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Abstract

Student dropout in higher education is one of the significant problems encountered

by educational institutions and students globally. This theses focuses on identify-

ing contributing factors and improving prediction accuracy using various machine

learning techniques. The research uses Logistic Regression, Decision Trees, Ran-

dom Forest Trees, Support Vector Machines (SVM), Naive Bayes, and Boosting

Classifiers like XG Boost Classifier, Gradient Boost Classifier, CatBoost Classifier,

and AdaBoost Classifier to examine both academic and non-academic factors. To

enhance the analysis, the research incorporates techniques like correlated feature

management and hyperparameter tuning, alongside data sampling methodologies

such as SMOTE, SVM-SMOTE, and ADASYN with ADASYN emerging as the

best sampling technique.

After the initial stages the research found that the CatBoost classifier, en-

hanced by ADASYN sampling, significantly improved prediction accuracy with a

testing F1-Score of 0.8603, suggesting a robust model for educational institutions

to early identify at-risk students. Then, the second phase of this research was

focused on the interpretation of the prediction. There we considered LIME,SHAP

and Explainable Boosting Machine as the interpretable and explainable models.

This thesis identifies non-academic factors such as socio-economic background and

personal resilience as significant predictors of student dropout rates, beyond aca-

demic performance alone from the explanations of the two XAI models.

This study conducted comprehensive experiments encompassing machine learn-

ing and explainable artificial intelligence methodologies, aiming to optimize accu-

racy and interoperability in the obtained results and found out how LIME and

SHAP can be applied for interpretability according to the context.
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Preface

This document has been produced for the partial fulfillment of the requirements

of the B.Sc. in Computer Science (Hons) Final Year Project in Computer Science

(SCS4224).

This study examines the intersection of Machine Learning (ML) and Explain-

able Artificial Intelligence (XAI), with a specific emphasis on the prediction of

undergraduate dropouts and their academic performance. It aims to identify stu-

dents who are at risk of dropping out or underperforming early on, using effective

machine learning techniques and XAI techniques.

A Portugal university undergraduate student dataset was used in this study

which had an inherent class imbalance problem. We used SMOTE, SVM-SMOTE,

and ADASYN sampling techniques to overcome from the class imbalance problem.

The predictive power of several machine learning models is evaluated in this study

including 5 general models and 4 boosting models. In addition, the research

employs XAI approaches such as LIME, SHAP and EBM to demystify the models’

decision-making processes, improving the transparency and interpretability of the

results.

In Chapter 1, it presents the introduction and background of the study with an

overview of the dissertation. In Chapter 2, it explore a wider range of theories,

techniques, and related work in this field. In Chapter 3, it explains how we

designed our approach, and in Chapter 4, it will provide all the details about how

we implemented it. All the results and how each and every evaluation is done

is described in Chapter 5. Then, in Chapter 6, we will discuss the conclusions,

limitaions and future work of the research.

This dissertation represents the original work that I, along with my supervisor

and co-supervisor, have conducted and hereby claim everything else mentioned in

this dissertation without a specific reference to any third-party work as our own.
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1 Introduction

1.1 Introduction

Student dropout in higher education is one of the significant problems encountered

by educational institutions and students globally. Therefore, it is an important

field to explore student dropouts in higher education institutes as it has a sig-

nificant impact on both educational institutions and student success. Academic

achievement is an important predictor of identifying students at risk of dropping

out. Other than academic achievements there are numerous other factors that

may affect and contribute to the dropouts of students. According to a statistical

study that was done in 2022 (Hanson 2022), it has found, 32.9% of United States

undergraduates do not complete their degree program. These statistics implicate

why it is important to explore student dropouts in higher education.

This research focuses on predicting how well students will do in their stud-

ies while making sure the research methods we use are both accurate and inter-

pretable. With the help of machine learning and XAI, we can now look at a lot of

data to try and figure out what helps students succeed and what doesn’t not. This

is about finding the right balance between making predictions that we can trust

and making sure we know why the predictions say what they do. Understanding

and predicting how well students will do in their courses is a big challenge. It in-

volves looking at many things, like how well they have done previously and what

kind of background they come from. These things can tell us a lot about how likely

they are to do well in the future. Identifying these contributing factors and how

much they contribute to student dropout is an important area that lacks research.

Many research studies have focused on either academic factors or non-academic

factors when trying to predict student dropouts. In the study (Balbin 2019), they

have explained how the non-academic features such as family income, size of the

family, parent’s involvement and support affects to the academic performance of a
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student. In our study we examine how various factors, both related to academics

and non-academics, can impact students’ performance.

The performance of a student is measured through various practices in a uni-

versity such as examinations, assignments, quizzes, and vivas (Pillay et al. 2017).

The sole goal of students, higher educational institutes, and universities is to im-

prove the student’s performance and reduce dropouts. For a long time, people have

been trying to figure out the best way to predict student success. This has led to

many different methods being tried, from basic statistics to more complex com-

puter models. Unlike previous studies that predominantly focused on academic

predictors, this research integrates both academic and non-academic predictors.

In our study we use advanced machine learning algorithms, including CatBoost

(Prokhorenkova et al. 2018) and XGBoost (Chen and Guestrin 2016), together

with unique data sampling techniques like ADASYN (He et al. 2008). The objec-

tive is to improve the precision of predicting student outcomes and provide useful

insights. The scope of our study includes nine discrete machine learning models:

Logistic Regression, Decision Trees, Random Forests, Support Vector Machines,

Naive Bayes, Extreme Gradient Boosting, Gradient Boosting Machines, CatBoost,

and AdaBoost. These models are employed to enhance the accuracy of our predic-

tions. Nevertheless, our goal extends beyond only attaining high levels of accuracy

in predictions. It is equally important to guarantee the transparency and under-

standing of the prediction process.

This is precisely the juncture at which explainable artificial intelligence (XAI)

becomes invaluable. Through the application of XAI methodologies, we can ob-

tain transparent explanations for the predictions generated by machine learning

models. Our research focuses on two interpretable models, the Explainable Boost-

ing Machine and Decision Trees, alongside two XAI techniques, LIME (Ribeiro,

Singh, and Guestrin 2016) and SHAP (Lundberg and S.-I. Lee 2017). These expla-

nations enable stakeholders to discern the key features that significantly influence
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the model’s predictions. The institute professionals, lecturers and students can get

an idea of what is the amount of risk that a particular student is having for getting

dropout and what are the reasons for the prediction. In that case all the parties

can take necessary precautions to avoid the situation. That is the importance of

these combined solutions rather than a machine learning prediction.

1.2 Motivation

In today’s complex educational landscape, student success is crucial for both in-

dividuals and institutions. However, many face challenges that hinder their aca-

demic journey. Early identification and support are essential to improve their

educational trajectory and ensure success becomes the norm, not a privilege. De-

spite the common goal of improving student performance and reducing dropout

rates, many students are unable to achieve these objectives due to a variety of

academic and non-academic problems. This reality emphasizes the crucial im-

portance of early identification and support for at-risk students, which has the

potential to significantly modify many individuals’ educational paths

The motivation behind this research stems from the idea that comprehending the

complex elements that lead to student dropouts is just as important as making

the prediction. Through the use of XAI for interpretability and machine learning

models for prediction, this project seeks to both predict academic underperfor-

mance and provide insights into the underlying causes of these predictions.

Therefore, the motivation behind this research is to identify student dropouts

in higher education at an early stage and discern the underlying reasons for these

predictions.
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1.3 Problem Statement

The problem of students dropping out of college is a major issue that affects educa-

tion systems and students all over the world. Addressing the underlying causes of

student dropouts in higher education is imperative because they have huge effects

on their academic performance and the general effectiveness of schools. Academic

achievements of students are a vital predictive factor for identifying students at

risk of dropping out. Other than the academic features there can be numerous

non-academic elements that also play a substantial role in contributing to student

dropouts.

In higher education student performance is assessed through various methods

including examinations, assignments, quizzes and vivas. The ultimate objective

for educational institutions and students alike is to enhance student performance

and reduce dropout rates. However, numerous students are unable to attain this

objective due to excess of academic and non-academic reasons. Understanding the

contributing factors and their impact on student dropout rates is an area that re-

quires more in-depth research. Existing studies often focus primarily on academic

or non-academic factors when predicting student dropouts neglecting a compre-

hensive analysis of both categories. Hence, this research aims to bridge this gap by

exploring both academic and non-academic factors and employing various general

classification machine learning techniques to enhance predictive accuracy.

Additionally, an important aspect that should be considered after predictive

analysis is deciphering the output from the nine machine learning models that

were employed in this investigation. Although performance is often assessed using

metrics like accuracy and F1-Score, it can be difficult to determine how credible

these findings are for educators and students who want to understand the ratio-
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nale behind these predictions. By using XAI techniques it will be able to bridge

this gap. Using XAI methodologies it allows stakeholders to determine which fea-

tures have the most influence on the dropout prediction. This knowledge enables

educators, students, and institutional experts to assess a student’s likelihood of

dropping out and to understand the factors that contribute to these projections,

allowing them to take preventative action.

1.4 Research Aim Questions and Objectives

1.4.1 Research Aim

The aim of this research is to predict student academic performance and detect

underperforming students early by analyzing the contributing features leading to

their underperformance. This proactive approach aims to empower both students

and academic staff to intervene and enhance the academic performance of iden-

tified students by taking necessary precautions according to the corresponding

features that increase their chance of dropping out.

1.4.2 Research Questions

In order to address the requirements of finding a method to predict undergraduate

academic performance while maintaining both accuracy and interpretability, as

elaborated above, we intend to answer the following research questions through

the proposed study.

• RQ1. What is the most suitable machine learning technique for predicting

students’ performance?

A range of machine learning algorithms exists for making predictions, each

with its own set of pros and cons. To accurately forecast student performance

in this environment, it is important to identify the most suited machine

learning technique.
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• RQ2. How to adapt Explainable Artificial Intelligence (XAI) and Interpre-

tation techniques to identify contributing features for each prediction?

There can be several reasons that may affect student dropouts. It is impor-

tant to identify those at risk students who have a higher chance of getting

dropout while identifying the contributing factors for the result. By using

XAI and interpretation techniques we have to investigate how to get an in-

terpretation of the features affected by the result

• RQ3. What is the most effective XAI/Interpretable technique for student

dropout prediction models in terms of interpretability?

This seeks to identify the most effective XAI or the interpretable technique

that offers superior interpretability for student dropout prediction mod-

els. This task involves comparing various XAI and interpretable model ap-

proaches to find one that best explanations for the predictions made by these

models.

1.4.3 Research Objectives

In order to achieve our research aim, the following objectives will be achieved

during the study.

• RO1: To apply and evaluate different machine learning techniques to predict

undergraduate student’s performance

Focuses on employing and assessing a range of machine learning algorithms

to forecast the academic performance of undergraduate students. This in-

volves selecting appropriate models, training them with educational data,

and then evaluating their predictive accuracy and reliability. The aim is to

identify which technique(s) can most effectively predict student outcomes,

thereby enabling early interventions to enhance student success.
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• RO2: To investigate and adapt different Explainable Artificial Intelligence

(XAI) techniques to evaluate the interpretability of the different features on

the output for dropout prediction

This explores the application and adaptation of various Explainable Artificial

Intelligence (XAI) methods to understand how different features influence

the prediction of student dropouts. It involves examining which factors are

most predictive of dropout risks and how these factors are weighted within

the models.

• RO3: To compare and analyze the results of different XAI models and eval-

uate the results to find the best suitable model that suits student dropout

predictions.

