].

In 2016, CoreOS and Docker merged their container image formats into a more

vendor-neutral specification maintained by OCI. This standardization within the

container ecosystem is expected to lead to improved interoperability and security

[42].

2.3.2 Technology Stack of Containers

The container technology stack encompasses bare-metal hardware, underpinned

by a host operating system (OS) comprising a kernel, and further augmented by

a container engine operating atop the host OS, thereby enabling containerization.

Containers, in essence, are processes within the host OS, yet they maintain isolation

from each other through pivotal kernel features such as namespaces, cgroups, and

capabilities [14]. A comprehensive examination of these kernel features alongside

the container engine is warranted. The Figure 2.5 shows an indepth look at the

19

architecture of a container stack.

Figure 2.5: Container Technology Stack [14]

Container Engine

The container engine assumes the duties of creating, configuring, and deploying

containers, while also overseeing their productivity and health. Serving as a medi-

ator between containers and the underlying operating system, the engine provisions

essential resources, including storage, network connectivity, and CPU and memory

allocations, utilizing the capabilities of the underlying kernel. Well-known container

engines comprise Docker, rkt, and LXC. Leveraging container engines empowers

developers and operators to maintain a uniform and dependable performance of

applications across various underlying infrastructures, facilitated by the container

engine acting as an interface for system administrators [4].

Namespaces

“Namespaces” is a functionality o↵ered by the Linux kernel that allows for the

creation of isolated environments within the operating system. They essentially

provide a way to partition system resources such as network interfaces and file

systems making resources within a particular namespace only visible to the pro-

20

cesses running in that namespace. Container implementations use this feature to

provide a degree of isolation among containers while still running on the same host

machine. Each namespace is associated with a particular type of system resource,

such as network interfaces or process IDs, and is identified by a namespace name.

When a new process is created within a namespace, it is only able to interact with

the resources associated with the respective namespace. This makes it possible to

create multiple containers on the same host, each with its own network namespace,

file system namespace, and other resources [18].

The Linux kernel provides several types of namespaces, including:

1. PID namespaces - provides the illusion of a separate process ID space for

each container

2. Network namespaces - provides a separate network stack for each container,

including its own network devices, IP addresses, and routing table

3. Mount namespaces - provides a separate view of the file system for each

container, allowing each container to have its own root file system

4. IPC namespaces - provides a separate inter-process communication (IPC)

namespace for each container, so that processes running in one container

cannot communicate with processes running in another container using IPC

mechanisms such as System V IPC or POSIX message queues

5. UTS namespaces - provides a separate hostname and domain name for each

container

Control Groups (Cgroups)

Cgroups are a feature in the Linux kernel that enables fine-grained control over

system resources such as CPU, memory, and disk I/O. They allow processes to be

organized into hierarchical groups, and limits can be set on the number of resources

each group can use. This provides a way to ensure that one process or group of

processes does not consume all the available system resources, which could lead to

a degraded system or even a crash. The hierarchy of a cgroup is represented as

a tree, with each node representing a resource control group. The top-level node

is the root cgroup, which represents the entire system. Each child node in the

tree can have child nodes, and so on, creating a hierarchy. Resource allocation

21

is done using the notion of limits and quotas. A “limit” is a maximum amount

of a resource that can be allocated to a particular cgroup, while a “quota” is the

minimum. In the context of containerization, cgroups are a critical component for

achieving resource isolation. Each container is associated with one or more cgroups

that specify the resource limits for the processes running inside the container. This

enables containers to operate as if they have their own dedicated resources, even

though they are running on the same host as other containers and possibly other

processes. For instance, a container can be assigned a specific amount of CPU time,

memory, and network bandwidth, and any processes running inside the container

will be limited to those resource constraints. This allows for the creation of multi-

tenant environments where multiple containers can run on the same host without

interference [43].

Capabilities

Linux capabilities constitute an integral component embedded within the Linux

kernel, facilitating precise management of individual process privileges. Tradi-

tionally, Unix-like systems, including Linux, adhered to a binary privilege model,

wherein processes were granted either complete root (superuser) access or restricted

user privileges. This binary model posed substantial security vulnerabilities, as

processes with root privileges could access all system resources and execute any

operation.

The advent of capabilities heralded a transformative shift in this paradigm by

enabling nuanced privilege allocation. Rather than endowing processes with unre-

stricted root access, capabilities allow for the tailored assignment of specific privi-

leges tailored to the requirements of each process. This shift enhances security by

limiting the potential attack surface and mitigating the repercussions of compro-

mised processes.

Furthermore, capabilities facilitate adherence to the principle of least privilege,

which advocates for granting processes only the essential privileges requisite for

their designated tasks. For instance, instead of endowing an entire process with

root privileges solely to bind to low-numbered ports, the capability to bind to ports

can be selectively delegated. This approach ensures that the process operates with

22

diminished privileges, thereby minimizing associated risks [44].

The above section broadly speaks of the kernel features used in linux based con-

tainers as that is the most prominent form of containers used today [14].

2.3.3 Isolation in containers

When assessing the isolation capabilities of containers, it is evident that contain-

ers are not commonly perceived as highly isolated within the community. Google

articulates this perspective in their blog, asserting, “A container isn’t a strong se-

curity boundary. They provide some restrictions on access to shared resources on

a host, but they don’t necessarily prevent a malicious attacker from circumventing

these restrictions.” [45] Dan Walsh from Red Hat echoes a similar sentiment, stat-

ing, “Containers do not contain. Stop assuming that Docker and the Linux kernel

protect you from malware.” [46] Despite containers employing the aforementioned

technology stack to furnish a substantial degree of isolation within a container, the

potential impacts that could arise among containers, as discussed in the isolation

section, are notably high. Enhancing isolation emerges as a pivotal strategy to

fortify the containment capabilities of containers. Consequently, examining the

implementation of containers underscores the pivotal role of the host kernel in de-

termining the level of isolation provided to the container. Rather than seeking

solutions that operate atop the host operating system, it is imperative to focus on

improving the host kernel in terms of architecture and design.

2.4 Operating system kernels

The kernel constitutes the central component of the operating system, responsible

for executing a myriad of crucial tasks. Operating at the highest privilege level

within the system, the kernel undertakes essential operations such as scheduling,

memory management, and inter-process communication, necessitating such ele-

vated privileges for their execution. However, the specific functionalities embedded

within the kernel are contingent upon the architectural choices and design prin-

ciples adopted by the developer. Let us delve into examination of two prevalent

kernel architectures [47].

23

2.4.1 Microkernel architecture

Microkernels, dating back to 1969, represent the initial kernel architecture [48]. A

defining characteristic of microkernels is their streamlined design, focusing solely

on essential functionalities such as inter-process communication, memory manage-

ment, and scheduling. These functions operate within the kernel mode, while the

remainder functions in the user mode. Unlike being implemented as a single exten-

sive process, the microkernel is divided into multiple processes known as Servers.

Ideally, only these Servers possess elevated privileges necessary for their designated

tasks. Each Server operates independently within its own address space, ensur-

ing separation from the system [49]. This modular approach prevents errors from

a↵ecting the entire system, as they are confined to the specific process in which

they occur. Additionally, the modularization facilitates the seamless exchange of

Servers without disrupting the entire system. However, the reliance on inter-process

communication for communication introduces overhead compared to direct func-

tion calls, leading to increased context switches compared to a monolithic kernel.

Consequently, these context switches result in notable latency, impacting overall

performance negatively [6].

2.4.2 Monolith kernel architecture

In contrast to a microkernel, the monolithic kernel encompasses a broader array

of functions. This includes numerous services operating in kernel mode, such as

device drivers, dispatchers, schedulers, virtual memory management, all forms of

inter-process communication (beyond simple IPC), and the (virtual) file system.

System calls are also managed within kernel mode, with only applications executing

in user mode. Unlike the divided nature of a microkernel, the monolithic kernel

is implemented as a single process running within a unified address space. All

kernel services operate within this shared address space, simplifying communication

between them. This unified structure allows kernel processes to directly call all

functions, akin to programs in user space. This capability facilitates improved

performance and a simpler kernel implementation. However, a drawback is that

a crash or bug in one module operating in kernel mode can potentially crash the

24

entire system [49].

2.4.3 Comparison of isolation between architectures

The magnitude of monolithic kernel sizes has expanded exponentially over time.

This growth stems from an inherent architectural limitation of monolithic kernels:

to incorporate additional features, the kernel itself must expand. The accompa-

nying figure 2.6 illustrates the progressive expansion of the Linux codebase over

time. As the kernel size increases, so too does the prevalence of vulnerabilities.

Consequently, reducing the Trusted Computing Base (TCB) of the kernel becomes

crucial, allowing the most essential kernel components to remain compact. How-

ever, in monolithic architecture, the entire kernel constitutes the TCB, resulting in

continual expansion [50]. In contrast, microkernels maintain a small footprint and

tend not to experience significant growth over time. This characteristic enables

microkernels to maintain a consistently small TCB. Moreover, a smaller kernel size

facilitates formal verification, a process that has proven successful for microkernels

like seL4 in eliminating vulnerabilities. This emphasis on a streamlined kernel,

responsible solely for critical tasks and isolated from non-essential functions that

can be delegated to user space, yields notable benefits. Research indicates that

by formally verifying the kernel, vulnerabilities found in Linux can be significantly

reduced in severity, with nearly 40% of vulnerabilities potentially eliminated alto-

gether [50].

Figure 2.6: Linux kernel code size growth [50]

Microkernels demonstrate superior isolation, particularly in the realm of logical

25

memory. In monolithic kernels, both kernel and user-level processes inhabit the

same address space. This configuration poses a significant security risk, as a vul-

nerability within a user process could potentially grant access to the virtual memory

of the kernel. Microkernels, on the other hand, adopt a distinct approach. They

maintain separate address spaces for the kernel and user-level processes, estab-

lishing a barrier that mitigates the risk of unauthorized access. Communication

between these distinct processes is facilitated through Inter-Process Communica-

tion (IPC) mechanisms [51].

Microkernels excel in isolating functionalities and access, ensuring that each user

process is provided with a specific interface and a restricted set of functionalities.

This prevents the compromise of one process from a↵ecting a larger portion of

the system. In the event of a single process failure, the kernel remains una↵ected,

and other processes continue to operate normally [51] [52]. In terms of access

control, monolithic kernels typically employ coarse-grained mechanisms reliant on

system calls and file system permissions to regulate process activities. Granting

root access to a process e↵ectively circumvents most security measures, providing

unrestricted access to the entire system, including the ability to mount new file

systems. In contrast, microkernels often utilize capability-based security. Under

this framework, a process can only utilize a capability if explicitly granted. This

capability-based approach enables finer-grained control over process activities [53].

Upon examining the distinguishing features of microkernels, it becomes evident

that they prioritize isolation to a much greater extent compared to monolithic

kernels, establishing a robust position in this regard. Nevertheless, design choices

made by monolithic kernels o↵er support in alternative areas, such as enhanced

performance.

26

Chapter 3 - Design

The study is separated into four important parts.

1. Selection of a suitable environment.

2. Setup a container-like system within the microkernel-based operating system.

3. Analyze the improvements in isolation provided to the file system of the

container

4. Performance comparison between the two implementations.

3.1 Selection of a suitable environment

The research necessitates access to an operating system founded on a microkernel

architecture. While numerous microkernels exist, locating a well-established op-

erating system equipped with the necessary tools for configuring a container-like

environment and conducting tests poses a considerable challenge. Among the ar-

ray of microkernels available-L4, seL4, GNU Mach, Minix, to name a few-GNU

Mach was selected as the preferred microkernel due to the existence of a notably

matured operating system built upon it, known as GNU Hurd. Backed by Debian,

GNU Hurd o↵ers the convenience of Debian’s robust package manager, “apt,” and

is fully integrated with the popular and powerful GNU toolset. These attributes

position GNU Hurd as a promising choice for the research objectives at hand.

Now, let’s delve into some key characteristics of GNU Hurd as outlined in its online

documentation [54].

3.1.1 Important characteristics of GNU Hurd

Hurd is multi-server system

Several operating systems are built upon Mach, but they share the same drawbacks

as a monolithic kernel because they are implemented as a single process operating

atop the kernel. This single process delivers all the services typically o↵ered by

a monolithic kernel. This approach may not seem particularly logical, except for

the potential ability to run multiple isolated single servers on the same machine.

27

Such systems are often referred to as single-server systems. However, the Hurd

stands out as the sole practical multi-server system built on Mach. Within the

Hurd, numerous server programs handle distinct services provided by the operating

system. These servers operate as Mach tasks and communicate via Mach’s message

passing facilities. While each server may o↵er only a fraction of the system’s

functionality, collectively they construct a comprehensive and operational POSIX-

compatible operating system. The Figure 3.1 shows the architecture of GNU Hurd.

Figure 3.1: GNU Hurd architecture [55]

Mach ports

Inter-process communication within Mach operates on the concept of ports. A port

serves as a message queue, facilitating one-way communication channels. Along-

side a port, a corresponding port right (a type of capability) is required, which may

take the form of a send right, receive right, or send-once right. Depending on the

type of port right possessed, users can either send messages to the server, receive

messages from it, or transmit a single message [52]. For each port, there exists

precisely one task holding the receive right, while there can be zero or multiple

senders. The send-once right proves beneficial for clients anticipating a response

message. These clients can allocate a send-once right to the reply port along with

the message. The kernel ensures that at some point, a message will be received on

the reply port, which may involve a notification indicating that the server has relin-

quished the send-once right. Imagine the kernel queue as a reservoir for messages,

capable of holding a substantial number of them. However, there’s a bottleneck:

when the queue hits capacity, any attempt to send new messages is put on hold

28

until space becomes available. To mitigate this, there’s a timeout mechanism in

place to allow for interruption if needed. A receive right acts as a backstage pass to

a specific queue, granting its holder the privilege to extract messages from it and

even generate send rights. Conversely, send and send-once rights provide access to

a queue, empowering the holder to add messages to it. In the case of a send-once

right, only a single message can be inserted. Each addition to the queue through

these rights is similar to invoking a unique capability. Ports, on the other hand,

are similar to managed objects within the kernel’s purview. They’re meticulously

guarded resources, requiring the appropriate port right for any interaction. No-

tably, ports are automatically relinquished when no corresponding port rights are

held. Mach maintains a ledger of port rights allocated to each task. However,

within a task, threads interact with ports using simplified local names without

concerning themselves with the intricacies of port rights. Each task is allocated its

own private cache of port rights, termed a port address space, ensuring a segre-

gated context for managing port-related operations. Consider the scenario where

a port send right is acquired. Using the associated port name, messages are dis-

patched to the port – be it one or multiple, depending on the nature of the right.

These messages typically queue up for processing. When the recipient, say a server

task, wishes to peruse its incoming messages, it exercises its port receive right,

facilitating Inter-Process Communication (IPC). A noteworthy capability is the

delegation of port rights within messages, similar to passing the baton to another

party. Upon dequeuing such a message, the recipient inherits the associated rights.

Message delivery adheres strictly to order, ensuring reliability. If messages 1 and

2 are dispatched sequentially, they’re guaranteed to be received in the same order,

despite potential interleaving by other threads. Due to their fortified nature, ports

are globally unique, making them ideal candidates for system-wide references. This

is exemplified in the Remote Procedure Call (RPC) system utilized by GNU Hurd,

where methods are invoked on port-based references, facilitated by the MIG tool.

It’s crucial to note that invoking operations on a port doesn’t entail ceding control

to the recipient. Rather, it initiates an asynchronous process, similar to casting

a message into the ether and awaiting a response. Particularly in RPC setups,

including a reply port using a send-once right enables synchronization, allowing

29

the sender to await the response, blocking on the receive port until it arrives. Un-

derstanding the message format is not necessary to utilize Mach IPC e↵ectively.

The Mach interface generator, mig, abstracts the intricacies of composing, sending,

and receiving messages, presenting users with an interface that resembles a func-

tion call. In reality, the message could traverse a network to a server operating

on a separate computer. The set of remote procedure calls provided by a server

constitutes its public interface [56]. A figure 3.2 show the enqeueing and dequeuing

process related to mach ports.

Figure 3.2: GNU Mach ports

Capabilities

When talking about Mach ports, we should also touch on capabilities in the context

of GNU Mach and what they stand for.

A capability serves as a secure reference, combining both reference and protection

attributes. Acting as a pointer to an object, it possesses safeguards against forgery,

ensuring its integrity. In essence, a capability not only identifies the referenced ob-

ject but also carries the authority to manipulate it. The fusion of designation and

authorization within capabilities streamlines delegation processes [56]. Consider

a scenario where program instance A intends to instruct program B to utilize a

specific file for data storage. If A and B operate within distinct trust domains,

30

such as having di↵erent User IDs (UIDs), conveying solely the file’s name to B

poses risks. B must ascertain that granting access doesn’t inadvertently empower

A to manipulate the file under B’s authority, thereby guarding against potential

security breaches similar to the “confused deputy problem [57].” Moreover, with-

out a contextual naming framework, a string sent by A to identify the file may

resolve to an unintended object. By tethering designation and authorization insep-

arably, capability-based systems circumvent such dilemmas. Systems built upon

capability-based architectures adhere to the principle of least privilege, ensuring

that entities possess solely the permissions essential for their tasks. Typically, a

capability mechanism finds its implementation within the software realm, often

within the operating system kernel, particularly in microkernel architectures. The

computational overhead associated with software-based implementations is mini-

mal when compared to hardware alternatives [56].

In GNU Mach, a capability does not refer to a server, instead references a mach

port. The capabilities allow the tasks to refer and perform actions on those ports

[52].

Translators

Most servers are interacted with through file openings. Typically, when a file

is opened, a server creates a port associated with that file, owned by the server

overseeing the directory containing the file. For instance, a disk-based filesystem

typically manages numerous ports, each representing an open file or directory.

Upon file opening, the server generates a new port, links it to the file, and then

furnishes the port to the requesting program. However, a file may have a translator

a�liated with it. In such cases, instead of returning its own port pertaining to the

file’s contents, the server executes a translator program linked to the file. This

translator receives a port to the actual file contents and is tasked with providing

a port back to the original user to finalize the open operation. This mechanism is

employed for mounting by associating a translator with each mount point. When a

program accesses the mount point, the translator—often a program understanding

the disk format of the mounted filesystem—is invoked and provides a port to the

program. Once initiated, the translator need not be rerun unless it terminates;

31

the parent filesystem retains a port to the translator for subsequent requests. File

owners can link a translator to a file without requiring special permissions, meaning

any program can be designated as a translator. However, the system’s functionality

relies on the translator accurately implementing the file protocol. Nonetheless, the

Hurd is designed so that the worst-case outcome is an interruptible hang. One

approach to using translators is to access hierarchically structured data using the

file protocol. For instance, the complexity of the user interface in the ftp program

can be abstracted away. Users only need to recognize that a specific directory

signifies FTP and can use standard file manipulation commands (e.g., ls or cp) to

access the remote system, rather than learning a new set of commands. Similarly,

a basic translator could simplify the complexity of tar or gzip. While transparent

access might entail some additional overhead, it would o↵er convenience.

Figure 3.3: GNU Hurd translator

Translators are mounted for the file system using the settrans program. The

following line will start the ftpfs translator and attach it to the node ~/mnt and

then pass the remaining arguments to the translator.

32

$settrans -a ~/mnt /hurd/ftpfs username:password@site.org/~

Figure 3.4 shows the underlying implementations of the settrans program.

Initially, the settrans program acquires a handler to the associated mount point.

Following this, it instantiates the program and, prior to initiating its operation,

generates a port and inserts a send right to it into the bootstrap capability slot of

the process. Subsequently, once this setup is complete, the translator is invoked.

Upon detecting the bootstrap capability, the translator returns a reference to its

fsys object to the settrans program. This reference will be essential for the parent

object in the forthcoming discussion on the dir lookup implementation. Following

this, settrans proceeds to invoke the file set translator on the mount point

while supplying the previously obtained fsys reference. Additionally, settrans

acquires a reference handler for the mount point and transfers it to the translator

program, which will serve as a reference to its parent if required in the future [52].

Figure 3.4: The settrans program implementation [52]

3.2 Setup a container within GNU Hurd

As GNU Hurd remains in active development and has yet to achieve widespread

commercial adoption as a fully functional operating system, it lacks a pre-existing

container implementation. This absence can be attributed to the limited inter-

est in utilizing the microkernel architecture as a viable solution for containers.

Consequently, prominent container platforms like Docker do not o↵er a readily

33

available solution compatible with GNU Hurd. Given that Docker and similar

platforms rely heavily on Linux-specific kernel features such as namespaces and

cgroups—features not present or not functioning as intended in GNU Hurd—the

straightforward porting of existing implementations is unfeasible. Consequently,

to achieve container-like functionality within GNU Hurd, an environment closely

aligned with the container concept must be constructed. The following section

outlines the initial attempt to develop such a solution from scratch.

Before we delve deep into the proposed architectures for the experimental setup, it

is important to understand some of the core components of GNU Hurd.

3.2.1 Essential components of GNU Hurd

In a Hurd system, you’ll find at least the Mach kernel, along with an auth server,

an exec server, a proc server, a password server, and a file system server. Let’s

explore each of these components in much detail as documented by the GNU Hurd

Documentation and related resources [56].

File System Server

The file system server is one of the most crucial core servers of GNU Hurd as it

implements two very important functionalities.

Function as the nameserver We’ve explored the significance of ports in Mach

and their role as communication endpoints. But how exactly do we locate a port

to a desired server? In Mach, a dedicated nameserver is essential for this task.

A task can obtain a port to a server with send rights by querying the name-

server, assuming the intended server has already registered with the nameserver

beforehand. However, in Hurd, there’s no separate nameserver; instead, the file

system server assumes this role. This setup is feasible because Hurd always main-

tains a root file system for POSIX compatibility. The file system server o↵ers the

hurd file name lookup RPC to fulfill this function.

An example of the hurd file name lookup is given below.

34

mach_port_t identity;

mach_port_t pwserver;

kern_return_t err;

pwserver = hurd_file_name_lookup("/servers/password");

err = password_check_user (pwserver,0 /* root */, "supass",&identity);

Pathname resolution - Most tasks interact with the kernel via the GNU C

library (glibc) embedded within each task. This library not only facilitates com-

munication through RPC but also ensures POSIX compliance, allowing developers

to access kernel services seamlessly. One such service is the ability to acquire a port

to a server, accomplished through a concept called “Pathname resolution.” How-

ever, the C library doesn’t maintain a comprehensive list of all available servers. As

discussed earlier, glibc must communicate with the file system (acting as the name-

server) to traverse through all servers and locate the desired port. Path resolution

doesn’t assume an implicit root; instead, it’s always relative to an explicitly refer-

enced object. Typically, applications resolve most names relative to the capability

stored in their root directory capability slot or their current working directory slot.

These slots are usually populated by the parent process during process creation,

e↵ectively creating a single global namespace. Frequently, the dir lookup procedure

doesn’t directly yield a capability pointing to the resolved object. Instead, it gen-

erates a new entity called a handle, which encompasses session state and points to

the resolved object. Initially, the C library queries the root filesystem server about

the provided filename, assuming the user intends to resolve an absolute path, using

the dir lookup RPC. If the filename corresponds to a regular file or directory on

the filesystem, the root filesystem server simply returns a port to itself and notes

the association with the specified file or directory. However, if a prefix of the full

path matches a known server path, the root filesystem server returns a port to this

server along with the remaining unresolved pathname. The C library then retries

and queries the other server about the remaining path component. Eventually, the

library either determines that the remaining path cannot be resolved by the last

35

server in the list or successfully obtains a valid port to the desired server. The

figure 3.5 demonstrates this process.