This objective aims to conduct a comparative analysis of different XAI mod-

els used in predicting student dropout focusing on evaluating their effective-

ness and interpretability. By analyzing various XAI approaches this objec-

tive seeks to determine the most suitable model that provides clear, under-

standable, trustworthy insights into the dropout prediction process. This

involves assessing the models’ ability to accurately explain the reasoning be-

hind their predictions, thus facilitating more informed decision-making in

educational settings.

1.5 Significance of The Project

This study aims to make several significant contributions to the domain of higher

education and predictive analysis with interpretability and explainability. First,

by using XAI to predict the at-risk students while maintaining interpretability

and transparency, it bridges the gap between accuracy and interpretability. It will

enable the stakeholder to understand how the model predicted the answer and

what factors contributed to the prediction.
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This study will contribute to the development and finding of more effective meth-

ods for predicting academic performance and identifying at-risk students. Through-

out the study different models will be used for the predictions and their perfor-

mance will be analyzed. Also, this study will give insight into how predictive

modeling and XAI can be utilized to enhance the student’s performance and give

a better outcome at the end.The outcomes of this research are intended to inform

the development of targeted intervention programs at educational institutions.

By implementing the predictive models developed through this study, schools can

proactively identify at-risk students at an early stage, enabling timely and tailored

support strategies that significantly reduce dropout rates.

1.6 Scope Including Delimitations

1.6.1 In Scope

Under this research, the following topics will be covered.

• Build predictive models to predict the academic performance of students

• Comparison of machine learning models with their performance

• Application of XAI to get interpretations for the dropout predictions to

identify contributing factors for the dropouts.

• Evaluate and compare the results of the XAI models using user evaluations.

1.6.2 Out of Scope

The following will not be covered under the scope of this research project.

• Predicting the student performance and dropout rates of university students

not related to the considered dataset
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• Prediction of students’ performance regarding other features that are not

available in the dataset and other universities

1.7 Chapter Summary

This chapter describes the foundation for the dissertation by providing the intro-

duction and the background in sections 1.1, 1.2 and 1.3. In section 1.4, it describes

the research aim, questions and objectives. In section 1.5 it is the description on

the significance of the project and the scope of the project is described in section

1.6. Moving forward the dissertation will provide the detailed implementations

and steps described in this chapter.
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2 Literature Review

Academic performance is one of the key factors that determine the success of a

higher education student. Although different universities follow different strategies

commonly universities measure the performance of a student by holding exams,

assignments, presentations and other related mechanisms. From all of these mea-

surements, not all the students will be able to score and perform well. There is

a considerable number of students who fail to approach the required performance

at the end. There might be several reasons that led them to that result. But if we

can identify those students earlier the students them self and also the academic

staff can help to get them out of that disaster.

2.1 General Machine Learning Techniques to Predict Stu-

dent Dropouts

There are several solutions that have been designed to address this issue using

machine learning and deep learning techniques (Lykourentzou et al. 2009).(Mar-

waha and Singla 2020). In the paper ’Using learning analytics to predict at-risk

students in online graduate public affairs and administration education’ they have

analyzed the characteristics and behaviors of at-risk students in online educa-

tion (Bainbridge et al. 2015). For that they have used an online Masters degree

dataset. They have made a predictive model to predict the at-risk students and

have identified the contributing features for it.

The paper titled ’A model to predict student failure in the first year of the

undergraduate medical curriculum’ by Baars, Gerard JA and Stijnen, Theo and

Splinter, Ted AW which was published in 2017, is a comprehensive study focused

on predicting academic failure among first-year medical students at Erasmus Medi-

cal School (Baars, Stijnen, and Splinter 2017). The goal of this study is to provide
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early assistance for first-year students who may not finish their academic work

within the allocated two years. The methodology encompasses a comprehensive

analysis of five consecutive cohorts, totaling 1819 students.

The dataset contains both pre-admission factors (age, gender, pre-university

GPA, selection techniques) and post-admission variables (number of credits earned,

exam participation, and success rates). Notably, the study discovered that stu-

dents who had completed every exam by the fourth or sixth month (known as

”optimals”) had a 99 percent probability of completing the first-year curriculum

successfully. Among the ”non-optimals” at the 6-month mark, the model could

predict failure with a specificity of 66.7% and a sensitivity of 84.5%, based on the

critical indicator of not passing any exams during the fourth and sixth months.

This research emphasizes the usefulness of logistic regression models in iden-

tifying students at risk early in their academic career, allowing for customized

counseling measures. However, the study admits the need to include other crite-

ria to improve prediction precision or permit early intervention. This study not

only adds to the scholarly literature on student success and retention, but it also

provides practical insights for educational institutions looking to reduce dropout

rates through educated, data-driven methods.

The paper titled ’An Empirical Study for Student Academic Performance Pre-

diction Using Machine Learning Techniques’ which is published in 2020 is another

study on predicting the final grade of Vietnamese students within the early phase

of an educational program utilizing several models built using different machine

learning techniques within the education domain (Ha et al. 2020). Initially, a stu-

dent data dataset was created. It consists of demographic information, personal

characteristics, information prior to administering to university and the first and

second year academic performance data. Selecting the most suitable ML technique

is done here by comparing the several performance measures including accuracy,

precision and recall. These aforementioned models take 42 input variables and
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generate only one output variable. It represents the class (A,B,C,D,F) achieved

by students.

ML techniques used to build the models or learners can be categorized as

Rule Based, Neural Based and Statistical Based. OneR, PART, J48, Random

Tree, Random Forest used to build Rule based learners. MLP (multilayer Per-

ceptron) was taken to develop neural-based learners. Näıve Bayes and support

vector machine techniques used for statistical-based learners. Considering both

accuracy comparison and the classification performance comparison done within

this research, both MLP and Näıve Baye perform similarly better than other tech-

niques. Since this is an imbalanced dataset, class A and F have a small number

of observations and both these techniques fail in these classes.

2.1.1 Class Imbalance Problem

In most of the student performance and dropout data related databases, there is

an inherent class imbalance problem as most of the time the number of students

who are dropping out is lesser than the number of students who have graduated.

This is an important context that we should keep it attention. In the paper

(Brandt and Lanzén 2021), they have clearly discussed how sampling techniques

like SMOTE and ADASYN can handle this issue by sampling the data.

2.1.2 Physical Learning Environment

(Baars, Stijnen, and Splinter 2017) offers a comprehensive and insightful explo-

ration into the critical issue of student dropout within higher education, par-

ticularly focusing on the context of medical education. They have effectively

highlighted the global significance of student failure emphasizing its impact on

both financial resources and the loss of potential talent. They support their as-

sertions by citing various studies that delve into the multifaceted motives and

factors contributing to student dropout, encompassing academic, personal, social,
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and environmental dimensions. According to this study in medical education rel-

atively it has a low dropout rate compared to other fields of study. However, they

draw attention to the notable trend that many unsuccessful medical students face

challenges particularly in the first year of the curriculum.

They have mentioned about reviews of prior studies that have attempted to

predict student failure within medical education using pre- and post-admission

variables. While acknowledging that certain variables such as pre-university ed-

ucation GPA and selection methods, display some predictive value for student

achievement, the authors critically examine the limitations and discrepancies in-

herent in these studies. They highlight issues including the lack of specificity and

sensitivity in the predictive variables, variations in defining and measuring student

failure, and the diverse curricula and contexts across different medical schools.

From the research we can identify how the non-academic features can affect for

the student dropouts. This sets a promising stage for further advancements in

predicting and preventing student dropout in higher education.

The paper (Aulck et al. 2016) explores deeply into the process of predicting

student dropout rates in the context of a major public university in the United

States using machine learning techniques. Using a specially chosen dataset from

the University of Washington covering undergraduate students enrolled from 1998

to 2006, the study offers a broad overview of the academic and demographic details

that may indicate an individual’s tendency to drop out of school. This dataset

provides a basis for the research’s predictive modeling efforts since it is rich in

demographic information and academic achievement factors.

The application of three different machine learning models random forests,

k-nearest neighbors (KNN), and regularized logistic regression is a key compo-

nent of the study’s methodology. The study carefully describes the technological

foundations of these models, such as the creative feature selection process and

the thoughtful imputation of missing data points, ensuring a strong analytical
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context. Regularized logistic regression outperforms other approaches in terms of

prediction accuracy and the Area Under the Curve (AUC) for the ROC curves,

according to the detailed research, indicating that it is effective in navigating the

complex network of factors that affect student retention. According to the study,

GPA in important courses like chemistry, English, mathematics, and psychology

is a strong indicator of how persistent a student would be. The results suggest a

promising direction to further research and suggest at the untapped potential of

different machine learning techniques to further improve prediction accuracy.

2.1.3 E-Learning Environments

In the realm of e-learning education systems, various studies have utilized at-

tributes associated with interaction within the learning environment. (Kuzilek et

al. 2015) utilized these attributes, achieving an accuracy of 93.4%. Similarly, (Chui

et al. 2020) employed similar attributes, along with module presentation-related

ones, and attained an accuracy range between 92.2% and 93.8% when predicting

at-risk students. Focusing on interaction attributes within study courses, (You

2016) used metrics like interaction time with resources, student engagement with

problems and submissions, and study habits to achieve an AUC between 0.62 and

0.83. Other studies incorporated metrics such as the volume of emails sent and

evaluations made. Also they obtained significant predictive outcomes and em-

phasized the importance of quiz marks as a predictor. (Kuzilek et al. 2015) used

neural networks to forecast students likely to submit their assignments punctually,

utilizing data from student and peer activity, both combined and separate from

course information, finding networks with higher predictive power.

2.1.4 Video Interaction Prediction

(Mbouzao, Desmarais, and Shrier 2020) has researched about a new aspect in

dropout prediction using video recognition technology. As they have mentioned in

14



the paper there are prior studies that employed data analysis techniques to forecast

student outcomes in MOOCs. These studies used various features such as video

interactions, engagement levels, online social networking, and online activity. Fac-

tors influencing student behavior, like video characteristics, course structure and

student profiles are also explored. In the proposed solution they have introduced,

three predictive metrics based on students’ interactions with MOOC videos: at-

tendance rate (AR), utilization rate (UR) and watch index (WI). They elaborate

on how these metrics are calculated from student video-watching patterns. hey

recognized failure patterns in 60% of students likely to drop out or fail based on

their initial week interaction with Massive Open Online Courses (MOOC) videos,

successfully identifying 78% of students who thrived. Although academic related

features contribute for a predicting system of at-risk students, there might be sev-

eral other considerable facts that led them to be unsuccessful in their journey. In

the research idea its a potential gap to address. Especially in a country like Sri

Lanka there can be several other facts such as economic facts, social facts, geo-

graphical facts and etc that might affect to the academic performance of a student.

And in most of the studies (Mduma, Kalegele, and Machuve 2019) they have built

the machine learning model considering different features.

2.2 Implication of XAI for the interpretation model results

Machine learning models serve as powerful tools for identifying and predicting

students at risk of dropping out. But beyond mere prediction, understanding the

factors influencing these outcomes is crucial. This is where Explainable Artificial

Intelligence (XAI) comes into play, bridging the gap by shedding light on the de-

terminants that the machine learning models rely upon to make their predictions.
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2.2.1 What is XAI and why it is important

Explainable Artificial Intelligence (XAI) can be described as a set of processes

and methods that will allow the user of the machine learning model to trust the

results and output of the machine(IBM 2023).

Figure 2.2.1: XAI vs Machine Learning

As depicted in Figure 2.2.1, normal deep learning models and machine learning

models, it lacks interpretability which means the stakeholders will not be able to

determine how the model will make their predictions. XAI comes into the picture

to address this gap which will allow the stakeholders to understand how a model

arrives at its predictions. It allows the user to get a clear understanding of the

machine learning outcomes which is really important in the future decision making

process.