Figure 3.5: Pathname resolution

Function as a data source As previously discussed, the file system server han-

dles pathname resolution and, when accessing a path, furnishes a port to the cor-

responding file (node). This approach o↵ers significant advantages over a single

nameserver. Firstly, it enables the utilization of standard Unix permissions on di-

rectories to restrict access to a server. By appropriately setting the permissions

of a parent directory and ensuring no other means to obtain a server port exist,

access can be controlled. However, the implications extend much further. Notably,

a pathname doesn’t directly point to a file; rather, it denotes a port of a server.

This flexibility means that serving static data from a regular file is merely one

option for the server. Alternatively, a server can generate data dynamically. For

instance, a server linked with /dev/random could furnish fresh random data with

every io read() on its port, while one associated with /dev/fortune could deliver

a new fortune cookie with every open(). While a conventional filesystem server

serves data as stored on disk, other servers o↵er virtual information or a combi-

36

nation of both. The server is responsible for ensuring consistency and usefulness

of data with each remote procedure call. Failure to do so may lead to results that

diverge from user expectations and cause confusion. This mechanism facilitates the

development of various applications, such as an NFS client or an FTP filesystem.

For example, an FTP filesystem could seamlessly integrate FTP servers into the

filesystem, allowing programs to access files using the standard POSIX file interface

without needing to implement multiple network protocols.

Listed below are some of the file system translators that are currently implemented

and undergoing development.

• Store based filesystems

– ext2fs

– ufs

– isofs (iso9660, RockRidge, GNU extensions)

– fatfs (under development)

• Network file systems

– nfs

– ftpfs

• Miscellaneous

– hostmux

– usermux

– tmpfs (under development)

Auth Server

Identity-Based Access Control (IBAC) relies on user identity for access authoriza-

tion. Therefore, when a subject seeks access to an object governed by such a

system, it must reveal its identity to the object. In Unix, both the identity man-

ager and most servers reside within the same trust domain. However, this di↵ers

in the Hurd environment, leading to a notable dilemma: while the server managing

the object needs to inspect user identities, it must not be allowed to exploit them.

To address this challenge, the Hurd’s auth server facilitates a three-way handshake,

enabling mutually distrustful collaboration and sharing without prior coordination.

Each port to this server serves to identify a user and is associated with an ID block,

37

encompassing sets of e↵ective user IDs and group IDs, as well as available user IDs

and group IDs (any of which may be empty).

The auth server provides three key services:

1. Boolean operations on a given set of authentication ports, resulting in a third

port representing the union of user and group IDs.

2. The root user (UID 0) can generate any authentication port.

3. A set of Remote Procedure Calls (RPCs) to establish identity and exchange

information among users.

When a service seeks to authenticate a user, it communicates with its designated

trusted auth server. If the user is associated with a di↵erent auth server, the

transaction will be unsuccessful. This necessitates a framework where all users are

compelled to utilize the same auth server, ensuring that the interface is structured

to accommodate any secure operation. In the event of possessing two identities,

they can be merged to request an identity comprising the unions of the sets from

the auth server. Additionally, it is possible to create a new identity consisting solely

of subsets of an existing identity. However, expanding sets is restricted unless the

user holds superuser privileges, indicated by possessing the user ID 0. However,

no restrictions are imposed; any user can develop a program implementing the

authentication protocol and it among their processes.

Three-way handshake The three-way handshake is used to establish a trusted

connection between the user and the server. The protocol is as follows.

• Step 1: A user desires a server to be aware of its IDs.

• Step 2: The user initiates a reauthentication request to the server, including

a rendezvous port.

• Step 3: Both parties convey this port to the authentication system. The user

employs auth user authenticate, while the server utilizes

auth server authenticate. Additionally, the server provides a new port to

the authentication system.

• Step 4: The authentication system correlates these two requests and matches

rendezvous ports .

• Step 5: The user obtains the new port (provided by the server) from the

authentication system, and the server receives information regarding the user

38

thereby enabling the server to gain insight into the user’s IDs.

The figure 3.6 shows the above process in action.

Figure 3.6: Three-way handshake

Password Server

The password server operates with root privileges and issues a fresh authentication

port upon receipt of a Unix password. The IDs associated with the authentica-

tion port align with the Unix user and group IDs to maintain POSIX compliance.

Additionally, support for shadow passwords is integrated within this system. Situ-

ated at /servers/password and operating as root, the password server exchanges

Unix passwords with the auth server, authenticating them against the password

or shadow file. Various utilities leverage this server, thereby obviating the need to

manage passwords directly, a task that necessitates privileged access like setuid.

Proc server

The process server serves as a central repository for organizing system information,

playing a crucial role in maintaining system integrity. While its use is not manda-

tory, opting out means sacrificing the POSIX-like appearance of the Hurd system.

This server o↵ers four primary services: Firstly, it manages essential host-level data

not handled by the Mach kernel, such as the hostname, hostid, and system version.

39

Secondly, it facilitates POSIX functionalities by maintaining sessions and process

groups. Thirdly, it establishes a direct mapping between Mach tasks and Hurd

processes, assigning each task a unique process ID (pid). Processes can register

message ports with the server, accessible to any requesting program. Addition-

ally, the process server allows processes to disclose their current command-line

arguments and environment variables, enabling ps-like programs and facilitating

information manipulation. Moreover, the server supports process collections for

managing multiple process message ports simultaneously. It also provides mech-

anisms for converting between pids, process server ports, and Mach task ports

while ensuring port security. While the default system process server is unavoid-

able, users have the flexibility to run additional process servers with non-superuser

privileges to implement specific features as needed.

Exec server

The exec server plays a crucial role in program execution. Execution of a program

happens through the execve call (similar to Linux). The implementation of this

call is divided among three components. Firstly, the library handles the marshal-

ing of argument and environment vectors, then sends a message to the file server

containing the program to be executed. The file server checks execute permissions

and performs any necessary modifications during the exec call. For instance, if the

file is marked setuid and the file server has the capability, it may adjust the user

identification of the new image. It also determines whether programs with access

to the previous task should retain access to the new one. If permissions are being

augmented or if an unreadable image is being executed, the exec operation must

occur in a new Mach task to uphold security. Once the policy for the new image

is established, the file system invokes the exec server to load the task. Utilizing

the Binary File Descriptor (BFD) library, this server loads the image, supporting

a wide range of object file formats. Additionally, it handles scripts starting with

#! by executing them through the specified program. Moreover, the standard exec

server examines the environment of the new image. If the environment contains a

variable EXECSERVERS, it utilizes the programs specified there as exec servers in-

stead of the default system ones. However, this is not applied to execs requested

40

to remain secure by the file server. Upon initiation, the new image commences

operation within the GNU C Library, which communicates with the exec server to

obtain arguments, environment, umask, current directory, etc. None of this addi-

tional state is exclusive to the file or exec servers; programs have the flexibility to

utilize it di↵erently if desired.

Now that the necessary background concepts have been reviewed, let’s explore the

designs for the test setup in detail.

3.2.2 Design 1

As detailed in the literature review, the concept of containers originated with BSD

jails, aiming to confine processes within a designated part of the file system using

chroot, followed by additional kernel features to enhance process isolation and im-

pose restrictions [34]. Similarly, the idea of implementing such isolation in GNU

Hurd can be considered. As previously discussed, the file system server in GNU

Hurd plays a pivotal role, particularly in pathname resolution, e↵ectively serving

as the authority governing namespaces. By closely examining the chroot program

in Hurd, it becomes evident that the concept of namespace isolation is already

ingrained in the system. For POSIX compatibility, a dir lookup implementation

is required to resolve the special name dot-dot (..) strictly at the parent direc-

tory and not within a translator. Consider the scenario depicted in Figure 3.4.

When a process invokes dir lookup on the capability denoting home/mnt, with

dot-dot specified as the path for resolution, the ftpfs instance responds with a

retry message. This message contains a capability denoting the /home/mnt object

on the parent translator, with the path rewritten as dot-dot. However, the tradi-

tional Unix chroot mechanism mandates that a directory appears as a root to a

group of processes, altering the meaning of dot-dot. To address this, Hurd o↵ers

the more versatile file reparent mechanism, which resolves this issue without

necessitating superuser privileges. This mechanism creates a unique handle where

lookups of dot-dot lead to the provided capability instead of its parent, signified

by a special void capability indicating the directory’s root appearance. Handles

derived from a reparented node maintain this property, ensuring that lookups ini-

41

tiated from a reparented node remain at the highest possible level in the hierarchy

[52]. With this implementation, chroot in Hurd now mirrors its usage in a Linux

environment, e↵ectively establishing a new namespace for the process and its child

processes, confining them within a jail-like environment. All that remains is to

set up a new file system server, chroot into it, and designate the new file system

translator as the root node for the subsequent executed process. This server will

manage all file system operations for that process and its descendants. Similar to

a typical jail setup, all associated programs and libraries must be relocated into

the jail to ensure proper functioning of the processes. Since many core components

of GNU Hurd operate in user space, files related to servers and translators must

also be moved into the jail. Tools like Debootstrap can facilitate this task. The

initial design, as illustrated in Figure 3.7, demonstrates this concept. However,

Figure 3.7: Initial architecture for design 1

the process remains non-isolated in terms of other processes and resource usage.

Nonetheless, this issue could be addressed by launching new instances of the proc,

auth, password, and exec servers. Given that these servers can operate alongside

existing ones, this approach poses no challenge for the host environment. Thus,

instead of implementing isolation measures externally (as depicted in Figure 3.7),

42

a new set of instances can be initiated from within the jail. This approach should

prevent processes within the jail from accessing the outer host environment. This

revised architecture is illustrated in Figure 3.8.

Figure 3.8: Revised architecture for design 1

Although this revised design provides resource isolation, GNU Hurd lacks an ef-

fective resource monitoring system to enforce resource constraints. Consequently,

this design cannot replicate the functionality of control groups found in Linux.

Unfortunately, the proposed design encountered several challenges during imple-

mentation. The anticipated level of process isolation was not achieved as expected.

Moreover, configuring shared resources like packet forwarding interfaces proved to

be cumbersome. Given that the research primarily focuses on file system isola-

tion, the complexity of managing network isolation seemed disproportionate to the

research objectives. A comprehensive discussion on the implementation and the

encountered challenges will be provided in the implementation section 4. Conse-

quently, due to these reasons, further implementation of the design was paused as

e↵orts were redirected toward exploring better alternatives.

43

3.2.3 Design 2

Subhurds represent a concept within the Hurd operating system designed to ac-

commodate the execution of multiple logical systems within a single kernel. The

concept arises from the necessity to debug the Hurd servers and boot process while

operating within a running Hurd system. This approach enables the user to place

the test program or boot code within a subhurd and then monitor it through the

host system using tools like ps and gdb. This approach also circumvents potential

deadlocks that may arise when attempting to debug a server instance that halts

during debugging (Ex: Proc server). Furthermore, Subhurds can be utilized to de-

bug the primary Hurd system itself, including its root filesystem, although requiring

a privileged Subhurd for such tasks. This bidirectional debugging capability con-

tributes to the overall robustness and maintainability of the Hurd operating system

[56]. To initiate a Subhurd, the boot process is triggered by executing a command

similar to boot /dev/sd1s1, prompting the loading of various components such as

the ext2fs.static filesystem handler and Hurd servers. This sequence ultimately

results in the establishment of a Subhurd environment, facilitating user login. The

functionality of Subhurds hinges on the capability to run the Hurd operating sys-

tem unaltered within its confines. Upon booting, the /bin/boot utility instigates a

secondary set of Hurd servers, e↵ectively creating a setup reminiscent of the stock

GNU Mach configuration. Notably, the /bin/boot utility responsible for initiating

Subhurds is impressively compact, comprising a mere 2,606 lines of source code,

inclusive of the bootscript parser and various stubs. This e�ciency underscores

the streamlined nature of the Subhurd architecture and simplicity of starting a

Subhurd.

Although initially intended for streamlined debugging purposes, upon closer ex-

amination, Subhurds exhibit characteristics similar to containers. Notably, each

Subhurd spawns a fresh instance of its core servers upon booting, rendering them

distinct and isolated entities from one another while still sharing the host ker-

nel. This isolation lends itself well to utilization as containers in our context.

Subhurds boast individual proc servers, file system servers, and other associated

servers, thereby a↵ording both file system and process isolation. These attributes

are scrutinized and validated in the implementation phase. Owing to these inherent

44

characteristics, Subhurds emerged as the optimal environment for implementing a

container-like solution on GNU Hurd. Most importantly, Subhurds also address

the challenges encountered in Design 1 regarding process isolation and network

configuration. The overall architecture of a Subhurd is given in Figure 3.9

Figure 3.9: Architecture of a Subhurd

3.3 Isolation Analysis

The third phase of the study will delve into the pivotal aspect of the research,

which involves assessing the enhancements in isolation provided by microkernels

on container file systems. While microkernels inherently o↵er extensive isolation

across their systems, our examination will concentrate solely on file systems. Em-

ploying the definition of isolation and methodologies for enhancing it (discussed in

the literature review section 2.2), we will scrutinize how Subhurds exhibit superior

isolation compared to conventional container implementations, owing to the char-

acteristics of their underlying microkernel. The analysis will delve deeply into the

functionality of GNU Hurd servers, elucidating their roles and how Subhurds lever-

age the microkernel architecture to enhance isolation. Specifically, we will explore

how the implementation reduces shared regions among components and diminishes

dependencies among systems—two key factors determining the degree of isolation,

as discussed in the literature review 2.2.

45

In monolithic architectures, a significant drawback lies in the integration of file

system logic within the kernel. This entails that if a container manager induces

a kernel crash due to a file system logic bug, all containers will cease to function.

However, microkernels relocate this logic to user space via servers, thereby insu-

lating the kernel from such failures. To test this resilience, we will conduct an

experiment by concurrently running two Subhurds and observing how a crash in

one file system server a↵ects the other.

3.4 Performance comparison

This section conducts a series of fundamental benchmarking tests to assess the per-

formance of CPU, memory, and I/O within the implemented environment. These

tests will be duplicated within a Docker container, and the outcomes will be closely

analysed for comparison.

46

Chapter 4 - Implementation

4.1 Test Environment Setup

Since GNU Hurd doesn’t operate on a Linux kernel, it’s not feasible to switch

kernels within a Linux distribution. To run GNU Hurd, one must either utilize

a dedicated system or employ a virtualization platform like VMWare, Virtualbox,

or QEMU. Running GNU Hurd directly on hardware is discouraged due to inade-

quate driver support for most commercially available hardware. Hence, virtualiza-

tion becomes the sole option. QEMU was selected as the virtualization platform

for its flexibility and endorsement by the o�cial Debian guide [58]. Combining

QEMU with KVM typically o↵ers better performance compared to the Windows

native alternative. Therefore, QEMU was run on WSL2 to leverage KVM ca-

pabilities. Although there’s a slight performance drop due to WSL2 usage [59],

it doesn’t significantly a↵ect the comparison, as performance benchmarks related

to the monolith implementation will be conducted in Docker, which also utilizes

WSL2 underneath. The performance of GNU Hurd will indeed be a↵ected by the

use of QEMU, but this impact must be overlooked because there are no better

alternatives available. Details regarding the device hardware and software versions

(relative to WSL2) are provided below. Table 4.1 shows information regarding the

Memory, Table 4.2 about CPU and Table 4.3 about WSL.

QEMU information

QEMU emulator version 4.2.1 (Debian 1:4.2-3ubuntu6.27) Copyright (c) 2003-

2019 Fabrice Bellard and the QEMU Project developers

total used free shared bu↵/cache available

Mem: 7627 1299 2543 4 3784 6031

Swap: 2048 1 2046

Table 4.1: Memory information

47

Attribute Value

Architecture x86 64

CPU(s) 12

Thread(s) per core 2

Core(s) per socket 6

Model name AMD Ryzen 5 4600H with Radeon Graphics

Virtualization AMD-V

Hypervisor vendor Microsoft

Virtualization type full

L1d cache 192 KiB

L1i cache 192 KiB

L2 cache 3 MiB

L3 cache 4 MiB

Table 4.2: CPU information

Attribute Value

WSL version 2.1.5.0

Kernel version 5.15.146.1-2

WSLg version 1.0.60

MSRDC version 1.2.5105

Direct3D version 1.611.1-81528511

DXCore version 10.0.25131.1002-220531-1700.rs-onecore-base2-hyp

Windows version 10.0.22631.3447

Table 4.3: WSL and Ubuntu (running in WSL) Information

Instead of compiling from source, the GNU Hurd prepared CD image was chosen

for its convenience. The 20230608 release was utilized. The following command

enables booting into the Hurd system using QEMU.

sudo qemu-system-x86_64 --enable-kvm -hda debian-hurd-20230608.img

-m 4G -net nic -net user,hostfwd=tcp:127.0.0.1:2222-:22

The --enable-kvm option enables KVM support in QEMU, optimizing it for

kernel-based virtualization. A memory limit of 4GB was set, following the rec-

48

ommendation in the o�cial guide, and port 2222 was selected for establishing a

TCP connection to access the system securely via SSH through the WSL terminal.

Upon booting up the system, users could log in as either root or demo. The demo

user was chosen to evaluate the capabilities of a regular account, though it was

added to the sudo group to perform privileged actions. To update the system,

newer sources were added to the /etc/apt/sources.list file, and the system was

upgraded using the apt package manager. To access the latest Debian repositories,

the following sources were added.

deb http://deb.debian.org/debian-ports unstable main

deb-src http://deb.debian.org/debian unstable main

deb http://deb.debian.org/debian-ports unreleased main

4.2 Implementing Design 1

With a functional GNU Hurd system in place, the implementation of Design 1 can

commence. The initial and crucial phase involves achieving namespace isolation.

To accomplish this, a new file system server must be established. This can be

done utilizing the mke2fs program in Hurd, which generates an ext2 file system.

However, before proceeding, an empty block file is necessary to serve as the log-

ical data store. The command below demonstrates how to create a block file of

approximately 1GB in size.

dd if=/dev/zero of=./container_storage bs=1M count=1000

This command generates a 1GB block filled with zeroes. Subsequently, this block

file can be employed to establish an ext2 file system. The subsequent command

utilizes the block storage file as input to transform it into an ext2 file system. It

allocates group tables, writes inode tables, superblocks, and other metadata as

necessary.

sudo mke2fs container_storage

With a correctly created ext2 file system in place, a translator is necessary to access

this storage. GNU Hurd employs the ext2fs translator located in /hurd/ext2fs

to perform the translation between the block storage and the process. Additionally,

49

this translator handles the crucial pathname resolution on this node. The following

command creates and binds an ext2fs translator to the block file.

sudo settrans -c container /hurd/ext2fs $PWD/container_storage

Executing the following command will associate the container storage with a

container node (creating it if it’s absent due to the -c argument), and then em-

bed an ext2fs translator within it. Subsequently, any action carried out on the

container (e.g., cd) will be interpreted by the translator and implemented on the

container storage accordingly. For example, the cd command could be utilized

to navigate the block file as if it was mounted to the file system via the container

node. Ensuring that the location of the block file given to the settrans command

is an absolute address is crucial for the translator to function correctly.

Now that there’s a valid file system linked to a node and a functional translator ex-

ecuting a file system server, the subsequent step involves transferring the essential

dependency files for the container’s operation into the file system. As discussed in

the design section 3, unlike a typical jail in a Linux environment where relocating

essential programs from the /bin directory and their associated dependencies from

the /lib directory su�ces to enable program execution within the jail, this is not

the case in GNU Hurd. In Linux, most critical functionalities reside within the ker-

nel and are thus shared with the jail. However, in Hurd, these functionalities are

predominantly located in user space as servers. Manually identifying the crucial

server programs and locating their dependencies is exceedingly time-consuming.

Therefore, a tool named Debootstrap comes into play for this task.

Debootstrap is a versatile tool crafted to install a Debian base system into a subdi-

rectory of an existing system, obviating the need for an installation CD by accessing

a Debian repository. It can also operate from a di↵erent operating system, allowing

users to install Debian onto a separate partition from a running system, such as

Gentoo. Furthermore, it facilitates the creation of a rootfs (root file system) for a

machine with a di↵erent architecture, a process known as “cross-debootstrapping

[60].” Since GNU Hurd is supported by Debian, the Hurd base image is available

in their repositories.

Despite Debootstrap boasting a plethora of functionalities, only the capability to

50

download a base image from a repository URL will be utilized. According to web

documentation, Debootstrap has been successfully ported to function on GNU

Hurd provided proper sources are provided in the sources.list file. As per the doc-

umentation, the following command is intended to access the Debian repositories

and retrieve the base image into the jail (container directory), with the target

set to sid to prompt Debootstrap to fetch the stable release from various other

alternatives [58].

sudo debootstrap sid container

However, the Debootstrap process fails displaying the following error.

E: Invalid Release file, no entry for main/binary-hurd-i386/Packages

Examining the Debootstrap log found in

$PWD/container/debootstrap/debootstrap.log didn’t yield significant insights

either. It merely shows how the process abruptly terminated.
...

gpgv: using RSA key 4CB50190207B4758A3F73A796ED0E7B82643E131

gpgv: Good signature from "Debian Archive Automatic Signing Key

(12/bookworm) <ftpmaster@debian.org>"

The Debian Keyring stores the OpenPGP keys of Debian Developers, who have

full upload privileges to the Debian archives. Debootstrap verifies these keys when

examining the Release file. In case Debootstrap encountered di�culties accessing

the correct Release file from the repository due to a keyring issue, the keyring were

installed using the following command.

sudo apt install debian-ports-archive-keyring

Upon further investigation, a review of a previous Google Spaces conversation

between two Hurd developers revealed that the parameters passed to Debootstrap

needed to be updated as follows.

sudo debootstrap

--keyring=/usr/share/keyrings/debian-ports-archive-keyring.gpg

--extra-suites=unreleased sid containers

http://deb.debian.org/debian-ports/

51

It was unfortunate that this was not updated in the documentation.

Now, the Debootstrap process successfully acquired the Release file, fetched depen-

dencies, and downloaded the required packages. Following the download process,

Debootstrap proceeds to install the packages, which occurs in three stages.

1. Installing the core packages

2. Configuring the core packages

3. Installing the base packages

Debootstrap smoothly proceeded through the initial two stages but encountered a

blocker due to a dependency error in the cron-daemon-common package, which is

closely related to the cron package. Cron, a widely-used program in UNIX environ-

ments, is responsible for scheduling tasks based on time. Upon analyzing the De-

bootstrap logs, it became evident that cron-daemon-common relies on systemd and

its associated packages—systemd-standalone-sysusers and systemd-sysusers.

However, these components are specific to the systemd software suite, primar-

ily utilized in Linux-based systems. Given that GNU Hurd doesn’t incorporate

systemd in its implementation, it not possible to access these packages within Hurd.

Consequently, excluding the installation of this package (cron-daemon-common),

along with its dependencies, seems feasible, as providing the required dependencies

(systemd) isn’t an option. Debootstrap o↵ers an argument (--exclude) precisely

for this purpose.

sudo debootstrap

--keyring=/usr/share/keyrings/debian-ports-archive-keyring.gpg

--extra-suites=unreleased --exclude=cron,cron-daemon-common sid

containers http://deb.debian.org/debian-ports/

However, despite the exclusion of the package from the list, Debootstrap disre-

garded the exclusion. This behavior seemed to be an unintended bug within

the program. To address the issue, a thorough investigation into the inner work-

ings of Debootstrap was necessary. It was discovered that when given a specific

target, the program attempts to execute a predefined script file located in the

/usr/share/debootstrap/scripts directory. Upon noticing the script related to

the target sid was the debian-common script, which contains commands for in-

52

stalling base packages, it was observed that the script employs dpkg for package

installation within the designated directory. Given that dpkg o↵ers an argument

to ignore dependencies (--ignore-depends), the script was modified accordingly

to disregard the related dependencies during the installation of any packages.