2.2.2 How XAI can be used to address the problem

The problem that is going to be addressed in this research is predicting the aca-

demic performance of students and identifying the underperforming students ear-

lier while maintaining both accuracy and interpretability. In the process of iden-

tifying the student it is important to know the reasons that led them to under-
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perform. XAI comes into the picture in this context (Turri 2022). Using XAI we

will be able to identify those students while identifying the features and reasons

that are involved in the final prediction.

In this paper (Mahboob, Asif, and Haider 2023) it has described the features

that they have considered as marks of assignments, mid-term, lab exams, semester

marks, total, grade, grade point (G.P.), quality point (Q.P.), grade point average

(G.P.A.), and credit hours data of multiple courses. And they have come up with

prediction results using general machine learning models. Concidering the features

that they have used in the research if we can identify exactly what are the features

that contributes to the result that will be more beneficial for the student as well

as for the institute.

In (Jayasundara, Indika, and Herath 2022) reviewing the current landscape of

Explainable Artificial Intelligence (XAI) in education, the paper highlights a no-

table gap in the literature pertaining to interpretable models for assessing student

performance. To address this gap, the paper introduces an innovative Explainable

Boosting Machine (EBM) tailored for achieving high accuracy and interpretabil-

ity, particularly in the context of multi-class classification problems within the

educational domain. They have used an Indian dataset for the project. The

dataset includes multiple classes in the features and they have used multi-class

classification models for the predictions.

Through comparative analysis with other transparent models like linear mod-

els, decision trees, and decision rules utilizing a student performance dataset

sourced from India, the paper showcases how EBM outperforms in terms of pro-

viding both performance and interpretability. It demonstrates that EBM not only

delivers accurate predictions but also offers comprehensive global and local expla-

nations consistent with feature correlations and selection outcomes. Moreover, the

paper hints at future research directions, underscoring the continuing significance

of developing and refining such interpretative models for the education domain.
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Likewise, if we can apply XAI to interpret and identify the reasons for the

prediction it will be a great opportunity for the student to identify their cons as

well as for the academic of higher educational institutes to enhance the outcome

of their courses. It is another potential gap that can be identified from the studies.

2.3 Evaluating XAI models

Evaluating interpretations of the models is another challenge. As there are no

accepted quantitative evaluation mechanisms for evaluating XAI outputs, the most

common and accepted way of evaluating the outputs is by user studies related to

the domain. In the paper titles ’Explainable AI methods for credit card fraud

detection: Evaluation of LIME and SHAP through a User Study’ by Ji, Yingchao

which is published in 2021 (Ji 2021), describes how a XAI research can be evaluated

using a user study.

The XAI methods selected for this thesis were SHAP and LIME because of

their better explainability compared with others. (Hamelers 2021)

For evaluating XAI (Hoffman et al. 2018) has proposed a new method which

has been widely used by several other papers. It has mentioned about 4 metrics

that needs to be considered when evaluating an XAI output which are Satisfaction,

Understandability, Trustworthiness and Sufficiency.

2.4 Research Gap

While existing studies have made significant progress in leveraging various ma-

chine learning and deep learning techniques to predict student dropouts within

higher education, there remains a notable research gap concerning the compre-

hensive inclusion of non-academic factors influencing student performance and

dropout. The current focus largely centers on academic performance metrics and

their correlation with dropout prediction. However, these studies tend to over-
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look critical non-academic factors that may significantly contribute to student

underperformance and subsequent dropout.

Factors such as economic, social, geographical and other non-academic ele-

ments might serve as crucial determinants affecting a student’s academic journey,

especially. These elements might influence a student’s capacity to thrive within

a higher education system. While the academic features certainly contribute to

an effective predictive system for identifying at-risk students, neglecting the im-

pact of these non-academic variables represents a research gap within the current

literature.

Additionally, while some studies have attempted to identify critical features in-

fluencing academic performance, the interpretability of machine learning models

remains limited. Incorporating XAI methods to not only predict student perfor-

mance but also interpret the underlying reasons behind those predictions is an

area that could significantly enhance the efficacy of dropout prediction models.

Enhancing the interpretability of these models using XAI methods to pinpoint

the specific features contributing to the outcomes could immensely benefit both

students and educational institutions. Addressing this research gap by integrating

non-academic factors and employing XAI to interpret predictions could lead to a

more comprehensive understanding of student dropout, thereby fostering enhanced

support systems and strategies for both students and educational institutions.

Another main gap that can be identified is the accuracy values of the outputs

of the research. Most of them has comparatively low values because of the class

imbalance problem that inherently causes in student dropout datasets. Generally

in a year the number of students who are graduating in a university is higher

than the students who are dropping out. Because of this problem in most of

the datasets there is an inherent class imbalance problem within it. We need to

properly explore the dataset and handle the problem for a better prediction.
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These research gaps present a promising avenue for future studies, aiming to

create more accurate and comprehensive predictive models for student dropout

while providing actionable insights into the contributing factors behind these pre-

dictions

2.5 Chapter Summary

In this chapter it describes the related works to this study. It describes about

the significance of exploring the problem of higher education student performance

prediction (Chapter 2). Then it presents how machine learning can be used to

address this problem, how the previous studies has address the problem and how

the solutions are proposed in different environments (section 2.1). Furthermore, it

presents how XAI can be used to apply in this problem and the previous studies

in the domain (Section 2.2.2). Additionally, this chapter highlights the limitations

in the current solution and the research gaps that seeks to this study in section

2.4.
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3 Design and Approach

3.1 Research Design and Approach

This study will be focused on the applicability of machine learning models and

XAI methodologies to build more accurate and interpretable solutions to predict

at-risk students in higher education by utilizing the existing theoretical concepts

and foundations. As it uses the existing theoretical concepts this research will fall

under the category of deductive research according to Saunders’ Research Onion

Framework.

3.1.1 Data Collection

The dataset that was selected for the research is obtained from various disjoint

databases that pertain to students who were enrolled in undergraduate programs

at the Polytechnic Institute of Portalegre in Portugal (Martins et al. 2021). This

data covers the records of students who attended the institute between the aca-

demic years 2008/09 and 2018/2019. It includes students from a wide range of

undergraduate majors including agronomy, design, education, nursing, journalism,

management, social service, and technology-related fields. It has both academic

related features and non-academic related features of the students. Therefore it

will enable us to identify how the different features contribute to students in their

academic performance.

3.1.2 Data Exploration And Analysis

Understanding the dataset is a crucial part as it forms the foundation for the

predictive models. As mentioned earlier, this dataset comprises data which are

collected from a wide variety of students who follow different degree programs in a

university. It has information on the demographic, socioeconomic, and educational

factors of each student with the academic status of that student. It is essential
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to understand the significance of these attributes before diving into the process of

training the models. The explorations and observations that were conducted are

explained below.

The relationships were explored of the variables concerning the target variable.

Among these relationships, it was observed that more than 99% of the student’s

nationality is Portuguese as it is visible in Figure 3.1.1. More than 99% students

were local students and not international as you can see in Figure 3.1.2. Other

than these two, there were several additional observations encountered during the

data preprocessing phase that proved to be valuable.

Figure 3.1.1: No of students vs nationality

Figure 3.1.2: No of students vs international
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Figure 3.1.3: Age at enrollment Figure 3.1.4: Distribution of Debtors

Figure 3.1.5: Educational special needs

From the martial status distribution, it depicts the martial status of a student

when a particular student is enrolling in the course (Figure 3.1.6). It has a nor-

mal distribution that we can expect from a university student. The inclusion of

educational special needs in Figure 3.1.5 emphasizes an important part of student

support. The existence of special educational needs may need more resources and

accommodations, while their absence may result in greater dropout rates. From

Figure 3.1.4, it represents whether the student is a debtor or not. In most of the

research, they have identified how crucially the financial background of a student

is affecting to his/her studies (Yukseltruk and Inan 2006; Latif, Choudhary, and
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Figure 3.1.6: Martial status

Figure 3.1.7: Father’s occupation

Hammayun 2015).

From Figure 3.1.3 it represents the age distribution of the students when they

join for the course. The age at enrollment shows a skewed distribution suggesting

that a significant fraction of students are typically aged, falling within the average

age range of undergraduates (Reyes 2023). The observed skewness in the student

population may indicate that older students represent a minority, which might

lead to distinct problems and distinct support requirements that could impact

their tenacity in pursuing higher education.

From the Figure 3.1.7 and Figure 3.1.8 it represent what are the occupations

that the mother and father are doing for a particular student.
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Figure 3.1.8: Mother’s occupation

From these graphs, it is observable that there is some kind of a similarity between

these two features.

Figure 3.1.9: Previous education qualifi-
cations Figure 3.1.10: Scholarship holder

The previous educational qualifications of a student are another factor that

will be really useful when predicting the student’s academic performance in the

current course. Figure 3.1.9 depicts the distribution of the student’s data in their

previous educational qualifications.
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Figure 3.1.11: Tuition fees up to date

3.1.3 Data Preprocessing

During the initial analysis of the dataset, it was observed that there is a significant

class imbalance, which needs to be addressed with utmost care and attention. The

presence of this imbalance, which is marked by an unequal proportion of the target

classes has the potential to greatly impact the effectiveness of predictive models

frequently leading to a bias in favor of the dominant class. In order to address

this problem here in this study we implemented data sampling techniques in a

meticulous manner to create a more balanced distribution of students in the class.

Considering the characteristics of the dataset and the number of instances

available, we have decided to opt for data over-sampling as our preferred strategy.

The proposed approach aims to improve the representation of the minority class by

generating supplementary samples which helps to balance its prevalence with that

of the majority class. Utilizing such a strategy proves to be highly advantageous in

scenarios where the minority class is significantly underrepresented and the dataset

lacks the necessary size to allow for the elimination of majority class instances as

is the case with under-sampling.

The Synthetic Minority Over-sampling Technique (SMOTE) is a method that

is used to artificially generate new instances of the minority class by interpolating

between existing instances and their nearest neighbors (Pradipta et al. 2021).
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SVM-SMOTE is an advanced variant of SMOTE that makes use of Support

Vector Machines (SVM) to identify instances that are located in close proximity to

the decision boundary. The text artfully combines new examples in these domains

enhancing the representation of the minority class (Bordia 2024).

Adaptive Synthetic Sampling, commonly referred to as ADASYN, is a tech-

nique that aims to address the issue of imbalanced class distribution. It achieves

this by generating synthetic samples in close proximity to the minority instances

that have been misclassified (Nian 2019). The key idea behind ADASYN is to

adapt to the varying densities of the class distribution, thereby improving the

performance of classification models. By proportionally increasing the amount

of synthetic data in regions where the classifier’s performance is not optimal, it

effectively enhances the decision boundaries.

The incorporation of these sampling methods into the preprocessing pipeline

was done with the intention of creating a more evenly distributed dataset. From

using these techniques the goal was to improve the ability of the learning algorithm

to accurately identify and classify instances of the class that is not well-represented.

Simultaneously, the variable ’Target’, which specifies the result for each student

underwent label encoding.

The variable named ’Target’ which serves as the target variable in this dataset

was encoded using label encoding for model training purposes.

3.1.4 Modifying Categories of The Target Feature

In the feature named ’target’ which is the target variable of the dataset, there

were three classes which were named ’Dropout’, ’Graduate’, and ’Enrolled’.
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Figure 3.1.12: Target variable class distribution

The distribution of the students among the three classes is shown in Figure

3.1.12. The ’Graduate’ class represents the students who obtained the degree in

due time. The ’Dropout’ class represents the student who has failed to obtain

the degree in the due time. The primary objective of this study is to predict

student dropouts while simultaneously identifying the key factors that contribute

to this outcome. For this reason, the ’Enrolled’ class was omitted from considera-

tion and focused on predicting ’Graduate’ and ’Dropout’ statuses among students.