..

....

p; smallyes " |

in target dpkg --force-overwrite --force-confold --skip-same-version

--ignore-depends=systemd,systemd-standalone-sysusers,systemd-sysusers

--install $(debfor $predep) base=$(without ”$base” ”$predep”)

....

..

However, this approach proved futile as the program persisted in attempting to in-

stall the packages related to cron and continued to fail due to missing dependencies.

A final e↵ort was made to resolve the issue by employing an alternative method.

Instead of downloading the packages from the repository each time, Debootstrap

o↵ers the option of downloading the packages into a tar file. This tar file can then

be utilized later for package installation instead of fetching them directly from the

repository. To implement this, the program necessitates an empty directory for

temporarily storing the downloaded content (temp) and a designated location to

store the packages (hurd base.tar). The command to execute this functionality

is as follows.

sudo debootstrap --verbose

--keyring=/usr/share/keyrings/debian-ports-archive-keyring.gpg

--extra-suites=unreleased --make-tarball=$PWD/hurd_base.tar sid

temp http://deb.debian.org/debian-ports/

Next, the downloaded packages can be used in the installation process with the

following command. Additionally, the command includes the --exclude argument,

which is configured to disregard the cron and cron-daemon-common packages.

sudo debootstrap --verbose

--keyring=/usr/share/keyrings/debian-ports-archive-keyring.gpg

53

--unpack-tarball=$PWD/hurd_base.tar --extra-suites=unreleased

--exclude=cron,cron-daemon-common sid container

This approach resolved the issue, allowing all three stages to be completed success-

fully without encountering any problems.

With all the dependencies inside the jail, chroot should be able to initiate a shell

within it. Chroot will also trigger the file reparent mechanism to set up the

node for dot-dot pathname resolution, e↵ectively establishing an isolated file sys-

tem namespace within the jail. The following command can be invoked to run the

chroot program on the container node.

sudo chroot container

This grants the user access to a shell capable of executing processes with file system

isolation. Nonetheless, the new jail merely contains a minimal base image of Hurd

and requires updating to acquire the latest packages and utilities essential for con-

figurations (e.g., ifconfig, nano). However, upon examination, it was discovered

that the jail lacked necessary components for an update, including sources, certifi-

cates, and the keyring. Given the absence of essential tools such as a text editor,

the sources were manually appended through the terminal as outlined below.

echo "deb http://deb.debian.org/debian-ports unstable main" | tee -a

/etc/apt/sources.list

echo "deb-src http://deb.debian.org/debian unstable main" | tee -a

/etc/apt/sources.list

echo "deb http://deb.debian.org/debian-ports unreleased main" | tee -a

/etc/apt/sources.list

The required certificates were transferred from the outer environment to the jail

using the following command.

sudo cp -r /etc/ssl ~/container/etc

Then, using the apt tool and its --fix-broken install feature, the Debian

keyring was installed.

With the system now operational and fully updated, our attention shifts to imple-

54

menting process isolation by initiating a new instance of the proc server. However,

this is where significant challenges arise. While a new instance of the proc server

can coexist with the currently running one, users face a hurdle in replicating a new

instance identical to the original proc server. To achieve this, users must custom-

build a proc server from scratch, if they need to overcome whatever constraints of

the current proc server implementation. This obstacle stems from a design change

by the Hurd team, whereby the proc server’s initiation, originally separate, was

later integrated into the init process. This decision was made due to the proc

server’s requirement for elevated privileges and other design considerations. Con-

sequently, users logged into the system are unable to execute the necessary logic to

initiate a new instance of the proc server, as the init process operates solely during

the booting sequence. While the documentation advises users to use firm-links to

connect the jail process to the host servers, this approach enlarges the issue by

further reducing isolation.

I was also noticed that upon returning to the jail following a reboot, the jail lacked

network access because the Packet Forwarding interface was already in use by the

host. One potential explanation for this issue could be the configuration process

during Debootstrap. When new servers are installed in the jail system, they are

configured to operate within the current system. However, this configuration is

subsequently overridden when the host system reboots, as the host boot sequence

is unaware of the presence of a chroot jail.

Because of the challenges posed by process isolation limitations and the complex-

ities involved in manually reconfiguring the servers after each system reboot, this

implementation was paused. Although the research primarily concentrates on file

system isolation, which the current implementation appears to achieve, the lack of

substantial similarity between the current jail implementation and the container

concept prompted the exploration of better alternatives.

4.3 Implementing Design 2

The second approach involves repurposing an established debugging environment

to fulfill the isolation requirements anticipated by a basic container. We’ll now

55

explore the process of setting up and evaluating a Subhurd to determine if the

environment o↵ers the required isolation to align with the research objectives.

To begin with, like a chroot environment, a Subhurd necessitates a filesystem,

preferably ext2, containing all the required dependencies, including the servers.

While Debootstrap could serve this purpose, the documentation suggests employing

a prepared CD image. Given the challenges faced earlier with Debootstrap and the

availability of essential utilities in the image file, opting for the prepared CD image

for the Subhurd seems prudent.

Since the Subhurd operates within the original Hurd environment and shares the

kernel, it’s advisable to download the image file into the Hurd system itself rather

than externally. This can be achieved with the following command.

sudo wget https://cdimage.debian.org/cdimage/ports/latest/\

hurd-i386/debian-hurd-20230608.img.tar.gz

The command above fetches the latest Hurd release, 20230608. After downloading,

the tar file must be decompressed to acquire the intended image file. The following

command accomplishes this task.

tar -xvzf debian-hurd-20230608.img.tar.gz

An error arises because of the file size limitation within Hurd, restricting files to

a maximum size of 2GB (an inherent limitation in the implementation). Hence,

the image file needs to be supplied externally. The downloaded and decompressed

image file (subhurd1.img) can be presented as an external disk to Qemu using the

following command.

sudo qemu-system-x86_64 --enable-kvm -hda debian-hurd-20230608.img

-m 4G -hdb subhurd1.img -net nic -net

user,hostfwd=tcp:127.0.0.1:2222-:22

Now that the image has been linked to the system as a device, the next step is to

allocate an ext2 translator to interact with the image. This can be accomplished

using the following command, similar to the implementation in design 1.

sudo settrans -a /mnt /hurd/ext2fs /dev/hd1s2

56

The Hurd image (subhurd1.img) is naturally divided into two partitions.

1. Partition 1 - Swap

2. Partition 2 - Image contents

Therefore when setting the translator, it is important to set it to the second par-

tition. This is reflected in the command given above.

There are two types of translators in GNU Hurd.

• Active Translators

• Passive Translators

An active translator denotes a translator process currently running, as specified

in the earlier command. Active translators can be established and removed using

the settrans -a command, with the -a option indicating the intention to modify

the active translator. On the other hand, a passive translator is configured and

modified using the same syntax as an active translator, minus the -a option. All

the properties discussed earlier regarding active translators also apply to passive

translators. However, there is a notable di↵erence: passive translators are not ini-

tialized yet. This approach is sensible because typically, you don’t want a partition

to be mounted unless you actually access files on it, or the network brought up un-

less there is tra�c, and so on. Instead, when a passive translator is first accessed,

it is automatically retrieved from the inode, and an active translator is launched

on top of it using the stored command line. This mirrors the functionality of the

Linux automounter but is an inherent aspect of the system, not an additional fea-

ture requiring manual setup. Therefore, setting passive translators postpones the

initiation of the translator task until it’s genuinely needed. Moreover, if the pas-

sive translator transitions to active but unexpectedly terminates, such as during

a system reboot, it is automatically restarted the next time the inode is accessed.

Another distinction is that active translators can cease to exist or become lost.

Once the active translator process terminates, such as during a system reboot, it

cannot be recovered. In contrast, passive translators are persistent and remain in

the inode across reboots until they are modified with the settrans program or

the inodes to which they are attached are deleted. Consequently, there is no need

to maintain a configuration file with mount points. Additionally, even if a passive

57

translator is set, it is still possible to establish a di↵erent active translator. Only

when the translator is automatically initiated because there was no active transla-

tor at the time the inode was accessed is the passive translator activated.

While passive translators provide significant advantages, we opt to establish an

active translator for the /mnt node. This decision stems from the persistent nature

of passive translators, as we aim to ensure that the translator does not remain

dormant and unexpectedly activate when interaction with the Subhurd is not de-

sired. Furthermore, setting an active translator guarantees that the currently active

translator aligns with our intended choice and has not been replaced by a di↵erent

active translator in the interim.

After successfully attaching the translator, the next step is to boot the Subhurd,

accomplished with the following command.

sudo boot /dev/hd1s2

It is after this we run into our first issue. The boot sequence fails and the following

error is displayed.

/hurd/mach-defpager: panic: (default pager):/hurd/mach-defpager: ../../mach-

defpager/main.c:200: panic: Assertion ’0’ failed.

/hurd/startup: Crashing system; essential task mach-defpager died

startup: notifying random of reboot...done

startup: notifying ext2fs.static pseudo-root of reboot...done

INIT: version 3.06 booting

INIT: No inittab.d directory found

Using makefile-style concurrent boot in runlevel S.

startup: rebooting Mach (flags 0)...

Would reboot the system. Bye.

After extensive research, a bug was discovered to be caused by the pager of the host

system. Given that GNU Hurd actively utilizes virtual memory, the kernel employs

a pager, known as mach-defpager in GNU Hurd, for paging tasks. Typically,

the kernel anticipates and operates with a single pager for these tasks. However,

when booting the Subhurd, the boot program assumes it’s initializing a new GNU

58

Hurd instance, as the image file used is identical to that of a GNU Hurd prepared

CD image. Consequently, it attempts to create a new mach-defpager instance,

resulting in a crash due to the existence of the current pager. This issue stems

from a flaw in the implementation. Nonetheless, since the Subhurd isn’t meant

to function as an entirely distinct operating system and the kernel is expected to

be shared once successfully initiated, we can bypass the creation of the pager. To

modify the script associated with this operation, we need to access the content of

the image file. Since we’ve already mounted the partition as an ext2 file system,

we can navigate to it using the cd command. The relevant code can be found in

the /etc/hurd/runsystem.sysv script. We can now proceed to comment out the

line responsible for running the mach-defpager instance. The modified section of

the script is provided below.

...

Start the default pager. It will bail if there is already one running.

#/hurd/mach-defpager #Commented to stop the defpager execution

...

After making this adjustment, the Subhurd should progress through the boot pro-

cess as anticipated. However, a di↵erent error related to the file system check

arises. This outcome is anticipated, and the documentation o↵ers instructions on

resolving this issue. The error occurs because the image assumes the file system

is situated at /dev/hd0s1. Instead of utilizing the simple boot program, a new

argument is supplied to enable fastboot, circumventing the file system check and

granting access to a temporary shell. The command to execute a fastboot is

provided below.

sudo boot --kernel-command-line="fastboot root=pseudo-root"

/dev/hd1s2

After executing the above command, we can use the shell provided by the Subhurd

to change the fstab file to match the expected location. This can be achieved by

executing the three commands given below.

settrans -c /dev/pseudo-root /hurd/storeio pseudo-root

echo /dev/pseudo-root / ext2 defaults 0 1 >/etc/fstab

59

halt

Executing these commands will modify the fstab file situated in /etc/fstab and

halt the Subhurd. Subsequently, the Subhurd can be restarted using the standard

boot command, disregarding fastboot.

Upon booting the Subhurd, users encounter a login prompt requiring a user named

“root” for authentication. It’s important to note that although this user is labeled

“root,” its privileges are limited compared to a typical UID 0 root user. Instead,

it operates as a virtual root user within the Subhurd environment.

Before proceeding to utilize the Subhurd, a virtual network interface needs to be

set up. To accomplish this, we exit the Subhurd by issuing the halt command and

return to the original host environment. From there, we utilize a translator called

the eth-multiplexer. This network multiplexer facilitates the creation of virtual

interfaces and facilitates tra�c routing between virtual interfaces and an actual

Ethernet interface. It relies on the Berkeley Packet Filter library (libbpf). Below

are the commands required to establish a virtual network interface. It’s crucial to

ensure that there are no active SSH or similar connections when executing these

commands, and it’s advisable to run them using the root account.

The command provided below links the eth-multiplexer to the network device.

sudo settrans -c /dev/eth0m /hurd/eth-multiplexer

--interface=/dev/eth0

Once that is done, the following three commands can be executed to create a new

virtual network interface.

sudo ifdown /dev/eth0

sudo sed -i -e s#/dev/eth0#/dev/eth0m/0# /etc/network/interfaces

sudo ifup /dev/eth0m/0

After this process is finished, the Subhurd can be booted, utilizing the created

virtual network interface for its operations. This can be accomplished with the

following command.

sudo boot /dev/hd1s2 -f eth0=/dev/eth0m/1

60

4.3.1 Isolation analysis

We should assess the e↵ectiveness of the new container-like environment in iso-

lating processes, file systems, and networks. In theory, since Subhurds initiate a

completely separate cluster of core servers, these attributes should be achieved.

However, it’s crucial to verify if these properties are upheld in practical testing.

Process isolation can be assessed by checking whether a process running on the

main host is detectable from within the Subhurd environment. This can be accom-

plished using the ps utility. Figure 4.1 illustrates the execution of the ps command

in the host system, while Figure 4.2 depicts its execution within the Subhurd. As

anticipated, the sleep command from the host is not observable within the Sub-

hurd, confirming the expected process isolation. Conversely, the sleep command

initiated within the Subhurd is visible in the host environment, which aligns with

expectations and ensures process isolation.

Figure 4.1: Processes listed within the host environment

Figure 4.2: Processes listed within the Subhurd

File system isolation can be examined by using the df utility. Figure 4.3 illus-

trates the file system mounted within the Subhurd, while Figure 4.4 displays the

file systems mounted within the host. By comparing the mount points and de-

vices, it becomes evident that the file systems are isolated. Additionally, verifying

61

this isolation can be achieved by attempting a dot-dot operation from within the

Subhurd’s root to access its parent directory, which fails as anticipated.

Figure 4.3: File Systems within the Subhurd

Figure 4.4: File Systems within the host environment

Network isolation can be assessed by employing the ifconfig tool and contrasting

the interfaces. Figure 4.5 illustrates the network interfaces utilized by the Subhurd,

while Figure 4.6 displays the network interfaces employed by the host. It is evident

that the Subhurd solely possesses access to a virtual network interface, whereas the

host employs the original interface. This confirms network isolation.

Figure 4.5: Network interfaces within the Subhurd

62

Figure 4.6: Network interfaces within the host environment

In the broader context, this implemented environment closely resembles a con-

tainer.

63

Chapter 5 - Results and Evaluation

The results section addresses two main components. Initially, it explores the eval-

uation of file system isolation within a container solution based on a microkernel

architecture. Subsequently, it presents a performance comparison between the two

container implementations across CPU, memory, and I/O metrics.

5.1 Analysis on file system isolation

The analysis of file system isolation within subhurds constitutes a critical aspect

of understanding the security and performance implications of microkernel-based

operating systems like GNU Hurd. Inherent to the design philosophy of microker-

nels is the imperative to minimize the Trusted Computing Base (TCB), a principle

that directly correlates with the level of isolation achievable within the system.

Within this paradigm, meticulous attention to the design and implementation of

file system interfaces plays a pivotal role in ensuring robust isolation between user-

level processes and kernel services. This section delves into an in-depth analysis

of various aspects of file system isolation within subhurds, shedding light on both

theoretical underpinnings and practical implications for security, performance, and

system resilience. Given below is an overview of the topics cover throughout the

analysis

1. Separating of the file system server from the kernel.

2. Minimizing of shared resources

3. Extensibility of the virtualized environment

4. Tighter interfaces with strict access control

5.1.1 Separating of the file system server from the kernel

Given that microkernels communicate through Inter-Process Communication (IPC),

this ensures that the server maintains a well-defined interface and a separation of

concerns [49]. The functionality of the file system server remains contained within

itself, with only the necessary functionality present. This significant reduction in

the Trusted Computing Base (TCB) of the file system enhances isolation by min-

64

imizing shared regions. Additionally, it diminishes dependencies on other compo-

nents; errors occurring in di↵erent servers are less likely to a↵ect the functionality

of the file system server, thus enhancing isolation further.

In contrast, in a monolithic implementation, the file system logic is interspersed

among other components, which can lead to kernel misuse of the file system, causing

unforeseen issues. This expanded TCB and loosely defined interface contribute sub-

stantially to decreased isolation. This disparity becomes more pronounced when

comparing the nature of the address spaces in both architectures, which greatly

impacts error propagation and fault tolerance of the file system and related com-

ponents. The monolithic architecture employs a unified address space, wherein

the kernel resides within the processes’ address space upon execution. This design

choice is primarily driven by the necessity to execute kernel code during system calls

without necessitating a context switch, thereby enhancing performance. However,

this approach, while advantageous for performance, presents significant drawbacks

in terms of isolation. Integrating the kernel within the same address space as po-

tentially malicious processes is suboptimal, particularly concerning the isolation of

critical operating system components such as the file system [49].

A vulnerability in either a kernel component or an executing process could lead

to an attacker gaining access to the entire kernel, thereby facilitating an attack.

Consequently, this leaves the file system susceptible to exploitation. In contrast,

within a microkernel architecture, the kernel’s address space is distinct and can only

be accessed through Inter-Process Communication (IPC). This segregation signifi-

cantly mitigates the risk of kernel attacks, consequently reducing the likelihood of

misusing highly privileged kernel components to compromise the file system[49].

Hence, the separation in address spaces yields two key benefits: first, it prevents a

bug within the file system from impacting other components, and second, it shields

the file system from bugs in disparate components, including the kernel. This

separation enhances isolation by reducing shared regions and dependencies.

Furthermore, the separation of the file system from the kernel yields additional

advantages. By relocating the file system logic from the kernel to a smaller compo-

nent with a well-defined interface and a secure protocol, the logic within the server

becomes amenable to formal verification. This rigorous verification process serves

65

to minimize system bugs and ensures the expected functionality of the file system.

These characteristics and isolation benefits are evident within the kernel, but how

do they translate to the realm of containerization? As previously discussed, the file

system holds significant importance within a microkernel architecture. In the case

of Hurd, it serves as the primary authority responsible for global namespace man-

agement, including pathname resolution, and functions as a data store. Given the

criticality of its role, ensuring the reliability and security of this particular server

is paramount.

Containers, or similar environments such as a Subhurd, executed on the host oper-

ating system, facilitate the execution of programs of diverse natures. Consequently,

meticulous exposure of the file system through an extremely stringent interface em-

ploying secure protocols becomes crucial in enhancing the isolation of the server,

thus ensuring the security of the container that relies on its functionality.

This principle also extends to error propagation and fault tolerance. Since each

container possesses its own file system isolated within its designated address space,

a vulnerability occurring within the file system of a single container does not prop-

agate to other containers. Similarly, a fault occurring in a separate component

within a container has minimal impact on the container’s ability to utilize the file

system server. This capability to contain faults and enhance fault tolerance can be

readily demonstrated through the use of two Subhurds, as follows.

The experiment aims to terminate the file system server of one Subhurd and observe

whether the file system server of the other Subhurd remains operational. In Figure

5.1, the diagrams demonstrates the process involving the identification of the PID

related to the file system server of Subhurd 1 and terminating it. Timestamps are

provided to demonstrate that the termination occurred prior to executing the ls

command on Subhurd 2. Figure 5.2 illustrates that Subhurd 2 remains una↵ected

by the crash of Subhurd 1’s file system server. Finally, Figure 5.3 displays the

outcome with only one file system server remaining (that of Subhurd 2).

Note: The ext2fs.static file system types are associated with Subhurds, while the

host employs an ext2 file system type. Therefore, the grep tool was instructed to

search for the text “ext2fs.static”. Additionally, it’s important to mention that

the error message “Computer bought the farm,” typically indicative of a translator

66

Figure 5.1: Killing the file system server of Subhurd 1

Figure 5.2: Observing the functionality of the file system server of Subhurd 2

crash, is equivalent to an “Oops” message [56].

In a monolithic system, a scenario similar to the experiment described above, where

a glitch in the file system code leads to a crash, would result in the entire kernel

collapsing, consequently a↵ecting the entire cluster of containers [49].

5.1.2 Minimizing of shared resources

Microkernels inherently place their file system-related logic in user space as a pro-

cess that can be initiated and duplicated as required. This was exemplified sev-

eral times in the implementation section. This capacity to encapsulate and isolate

task-related logic while scaling horizontally o↵ers certain advantages. For instance,

non-shareable resources within the file system are dedicated to specific instances

(e.g., an array of UID stored within the file system server accessed with a mutex

lock). Such resources often pose issues when multiple processes attempt to utilize

the same non-shareable resources simultaneously, as access to these resources is

blocked. However, when the logic can be horizontally scaled, similar to how file

system servers in Hurd can be initiated as needed, there is less contention and

67

Figure 5.3: List of operating file systems seen by the host

congestion to access these types of resources, which can enhance performance and

reduce the impact on a process using the file system from another process. This ef-

fect is particularly pronounced in the context of containers. As observed during the

implementation of the Subhurd, each container (or Subhurd) receives a dedicated

file system server to handle tasks specific to it. This implies that the utilization

frequency of the file system server of one container will not a↵ect the performance

of another. This reduction in interdependence between file system servers and

containers can be viewed as an enhancement in isolation compared to the mono-

lithic counterpart, where the file system logic is shared among all containers. This

concept is illustrated in Figure 5.4.

Figure 5.4: Minimization of non-sharable resources in a microkernel architecture

Additionally, increasing the pool of available resources while decreasing the num-

ber of processes requesting them should significantly decrease the likelihood of

encountering deadlocks, thus providing better isolation against deadlocks.

While the isolation provided could enhance performance, reducing the overall shar-

ing of resources could also enhance security. When the same resource is shared

among multiple processes, these resources become vulnerable to side-channel at-

68

tacks. These attacks could potentially extract information about recently accessed

files, access rights, and other metadata stored in the file system logic related to a

particular user. Numerous incidents involving cryptographic algorithms and cache

systems have underscored the risks associated with such attacks. For instance, a

scenario where a container could extract information about another container in the

system using a side-channel attack could have devastating consequences[23][22][25].

5.1.3 Extensibility of the containerized system

While extensibility may not initially appear closely tied to isolation, its relevance

becomes evident upon closer examination. Decreasing reliance on the host system

represents an enhancement of isolation. Essentially, this implies that when a virtu-

alized system becomes good at fulfilling requirements while reducing dependency

on the specific implementation details of the host system, its isolation has been

improved. The objective of any virtualization platform and technique is to provide

an experience similar to that of a fully dedicated system. As these two systems

converge in terms of functionalities, the mutual restrictions and dependencies di-

minish, thereby enhancing independence alongside isolation [9]. Consequently, even

if changes occur in the file system implementation, a container remains insulated

from these changes as it wasn’t reliant on them to begin with.

One such functionality demonstrating this principle is the ability to connect a file

system of any type to a container and utilize it. Subhurds facilitates this capabil-

ity, as utilizing a translator is not a privileged action. Users retain the freedom

to opt for a completely di↵erent file system than the one provided by the un-

derlying kernel, perhaps selecting one that better suits their tasks or preferences.