But still, the record distribution has a clear imbalance in the categories in

the target variable. As shown in Figure 3.1.13 the two categories ’Graduate’ and

’Dropout’ has 60.9%, and 39.1% records respectively.
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Figure 3.1.13: Target variable class distribution

The class imbalance issue was addressed by adopting over-sampling techniques

as a pivotal approach. A detailed explanation of it is provided in the upcoming

sections.

3.1.5 Handling Correlations

The correlation heatmap, shown in Figure 3.1.14, is an important tool used to

analyze the relationships between variables in the dataset. This examination is

important for understanding how the variables are related and how they affect

each other’s behavior. Some attributes showed a strong correlation, so we needed

to carefully evaluate them to make sure our analyses were accurate.

A notable relationship was found between the variables ’Nationality’ and ’In-

ternational’. There seems to be a strong correlation here, which could mean that

these features provide similar information about a student’s background. In order

to improve the model’s performance, the ’International’ attribute was carefully

removed from the dataset. The purpose of this exclusion was to remove any un-
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necessary influence that could affect the accuracy of the model’s predictions and

to make sure that each variable had a distinct impact on the outcome.

In the same way, the heatmap showed a significant correlation between the

occupations of the father and mother. ’Father’s Occupation’ was deliberately

excluded during the preprocessing stage.

The strong correlation between these variables suggests that they may have a

tendency to overshadow each other’s predictive value. Variance Inflation Factor

(VIF) with a threshold of 7 (Zaki et al. 2023) and based on the domain knowledge

the following features were removed: ’International’, ’Curricular units 2nd sem

(approved)’, ’Curricular units 2nd sem (grade), ’Curricular units 1st sem (cred-

ited)’, ’Curricular units 1st sem (approved)’, ’Curricular units 1st sem (grade)’,

’Curricular units 1st sem (without evaluations)’, ’Curricular units 1st sem (en-

rolled)’, ’Curricular units 1st sem (evaluations)’, ’Father’s occupation’ for a suc-

cessful feature selection process.
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Figure 3.1.14: Correlation Heatmap

3.1.6 Handling Class Imbalance Problem

The class imbalance problem is one of the main issues in this dataset. Typically

class imbalance problems can be handled using over-sampling and under-sampling

techniques. Considering the dataset and the data distribution the study was

done using over-sampling techniques in order to increase the number of records

in the minor class. Moreover, in order to address the issue of class imbalance in

the dataset, three distinct data augmentation techniques. Specifically, SMOTE,
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ADASYNC, and SVM SMOTE were used as the augmentation methods. The pri-

mary objective of these experiments was to augment the data within the minority

class.

The Synthetic Minority Over-sampling Technique which is referred to as SMOTE

is a data augmentation method that synthesizes new instances for the minority

class (Chawla et al. 2002). SMOTE works by generating synthetic examples in

feature space, interpolating between neighboring minority class instances. This

helps balance the class distribution.

The next method, ADASYNC or Adaptive Synthetic Sampling is another data

augmentation approach that was employed. ADASYNC generates synthetic sam-

ples for the minority class, placing more emphasis on challenging instances to

improve the model’s performance (He et al. 2008).

3.2 Chapter Summary

In this chapter, it presents the design and approach of the study. Section 3.1

describes the design and section 3.1.2 describes data collection and exploration

details. Furthermore, section 3.1.3, represents the data pre-processing part. Sec-

tion 3.1.5 and 3.1.6 represent the correlation handling part and the approach to

handle the class imbalance problem in the dataset respectively.
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4 Implementation of the models

4.1 Architecture Design

During the research, a detailed architecture was carefully designed to tackle the

predictive task. In the Figure 4.2.1 it represents the proposed architecture. The

process started with the initial dataset and went through a thorough preprocessing

stage. This stage was important for getting the data ready for the next modeling

steps. It made sure that the input data was clean, correctly formatted, and suitable

for machine learning algorithms.

After preprocessing, the dataset was used as the starting point for the data

augmentation phase. The augmentation played a crucial role in tackling the class

imbalance problem, which was a major challenge identified at the beginning of

the research. Three different augmentation techniques were used: SMOTE, SVM-

SMOTE, and ADASYN.Each method was applied to generate synthetic instances

within the minority class, thereby enhancing the dataset’s balance. These aug-

mentation techniques were selected because they are highly effective in enhancing

the dataset with synthetic samples that closely resemble the feature space of the

minority class.

Machine learning classifiers were trained and evaluated using augmented datasets.

The classifiers included various algorithms such as Logistic Regression, Decision

Trees, Random Forests, Support Vector Machines, Naive Bayes, Extreme Gradi-

ent Boosting, Gradient Boosting Machines, CatBoost, and AdaBoost. This varied

selection was designed to thoroughly evaluate which model could most effectively

handle the complicated nature of the augmented data.

By testing these models on the testing augmented datasets, we were able to

determine the most effective data augmentation technique. This step was crucial

in figuring out which synthetic sampling technique resulted in the most notable

improvement in performance for the models.

33



After developing the best data augmentation technique, we proceeded to fine-

tune the hyperparameters of the classifiers. The tuning process was done with

great attention to detail, with the goal of improving the performance of each

algorithm by optimizing its parameters. The objective was to optimize the models

for the unique attributes of the expanded dataset in order to achieve the highest

possible level of predictive accuracy.

After completing the hyperparameter tuning process, we identified the ma-

chine learning model that performed the best. It was chosen based on the F1

score evaluation metrics. This model represented the culmination of the research’s

model-building endeavors, encapsulating the most effective data preprocessing,

augmentation, and optimization techniques.

For the last part of the research, we used interpretability methods on the

model that performed the best. The first XAI technique is LIME which was used

to gain a better understanding of how the model makes decisions on a specific

level. At the same time, we used SHapley Additive exPlanations (SHAP) to get

a broad view of which features were important and how each feature affected the

model’s predictions. Explainable Boosting Machine is another new model that was

incorporated into the research that has the capability of interpreting the outputs

generated.

Finally, the outputs from the Explainable Boosting Machine (EBM) model, the

Decision Tree model, and the two XAI techniques, LIME and SHAP, are all re-

garded as interpretable outputs. As previously discussed, the outcomes interpreted

through XAI methods were subjected to a user study for evaluation. Comprehen-

sive details on these results, along with additional insights, are provided in the

forthcoming sections.
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4.2 Implenting Explainable Boosting Machine (EBM)

We incorporated Explainable Boosting Machine which is a machine learning model

with the capability of providing interpretations. In the paper (Jayasundara, In-

dika, and Herath 2022), they have used this model to get their machine learning

predictions and interpretations. We used the base EBM model in this study and

the results of the model and interpretation will be discussed in the upcoming

section.
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Figure 4.2.1: Architecure Graph
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4.3 Experiments

In this research, to facilitate a comprehensive comparison, I selected a total of

nine models, each with a different combination of data augmentation techniques.

This rigorous evaluation allowed us to assess the effectiveness of the augmentation

methods and their impact on model performance. The results and comparisons

are elaborated upon in the subsequent sections of this report.

4.3.1 Classification Models

The research was focused on binary classification due to the presence of two classes

in the target variable within the pre-processed dataset. There are widely used and

well-established machine learning algorithms that are utilized for predictive tasks

which are applicable for this study to tackle this problem (Adnan et al. 2021;

Marwaha and Singla 2020).

As part of the study, we used a range of basic machine learning models. These

models laid the groundwork for the initial classification efforts. Later on the

research expanded to include boosting algorithms for better exploration and results

(Al-Shabandar et al. 2019).

• Logistic Regression

• Decision Trees

• Random Forest Classifier

• Support Vector Machine(SVM)

• Naive Bayes Classifier

• XGBoost Classifier

• Gradient Boosting Classifier
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• CatBoost Classifier

• AdaBoost Classifier

The reason for adopting these boosting techniques is that they have been proven

to be effective in handling imbalanced datasets, which is relevant to the challenges

of this research. Additionally, they can improve performance in tasks that involve

classification (Tanha et al. 2020). In the next section, we will provide more details

on the training methods used for the models and how they were evaluated.

This progression from basic classifiers to more advanced boosting methods

highlights the systematic and analytical approach of the research, maintaining a

consistent and scholarly tone throughout the study.

4.3.2 Explainable and Interpretable Models

After completing the classifier models, the research delved into the important field

of exploring Explainable Artificial Intelligence (XAI). XAI helps to enhance our

understanding of how complex models make decisions, which is crucial for ensuring

transparency and trust in machine learning applications.

The LIME method was used to understand the complexities of model pre-

dictions. LIME provides valuable insights by approximating the predictions of

any classifier in a way that is easy to understand and accurate with a focus on

individual predictions.

In addition, the study used SHapley Additive exPlanations (SHAP) values to

assess the influence of each feature on the prediction outcome. SHAP values offer

a comprehensive way to assess the importance of features giving insights into both

the overall and specific explanations for the model’s behavior.

Incorporated into the system is the Explainable Boosting Machine (EBM)

a model that combines the predictive capabilities of machine learning with the

interpretability capabilities. EBMs offer valuable insights into the contributions
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of different features to the prediction.

The implementation of these XAI techniques will help to achieve reliable pre-

dictive results and effectively communicate its results to stakeholders. The thesis

provides a thorough analysis of how these XAI methodologies have been imple-

mented and their impact on the interpretability of the model outcomes in the

upcoming sections.

4.3.3 Model Training

After handling the correlated features, finding out the optimal feature set and

completing the pre-processing steps, the next step was to build the basic classifi-

cation models for the prediction. This process can be unfolded into several stages.

Initially, the models were checked and experimented with by feeding the data

set without doing any data augmentations or any other class imbalance handling

techniques. Initially, after the pre-processing stage dataset was splitter into three

parts, training, testing and validation (Figure: 4.3.1).

Figure 4.3.1: Training, Testing and Validation Split

Then SMOTE, ADASYNC and SVM SMOTE were applied to the dataset and

rebuilt the models and made performance comparisons (S. Lee and Chung 2019).

Based on observations and comparisons, One of the main important things that

needed to be clarified is whether the model has been overfitted or not. To ad-

dress this concern the data was split into training, testing and validation sets, and

trained the models using the training set. All the models were trained under three
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datasets. Dataset augmented by SMOTE, dataset augmented by ADASYN and

dataset augmented by SVM-SMOTE. All the nine models each were trained using

the augmented dataset which was altogether 27 models. After the model training

according to the results, the best model was selected for augmentation. The re-

sults of this experiment and the best model which was selected are mentioned in

the next section.

After the selection of the model the next task was to fine tune the model pa-

rameters to get the best outcome. There are various methods that we can use for

hyperparameter tuning such as Grid Search, Random Search, Bayesian Optimiza-

tion, Gradient-based optimization and etc (Hossain and Timmer 2021). Among

them, Grid Search is considered a highly effective method for determining the opti-

mal parameters for a model. One major benefit of Grid Search is its transparency

and thorough approach. Grid Search methodically explores a specified subset of

hyperparameters, ensuring that all combinations within the grid are thoroughly

examined. This thorough search is especially useful when the hyperparameter

space is not too large and when we have a good grasp of the parameters that

are likely to have the most impact on model performance (Navaz 2022). This

approach offers a structured method for tuning parameters, guaranteeing that we

discover the optimal combination of settings for our validation set.

However, it is important to note that methods such as Random Search and

Bayesian Optimisation can be more efficient when dealing with large hyperpa-

rameter spaces. These methods intelligently explore and exploit the search space,

but they don not guarantee the evaluation of all possible parameter combinations.

Occasionally, the global optimum may be overlooked, particularly when dealing

with a performance landscape that is highly irregular. Optimization methods

based on gradients are highly effective when dealing with continuous and differ-

entiable objective functions. However, they may not be the best choice for all
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hyperparameter tuning tasks, particularly those that involve discrete parameters

or non-differentiable relationships. Evolutionary algorithms and advanced tech-

niques, such as Hyperband, show great potential in tackling intricate and high-

dimensional problems. However, they demand meticulous parameter tuning and

can be computationally demanding to execute.

Given the requirements of our problem and the manageable size of the param-

eter space, Grid Search is the best option for a comprehensive yet efficient search.

It strikes a good balance between being thorough and straightforward, offering

a dependable way to carefully adjust the model parameters and achieve optimal

performance.

From grid search, we were able to find out the optimal parameters for each

machine learning model. This systematic and thorough approach involved exam-

ining all the different combinations of parameters for each model, which was a

very detailed and time-consuming task. After carefully going through everything,

CatBoost came out as the best performer. Because the dataset is not balanced,

we focused on the F1 score as our main way of evaluating the model. The F1 score

is important because it gives us a fair measure of both precision and recall.

We moved on from studying machine learning to exploring techniques for Ex-

plainable Artificial Intelligence (XAI). We specifically worked on using two popular

XAI models, LIME and SHAP, to understand the CatBoost model. This model

was found to be the most accurate in our comparison. We added these XAI mod-

els to help us better understand how our CatBoost model makes decisions and

improve the transparency of its predictions.

4.3.4 Implementation of LIME

LIME was used to come up with local explanations that gave information about

individual prediction cases. When we chose which cases to have LIME explain.

Instances with high, medium, and low model confidence levels were chosen so
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that we could see how the model acts at different levels of sure. To figure out

what the model might be focused on in each situation, we used examples of both

right and wrong predictions. This wide range of samples helped us figure out how

accurate our model was in certain areas by showing us how different traits affected

certain predictions. Out of the experimented outcomes one local interpretation

was used for the evaluation of the LIME model in the user evaluation.

4.3.5 Implementation of SHAP

On the other hand, SHAP was used to give both local and global answers. In this

case, SHAP values showed how each feature contributed to certain predictions.

By adding up the SHAP values from all the cases, we were able to see how the

features affected the model’s estimates as a whole.

4.3.6 What are SHAPLEY Values

Shapley values are a concept of the cooperative game theory field. The objective

of Shapley values is to measure each player’s contribution to the game. The

concept behind the calculation of Shapley values is fundamentally based on the

game theory where ’n’ players are participating in the game with an aim to achieve

the reward ‘a’, and this reward is intended to be fairly distributed at each one of

the ’n’ players according to the individual contribution, such as Shapley Value.

In short, the Shapley value is the measure of the average marginal contribu-

tion of a feature for an instance among all possible bunchs in the sample. Let’s

understand this in detail.

Here E[F(x)] gives the average value and waterfall plot gives an explanation

for a single instance. Here the model predicted value is f(x)=0.06. [0-dropout

— 1-Graduate]. The values show how each value has contributed to the output.

Being not a scholarship holder has been affected by -0.58 SHAP value. Tuition

fees up to date have affected +0.48 SHAP value for the prediction and so on.
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Figure 4.3.2: SHAP Waterfall plot

Our plan for using SHAP included the following:

Finding the SHAP values for a group of cases that are similarly varied as the

ones in the LIME project. To get a better idea of the feature contributions for

local explanations, we plotted the SHAP values of each prediction. To find the

most significant features in general for global explanations, we added up all the

SHAP values from the whole dataset. The selected instances were evaluated using

SHAP. A single instance was used to get the local explanation for the user study

and various global explanations were taken considering the entire dataset for the

evaluation using the user study.

4.3.7 Insights from Implementing LIME and SHAP

The use of LIME and SHAP gave us a deeper understanding of our model in many

ways.

Local Explanations: LIME and SHAP helped us understand why certain pre-
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dictions were made, which let us trust the model and evaluate it closely case by

case. Global Explanations: The overall SHAP insights showed the bigger trends

and feature importance, which let us check that the model matched what we knew

about the topic and what we expected. Trust and Transparency in the Model: We

made our model more trustworthy and clear by knowing both the local and global

reasons behind its predictions. This is very important for models that are used

in sensitive and important areas, so that people who have a stake in the outcome

can use it to make smart decisions. Adding LIME and SHAP to our study not

only made our machine learning model easier to understand, but it also showed

how important it is for AI-driven decision-making processes to be clear and easy

to understand. This thorough way of explaining models has built a strong base

for future study and uses, encouraging a culture of responsibility and knowledge

in the use of AI technologies.

4.4 Chapter Summary

From this chapter, it represents the implementation of different models associated

with the study. Section 4.1 describes the architecture design for the research

study. In the other sub-sections it describes how each model and method were

implemented such as the nine machine learning models, the implementation of the

Explainable Boosting Machine and the implementation of the two XAI models.
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5 Results And Evaluation

5.1 Results of Data Sampling

As the dataset was inherently imbalanced it needs to be experimented with using

over-sampling techniques for the minority class. For that, the techniques SMOTE,

SVM SMOTE, and ADASYN was used as minority class data augmentation. Fol-

lowing are the results that were obtained after applying SMOTE, SVM-SMOTE

and ADASYN data augmentation methods.

5.1.1 SMOTE

After the pre-processing, we applied the SMOTE data augmentation technique

first. First, we initialized the model and resampled the data. Then the dataset

was split into training, testing and validation sets. After the resampling process

we trained all nine machine learning models using that dataset. First we trained

the Logistic Regression Model. For logistic regression we got Training Accuracy:

0.7907, Training F1 Score: 0.7979, Training ROC AUC Score: 0.8712, Valida-

tion Accuracy: 0.7534, Validation F1 Score: 0.8031, Validation ROC AUC Score:

0.8141. The ROC curve for the Logistic Regression model using SMOTE is shown

in Figure 5.1.1.
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Figure 5.1.1: Logistic Regression - SMOTE ROC

Next we implemented the Decision tree model. In this stage with SMOTE

we got the following accuracy,ROC and F1-Score values for the Decision Tree.

Training Accuracy: 0.7797, Training F1 Score: 0.7777, Training ROC AUC Score:

0.8579, Validation Accuracy: 0.7617, Validation F1 Score: 0.7995, Validation ROC

AUC Score: 0.8244.

Next model is Random Forest Classifier. From the basic model, we got the

evaluation values as Random Forest Training Accuracy: 0.8337, Random For-

est Training F1 Score: 0.8424, Random Forest Training ROC AUC Score: 0.9132,

Random Forest Validation Accuracy: 0.7920, Random Forest Validation F1 Score:

0.8360 and Random Forest Validation ROC AUC Score: 0.8574.

46



Next for the Support Vector Machine, we got the values as the following. SVM

Training Accuracy: 0.7390, SVM Training F1 Score: 0.7536, SVM Training ROC

AUC Score: 0.8319, SVM Validation Accuracy: 0.7080, SVM Validation F1 Score:

0.7644 and SVM Validation ROC AUC Score: 0.7798.

Naive Bayes Training Accuracy: 0.7481, Naive Bayes Training F1 Score: 0.7706,

Naive Bayes Training ROC AUC Score: 0.8432, Naive Bayes Validation Accuracy:

0.7383, Naive Bayes Validation F1 Score: 0.8013 and Naive Bayes Validation ROC

AUC Score: 0.7885 are the evaluation values that we got for the Naive Bayes model

with the SMOTE augmented dataset. After the general machine learning models

we incorporate some boosting models into our study. Firstly from the XGBoost

model we got the following outputs. XGBoost Training Accuracy: 0.8311, XG-

Boost Training F1 Score: 0.8383, XGBoost Training ROC AUC Score: 0.9037,

XGBoost Validation Accuracy: 0.8030, XGBoost Validation F1 Score: 0.8427 and

XGBoost Validation ROC AUC Score: 0.8693.

From the boosting model, Gradient Boost we got Gradient Boosting Training

Accuracy: 0.7957, Gradient Boosting Training F1 Score: 0.8120, Gradient Boost-

ing Training ROC AUC Score: 0.8730, Gradient Boosting Validation Accuracy:

0.7879, Gradient Boosting Validation F1 Score: 0.8358 and Gradient Boosting

Validation ROC AUC Score: 0.8327.

As depicted in Table 5.1.2, from the basic CatBoost model we got the results as

CatBoost Training Accuracy: 0.8390, CatBoost Training F1 Score: 0.8450, Cat-

Boost Training ROC AUC Score: 0.9156, CatBoost Validation Accuracy: 0.8196,

CatBoost Validation F1 Score: 0.8475 and CatBoost Validation ROC AUC Score:

0.8756.
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Finally from the ADABoost model, we got the output values as AdaBoost

Training Accuracy: 0.8250, AdaBoost Training F1 Score: 0.8331, AdaBoost Train-

ing ROC AUC Score: 0.9051, AdaBoost Validation Accuracy: 0.8099, AdaBoost

Validation F1 Score: 0.8410 and AdaBoost Validation ROC AUC Score: 0.8663.

Algorithm Training Validation Training Validation
Accuracy Accuracy F1-Score F1-Score

Logistic Regression 0.7907 0.7534 0.7979 0.8031
Decision Tree Classifier 0.7797 0.7617 0.7777 0.7995
Random Forest Classifier 0.8337 0.7920 0.8424 0.8360
SVM 0.7390 0.7080 0.7536 0.7644
Naive Bayes 0.7481 0.7383 0.7706 0.8013

Table 5.1.1: Using SMOTE - Standard Models

Algorithm Training Validation Training Validation
Accuracy Accuracy F1-Score F1-Score

XG Boost Classifier 0.8311 0.8030 0.8383 0.8427
Gradient Boost Classifier 0.7957 0.7879 0.8120 0.8358
CatBoost Classifier 0.8390 0.8196 0.8450 0.8475
AdaBoost Classifier 0.8250 0.8099 0.8331 0.8410

Table 5.1.2: Using SMOTE - Boosting Machines

These are the results from SMOTE. There we can identify how the models

are behaving. We can identify Random Forest Classifier is overfitting the results.

However with SMOTE, the Random Forest Classifier demonstrated the highest

accuracy and F1-Score among the standard machine learning models while the

CatBoost Classifier exhibited the best performance among the boosting classifiers.

5.1.2 SVM-SMOTE

The next augmentation method we incorporated is SVM-SMOTE. Following are

the outputs from the nine models incorporating SVM-SMOTE.
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Algorithm Training Validation Training Validation
Accuracy Accuracy F1-Score F1-Score

Logistic Regression 0.7861 0.7507 0.7932 0.8004
Decision Tree Classifier 0.7801 0.7617 0.7789 0.7991
Random Forest Classifier 0.8265 0.8030 0.8327 0.8434
SVM 0.7565 0.7163 0.7614 0.7675
Naive Bayes 0.7333 0.7328 0.7612 0.7979

Table 5.1.3: Using SVM-SMOTE - Standard Models

Algorithm Training Validation Training Validation
Accuracy Accuracy F1-Score F1-Score

XG Boost Classifier 0.8250 0.7934 0.8331 0.8370
Gradient Boost Classifier 0.7907 0.7948 0.8072 0.8403
CatBoost Classifier 0.8390 0.8209 0.8448 0.8475
AdaBoost Classifier 0.8238 0.8127 0.8297 0.8409

Table 5.1.4: Using SVM-SMOTE - Boosting Machines

With the experiment using SVM-SMOTE, the Random Forest Classifier show-

cased the highest accuracy and F1-Score among the standard machine learning

models, while the CatBoost Classifier displayed the best performance among the

boosting classifiers.