Furthermore, this feature enables the testing of custom file systems from within

a container, thereby fostering experimentation and innovation. The monolithic

counterpart has recently recognized the value of separation and isolation, endeav-

oring to incorporate userspace file systems like FUSE and introduce concepts such

as Docker Volumes to enhance file system capabilities [61] [62]. However, these

implementations still necessitate privileged access or a system capability akin to

CAP SYS ADMIN to function e↵ectively. Granting such formidable power to an un-

known user solely for the purpose of mounting a new file system presents a notable

69

security risk. Rootless containers have been proposed as a solution, which involves

adding the user docker to the sudo group. While this mitigates the issue to some

extent, it essentially involves introducing a potentially exploitable user into a highly

privileged group. One of the primary reasons for this issue lies in the centralized

file system logic, tasked with managing various file system types. Allowing users

to integrate any file system introduces the potential for complications within the

file system logic, potentially surpassing its capabilities. As previously discussed,

this places the entire kernel at risk, consequently jeopardizing the integrity of the

entire cluster of containers. However, microkernels do not encounter this issue. If

a container misuses this functionality and inadvertently causes a problem or bug,

only that specific container will fail, leaving the rest of the containers una↵ected.

This principle extends to drivers associated with file systems and related hardware

as well. In monolithic architectures, drivers are integrated into the kernel, making

it challenging to select a set of drivers optimized for a particular file system imple-

mentation. Instead, reliance is placed on the kernel developer’s choice, which may

not necessarily align with individual requirements. This dependency of containers

on their kernel is absent in the microkernel architecture. Since drivers exist in

userspace as regular processes, users have the flexibility to initiate new drivers and

utilize them as needed, thereby alleviating reliance on kernel-specific choices.

5.1.4 Tighter interfaces with strict access control

Microkernels implement servers as processes with interfaces, which is partly necessi-

tated by the communication mode being Remote Procedure Call (RPC). However,

this setup provides an advantage when considering process isolation. In the case of

Hurd, there is stringent control over who and what level of access is granted on its

underlying storage, accomplished through Identity-Based Access Control (IBAC).

Hurd servers manage access to objects based on the identity of the subject. While

the policy is similar to Unix, the mechanism di↵ers significantly. In Hurd, identi-

ties are treated as first-class objects, meaning a single process may possess multiple

identities or none at all, managed by the auth server. The auth server also supports

programs in the implementation of IBAC by furnishing an authentication mecha-

nism that enables programs to securely expose identities to others in a verifiable

70

manner [52].

As identities are first-class objects, a process can hold access to any number of

User IDs (UIDs) and Group IDs (GIDs), or none at all. Furthermore, because

they are merely objects denoted by capabilities, a process can relinquish its au-

thority to an identity by dropping the capability referencing it, a process known as

discretionary authority reduction. This technique enables applications to operate

with reduced authority, thereby mitigating the potential damage caused by bugs or

attackers. Applications requiring access to a fixed number of resources at startup,

and subsequently not needing the authority granted by an identity, can leverage

this approach. For example, a network server needing to bind to a TCP port below

1024, but not requiring superuser authority otherwise, can operate without any

UIDs or GIDs after binding to the port.

This practice of tightening interfaces with stringent access control measures, which

diminishes shared interfaces and interactions, thereby enhancing isolation, can also

be implemented in file system-related servers. For instance, a document viewer,

after opening a user-specified file, could nullify the identity object to mitigate

the impact of a malicious macro, e↵ectively eliminating a potential vulnerability

isolationg the file system against such attacks.

5.2 Performance comparison

Performance comparisons were conducted between a single Subhurd environment

and a Docker Lubuntu image (running on WSL). Since many popular tools are

designed for the Linux kernel, smaller open-source benchmarks compatible with

Hurd’s glibc interface were utilized. It’s important to highlight that GNU Hurd

operates on QEMU with KVM, and the performance metrics may vary when run-

ning on a bare-metal Hurd. Each test was executed five times (CPU benchmark

three times) at various instances, and the average values were considered for anal-

ysis.

71

5.2.1 CPU

Figure 5.5 illustrates the duration taken by each environment to execute a bench-

mark tasked with calculating the first 5,761,455 primes [63]. As anticipated, Sub-

hurd exhibits suboptimal performance, attributed to its constrained optimization

within the kernel and the overhead of inter-process communication (IPC).

Figure 5.5: Time taken to calculate 5,761,455 primes

5.2.2 File System

The benchmark utilized in the assessment aimed to generate new files with names

of 40 bytes in length and content of 10,240 bytes. A total of 5,000 such files were

generated to evaluate the performance and e↵ectiveness of the file system logic and

interfaces [64].

Figure 5.6 depicts the comparison of files created per second. It is evident from the

data that the Subhurd performs comparably well with the Docker implementation

in this specific metric.

Figure 5.7 illustrates the comparison of application overhead, which denotes the

duration the application remained idle while other components were occupied with

their respective tasks. As anticipated, the Subhurd exhibits poor performance

72

Figure 5.6: File created per second

owing to the utilization of message passing as the communication mechanism.

Figure 5.7: Application overhead

In Figure 5.8, the latency in executing each system call during the file creation

process is depicted. Once more, the Subhurd demonstrates a consistent underper-

formance, attributable to its reliance on the IPC mechanism.

73

Figure 5.8: System call latency

5.2.3 Memory

The benchmark conducts a sequence of memory allocations and records the transfer

speeds. Additionally, it reads blocks of varying sizes from memory and measures

the latency in receiving these expected blocks. Figure 5.9 illustrates the transfer

speeds for di↵erent memory allocation and deallocation tasks, revealing Docker

container’s superior performance over the Subhurd [65].

Figure 5.10 depicts the reading of blocks from memory, with the Subhurd displaying

the anticipated poor performance.

In general, the Subhurd exhibits poor performance across various metrics, at-

tributable to its reliance on Inter-Process Communication, limited optimizations

due to inadequate development contributions, and the additional overhead intro-

duced by Qemu emulation.

74

Figure 5.9: Memory transfer speeds

Figure 5.10: Reading speed

75

Chapter 6 - Conclusions

The research has e↵ectively achieved its objectives by investigating and establishing

a correlation between microkernels and containers. Additionally, it successfully

implemented a rudimentary version of containers utilizing the functionalities o↵ered

by the microkernel-based operating system (GNU Hurd). Furthermore, the study

delved into and evaluated the capabilities provided by microkernels to enhance file

system isolation. Finally, a performance comparison was conducted between the

two environments to address the research questions.

The findings indicate that:

• The decoupled architecture of microkernels can indeed be leveraged to en-

hance the low-level isolation of containers.

• However, the implementation of containers in a microkernel-based operating

system exhibits performance limitations.

Overall, this research lays a strong foundation for further exploration into the

discussed topics.

6.1 Limitations

• The research primarily concentrated on file system isolation, o↵ering only a

broader perspective on additional isolation mechanisms

• The research revolves around implementing GNU Hurd rather than present-

ing a generalized theoretical model.

• The isolation analysis does not delve deeply into drivers and other firmware-

related aspects that could impact file system isolation.

• The research does not extensively explore the highly technical aspects of GNU

Hurd.

76

6.2 Future Work

• Delving into other aspects of a microkernel-based operating system, such as

networking and security, and investigating how the inherent features of a

microkernel can enhance those aspects when running a container implemen-

tation.

• Identifying potential enhancements for GNU Hurd to address some of the

challenges encountered during the implementation of a container.

77

Bibliography

[1] Fernando, F. Freitag, and Navarro, “A summary of virtualization techniques,”
2012.

[2] K. Khajehei, “Role of virtualization in cloud computing,” International Jour-
nal of Advance Research in Computer Science and Management Studies,
vol. 2, no. 4, p. 0, 2014.

[3] R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose, “Performance analysis of
virtual machines and containers in cloud computing,” in 2016 International
Conference on Computing, Communication and Automation (ICCCA), 2016,
pp. 1204–1210. doi: 10.1109/CCAA.2016.7813925.

[4] V. G. da Silva, M. Kirikova, and G. Alksnis, “Containers for virtualization:
An overview,” Applied Computer Systems, vol. 23, no. 1, pp. 21–27, 2018.
doi: doi:10.2478/acss-2018-0003. [Online]. Available: https://doi.
org/10.2478/acss-2018-0003.

[5] C. G. Kominos, N. Seyvet, and K. Vandikas, “Bare-metal, virtual machines
and containers in openstack,” in 2017 20th Conference on Innovations in
Clouds, Internet and Networks (ICIN), 2017, pp. 36–43. doi: 10.1109/ICIN.
2017.7899247.

[6] J. Gu, X. Wu, W. Li, et al., “Harmonizing performance and isolation in mi-
crokernels with e�cient intra-kernel isolation and communication,” in Pro-
ceedings of the 2020 USENIX Conference on Usenix Annual Technical Con-
ference, 2020, pp. 401–417.

[7] A. R. Hevner, “A three cycle view of design science research,” Scandinavian
journal of information systems, vol. 19, no. 2, p. 4, 2007.

[8] S. Crosby and D. Brown, “The virtualization reality: Are hypervisors the
new foundation for system software?” Queue, vol. 4, no. 10, pp. 34–41, Dec.
2006, issn: 1542-7730. doi: 10.1145/1189276.1189289. [Online]. Available:
https://doi.org/10.1145/1189276.1189289.

[9] S. Sharma and Y. Park, “Virtualization: A review and future directions exec-
utive overview,” American Journal of Information Technology, vol. 1, pp. 1–
37, May 2011.

[10] VMware, Inc., Understanding full virtualization, paravirtualization, and hard-
ware assist, VM Technical Resources, Retrieved Apr. 7, 2024 from https://

www.vmware.com/techpapers/2007/understanding-full-virtualization-

paravirtualizat-1008.html, Nov. 2007.

[11] R. Uhlig, G. Neiger, D. Rodgers, et al., “Intel virtualization technology,”
Computer, vol. 38, no. 5, pp. 48–56, 2005. doi: 10.1109/MC.2005.163.

[12] A. Bhardwaj and C. R. Krishna, “Virtualization in cloud computing: Moving
from hypervisor to containerization—a survey,” Arabian Journal for Science
and Engineering, vol. 46, no. 9, pp. 8585–8601, 2021.

[13] S. Tamane, “A review on virtualization: A cloud technology,” International
Journal on Recent and Innovation Trends in Computing and Communication,
vol. 3, no. 7, pp. 4582–4585, 2015.

78

https://doi.org/10.1109/CCAA.2016.7813925
https://doi.org/doi:10.2478/acss-2018-0003
https://doi.org/10.2478/acss-2018-0003
https://doi.org/10.2478/acss-2018-0003
https://doi.org/10.1109/ICIN.2017.7899247
https://doi.org/10.1109/ICIN.2017.7899247
https://doi.org/10.1145/1189276.1189289
https://doi.org/10.1145/1189276.1189289
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://doi.org/10.1109/MC.2005.163

[14] A. Bhardwaj and C. R. Krishna, “Virtualization in cloud computing: Moving
from hypervisor to containerization—a survey,” Arabian Journal for Science
and Engineering, vol. 46, no. 9, pp. 8585–8601, 2021.

[15] IBM, What is a virtual machine (vm)? [Online]. Available: https://www.
ibm.com/topics/virtual-machines.

[16] R. Chopra, “A review paper on virtualization,” International Journal of In-
novative Research in Computer Science & Technology, vol. 10, no. 2, pp. 131–
135, 2022.

[17] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A.
De Rose, “Performance evaluation of container-based virtualization for high
performance computing environments,” in 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, IEEE,
2013, pp. 233–240.

[18] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and
virtual machines at scale: A comparative study,” in Proceedings of the 17th
International Middleware Conference, ser. Middleware ’16, Trento, Italy: As-
sociation for Computing Machinery, 2016, isbn: 9781450343008. doi: 10.
1145/2988336.2988337. [Online]. Available: https://doi.org/10.1145/
2988336.2988337.

[19] M. Compastié, R. Badonnel, O. Festor, and R. He, “From virtualization secu-
rity issues to cloud protection opportunities: An in-depth analysis of system
virtualization models,” Computers & Security, vol. 97, p. 101 905, 2020.