5.1.3 ADASYN

Following table represents the evaluation values for the models using the ADASYN

augmentation.

Algorithm Training Validation Training Validation
Accuracy Accuracy F1-Score F1-Score

Logistic Regression 0.7779 0.7521 0.7871 0.8018
Decision Tree Classifier 0.7519 0.7727 0.7899 0.8328
Random Forest Classifier 0.8216 0.7961 0.8309 0.8374
SVM 0.7335 0.7052 0.7465 0.7579
Naive Bayes 0.7335 0.7369 0.7616 0.8000

Table 5.1.5: Using ADASYN - Standard Models

With the results it is observable that with ADASYN there is a slightly notice-

able performance improvement in both standard and boosting models compared
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Algorithm Training Validation Training Validation
Accuracy Accuracy F1-Score F1-Score

XG Boost Classifier 0.8174 0.7934 0.8214 0.8315
Gradient Boost Classifier 0.7508 0.7727 0.7902 0.8332
CatBoost Classifier 0.8397 0.8354 0.8578 0.8594
AdaBoost Classifier 0.8185 0.8099 0.8280 0.8487

Table 5.1.6: Using ADASYN - Boosting Machines

to SVM and SVM-SMOTE.

After an exhaustive exploration of the results, it is observable that there are

slight improvements in accuracy values and F1-Scores with the use of these sam-

pling techniques. Out of the three algorithms, it is observable that ADASYN has

slightly noticeable outcomes compared to the other two models in terms of overall

model performance. As a result, before training the model ADASYN was chosen

as the sampling algorithm and used for the remainder of the work in this study.

5.2 Hyper Parameter Tuning

In our pursuit of developing an optimal machine learning model,hyperparameter

tuning became an important step. We used Grid Search as our main tool to look

through all of the hyperparameter spaces for each model we were studying as part

of this process. This part goes into more detail about our approach, why we chose

it, and how it has affected the overall results of our study.

Grid Search, a method known for being thorough, was the first step in our hy-

perparameter tuning journey. We started an exhaustive search to find the combi-

nations that improve model performance by creating a full grid of hyperparameter

values for each model. Logistic Regression, Decision Trees, Random Forest, SVM,

Naive Bayes, XGBoost, Gradient Boosting, CatBoost, and AdaBoost were some

of the models that were looked at in this step.

A specific set of hyperparameters was carefully chosen for each model based

on how they might affect the results of the model. A lot of research was done on
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parameters like C, kernel, and gamma for SVM and n estimators, max depth, and

learning rate for Random Forest and XGBoost ensemble methods.

With the help of GridSearchCV from scikit-learn, we carefully looked at every

possible mix of hyperparameters in our specified grid. Not only did this make

sure that the whole search area was covered, but it also added cross-validation

to check how well the model was doing and prevent it from becoming overfitting.

The accuracy and the F1 score were the main metrics we used to judge, with the

F1-score being the main metrics because of the imbalance nature of the dataset.

5.3 Results and Evaluation of Machine Learining Models

With hyperparameter tuning, machine learning models had the following results.

logistic Regression best parameters

• Best Parameters : {C: 10, max iter: 98, penalty: l2, solver: lbfgs}

• Training Accuracy: 0.7779,

• Training F1 Score: 0.7871,

• Training ROC AUC Score: 0.8615,

• Testing Accuracy: 0.7521,

• Testing F1 Score: 0.8018,

• Testing ROC AUC Score: 0.8154.

Decision trees best parameters

• Best Parameters : {’criterion’: ’gini’, ’max depth’: 10, ’min samples leaf’:

3, ’min samples split’: 40}

• Decision Tree Training Accuracy: 0.8637
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• Training F1 Score: 0.8665

• Training ROC AUC Score: 0.9399

• Decision Tree Testing Accuracy: 0.7782

• Testing F1 Score: 0.8197

• Testing ROC AUC Score: 0.8302.

Random Forest best parameters

• Best Parameters: {max depth’: 15, ’min samples leaf’: 5, ’min samples split’:

10, ’n estimators’: 100}

• Training Accuracy: 0.9269,

• Training F1 Score: 0.9286,

• Training ROC AUC Score: 0.9754,

• Testing Accuracy: 0.8113,

• Testing F1 Score: 0.8509 and

• Testing ROC AUC Score: 0.8788.

Support Vector Machine best parameters

• Best Parameters: {’C’: 50, ’kernel’: ’rbf’}

• Training Accuracy: 0.8714

• Training F1 Score: 0.8767

• Training ROC AUC Score: 0.9380
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• Testing Accuracy: 0.7851

• Testing F1 Score: 0.8301

• Testing ROC AUC Score: 0.8507

Naive Bayes best best parameters

• Best Parameters: {’var smoothing’: 0.001}

• Training Accuracy: 0.7446

• Training F1 Score: 0.7644

• Training ROC AUC Score: 0.8136

• Testing Accuracy: 0.7452

• Testing F1 Score: 0.8026

• Testing ROC AUC Score: 0.7692

XGBoost best parameters

• Best Parameters: {’learning rate’: 0.5, ’max depth’: 3, ’n estimators’: 5}

• Training Accuracy: 0.8170

• Training F1 Score: 0.8252

• Training ROC AUC Score: 0.8972

• Testing Accuracy: 0.8154

• Testing F1 Score: 0.8508
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• Testing ROC AUC Score: 0.8651

Gradient Boost best parameters

• Best Parameters: {’learning rate’: 0.2, ’max depth’: 3, ’min samples leaf’:

1, ’min samples split’: 2, ’n estimators’: 10, ’subsample’: 1.0}

• Training Accuracy: 0.8120

• Training F1 Score: 0.8256

• Training ROC AUC Score: 0.9037

• Testing Accuracy: 0.8127

• Testing F1 Score: 0.8531

• Testing ROC AUC Score: 0.8631

CatBoost best parameters

• Best Parameters: {’depth’: 3, ’iterations’: 40, ’l2 leaf reg’: 1, ’learning rate’:

0.1, ’loss function’: ’Logloss’}

• Training Accuracy: 0.8319

• Training F1 Score: 0.8378

• Training ROC AUC Score: 0.9141

• Testing Accuracy: 0.8264

• Testing F1 Score: 0.8603

• Testing ROC AUC Score: 0.8773
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ADABoost best parameters

• Best Parameters: {’base estimator max depth’: 2, ’learning rate’: 0.1, ’n estimators’:

60}

• Training Accuracy: 0.8396

• Training F1 Score: 0.8464

• Training ROC AUC Score: 0.9231

• Testing Accuracy: 0.8058

• Testing F1 Score: 0.8442

• Testing ROC AUC Score: 0.8739

During the hyperparameter tuning stage, we learned a lot about how different

models behave and how sensitive they are to their settings. This not only helped

us choose the best model but also helped us learn more about how the models

worked.

CatBoost, along with the ADASYN technique for dealing with varying data,

has become the best-performing model in our study after careful hyperparameter

tuning and careful application of different data-augmentation methods. This re-

sult shows how important it is to not only pick the right machine learning model

but also use the right preprocessing methods to deal with the problems that come

with datasets. With this result, we used the ADASYN and CatBoost models for

our XAI Evaluation output generation.
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5.4 XAI and Interpretation Results

We wanted to explain how well our model, CatBoost, could predict the future, so

we started an exploration with two Explainable Artificial Intelligence (XAI) tech-

niques, LIME and SHAP. These methods gave us a way to look at the model’s

choices and understand them in a very specific way. By using LIME, we learned

more about local prediction-specific explanations, which showed how specific fea-

tures affect certain results. In addition, SHAP gave us both local and global

views on how important each feature was, which helped us see how the model was

thinking across the whole dataset.

The following results for the local explanations are made for the same data

instance.

Figure 5.4.1: LIME local explanation
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Figure 5.4.2: SHAP local explanation

Figure 5.4.3: SHAP global explanation
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Figure 5.4.4: SHAP global bar chart explanation

Adding these XAI techniques to the CatBoost model not only made us trust it

more by comparing its predictions to our subject knowledge and gut feelings, but it

also opened the door for a more in-depth conversation about model accountability

and transparency. By making it clear how the model works on the inside, we

can now confidently involve stakeholders, giving them answers that are both deep

and easy to understand. This work on XAI has been a major turning point in

our study, bridging the gap between complicated machine learning algorithms and

intelligence that can be used.

5.5 Interpret The Decision Tree

We interpret the decision tree using Graphviz. The initial interpretation was really

complex and we performed pruning to get a better interpretation as show in Figure

5.5.1.
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Figure 5.5.1: Pruned Decision Tree Interpretation

But the interpretation was still too complicated to get an clear idea about the

model’s behavior. And decision tree interprets the rules for the tree but not the

features that are contributed to the result. Contributed factors are not directly

highlighted.

5.6 Interpretation of the Explainable Boosting Machine

(EBM)

The interpretation of the EBM model is shown in Figure 5.6.1. They it has

provided a clear outcome of global explanation for the model’s prediction. It

provides an output somewhat similar to LIME’s local output and SHAP’s bar

chart. However the issue with this EBM is its accuracy. Its accuracy was in the
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60%s, which is comparably low. In other research studies also which has used this

EBM model the accuracy was really low (Jayasundara, Indika, and Herath 2022).

Because of this reason, EBM’s interpretation was not considered in the user study

for evaluation.

Figure 5.6.1: EBM Interpretation

5.7 Evaluation of XAI Models

To evaluate the efficacy and impact of our Explainable Artificial Intelligence (XAI)

models, we conducted a user study, drawing participants from a diverse range of

backgrounds. This study aimed to assess the interpretability and transparency

provided by LIME and SHAP explanations as applied to our CatBoost model’s

predictions.

Participants were presented with model predictions alongside the explanations

generated by these XAI techniques. Through a series of qualitative assessments

and quantitative measures, we gauged the participants’ ability to understand the

model’s decision-making process, their level of trust in the predictions, and the

overall clarity of the explanations provided. This user-centric evaluation approach

offered invaluable insights into the practical applicability of XAI methods, enabling

us to refine our approach to model explanation and to ensure that our AI solutions

are both accessible and trustworthy to end-users. The feedback and results from
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this user study have been instrumental in validating the effectiveness of our XAI

implementations, marking a significant step towards achieving transparent and

interpretable AI-driven decisions.

The questionnaire was based on two categories, one for the lecturers and aca-

demic staff to evaluate the dropout prediction explanations by LIME and SHAP

(User Study 1). The second part was done by the students (User study 2). For

this evaluation evaluators from various backgrounds were selected. Lectures from

UCSC, student counselors from UCSC, student counselors and lectures and stu-

dent counseling lectors from the University of Colombo Faculty of Science were

involved in the user study. As students, UCSC students from various academic

years participated in the study.

5.7.1 Results of The Evaluation of LIME - User Study 1

Following is the summary of the user study from the participation of university

lecturers and counselors. It was chosen that professors and counselors would be

part of this study because they have a lot of experience with situations where

students drop out and the problems associated with them. Their professional

viewpoints were invaluable in evaluating the XAI explanations of our models.

Figure 5.7.1: Participated Evaluators
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From Figure 5.7.1 it represents the categories of the participated evaluators.

Next questions were based on LIME and SHAP. Figure 5.7.2 show the aware-

ness of the participants on the model LIME.

Figure 5.7.2: Awareness on LIME

Figure 5.7.3 depicts the rates that was given for the understandability of the

LIME model.

Figure 5.7.3: Understandability of LIME

Figure 5.7.4 depicts the rates that was given for the satisfaction of the LIME
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model.

Figure 5.7.4: Satisfaction of LIME

Figure 5.7.5 depicts the rates that was given for the sufficiency of the LIME

model.

Figure 5.7.5: Sufficiency of LIME

Figure 5.7.6 depicts the rates that was given for the satisfaction of the LIME

model.
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Figure 5.7.6: Trustworthiness of LIME

Based on the feedback that was given for LIME, it was clear that most of

the participants were mostly satisfied with LIME’s answers, with a large majority

giving them a score of 4 out of 5. This shows that there is a lot of agreement with

how LIME localized interpretations for each forecast.

However, when considering the sufficiency of the explanations regarding the

reasons for students’ dropout or graduation classifications, the responses were

more varied. This suggests that the details that affect these results need to be

looked at in more depth or using different methods.

People who trusted the model had a wider range of views, with answers that

showed a healthy mix of doubt and belief in the explanations, which made the

model more trustworthy. This feedback shows that we need to improve how the

explanations are given and maybe make the explanations easier or harder depend-

ing on the user’s level of knowledge.

Most of the people who answered thought the explanations were easy to under-

stand; in fact, half of them gave them the highest grade. This makes it look like

LIME’s way of explaining each prediction is going in the right direction. However,

users’ opinions showed some confusion and disbelief in certain feature contribu-
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tions.

5.7.2 Results of The Evaluation of SHAP - User Study 1

After getting evaluated the LIME model questionnaire was based on the SHAP

model. Following are the questions and the respective responses for each question

based on the SHAP model.

Figure 5.7.7 shows the awareness of the participants on the model SHAP.

Figure 5.7.7: Awareness on SHAP

Figure 5.7.8 depicts the rates that was given for the understandability of the

SHAP model.

65



Figure 5.7.8: Understandability of SHAP

Figure 5.7.4 depicts the rates that was given for the satisfaction of the SHAP

model.

Figure 5.7.9: Satisfaction of SHAP

Figure 5.7.10 depicts the rates that was given for the sufficiency of the SHAP

model.
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Figure 5.7.10: Sufficiency of SHAP

Figure 5.7.11 depicts the rates that was given for the satisfaction of the SHAP

model.

Figure 5.7.11: Trustworthiness of SHAP

The study showed that many of the participants did not know about SHAP

before, which means there is a chance to spread the word and educate more people

about XAI tools. However, once people got to know it, they had a wide range of

opinions about how useful SHAP is for understanding model predictions. Many
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students were happy with SHAP’s interpretive power, as shown by the satisfaction

scores.

Some people had different opinions on whether the explanations for classifica-

tions were enough. They emphasized the importance of being careful when looking

at SHAP’s output because student dropouts and graduations are complex and have

many factors to consider. Trust in the model, as SHAP’s visual explanations have

made a lot of people more confident in the model’s trustworthiness.

Most tellingly, when asked about the understandability of SHAP’s explana-

tions, responses skewed positively, showcasing a majority finding SHAP’s output

to be clear and easy to understand. This supports our goal of making advanced

machine learning models like CatBoost more accessible and interpretable to end-

users.

5.7.3 Results of The General Evaluation - User Study 1

After the specific evaluation of LIME and SHAP, the next phrase of the ques-

tionnaire was on general evaluation. In that chapter, we evaluated the general

interpretability of XAI using LIME and SHAP.

Figure 5.7.12 depicts whether there any preferences by the evaluator for either

of the models LIME or SHAP.

68



Figure 5.7.12: Preference between the two models

Figure 5.7.13 depicts the reasons for any preferences. Most of them have

highlighted understandability as a reason for the preference.

Figure 5.7.13: Reasons For The Preferences between the two models
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Figure 5.7.14: Preferred model

Here in Figure 5.7.14, it shows the results of how the responders have picked

their preferred model. The majority of the people have selected SHAP as their

preferred model.

When collecting the responses from a user study it is important to know

whether they have the expertise in the field that we are going to take them as

evaluators. So in the questionnaire, we checked their experience on identifying

or consulting at-risk students. Figure 5.7.15 depicts the outcome which is more

positive.
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Figure 5.7.15: Experience in identifying or consulting at-risk students

As depicted in Figure 5.7.16, lecturers and counselors have pointed out that it

can be really tough to identify and help students who are at risk. It can be difficult

to identify the specific reasons that indicate a student is at risk of leaving school.

However, the real challenge often comes from personal issues that affect students’

attendance and ability to complete assignments. In addition, educators face the

challenges of having many students in their classes and the time-consuming task

of constantly assessing individuals who may be at risk. It is really hard to com-

municate with each other, which makes it even more difficult to help students who

are struggling academically. We need better ways to quickly identify and support

these students. It is really important to have tools and systems that can help

identify students who may be struggling so that we can provide them with the

right support to improve their education. From these responses we can clearly get

an idea of how important is to have a good system to identify at-risk students.
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Figure 5.7.16: Difficulties in identifying at-risk students

It is important to identify the at-risk students early. And it is much more

important to identify the factors for that student to be at that stage. In the general

section, we asked a question on the difficulties that the lecturers/counselors might

have faced when identifying the factors that affect students to dropout (Figure

5.7.17).
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Figure 5.7.17: General problems in identifying at-risk students

In Figure 5.7.18, it depicts whether the evaluators have used any data observa-

tion based techniques in identifying at-risk students. From FIgure 5.7.19 it shows

the data observation based techniques currently used by the evaluators.

Figure 5.7.18: Usage of data observation-based techniques in identifying at-risk
students
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Figure 5.7.19: Types of data observation-based techniques used in identifying at-
risk students

Then we evaluate the overall understandability of the XAI models and their

interpretation of the student dropout predictions (Figure 5.7.20).

Figure 5.7.20: Overall understandability of the models

Other than evaluating the output in the questionnaire we collected the ideas

from the evaluator for any additional feature or improvements that they would

like to suggest. They are represented in the Figure 5.7.21.
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Figure 5.7.21: Feedbacks

5.7.4 Results of The Evaluation of LIME - User Study 2

When it comes to the evaluation of the interpretability of a student dropout pre-

diction system undergraduate students are another major party that we should

consider. As undergraduates, students themselves have experiences in filtering out

Figure 5.7.22: Awareness of LIME

Figure 5.7.22 shows the response from students on their awareness of the XAI

models.
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Figure 5.7.23: How did you became aware of LIME

Figure 5.7.22 shows the reasons of on how students become aware of the LIME

models. Figure 5.7.24 depicts the rates that was given for the understandability

of the LIME model. From Figure 5.7.25 it represents the students’ response on

the specific comments on the understandability of the LIME model.

Figure 5.7.24: Understandability of LIME
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Figure 5.7.25: Explanation on Understandability of LIME

From Figure 5.7.26 it depicts the rates that was given for the satisfaction of

the LIME model.

Figure 5.7.26: Satisfaction of LIME

Figure 5.7.27 depicts the rates that was given for the sufficiency of the LIME

model.
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Figure 5.7.27: Sufficiency of LIME

Figure 5.7.28 depicts the rates that was given for the satisfaction of the LIME

model.

Figure 5.7.28: Trustworthiness of LIME

As mentioned in our second user study, we examined how LIME contributes

to improving the interpretability of models through evaluation with a group of

undergraduate students. Based on the feedback we received, it seems like more and

more students are becoming aware of and understanding the LIME methodology.
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This is a positive indication that XAI tools are becoming more widely used in

educational settings.

Most students seemed to grasp the explanations provided by LIME, indicating

that the tool effectively conveyed the reasoning behind the predictions made by

the model. Many university students found LIME to be very helpful. They ap-

preciated how clear the explanations were for each prediction, and they believed

that LIME could be a valuable tool in education for making AI decisions easier to

understand.

But when it came to whether LIME’s explanations were enough to justify the

model’s classifications of student outcomes, the responses differed. This suggests

that there is a need for more detailed or contextually nuanced explanations. People

had different opinions about the model’s trustworthiness, but overall, the visual

aids provided by LIME suggested that it was becoming more trustworthy.

The students’ feedback further supported the findings, praising how easy it

was to understand and how clear the explanations were. This helped them better

understand the reasons behind the model’s results.

5.7.5 Results of The Evaluation of SHAP - User Study 2

As in the previous study, after getting evaluated the LIME model questionnaire

was based on the SHAP model. Following are the questions and the respective

responses for each question based on the SHAP model in the user study 2.

Figure 5.7.29 shows the awareness of the participants on the model SHAP.
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Figure 5.7.29: Awareness on SHAP

Figure 5.7.22 shows the response from students on their awareness of the XAI

models.

Figure 5.7.30: How did you become aware of SHAP

Figure 5.7.31 depicts the rates that were given for the understandability of the

SHAP model.
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Figure 5.7.31: Understandability of SHAP

Figure 5.7.26 depicts the rates that was given for the satisfaction of the SHAP

model.

Figure 5.7.32: Satisfaction of SHAP

Figure 5.7.33 depicts the rates that was given for the sufficiency of the SHAP

model.
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Figure 5.7.33: Sufficiency of SHAP

Figure 5.7.34 depicts the rates that was given for the satisfaction of the SHAP

model.

Figure 5.7.34: Trustworthiness of SHAP

Based on the study conducted with university students, it is evident that most

of the participants were already familiar with the SHAP library. Many university

students have become familiar with SHAP, as it has gained recognition and been

integrated into their coursework and research projects.
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People really liked how well SHAP explained things on a global and local

level. It showed that SHAP was really good at giving detailed insights. Most

students were satisfied with SHAP because it helped them understand individual

predictions and how different features affect the overall model.

Many university students found the explanations for dropout or graduation

classifications in SHAP to be sufficient, but some felt that more detailed explana-

tions could be provided. According to the data university students reported that

the visual presentation with explanations from SHAP increased their trust in the

machine learning model. This indicates that SHAP’s interpretative visualizations

were successful in making the model appear more trustworthy.

However, people had different opinions about how easy it was to understand

SHAP’s explanations. Some people found SHAP to be clear and helpful in un-

derstanding the model’s output. However, others found it slightly less clear than

LIME and a bit more challenging to understand. In general, the students had a

positive perception of SHAP. They found its explanations to be detailed and easy

to understand, which can help them better understand complex predictive models.

5.7.6 Results of The General Evaluation - User Study 2

In study 2 also, after the specific evaluation of LIME and SHAP, the next phase

of the questionnaire was on general evaluation. In that section, we evaluated the

general interpretability of XAI using LIME and SHAP.

Figure 5.7.35 depicts whether there are any preferences by the evaluator for

either of the models LIME or SHAP.

83



Figure 5.7.35: Preference between the two models

Figure 5.7.36 depicts the reasons for any preferences. Most of them have

highlighted understandability as a reason for the preference.

Figure 5.7.36: Reasons For The Preferences between the two models
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Figure 5.7.37: Preferred model

Here in Figure 5.7.37, it shows the results of how the responders have picked

their preferred model. The majority of the people have selected LIME as their

preferred model in this study.

Figure 5.7.38: Impact on the decision making process

In Figure 5.7.41, the highlighted responses from students underscore the impact

of integrating LIME and SHAP into the decision-making process regarding student

dropout issues. This yields an important and intriguing outcome, demonstrating

the capability of employing XAI and interpretative techniques to enhance the well
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being and improve the quality of higher education.

Figure 5.7.39: Overall understandability of XAI techniques

Figure 5.7.39, highlights the overall understandability of XAI models with the

students. And in the Figure 5.7.40 it shows that no one have experience in using

a dropout prediction system.

Figure 5.7.40: Experience in using a student dropout prediction system
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Figure 5.7.41: Impact on the decision making process

As depicted in Figure 5.7.42, most of the students has mentioned that XAI can

be found really useful in identifying contributing factors for academic performance

as undergraduate students.