[20] A. Hakamian and A. Rahmani, “Evaluation of isolation in virtual machine
environments encounter in e↵ective attacks against memory,” Security and
Communication Networks, vol. 8, Oct. 2015. doi: 10.1002/sec.1374.

[21] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421, Jul.
1974, issn: 0001-0782. doi: 10.1145/361011.361073. [Online]. Available:
https://doi.org/10.1145/361011.361073.

[22] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “Confidentiality issues
on a gpu in a virtualized environment,” in Financial Cryptography and Data
Security, Springer, 2014, pp. 119–135.

[23] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[24] F. Serna, The info leak era on software exploitation, Retrieved Apr. 7, 2024
from https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_

12_Serna_Leak_Era_Slides.pdf, 2012.

[25] M. Talbi, Attacking a co-hosted vm: A hacker, a hammer and two memory
modules, Retrieved Apr. 7, 2024 from https://www.stormshield.com/

news/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/,
2017.

[26] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security threats,
and solutions,” ACM Computing Surveys (CSUR), vol. 45, no. 2, pp. 1–39,
2013.

79

https://www.ibm.com/topics/virtual-machines
https://www.ibm.com/topics/virtual-machines
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1002/sec.1374
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
https://www.stormshield.com/news/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/
https://www.stormshield.com/news/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/

[27] X. Diao, M. Pietrykowski, F. Huang, C. Mutha, and C. Smidts, “An ontology-
based fault generation and fault propagation analysis approach for safety-
critical computer systems at the design stage,” Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, vol. 36, e1, 2022. doi: 10.
1017/S0890060421000342.

[28] S. Kundu, S. Chowdhury, S. Saha, A. Karmakar, D. Mukhopadhyay, and I.
Verbauwhede, “Carry your fault: A fault propagation attack on side-channel
protected lwe-based kem,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2024, pp. 844–869, Mar. 2024. doi: 10.46586/
tches.v2024.i2.844-869.

[29] J. Sun, S. Li, J. Xu, and J. Huang, “The security war in file systems: An em-
pirical study from a vulnerability-centric perspective,” ACM Trans. Storage,
vol. 19, no. 4, Oct. 2023, issn: 1553-3077. doi: 10.1145/3606020. [Online].
Available: https://doi.org/10.1145/3606020.

[30] Z. Huang, “A comparative study on the performance isolation of virtualiza-
tion technologies,” Arizona State University, Tech. Rep., 2019.

[31] How to create a Linux container without a VM (LX Branded Zones) - Smar-
tOS Documentation — wiki.smartos.org, https://wiki.smartos.org/lx-
branded-zones/, [Accessed 08-04-2024].

[32] craigloewen-msft,What is Windows Subsystem for Linux — learn.microsoft.com,
https://learn.microsoft.com/en-us/windows/wsl/about, [Accessed 08-
04-2024].

[33] M. D. M. B. W. Kernighan, UNIX Time-Sharing System: UNIX Program-
mer’s Manual, 7th ed. Bell Telephone Laboratories Incorporated, Murray
Hill, NJ., 1979, vol. 2.

[34] P.-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,” in
Proceedings of the 2nd International SANE Conference, vol. 43, 2000, p. 116.

[35] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-
based operating system virtualization: A scalable, high-performance alter-
native to hypervisors,” in Proceedings of the 2Nd ACM SIGOPS/EuroSys
european conference on computer systems 2007, 2007, pp. 275–287.

[36] Y. Huang, A. Stavrou, A. K. Ghosh, and S. Jajodia, “E�ciently tracking
application interactions using lightweight virtualization,” in Proceedings of
the 1st ACM workshop on Virtual machine security, 2008, pp. 19–28.

[37] D. Price and A. Tucker, “Solaris zones: Operating system support for con-
solidating commercial workloads.,” in LISA, vol. 4, 2004, pp. 241–254.

[38] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. D. Gligor,
“Subdomain: Parsimonious server security.,” in LISA, 2000, pp. 355–368.

[39] P. A. Loscocco and S. Smalley, “Integrating flexible support for security poli-
cies into the linux operating system.,” in USENIX Annual Technical Confer-
ence, FREENIX Track, 2001, pp. 29–42.

[40] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux
security module framework,” in Ottawa Linux Symposium, vol. 8032, 2002,
pp. 6–16.

80

https://doi.org/10.1017/S0890060421000342
https://doi.org/10.1017/S0890060421000342
https://doi.org/10.46586/tches.v2024.i2.844-869
https://doi.org/10.46586/tches.v2024.i2.844-869
https://doi.org/10.1145/3606020
https://doi.org/10.1145/3606020
https://wiki.smartos.org/lx-branded-zones/
https://wiki.smartos.org/lx-branded-zones/
https://learn.microsoft.com/en-us/windows/wsl/about

[41] J. Krude and U. Meyer, “A versatile code execution isolation framework with
security first,” in Proceedings of the 2013 ACM workshop on Cloud computing
security workshop, 2013, pp. 1–10.

[42] A. Randal, “The ideal versus the real: Revisiting the history of virtual ma-
chines and containers,” ACM Computing Surveys (CSUR), vol. 53, no. 1,
pp. 1–31, 2020.

[43] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s escape: Break-
ing the resource rein of linux control groups,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1073–1086.

[44] Finding Out Which Linux Capabilities a Process Needs to Work — Baeldung
on Linux — baeldung.com, https://www.baeldung.com/linux/process-
needed-capabilities, [Accessed 11-04-2024].

[45] Exploring container security: An overview — Google Cloud Blog — cloud.google.com,
https://cloud.google.com/blog/products/gcp/exploring-container-

security-an-overview, [Accessed 11-04-2024].

[46] D. J. Walsh, Are Docker containers really secure? — opensource.com, https:
//opensource.com/business/14/7/docker-security-selinux, [Accessed
11-04-2024].

[47] A. Tanenbaum, Modern Operating Systems. Pearson Prentice Hall, 2009,
isbn: 9780138134594. [Online]. Available: https : / / books . google . lk /
books?id=3PM5ngEACAAJ.

[48] P. B. Hansen, “Rc 4000 software: Multiprogramming system,” in Classic
Operating Systems: From Batch Processing To Distributed Systems, Springer,
1969, pp. 237–281.

[49] P. Bitterling, Operating system kernels, 2010.

[50] S. Biggs, D. Lee, and G. Heiser, “The jury is in: Monolithic os design is
flawed,” in Asia-Pacific Workshop on Systems (APSys). Korea: ACM SIGOPS,
2018.

[51] M. Rana and S. Baul, “A survey on microkernel based operating systems and
their essential key components,” SSRN Electronic Journal, Jun. 2023. doi:
10.2139/ssrn.4467406.

[52] N. H. Walfield and M. Brinkmann, “A critique of the gnu hurd multi-server
operating system,” ACM SIGOPS Operating Systems Review, vol. 41, no. 4,
pp. 30–39, 2007.

[53] D. Vemuri and W. Alhamdani, “Measures to improve security in a microker-
nel operating system,” Sep. 2011. doi: 10.1145/2047456.2047460.

[54] Documentation — darnassus.sceen.net, https://darnassus.sceen.net/

~hurd-web/documentation/, [Accessed 16-04-2024].

[55] R. Espinola, Stallman’s Dream: GNU Hurd, https://raulespinola.wordpress.
com/2009/02/12/el-sueno-de-stallman-gnu-hurd/, [Accessed 16-04-
2024].

[56] G. Hurd, Gnu documentation, 2023. [Online]. Available: https://www.gnu.
org/software/hurd/documentation.html.

81

https://www.baeldung.com/linux/process-needed-capabilities
https://www.baeldung.com/linux/process-needed-capabilities
https://cloud.google.com/blog/products/gcp/exploring-container-security-an-overview
https://cloud.google.com/blog/products/gcp/exploring-container-security-an-overview
https://opensource.com/business/14/7/docker-security-selinux
https://opensource.com/business/14/7/docker-security-selinux
https://books.google.lk/books?id=3PM5ngEACAAJ
https://books.google.lk/books?id=3PM5ngEACAAJ
https://doi.org/10.2139/ssrn.4467406
https://doi.org/10.1145/2047456.2047460
https://darnassus.sceen.net/~hurd-web/documentation/
https://darnassus.sceen.net/~hurd-web/documentation/
https://raulespinola.wordpress.com/2009/02/12/el-sueno-de-stallman-gnu-hurd/
https://raulespinola.wordpress.com/2009/02/12/el-sueno-de-stallman-gnu-hurd/
https://www.gnu.org/software/hurd/documentation.html
https://www.gnu.org/software/hurd/documentation.html

[57] The confused deputy problem - AWS Identity and Access Management —
docs.aws.amazon.com, https : / / docs . aws . amazon . com / IAM / latest /
UserGuide/confused-deputy.html, [Accessed 18-04-2024].

[58] Debian – Debian GNU/Hurd 2014; Configuration — debian.org, https://
www.debian.org/ports/hurd/hurd-install, [Accessed 20-04-2024].

[59] WSL2 vs Linux (HPL HPCG NAMD) — pugetsystems.com, https://www.
pugetsystems.com/labs/hpc/wsl2-vs-linux-hpl-hpcg-namd-2354/,
[Accessed 20-04-2024].

[60] Debian, Debootstrap, https://wiki.debian.org/Debootstrap, [Accessed
21-04-2024].

[61] FUSE &x2014; The Linux Kernel documentation — kernel.org, https://
www.kernel.org/doc/html/next/filesystems/fuse.html, [Accessed
22-04-2024].

[62] Volumes — docs.docker.com, https://docs.docker.com/storage/volumes/,
[Accessed 22-04-2024].

[63] GitHub - freshe/c-cpu-bench: Simple CPU bench / test — github.com, https:
//github.com/freshe/c-cpu-bench, [Accessed 22-04-2024].

[64] GitHub - josefbacik/fsmark: A file system benchmark tool — github.com,
https://github.com/josefbacik/fs_mark, [Accessed 22-04-2024].

[65] GitHub - ssvb/tinymembench: Simple benchmark for memory throughput and
latency — github.com, https://github.com/ssvb/tinymembench, [Ac-
cessed 22-04-2024].

82

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://www.debian.org/ports/hurd/hurd-install
https://www.debian.org/ports/hurd/hurd-install
https://www.pugetsystems.com/labs/hpc/wsl2-vs-linux-hpl-hpcg-namd-2354/
https://www.pugetsystems.com/labs/hpc/wsl2-vs-linux-hpl-hpcg-namd-2354/
https://wiki.debian.org/Debootstrap
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://docs.docker.com/storage/volumes/
https://github.com/freshe/c-cpu-bench
https://github.com/freshe/c-cpu-bench
https://github.com/josefbacik/fs_mark
https://github.com/ssvb/tinymembench

	Introduction
	Background
	Containers
	Microkernels

	Gap and Research Questions
	Research Aim and Objectives
	Research Scope
	Significance of the project
	Research Methodology and Evaluation Criteria

	Literature Review
	Virtualization
	What is virtualization?
	Characteristics of virtualization
	Types of virtualization
	Comparision between virtual machines and containers

	Isolation
	Importance of isolation in virtualization
	Methods of improving isolation

	Containers
	Evolution of container technologies
	Technology Stack of Containers
	Isolation in containers

	Operating system kernels
	Microkernel architecture
	Monolith kernel architecture
	Comparison of isolation between architectures

	Design
	Selection of a suitable environment
	Important characteristics of GNU Hurd

	Setup a container within GNU Hurd
	Essential components of GNU Hurd
	Design 1
	Design 2

	Isolation Analysis
	Performance comparison

	Implementation
	Test Environment Setup
	Implementing Design 1
	Implementing Design 2
	Isolation analysis

	Results and Evaluation
	Analysis on file system isolation
	Separating of the file system server from the kernel
	Minimizing of shared resources
	Extensibility of the containerized system
	Tighter interfaces with strict access control

	Performance comparison
	CPU
	File System
	Memory

	Conclusions
	Limitations
	Future Work