Figure 5.7.42: How useful to identify the factors

5.7.7 Overall Summary of The XAI Evaluation

The findings from both user studies highlight how the most appropriate XAI model

for understanding machine learning decisions in the education field depends on the

specific context. In the initial study, which included lecturers and counselors who
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have dealt with student dropout cases, SHAP was preferred because it offers a clear

understanding of the data at both a broad and specific level. The model’s clear

explanations helped experienced educators understand and trust its predictions,

which is important for their decision-making.

On the other hand, the second study, which involved a group of students,

showed that they preferred LIME. The students preferred LIME’s localized expla-

nations because they were easier to understand. This shows that LIME is particu-

larly useful in situations where users need simpler and more direct interpretations.

This indicates that LIME’s method of providing explanations is effective for au-

diences who prefer clear and straightforward explanations in order to understand

the model’s results.

These results show that deciding which XAI tool is better, LIME or SHAP,

is not a clear-cut choice. It depends on what the users want and how well they

understand XAI concepts. For people like lecturers and counselors who need

detailed information to make important decisions, SHAP provides a thorough

framework. And it has the capability of interpreting both globally and locally.

For university students who prefer a simpler language, LIME offers a more user-

friendly option.

Overall, SHAP is known for its in-depth and informative explanations that

are ideal for academic experts, while LIME offers easy-to-understand explanations

that are better suited for a wider range of people looking for simple interpretations.

Choosing the best XAI model depends on who will be using it and how it will be

used in the context of higher education.
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5.8 Chapter Summary

In this chapter it represents all the results and evaluation details of the study.

It has complete comprehensive results and analysis of all the experiments and

outcomes of the study. In section 5.1, it represents the results from the data

sampling techniques. Section 5.2 represents the results of the hyperparameter

tuning process, section 5.3, results of the machine learning models, section 5.4,

results of the interpretation models and in section 5.7, results of the XAI model

evaluation is represented.
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6 Conclusions

6.1 Introduction

This chapter presents the conclusions of the study on undergraduate academic per-

formance prediction while maintaining both accuracy and interpretability. From

section 6.2 it will discuss the conclusions related to the research questions, while in

section 6.3, we present the conclusions regarding the research problem. In section

6.4, we will discuss the limitations of this study. Then, in section 6.5, we will

explore the implications for future research.

6.2 Conclusions about Research Questions

The main aim of our study was to to predict student academic performance while

detecting the contributing features leading to their under-performance. The first

research question was to find out the most suitable machine learning technique

for predicting students’ performance. In the preprocessing stage as mentioned

in the section 3.1.3, we found that there is a class imbalance problem in the

dataset. In addressing the research question regarding the effectiveness of various

machine learning models, as depicted in Chapter 5, this thesis demonstrates that

models incorporating ADASYN sampling techniques enhance predictive accuracy

compared with SMOTE and SVM-SMOTE techniques.

After finding the best sampling technique we did hyperparameter tuning for all

mine machine learning and boosting models to find out the most optimal param-

eters and matrices. According to the results in the sub-section 5.3, we identified

the CatBoost model as the best performing model under this data imbalanced

environment.

The second research question was how to adapt Explainable Artificial Intel-
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ligence (XAI) and Interpretation techniques to identify contributing features for

each prediction. We experimented with two XAI models LIME and SHAP. Other

than these two models we considered the decision tree interpretation and Explain-

able Boosting Machine(EBM) interpretation. The interpretation of the decision

tree is too complex to understand with the increased number of features. The

EBM showed less accuracy compared with the other nine models. Because of

those reasons, we did not consider those two interpretation mechanisms for the

user study. As discussed in section 4.3, we implemented and experimented with

both LIME and SHAP models for our best accurate model.

The third research question was to find out the most effective XAI technique

for student dropout prediction models in terms of interpretability. As discussed

and concluded in the previous section (section 5.7), we find out SHAP provides in-

depth, enlightening explanations with both local and global explanations, while

LIME provides straightforward and simple local explanations for a wider audi-

ence. From the results of the user study which was done with the participation

of lecturers and counselors, the majority identified SHAP as the most preferred

model. The reasons for their choice were the clear graphs and visualization of

SHAP, SHAP has a more detailed representation and its local and global explana-

tions feature. From the second user study which was done with the participation

of university students, their choice was LIME. The undestandability of LIME is

higher than SHAP, for a local explanation LIME gives a better explanation and

its simplicity was the reasons for their choice.

From the results of the study, it was observable that both LIME and SHAP

models were able to give a good interpretable and accurate interpretation com-

pared to the decision tree’s interpretation and EBM’s interpretation. Moreover

from these results it was observable that rather than coming to a conclusion of
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selecting one single XAI model as the best explainable model, choosing the opti-

mal XAI model depends on who will use it and what is the context it will use in

higher education.

6.3 Conclusions about Research Problem

This study was focused on finding a method for undergraduate academic perfor-

mance prediction while maintaining both accuracy and interpretability. In order

to achieve this objective, nine different machine learning and boosting models

were experimented with. Other than these models Explainable Boosting Ma-

chine(EBM) which is considered as an interpretable machine learning model was

also included into the study. Out of the models CatBoost performed the best

with a training F1-Score of 0.8378 and testing F1-Score of 0.8603. These results

were obtained after a comprehensive parameter tuning process for all the models

using grid search. Then the best model was used to get the interpretation from

the XAI models, LIME and SHAP. Other than the interpretation of these mod-

els decision trees interpretation and EBM interpretation was also experimented

in the study. But EBM interpretation was not considered for the interpretation

evaluation because of the low accuracy values obtained compared with the other

models. Interpretation of the decision tree was not considered because of the high

complexity of the outcome. From the user studies and results which was done con-

sidering the LIME and SHAP models it indicated that the selection of an optimal

XAI (Explainable Artificial Intelligence) model does not rest upon determining a

single ’best’ model. Instead, the choice of the most suitable XAI model hinges

on the intended user and the specific context within which it will be employed in

higher education.

In conclusion, from this study we were able to find out how different data

sampling techniques will affect an outcome and how we can apply different XAI
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techniques to get interpretations according to the context. Thus, this study con-

tributed to both machine learning and interpretable machine learning domains by

the findings of the study.

6.4 Limitations

The study was done using a dataset of a Portugal university. Therefore the trained

model will not be the optimal solution model to predict the dropout of students

of the other universities.

As the dataset contained features related to that country and the university, the

models were trained on only those features. Thus, the explanations was provided

considering only the features that was available in the dataset.

6.5 Implications for further research

Our model is effective and practical, making it a good starting point for future

research. One can further explore how the model can be adapted by using different

sets of data. This method will not only improve how it works, but also test how

well it can handle different situations.

In addition, studying interpretive models like Explainable Boosting Machines

(EBM) can be a useful way to make progress in XAI. Improvements in the accuracy

of EBM could make it easier to use as a tool for interpreting information, which

would help make complex models more transparent for decision-making.

In the future, researchers could try using different machine learning algorithms

and explore various methods of explainable artificial intelligence. Our goal is to

improve the performance and understanding of the models. This comprehensive

approach has the potential to create more detailed and user-focused XAI applica-

tions that meet the changing needs of different people in the artificial intelligence

and education field.
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7 Appendix A: Results of Experiments

An appendix of all the results of the study will be included in this section.

Results presented in the upcoming figures follows the notations defined below.

7.1 Results of The Machine Learning Models

Following are the results from SMOTE sampling

Figure 7.1.1: SMOTE Logistic Regression Results

Figure 7.1.2: SMOTE Decision Tree Results

Figure 7.1.3: SMOTE Random Forest Results
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Figure 7.1.4: SMOTE SVM Results

Figure 7.1.5: SMOTE Naive Bayes Results

Figure 7.1.6: SMOTE Gradient Boost Results

Figure 7.1.7: SMOTE CatBoost Results

Figure 7.1.8: SMOTE AdaBoost Results
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Following are the results from SVM-SMOTE sampling

Figure 7.1.9: SVM-SMOTE Logistic Regression Results

Figure 7.1.10: SVM-SMOTE Decision Tree Results

Figure 7.1.11: SVM-SMOTE Random Forest Results

Figure 7.1.12: SVM-SMOTE SVM Results
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Figure 7.1.13: SVM-SMOTE Naive Bayes Results

Figure 7.1.14: SVM-SMOTE Gradient Boost Results

Figure 7.1.15: SMOTE CatBoost Results

Figure 7.1.16: SVM-SMOTE AdaBoost Results

Following are the results from SVM-SMOTE sampling
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Figure 7.1.17: SVM-SMOTE Logistic Regression Results

Figure 7.1.18: SVM-SMOTE Decision Tree Results

Figure 7.1.19: SVM-SMOTE Random Forest Results

Figure 7.1.20: SVM-SMOTE SVM Results
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Figure 7.1.21: SVM-SMOTE Naive Bayes Results

Figure 7.1.22: SVM-SMOTE Gradient Boost Results

Figure 7.1.23: SVM-SMOTE CatBoost Results

Figure 7.1.24: SVM-SMOTE AdaBoost Results
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Following are the results from ADASYN sampling

Figure 7.1.25: ADASYN Logistic Regression Results

Figure 7.1.26: ADASYN Decision Tree Results

Figure 7.1.27: ADASYN Random Forest Results

Figure 7.1.28: ADASYN SVM Results

Figure 7.1.29: ADASYN Naive Bayes Results
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Figure 7.1.30: ADASYN Gradient Boost Results

Figure 7.1.31: ADASYN CatBoost Results

Figure 7.1.32: ADASYN AdaBoost Results

Following are the results from hyperparameter tuning

Figure 7.1.33: HPT Logistic Regression Results

Figure 7.1.34: HPT Decision Tree Results
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Figure 7.1.35: HPT Random Forest Results

Figure 7.1.36: HPT SVM Results

Figure 7.1.37: HPT Naive Bayes Results

Figure 7.1.38: HPT Gradient Boost Results

Figure 7.1.39: HPT CatBoost Results
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Figure 7.1.40: HPT AdaBoost Results
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7.2 Results of The XAI and Interpretable Models

Figure 7.2.1: Pruned Decision Tree Interpretation

Figure 7.2.2: EBM Interpretation
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Figure 7.2.3: Preferred model

Figure 7.2.4: Preference between the two models
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8 Appendix B: Code Listing

An appendix of all the codes used in the study will be included in this section.

Figure 8.0.1: Pre-processing-Part 1
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Figure 8.0.2: Pre-processing-Part 2
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Figure 8.0.3: Pre-processing-Part 3

Figure 8.0.4: Pre-processing-Part 4
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Figure 8.0.5: Pre-processing-Part 5

SMOTE sampling
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Figure 8.0.6: SVM-SMOTE sampling

Figure 8.0.7: ADASYN sampling
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Figure 8.0.8: Logistic Regression code
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Figure 8.0.9: Random Forest code
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Figure 8.0.10: Naive Bayes code
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Figure 8.0.11: SVM code
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Figure 8.0.12: Decision Trees code
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Figure 8.0.13: Gradient Boost code
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Figure 8.0.14: CatBoost code
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Figure 8.0.15: XG Boost code
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Figure 8.0.16: ADABoost code
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Figure 8.0.17: HPT Logistic Regression code

Figure 8.0.18: HPT Decision Tree code
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Figure 8.0.19: HPT Random Forest code
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Figure 8.0.20: HPT Naive Bayes code
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Figure 8.0.21: HPT CatBoost code
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Figure 8.0.22: HPT Gradient Boost code
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Figure 8.0.23: HPT ADABoost code
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